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Malaria remains a major burden to global public health, causing nearly 600,000 deaths 

annually. Efforts to control malaria are hampered by parasite drug resistance, insecticide 

resistance in mosquitoes, and the lack of an effective vaccine. However antimalarial drugs are a 

mainstay in efforts to control and eventually eradicate this disease, thus the discovery of new 

antimalarials is critical. Antimalarial drug discovery is especially challenging due to the unique 

biology of malaria parasites, the scarcity of tools for identifying new drug targets, and the poorly 

understood mechanisms of action of existing antimalarials. Therefore, this work describes the 

use of different medicinal chemistry approaches to address unmet needs in antimalarial drug 

discovery. Part of this process includes ensuring that sufficient drug leads are available to prime 

the drug discovery pipeline, particularly those with novel modes of action in order to limit issues 

of cross-resistance with existing drugs.  

The first approach described in this thesis consists on the phenotypic-based hit to lead 

optimization designed to explore the antimalarial potential of the 3-piperidin-4-yl-1H-indole. 

The hit compound was identified in a phenotypic screen of ~2 million compounds against 

asexual blood stage P. falciparum. Three series of analogs were synthesized following a reagent-

based diversity approach, in a total of 38 compounds, and screened for their blood stage 

antimalarial activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-

piperidinyl modifications. Out of the analogs synthesized, three were active (2.19, 2.20 and 

2.29). Furthermore, the (4-(1H-indol-3-yl)piperidin-1-yl)(pyridin-3-yl)methanone (2.29) showed 

in vitro antimalarial activity (EC50 values ∼3 µM), no cross-resistance with chloroquine, 

selectivity for the parasite, and lead-like properties (cLogP < 3; MW ∼ 300). This represents a 

promising new antimalarial chemotype with a potential novel mechanism of action. Further 

medicinal chemistry efforts are needed to improve the potency of compound 2.29 and disclose its 

antimalarial mechanism of action. 

In the second part of this work we focus on exploring the potential of aminoacyl tRNA 

synthetases (aaRS) as a novel class of antimalarial targets. We hypothesize that the inhibition of 

some but not all, P. falciparum aaRSs will result in activation of amino acid response pathways 

and that inhibition of this subgroup represents an attractive approach for chemotherapeutic 
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intervention in malaria. First, a library of 21 aminoacyl-sulfamoyl adenosine (aaSA) analogs was 

synthetized and used as tool compounds to profile 19 of the PfaaRSs as drug targets. Among the 

analogs tested, L-PheSA, L-HisSA, L-AlaSA and L-ProSA were the compounds that exhibited 

higher antimalarial activity (EC50 against the Dd2 strain < 120 nM) and selectivity index (> 20). 

These results allow the prioritization of the phenylalanyl tRNA synthetase (FRS), histidyl tRNA 

synthetase (HRS), alanyl tRNA synthetase (ARS), and prolyl tRNA synthetase (PRS) as the top 

four enzymes for further exploration as drug targets in blood stage malaria. aaSA compound 

treatment of P. falciparum increased eIF2α phosphorylation at 100X concentration, inducing the 

amino acid starvation pathway through direct inhibition of the corresponding PfaaRS, with few 

exceptions. Moreover, analogs were also active in vitro against liver stage P. berghei, with > 

99% parasite growth inhibition at the higher concentration of 10 µM. Thus, underscoring the 

potential of the aaRS family as an attractive novel class of antimalarial drug targets. 

To further explore cytoplasmic prolyl tRNA synthetase (cPRS) as an antimalarial target, 

which we have previously identified as the long sought biochemical target of the antimalarial 

halofuginone (HFG), novel HFG based inhibitors were designed to exploit additional ligand-

protein interactions in the active site of cPRS, and may serve as lead compounds in the 

preclinical development of a mechanistically unique class of malaria drugs with activity against 

both liver and blood stage life cycle stages. Furthermore, we aimed to characterize the biology of 

cPRS inhibition and resulting amino acid starvation response. Understanding the enzyme-

inhibitor complex formed by the different types of inhibitors (HFG and L-ProSA) would further 

elucidate on the deferential effect observed on the amino acid starvation response in mammalian 

cells, despite targeting the same enzyme. Thus, a two-step proteomic approach to isolate the 

protein complex using immunoprecipitation followed by identification of its components using 

mass spectrometry is proposed. Despite not being able to completely establish the protocol, the 

results in MCF-7 cells are consistent with the model proposed, thus further work needs to be 

done towards increasing the amount of the enzyme-inhibitor complex isolated to meet the 

detection requirements of the techniques used. 

Finally, to address the problem of limited target identification and validation tools for 

novel antimalarial compounds, the third aim of this thesis investigates the use of fluorescently 

labeled small molecules as a novel target discovery approach in malaria drug discovery efforts. 

A new methodology, which originated from our efforts to synthetize MayaFluors in a one-pot, 
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two-step approach via BODIPY-OTf intermediate, was developed to label drugs with the 

BODIPY fluorophore. The method allows for substitution of either one or both of the canonical 

fluorides on the BODIPY dye with alkoxy ligands, under mild conditions. We successfully 

labeled a group of small molecules. Of these, two known drugs ((+) JQ1 and 

hydroxychloroquine) were evaluated for their activity and cellular localization. In both cases the 

labeled drug presented comparable activity to the parent drug. Furthermore, the fluorescently 

labeled antimalarial displayed a subcellular staining pattern in mammalian cells that is consistent 

with accumulation in acidic vesicles in the cytoplasm. Moreover, the probe was also tested in 

Plasmodium falciparum cultures, where results show subcellular staining pattern that seems 

consistent with accumulation in the food vacuole. Despite the identified limitation concerning 

the solvent compatibility of the method, this approach allows direct labeling of hydroxyl-

functionalized drugs, which we believe may have broad applications for rapid and specific 

imaging of elusive biological targets in living cells. 

Taken together, in this thesis multiple medicinal chemistry approaches are explored in an 

effort to identify novel antimalarial chemotypes that act on underexploited targets. Furthermore, 

these results present new opportunities for malaria drug discovery to aid efforts in malaria 

control and eventual eradication. 

 

Keywords: malaria, drug discovery, target identification, phenotypic screen, aminoacyl tRNA 

synthetases, fluorescent probes. 
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A malária continua a ser uma das doenças infeciosas com maior impacto, causando mais 

de 600.000 mortes por ano em todo o mundo, e afetando principalmente mulheres e crianças. 

Esta doença constitui um grave problema de saúde, com enormes consequências sociais e 

económicas que afetam principalmente os países onde a malária ainda é endémica. Este 

problema tem vindo a crescer devido ao agravamento do aparecimento de parasitas resistentes 

aos fármacos antimaláricos em uso clínico. Parasitas do género Plasmodium, responsáveis por 

esta doença, adaptam-se rapidamente, como é demonstrado pelos relatos de resistência a quase 

todos os fármacos antimaláricos. A Organização Mundial de Saúde recomenda atualmente o uso 

de terapias combinadas baseadas em artemisininas (“Artemisinin-based Combination Therapies” 

– ACTs) como primeira linha no combate à malária. Apesar da importância geral desta doença, o 

desenvolvimento de novos fármacos foi negligenciado pela indústria farmacêutica nos países 

desenvolvidos durante algum tempo. Porém, nos últimos anos o esforço para desenvolver novos 

fármacos tem vindo a aumentar, sendo que várias parcerias entre a indústria e a academia têm 

sido formadas num esforço global de erradicar a malária. Os esforços para controlar a malária 

têm sido dificultados pela resistência do parasita aos fármacos, a resistência dos mosquitos aos 

inseticidas e a falta de uma vacina eficaz. No entanto, os fármacos antimaláricos são um pilar nos 

esforços para controlar e, eventualmente, erradicar esta doença. Assim, a descoberta de novos 

antimaláricos é crítica. A descoberta de novos fármacos antimaláricos é especialmente difícil 

devido à escassez de ferramentas para a identificação de novos alvos terapêuticos e à pouca 

compreensão dos mecanismos de ação dos atuais antimaláricos. 

Portanto, este trabalho descreve o uso de diferentes abordagens em química medicinal ao 

desenvolvimento de novos fármacos para o tratamento da malária. Uma parte importante do 

processo de desenvolvimento de novos fármacos inclui a garantia de que existe quantidade 

suficiente de novas moléculas a entrar no processo de desenvolvimento, particularmente 

potenciais fármacos com novos alvos terapêuticos, de forma a limitar os problemas de resistência 

cruzada com os fármacos em uso clinico. 

A primeira abordagem descrita nesta tese consiste na otimização de um composto 

identificado num ensaio de rastreio, através de uma estratégia que visa explorar o potencial 

antimalárico do esqueleto 3-piperidin-4-il-1H-indol. O composto inicial foi identificado num 
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ensaio fenotípico, usando a fase assexuada intra-eritrocítica do P. falciparum, que incluiu um 

conjunto de cerca de 2 milhões de compostos. Foram sintetizadas três séries de análogos 

seguindo uma estratégia de diversificação estrutural baseada nos reagentes de síntese. 

Obtiveram-se 38 compostos que foram avaliados in vitro quanto à sua atividade contra a forma 

intra-eritrocítica do parasita. O estudo da relação estrutura-atividade mostra que o esqueleto 3-

piperidin-4-il-1H-indol é intolerante à maior parte das modificações no grupo N-piperidinil. Dos 

38 derivados sintetizados, três apresentaram atividade antimalárica contra a fase sanguínea do 

parasita (2.19, 2.20 e 2.29). Para além disso, o composto (4- (1H-indol-3-il) piperidin-1-il) 

(piridin-3-il) metanona (2.29) demonstrou: atividade antimalária in vitro (EC50 ∼3 µM); não 

apresentar resistência cruzada com a cloroquina; seletividade para o parasita; e propriedades 

adequadas a uma molécula protótipo (cLogP < 3; peso molecular ∼ 300). Esta molécula 

representa um potencial novo farmacóforo antimalárico, com possivelmente um novo 

mecanismo de ação. No entanto, são necessários esforços adicionais visando melhorar a 

atividade do composto e identificar o seu alvo terapêutico. 

Na segunda parte deste trabalho concentramo-nos em explorar o potencial das aminoacil-

tRNA sintetases (aaRS) como uma nova classe de alvos terapêuticos para a malária. Esta classe 

de enzimas é responsável por catalisar a reação de esterificação entre o RNA transferência e o 

respetivo aminoácido, de forma a formar o complexo aminoacil-tRNA no processo de síntese 

proteica. Nós propomos que a inibição de algumas destas enzimas no P. falciparum resultará na 

ativação de vias de resposta aos níveis deficitários de aminoácidos (“aminoacid starvation 

response”) e que a inibição deste subgrupo representa uma abordagem atrativa para a intervenção 

quimioterapêutica na malária.  

Em primeiro lugar, uma biblioteca de 21 aminoacil-sulfamoil adenosina (aaSA), análogos 

do intermediário de reação, foram sintetizados e usados como ferramentas para a caracterização 

do perfil de 19 das PfaaRSs como alvos terapêuticos. Entre os análogos testados, o L-PheSA, o 

L-HisSA, o L-AlaSA e o L-ProSA foram os análogos que exibiram melhor atividade 

antimalárica (EC50 contra a estirpe resistente Dd2 < 120 nM) e maior índice de seletividade (> 

20). Estes resultados permitem a priorização da fenilalanil tRNA sintetase (FRS), histidil tRNA 

sintetase (HRS), alanil tRNA sintetase (ARS), e prolil tRNA sintetase (PRS) como as quatro 

enzimas com maior potencial para o desenvolvimento adicional como alvos terapêuticos na 

malária. O tratamento dos parasitas com os compostos aaSAs em concentrações 100x o EC50, 
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resultaram geralmente no aumento da fosforilação da eIF2α, um marcador da indução da via de 

resposta aos níveis deficitários de aminoácidos, através da inibição direta das enzimas PfaaRSs 

correspondentes. Os compostos sintetizados foram também testados contra a fase hepática do 

parasita, num ensaio in vitro usando o modelo do P. berghei. Os compostos mostraram 

capacidade de inibição de crescimento do parasita (> 99%) na concentração mais elevada (10 

µM). Estes resultados demonstram o potencial da família de aaRSs como uma atraente nova 

classe de alvos terapêuticos para o desenvolvimento de novos antimaláricos. De forma a explorar 

em mais detalhe a enzima prolil tRNA sintetase citoplasmática (cPRS) como alvo antimalárico, 

anteriormente identificada pelo nosso grupo como o alvo bioquímico do composto antimalárico 

halofuginona (HFG), foram desenhados inibidores híbridos de HFG para explorar novas 

interações entre o ligando e a proteína, no centro ativo da enzima prolil tRNA sintetase 

citoplasmática, e podem servir como ponto de partida para o desenvolvimento pré-clínico de uma 

classe mecanisticamente única de fármacos para a malária, ou seja, fármacos com dupla 

atividade, atingindo não só a fase intra-eritrocítica mas também a fase hepática do parasita. Este 

estudo, teve também como objetivo caracterizar a biologia da inibição cPRS e consequente 

indução da via de resposta aos níveis deficitários de aminoácidos. O estabelecimento da 

composição do complexo enzima-inibidor formado pelos diferentes tipos de inibidores (HFG e 

L-ProSA), permite elucidar o mecanismo subjacente ao efeito da indução de fosforilação da 

proteína eIF2α, observado em resposta à inibição da cPRS em células de mamíferos. Desta 

forma, é proposto uma abordagem proteómica que consiste em dois passos. Primeiro, o 

isolamento do complexo formado pela enzima, utilizando a técnica de imunoprecipitação, e 

segundo, a identificação dos componentes deste complexo utilizando a espectrometria de massa. 

Apesar de não ter sido possível estabelecer completamente o protocolo, os resultados 

preliminares em células MCF-7 estão de acordo com o modelo proposto. No entanto, é 

necessário otimizar a quantidade do complexo enzima-inibidor isolado para satisfazer os limites 

de deteção das técnicas aplicadas. 

No capítulo quatro, abordamos o problema da limitação de ferramentas disponíveis para a 

identificação e validação dos alvos terapêuticos dos antimaláricos em desenvolvimento. Desta 

forma, numa terceira abordagem, é explorado o uso de fármacos marcados com fluoróforos. 

Partindo da síntese dos compostos fluorescentes designados de MayaFluors, foi desenvolvida 

uma nova metodologia. A síntese inicial consiste em duas reações sequenciais, num só passo, 
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através do intermediário BODIPY-OTf. O novo método sintético foi desenvolvido para ligar o 

fármaco ao fluoróforo BODIPY, permitindo a observação da localização celular do fármaco. O 

método permite a substituição de um ou de ambos os átomos de fluor na estrutura do BODIPY, 

por ligandos com um grupo alcóxido, sob condições suaves. Este método foi utilizado com 

sucesso para ligar o BODIPY a um pequeno grupo de fármacos. Destes, dois são fármacos 

conhecidos ((+) JQ1 e hidroxicloroquina) e foram avaliados quanto à sua atividade e localização 

celular. Em ambos os casos, o fármaco marcado com o fluoróforo apresentou atividade 

comparável à do fármaco original. Além disso, o antimalárico marcado apresentou um padrão de 

localização subcelular, em células de mamífero, que é consistente com a acumulação em 

vesículas ácidas no citoplasma e em culturas de Plasmodium falciparum, os resultados mostram 

um padrão de localização subcelular consistente com uma acumulação da sonda no vacúolo 

digestivo do parasita, conforme esperado. Apesar da limitação identificada quanto à 

compatibilidade de solventes, este método representa uma abordagem inovadora que permite a 

ligação direta de moléculas funcionalizadas com grupos hidroxilo, e que acreditamos poder ter 

amplas aplicações na obtenção de imagens rápidas e específicas de alvos terapêuticos em células. 

Em conclusão, esta tese explora múltiplas abordagens de química medicinal para 

identificação de novos compostos antimaláricos que atuem potencialmente em alvos terapêuticos 

subexplorados, contribuindo assim para os esforços globais de combate à malária. Analisando o 

conjunto de resultados obtidos no decorrer desta tese, pode-se considerar que são apresentadas 

oportunidades inovadoras para o desenvolvimento de novos fármacos com atividade 

antimalárica.  

 

Palavras Chave: Malaria, descoberta de Fármacos, Identificação de Alvos Terapêuticos, 

Ensaios Fenotípicos, aminoacil-tRNA sintetase, sondas fluorescentes.  
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Malaria, the most devastating of the parasitic diseases, afflicts 300-500 million people 

and causes an estimated 600,000 deaths annually. Despite great efforts, the decreasing efficacy 

of existing therapies, due to constantly evolving resistance to the currently used antimalarial 

chemotherapeutics, has aggravated the malaria threat.1 To counter these statistics, which are 

likely to increase, new drugs exploiting novel targets in different stages of the parasite’s lifecycle 

are urgently needed. Furthermore, new technologies and high throughput approaches have been 

applied to identify a burgeoning number of lead drug candidates and novel drug classes with 

antimalarial activity.2-3 

Within our efforts to help address the unmet medical need we have explored different 

drug discovery strategies to develop novel antimalarial drugs. Prompted by results previously 

obtained by both our groups and the literature,4-8 the overall objective of this research project is 

to build on these important findings and apply mainly three different medicinal chemistry 

approaches to identify and biologically characterize selective small molecules that are suitable as 

lead candidates for preclinical broad-spectrum malaria drug development.  

 

This PhD thesis includes six chapters:  

 

Chapter 1 gives a short overview of the global malaria spread, the Plasmodium life cycle and 

drugs developed or employed in the malaria therapy, as well as drug discovery strategies used to 

identify novel antimalarial drugs. Also the target identification and validation methods currently 

available to aid malaria drug discovery are reviewed. 

 

Chapter 2 will discuss the design and synthetic strategy used to obtain the three libraries of 

derivatives to explore the antimalarial potential of the 3-piperidin-4-yl-1H-indole scaffold. 

Chapter 3 establishes that inhibition of aminoacyl-tRNA synthetases in Plasmodium by small 

molecules and simultaneous activation of the integrated stress response is both feasible and 

attractive, and provides a rational mechanistic basis for future drug discovery and development 

focused on these novel targets and pathway. Furthermore, novel cytoplasmic prolyl-tRNA 

	Scope	of	this	Thesis	
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synthetase inhibitors are explored. 

 

Chapter 4 will present the development of a new synthetic methodology, which allows direct 

fluorescent labeling of drugs. Fluorescent probes are explored as a novel target discovery 

approach. 

   

Chapter 5 will provide a global overview on the major conclusions and achievements of this 

work, with focus on the antimalarial profiling and structure-activity relationships of the 

synthesized libraries and the implications for future drug development. In addition, the major 

outcomes from the new fluorescent probes reported in this thesis will also be addressed.  

