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Abstract
The paper considers probabilistic properties of the trajectory of a moving agent. The
agent finds a route close to the optimal one on a lattice consisting of cells with different
impassabilities. We study the distribution of the agent’s exit time to the end point for
random landscapes of different types using a special sort of simulation. After that,
we compare the obtained empirical probability density function with the probability
density function derived from theoretical considerations.Wealso obtain the probability
density function for the ratio of Rician and uniform random variables. Finally, the
probability distribution of the agent’s residence in a given cell at a given moment of
time for random landscapes of different types is analyzed.

Keywords Agents · Lattice · Pathfinding · Brownian bridge · Rician distribution ·
Extreme values distribution

Mathematics Subject Classification 49J55 · 49M30 · 37B15

1 Introduction

Previously, the first author has developed the cellular automaton simulating a motion
of hierarchically organized agent’s swarms and formations over a rough terrain [1–
3]. Also, he studied a connection between the automaton discrete model and the
corresponding continuous optimization problem [4].
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The “terrain” consists of randomly placed cells with different passabilities. The
method for the random “terrain” or random landscape generation, as well as landscape
properties, was studied in [5]. Agents can be people or unmanned aerial vehicle (UAV)
moving through the battlefield or, as in the article [6], macromolecules or cells in
overcrowded environments.

The movement of agent over a random landscape can be seen as Brownian bridge
realization. In the work [7], a Brownian bridge motion model (BBMM) was studied
as a biologically grounded approximation for an animal movement path. The approx-
imation was obtained from the discrete animal’s location data. BBMM is a powerful
mean to estimate a utilization distribution.

The use of cellular automata for the optimal pathfinding, for example, in chemical
or biological processors, is well known [8,9]. However, in such studies, e.g., [10–12],
the formal logical approach prevails, in the spirit of computability theory. Statistical
and, speaking in general, analytical properties of such systems have been studied little
ever for simplest cases.

Consider the case of the randomized movement of an agent over a fixed landscape
from a fixed start point to a fixed destination. The set of several realizations of such
movements can be compared with a motion of agents’ swarm. If the agent can, at
each subsequent realization of its movement, change the properties of the landscape
in such way that this will affect the next realization, then it is quite consistent with the
movement of the swarm of interacting agents.

Swarms, even consisting of unicellular organisms, can solve logistic and transport
problems, including NP-hard ones, very effectively. For instance, there is a collective
navigation of bacterial swarms, an effective pathfinding by amoebae and Physarum
polycephalum, and a possibility of traffic optimization by them. Ants can solve mazes,
ants and amoebae can solve the traveling salesman problem, amoebae can solve the
Steiner tree problem, bees can solve the generalized assignment problem, and so on.
By these reasons, the swarm intelligence is actively studied now.

In the present work, we study statistical properties of near-optimal trajectories of an
agent, obtained from the cellular automaton, previously proposed by the first author.
These trajectories are interpreted as Brownian bridge realizations. We use the hypoth-
esis, that an agent’s speed has Rician distribution as in [7]. The approach described
in the present article can be extended to the study of the probabilistic properties of
swarm optimization.

2 Continuous Optimization Problem and Its Discretization

Let Ω ⊆ R
2, R+ be the set of real nonnegative numbers, and consider the motion

problem for an agent seeking the quickest route r = �

AB from the point A ∈ Ω to the
point B ∈ Ω . This problem can be formulated as

min T , subject to (1)

‖ṙ(t)‖ = uc(t, r(t)), t ∈ [0, Tmax], (2)

r(0) = A, r(T ) = B, 0 ≤ T ≤ Tmax, (3)
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where ṙ is the first derivative of r with respect to t , uc : R+ × Ω → R+ is a function
of the domain Ω passability, which defines the maximum possible speed uc(t, ρ) in
the point ρ ∈ Ω at the moment of time t , ‖ · ‖ is the Euclidian norm,

T (r) := min{t ∈ R+ : r(t) = B}.

From (1) to (3), it is possible to obtain the expression for

T : C([0, Tmax];R2) → R+

as the following one

T (r) =
∫ T

0

‖ṙ(t)‖dt
uc(t, r(t))

=
∫

�

AB

dl

uc(t(l), r(t(l)))
, (4)

where t ∈ [0, T ] is the time variable and l is the natural parameter.
Clearly, it is impossible to obtain explicit form of T from (4) in common case. The

exception is, for example, the case when r is the graph of some function y ∈ C2[a, b],
i.e.,

r := {(x, y(x)) : x ∈ [a, b]},

and uc does not depend on time. However, one can obtain various properties of the
functional T , prove the solvability of the minimization problem (1)–(3) in a class
Y ⊂ W 1

p([0, Tmax];R2), and construct an algorithm for the problem’s approximate
solution with estimates for it [4].

