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Abstract. The effect of the carbon content (0-2 at.%) on the structure and mechanical properties 

at room and cryogenic temperatures of CoCrFeNiMn-based high entropy alloys with reduced Cr 

concentration was studied. The as-cast alloys were cold rolled to a thickness reduction of 80% 

and annealed at 800°C for 1 hour. As a result, a fully recrystallized microstructure with a grain 

size of 6.4 µm was produced in the carbon-free alloy. The recrystallized grain size was much 

smaller (1.5 µm in the alloy with 2.0 at.% of C) due to the pinning effect of the precipitated 

M23C6 carbides. The yield strength of the alloys increased with an increase in the carbon 

concentration from 313 MPa to 636 MPa, while the elongation to fracture slightly decreased 

from 56% to 43%, respectively, in the alloys with 0 and 2 at.% of C. A decrease in the test 

temperature to 77K resulted in a significant increase in both the strength and ductility of the 

alloys. The alloys had high values of impact toughness of 140 J/cm2 and 85 J/cm2, respectively, 

in the alloys with 0 and 2 at.% of C. A decrease in the testing temperature did not have a 

noticeable effect on the impact toughness.  

1.  Introduction 

High-entropy alloys (HEAs) represent a new class of metallic materials with promising properties. The 

first mentions of HEAs date back to 2004 [1]; in several works, they are referred to as multicomponent 

equiatomic alloys. According to the initial definition of HEAs, these are the alloys that consist of at least 

5 elements, and the amount of each element should be 5-35 at.%.  

Alloys based on 3d transition metals are among the most studied HEAs families. They usually 

crystallize with a face-centered cubic (FCC) structure and have attractive mechanical properties. Alloys 

of the CoCrFeMnNi system exhibit high ductility and impact toughness at room temperature [3]. Their 

mechanical properties are even better at cryogenic temperatures, which makes them attractive for 

cryogenic applications. However, CoCrFeMnNi-based alloys have relatively low strength [4]. One of 

the most effective ways to increase strength is alloying with interstitial elements, in particular, carbon 

[5-7]. Carbon-doped HEAs can benefit both from interstitial solid solution hardening due to dissolved 

carbon atoms and from precipitation hardening due to the formation of carbides [8].  The equilibrium 

solubility of carbon in the CoCrFeMnNi solid solution is low due to the presence of a strong carbide-

forming element, Cr. A decrease in the molar concentration of chromium can potentially increase the 

equilibrium solubility of carbon. Meanwhile, carbide particles can also affect the fcc grain size. It was 

shown in several works [9-10] that secondary phases in CoCrFeNi (Mn, Al, C) alloys can effectively 
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restrict grain growth and promote the formation of a fine-grained microstructure. The fine grain size can 

also be beneficial for strength. However, the effect of carbon on the cryogenic mechanical properties of 

CoCrFeMnNi alloys, especially on the impact toughness, at cryogenic temperature is poorly studied. 

Therefore, in this work, we studied the tensile mechanical properties and impact toughness at room and 

cryogenic temperatures of CoCrFeMnNi high-entropy alloys with a different carbon content (x = 0, 0.5 

and 2.0 at.%) after thermomechanical processing. 

 

2.  Materials and methods 

CoCrFeMnNi-based high entropy alloys with a reduced concentration of Cr and different carbon 

concentration (x = 0, 0.5, and 2.0 at.%; further denoted as C0, C0.5, and C2.0 alloys respectively) were 

produced by vacuum induction melting. The measured chemical composition of alloys is presented in 

Table 1. The as-cast samples were cold rolled at room temperature to a thickness reduction of 80%. The 

samples then were annealed in a muffle furnace in an air atmosphere at temperatures of 800°C for 1 

hour, followed by cooling in air. 

 

Table 1. Measured chemical composition of the alloys depending on the carbon concentration.  
Concentration of elements, at.% 

Co Cr Fe Mn Ni C 

C0 23.29 6.22 23.90 23.09 23.46 0.03 

C0.5 23.17 6.42 23.97 23.67 22.24 0.53 

C2.0 23.42 6.23 22.41 22.02 23.82 2.11 

 

The microstructure of the alloy was studied using scanning (SEM) and transmission (TEM) electron 

microscopy in the RD-ND plane (perpendicular to the transversal direction). SEM studies were carried 

out a using FEI Quanta 600 FEG microscope equipped with a backscattered electron (BSE) detector. 