 

Chapter 6 presents all the experimental procedures used in the development of the present 

study. Synthetic methodologies, physical-chemical properties and biological methods will be 

described.  
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1. 	Introduction	
	
1.1 Malaria	

Malaria is one of the most life-threatening diseases with almost one-third of the world’s 

population at risk. It represents a major public health problem due to its morbidity and 

mortality.1, 9 An estimated 198 million cases led to nearly 584,000 deaths in 2013, 90% of which 

were reported in sub-Saharan Africa.1 Malaria has a broad impact throughout tropical and 

subtropical areas of the globe, affecting indigenous populations as well as an increasing number 

of travelers (Figure 1.1).10-12  

Figure 1.1 – Estimated incidence of malaria per 1000 population, map from 2014 WHO Malaria Report.1 

 

According to the 2014 World Health Organization (WHO) Malaria Report, about 78% of 

deaths attributed to malaria occur in African children under age of 5.1 In addition to the human 

cost of malaria, the economic burden of the disease is significant with a huge impact upon 

individual households due to lost wages and healthcare costs, as well as detrimental effect on the 

national scale with about 40% of African health budgets spent on malaria every year. 13 

Five of the Plasmodium species are known to infect humans: P. vivax, P. ovale, P. 

malariae, P. knowlesi and P. falciparum.14 Of these species, P. falciparum is the human malaria 

parasite inflicting the highest burden in Africa, spread in nearly all malaria endemic countries 
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and is responsible for the majority of malaria mortality. P. vivax is also increasingly recognized 

as an important contributor to the malaria toll, despite causing benign malaria, since it is 

considered the most widespread of the five species.15-16  

The parasite has a complex life cycle, which involves alternate developmental stages 

within the human host and the female Anopheles mosquito. 9, 17 The parasites’ life cycle (Figure 

1.2) begins when sporozoites, present in the infected Anopheles mosquito´s salivary gland, are 

injected into the human host during a blood meal.18-19 The sporozoites inoculated into the skin 

enter the blood vessels and are carried to the liver where they pass through Kupffer cells and 

invade hepatocytes.14, 20 For all Plasmodium spp., parasites incubate and multiply forming liver 

schizonts, which eventually burst, releasing thousands of merozoites into the blood stream 2-16 

days after initial infection.21 In the bloodstream, merozoites rapidly collide with erythrocytes, 

bind to their plasma membrane and actively invade the cells through a cascade of protein-protein 

interactions.22 Alternatively, P. vivax and P. ovale can remain in a dormant form within the liver 

cells as hypnozoites until they activate and cause relapses, months or years later.20 Once inside 

the red blood cell, the merozoite is hidden from the immune system, and through DNA 

replication and schizogony, produces 8–32 new merozoites per red blood cell. With the 

exception of P. malariae, the parasite’s 48-hour growth cycle is followed by red blood cell 

rupture and merozoite re-invasion, which further increases the infection and causes the 

symptoms of the disease. This cycle of asexual reproduction can persist indefinitely in the 

absence of treatment. 19, 21 

During the asexual cycle, some of the parasite cells develop into male and female sexual 

stages, gametocytes. These asymptomatic, non-replicating forms can persist for weeks and are 

responsible for malaria transmission. After the ingestion of gametocytes by a mosquito during a 

blood meal, they differentiate into male and female gametes that fuse to form a zygote in the 

midgut of the mosquito. Meiosis occurs in the zygote, which then develops into a motile 

ookinete that migrates through the gut wall and eventually forms an oocyst. After multiple 

rounds of DNA replication thousands of sporozoites are produced. These sporozoites migrate to 

the salivary glands and are transmitted to the next human host during a blood meal.14, 18-19, 21 The 

erythrocytic stage of the infection accounts for the diseases’ clinical symptoms which is 

characterized by fever, chills, headache and nausea in early stages as well as life-threatening 

anemia. In addition to fever and anemia, P. falciparum infections often lead to further 
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complications due to the sequestration of infected red blood cells in the host microvasculature. 

Blood-stage P. falciparum parasites extensively remodel the surface of their red blood cell hosts, 

expressing proteins that adhere the infected red blood cell to endothelial cells.23 Presumably, this 

enables infected red blood cells to avoid clearance by the host spleen, but can lead to 

coagulation, breakdown in blood vessel structure, and inflammation in the host,24-26 with further 

complications in individual organs.27 Cerebral malaria has a high mortality rate in children and 

can lead to permanent neurological impairment.28 Sequestration can also occur in the placenta 

during pregnancy, leading to anemia in the mother and reducing fetal birth weight, thereby 

increasing the risk of infant mortality.29-30 Malaria caused by P. falciparum can progress within a 

few days from an uncomplicated to a severe scenario with a fatal outcome in 10-40% of all 

cases.17, 31 

Figure 1.2 – The Plasmodium life cycle.21 
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Each of the developmental stages discussed above provides numerous potential points for 

intervention, at which the life cycle can be interrupted. Hence new antimalarial drugs and anti-

vector measures can be developed to prevent infection, disease and transmission.32-33 

Virtually all stages of the complex life cycle of malaria parasites have been enlightened 

in several studies by the use of luciferase reporters. These engineered parasites provided key 

answers to fundamental biological questions and now represent important tools for drug 

screening.34 

Chemoprophylaxis and chemotherapy still plays, and will continue to play, a central role 

in combating malaria infections. However this role has been compromised throughout the years 

by the quite modest number of antimalarial drugs currently licensed and the inexorable 

emergence and spread of parasite strains that are drug-resistant.35 

The extensive and inappropriate sequential use of these drugs during a long period of 

time resulted in a tremendous selection pressure on malaria parasites to develop mechanisms of 

resistance, which has increased mortality and morbidity in many malaria-endemic regions.36 

Drug resistance arises from several factors such as overuse of antimalarial drugs for prophylaxis, 

inadequate or incomplete treatments of active infections, drugs administered in sub-therapeutic 

levels and even high degree of parasite adaptability.20, 37 

The 2014 WHO guidelines establishe that the adequate approach towards malaria 

containment consists on the appropriate treatment, with the use of combination therapy, as well 

as control of the Anopheles mosquito vector, via use of insecticide-impregnated bed nets.1 

Combining antimalarial drugs has the purpose of both increasing the efficacy of treatment 

in addition to delaying the emergence of drug resistance. When choosing a drug combination it’s 

important that the constituent drugs have a different, but yet synergetic mode of action and 

display well-matched pharmacokinetic and pharmacodynamic profiles. Mismatched 

combinations may jeopardize the efficacy of drugs against which resistance hasn’t been 

extensively recorded. Some of the combinations used are, for example, artesunate-amodiaquine, 

artesunate-mefloquine.36, 38-39 Furthermore, public health challenges in endemic areas place 

additional constraints on drug development. Future drugs must be, not only well tolerated when 

given in combination with other drugs to minimize the need for follow-up care which is often 

limited, but also orally bioavailable and rapidly curing the underlying disease to enable practical 

mass administration and maximize patient compliance. Finally, drugs must be especially 
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inexpensive to be broadly accessible to populations in endemic areas.40-41 Take together malaria 

elimination will ultimately require an integrated strategy that includes chemotherapeutics, 

vaccines42-45, vector control and public health measures. Although the task seems daunting, 

efforts are being made to achieve this common goal. 

 

1.2 Malaria	Chemotherapeutics	

The bark of the Chinchona tree, native to South America, provides a rich source of 

medicinal alkaloids. The first use of the bark in treating malaria is often attributed to the 17th 

century in Peru, though the indigenous population used hot infusions of the bark much earlier.46 

Thus, the powdered bark from the Chinchona tree, containing the plasmocidal quinoline alkaloid 

quinine 1.1 (Figure 1.3) was the first medicine used against malaria. William Perkins first 

attempted quinine synthesis in 1856, but it was only in 1944 that its total synthesis was 

accomplished. Meanwhile, the microbiologist Paul Ehrlich used methylene blue 1.2 (Figure 1.3) 

to enhance visibility of microorganisms under the microscope and realized that it was 

particularly effective in staining malaria parasites, thus speculating that this dye might also be 

selectively toxic towards the parasite. In 1891 Ehrlich and Guttmann cured two malaria patients 

with methylene blue, becoming the first synthetic drug used in therapy. It became the starting 

point of a synthetic development and the predecessor to many antimalarial drug classes.47 

 

  

 

 

 

 

Figure 1.3 – Quinoline alkaloid and the first synthetic antimalarial drug. 

 

Antimalarial drugs are classified according to the stage of the malaria life cycle that they 

target. In the case of P. falciparum malaria where there is no reinfection or relapse from the liver, 

a single blood schizonticide is sufficient as treatment. Tissue schizonticides (ex. Pyrimethamine 

(1.4), a folate inhibitor) (Figure 1.4) kill hepatic schizonts preventing the invasion of 

erythrocytes, thus acting in a casually prophylactic manner, and hypnozonticides (ex. 8-
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aminoquinoline Primaquine (1.9)) (Figure 1.4) kill persistent intrahepatic forms of P.vivax and 

P.ovale preventing relapses. Gametocytocides (ex. Sulfadoxine, (1.3) a folate inhibitor) (Figure 

1.4) destroy intraerythrocytic sexual forms of the parasites and prevent transmission from human 

to mosquito, whereas blood schizonticides act on the asexual intraerythrocytic stages.47-48  

The majority of antimalarial drugs act as blood schizonticides, which includes 

compounds from various drug families such as folate inhibitors, artemisinins , as well as 

quinoline-containing drugs, (Figure 1.4).49-50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Antimalarial drugs (antifolates, artemisinins, quinoline-containing drugs). 

 

1.2.1 Quinoline-containing	Drugs	
The compounds belonging to these antimalarial drug classes all share a similar structure, 

built upon the quinoline ring system, as well as a common target, the parasite-specific substance 

hemozoin (Hz), with the exception of 8-aminoquinoline primaquine.20, 35 
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Mode of Action 

Malaria parasites in the bloodstream reside within host erythrocytes, where they mature 

and digest a large proportion of the host cell’s hemoglobin as a source of amino acids for protein 

synthesis. Despite the access to abundant host heme during intraerythrocytic infection, parasites 

retain a complete heme biosynthesis pathway. Although apparently dispensable and inactive it 

can be activated by exogenous stimuli.51 

Two aspartic proteases and one cystein protease are responsible for hemoglobin’s 

hydrolysis (Figure 1.5), and there are four distinct hemoglobin uptake pathways proposed.52 

During the degradation pathway of hemoglobin, heme Fe(II) is released and this free heme is 

toxic because of its ability to cause lipid peroxidation and to destabilize membranes through a 

colloid osmotic mechanism in addition to producing reactive oxygen species.53-56 Instead of 

excreting, the parasite detoxifies free heme by autoxidizing it to FPIX (Fe(III)) and then 

converting it into non-toxic, insoluble crystals of hemozoin that accumulate in the food 

vacuole.53  

Hemozoin or malaria pigment represents a striking feature of the trophozoite stage of 

malaria, seen as a dark brown-black substance in a lysosome-like compartment when examined 

under a microscope.57 

 

	

Figure 1.5 – Schematic representation 

of the hemoglobin degradation 

mechanism in the food vacuole of 

Plasmodium. Ingested hemoglobin is 

transported into the FV where is 

degraded to heme and globin. The 

globin fragments are cleaved by several 

proteases until amino acids used in the 

peptide synthesis by Plasmodium. 

Heme fragment, which is toxic to the 

parasite is oxidized and crystallized to 

hemozoin. 58 
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The antimalarial activity of quinoline-containing compounds acting as schizonticides, 

seems to be correlated with the inhibition of hemozoin formation.49, 54, 58 However, the 

mechanism of hemozoin biocrystallization inhibition by these antimalarials is still a matter of 

debate. As recently reviewed,59 several studies indicate that they may inhibit Hz crystallization 

by binding to the hematin monomer,60-61 or the μ-oxodimer,62-63 or the “head-to-tail” dimer that 

is adsorbed on the crystal surface, or even by acting as capping molecules on Hz crystal faces.64-

66 The weak base property of these compounds explains its selective accumulation in the food 

vacuole (FV), as seen with chloroquine (pKa1=8.1; pKa2=10.2). Its uncharged form diffuses 

freely into acidic compartments, like P. falciparum food vacuole, where it protonates and 

becomes trapped.49-50  

The mechanism of inhibition involves π-π stacking interactions of the quinoline ring 

with the porphyrin ring system with the potential for a second weak electrostatic interaction of 

the charged ammonium group with the carboxyl groups of FP IX. It is believed that the build up 

of toxic concentrations of free FP IX inside the FV leads to the parasite’s death.49, 54 Even though 

the main mode of action of these compounds seems to be inhibition of the hemozoin crystals 

formation, other possible targets have also been described, which may include increased 

accumulation of hemoglobin in endocytic vesicles (4-aminoquinoline drugs) and induction of 

morphologic changes (4-aminoquinoline and quinoline-4-methanol drugs).67 

The mechanism of action of quinoline-containing compounds acting as hypnozonticides, 

such as 8-aminoquinoline primaquine 1.9 (Figure 1.4), is not yet fully understood. It is thought 

that the metabolism at the parasite’s mitochondria is impaired, eventually by interference with 

the ubiquinone function, as an electron carrier in the respiratory chain. Another potential 

mechanism consists on the production of highly reactive metabolites that generate intracellular 

oxidative potentials. Previous biotransformation seems to be necessary for their toxicity as well 

as efficacy. The selective generation of oxidative stress in the parasitized cells is the most 

plausible mechanism of both toxicity and efficacy.68-69 

  

4-Aminoquinolines 

Since the quinoline nucleus was believed to be an important feature in antimalarial 

activity, in 1934, diethylaminoisopentylamino side chain was introduced into position 4 of 7-

chloroquinoline yielding chloroquine (CQ), the most distinct member of the 4-aminoquinoline 



Chapter	1	–	Introduction	
 

 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	 11	

class.47 CQ 1.10 (Figure 1.6) has been the most successful single drug for the treatment of 

malaria, being a safe and affordable compound that has saved countless lives.35 This 4-

aminoquinoline contains a 7-chloro substituted quinoline ring system with a flexible 

pentodiamino side chain and since its discovery attempts have been made to obtain a superior 

antimalarial drug.54 Structure-activity relationship studies show that a strong lipophilic and 

electron withdrawing functional group in the 7-position of the quinoline ring is required for 

inhibition of hemozoin formation, being the chloride atom optimal for antimalarial activity both 

in vivo and in vitro. Also the tertiary amino nitrogen in the alkyl side chain, as well as the 

quinoline ring nitrogen are essential for accumulation in the acidic food vacuole and the 

quinoline ring itself to act as a heme binding template. The length of the side chain can 

determine possible activity against resistant strains. This information allows the description of its 

pharmacophore (Figure 1.6).54, 70 

As a lipophilicity enhancement strategy, an aromatic structure was incorporated into the 

side chain of chloroquine, thus resulting in amodiaquine 1.7 (Figure 1.4).47 This compound is 

effective against low-level but not high-level chloroquine resistant P.falciparum strains. Its 

therapeutic value is significantly reduced by biotransformation into a quinonimine which is 

responsible for severe hepatotoxicity and life-threatening agranulocytosis.49  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 – Pharmacophore of the antimalarial 4-aminoquinoline chloroquine. Adapted from Egan et 

al.71 
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Despite the widespread resistance to chloroquine there is a continued interest in 

compounds of this class and much of the current effort is directed to the development of novel 4-

aminoquinoline drugs, since their mode of action and resistance appear to occur via independent 

mechanisms.72-73 

The extensive employment of chloroquine as an antimalarial drug, through an extensive 

period of time, provided a tremendous selection pressure on malaria parasites to evolve 

mechanisms of resistance. Resistant P. falciparum strains have developed independently in four 

different regions, and have successively spread over almost the entire malaria endemic area, with 

profound consequences.35, 74-76 It is generally accepted that resistance results from a mutation in 

the gene pfcrt responsible for the expression of the chloroquine resistance transporter (CRT) 

located in the membrane of the FV, the so called ‘charged drug leak’ hypothesis.35 The 

genotyping of resistant strains showed a mutation in pfcrt, where, a lysine residue (polar and 

positively charged) is replaced by a threonine residue (neutral and hydrophobic). This positive-

to-neutral charged modification caused by this amino-acid substitution may impede the retention 

of CQ inside the FV. Since the transporter’s positive charge limits the efflux of CQ, a weak 

diprotic base of which almost 100% will carry two positive charges in acidic conditions, when 

the mutation occurs the CQ2+ can exit down its concentration gradient via the CRT. However, 

possible reversing strategies have been described, such as, mutations elsewhere in the protein 

that can restore a positive charge to the pore, thus reversing the resistance phenotype, as well as 

the use of lipophilic and positively charged compounds (ex. Verapamil), which compete with CQ 

for binding to CRT.35, 77-78  

Neverthless, other 4-aminoquinolines are currently in clinical use as Food and Drug 

Administration (FDA) approved artemisinin-based combination therapy, such as 

dihydroartemisinin-piperaquine and pyronaridine-artesunate.79 

 

8-Aminoquinolines 

The 8-aminoquinoline primaquine (Figure 1.4), has been approved for treatment of 

malaria since 1952 by the FDA, and is the most representative member of this class since it is the 

only one in general use.68-69 Primaquine is the only transmission-blocking antimalarial clinically 

available, since it displays unique gametocytocidal properties against all species of human 

malaria. This compound is also a tissue schizontocide that kills early liver stages of P. 
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falciparum and P. vivax, thereby providing causal and terminal prophylaxis against both 

infections.80-81 Though primaquine is effective, unique and so far irreplaceable, it is also 

associated with serious hazards and side effects, such as gastrointestinal reactions, 

methemoglobinemia and severe intravascular haemolysis in glucose-6-phosphate dehydrogenase 

(G6PD) deficient individuals, which prohibits its use in key groups, like pregnant women.81 

Extensive derivatization approaches to develop 8-aminoquinoline analogs with better 

pharmacological and reduced toxicological profiles have led to compounds that are still under 

development such as, tafenoquine, a slowly eliminated 8-aminoquinoline currently in phase III 

clinical trials, among others.79-80, 82 Resistance to primaquine is a difficult entity to quantify due 

to the fact that it is used in combination with a blood schizontocidal agent, and the lack of 

efficacy between the two is difficult to quantify separately.69 

 

Arylamino Alcohols 

Another class of quinoline-containing compounds is the arylamino alcohols, which 

include mefloquine 1.8 (Figure 1.4), a widely used antimalarial medication for travelers that go 

to areas where chloroquine-resistant P. falciparum is predominant. The drug is an effective 

schizontocide, active against the blood stages of all the malaria species that infect humans.83 

Mefloquine has proven safe as chemoprophylaxis in long-term travellers, pregnant women, 

breastfeeding women, and children, as well as in treating paediatric malaria.83-84 Furthermore, a 

non quinoline-containing arylamino alcohol is currently in clinical use as a FDA approved 

artemisinin-based combination therapy for both adults and children (artemether-lumefantrine).79 

Resistance to mefloquine has been reported as a consequence of elevated pfmdr1 gene 

copy number, resulting in decreased parasite sensitivity to this compound. This increase is a 

direct result of the maturation delay at the ring stage and has not proven to affect antimalarial 

activity of a currently used drug, artimisinin.85 

 

Antifolates 

Antifolates were demonstrated to be effective against malaria in the 1930s, when they 

emerge as a part of the antimalarial drugs that have specific enzyme targets in the parasite. 

The principal antifolate drugs used against malaria are pyrimethamine and the sulfa 

drugs, for example sulfadoxine 1.3 (Figure 1.4), among others.20 Pyrimethamine (1.4, Figure1.4) 
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targets the dihydrofolate reductase (DHFR) activity of the parasite’s bifunctional DHFR-

thymidylate synthetase (TS) protein, whereas the sulfa drugs affect the dihydropteroate 

synthetase (DHPS) activity of the bifunctional hydroxymethylpterin pyrophosphokinase 

(HPPK)-DHPS protein. All of these drugs act as competitive inhibitors of the enzymes’ natural 

substrates. Since DHFR is present in both, host and parasite, the safety and efficacy of the drugs 

that target this enzyme depends on a several hundred-fold differential binding ability. Resistance 

appeared rapidly when these drugs were initially deployed as mono-therapy, but synergistic 

combinations with sulfa drugs have proved to be of long-term utility, especially as a cheap alter-

native to combat the CQ-resistant parasites, although its use has diminished with the use of 

artemisinin-based combination therapy.35 The pyrimethamine derivative P218 (1.23, Figure 1.10) 

is a next generation inhibitor of DHFR that has largely finished preclinical development. This 

clinical candidate has a good pharmacokinetic profile, is selective and highly efficacious, as well 

as demonstrates a good safety margin.86 

 

1.2.2 Artemisinins	
The plant sweet wormwood, Artemisia annua, used for more than 2000 years as a 

Chinese herbal medicine against intermittent fever, rendered the antimalarial drug artemisinin 

(ART) (1.11, Figure 1.7) in the 1980’s.87-88 Since its discovery, ART has been the most studied 

antimalarial compound due to its low nanomolar range activity and its general tolerability.87, 89-91  

Artemisinins, such as artesunate (1.5) and artemether (1.6) (Figure 1.4), constitute the 

only known drug class that effectively functions against multidrug-resistant parasites, although 

reports of prolonged parasite clearance times in artemisinin-treated patients have raised concerns 

that the advances of the past few years might be lost. 21, 92-94 The first signs of artemisinin 

resistance came from a study that was conducted in 2008, in which parasite clearance times after 

initial artesunate monotherapy were slower in patients from the Eastern Thailand–Cambodian 

border.95 

The expanded use of artemisinin-based combination therapy (ACT) has played a major 

part in reduction of malaria illness and deaths and is the WHO-recommended treatment for P. 

falciparum malaria worldwide.1 Artemisin and its derivatives are used as ACTs and are the 

recommended first-line treatments for malaria because they are effective against all four human-
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infecting malaria parasites, produce rapid parasite/fever clearance, and show fewer adverse 

effects.96  

The mechanism of action of these compounds (Figure 1.7) is still uncertain, even though 

it is most likely attributed to the endoperoxide bridge (1,2,4-trioxane).96-97 One of the proposed 

modes of action consists on the activation of the endoperoxide bridge by free iron (II), present in 

high amounts inside the parasite, since it is a side-product of the hemoglobin digestion. As a 

result of the activation, the endoperoxide bridge originates oxygen radicals (ROS), that further 

rearrange into carbon centered radicals considered very toxic to the parasite.97-98 Due to the 

generation of ROS, earlier studies suggest that artemisinins modulate parasite oxidative stress 

and reduce the levels of antioxidants and glutathione in the parasite.99 Moreover, P-type 

ATPases100 and the respiratory chain of the mitochondria101 have also been proposed as specific 

targets of artemisinins.102  

  

 

 

 

 

 

Figure 1.7 – Artemisinin and its proposed active species. 