Let us denoteucmax := max
(t,ρ)∈[0,Tmax]×Ω

uc(t, ρ). Introduce the impassability function

u(t, ρ) := ucmax

uc(t, ρ)
.

Let Ωh ⊇ Ω be a tessellation of Ω , Ωh = {ωi j : (i, j) ∈ Z
2}, and rh ⊇ r is a

cellular route, i.e., minimal covering of the route r by cells from Ωh . We denote the
set of all cellular routes which approximate routes from Y by Yh .

Denote as rh[k] the kth by the order of passing cell of the route rh . The functional
T has discrete analog

Th(rh) :=
∑

(i, j)∈rh
ui j (t)‖di j‖, (5)

where ui j (t) = max
ρ∈ωi j

u(t, ρ) is the impassability of the cell (i, j) in the timemoment t ,

di j := dk := rh[k + 1] − rh[k], rh[k] := (i, j).

When the grid step h is decreased, the sequence of cell routes {rh} minimizing the
functional (5) will converge in some sense to the route r minimizing the functional
(4). Next, we will use the notation
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ui j (t) := u(t, (i, j)) := max
ρ∈ωi j

u(t, ρ).

For example, assume that ucmax = 8 m/s and uc(t, (1, 1)) = 2 m/s, t ∈ [0, T ].
It means that the maximum agent’s speed at the point (1, 1) is always 2m/s and the
maximum possible speed in the whole Ω is 8m/s. We obtain that u(t, (1, 1)) = 4. If
(1, 1) ∈ ω11, ω11 ∈ Ωh , and

max
t∈[0,T ] max

ρ∈ω11
u(t, ρ) = u(t, (1, 1)) = 4,

then an agent can pass the cell ω11 in 4 quanta of discrete time. The simplest example
of Ωh is a square grid with equal-sized cells.

It is quite common that we can measure impassability of a landscape only in a
sufficiently small number of points, and these points do not form any uniform grid.
Therefore, the more advanced case ofΩh is the Voronoi diagram of a set of points with
a given impassability. The Voronoi diagram is a natural partition of a landscape into
cells with different properties. The example of a cellular automaton using the Voronoi
cells is studied in [13].

Let us denote by rh(t) the cell of a cell route, where agent is situated in the time
moment t . Note that for χ ≤ κd(t)u(t, rh(t)), we obtain the discrete analog of (1)

‖rh(t + χ) − rh(t)‖ = ‖d(t)‖
⌊

χ

κ‖d(t)‖u(t, rh(t))

⌋
, (6)

where d(t) ∈ D := {(i, j) : i, j = −1, 1} is the direction vector of the agent, κ is the
number of seconds in one discrete time quantum, and 	x
 is the floor function of x .

We previously designed a cellular automaton, where agents moving in accordance
with (6) sought the shortest route to the destination, minimizing the functional (5)
in some agent’s neighborhood, and then concatenated a near-optimal route from the
resulting fragments [1]. As an alternative, the probability of choosing the locally
optimal route by the agent is maximal, and less the route is optimal, the less likely that
the agent wants to choose it.

At the same time, in each neighborhood of the agent in the cell ωi j , Uo(i, j) :=
{ωi j : ‖(i, j)‖ ≤ o, ωi j ∈ Ωh}, B /∈ Uo(i, j), the agent minimizes the time of the
path from the point Bi of the intersection of the boundary of Uo(i, j) with the closed
segment connecting the agent’s location and B.

3 Dependencies of Statistical Properties of the Near-Optimal Route
on Characteristics of a Terrain

Definition 1 The landscape in the time moment t is the set of tessellation’s cells
impassabilities

L(Ωh, l) := {ui j : ui j = u(t, ωi j ), ωi j ∈ Ωh},
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such as u takes on {ωi j : i = 1, n, j = 1,m} no more than l possible values, and to
the impassability class i belongs Ni cells, i.e.,

∑l
i=1 Ni = M , M = |L(Ωh, l)|.

