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Abstract. The microstructure of the oxide layer of a β-solidifying γ-TiAl alloy (Ti-43.2Al-

1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B) after nitrogen ion implantation was studied after сyclic 

oxidation tests at 800 ˚C. Oxidation resulted in the formation of the continuous oxide scale, 

consisting of thin inner and outer TiO2, dense Al2O3 and mixed Al2O3 + TiO2 layers. It was 

revealed that the nitrogen ion implantation considerably inhibited the growth of the oxide scale, 

internal oxidation and Al-depleted zones. Thick Al-depleted zones and a mixture of Al2O3 and 

TiO2 were formed along the colony boundaries. Tooth-shaped Al-depleted zones propagated 

along the lamella boundaries. In addition, the presence of Gd-rich particles in the oxide scale 

promoted the formation of Al2O3 particles in surrounding areas and increased the depth of the 

oxide scale around. 

1.  Introduction 

β-solidified gamma titanium aluminide (γ-TiAl) based alloys have attracted tremendous attention as 

potential high-temperature materials due to their good creep resistance and superior strength-to-weight 

ratio [1]. These alloys consist mainly of (α2+γ)-lamellae colonies and have the most promising 

mechanical properties for aerospace engine components. However, the γ-TiAl based alloys are prone to 

rapid oxidation at temperatures above 600 °C, resulting in the formation of protective Al2O3 layer, TiO2, 

a mixture of Al2O3 and TiO2, inner oxide and Al-depleted zones on the surface [1-4].  

It is well established that plenty of factors affect the oxide scale growth, namely the chemical 

composition and structure of the base material, surface finish, environment etc. [1, 5-8]. For instance, 

the oxidation resistance of Ti-45Al-8Nb (at.%) was considerably enhanced by the Y addition of 0.3 at.% 

that promoted the protective Al2O3 layer formation [9]. On the other hand, coarse Y2O3-particles, found 

along the grain boundaries in the alloys with high Y content (>0.3 at.%), provided fast path for the 

inward oxygen diffusion and significantly increased the oxidation rate [9]. Although the beneficial 

effects of the addition of rare-earth elements on the oxidation resistance of various alloys were known 

[10], there is no comprehensive understanding of the effect of Gd on the oxidation behavior of a γ-TiAl 

based alloy. Apart from adjusting the bulk chemical composition, surface modification, for example, by 

ion implantation of different non-metallic or metallic species (F, I, N, Cl, Nb, Al, Si, Mo) can 

effectively improve the oxidation resistance of the alloys [11-13].  
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The microstructure of the base material can also affect the oxidation behavior. For example, 

refinement of α2-phase particles in the Ti–46Al–1Cr–0.2Si alloy inhibits oxidation dramatically [8]. 

Meanwhile, the orientation of lamellar colonies relative to the surface can influence the oxidation 

behavior of the γ-TiAl based alloys because lamellar boundaries can serve as fast diffusion pathways. 

However, this effect has never been properly studied. In this paper, the effect of microstructure on the 

oxide layer formation of a β-solidifying γ-TiAl alloy is considered. 

 

2.  Materials and methods 

The β-solidifying γ-TiAl alloy with the actual composition Ti-43.2Al-1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B 

(at. %) was used as the program material. The samples with a size of 20×20×2 mm3 were cut from the 

ingots using a Sodick AQ300L wire electrical discharge machine. The samples surface was ground with 

emery paper up to № 2000, and then mechanically polished with an OP-S colloidal silicon suspension. 

The nitrogen ion implantation was produced at temperature of 400 °С in a vacuum chamber with a 

pressure in the range of 10-4 - 10-5 Pa. The radiation dose and ion energy were 1017 cm-2 and 40 keV, 

respectively. 

Cyclic oxidation tests was performed in open air using a Nabertherm furnace. The samples were 

soaked for 24 hours at 800 °C with subsequent air cooling. After that the samples were weighed and 

then could be returned to the furnace again for the next test cycle. Up to 5 cycles of oxidation tests were 

performed. 
The structure of the alloy was studied mostly using scanning electron microscopy (SEM). The 

following tapes of samples were tested by SEM: a beveled sample with a polished surface inclined ~5° 

– for the surface and material structure after nitrogen ion implantation; a cross-section of samples - for 

structure and element distribution of oxidation scale. The samples were examined using a FEI Quanta 

600 electron microscope equipped with a back-scattered electron (BSE) and an energy-dispersive X-ray 

spectroscopy (EDS) detector with an accelerating voltage of 30 kV.  

 

3.  Results and discussion 

The microstructure of the β-solidifying Ti-43.2Al-1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B alloy consisted of 

(α2+γ) lamellae colonies surrounded by γ- and (β+ω)-phase particles (Figure 1a, b). Particles of γ- and 

(β+ω)- phases were mainly found between the colonies. The volume fraction of γ- and (β+ω)- phase’s 

particles was 1%. Some Gd-rich phases and a small amount of borides were found in the microstructure 

(Figure 1a). The volume fraction of Gd-rich particles was ≈2%. A more detailed investigation of the as-

cast microstructure of the program material was presented in the previous paper [14]. The microstructure 

after ion implantation was presented in figure 1c. The modified layer had light grey color and depth of 

1 µm; the boundary between the base material and modified layer was curved. No difference in the 

microstructure between the base material and modified layer was detected by SEM-BSE. 