 

Since ART lacks a good pharmacokinetic profile, low water and oil solubilities as well as 

low half-life in the bloodstream, further semi-synthetic derivatives were synthesized, such as 

artesunate and artemether (Figure 1.4). The derivatives’ half-life in the blood was not 

significantly improved, allowing some parasites to survive and eventually develop resistance, 

which led to drug regimen with multiple administrations.103-105 When developing an ACT, the 

partner drugs should ideally be structurally unrelated, more slowly eliminated in vivo, and should 

target those parasites that have not yet developed resistance. Antimalarial combination therapy 

with ART derivatives is recommended, since the simultaneous use with other blood 

schizonticidal drugs with an independent mode of action and different pharmacokinetic 

properties is more effective, and delays the emergence of parasite resistance against each drug, 
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for example artesunate-amodiaquine.96, 106 Moreover, the current clinical approved antimalarial 

drugs have been screened for their activity in other stages of the parasite’s life cycle, where both 

artesunate and artemether where active against the liver stage parasites (IC50 < 1µM).107 

 

1.2.3 Cytochrome	bc1	Inhibitors	
The cytochrome bc1 complex is a key enzyme of the respiratory electron transfer chain, 

which is an attractive and validated drug target in the fight against malaria. The mitochondrial 

electron transport-chain is fundamental in Plasmodium sp., since the parasites do not possess the 

requested enzymatic machinery to salvage pyrimidines from their metabolism and, therefore, 

have to perform de novo pyrimidine biosynthesis to enable their survival, leading to its death 

when this pathway is inhibited.108 

Cytochrome bc1 contains three polypeptides, which display catalytic functions: 

cytochrome b, cytochrome c1 and the Rieske protein, or iron-sulfur protein (ISP). It catalyzes the 

transfer of electrons from ubiquinol to cytochrome c and couples this electron transfer to the 

vectorial translocation of protons across the inner mitochondrial membrane. This catalytic 

mechanism, called the Q-cycle, requires two distinct quinone-binding sites, the quinol oxidation 

site (Q0) and the quinone reduction site (Qi), which are located on opposite sides of the 

membrane and linked by a transmembrane electron-transfer pathway.109-111 

Currently, the 1,4-Naphthoquinone atovaquone 1.12 (Figure 1.8) is the only drug 

targeting the bc1 complex in clinical use.111-112 This antimalarial drug was developed in the 

1990’s and acts as a competitive inhibitor of cytochrome bc1 that targets specifically the Q0 site 

and locks the conformation of the Rieske (iron–sulfur) complex, which immobilizes the cluster 

and reduces electron transfer. Atovaquone induces collapse of the mitochondrial membrane 

potential at very low concentrations and, as a result, the mammalian system is not affected 

substantially. Initially, this drug was found to be a very effective antimalarial compound, but 

soon was considered inappropriate for use as a single agent due to the relatively quick emergence 

of resistance. In an attempt to improve it’s efficiency and overcome the emergence of resistance, 

atovaquone is now used in combination with the synergistic agent proguanil 1.13 (Figure 1.8).113  
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Figure 1.8 – Chemical structures of atovaquone (1.12) and proguanil (1.13), the active molecules in 

Malarone®. 

 

Structurally the hydroxyl group of the hydroxynaphthoquinone binds, via a hydrogen 

bond, to a imidazole nitrogen of ISP, and on the opposite side of the ring system, the carbonyl 

group at position 4 interacts via a water molecule with cytochrome b (Figure 1.9).111 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 – Binding mode of atovaquone into bc1 complex Qo site.  

 

Since resistance to atovaquone has been reported as a result of mutations responsible for 

the changes in the volume of the inhibitor-binding pocket, interfering with drug binding.112 

Therefore efforts have been made to develop other inhibitors, emerging drug classes such as the 

acridones, quinolones and tetracyclic benzothiazepines, but few compounds display all the 

desired properties.111, 114-115 
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1.3 Drug	Discovery	Strategies	

The emergence of drug resistance has already rendered once-effective malaria treatments, 

such as chloroquine and sulfadoxine-pyrimethamine, less reliable. Today, ACTs are the weapon 

of choice against malaria, and the possibility of losing them with the first signs of resistance, 

rendered the urgent need for novel antimalarial chemotypes.76, 87 Such facts highlight the 

parasite’s ability to evolve and adapt to every drug introduced thus far, which mandates the 

research to identify novel chemotypes as well as new targets for antimalarial therapy.2-3  

Nonetheless, in an attempt to streamline the number of available malaria therapeutics, the 

reformulation of existing drugs to increase their therapeutic efficacy has also been used. Thus 

improving the drug’s bioavailability, decreasing pharmacokinetic variability, and lowering the 

total daily intake have extended the life of some antimalarial drugs.116 An example of such an 

approach is the reformulation of bitter crushed artemether/lumefantrine tables to palatable and 

rapidly dispersible (<1 min) formulations, which has improved their efficacy in children. This 

sweet tasting paediatric formulation has been approved in 24 African countries.117 Treatments 

with greater efficiency have also been discovered, by combining different antimalarial drugs.21, 

118-119 Pyronaridine-artesunate120 and azithromycin-chloroquine121 are two such new drug 

combinations currently in clinical trials for malaria treatment. 

Furthermore, new technologies and high throughput approaches are being applied to 

identify a burgeoning number of lead drug candidates and novel drug classes with antimalarial 

activity.2-3 Although efforts have been made to improve existing molecules, most new classes of 

potential antimalarials have come from high-throughput screens. Thus, drug discovery strategies 

include extensive compound screening, of which, natural sources, chemical libraries and virtual 

screening stand out. 21, 122-123 

The global concerns that the efficacy of all currently used anti-malarial drugs will erode, 

creates a pressing need to develop inexpensive yet effective agents that can both treat and 

eradicate malaria. With such goals in mind the antimalarial target product profiles (TPP) have 

recently been reevaluated and defined. Future antimalarial combination treatments will need to 

cure the disease efficiently, by rapid clearance of parasitemia in patients, thereby reducing the 

risk of resistance and preventing recrudescence. In addition, these new medicines will be 

expected to block transmission and eliminate all liver forms of the parasite including dormant 

hypnozoites. This profile corresponds to the main treatment TPP at the Medicines for Malaria 
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Venture (MMV) in which the ideal criterion constitutes a medicine administered as a single dose, 

the SERCaP (single-exposure radical cure and prophylaxis).124 Furthermore four different target 

candidate profiles (TCPs) were also defined regarding pharmacodynamics, pharmacokinetics, 

and safety parameters that a drug candidate should exhibit to fulfill the radical cure or 

prophylaxis criteria.124-125   

Broadly, drug discovery efforts to develop novel antimalarial drugs include virtual and 

chemical screening, as well as rational chemistry-based approaches.  

 

1.3.1 Virtual	Screening	
Virtual screening emerged in the 1990s as a way of predicting bioactive compounds 

using computational methods. These methods are usually defined as either structure-based or 

ligand-based, where structure-based approaches use knowledge of the 3D structure of the 

biological target, whereas ligand-based approaches rely on the knowledge of the structure of 

compounds exhibiting the desired activity.126 Using computational approaches to expedite the 

identification of hit molecules that are predicted to possess the desired properties is an efficient 

approach to discover the best set of compounds with predicted activity. Following virtual screen, 

hit confirmation is necessary through in vitro testing.126-127 A high-throughput screening (HTS) 

has been established, for example, to identify novel inhibitors of the parasite’s mitochondrial 

enzyme NADH:quinine oxidoreductase adopting the ligand-based approach.126 

 

1.3.2 Chemical	Screening	
Current successful approaches to discover drugs with new targets and chemotypes have 

come largely from high-throughput screening of chemical libraries of structurally diverse small 

molecules. In an effort to diversify the current stock of antimalarial chemotherapeutic agents, 

HTS campaigns have been developed for novel, drug-like compounds with whole-cell 

antimalarial activity, limited susceptibility to established mechanisms of drug resistance and 

minimal toxicity to mammalian cells, as a pathway to medicinal chemistry optimization and 

preclinical development of lead compounds.115, 128-129 
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1.3.2.1 Sources	of	Chemical	Libraries	

1.3.2.1.1 Clinical	Approved	Drugs	
Recent drug discovery approaches utilizes compounds or compound classes that have 

already been evaluated or approved for clinical use against other diseases as a starting point for 

the discovery of new antimalarial agents.130-132 Advantages of this approach include availability 

of safety and tolerability data, as well as, knowledge of possible mechanisms of action and 

resistance, which is time and cost efficient.130 The value of this approach for malaria and other 

parasitic diseases is being recognised with recent interest in “clinical” drug libraries. Screens for 

antimalarial activity with some of the libraries have been carried out against asexual blood 

stage133-135, liver stage136 and gametocyte stage P. falciparum parasites137. Currently, the drug 

trimethoprim 1.14 (Figure 1.10), a clinically approved antibiotic, is being evaluated as an 

antimalarial drug in a Phase III clinical trial.79  

 

1.3.2.1.2 Diversity	Oriented	Synthesis	(DOS)	
Structural diversity plays an important role in discovering quality molecules that can 

generate favorable biological response for complex targets, thus DOS is an efficient tool, which 

has been utilized to generate structurally diverse libraries with novel biological properties. 

Traditional combinatorial chemistry is typically dependent on diversifying a common template, 

while libraries of compounds from DOS are usually architecturally more varied, allowing the 

interrogation of a more diverse chemical space.138 In 2012, Schreiber et al. discovered an 

antimalarial macrocyclic lactam ML238 1.15 (Figure 1.10) using a phenotypic screening of a 

DOS library, against P. falciparum asexual blood-stage parasites. This small molecule displayed 

picomolar activity and belongs to a novel structural class of antimalarials.139-140 

1.3.2.1.3 Natural	Products																
Nature has been a major source of pharmacological drugs throughout history and the 

most efficient antimalarial drugs such as quinine and artemisinin were isolated from natural 

products. Thus, the interest in using libraries of natural-product extracts for high-throughput 

screening against P. falciparum.141-143 As malaria is a disease that has historically been treated by 

herbal medicinal products, selecting extracts with demonstrable clinical activity could clearly 

lead to new drugs.144 Thus, surveys of selected molecules from natural sources have been carried 
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out and antimalarial activity was evaluated through in vitro testing.122, 141 However, strategies 

based on medicinal plants render compounds with complex structures, which slow down the 

identification process, and present problems regarding supply.122, 142 Furthermore, additional 

challenges include seasonal or environmental variations in the composition of living organisms 

and loss of source through extinction or legislation, complexity of the mixtures after 

fractionation, the isolation of very small quantities of bioactive substance and challenging 

physicochemical properties such as solubility and stability.145 

Neverthless, exploring natural products as a source of antimalarial drugs continues to be a 

powerful drug discovery approach, which has yield many active compounds. Alkaloids from 

traditional herbal medicines have contributed greatly over the centuries not only to the discovery 

of new antimalarial and therapeutic agents but also to the elucidation of biochemical pathways 

allowing the development of modern pharmaceutical industry.146-148 Two examples of great 

interest to our group, which will be further addressed in this thesis, include the febrifugine 

derivatives and the indoloquinoline derivatives. The febrifugine derivatives are a family of small 

molecules derived from the active component of Dichroa febrifuga. Used as an antipyretic in 

traditional Chinese medical practice, extracts of D. febrifuga were shown to have antimalarial 

properties in 1945. In the 1960s, the Walter Reed Army Institute of Research (WRAIR) 

developed halofuginone and other febrifugine analogs as part of a large antimalarial drug 

development program.149 The indoloquinolines are unique natural alkaloids, characterized by an 

indole and a quinoline fused rings, found almost exclusively in the West African climbing shrub 

Cryptolepis sanguinolenta (Lindl.) Schltr. The roots’ aqueous extracts of this plant have been 

used for centuries by African traditional healers mainly for the treatment of fevers including 

malaria, hepatitis and bacterial infections, among others.150  

 

1.3.2.2 Drug Discovery Screen 

The drug discovery screens of chemical libraries has historically benefited from the 

phenotypic (whole-cell) screening approach to identify lead molecules in the search for new 

drugs. However over the past two decades there has been a shift in the pharmaceutical industry 

to move away from whole-cell screening to target-based approaches, fuelled by the genomic 

revolution.151-152 
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1.3.2.2.1 Target-based	Screen	
Target-based screens start with the identification of an essential enzyme or pathway, 

ideally specific to the parasite, followed by the development of an in vitro biochemical assay, 

and an HTS can then be executed to identify hit compounds.152 This approach is often 

operationally simpler as it can use pure proteins in the biochemical assay and renders candidate 

molecules with known mechanism of action enabling structure-based lead optimization. The 

process can be further enhanced if crystal structures of the protein are available to guide the 

design of potential inhibitors and to increase selectivity and specificity against the parasite 

protein, relative to the host protein.153 Several target-based screens, for suitable therapeutic 

agents have been developed in the past 10 years, such as the dihydrofolate reductase, among 

others. An undesirable common outcome is an in vitro/in vivo disconnect where excellent 

potency on the target does not translate to similar cellular activity or in vivo efficacy. 151-152 

Among drug candidates identified using target-based approaches is the compound DSM-

265 (1.16, Figure 1.10), an inhibitor of P. falciparum dihydroorotate, which will be further 

discussed below.154 

Although target-based approaches in the search for new antimalarials remains an active 

area of research, new chemical entities from HTS phenotypic campaigns of large chemical 

libraries are beginning to bolster the antimalarial pipeline at a more efficient pace than target-

based screening.155-156 

 

1.3.2.2.2 Phenotypic	Screen	
Phenotypic screens involve whole cells or even whole organisms and identify libraries or 

classes of compounds with potential biological activity against the parasite. This approach 

renders molecules that are permeable and active on the Plasmodium sp., but its disadvantage is 

that the activity can result from multiple pathways, leading to very poor or narrow structure-

relationship activities during lead optimization.151-152, 155  

Malaria drug discovery has, until recently, focused on finding replacements for 

compounds that are active against blood-stage P. falciparum, such as artemisinin. With the 

recent progress that has been made in the development of high-throughput screens for both 

asexual and sexual stages, as well as for the liver stage of the parasite life cycle, efforts are made 

towards identifying compounds that are active against multiple stages.136-137, 151, 157-162 
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As a consequence of the extensively debated drug resistance, there is an urgent need for 

novel drugs, preferably new chemotypes acting on underexploited parasite targets. This has 

triggered a great number of drug discovery and development programs from public institutions, 

private institutions, and public-private partnerships, using phenotypic screening with P. 

falciparum sensitive and resistant strains.163 Among them were large libraries from Novartis, St. 

Jude Children’s Research Hospital and GlaxoSmithKline (GSK) 6, 155. 

On the basis of these public screen results, a library of 400 unique compounds with 

blood-stage antimalarial activity was created. These compounds have been resynthesized and this 

'malaria box' of potential chemical starting points can be obtained from the Medicines for 

Malaria Venture (MMV). The malaria box concept enables biologists, who cannot resynthesize 

compounds, to participate in the drug discovery process and to help to identify how the 

compounds function. The MMV requests that the results of tests that use the malaria box are 

made public and encourages collaboration between groups. A total of ~6 million compounds 

have been screened to date and, excitingly, more than 25,000 of these have shown half-maximal 

(IC50) activity at approximately 1 μM or lower against P. falciparum.155, 164 

Among the new classes of antimalarial drugs identified using phenotypic-based 

approaches are the spiroindolones and the imidazolopiperazines, which will be further discussed 

below 79, 165. 

 

1.3.3 Rational	Chemistry-based	Approaches	

1.3.3.1 Hit	to	Lead	Optimization	
As described above several large libraries have been screened and thousands of cell-

active compounds have been identified and made publicly available. Furthermore, different drug 

design strategies can be used for hit to lead optimization of these compounds. Moreover, rational 

drug design can be applied in the development of small molecule hits with known or unknown 

targets. Nonetheless, the challenge of the phenotypic-based approach develops when compound 

optimization stalls, and identification of the hit compounds’ molecular targets for biochemical or 

structural analysis is necessary for further development from hit to lead.166-167 

The process of hit to lead optimization is interactive and often proceeds through multiple 

cycles before an optimized lead goes into phase I clinical trials. Thus, specific criteria have been 

proposed for defining hits and leads in the development of antimalarial drugs.168 
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Many of the improvements needed as the lead is converted to a drug candidate, such as 

reducing off-target interactions or improving metabolic stability, may be most easily achieved 

through the addition of functional groups that increase MW and often lipophilicity. Based on 

these studies, a set of thresholds for lead-likeness can be specified, for example, MW < 400 and 

log P < 3.5, to rank hits for their suitability for further exploration and optimization.169 

Among drug hits identified using phenotypic-based approaches, which where optimized 

to lead compounds using medicinal chemistry approaches, are the spiroindolone NITD609170 

(1.17, Figure 1.10) and the imidazolopiperazine KAF156171 (1.18, Figure 1.9), further discussed 

below. 

 

1.3.3.2 Hybrid	Molecules	
Another rational chemistry-based approach is the design of hybrid molecules that 

combine several chemical groups to provide stability, solubility and potency.172-174 A new 

generation of hybrid antimalarial drugs, instead of combined drugs, is being developed due to 

lower risk of drug-drug adverse interactions and greater treatment adherence. Thus, the design of 

antimalarials based on the covalent linking of drugs into a single hybrid molecule is a relatively 

new approach and the resulting molecule tends to be more effective than the isolated 

components. A series of hybrids containing drugs with different biological functions, distinct 

pharmacophores, reduced toxicity and improved activity (as compared to the isolated 

compounds) are being developed.122, 175 In addition, hybrid compounds have the potential to act 

against different life-cycle stages of malaria parasites, a required feature to facilitate the ultimate 

goal of eradicating malaria.176  

Since quinolines are considered to be privileged antimalarial building blocks, the 

synthesis of quinoline-containing antimalarial hybrids has been elaborated extensively in recent 

years. Four types of hybrid strategies using quinolines have been pursued, including coupling 

with well-known antimalarial drug, artemisinin or one of its derivatives, a synthetic peroxide, a 

synthetic reversal agent (chemosensitizers) or a new biologically active motif.172, 177-178 

The most successful story emerges from the extensive optimization of endoperoxide–

aminoquinoline hybrids carried out by Meunier’s group in partnership with Sanofi-Aventis, 

where trioxaquine—PA1103/SAR116242 (1.19, Figure 1.10) emerged from this optimization as 

the the first antimalarial hybrid to reach clinical trials. This compound effectively displayed a 
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dual mechanism of action, being an important asset to face the highly adapting malaria 

parasites.179 

 

1.3.3.3 Modification	of	Existing	Antimalarials	
Another rational chemistry-based approach is to chemically modify existing antimalarials 

in order to overcome its drawbacks.122-123 Such an example is the class of the 4-aminoquinolines, 

where the alkylamine side chains allow for structural modifications, resulting in compounds that 

have different lipophilicity and drug-resistance profiles.70, 180 Among the CQ analogs that have 

been synthesized by linking 4,7-dichloroquinoline with monoalkynes and dialkynes, 12 

compounds have demonstrated activity against P. berghei in mice, especially those with 

methylene groups in the side chain.181 Furthermore, ferroquine (1.20, Figure 1.10), a 

methalocenic CQ analog, that is considered to be the most advanced organometallic drug 

candidate, is in Phase II clinical trials for the treatment of uncomplicated malaria.182 

Other drug candidates currently in clinical trials, that were obtained by applying this 

rational chemistry-based approach include: ELQ-300183 (1.21, Figure 1.10), which resulted from 

in vivo optimization of the avian antimalarial endochin; OZ439184 (1.22, Figure 1.10), which 

resulted from in vivo optimization of 1,2,4-trioxolane arterolane; and P21886 (1.23, Figure 1.10), 

which resulted from structure optimization of pyrimethamine. 
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Figure 1.10 – Structure of some experimental antimalarial molecules. 