Denote as “
≈
min” a near-minimum of functionals T and Th obtained in the afore-

mentioned way. We call this solution near-minimum, because it can be used as an
easily computable substitution of the true minimum. If a landscape consists of cells
whose impassabilities are randomly distributed, then each near-optimal route found by
the agent in a certain random landscape can be viewed as the realization of a random
walk on a lattice, and more precisely, as a Brownian bridge. In this case,

τ = ≈
min
r∈Y

T (r), τh = ≈
min
rh∈Yh

Th(r), τmin ≤ τh ≤ τmax

will be times to exit to the end point of the agent in the continuous and the discrete
cases correspondingly. Next, we will try to determine the distribution law for random
variables τ , τh and

� := arg
≈
min
r∈Y

T (r), �h := arg
≈
min
rh∈Yh

T (rh)

both experimentally and from theoretical considerations and compare results.
We will take previously introduced by the first author “natural” and “uniform”

landscapes [5] as random landscapes. In the case of a “uniform” landscape, the random
variable u(t, ρ) ∈ [1, umax],

umax := max
(t,ρ)∈[0,T ]×Ω

u(t, ρ),

is close to a uniformly distributed random variable for all (t, ρ) ∈ R+ × Ω . So,

uc(t, ρ) := ucmax

u(t, ρ)

has the inverse uniform distribution with the density function

invu(x) =
⎧⎨
⎩

ucmax
umax−1 x

−2, x ∈
[
ucmax
umax

, ucmax

]
,

0, x /∈
[
ucmax
umax

, ucmax

]
.

Assume that the random value ‖ṙ(t)‖ has Rician distribution with the probability
density function (PDF)

rice(ν(t), σ (t); x) := x

σ 2(t)
exp

(−(x2 + ν2(t))

2σ 2(t)

)
I0

(
xν(t)

σ 2(t)

)
, x ≥ 0,
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where Iα is the modified Bessel function

Iα(x) := i−α Jα(i x) :=
∞∑

m=0

1

m! Γ (m + α + 1)

( x
2

)2m+α

(7)

for all t ∈ [0, Tmax]. This assumption holds if the agent’s velocity is a circular bivariate
normal random variable, as in [7]. Denote the function under the integral (4) as

ζ(t) := ‖ṙ(t)‖
uc(t, r(t))

= 1

ucmax
‖ṙ(t)‖u(t, r(t)).

From the above, the cumulative distribution function (CDF) of the integrand ζ(t)
has the form

P{ζ(t) < z} =
∫∫

Dz

rice(ν(t), σ (t); x)Π(y)dxdy, (8)

where Dz := {(x, y) ∈ R
2 : xy < z},

Π(y) :=
⎧⎨
⎩
1, y ∈

[
1

ucmax
, umax
ucmax

]
,

0, y /∈
[

1
ucmax

, umax
ucmax

]
.

4 Analytical Approach to Finding the Distribution of the End Point
Reaching Time

In this section, we will find the cumulative distribution function (8) of the integrand
ζ(t) and its distribution density function analytically. Let 1

ucmax
= 1 and umax

ucmax
= b. We

have

CDFζ (z) := P{ζ(t) ≤ z} =
∫∫

Dz

rice(ν(t), σ (t); x)Π(y)dxdy

= 1

σ 2(t)

∫∫

Dz

x exp

(−(x2 + ν2(t))

2σ 2(t)

)
I0

(
xν(t)

σ 2(t)

)
Π(y)dxdy,

where

Π(y) =
{
1, y ∈ [1, b],
0, y /∈ [1, b].
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Therefore,

CDFζ (z) = 1

σ 2(t)
e
− ν2(t)

2σ2(t)

b∫

1

dy

z
y∫

0

xe
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

= 1

σ 2(t)
e
− ν2(t)

2σ2(t)

⎛
⎜⎝

z
b∫

0

xe
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

b∫

1

dy

+
z∫

z
b

xe
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

z
x∫

1

dy

⎞
⎟⎠

= 1

σ 2(t)
e
− ν2(t)

2σ2(t)

⎛
⎜⎝(b − 1)

z
b∫

0

xe
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

+
z∫

z
b

(z − x)e
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

⎞
⎟⎠ . (9)

Using series expansion I0
(
xν(t)
σ 2(t)

)
=

∞∑
n=0

1
(n!)2

(
ν(t)
σ 2(t)

)2n
x2n , we obtain

CDFζ (z) = e− ν2

2σ2

∞∑
n=0

ν2n(t)

2n(n!)2σ 2n(t)

×
[

z√
2σ(t)

(
Γ

(
n + 1

2
,

z2

2b2σ 2

)
− Γ

(
n + 1

2
,
z2

2σ 2

))