TEM investigations were conducted using a JEOL JEM-2100 microscope with an accelerating voltage 

of 200 kV equipped with an EDS detector. Selected area electron diffraction (SAEDs) patterns were 

used for the phase identification and results of EDS – for chemical analysis. Tensile tests were carried 

out on an Instron 5882 universal electronic tensile testing machine with a strain rate of 1 × 10−3 s−1 at 

room (293K) and cryogenic (77K) temperatures using samples with a dimension of 6×3×1.5 mm3. The 

KCV impact toughness was determined on an Instron IMP460 pendulum impact machine using samples 

with a dimension of 2 × 8 × 55 mm3 and with a V-notch in the center at the same temperatures. 

 

3.  Results 

The microstructure of the program alloys after cold working and annealing at 800˚С is shown in Figure 

1. A fully recrystallized microstructure with many annealing twins was observed. The C0 alloy (Figure 

1a) had a single-phase structure with a grain size of 6.4 μm. The addition of carbon promoted the 

precipitation of the Cr-rich M23C6 carbides. The precipitation of the carbides resulted in a decrease of 

the recrystallized fcc grain size. For instance, in the C0.5 alloy (Figure 1b) with 1.5% of carbides the 

grain size was 5.2 μm, while in the C2.0 alloy (Figure 1c) the volume fraction of carbides increased to 

7.4% and the grain size decreased by 1.6 μm. The size of the carbide particles increased from 89 nm to 

117 nm in the C0.5 and C2.0 alloys, respectively. Carbides were found both along the grain boundaries 

and in grain interiors.  
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Figure 1. SEM-BSE images of the microstructure of the СoСrFeNiMn alloys with different carbon 

contents (x): C0 (a); C0.5 (b); C2.0 (c) after annealing at 800°C. 

 

The tensile stress-strain curves of the alloys obtained at room (293 K) and cryogenic (77 K) 

temperatures are shown in Figure 2. At 293 K the yield strength increased with an increase in the carbon 

content from 313 MPa for the C0 alloy to 636 MPa for the C2.0 alloy (Table 2). The ductility decreased 

as the carbon concentration increased from 56% for the C0 alloy to 43% for the C2.0 alloy. Decreasing 

the testing temperature to 77 K led to a simultaneous increase in both strength and ductility of the alloys. 

The yield point slightly increased from 460 MPa in the C0 alloy to 480 MPa in the C0.5 alloy and then 

raised sharply to 786 MPa in C2.0 the alloy. 

 
 a b 

Figure 2. Tensile stress-strain curves of the СoCrFeMnNi alloys with different carbon content after 

cold rolling and annealing at 800°C obtained at 293 K (a) and 77 K (b). 

 

Table 2. Mechanical properties of the СoCrFeMnNi alloys with different carbon contents (x) of after 

cold rolling and annealing at 800°C obtained at room and cryogenic temperatures 
Temperature 293 K  77 K  

Alloy 
YS, 

MPa 

US, 

MPa 
TE, % UE, % 

KCV, 

J/cm2 

YS, 

MPa 

US, 

MPa 
TE, % UE, % 

KCV, 

J/cm2 

C0 313 651 56 41 142 460 970 76 57 140 

C0.5 381 721 52 36 119 480 994 62 48 130 

C2.0 636 933 43 29 85 786 1218 52 39 86 

 

Impact toughness testing has revealed the following trends: (i) the impact toughness decreased with 

increasing carbon content. For instance, at room temperature, the respective values of KCV for the C0 

and C2.0 alloys were 140 J/cm2 and 85 J/cm2. Besides, only the C2.0 alloy completely disintegrated into 

two parts, which indicates a low resistance to crack propagation. (ii) The testing temperature had a rather 
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weak effect on the impact toughness, for example, the KCV values obtained at 293К and 77K for the 

C0.5 alloy were 119 J/cm2 and 130 J/cm2, respectively. Figure 3 shows the fracture surfaces of the 

program alloys after impact tests at 293 K (a, b, and c) and 77 k (d, e, and f). The C0 alloy showed 

ductile fracture appearance with coarse dimples both at room and cryogenic temperatures. The C0.5 and 

C2.0 alloys also showed a ductile fracture, but with smaller dimples. At 77 K in the C2.0 alloy, brittle 

fracture takes place near the notch (not shown).  
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Figure 3. Fractography of the СoCrFeMnNi alloys with different carbon content after impact tests at 

293K (a-c) and 77K (d-e): C0 (a, d); C0.5 (b, e); C2.0 (c, f). 
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