 

1.4 New	Drug	Candidates	

The past decade has seen a transformation of the portfolio of malaria medicines, with a 

dozen or so new chemical entities entering clinical development and breakthroughs in 

translational research. The phenotypic screens have proven to be very productive as many of the 

compounds identified have been successfully optimized and progressed to preclinical and 

clinical development. Nonetheless, target- and chemistry-based approaches have also yielded 

novel candidates currently under development.	
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Through a collaborative effort, among MMV, their partners and others, new molecules 

with novel modes of action are entering preclinical development and beyond (Figure 1.11).79 The 

Global Malaria Portfolio can also be found at http://www.mmv.org/interactive-rd-portfolio and is 

updated on a quarterly basis. 

Figure 1.11 – Progression of the clinical development of new antimalarial candidates over the past 5 

years. Adapted from Wells et al.79 Drug candidates with white arrows have molecularly defined targets. 

Some molecules have been approved by disease-endemic countries and not by stringent regulatory 

authorities or prequalified by the WHO (World Health Organization), and these are indicated by asterisks. 

Phase II includes both Phase IIa (tests of compounds in patients as monotherapies) and Phase IIb (tests of 

compounds in patients as combination therapies).  

 

Despite the relative abundance of projects at certain stages, taking into account the 

attrition between each phase and the need for combination medicines, it is clear that a sustained 
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delivery of high quality antimalarial preclinical candidates is still of the outmost importance. 

Within the MMV portfolio, a selection of the new compounds, at different stages of 

development, is described below. 

 

1.4.1 Quinolones	
Antimalarial activity of 4(1H)-quinolones was first recognized in the 1940's when 

endochin (1.24, Figure 1.12) was identified as a causal prophylactic, killing growing liver stage 

parasites, and potent erythrocytic stage agent in avian malaria models. However, this inhibitor 

was not efficacious against malaria parasites of mammals.185 Recently, several efforts have been 

made to develop new quinolones targeting the P. falciparum bc1 complex, resulting in several 

compounds which display exceptional antimalarial activity.136, 183, 186-187 From these efforts, 

ELQ-300 (1.21), which contains a diarylether moiety and acts selectively against Plasmodium 

falciparum bc1 complex, was identified.183 This compound was designed based on the chemical 

structure of endochin (1.24) through replacement of its metabolic unstable alkyl chain by the side 

chain from the, well-known, bc1 complex inhibitor GW844520 (1.25, Figure 1.12). This 

compound demonstrated improved metabolic stability when compared with endochin and 

increased selectivity ratio for P. falciparum bc1 over the human homolog. Moreover, due its 

superior properties, this compound was selected for preclinical studies and is currently in Phase I 

clinical trials.79, 183, 188  

 

 

 

 

 

 

 

 

 

 

Figure 1.12 – Design of ELQ-300 (1.21) based on the structure of endochin (1.24) and GW844520 

(1.25).  
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1.4.2 Pyrimethamines	
Dihydrofolate reductase (DHFR) inhibitors such as pyrimethamine (1.4) have been 

widely used for the treatment of malaria, although widespread resistance has compromised 

clinical efficacy. P218 (1.23) is a next generation inhibitor of DHFR, it has largely finished 

preclinical development and is currently in Phase I clinical trials.79, 165 This compound was 

designed using structure-based methods to have a high affinity to both the parent and mutated 

enzymes and to also kill both wild type and clinically-relevant resistant strains. The challenge of 

sustaining activity across even quadruple-mutated enzymes was overcome by starting with the 

pyrimethamine scaffold and then using a flexible side-chain that could adopt a variety of 

conformations to achieve potency, which led to compound P65 (1.26). Further optimization 

found that a carboxylic acid was optimal for selective binding to a key protein arginine in the 

parasite but not in the human homolog, which led to compound P218 (Figure 1.13). This clinical 

candidate has a good pharmacokinetic profile, is selective and highly efficacious, as well as 

demonstrates a good safety margin.86, 189-190  

 

Figure 1.13 –P218: Pyrimethamine to Drug Candidate. 

 

1.4.3 Ozonides	
One of the best examples of the chemistry-based approach is the development of the 

synthetic ozonides. Given that artemisinin endoperoxides and their derivatives, such as 

artesunate, are the mainstay of current malaria chemotherapy, these endoperoxides have been 

attractive starting points for drug discovery efforts. Ozonides (which are synthetic peroxides) 

retain the endoperoxide bridge that gives artemisinin its potent blood-stage activity, but they also 

contain a bulky amantadine ring, which increases their stability in the plasma.21, 79 It has been 

proposed that their activity results from the peroxide bond being reduced by ferrous iron or 
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heme, which are liberated through the digestion of hemoglobin by the parasite. This reduction 

produces carbon-centred radicals that alkylate heme and parasite proteins, which ultimately leads 

to parasite death.191 

Vennerstrom and co-workers demonstrated that a stabilized ozonide, OZ03 (1.27), with a 

simple structure was sufficient to give excellent in vitro potency. To address the high 

lipophilicity and low solubility, polar and ionizable groups were introduced in the region of the 

molecule that was synthetically tractable, resulting in compound OZ277 (1.28) (arterolane), 

which was the first clinical candidate of this class (Figure 1.14).191-192 This first-generation 

ozonide is as potent as artesunate in vitro and has increased activity in the P. berghei mouse 

models, curing mice with three 10mg/kg oral doses.191 Nonetheless, OZ277 had lower exposure 

in patients than expected, therefore further optimization was required. To increase stability the 

amide was replaced by a phenyl ring with an ether-linked base, resulting in the newer generation 

synthetic ozonide OZ439 (1.22) (Figure 1.14).  

 

Figure 1.14 – OZ439: Hit to Drug Candidate. 

 

OZ439 (also known as artefenomel) is potent and fast-acting, as well as being 

pharmacologically active for longer time and having improved bioavailability. The drug 

candidate is able to cure and to prevent P. berghei blood-stage mouse infections with a single 30 

mg/kg dose and blocks transmission in the in vitro membrane feeding assay,184, 193 and has now 

progressed to Phase IIb combination studies, whereby it is being tested in combination with 

piperaquine.79 

Despite the successful clinical development thus far, the ozonides, as with artemisinins, 

are mainly active against blood stages and, because their activity relys on the endoperoxide 

bridge present in artemisinins, they might be less effective against artemisinin-resistant parasites. 

 

O

O

O
O

N

O

(1.22) OZ439

O

O

O

(1.28) OZ277

O

O

O

(1.27) OZ03

NH
O

H2N



Chapter	1	–	Introduction	
 

 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	 31	

1.4.4 Spiroindolones	
One of the first novel drug classes to be identified using modern phenotypic screening 

methods was the spiroindolones. The lead for this class, a racemic spiroazepineindole (1.29), was 

identified from a screen of natural products and “natural product like” compounds that were 

analysed for their activity against blood-stage P. falciparum. A medicinal chemistry approach 

was applied to contract the seven-membered ring, to define the stereochemical structure-activity 

relationship and to replace the lipophilic bromine atom (Compound 1.30). Furthermore, to 

increase metabolic stability halogens were positioned on the tetrahydro-beta-carboline ring, 

resulting in the drug candidate KAE609, also known as NITD609 (1.17) (Figure 1.15). 

Compound 1.17 is being further developed by Novartis as part of the company’s efforts to 

contribute to global malaria elimination.3, 194  

 

 

Figure 1.15 – NITD609: Hit to Drug Candidate. 

 

In preclinical studies it displayed pharmacokinetic profiles consistent with once-daily oral 

dosing in humans. In the P. berghei malaria mouse model, the compound had a fast onset of 

action and potently reduced parasitaemia. No significant risks have been identified in safety 

pharmacological assays and the overall risk of resistance is viewed as moderate.195 1.17 

underwent an open-label proof-of-concept (PoC) Phase II trial involving 21 patients with P. 

falciparum or P. vivax mono-infection. After treatment with 30 mg daily for three days, parasites 

were cleared in a median of 12 h, an effect that is more rapid than that observed with 

artemisinin-based combination therapies. In addition, in the five patients for whom 

gametocytaemia was detected at baseline (all with P. vivax malaria), it was cleared by 8 h post-

dose, confirming the potent transmission-blocking potential of this novel class of compounds.194-

195 The spiroindolone class has a novel mechanism of action, which was identified using in 

vitro evolution and whole-genome scanning. This drug is believed to target the outer membrane 
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transporter, P-type ATPase 4 (PfAtp4), which is reported to be important for maintaining sodium 

homeostasis in the parasite.170 Several preclinical and clinical studies are underway or planned to 

evaluate potential drug partners to enable combination therapy in the clinic.195 

 

1.4.5 Imidazolopiperazines	
The imidazolopiperazine class of compounds was also discovered using modern 

phenotypic screen methods. The library was initially screened for asexual blood-stage activity, 

followed by liver stage activity. One hit that was identified in the screen was compound 1.31 

(Figure 1.16). The mechanism of action is currently unknown, but drug resistance is mediated by 

the emergence of mutations in the cyclic amine resistance locus (PfCarl), which encodes a 

protein of unknown function and contains several transmembrane domains. 3, 21, 194-195 In lead 

optimization, metabolically labile aromatic substituents were replaced and likely positions 

susceptible of metabolism were blocked with halogens, resulting in compound 1.32. Further 

optimization, through metabolite identification and excellent medicinal chemistry then led to the 

isomer, whereby the metabolically susceptible position on the piperazine was blocked with two 

methyl groups, resulting in the drug candidate KAF156, also known as GNF156 (1.18) (Figure 

1.16).	

 

 

 

 

 

 

Figure 1.16 – NITD609: Hit to Drug Candidate. 

 

KAF156 displayed potent parasitaemia reduction in blood-stage models (IC50 of 6 to 17.4 

nM against P. falciparum drug-sensitive and drug-resistant strains), as well as potent therapeutic 

activity in P. berghei mouse models of malaria with 99% effective doses of 1.4 mg/kg. This 

compound is slightly less potent then 1.17 but it provides prophylatic protection in animal 
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models and has activity against gametocytes, thus having the potential to prevent infection, treat 

acute disease, and reduce transmission.171, 194  

Following a strategy similar to 1.17, a Phase I study in healthy adults has been completed 

for 1.18 and a Phase II PoC study in patients with uncomplicated P. vivax or P. falciparum 

infection is underway.195-196 

 

1.4.6 Others	Drug	Candidates	
MMV390048 

Since the first high-throughput screens that used blood-stage parasites, several other 

screens have been implemented that focus on specialized compound libraries or parasite lines. A 

novel class of orally active antimalarial 3,5- diaryl-2-aminopyridines has been identified from a 

phenotypic whole cell high-throughput screening of a commercially available SoftFocus kinase 

library, led by the University of Cape Town, South Africa. Initial screening identified a 

aminopyridine hit (1.33), which was optimized by replacement of both the hydroxyl and 

methoxy groups on the phenyl ring, to produce an early lead compound (1.34). Upon refinement, 

it resulted in the drug candidate MMV390048 (1.35) (Figure 1.17).79, 197  

 

 

 

 

 

 

 

 

 

Figure 1.17 – MMV390048: Hit to Drug Candidate. 

 

This drug candidate is equipotent against CQ-resistant and CQ-sensitive strains (IC50 ≈ 

25 nM), curing 100% of P. berghei-infected mice after a single 30 mg/kg dose. Pharmacokinetic 

studies indicated that this compound has good oral bioavailability (51% at 20 mg/kg) and a 
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reasonable half-life (t1/2 ≈ 7−8 h).197 While successfuly completeing the preclinical programme, 

the cellular target was identified to be the lipid phosphatidylinositol 4-kinase (PfPI4K), and in 

2014 MMV390048 began Phase I clinical trials.79 

 

DSM265 

The target-based screening as a drug discovery approach towards lead compound 

identification has also resulted in new drug candidates. A good example of this process for 

malaria is the high-throughput enzyme screen against Plasmodium dihydroorotate 

dehydrogenase (DHODH). This mitochondrial enzyme has long been recognized as a potential 

antimalarial target because it catalyses the fourth step in the essential de novo pyrimidine 

biosynthesis pathway.198  

The triazolopyrimidines, a chemical class from the original screen, was shown to have 

potent activity in whole-cell assays (IC50 of 79 nM in P. falciparum) and >5000-fold specificity 

for parasite DHODH over human DHODH. However the hit compound DSM1 (1.36, Figure 

1.18) was inactive in the P. berghei in vivo model and presented unfavorable pharmacokinetics.3, 

21  

First, progress was made to improve pharmacokinetics by substituting electron-

withdrawing groups in the aniline ring, since the binding site was hydrophobic in nature, 

resulting in compound 1.37. After further chemical modifications and analysis of drug–enzyme 

co-crystal structures to optimize binding, the inhibitor DSM265 (1.16, Figure 18) emerged as a 

drug candidate. This compound has similar potency to chloroquine in the humanized SCID 

(severe combined immunodeficient) mouse P. falciparum model, and rodent pharmacokinetic 

studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance.  

 

 

 

 

 

 

Figure 1.18 – DSM265: Hit to Drug Candidate. 
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DSM265 was tested in a challenge cohort only 7 months after the first-in-human (Phase I) study, 

which provided an early readout as to the efficacy and pharmacodynamics in patients. The drug 

candidate began Phase IIa monotherapy studies in 2015.79 

 

1.5 Target	Identification	and	Validation	

New antimalarials with a novel mode of action (MoA) are critical to combat the 

continued emergence and dissemination of drug-resistant parasites that threaten the efficacy of 

current malaria treatments. Thus, global efforts with increased number of high-throughput 

screening campaigns have been initiated, as discussed above. These have led to the 

unprecedented identification of thousands of new antimalarial compounds, which, inherently, 

have poorly defined modes of action.199  

Although drugs can be approved without a clear known target or MoA, the full 

characterization of the protein binding profile of a small molecule is an important prerequisite for 

a complete picture of the biology behind it. While some of the compounds may have 

recognizable targets, the majority of phenotypic-based hits are comprised of unique chemical 

scaffolds usually lacking cross-resistance with known drugs. These novel antimalarial scaffolds 

will most likely reveal new targets.199-200 

Target identification and validation for small molecules is often the rate limiting step in 

drug discovery, and knowledge of the MoA and the molecular target(s) could help guide the 

development of backup compounds, as well as help researchers monitor patients for the 

emergence of drug-resistant parasites.200 

A variety of methods and technologies for identifying target proteins of bioactive 

compounds have been reported. Target candidates can emerge by profiling the biological data of 

the compounds, using connectivity maps. On the other hand by using techniques such as affinity 

chromatography, biochemical fractionation and radioactive ligand binding assays, one can 

directly identify the interaction partners of the compound.200-201 Efforts to identify the MoA for 

antimalarials have traditionally been met with ambiguous results.  

 

1.5.1 Target	Identification		

1.5.1.1 In	silico	Assignment	of	Mechanism	of	Action	
One way to establish a compound’s MoA is by comparing its chemical scaffold to the 
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scaffolds of compounds with a known drug target. If a scaffold is more than 95% identical to a 

known drug it is likely to bind to the same target. A disadvantage of this method is that two very 

dissimilar scaffolds, which only share a small pharmacophore critical to drug target specificity, 

may not be recognized due to the scoring function.199 Using this approach GlaxoSmithKline 

analyzed data from pre-existing biochemical assays for each chemotype resulting in 31% of the 

cell-active hit collection being assigned to human or microbial targets with orthologs in 

Plasmodium.6 Using chemical similarity between structures, a probable MoA can only be 

assigned to a minority of the compounds. 

 

1.5.1.2 Stage	of	Action	
Due to the stage specificity of some antimalarial compounds, analysing the morphology 

of drug-treated parasites can provide preliminary clues to the MoA. Giemsa-stained thin blood 

smears of synchronized intraerythrocytic stage parasites subjected to drug concentrations at or 

above the 90% inhibitory concentration are sufficient to determine the stage of action. 199 For 

example, Wilson et al., aimed to more precisely define the timing of action of antimalarial 

agents, particularly those with a history of clinical use, by determining the inhibitory effects of 

these drugs on merozoite invasion, schizont rupture, and intraerythrocytic development.202 

 

1.5.1.3 In	vitro	Evolution	of	Drug-resistant	P.	falciparum	Strains	
The whole genome sequences for the different Plasmodium species have been resolved 

and provide blueprints for exploitation, revealing multiple potential target candidates. Thus, 

classical genetic approaches have been scaled to a genomic level and together these approaches 

can close major gaps in knowledge, providing insights into drug transport and metabolism, 

facilitating drug target prioritization, as well as target validation and deconvolution.203 

A powerful approach that has been employed with great success involves the in vitro 

selection of resistant mutants using small molecule inhibitors. Once resistance has been acquired, 

the resultant parasite clones are analyzed to identify novel genetic changes relative to the 

parental genome sequence that could be associated with drug-resistance. Mutations conferring 

resistance are revealed using genome scanning with either high-density tiling DNA microarray or 

with whole genome sequencing, and will often directly reveal the drug target.199, 203 The 

technique of evolving drug-resistant P. falciparum parasites in vitro has been well established 
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and has been successfully used to determine drug targets since the advent of high-density 

microarrays, to reveal newly emerged single nucleotide polymorphisms and copy number 

variations.204 A software analysis platform to compare the DNA microarray hybridization 

differences between a parental drug-sensitive and a drug-resistant clone has been developed, 

making genomic analysis user friendly, resulting in the identification of novel drug targets.199  

Plasmodium often acquires mutations in the drug target as a means of combating drug 

toxicity, so this method can be very powerful for target identification, as seen with the 

spiroindolones170, cladosporin205 and febrifugine derivatives.7, 206 

There are several examples of where this systematic strategy has yielded the discovery of 

novel antimalarial targets, including the spiroindolone, NITD609 (1.17), the derivative of a 

natural product-like molecule, discovered in a phenotypic-based screen, as mentioned in the 

above section.170 After 4 months of in vitro selection, the IC50 values of NITD609 increased 

~10X. Genomic analysis with the P. falciparum tiling array identified several hybridization 

differences, most of which were found in a single gene (PfATP4) and the rest being mostly in 

randomly assorted sub-telomeric or intergenic regions. Further inspection of the hybridization 

patterns also showed that one strain carried copy number variants (CNV) that surrounded the 

gene encoding for a cation-transporting P-type ATPase (PfATP4).207-209 Transgenic parasites 

were created that showed that only mutations in PfATP4 conferred resistance.170 Recent 

functional data also indicates that PfATP4 is a sodium pump and is the likely target of the 

spiroindolones.210 The likely target of cladosporin, a natural compound that was subsequently 

found to inhibit lysyl-tRNA synthetase was also identified using this approach. In the case of 

cladosporin, all three resistant lines harbored CNVs surrounding the P. falciparum lysyl-tRNA 

synthetase gene.205  

Our group has identified the long sought biochemical target of febrifugine, the active 

ingredient of a traditional Chinese herbal remedy for malaria, by using this target identification 

approach. Moreover, we used an integrated chemogenomics approach that combined drug 

resistance selection and whole-genome sequencing, and demonstrated that the cytoplasmic 

prolyl–tRNA (transfer RNA) synthetase (PfcPRS) of the malaria parasite P. falciparum is a 

biochemical and functional target of febrifugine and its synthetic derivative halofuginone. The 

only gene with nonsynonymous single-nucleotide polymorphisms (SNPs) identified in both 

resistant lines was annotated as a putative cytoplasmic proline aminoacyl-tRNA synthetase that 
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resembled the P. falciparum PRS.7  

Using this technique the detected changes in the genome of the drug-resistant parasites 

should directly reveal the mechanism of resistance. However, mutations unrelated to resistance 

might also emerge spontaneously, thus independent cultures are evolved in triplicate to 

determine which changes are significant.199 A practical concern is that nearly 50% of the 

Plasmodium genome remains unannotated, thus using orthologs is an alternative to study and 

characterize the gene product in follow-up biochemical or biological assay systems. For 

example, Plasmodium proteins with a yeast ortholog can be introduced on a complementation 

vector into a yeast background engineered to abolish ortholog expression under nonpermissive 

conditions.7, 211 An additional factor that makes identifying molecular targets in Plasmodium 

complicated is that RNAi does not work since the enzyme necessary to degrade the dsRNA is 

lacking.199 

Other approaches have also been used to match the genetic change to a certain 

phenotype, such as genome-wide association studies and perturbation of gene expression.203 Due 

to the limitation factors referenced above, additional techniques to validate the mechanism of 

action have been employed. 