+Γ

(
n + 1,

z2

2σ 2

)
− Γ

(
n + 1,

z2

2b2σ 2

)

+ (b − 1)

(
Γ (n + 1) − Γ

(
n + 1,

z2

2b2σ 2

))]
. (10)

Now, let us find distribution density function. Using (9), we obtain

PDFζ (z) := d

dz
P{ζ(t) ≤ z}

= 1

σ 2(t)
e
− ν2(t)

2σ2(t)

⎛
⎜⎝(b − 1)

d

dz

z
b∫

0

xe
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx
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+ d

dz
z

z∫
z
b

e
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx − d

dz

z∫
z
b

xe
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

⎞
⎟⎠

= 1

σ 2(t)
e
− ν2(t)

2σ2(t)

[(
1 − 1

b

)
z

b
e
− z2

2b2σ2(t) I0

(
zν(t)

bσ 2(t)

)

+ ze
− z2

2σ2(t) I0

(
zν(t)

σ 2(t)

)
− z

b
e
− z2

2b2σ2(t) I0

(
zν(t)

bσ 2(t)

)

− ze
− z2

2σ2(t) I0

(
zν(t)

σ 2(t)

)
+ z

b2
e
− z2

2b2σ2(t) I0

(
zν(t)

bσ 2(t)

)

+
z∫

z
b

e
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

]
= 1

σ 2(t)

z∫
z
b

e
− x2+ν2(t)

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx .

Therefore,

PDFζ (z) = 1

σ 2(t)

z∫
z
b

e
− x2+ν2(t)

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

=
z∫

z
b

1

x
rice(ν(t), σ (t); x)dx . (11)

Let us represent the PDFζ (z) as a series. Using series expansion

e
− x2

2σ2(t) =
∞∑
n=0

(−1)n

(2σ 2(t))nn! x
2n,

we obtain

PDFζ (z) = e
− ν2(t)

2σ2(t)

σ 2(t)

z∫
z
b

e
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

= e
− ν2(t)

2σ2(t)

σ 2(t)

∞∑
n=0

(−1)n

(2σ 2(t))nn!
z∫

z
b

x2n I0

(
xν(t)

σ 2(t)

)
dx

= e
− ν2(t)

2σ2(t)

σ 2(t)

∞∑
n=0

(−1)nz2n+1

(2σ 2(t))nn!(2n + 1)

(
1F2

(
n + 1

2
; 1, n + 3

2
; z

2ν2

4σ 4

)

− 1

b2n+1 1F2

(
n + 1

2
; 1, n + 3

2
; z2ν2

4b2σ 4

))
. (12)
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Now, using series representation of I0

I0

(
xν(t)

σ 2(t)

)
=

∞∑
k=0

1

(k!)2
(

ν(t)

2σ 2(t)

)2k

x2k,

we get

PDFζ (z) = e
− ν2(t)

2σ2(t)

σ 2(t)

z∫
z
b

e
− x2

2σ2(t) I0

(
xν(t)

σ 2(t)

)
dx

= e
− ν2(t)

2σ2(t)

σ 2(t)

∞∑
k=0

1

(k!)2
(

ν(t)

2σ 2(t)

)2k z∫
z
b

x2ke
− x2

2σ2(t) dx

= e
− ν2(t)

2σ2(t)√
2

∞∑
k=0

ν2k(t)

2k(k!)2σ 2k+1(t)

(
Γ

(
k + 1

2
,

z2

2b2σ 2(t)

)

−Γ

(
k + 1

2
,

z2

2σ 2(t)

))
. (13)

We will further denote PDF of ζ with arbitrary parameters ν and σ by PDFζ (ν, σ ; z).
Let ν(t) > 0, σ(t) > 0 being constants. From (4) and the first mean value theorem

for definite integrals, we have that

T (r) = T
‖ṙ(t0)‖

uc(t0, r(t0))
, t0 ∈ (0, T ).