 

   
Figure 1. Microstructure of the Ti-43.2Al-1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B alloy in the as-cast 

condition (a, b) and after ion implantation (c): (a, c) SEM-BSE images; (b) TEM image. 
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Figure 2 shows the growth of oxide scale and the internal oxidation and Al-depleted zones (inner 

zones) depth for the as-cast and nitrogen ion implanted alloy depending on the number of oxidation 

cycles. In this case, the internal oxidation zone referred to the oxygen-enriched aria under the oxide 

scale, which might also include some oxide particles. A typical example of an oxidized microstructure 

with identification of all layers is shown below in Figure 3. Two stages were distinguished in both 

conditions. At the first stage, parabolic kinetics was observed up to 3 cycles which is associated with 

the formation of a protective oxide layer. The formation of a protective layer led to slowing the oxide 

scale and inner oxide and Al-depleted zones growth at the second stage (3-5 cycles) in case of the 

nitrogen ion implanted alloy. After 5 cycles, the depth of the oxide scale and inner zones of the ion 

implanted alloy was 14 μm and 2 μm, respectively. Note that these values were considerably larger than 

the depth of the modified layer (1 µm). However, almost linear growth of the oxide scale and inner 

oxide and Al-depleted zones for the as-cast alloy was detected at the second stage.  

 

 
Figure 2. Dependence the depth of the oxide scale and inner zones (internal oxidation area and Al-

depleted zones) of the Ti-43.2Al-1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B alloy in the as-cast condition (a) and 

after ion implantation (b) on number of oxidation cycles at 800 °C. 

 

The cross-section structure after 2 cycles of oxidation test is shown in Figure 3. The oxide scale 

mostly consisted of two oxides phases (Ti and O-rich light gray areas - TiO2; Al and O-rich dark gray 

areas - Al2O3) [9] (Figure 2). The following layers were found: I – outward-growing TiO2; II – Al2O3; 

III – inner TiO2; IV – a mixture of Al2O3 + TiO2; V – internal oxidation zone; VI – Al-depleted zone. 

The structure of the oxide scale was typical for γ-TiAl based alloys [9]. The sequence of layers depended 

on the ratio of outward-diffusion of Al and Ti and inward-diffusion of O on the one hand, and the ratio 

of the growth rate of TiO2 and Al2O3, on the other hand. Obviously, TiO2 and Al2O3 formed and grew 

simultaneously because of the similar free energy of these formation, but the growth rate of TiO2 was 

drastically higher in comparison with A12O3 [15]. Thus, the outward-growing TiO2 layer quickly 

covered the surface of the material. The A12O3 layer was found underneath the TiO2 layer because of 

the diffusion of Ti toward the surface. The inner TiO2 layer was likely formed because of the subsequent 

depletion of Al beneath the A12O3 layer. The mixture of Al2O3+TiO2 grew by parallel outward- and 

inward-diffusion [16]. As a result of the higher diffusion coefficient of Al in comparison with Ti [4], the 

Al-depleted zone appeared.  

Thick Al-depleted zones and a mixture of Al2O3 and TiO2 oxides formed along the colony 

boundaries. Closer look has revealed that tooth-shaped Al-depleted zones propagated along the lamella 

boundaries (see high resolution insert in figure 3). The presence of Gd-rich particles enhanced the 

formation of Al2O3 in surrounding areas and increased the depth of the oxide scale. Rapid diffusion of 

oxygen anions along colony boundaries, γ-lamellas, and Gd-rich particles can therefore increase the 

effective oxidation rate. It should be suggested that the noticeable positive effect of the nitrogen 

implantation on suppressing the oxide scale growth can be probably associated with enhancing the 

formation of the protective Al2O3 layer and, as a result, slowing the oxygen propagation. However, 

further studies are required to establish the oxidation mechanisms in detail. 
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Figure 3. Cross-section SEM-BSE images and element distribution maps of the program material 

after nitrogen ion implantation after 2 cycles of oxidation tests. I – outward-growing TiO2 layer; II – 

Al2O3 layer; III – inner TiO2 layer; IV – a mixture of Al2O3 + TiO2; V – internal oxidation zone; VI – 

Al-depleted zone; red lines indicate lamellae direction. 

4. Conclusions 

The dependence of the oxide scale formation on the microstructure of the base layer was studied using 

the example of a β-solidifying γ-TiAl alloy (Ti-43.2Al-1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B) after nitrogen 

ion implantation. The nitrogen ion implantation improved the oxidation resistance of the alloy 

considerably, as was evidenced by the dependence of oxide scale thickness on number of oxidation 

cycles. Thick Al-depleted zones and a mixture of Al2O3 and TiO2 were formed along the colony 

boundaries. Tooth-shaped Al-depleted zones propagated along the lamella boundaries. In addition, the 

presence of Gd-rich particles in the oxide scale promoted the formation of Al2O3 particles in surrounding 

areas and increased the depth of the oxide scale around.  
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