 

1.5.2 Target	Validation	
Target identification is always followed by validation to eliminate false-positive target 

candidates. Diverse validation assays establish the biological relevance of the small molecule 

and its target protein.212 

  

1.5.2.1 Bioassays	
The most straightforward experiment is to directly assay the gene product responsible for 

its inhibitory activity, however this is contingent on successful heterologous expression of that 

gene and development of an assay to detect inhibition, which in some cases is challenging. An 

alternative approach is to use transgenic models to do the bioassay. Some examples include 

using yeast complementation, orthologs in related organisms and transgenic P. falciparum 

strains.199 This appraoch has been used to further validate the cytoplasmic prolyl–tRNA 

synthetase (PfcPRS) of the malaria parasite P. falciparum as the functional target of febrifugine 

and its synthetic derivative halofuginone. Our group used an orthogonal yeast transgenic system, 
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which showed that treatment with febrifugine derivatives activated the amino acid starvation 

response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. Thus, results 

validated that PfcPRS is the functional target of febrifugine and halofuginone.7 Another example 

of successful target validation using this method is the cladosporin. The interaction between 

lysyl-tRNA synthetase and cladosporin was also validated using this approach, by using a model 

organism, the yeast Saccharomyces cerevisiae. Here, precise removal of one copy of the yeast 

lysyl-tRNA synthetase in a diploid strain resulted in an increase in sensitivity to the 

compound.205 

 

1.5.2.2 	'-omics'	Techniques	
Advances in the '-omics' techniques that have emerged and have been developed over the 

years have promoted new drug discovery strategies based on assays with increased content and 

better appreciation of the molecular context in which protein targets operate. These 

methodologies are providing complementary approaches to drug target identification and 

validation.212-214 

 

Metabolomics 

Metabolomics-based studies are proving of great utility in the analysis of modes of action 

and resistance mechanisms of drugs in parasitic protozoa. Metabolic labeling has traditionally 

consisted in the incorporation of radiolabeled cysteine and/or methionine to monitor protein 

synthesis, while nucleic acid synthesis can be investigated using radiolabeled hypoxanthine. An 

increased repertoire of labeled metabolites, as well as advances in mass spectrometry have 

improved the analysis of endogenous metabolites, which allows the identification of original 

pathways and networks of regulatory interactions within the parasite. Metabolic assays can be 

extended to comparative studies to evaluate incorporation differences between untreated and 

drug-treated parasites. Furthermore, the utilization of targeted metabolomics techniques has 

enabled validation of existing hypotheses regarding antiprotozoal drug mechanisms.215-218 

Thus, the continued advances in metabolic labeling methodologies are best exemplified 

by studies elucidating mechanistic details in P. falciparum. Bulusu et al. utilized the purine 

salvage pathway for both radiolabel uptake studies and 13C-nuclear magnetic resonance 

spectroscopy to follow the conversion of fumarate, a product of tricarboxilic acid metabolism, to 
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aspartate, which led to the identification of functional roles for fumarate hydratase, malate 

quinone oxidoreductase and aspartate aminotransferase, in fumarate conversion. Furthermore, in 

this study they also utilized atovaquone as a chemical tool to demonstrate that the electron 

transport chain was linked to fumarate conversion.219 A second study using metabolomics aimed 

to validate glutamate dehydrogenase as a drug target by an untargeted LC-MS approach. Thus, 

heavy atom–labeled glutamine tracking was used to show that there is no difference in the 

labeling of the tricarboxylic acid cycle intermediates after knock out of this gene, nor is there an 

increased sensitivity to oxidative stresses, which lead to the conclusion that, contrary to previous 

suggestions, glutamate dehydrogenase is not suitable as a drug target.220  

 

Proteomics 

Proteomics enables the study of native proteins in cell extracts or cell fractions, under 

conditions carefully optimized to preserve protein integrity, folding, post-translational 

modifications, and interactions with regulatory proteins. The global proteomic strategies involve 

drug treatment of cells or animals followed by whole-cell or organ-wide proteome analysis and 

are attractive because of the unbiased nature of the analysis.214, 221 There are a handful of 

proteomic studies to determine MoA for antimalarials in P. falciparum.199 Prieto et al. 

investigated the differential expression of proteins treated with ART or CQ using mass 

spectrometry and, found 41 and 38 uniquely upregulated proteins, respectively.222-223 In another 

effort to employ this technique, a 2D electrophoresis and tandem mass spectrometry 

identification study was performed by Radfar et al. that established that CQ treatment of 

parasites results in the oxidation of proteins involved in protein folding, proteolysis, energy 

metabolism, signal transduction and pathogenesis.224 In both cases, the results obtained suggest 

that specific drugs may produce a ‘fingerprint’ of uniquely deregulated protein expression. 

 

1.5.2.3 Fluorescent	Probes		
The challenges of discovering a compound’s MoA and subsequent validation of the 

macromolecular target have driven innovative approaches, such as the use of a nonperturbing 

chemical handle within the incorporated biomolecule, which allows for selective attachment of a 

fluorophore or affinity tag. For example, small molecules with fluorescence can be used as 

probes for localization and detection markers, thus treatment of cells with fluorophore-linked 
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drug can be used to assess co-localization with organelle markers using fluorescent imaging.212, 

225 Furthermore, without methods to confirm that chemical probes reach and selectively engage 

their protein targets, in living systems, it is difficult to attribute pharmacological effects to 

perturbation of the protein(s) of interest versus other mechanisms. Additionally, most drugs will 

bind to more than one target (polypharmacology), and therefore, measuring cellular 

pharmacology requires the use and development of new technologies, ideally those that can be 

applied in vivo.221, 226 To follow the drug’s distribution at the cellular level, fluorescently labeled 

drugs have been developed, which will maintain comparable specificity and affinity for the 

unlabeled drug target. When used in combination with confocal or two-photon fluorescence 

microscopy, fluorescent analogs provide high spatial and temporal resolution maps of the 

drug.226-227 In the literature, fluorescent derivatives of small molecules and drugs have been 

employed as probes to identify their subcellular localizations and further elucidate on MoA. 

There have been only a handful of fluorescently labeled antimalarials reported in the literature. 

Most of which are fluorescent artemisinin compounds used in the antimalarial mechanistic 

studies.100, 228-230 Liu et al., synthesized a cytotoxic artemisinin compound conjugated with a 

fluorescent dansyl moiety and acessed its subcellular localization in Hep3B cells. Colocalization 

by organelle specific dyes revealed that endoplasmatic reticulum (ER) was the main site of its 

accumulation.229 Furthermore, very recently an additional fluorescently labeled antimalarial was 

reported in the literature. The fluorescent chloroquine-BODIPY used as a proxy for chloroquine 

accumulation. This compound localized to the food vacuole of the parasite, as observed under 

confocal microscopy, and inhibited growth of chloroquine-sensitive strain 3D7 more extensively 

than in the resistant strains, and it is being used as a marker for chloroquine resistance and uptake 

in a 96-well plate assay.231 

One of the biggest challenges in pharmaceutical research and development is to reduce 

phase II attrition rates. The identification of target protein candidates provides the first clue to the 

signaling mechanism modulated by the small molecule. Furthermore, a network analysis of 

target protein candidates provides additional insight into the small molecule’s bioactivity, 

connecting related signal pathways and the endpoint phenotype. The last step in the discovery 

process is validation of target proteins to eliminate false-positive candidates. As noted above, 

validation assays may take a variety of forms, but must establish the biological relevance of the 

small molecule and its target proteins to aid in the development of an effective therapeutic drug. 
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2. Indole-based	Antimalarials	
	

2.1 Introduction	

The Plasmodium parasite has demonstrated an ability to evolve and adapt to every drug 

introduced thus far, and with this in mind, it is crucial that efforts are made to develop new 

analogs active against resistant strains, to identify new drugs, or even identify new therapeutic 

targets in the parasite 2-3. The strategies currently used for the development of novel antimalarial 

drugs, as well as the current efforts to address this issue have been reviewed above.  

GlaxoSmithKline (GSK) published the Tres Cantos Antimalarial Set, which resulted 

from the screening of the in-house chemical library of almost 2 million compounds against 

asexual blood stage P. falciparum. Setting the threshold for growth inhibition to greater than 

80%, at a concentration cut-off of 2 micromolar, the authors identified more than 13,500 active 

compounds, 8,000 of these being equally active against multi-drug-resistant P. falciparum 

parasites. This fast-track filtering process identified many high-quality starting points for lead 

optimization efforts.6 Analyses using historic assay data suggested novel mechanisms of 

antimalarial action for these compounds, such as inhibition of protein kinases and host–pathogen 

interaction related targets.6 Furthermore, an agglomerative structural clustering technique 

followed by computational filters such as antimalarial activity, physicochemical properties, and 

dissimilarity to known antimalarial structures, was used and identified 47 clusters for lead 

optimization, among which was an indole-based series.163 

The main characteristics that the selected starting points should ideally possess are (a) the 

scaffold (chemotype) should be structurally different to known antimalarial scaffolds as various 

parasite strains are resistance to many of these drugs; (b) high tractability to facilitate rapid lead 

optimizations programs; (c) physicochemical profiles that are compatible with good oral 

absorption and reasonable aqueous solubility; (d) no known toxicity issues; (e) drug-like 

functionality; (f) no known intellectual property issues; and (g) moderate to good antimalarial 

activity.163, 232 Further studies identified compounds from the GSK collection that are capable of 

escaping drug resistance, have polypharmacology profiles that cover multiple essential targets 

and perturb different points of the parasite’s metabolic network.233  
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Joining the international efforts, we analyzed the disclosed Tres Cantos Antimalarial Set 

(TCAMS) to identify novel indole-based antimalarials as starting points for the development of a 

possible next–generation antimalarial drugs. Indoles are an emerging antimalarial fragment 

present in several lead drug candidates with new mechanisms of action, such as the 

spiroindolone170, 234-237 and aminoindole classes.236, 238 We were intrigued by TCMDC-134281 

(2.1, Figure 2.1), which emerged as a very potent antimalarial compound, with a reported EC50 

of 34 nM against the chloroquine-sensitive P. falciparum 3D7 strain.  

 

 

 

 

 

 

 
 

Figure 2.1 – Structure of the hit compound TCMDC-134281. 

 

Additionally, the compound did not demonstrate significant cytotoxicity, as its EC50 

against the human HepG2 hepatoma cell line was greater than 10 µM. Moreover, this analog did 

not have a predicted target in the P. falciparum, in spite of being annotated as a possible 

adrenergic receptor antagonist in mammalian cells.6 Nonetheless, this compound showed poor 

drug-like properties and cross-resistance with chloroquine, possibly due to the presence of the 4-

aminoquinolinyl fragment, which is the essential pharmacophore of CQ.  

 

2.2 Purpose	of	This	Study	

This project is designed to explore the antimalarial potential of the 3-piperidin-4-yl-1H-

indole scaffold (Figure 2.2). To address the liabilities aforementioned, we decided to remove one 

of the piperidin-4-yl fragments and to replace the 4-aminoquinoline fragment. This resulted in an 

overall reduction of the compound’s LogP and MW and chemically differentiates the molecule 

from the 4-aminoquinoline antimalarials, which we hypothesized would overcome the observed 

cross-resistance with CQ.  

Cl N

N

N
HN

(2.1) TCMDC-134281



Chapter	2	–	Indole-based	Antimalarials	
 

	Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	 47	

 

 

 

 

 

Figure 2.2 – Structures of the explored indole-based scaffold. 

 

We synthesized three series of derivatives following a reagent-based diversity approach, 

in a total of 38 compounds, and assayed them against the multidrug resistant P. falciparum Dd2 

strain at a fixed 5 µM concentration. The most potent derivatives were further profiled in dose-

response against both P. falciparum drug-resistant (Dd2) and sensitive (3D7) strains to determine 

activity and parasite selectivity. (Work done at the Harvard School of Public Health together 

with the help of Dr. Amanda Lukens)  

 

2.3 Synthetic	Methodology	

2.3.1 Chemical	Synthesis	Strategy	
The retrosynthetic analysis of the three series of derivatives shows a key intermediate A 

that can be prepared by condensation of the indole with 4-piperidone in the presence of a base 

and subsequent reduction under hydrogenation conditions. The 4-piperidone used must be 

protected in order to increase condensation yields. Both the amine and amide series can be 

prepared directly from the key intermediate A. The bis-amide series is obtained by conversion of 
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the key intermediate A into the intermediate B, through coupling with 1-(tert-

butoxycarbonyl)piperidine-4-carboxylic acid followed by amine deprotection (Figure 2.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Retrosynthetic analysis of compounds from the amine, amide and bis-amide series. 

 

All synthesized compounds were purified by flash chromatography and the purity was 

assessed with HPLC-ELSD-MS prior to profiling for antiparasitic activity (purity was >90%). 

The structures of all compounds were confirmed by NMR spectroscopy using 1H-NMR, 13C-

NMR and two-dimensional experiments, including 1H-1H COSY, HMQC and HMBC (see 

details in Experimental).		
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2.3.2 Synthesis	of	Hit	Compound	
We first resynthesized the original hit compound 2.1, following a six-step synthesis, as 

shown in scheme 2.1. Starting with the condensation of the indole with N-benzyl-4-piperidone in 

the presence of a base, compound 2.2 was obtained in high yield (98%). Subsequent 

debenzylation with concurrent olefin reduction afforded the common intermediate 3-piperidin-4-

yl-1H-indole (2.3) with 96% yield.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.1 – Reagents and conditions: a) KOH, isopropanol, reflux, 6 h, 98%; b) 10% Pd/C, 10% glacial 

acetic acid in ethyl acetate, H2, 48 h, r.t., 96%; c) DCC, HOBt, CH3CN, 2 h, r.t., 60%; d) DIBAL, THF, 1 

h, -78 °C, 35%; e) 2 M HCl/MeOH, 20 min, r.t., 99%; f) DIPEA, isopropanol, 56 h, reflux, 15%. 

 

The attribution of the 1H and 13C NMR of key intermediate 2.3 is shown in Figure 2.4. 

The results are in accordance with the chemical structure of the compound (Chapter 6) and the 

analysis of the NMR spectra confirms the formation of the desired product through the presence 

of five aromatic protons from the indole and nine aliphatic protons from the piperidine group. 

The 1H NMR coupling pattern of 2.3, shows two d, two ddd and one s signal between 7.60 ppm 

and 7.01 ppm, which corresponds to the signals of the indole. Next, the aliphatic region of the 

spectra shows one dt, two m and one d signals corresponding to the signals of the piperidine H. 
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Figure 2.4 – Assignment of 1H and 13C NMR of key intermediate 2.3.  

 

Next, compound 2.3 was coupled with 1-(tert-butoxycarbonyl)piperidine-4-carboxylic 

acid to give the amide intermediate 2.4 in moderate yield (60%). Reduction of the carbonyl 

group afforded compound 2.5, followed by Boc-deprotection to yield the amine compound 2.6. 

Compound 2.1 was obtained by nucleophilic aromatic substitution of 4,6-dichloroquinoline with 

the amine intermediate 2.6 (Scheme 2.1). The product of the reaction was characterized by NMR 

spectroscopy and LC/MS. Results are in agreement with the compounds structure (Chapter 6).  

The analysis of the NMR spectra, reveals the presence of five additional aromatic signals 

when compared to intermediate 2.3, which is consistent with the presence of the quinoline group. 

Furthermore, in the aliphatic region, additional signals corresponding to nine protons, as well as, 

one doublet with a chemical shift of 2.11 ppm, integrating to two protons, corroborates the 

presence of the methylpiperidinyl group (Figure 2.5).  
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Figure 2.5 – Assignment of 1H NMR of hit compound 2.1. 

	
2.3.3 Synthesis	of	Amine	Library	

The first series of derivatives was designed to explore the structure-activity relationships 

(SAR) of N-piperidinyl modifications. These compounds were obtained by reductive 

amination239 of the corresponding aldehydes with the amine intermediate 2.3 to give the title 

compounds 2.7-2.25 (Scheme 2.2), with yields ranging from 25%-100% (Table 2.2) and overall 

yield ranging from 24%-96% (Table 6.1 in the materials and methods chapter). All but two 

derivatives from this series were obtained using commercially available aldehydes. Aldehydes A 

and B, used in the synthesis of compounds 2.21 and 2.20, were previously obtained by reductive 

amination of terephthalaldehyde with piperidine or morpholine, respectively (Scheme 2.2). 

All the amine derivatives were characterized by NMR techniques and LC/MS (Chapter 

6). The results are in good agreement with the chemical structure of the compounds. For 

instance, the attribution of 1H and 13C NMR chemical shifts for 2.11 is shown in Figure 2.6.  
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Figure 2.6 – Assignment of 1H and 13C NMR of amine compound 2.11.  

 

The product of the reaction between key intermediate 2.3 and benzaldehyde resulted in 

desired product 2.11. The assignment of the NMR spectra reveals the presence of five additional 

aromatic protons, consistent with the presence of the new benzyl group. Furthermore, in the 

aliphatic region one additional signal integrating to two protons, with a chemical shift of 3.56 

ppm, corroborates the presence of the newly formed bond.  

	
2.3.4 Synthesis	of	Amide	Library	

We next synthesized a series of amide derivatives to assess the importance of the basic 

amine versus an amide linkage and resulting rotational hindrance. These compounds were 

synthesized by coupling the amine intermediate 2.3 with commercially available acid chlorides 

under standard Schotten Baumann conditions to afford the desired compounds 2.26-2.35 

(Scheme 2.2), in 25% to quantitative (Quant.) yields (Table 2.2) and overall yield ranging from 

24%-96% (Table 6.1 in the materials and methods chapter). To access the derivatives 2.32-2.35 

(Scheme 2.2) in high yields we screened several coupling reagents and found PyBOP to give the 

best results (Table 2.1). 
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Table 2.1 – Optimization of coupling conditions between intermediate 2.3 and carboxylic acids. 
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Scheme 2.2 – R fragments and yields are given in Table 2.2; Reagents and conditions: a) NaBH(OAc)3, 

DCE, 1 h, r.t., 58%-70%; b) NaBH(OAc)3, DCE, 4 h, r.t. or NaBH3CN, MeOH, Microwave at 100 °C, 20 

min; c) DIPEA, isopropanol, 56 h, reflux, 25%; d) DCM, aq. NaHCO3, 10 min, r.t. or DIPEA, DCM, 30 

min, r.t. or PyBOP, DIPEA, DCM, 0.5-1 h, r.t.  
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Compound 2.35, which consisted of two amide units linked by a benzyl group, was 

synthesized by reacting excess of the amine intermediate 2.3 with terephthalic acid using PyBOP 

coupling conditions, with quantitative yield (Scheme 2.2; Table 2.2).  

All the amide derivatives were characterized by NMR techniques and LC/MS (Chapter 

6). The results are in good agreement with the chemical structure of the compounds. For 

instance, the attribution of 1H and 13C NMR chemical shifts for 2.29 is shown in Figure 2.7. 

Compound 2.29 is the product of the reaction between key intermediate 2.3 and nicotinoyl. The 

assignment of the NMR spectra reveals the presence of four additional aromatic signals, which is 

consistent with the presence of the pyridine-3-yl group. Furthermore, in the 13C NMR spectra a 

signal at 167.8 ppm is consistent with the presence of the carbonyl group . 

 

 

Figure 2.7 – Assignment of 1H and 13C NMR of amine compound 2.29. 

 

Next we examined the importance of the 4-aminoquinoline fragment, the essential 

pharmacophore of chloroquinoline. We synthesized derivative 2.36, which was obtained through 

a nucleophilic substitution between 4,6-dichloroquinoline and the amine intermediate 2.3 

(Scheme 2.2; Table 2.2). 
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2.3.5 Synthesis	of	Bis-amide	Library	
As a part of our SAR studies an additional series of derivatives was designed in order to 

maintain both the second piperidinyl group, as well as the amide linkages, while exploring the 

chemical variation at the terminal piperidinyl fragment. To synthesize this set of analogs the 

intermediate compound 2.4 was Boc-deprotected, followed by acylation of the free amine 2.37 

with commercially available acid chlorides using standard Schotten Baumann conditions to 

obtain the desired compounds 2.38-2.43 (Scheme 2.3), in 25% to quantitative yields (Table 2.2) 

 

 

 

 

 

 

 

Scheme 2.3 – R fragments and yields are listed in Table 1; Reagents and conditions: a) 2 M HCl/MeOH, 

40 min, r.t., quantitative yield; b) DCM, aq. NaHCO3, 10 min, r.t.  

 

All the bis-amide derivatives were characterized by NMR techniques and LC/MS 

(Chapter 6). The results are in good agreement with the chemical structure of the compounds. 

For instance, the attribution of 1H and 13C NMR chemical shifts for 2.43 is shown in Figure 2.8.  
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Figure 2.8 – Assignment of 1H and 13C NMR of amine compound 2.43. 