The idea is to replace non-random T (r) with the random variable ζ(t0)T .
Taking into account (11) and assuming that

CDFτ (t) := P{τ < t} = P{ζ(t0)T < t} = P

{
ζ(t0) <

t

T

}
= CDFζ

(
t

T

)
,

we can conclude that the PDF of the random variable τ approximately has the form

PDFτ (t) = 1

T
PDFζ

(
ν, σ ; t

T

)
= 1

T

t
T∫

t
bT

1

x
rice(ν, σ ; x)dx = {y = T x}

= 1

T

t∫
t
b

1

y
rice

(
ν, σ ; y

T

)
dy
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=
t∫

t
b

1

y

y

T 2σ 2 exp

(−(y2 + T 2ν2)

2T 2σ 2

)
I0

( yν

Tσ 2

)
dy

=
t∫

t
b

1

y
rice(νT , σT ; y)dy = PDFζ (νT , σT ; t), (14)

where t ∈ [0, T ], ν̃ > 0, σ̃ > 0. Finally, from (14) and empirical considerations, we
look for the PDF of τ in the form

PDFτ (t) = T0PDFζ (ν̃, σ̃ ; t), (15)

where T0 > 0, ν̃ = νT , σ̃ = σT .

5 Computational Experiment for the Time of the End Point Reaching

Definition 2 The configuration entropy of the landscape L(Ωh, l) is defined as the
following:

S(L(Ωh, l)) := −
l∑

i=1

Ni

M
ln

Ni

M
,

and characterizes the heterogeneity of the landscape in general.

Weperform10,000 experimentswith the generation of a random landscapeL(100×
100, 9) with configuration entropy S = 2.125 to estimate distribution parameters and
additional 1000 experiments to test the hypothesis concerning the type of distribution.
In each experiment, the agent moved from the cell (1, 1) to the cell (98, 98). The
obtained results are shown in the form of histograms in Fig. 1. Figure 1a shows the
histograms for the exit time to the end point τh for the optimal (left) and near-optimal
(right) routes for uniform random landscapes. Figure 1b shows the same for “natural”
random landscapes. Further, we will assume that agent’s coordinates (x, y) coincide
with cell’s coordinates (i, j) if x , y ∈ Z.

We obtain for uniform random landscapes with the sample from 10,000 experi-
ments

τmin = 204, τmax = 1999, τ = 527.923,

where τmin is the sample’s minimum, τmax is the sample’s maximum, and τ is the
sample’s mean.
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Fig. 1 Histograms of the τh distribution for uniform (a) and “natural” (b) landscapes

It was found out that histograms data are best corresponded (with p values approx-
imately equal to 0.7) to the Norton–Rice distribution with PDF

nrice(m, ν, σ ; x) :=

⎧⎪⎨
⎪⎩

νm( x
ν )

me
−m(ν2+x2)

2σ2 Im−1

(
mxν
σ2

)
σ 2 , x > 0,

0, x ≤ 0,

(16)
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where Ik is the modified Bessel functions (7). The search was carried out among
distributions of various types. The hypothesis that the distribution we look for is
exactly the Norton–Rice distribution arose from the form of the theoretical density
function (11). From (9), we can conclude that the distribution function is expressed
by a series (10).

For “uniform” landscapes, this coincidence is manifested especially good.We used
the Cramér–von Mises criterion ω2 with statistic

nω2
n := 1

12n
+

n∑
i=1

(
F(xi , θ) − 2i − 1

2n

)2

,

to test the distribution hypothesis, where F(x, θ) is a theoretical CDF with the param-
eter vector θ .

In accordance with the Cramér–vonMises criterion, the value of statistic 0.0802693
was obtained for “uniform” landscapes. Such a value for the statistics from 1000
experiments allows us to suppose that the hypothesis about the distribution is not
rejected at the 15% significance level. However, in reality the nature of the studied
distribution is more complicated.

We obtain parameter values

m = 3.33579, ν = 11.4566, σ = 387.896 (17)

for “uniform” landscapes, and parameter values

m = 9.47719, ν = 13.3365, σ = 205.047,

for “natural” landscapes.

6 Comparison of the Analytically Obtained Distribution and the
Numerical Experiment’s Data

Let us compare the PDF (15) obtained analytically with the PDF (16) obtained via the
numerical experiment. Because parameters of (15) are sufficiently hard to compute,
we will use the segment of the series (13) instead. Note that the segment of the series
(12) poorly approximates the function under study for large values of the argument.
We can see from Fig. 2 that the PDF (15) with parameters

ν̃ = 419.25, σ̃ = 121.544, b = 1.41866, T0 = 2.4386 (18)

which is designated by the continuous thick line and the PDF (16) with parameters
(17) which is designated by the dashed line are sufficiently close to each other and to
the empirical PDF. To be precise, the value of the Cramér–von Mises statistic for the
PDF (15) with parameters (18) is nω2

n = 0.0540313, n = 1000, and this is much less
than the value of the statistics for the PDF (16).
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Fig. 2 Analytically and numerically obtained PDFs

7 Computational Experiment for Finding the Distribution of Agent’s
Coordinates

The histograms for the distribution of agents’ coordinates �h(t) = (xh(t), yh(t)) are
shown in Fig. 3. The selection of distributions showed that these histograms (which
are equal both for x and y) are well approximated by the extreme value distribution
(exactly, type I distribution of maxima) [14]. This distribution is the asymptotic dis-
tribution of maxima from the set of identically distributed random variables with the
following PDF

evd(α(t), β(t); x) := e
α(t)−x
β(t) −e

α(t)−x
β(t)

β(t)
.