 

Compound 2.43 is the product of the reaction between key intermediate 2.37 and acetyl 

chloride. The NMR spectra reveals the absence of additional aromatic signals, and the presence 

of a singlet peak, which integrates to three protons, at 2.10 ppm. Moreover, in the aliphatic 

region of the spectra, additional signals integrating to nine protons, corroborate the presence of 

the second piperidinyl group. Furthermore, in the 13C NMR spectra, two signals at 172.1 and 

167.8 ppm are consistent with the presence of two carbonyl groups.  

 

2.4 Antimalarial	and	Cytotoxicity	Activities		

The synthesized derivatives were first evaluated at 5 µM fixed concentration for their 

growth inhibitory activity against the erythrocytic stage of the CQ-resistant P. falciparum strain 

Dd2 (Table 2.2). Lipophilicity of the synthesized indole compounds, expressed in terms of their 

partition coefficient values (cLogP), molecular weight in g/mol and violations of Lipinski's rule 

of 5 (Ro5) were calculated in Instant JChem (Chemaxon) and considered as a preliminary test of 

the drug-likeness of the compounds (Table 2.2). 
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Table 2.2 – Final step yield of synthesized compounds, their drug-like properties (MW, cLogP and 

compliance with “Lipinski’s Rule of 5”) and results from antimalarial activity screening. 
Se

ri
es

 

Compound R Yield 
(%) 

MW 
(g/mol) cLogP Ro5 

(≤2 violations) 

% Inhibition at 
5µM 

P. falciparum Dd2 
 2.1 - 15 459.03 5.70 Yes 100 
 2.3 - 96 200.28 2.18 Yes <10 
 2.6 - Quant. 297.44 2.66 Yes < 10 

A
m

in
e 

2.7 
 

79 
 400.52 3.41 Yes <10 

2.8 
 

76 371.47 3.70 Yes 70 

2.9 
 

99 357.45 3.98 Yes <10 

2.10 
 

55 346.49 5.16 Yes 16 

2.11  53 290.40 4.28 Yes 15 
2.12  55 304.43 4.80 Yes 11 

2.13 
 

42 366.45 3.47 Yes <10 

2.14 
 

99 350.45 3.44 Yes <10 

2.15 
 

60 419.34 5.18 Yes <10 

2.16  72 308.39 4.43 Yes 14 
2.17  69 358.40 5.16 Yes <10 

2.18  25 318.41 4.00 Yes 20 

2.19 
 

30 502.69 6.60 Yes 100 
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38 389.53 4.01 Yes 66 

2.21 
 

54 387.56 5.08 Yes 100 
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2.24  Quant. 296.45 4.67 Yes <10 

2.25  98 340.55 5.10 Yes 17 

        

N
N

O

ON

HO

N

S

O
OH

O

OH

O

O

Cl

Cl
O

F

F
F
F

O

NH

N

O
N

N

N

S



Chapter	2	–	Indole-based	Antimalarials	
 

 58	 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	

 

Compounds inhibiting more than 95% of parasite growth at 5µM concentration were 

further profiled for dose-response to determine half maximal effective concentrations (EC50) 

against CQ-resistant Dd2 and CQ-sensitive 3D7. The reference antimalarials chloroquine, 

atovaquone, amodiaquine and artesunate were included as controls and resulted in EC50s in 

agreement with published results. The original hit molecule 2.1 and its simplified derivative 2.36 

were also tested for comparison to the newly synthesized compounds (Table 2.3). Cytotoxicity 
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Compound R Yield 
(%) 

MW 
(g/mol) cLogP Ro5 

(≤2 violations) 

% Inhibition at 
5µM 

P. falciparum Dd2 
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(EC50) of selected compounds for human cells (HepG2) and selectivity index for CQ-resistant 

Dd2 (SIres) and CQ-sensitive 3D7 strains (SIsen) are reported in Table 2.3. 

 

Table 2.3 – In vitro antimalarial activity (EC50) and cytotoxicity (EC50) of selected compounds. 

a SIres = EC50 HepG2 / EC50 PfDd2; b SIsen = EC50 HepG2 / EC50 Pf3D7; n.d.= not determined; c 

EC50 values in nM; n.d.= not determined. 

	

2.5 Discussion	of	Structure	Activity	Relationships	and	Conclusion 

The hit compound 2.1 was resynthezised and tested against the Dd2 and 3D7 strains and 

exhibited an EC50 of 0.94 μM (Dd2) and 0.24 µM (3D7) which confirmed our previously 

observed cross-resistance with CQ (resistance index (RI) calculated as EC50 Dd2/EC50 3D7 = 4). 

Interestingly, we found significantly decreased activity for this compound in our assay compared 

to that reported (EC50 3D7 = 0.03 μM).6 This discrepancy in activities could be the consequence 

of different assays conditions, or possibly the result of inaccurate compound assay concentration, 

or presence of a biological active contaminant in the	original	HTS	assay	plates.		

In a first approach to determine the requirement of each fragment of hit 2.1 for its 

antimalarial activity, we tested intermediates 2.3 and 2.6, and concluded that the 4-amino-

chloroquinoline moiety is essential for activity. Next, we investigated the requirement of the 

Compound 

P. falciparum 

EC50 (µM) ±SD 
HepG2 

EC50 (µM) ±SD 

Selectivity Index 

Dd2 3D7 SIres
a SIsen

b 

2.1 0.94±0.51 0.24±0.08 3.86±0.50 4.10 16.08 

2.19 0.21±0.05 0.08±0.03 0.46±0.03 2.19 5.75 

2.21 2.91±0.35 1.35±0.45 n.d. n.d. n.d. 

2.29 2.95±0.30 3.80±0.50 12.80±0.28 4.33 3.37 

2.36 5.01±1.50 6.30±1.50 4.24±0.21 0.85 0.67 

Chloroquine 285±58c 23±1c n.d. n.d. n.d. 

Atovaquone 0.19±0.06c 0.35±0.14c n.d. n.d. n.d. 

Amodiaquine 12.30±4.21c 5.85±2.20c n.d. n.d. n.d. 

Artesunate 1.76±0.43c 1.97±0.29c n.d. n.d. n.d. 
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distal piperidinyl fragment for the antimalarial activity of 2.1. Removal of this fragment leads to 

a compound (2.36), which had substantially decreased antimalarial activity when compared to 

compound 2.1 (Tables 2.2 and 2.3). 

We then further explored the 3-piperidin-4-yl-1H-indole scaffold. The effect of 

chemically diverse substituents linked to the N-piperidinyl group was investigated within the first 

series of amine derivatives (2.7-2.25). Various aromatic fragments, including bicyclic (2.7-2.10), 

monocyclic (2.11-2.l8) and mono heterocyclic (2.22-2.23), as well as alkyl fragments (2.24-2.25) 

were introduced in place of the 4-aminoquinoline. The results indicate that, with the exception of 

the N-acyl indole fragment (2.8), none of the smaller fragments tested lead to compounds with 

anti-parasitic activity. However, the introduction of a second 3-piperidin-4-yl-1H-indole group 

linked through the p-position of the benzyl ring afforded a compound (2.19) with significant 

antimalarial activity against both Dd2 and 3D7 strains of P. falciparum (EC50s of 0.21 and 0.08 

µM, respectively). Due to the increased lipophilic properties of 2.19, simplification of the latter 

benzyl substitution was investigated. The introduction of a basic piperidine group resulted in a 

compound (2.21) with some antimalarial activity against both strains of P. falciparum (Dd2 EC50 

= 2.91 and 3D7 EC50 = 1.35 µM), whereas the introduction of a less basic morpholine group 

(2.20) decreases the activity. Overall, the results indicate that in the amine series the antimalarial 

activity depends mostly on lipophilicity and the basic characteristics of the compounds, which 

may be a nonspecific antiproliferative effect as compound 2.19 also showed an equivalent EC50 

(0.46 µM) against the HepG2 cell line. 

We next investigated the effect of an amide linkage in place of the basic amine, 

conferring rotational hindrance to the molecules, decreased basicity, as well as providing a 

hydrogen bond acceptor. A series of N-acyl substituted 3-piperidin-4-yl-1H-indoles with a wide 

variety of aromatic groups was synthesized. However, only one of the tested amide derivatives 

(2.26-2.35) was active against Dd2. Compound 2.29, which was derived from N-acyl pyridin-3-

yl substitution, demonstrated antimalarial activity (EC50 = 2.95 µM) comparable to analog 2.21. 

Notably 2.29 has a significantly improved cLogP compared to 2.21 (2.42 vs 5.08). Moreover, 

2.29 did not show cross-resistance with CQ (RI = 1.3) and was modestly selective (4x) for P. 

falciparum over the tested human cell line (EC50 = 12.8 µM). Interestingly, the activity was 

highly susceptible to the substitution position of the pyridinyl moiety, with the N-acyl pyridine-

4-yl (2.32) and N-acyl pyridine-2-yl (2.33) derivatives being inactive against the parasite, 
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suggesting that the relative spatial disposition of the carbonyl group and the nitrogen atom is 

required for activity. 

Comparison of the activity of bis-3-piperidin-4-yl-1H-indole compound 2.19 and its bis-

amide counterpart 2.35, suggests that the amide bond significantly reduces the antimalarial 

activity (2.35 with EC50 > 5 µM). To broaden our structure-activity relationship study we also 

examined a small series of analogs containing the 4-(piperidine-1-carbonyl)piperidin-1-yl) 

scaffold with structurally diverse N-acyl substituents (2.38-2.43). No significant antimalarial 

activity was observed for the tested N-acyl derivatives, (2.38-2.43 with EC50 > 5 µM). Moreover, 

when comparing the N-acyl pyridin-3-yl substitution in the 3-piperidin-4-yl-1H-indole series 

(2.29) to the same N-acyl substitution in the 4-(4-piperidine-1-carbonyl)piperidin-1-yl-1H-indole 

series (2.41), the introduction of the second piperidinyl group results in loss of antimalarial 

activity. 

Despite efforts to protect the useful lifespan of frontline therapies, antimalarial drug 

resistance remains an ever-present threat. This challenge demands new drugs, preferably new 

chemotypes active against drug resistant parasites, with a good pharmacologic profile and 

affordable to endemic areas. Here we applied a rational fragment-based approach to design three 

related series of 3-piperidin-4-yl-1H-indoles around TCMDC-134281 (2.1), which was 

previously idenfied by GSK in a HTS campaign, to develop robust SAR and to validate this 

chemotype for further preclinical development. Altogether, 38 compounds were synthesized and 

evaluated for antimalarial activity. Compounds that demonstrate promising activity against the 

multidrug-resistant P. falciparum Dd2 strain were also tested in the 3D7 parasite strain and 

counter screened in human HepG2 cells.  

The SAR study revealed that the 4-aminoquinolinyl moiety present in hit 2.1 can be 

replaced by some smaller groups without significantly affecting activity. Compounds, which 

retained activity in spite of the absence of the chloroquine motif, demonstrate the potential of the 

3-piperidin-4-yl-1H-indole scaffold as a new class of antimalarial drugs independent from the 4-

aminoquinolines.  

The results suggest that the 3-piperidin-4-yl-1H-indole scaffold is very sensitive to most 

N-piperidinyl modifications. Out of the analogs synthesized, only three were active (2.19, 2.21 

and 2.29). While 2.21 showed cross-resistance to chloroquine and 2.19 was not selective in 

HepG2 cytotoxicity assays, the (4-(1H-indol-3-yl)piperidin-1-yl)(pyridin-3-yl)methanone (2.29) 
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showed in vitro antimalarial activity (EC50 values ∼3 µM), no cross-resistance with chloroquine, 

selectivity for the parasite, and lead-like properties (cLogP < 3; MW ∼ 300). This represents a 

promising new antimalarial chemotype with a potential novel mechanism of action. Further 

medicinal chemistry efforts are needed to improve the potency of compound 2.29 and disclose its 

antimalarial mechanism of action.  
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3. Aminoacyl-tRNA	Synthetase	Inhibitors	as	Antimalarials	
 

3.1 Introduction	

3.1.1 Aminoacyl-tRNA	Synthetases	as	Drug	Targets		
The cell is the functional unit of living organisms, and it contains DNA, RNA and 

proteins. The central dogma of molecular biology consists on the sequential transmission of 

information from DNA to RNA to protein, and the regulation of gene expression is required to 

meet the changing environmental and developmental demands of the cell. Proteins comprise 

nearly 50% of the cellular mass and serve as enzymes, signaling molecules, structural, storage 

and mechanical components of the cell.240-241 

The process of translation of the genetic message contained in mRNA into proteins is a 

universal mechanism conserved, with minor modifications, in the all branches of the tree of life, 

from bacteria to archaea, and eukaryotes.242 

Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the 

aminoacid-charged tRNAs needed as building blocks for the construction of peptide chains 

(Figure 3.1). These enzymes have long been pursued as drug targets in bacteria and fungi, and in 

the past decade there has been considerable research on aminoacyl-tRNA synthetases in 

eukaryotic parasites.243-246 

 

 

 

 

Figure 3.1 – Protein translation. Aminoacyl tRNA 

synthetases (aaRS) charge unloaded tRNAs with their 

cognate amino acids (aa), which in turn are used as substrates 

by the ribosome during protein biosynthesis. 

 

 

Aminoacylation reaction 

Aminoacyl-tRNA synthetases (aaRS) are, together with tRNA, the main players in the 

first step of the protein translation: the aminoacylation reaction. These enzymes catalyze a two-
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step process involving the attachment of a specific amino acid to the cognate tRNA resulting in 

the formation of aminoacyl-tRNAs. The first step catalyzed by all aaRSs consists of activation of 

their corresponding amino acid to form an aminoacyl-adenylate intermediate (aa-AMP) by the 

reaction with ATP. In the second step, the activated amino acid is transferred to the 2ʹ- or 3ʹ 

hydroxyl of the adenosine of the tRNA through aminoacyl ester bond to be use for protein 

biosynthesis, this step constitutes the rate-limiting step (Scheme 3.1).  

 

 

Scheme 3.1 – Mechanism of aminoacylation by aminoacyl-tRNA synthetases.247 The covalent attachment 

of an amino acid to its cognate tRNA happens in two steps. First an amino acid carboxylate attacks the 

alpha phosphate of an ATP, producing an aminoacyl adenylate intermediate. In the second step, the 2ʹ- or 

3ʹ-hydroxyl of the tRNA A76 subsequently displaces the AMP, resulting in a “charged” tRNA attached to 

its amino acid. 

 

This aminoacylation reaction occurs and the charged tRNAs are transported to the site of 

protein biosynthesis, the ribosome, where the amino acid is transferred to a growing polypeptide 

chain.247-249 In summary, the accurate synthesis of proteins, dictated by the corresponding 

nucleotide sequence encoded in mRNA, is a two-part process. First, amino acids are covalently 

N

NN

N

NH2

O

OHOH

HH
HH

OPO

O-

O

tRNA

N

NN

N

NH2

O

OHOH

HH
HH

OPO

O-

O

PO

O-

O

P-O

O-

O
R

O

NH3

O

aa ATP 5'-Aminoacyl adenylate
PPi

N

NN

N

NH2

O

OHOH

HH
HH

OPO

O-

O

C
H
C

O

H3N

R

N

NN

N

NH2

O

OHO

HH
HH

OPO

O-

O

tRNA

C

HC

O

R

NH3

Aminoacyl-tRNA



Chapter	3	–	Aminoacyl-tRNA	Synthetase	Inhibitors	as	Antimalarials	

	Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	 67	

linked to their cognate tRNAs by aaRSs, then the aminoacyl-tRNAs (aa-tRNAs) are delivered to 

the ribosome by elongation factors (EF-Tu in bacteria and EF-1A in archaea and eukaryotes).250-

251 Moreover, in addition to their fundamental role in translation, aaRSs are also involved in 

unrelated non-canonical functions, which are further discussed below. 

 

3.1.2 Classes	of	Aminoacyl-tRNA	Synthetases	
Plasmodium has genes for 37 aaRSs, which recognize the 20 amino acids, and these are 

apparently sufficient to translate the nuclear, aplicoplastic, and mitochondrial genomes. These 

aaRS are universally distributed across the tree of life.247, 252 Although the basic chemical 

reaction is the same in each case, the aaRSs fall into two classes based on their chemical 

properties, architecture of their catalytic domains, as well as the presence of certain consensus 

sequences (Figure 3.2). 248, 253  

 

 

 

 

 

 

 

 

Figure 3.2 – Classes of aminoacyl tRNA synthetases.253 The two 

major classes can be organized into subclasses that hold enzymes 

that are most closely related to each other in their sequences. 

Significantly, the subclasses also group tRNA synthetases 

according to their amino acid chemical types. 

 
 

 
Class I and class II enzymes appear to have originated from two separate ancestral active 

site domains or catalytic cores, that contained both amino acid activation and tRNA 

aminoacylation activity. With the exception of lysyl-tRNA synthetase, each of the 20 types of 

aaRS can be assigned to only one of these two classes. Each class is then further separated into 

three subclasses a, b, and c based on their unique mechanistic properties, anticodon-binding 
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domain characteristics as well as the organization of structural motifs unique to each of the two 

main classes.253-255 

The differences between the two classes extend beyond their active site structure. Class I 

aaRS transfer initially the aminoacyl group of aa-AMP to the 2ʹ-OH of the terminal ribose in 

tRNA and is then moved to the 3ʹ-OH by a transesterification, while for class II aaRS, the 

aminoacyl group is transferred directly to the 3ʹ-OH.247 

Interestingly, aaRS of the same subgroup tend to recognize similar types of amino acids. 

For instance, class Ic aaRS recognize aromatic amino acids such as tyrosine and tryptophan 

while class Ib recognizes amino acids with charged side chains such as lysine, glutamate and its 

derivative glutamine. 

 

3.1.3 Quality	Control	of	Aminoacyl-tRNA	Synthetases	
Faithful translation of genetic information from mRNA to protein is critical for cellular 

function. In spite of the fact that the active site of aaRSs excludes most non-cognate amino acids, 

selection of correct amino acid is more challenging for the amino acids that are chemically 

similar. It has been postulated, that the overall error rate of one in 10,000 is maintained for 

correct codon-anticodon recognition on the ribosome and pairing of each amino acid to its 

corresponding tRNA. 256-259 When error rates exceed this threshold, the incorrect products are 

hydrolyzed at the secondary amino acid binding sites (editing sites), either by pre-transfer 

(hydrolysis of aminoacyl-adenylate) or post-transfer (hydrolysis of aminoacyl-tRNA) editing 

mechanisms. Thus, additional domains appended to or inserted in the body of aaRS have 

increased efficiency and specificity of the aminoacylation process (Figure 3.3).259-260  

 

 

 

 

 

 

 

 

 



Chapter	3	–	Aminoacyl-tRNA	Synthetase	Inhibitors	as	Antimalarials	

	Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	 69	

 

Figure 3.3 – Pre-transfer and post-transfer editing of non-cognate amino acids by aaRS. The amino acid 

(aa) is activated at the active site (AS) to form aminoacyl-adenylate (aa-AMP). In pre-transfer editing, aa-

AMP is hydrolyzed directly, whereas in post-transfer editing, the mischarged tRNA is translocated to the 

editing site (ES), where the aa is removed. Image adapted from Yadavalli et al. 260 

 

3.1.4 Noncanonical	Functions	of	Aminoacyl-tRNA	Synthetases	
In the course of evolution, besides the basic domains (aminoacylation, anticodon binding 

and editing), aaRS have acquired additional domains and insertions, which have expanded the 

range of functions performed by these enzymes.261 These appended domains, often dispensable 

for aminoacylation, are considered as markers for the aaRS associated functions beyond 

translation.262 Thus, in addition to their fundamental role in translation, aaRS are also involved in 

unrelated noncanonical functions, such as regulation of gene expression, apoptosis, angiogenesis 

and cellular signaling, among others (Figure 3.4).248, 263-264  
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Figure 3.4 – Canonical and non-canonical functions of aaRSs. 

 

The secondary functions mentioned, often involve the association of the aaRS with 

cellular partners that are distinct from their regular partners in translation and vary among 

different organisms.242, 262 In mammalian cells these multiprotein complexes in which aaRSs are 

included have also been implicated in several different human diseases265-266 such as cancer,267-

268 neuronal diseases,269 diabetes,270 and autoimmune diseases.271 Due to this diversity of 

functions, aaRS have a tremendous impact on the life of cells and contribute to the regulation 

and coordination of processes in the cell and the organism as a whole. Additionally, cells also 

use these enzymes as measurements of overall amino acid homeostasis.  

In eukaryotic cells, the Amino Acid Starvation Response (AAR) and Mammalian target 

of rapamycin complex 1 (mTORC1) pathways both play a role in sensing nutrient status and 
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activating cellular programs that mitigate restriction in the supply of environmental amino acids. 

These metabolic stress pathways are differentially activated, however, eliciting distinct sets of 

transcriptional responses and biological effects.272-274 The multiprotein mTORC1 protein kinase 

complex is the central component of a pathway that promotes growth in response to insulin, 

energy levels, and amino acids.275 In contrast to the AAR, the mTORC1 pathway is inhibited by 

amino acid restriction by possibly sensing amino acid levels directly.276 AAR pathway 

activation, on the other hand, is triggered by the intracellular accumulation of uncharged 

tRNAs.277 

Cells directly sense the amount of uncharged tRNAs and reprogram their behavior via a 

signal transduction pathway (AAR). The AAR is a stress response pathway well appreciated in 

yeast and mammalian biology as part of the larger Integrated Stress Response (ISR). It 

reprograms cellular behavior in response to deprivation of available amino acids.278-279 The 

aggregate effect of the AAR is to inhibit cell-wide protein synthesis and selective translation of 

stress-response proteins. Despite redundant amino acid supplies, the P. falciparum parasite 

remains vulnerable to amino acid starvation. In fact, in vitro experimentation has demonstrated 

that growing parasites in media lacking isoleucine activates the AAR.280-281  

Thus, the AAR pathway senses the levels of uncharged tRNAs as a surrogate for free 

amino acid availability. Uncharged tRNAs bind to and activate GCN2, which in turn 

phosphorylates the regulatory subunit eIF2α of the eukaryotic initiation factor complex eIF2 

(Figure 3.5). Phosphorylation of eIF2α results in the direct inhibition of cap-dependent protein 

translation and the initiation of specific stress response pathways including apoptosis and 

autophagy.246, 282-283  
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Figure 3.5 – Phosphorylation of eIF2α by inhibition of aminoacyl-tRNA synthetases (aaRS). The aaRS 

charge unloaded tRNAs with their cognate amino acids (aa), which in turn are used as substrates by the 

ribosome during protein biosynthesis. Inhibition of aaRS (or lack of amino acids) results in accumulation 

of uncharged tRNAs that bind and activate GCN2. Active GCN2 phosphorylates the alpha-subunit of the 

eukaryotic initiation factor eIF2. Phosphorylated eIF2α can no longer initiate the ribosome assembly, 

resulting in inhibition of translation. 

 

3.1.5 Aminoacyl-tRNA	Synthetases	in	Plasmodium		
In spite of the sequence similarity for homologous synthetases from the three different 

phyla (bacteria, archea and eukaryotes), there is a notable variation in the structural organization. 

An intricate network of protein-protein interactions is required for efficient translation.284  

The protein translation machinery in P. falciparum remains poorly characterized. 

Plasmodium parasites have three subcellular compartments that house genomes: the nucleus, the 

mitochondria and the apicoplast (an essential organelle that is present in all Apicomplexans and 

is thought to be derived from a secondary endosymbiosis of a red algae). Each of these three 

compartments requires its own compartmentalized transcription and translation apparatus for its 

survival.252  

P. falciparum encodes for only 37 aaRSs, and these are apparently sufficient to translate 

genomes from all three compartments. The subcellular distribution of most aaRSs remains 

unclear, although computational studies suggest that most of these proteins are either targeted to 

the apicoplast or the cytosol, but not to the mitochondria.285-286 Several P. falciparum aaRS 
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(GlyRS, AlaRS, CysRS and ThrRS) are present only once in the genome, and thus should be 

dually targeted to both, the apicoplast or the cytosol.287 With respect to mitochondrial protein 

translation, it is probable that in P. falciparum mitochondrial tRNAs are aminoacylated in the 

cytosol and transported into the mitochondria for use in protein synthesis, in a similar fashion to 

what has been suggested for Toxoplasma gondiii and Trypanosoma brucei.288-289 

The protein translation machinery of the P. falciparum parasite is the target of some 

antimalarial drugs, and encompasses many promising targets for future drugs. 

 

3.1.6 Aminoacyl-tRNA	Synthetase	Inhibitors		
Despite the fact that all aaRS share the same reaction mechanism, the high level of 

phylogenetic divergence between bacterial and eukaryote/archaea enzymes can allow aaRS 

inhibitors to discriminate effectively between pathogen and host aaRS.290-291 

 An important example of the clinical application of an aaRS inhibitor is provided by the 

antibiotic mupirocin (3.1, Figure 3.6), marketed as Bactroban, which selectively inhibits bacterial 

isoleucyl-tRNA synthetase (IleRS). This product is currently the world’s most widely used 

topical antibiotic for the control of methicillin-resistant Staphylococcus aureus infections 

(MRSA).292-293 Besides mupirocin there is currently only one other aaRS inhibitor that is on the 

market: benzoxaborole AN2690 (3.7, Figure 3.6), used for the topical treatment of 

onychomycosis.294 These drugs prove that selective and efficacious inhibition of aaRS is a 

feasible approach for anti-infective development. 

Other aaRS inhibitors described to date include natural products, such as febrifugine 

(3.4),8 borrelidin (3.3),295 granaticin,296 indolmycin,297 furanomycin,298 ochratoxin A,299 

cispentacin,300 and several semisynthetic products,301 including halofuginone (3.5), a febrifugine 

derivative which our group identified as an inhibitor of P. falciparum prolyl tRNA synthetase.7 

We have established for the first time in Plasmodium that inhibition of tRNA synthetases by a 

small molecule and simultaneous activation of the integrated stress response is both feasible and 

attractive, and provides a rational mechanistic basis for future drug discovery and development 

focused on this novel target and pathway.7-8 

Moreover, most efforts on the design of new synthetic drugs targeting aaRS have focused 

on mimicking the aminoacyl adenylate intermediate (aa-AMP).302-304 Most inhibitors bind to the 

highly conserved synthetic active sites and act as competitive inhibitors of the respective 
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substrate amino acid. Compounds can be analogs of natural aaRS inhibitors or mimics of the 

reaction intermediate, aminoacyl-adenylate. However, a number of inhibitors bind to other 

regions of the aaRS outside the active site, either allosterically affecting the synthetic active site 

or binding to alternative active sites, such as the editing domain.245 
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Figure 3.6 – Aminoacyl-tRNA synthetase inhibitors. 
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Isoleucyl-tRNA synthetase inhibitors 

As mentioned above, mupirocin targets IleRS and is the most widely used drug that 

inhibits an aminoacyl-tRNA synthetase. Crystal structures of mupirocin bound to IleRS indicate 

that mupirocin inhibits bacterial IleRS by blocking the binding of the Ile-AMP intermediate.305 

Furthermore, the Trypanosoma brucei isoleucyl-tRNA synthetase (IRS) has been validated as a 

potential drug target, with ex vivo and in vivo RNAi knockdowns showing IleRS to be essential 

for Trypanosoma brucei growth, a protist parasite that causes human African trypanosomiasis.306  

Plasmodium parasites can obtain its amino acid requirement, with the exception of Ile, by 

degrading host cell hemoglobin. Mupirocin and thiaisoleucine (3.1 and 3.2, Figure 3.6), an 

isoleucine analog, were screened against in vitro cultures of CQ-sensitive strain P. falciparum 

3D7, killing parasites with EC50 of 11.7 nM and 16.3 µM, respectively. Furthermore, using a 

genome-wide high-density tiling microarray, the apicoplast IleRS was validated as the target of 

mupirocin, whereas thiaisoleucine inhibited the Plasmodium cytosolic IRS.281 

 

Prolyl-tRNA synthetase inhibitors 

Our group has identified the cytoplasmic prolyl-tRNA synthetase (PfcPRS, PFL0670c) in 

Plasmodium falciparum as the long-sought biochemical target of halofuginone (3.5) (HFG) and 

the natural product febrifugine (3.4) (Figure 3.6).7 

The quinazoline-type alkaloid febrifugine was isolated from the plant Dichroa febrifuga, 

which was used as an ancient herbal remedy in Traditional Chinese Medicine for over 2000 

years for the treatment of fevers and malaria.149 In the 1960s, the Walter Reed Army Institute of 

Research (WRAIR) developed halofuginone and other febrifugine analogs as part of a large 

antimalarial drug development program. In spite of the potent antimalarial activity displayed by 

febrifugine and its analog halofuginone, the severe emetic and gastrointestinal side effects has 

precluded their clinical development.307 Subsequent identification of the broad-spectrum 

antiprotozoal activity of halofuginone led to its approval and common use in veterinary 

medicine.308 During recent years, halofuginone has attracted much attention because of its wide 

range of beneficial biological activities, not only as an antimalarial but also in the treatment of 

cancer, as well as in fibrosis-related and autoimmune diseases.309-310 In parallel, with the work 

our group has developed in P. falciparum parasites, we have also demonstrated in mammalian 

cells that halofuginone targets the glutamylprolyl-tRNA synthetase (EPRS), activating the amino 
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acid starvation response pathway which in turn potently inhibits the differentiation of 

proinflammatory Th17 cells.8, 311 Moreover, our collaborators showed that halofuginone 

specifically blocks the formation of the Pro-AMP adenylate complex, by interaction with 

ATP.312 Furthermore, Hwang and Yogavel have recently solved the structures of free human 

EPRS and PfcPRS, respectively, demonstrating significant conformational changes in the 

apoenzyme.313-315  

Halofuginone affects both the asymptomatic liver stage that is the first stage of the 

Plasmodium parasite’s life cycle and the sporozoite propagation within liver cells, as well as the 

blood stage that elicits characteristic malaria symptoms. In the liver stage, halofuginone inhibited 

the P. berghei sporozoite load in HepG2 cells, with an IC50 value of 17 nM, without affecting 

sporozoite traversal.316 

To provide an unbiased and comprehensive approach to target identification, our group 

has carried out independent stepwise resistance selections under intermittent drug pressure using 

HFG as a selection agent. P. falciparum strains with decreased sensitivity to HFG were isolated, 

cloned, and subjected to increased drug pressure to yield stable clones with high levels of 

resistance. Two resistant parasite strains were independently selected along with the parental 

Dd2 strain, which were analyzed using full genome sequencing to identify the genetic loci that 

contribute to resistance. The only locus with nonsynonymous SNPs identified in both resistant 

strains was PFL0670c, previously assigned as putative cytoplasmic proline aminoacyl tRNA 

synthetase (cPRS).7 Using the induced resistance parasite lines, a non-genetic drug resistance 

mechanism was identified, where P. falciparum upregulates its proline amino acid homeostasis 

in response to halofuginone pressure prior to genetic modification of the cPRS.206 Halofuginone 

binds to the cPRS in a novel mode, forming a ternary complex with ATP and simultaneously 

mimics proline and the 3’ end of bound tRNA. As seen using molecular dynamics simulations, a 

network of hydrogen bond interactions stabilizes the N-protonated hydroxypiperidine moiety. 

The interactions between halofuginone, ATP, and PfcPRS were similar to the binding mode 

observed for human cPRS consistent with the similarity of the PfcPRS core catalytic domains. 

These results show that halofuginone is a competitive inhibitor of the proline and tRNA binding 

sites of PfcPRS.7, 312 
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Further investigation showed that both halofuginone and febrifugine treatment 

significantly increased eIF2α phosphorylation in P. falciparum asynchronous Dd2 cultures, in a 

dose dependent manner within 90 min, comparable to amino acid starvation.7  

Dose-limiting toxicity, rather than lack of efficacy, has precluded clinical development of 

febrifugine and its analogs as antimalarials. Our group has hypothesized that the observed side 

effects of HFG and febrifugine could be caused by off-target effects originating from the 

compounds’ reported ability to epimerize in solution through formation of a reactive 

intermediate (Figure 3.7).317  

 

 

 

Figure 3.7 – Proposed epimerization mechanism for halofuginone. Halofuginone and febrifugine have 

been reported to epimerize. The mechanism is reversible and likely proceeds through the formation of a 

reactive unsaturated ketone (shown in red) as the result of a retro-Michael reaction. The enone can react 

intramolecularly or with other nucleophiles (e.g. cysteine residues) to form covalent adducts.   

 

Thus, we reasoned that formal reduction of the ketone to yield a secondary alcohol would 

retain the potential to form critical hydrogen bonds within the target complex while eliminating 

the ability to form a reactive Michael-acceptor. The resulting compound, Halofuginol (HFol) 

(3.6, Figure 3.6), demonstrated low nanomolar in vitro potency against 3D7 (EC50 = 5.8 nM) 

comparable to febrifugine (4.0 nM). Cytotoxicity profiling in primary mouse embryonic 

fibroblasts (EC50 = 373 nM) revealed that HFol was about 65 times more selective for P. 

falciparum. Halofuginol had similar activity (EC50 = 14 nM) to halofuginone (EC50 = 17 nM) in 

the in vitro P. berghei ANKA liver-stage model, and was highly efficacious in vivo in both 

asexual blood- and liver-stage, resulting in >99% reduction of parasites with the regimens used.7 

Although halofuginol is an attractive starting point for rational development of PfcPRS 

inhibitors as next-generation dual-stage antimalarials, it is important to understand the 

consequences of blocking human EPRS, thus PfcPRS inhibitors with improved biochemical 

selectivity might be more attractive candidates for clinical development. 
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Leucyl-tRNA synthetase inhibitors 

Leucyl-tRNA synthetase (LeuRS) is a proofreading aaRS that is involved in post-transfer 

editing, which consists on the translocation of mischarged tRNA from the aminoacylation to the 

editing active site where mischarged tRNA binds for hydrolysis of the noncognate amino acid to 

enhance fidelity.318 

One of the two aaRS inhibitors currently on the market in a topical formulation, is the 

small molecule 5-fluoro-1,3-dihydroxy-2,1-benzoxaborole (3.7, AN2690) , which targets the 

editing site of LeuRS and trapps the tRNALeu. AN2690 contains a boron atom that mediates the 

adduct formation responsible for trapping the enzyme-bound tRNALeu in the editing site halting 

catalytic turnover. This antifungal agent also kills a wide range of organisms including yeasts, 

molds and dermatophytes.319-320 

Inspired by the success of AN2690, inhibitors based on the benzoxaborole core, which 

contain a boronic acid and forms an adduct with the tRNA, have been explored as LeuRS 

inhibitors in other organisms.321-322 The unique ability of benzoxaboroles to inhibit the function 

of LeuRS from other organisms allowed them to be pursued as a novel class of antibiotics. For 

example, benzoxaborole-based derivatives GSK2251052 and ZCL039 inhibit 

Enterobacteriaceae LeuRS and Streptococcus pneumonia, respectively.323-324 

Benzoxaboroles also offer new opportunities for treating neglected diseases, such as 

malaria and human african trypanosomiasis. Many Benzoxaboroles T. brucei LeuRS inhibitors 

have been reported304, 325, and most recently the N-(4-sulfamoylphenyl)thioureas, discovered 

through the screening and modification of a targeted library of putative aaRS inhibitors, that 

targets the catalytic site.326 

Several benzoxaboroles with 7-carboxyethyl substituents, such as AN3661 (3.8, Figure 

3.6) have been reported to have very potent antimalarial properties with IC50 values in the nM 

range.327 Most recently a series of 6-aryloxy benzoxaborole compounds was designed and 

synthesized, where a highly potent 6-(2-(alkoxycarbonyl)pyrazinyl-5-oxy)-1,3- dihydro-1-

hydroxy-2,1-benzoxaborole (3.9, Figure 3.6) was identified. This compound demonstrated 

excellent in vitro blood stage activity (IC50 = 1.9 nM in P.f. 3D7 strain) and in vivo efficacy 

against P. berghei in infected mice (ED90 = 7.0 mg/kg).328 
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Alanyl-tRNA synthetase inhibitors 

Alanyl-tRNA synthetase (AlaRS) has been a focus of extensive research due to its 

unusual secondary catalytic site, which has an editing activity. Thus, AlaRS enzymes can edit 

products of misacylation to ensure they do not accumulate to toxic levels.329-330 The reduced 

translational fidelity, caused by a hypomorphic mutation in the editing domain of alanyl-tRNA 

synthetase (ARS), results in accumulation of misfolded proteins, which in turn caused severe 

pathological phenotypes in mice, such as neurodegeneration and cardioproteinopathy.331-332 

AlaRS has also been characterized in Plasmodium parasites, where one version of this 

enzyme is encoded and post-translationally targeted to both the P. falciparun cytosol and the 

apicoplast.287 

4-(2-nitro-1-propenyl)-1,2-benzenediol (3.10, Figure 3.6) is a putative inhibitor of 

PfAlaRS identified in a in silico docking screen, which inhibited parasite growth at low 

micromolar (EC50 ≈ 8 µM) and produced limited mammalian cytotoxicity.246, 285 

 

Asparaginyl-tRNA synthetase inhibitors 

The cytoplasmic asparaginyl-tRNA synthetase (cNRS) has been a long-standing drug 

target in Brugia malayi, a nematode that is one of the causative agents of lymphatic filariasis.333-

335 Two distinct strategies have been employed to find inhibitors of the B. malayi enzyme, in 

silico docking and high throughput screening. Using the first approach Sukuru and co-workers 

successfully identified diverse compounds, including Variolin B (3.11, Figure 3.6), which can 

inhibit the activity of NRS with micromolar affinity.336 The second approach makes use of an 

assay that focuses on the enzyme’s capacity to recognise and edit misacylation prior to 

transfer.337 The assay was then used to experimentally screen for inhibitors of BmNRS among 

tens of thousands of extracts from diverse microbial strains, which resulted in the identification 

of multiple natural compound inhibitors.338-339 

Furthermore, the reaction intermediate asparaginyl-adenylate (AsnSA (3.12), Figure 3.6) 

was screened against in vitro cultures of P. falciparum 3D7, with an IC50 of 88.3 nM, validating 

the potential of AsnRS as a drug target in the malaria parasite.340 
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Lysyl-tRNA synthetase inhibitors 

As a result of a phenotypic screen of a natural product library with the goal to identify 

inhibitors of Plasmodium falciparum blood- and liver-stage proliferation, cladosporin (3.13, 

Figure 3.6) was identified. The fungal secondary metabolite inhibits both blood and liver 

proliferation of P. falciparum at a nanomolar range (EC50 ≈  40-90 nM).341 Using 

reverse genomic approach the P. falciparum lysyl-tRNA synthetase was identified as 

cladosporin’s target and demonstrated that PfKRS was a druggable drug target for both blood 

and liver stages of malaria.205 The crystal structure of the ternary complex PfKRS-lysine-

cladosporin, reveals structural differences among the different homologs that may allow for the 

design of selective inhibitors that act against the Plasmodium but not the human KRS.342 

Furthermore, research to understand the high selectivity of cladosporin, inspite of the drug acting 

by interaction with the ATP binding pocket of KRS, revealed that the binding of lysine to PfKRS 

induces a series of conformational changes in the active site of the enzyme that further favors the 

binding of cladosporin and stabilizes the complex PfKRS-lysine-cladosporin.343-344 

To investigate the potential of the apicoplast PfKRS isoform as a drug target, inhibitors 

based on the lysyl-adenilate intermediate were designed and synthetized. Two of the tested 

compounds had potent delayed death inhibition and inhibited aminoacylation by recombinant 

apicoplast PfKRS.282 

 

Methionyl-tRNA synthetase inhibitors 

Due to the successful inhibition of bacterial MRS by diaryl diamine inhibitors, where 

high selectivity of bacterial versus mammalian enzyme was observed,345-346 efforts have been 

made to identify novel inhibitors of the Trypanosoma brucie MRS.347 

Homology models based on several MetRS structures were used to guide synthesis of 

related T. brucei MRS inhibitors, and these were tested for binding to TbMetRS. Compounds 

were also screened using ex vivo cultures of T. brucei and T. cruzi, the most effective compound, 

an aminoquinolone derivative (3.14, Figure 3.6), showed an IC50 of 4 nM and low toxicity for 

mammalian cells.347 Further studies have also characterized the structures of Leishmania MRS348 

and the TbMRS349-350 bound to substrates (Met, Met-AMP) and inhibitors, in the case of the 

TbMetRS, and have shown for the latter that the mechanism of resistance consists on an 

amplification of the target gene.351 Two orthogonal hightroughput screening assays have recently 
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been developed to identify inhibitors of the TbMRS.352  

Plasmodium falciparum nuclear genome encodes two copies of methionyl-tRNA 

synthetase,286 a recent report provides evidence of the localization of each PfMRS isoform and 

screened a small molecule drug-like library identifying two bacterial MRS inhibitors, REP3123 

(EC50 = 144 nM) and REP8839 (EC50 = 155 nM) (3.15, Figure 3.6), as well as three new hit 

compounds (EC50 < 500 nM). 353 

 

Threonyl-tRNA synthetase inhibitors 

Borrelidin (3.3, Figure 3.6), a structurally unique 18-membered macrolide, acts as a 

selective inhibitor that binds to some bacterial and eukaryotic threonyl-tRNA synthetase.(TRS) 

enzymes.354 This polyketide natural product displays antibacterial, antifungal, antimalarial, 

anticancer, insecticidal and herbicidal activities through the selective inhibition of TRS. This 

broad activity seems to be related to the occupation of a significant fraction of the total volume 

of the TRS enzymatic pocket, physically excluding all three of the physiological substrates of 

TRS. Although occupying the canonical active site cavity, borrelidin also extends into a fourth 

‘orthogonal’ pocket.355 

Plasmodium possesses only one PfTRS, a dual-targeted enzyme, which is trafficked to 

the apicoplast and cytosol.287 The immediate inhibition of P. falciparum cultures seen with 

Borrelidin is consistent with the requirement of the cytosolic PfTRS for its activity. The effect 

of Μ-threonine was also tested, which appears to curtail its antimalarial activity, possibly through 

effect on threonyl-tRNA synthetase. 356 

Borrelidin was found to express antimalarial activity against drug-resistant P. falciparum 

parasites, with an IC50 value of 0.97 nM. However, it also displays strong cytotoxicity against 

mammalian cells.357 To circumvent this problem, borrelidin- like series have been generated and 

tested for their antimalarial activity as well as for their toxicity. Some of the semisynthetic 

borrelidin analogs were found to effectively lose toxicity against human cells while retaining 

potent antiparasitic activity both in vitro and in vivo.340 
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Other aa-tRNA synthetases inhibitors 

Due to their essential role in protein synthesis, all of the parasite’s aminoacyl-tRNA 

synthetases represent a potential drug target in the fight against malaria. Nonetheless not all of 

these enzymes have been further pursued as drug targets and inhibitors have not been reported 

thus far in the Plasmodium falciparum parasite.  