It is well known that the mean value of this extreme value distribution can be
expressed as

Ex(t) = α(t) + γβ(t),

where γ is the Euler constant. The functions α(t) and β(t) themselves are approxi-
mated for t > 20 by linear functions

α(t) + γβ(t) = Ex(t) = 0.979616 + 0.199427t, r2 = 0.999997,

α(t) = 0.352148 + 0.170925t, r2 = 0.999965,

where r2 is the coefficient of determination.
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Fig. 3 Distribution of the i coordinate for the agent at time moments t = 12, 52, 132, 200

Fig. 4 Dependence of the p value on time

The quality of approximation falls only around the area where agent stops or starts
motion. The plot of the dependence on the hypothesis’ p value on time is presented
in Fig. 4. The dashed line indicates the value of τmin.

Histograms near the end of the route are presented in Fig. 5.
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Fig. 5 Form of histograms near the end of a route, t = 304, 404, 504

We can assume that unknown distribution function is

rd(t, x) := Θ(98 − x)evd(α(t), β(t); x) + ϕ(t, x),

Θ(x) :=
{
0, x < 0,

1, x ≥ 0.

ϕ(t, x) = 0, x < 94, t < τmin. Behavior of ϕ in accordance with the data of the
computational experiment is shown in Fig. 6. The left and right dashed lines indicate
the values of τmin and τ correspondingly.

It is obvious that function ϕ should satisfy the following conditions

1 =
∫ ∞

0
rd(t, x)dx =

∫ 98

0
evd(α(t), β(t); x)dx +

∫ 98

0
ϕ(t, x)dx .

ϕ(x, 0) = 0,

lim
t→∞ ϕ(x, t) =

{
1/98, x = 98,

0, x �= 98.

It is followed from Sect. 1 that in the cell (i0, j0) an agent chooses ordered set
{uki j |(i, j) = rh[k]}, such that

Th(rh) = min
rh∈Yh∩Uo(i0, j0)

∑
(i, j)∈rh

uki j‖di j‖.
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Fig. 6 Behavior of the function ϕ(t, x), x = 94, 96, 98

It can be assumed that distribution �(t) is close to the extreme value distribution
because agent always chooses the set of cells rh = {rh[1], . . . , rh[m + 1]} (or curve
r) for moving in order to minimize T (r).

Put rh = {rh[1], . . . , rh[m + 1]}, χm = mκ . When applying (6), we get

‖rh(t + χm) − rh(t)‖ ≤
m∑

k=1

‖rh(t + χk) − rh(t + χk−1)‖

=
m∑

k=1

‖dk‖
⌊

κ

κ‖d(t)‖u(t, rh(t))

⌋
= ξ(t + χm)

=
∑

(i, j)∈rh
‖dk‖

⌊
1

‖dk‖uki j

⌋
→ max . (19)

Thus, at each step the agent chooses such a direction of motion that

ξ(t + χm) = max
rh∈Yh∩Uo(i0, j0)

∑
(i, j)∈rh

‖dk‖
⌊

1

‖dk‖uki j

⌋
.

Consequently, we obtain the distribution which is close enough to the type I maximum
extreme value distribution. From experimental data, we can see that estimate (19) is
quite exact.
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8 Conclusions

In the article, we analytically find the PDF and the CDF of the ratio of a Rician
and uniform random variables. We established that exit time of the agent seeking the
quickest route through random landscape has the distribution close to the distribution
of such ratio. Also, we found simpler approximation of the exit times PDF with
PDF of the Norton–Rice distribution via numerical experiment. We obtain that the
distribution of the agent’s coordinates is close to the extreme value distribution of
maxima. This follows from both the computational experiment and the design of the
cellular automaton that simulates the movement of the agent.

In future works, the authors plan to clarify relations between the parameters of the
PDF constructed with the analytical approach.
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