More recently, studies including PfWRS,358-359 PfFRS,289 PfCRS360 or PfDRS361 have 

aimed at further characterizing each enzyme in P. falciparum, in an effort to provide additional 

background for unraveling the functional properties of each of the parasite’s aaRS and creating a 

platform for the development of specific inhibitors. In a different approach, five reaction 

intermediate analogs, GluSA, GlnSA, AsnSA, TyrSA and SerSA, were screened for in vitro 

antimalarial activity against P. falciparum 3D7 strain. Inhibitors exhibited high to moderate 

activity ranging from 39.5 nM to 372 nM.340 

 

3.2 Purpose	of	This	Study	

Aminoacyl-tRNA synthetases and associated pathways have been proposed as attractive 

targets for chemotherapeutic intervention in malaria.252 While some tRNA synthetase inhibitors 

that were identified in other organisms display antimalarial activity, validation of actual on target 

mechanism has been elusive.281, 287, 327 The repertoire of aaRSs in Plasmodium diverges from 

other organisms because of the need to carry out protein synthesis in multiple subcellular 

compartments.287 Although underexploited for many years, it has been demonstrated that the 

plasmodial aaRS are not only druggable enzymes but also that selective inhibition of these 

enzymes versus their human homologs is feasible.246  

As mentioned above, our group has established for the first time in Plasmodium that 

inhibition of tRNA synthetases by a small molecule and simultaneous activation of the integrated 

stress response is both feasible and attractive, and provides a rational mechanistic basis for future 

drug discovery and development focused on this novel target and pathway. We hypothesized that 

the inhibition of some but not all, P. falciparum aaRSs will result in activation of amino acid 

response pathways and that inhibition of this subgroup represents an attractive approach for 

chemotherapeutic intervention in malaria. 

The general aim of this research project is to build on these important findings and apply 

an integrated chemogenomic approach to identify and biologically characterize selective small 
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molecule inhibitors for the cPRS that are suitable as lead candidates for preclinical broad-

spectrum malaria drug development. This work has the potential to have a major impact on both 

basic malaria biology and applied biomedical research. This project is organized into three 

different, but complementary, objectives.  
 
1. Explore tRNA synthetases as novel targets in P. falciparum  

Our goal is to better understand the biological consequences of inhibiting the different 

aaRSs and identify the critical downstream events responsible for the killing of the malaria 

parasite. To explore the potential of the aminoacyl-tRNA synthetase family as a source of 

antimalarial drug targets, we have designed a library of 21 reaction intermediate analogsto 

profile 19 of the PfaaRS as drug targets. The desired aa-AMP analogs (Figure 3.8) will be 

obtained through robust synthetic methods and will be used as tool compounds to gain insights 

into the potential of each tRNA synthetase as a target for chemotherapeutic intervention in P. 

falciparum.  

 

 

 

 

 

 

Figure 3.8 – Sulfamoyl aminoacyl-AMP analogs. 

 

2. Develop Hybrid-Halofuginone derivatives with high parasite specificity 

This aim is designed to pharmacologically characterize and develop novel HFG analogs. 

Common to all aaRSs are three potential target sites, including the active site, editing site and 

anticodon binding site (Figure 3.10a). Most aaRS inhibitors bind to the catalytic site, mimicking 

ATP and/or the cognate amino acid. HFG binds in a novel mode, forming a ternary complex with 

ATP and simultaneously mimicking proline and the 3’ end of bound tRNA (Figure 3.9).7 Based 

on the complex formed by HFG and ATP in the active site of cPRS, hybrid-halofuginone 

derivatives were designed and will be synthesized following a strategy that is based on a concise 

asymmetric synthetic strategy (23% overall yield, 14 steps) by Lin and coworkers. 
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Figure 3.9 – Molecular dynamics simulations of the ternary complex of PfPRS with ATP and 

halofuginone. Image adapted from Herman et al.7 

 

3. Characterize the biology of cPRS inhibition and amino acid starvation response 

The objective of this aim is to provide functional insights in the biology of cPRS 

inhibition, thus characterizing the enzyme-inhibitor complex underlying the mechanism of action 

of the inhibitors and potential activation of the amino acid starvation response. Unlike 

halofuginone and halofuginol, the nonhydrolyzable L-prolyl sulfamoyl adenosine substrate 

analog (ProSA) does not induce the phosphorylation of eIF2α in mammalian cell lines (data not 

published), which is a sensitive indicator of the starvation response.  

Understanding the enzyme-inhibitor complex formed by the different types of inhibitors 

(Figure 3.10b) will further elucidate on the differential effect observed on the amino acid 

starvation response, despite targeting the same enzyme.  
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Figure 3.10 – a) aaRSs sites: active site, editing site and anticodon binding site; b) PRS transition state 

and enzyme-complex formed with two different inhibitors (ProSA and HFG). 

 

3.3 Explore	tRNA	Synthetases	as	Novel	Targets	in	P.	falciparum		

As discussed above, reaction intermediate-based inhibitors of aminoacyl-tRNA 

synthetases have been used as potential anti-infectives. The structures of the reaction 

intermediates have been the focus for the development of novel synthetic compounds that target 

aaRS. Aminoacyl-adenylates (aa-AMP) have lower dissociation constants than the amino acids 

and ATP, and thus, the choice of the intermediate is advantageous in the design of novel 

synthetic compounds with high affinity.362-363 The synthesis of aa-AMP analogs bearing non-

hydrolyzable phosphate isosteres is of great value as chemical tools in exploring the different 

tRNA synthetases as potential novel targets in P. falciparum. Modifications of the aminoacyl-

adenylate have been investigated for the purpose of improving chemical stability, tight binding 

and pathogen selectivity. Many of the modifications were made in the linker region since the 

mixed anhydride acyl-phosphate bond of the intermediate is readily susceptible to hydrolysis. 

Several types of stable analogs of aa-AMP inhibit their cognate aaRSs. Moreover, the 

aminoacyl-sulfamate bioisoster yields the most potent inhibitors with improved hydrolytic 

stability and a well-established synthetic strategy, ideal for tool compounds to profile the class of 

aaRSs. Unfortunately, these analogs have poor in vivo efficacy due to lack of efficient cell-

penetration.290-291, 301, 303, 364  

We designed, synthetized and evaluated the antimalarial activity of a series of sulfamoyl-

aminoacyl-adenosines. We envisioned that the developed protocol should be general and 

applicable to the various different amino acids. 
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3.3.1  Synthetic Methodology 

3.3.1.1 Chemical Synthesis Strategy 

The synthesis of sulfamoyl-aminoacyl-AMP derivatives has been established for a subset 

of the analogs. The retrosynthetically deconstruct according to what has been cited in the 

literature365 (Figure 3.11) shows a short and robust approach starting with a commercially 

available protected adenosine. After sulfamoylation of 2’, 3’-O-isopropylideneadenosine, the 

desired analogs can be obtained by coupling with the protected N-hydroxysuccinimide ester of 

each amino acid under basic conditions, followed by full deprotection of the obtained 

intermediates. Deprotection conditions vary depending on the protective group used for each 

functional group on the intermediates and may require multiple steps. 

 

 

 

Figure 3.11 – General retrosynthetic scheme of aminoacyl-sulfamoyl-AMP analogs. 

 

3.3.1.2 Synthesis of aa-AMP Analogs 

Sulfamoyl based analogs of aa-AMP are useful for structural and biochemical studies of 

aaRSs and as potential lead compounds for drug development. The overall yields are very 

dependent on the amino acid and the protecting groups used in the synthesis and consequently 

some sulfamoylated analogs of aa-AMP are difficult to attain. 

Herein, we report a short synthetic strategy enabling the rapid synthesis of a library of 

sulfamoyl analogs of the aa-AMP intermediate (aaSA). The synthesis of the target compounds is 

illustrated in Scheme 3.2. 
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Scheme 3.2 – Synthesis of sulfamoylated aa-AMP analogs. Reagents and conditions: a) NaH, DME, 0 °C 

! r.t., 4 h, 65%; b) DBU, DMF, r.t., 4 h; c) TFA/H2O (5:1), r.t., 30 min; d) 10% Pd/C, 0%-1% glacial 

acetic acid, DMF, H2, 2-8 h, r.t. 

 

We synthesized the library of desired aaSA compounds, in 3-4 steps, as shown in scheme 

3.2, starting with the synthesis of the key sulfamoyl intermediate 3.17. 

Several different experimental procedures for the sulfamoylation of the 5ʹ-hydroxyl 

moiety have been reported in the literature including the use of sulfamoyl chloride as reagent in 

the presence of different bases.303, 363, 366-368 A set of different reaction conditions was evaluated 

to identify the optimal system for high yielding formation of 3.17 in a large scale (Table 3.1). 
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Table 3.1 – Optimization of the sulfamoylation of 2’, 3’-O-isopropylideneadenosine. 

Entry 
Sulfamoyl chloride 

(equiv.) 
Base Solvent 

Reaction conditions 

(Temp. (°C), time (h)) 

Scale 

(g) 

Yield 

(%) 

1 2.3 - DMA 0!rt, 4 2 67% 

2 1.5 NaH DME 0! rt, 4 2 93% 

3 1.5 NaH DME 0! rt, 4 20 65% 

 

Two different conditions were tested with varying strengths. When DMA was used 

without the addition of any base (Entry 1) compound 3.17 was obtained in 67% yield, while the 

use of a strong base such as NaH (Entry 2) gave the desired sulfamoyl intermediate in 93% yield, 

in the same scale. Since using a strong base in DME gave a higher yield, the same conditions 

were used to scale-up the reaction (Entry 3) to 20 g, where the desired compound was obtained 

in 65% yield. The protected amino acids were coupled following sulfamoylation. The most 

frequently reported literature method for the formation of acylsulfamates is the use of N-Boc 

protected N-hydroxy succinimide (OSu) amino acid esters in the presence of DBU.303, 363, 367, 369 

All amino acids were commercially available as OSu esters and had only few, major protecting 

groups (Boc, Cbz or OtBu) depending on the different functional groups present. The 

acylsulfamate compounds were obtained by coupling of the sulfamoyl intermediate 3.17 with the 

corresponding amino acids to give the title compounds 3.18-3.38 (Scheme 3.2), with yields 

ranging from 12%-69% (Table 3.2).  

Protecting groups were removed in the final step to afford compounds 3.43-3.63 (Scheme 

3.2), in 0.36%-97% yield (Table 3.2). Deprotection was done with strong acidic conditions, 

followed by catalytic hydrogenation, in a two-step synthesis originating intermediates 3.39-3.42, 

before affording the desired compounds 3.49 and 3.56-3.58. The lower yields obtained in some 

aaSA were probably due to either the amino acid side chains having favorable lengths to perform 

undesired reactions once deprotected or decomposition of the adenosine moiety under 

deprotection conditions. 
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Table 3.2 – Yield of synthesized compounds. *Yield over two steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound R1 
Yield 
(%)  Compound R2 

Yield* 
(%) 

3.18 Boc-Ala- 42  3.43 AlaSA 
 

35 

3.19 Z- Asp(OtBu)- 40  3.44 AspSA 
 

0.9* 

3.20 Boc- 
Glu(OtBu)- 23  3.45 GluSA 

 
39 

3.21 Boc-Phe- 39  3.46 PheSA 
 

64 

3.22 Boc-Gly- 42  3.47 GlySA  34 

3.23 Boc-His(1-
Boc)- 29  3.48 HisSA 

 
30 

3.24 Boc-Ile- 32  3.49 IleSA 
 

40 

3.25 Boc-Lys- 22  3.50 LysSA 
 

35 

3.26 Boc-Leu- 31  3.51 LeuSA 
 

19 

3.27 Boc-Met- 56  3.52 MetSA 
 

34 

3.28 Boc-Asn- 15  3.53 AsnSA 
 

97 

3.29 Boc-Pro- 40  3.54 ProSA 
 

36 

3.30 Boc-Gln- 30  3.55 GlnSA 
 

44 

3.31 Z-Arg(Z)2- 39  3.56 ArgSA 
 

9.5* 

3.32 Z-Ser(Bn)- 69  3.57 SerSA 
 

4.1* 

3.33 Z-Thr(tBu)- 46  3.58 ThrSA 
 

2.6* 

3.34 Boc-Val- 38  3.59 ValSA 
 

43 

3.35 Boc-Trp- 12  3.60 TrpSA 
 

34 

3.36 Boc-Tyr- 48  3.61 TyrSA 
 

30 

3.37 Boc-D-Met 19  3.62 D-MetSA 
 

31 

3.38 Boc-D-Pro- 35  3.63 D-ProSA 
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All synthesized compounds were purified by flash chromatography and the purity was 

assessed with HPLC-ELSD-MS prior to profiling for antiparasitic activity and cytotoxicity 

(purity was > 90%). The structures of all compounds were confirmed by NMR spectroscopy 

using 1H-NMR, 13C-NMR and two-dimensional experiments, including 1H-1H COSY, HMQC 

and HMBC (see details in Chapter 6). 

The attribution of the 1H and 13C NMR of key intermediate 3.17 and final analog 3.54 is 

shown in Figure 3.12. The results are in accordance with the chemical structure of the 

compounds (Chapter 6). When analyzing the NMR spectra of the adenosine intermediate 3.17 

we observe four singlet signals in the aromatic region, two of which integrates to two protons 

(the -NH2 in the adenosine and the -NH2 in the sulfamoyl group) and the other two integrate to 

one proton (8.31 ppm and 8.17 ppm). Furthermore, five signals integrating to six protons (one d, 

four dd and one m signal) are present in the spectra region from 6.23 – 4.15 ppm, accounting for 

the rest of the adenosine protons. Moreover, two singlets integrating to three protons each, 

confirm the presence of the acetal-protecting group. When analyzing data regarding analog 3.54, 

the assignment of the NMR spectra reveals the presence of three additional proton signals that 

integrate to seven protons, when compared to intermediate 3.17, which is consistent with the 

presence of the proline group. Furthermore, the 13C NMR displays a signal at 172.2 ppm 

consistent with the presence of the carbonyl group and a shift in the signals corresponding to the 

carbons adjacent to the hydroxyl groups (73.9 and 71.1 ppm) due to the acetal deprotection 

(Figure 3.12).  
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Figure 3.12 – Assignment of 1H and 13C NMR of compounds 3.17 and 3.54. 

 
3.3.2 Antimalarial and Cytotoxic Activities 

The synthesized aaSA analogs were profiled for dose-response in intraerythrocytic stage 

parasites to determine half maximal effective concentrations (EC50) against CQ-sensitive 3D7, 

CQ-resistant Dd2 and ProRS mutant (cPRS:L482H) strains. The reference antimalarials 

atovaquone, amodiaquine and artesunate were included as controls and resulted in EC50s in 

agreement with published results. Halofuginone, a febrifugine derivative, which targets cPRS 

was also included (Table 3.3). Cytotoxicity (EC50) of selected compounds for human cells 
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(MCF-7) and selectivity index for CQ-resistant Dd2 (SIres) and CQ-sensitive 3D7 strains (SIsen) 

are also reported in Table 3.3. 

Furthermore, HFG was tested against the three strains and exhibited an EC50 of 1.16 nM (3D7), 

1.05 nM (Dd2) and 255 nM (cPRS:L482H) (Table 3.3) which confirmed our previously 

observed cross-resistance with the mutant strain..7 

 Our results show that most of the aaSA analogs were equally active in vitro against both 

blood stage P. falciparum strains in the nanomolar range (Table 3.3). Among these compounds, 

we found that L-PheSA, L-HisSA, L-AlaSA and L-ProSA were the analogs that exhibited higher 

antimalarial activity, with EC50 against the Dd2 strain of 120 nM, 98.4 nM, 119 nM and 96.9 nM, 

respectively. Among the tool compounds with lower antimalarial activity were L-IleuSA, L-

TrpSA, L-LysSA and L-GluSA, with EC50 against the Dd2 strain of 2390 nM, 1220 nM, 1130 

nM and 1210 nM, respectively.  

Aminoacyl-tRNA synthetases in many instances discriminate between the L- and D-

amino acids due to their stereospecificity, thus we hypothesized that D-aaSA analogs would not 

be recognized by the respective enzyme, and would display decreased activity compared to its L-

aaSA counterpart. To experimentally verify this possibility we synthetized two D-aaSA analogs, 

D-ProSA and D-MetSA, and profiled their antimalarial activity. 
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Table 3.3 – In vitro antimalarial activity (EC50) and cytotoxicity (EC50) of aaSA compounds. 

a SIres = EC50 MCF7 / EC50 PfDd2; n.d.= not determined;  

Compound 

P. falciparum 

EC50 ±SD (nM) 
MCF7 

EC50±SD 

(µM) 

Selectivity 
Index 

3D7 Dd2 
PRS: 

L482H 
(SIres

a) 

3.5 HFG 1.2±0.2 1.0±0.2 255±15 0.04±0.03 38.0 

3.43 AlaSA 99.5±27 119±25 135±22 >50 >420 

3.44 AspSA 414±150 963±340 25.8±6.6 0.5±0.1 0.5 

3.45 GluSA 734±290 1210±90 1120±50 2.0±0.2 1.7 

3.46 PheSA 84.6 ±7.9 120±37 96.5±5.1 3.3±0.3 27.3 

3.47 GlySA 209±82 337±55 380±73 3.2±0.4 9.4 

3.48 HisSA 78.3±11 98.4±17 105±15 3.3±0.01 33.9 

3.49 IleSA 1560±130 2390±210 2280±140 13.7±0.04 5.7 

3.50 LysSA 812±230 1130±170 1260±160 3.5±0.2 3.1 

3.51 LeuSA 348±30 645±68 621±49 11.2±0.3 17.3 

3.52 MetSA 291±30 610±52 594±51 0.9±0.2 1.4 

3.53 AsnSA 134±5.6 517±87 502±160 5.0±0.3 9.7 

3.54 ProSA 87.3±16 96.9±7.1 122±31 2.0±0.03 20.7 

3.55 GlnSA 112±26 149±6.8 170±14 1.5±0.02 10.0 

3.56 ArgSA 519±7.2 336±78 253±42 2.6±0.6 7.7 

3.57 SerSA 478±73 628±91 1070±81 11.6±1.2 18.7 

3.58 ThrSA 98.3±13 296±110 312±41 2.2±0.5 7.4 

3.59 ValSA 122±21 153±26 162±16 1.1±0.1 6.9 

3.60 TrpSA 862±60 1220±170 1710±920 >50 >41 

3.61 TyrSA 256±62 398±33 474±110 7.9±0.1 19.9 

3.62 D-MetSA 1280±300 1760±320 1700±400 1.8±0.8 1.0 

3.63 D-ProSA 781±280 1190±120 1190±83 4.4±0.1 3.7 

Atovaquone 0.2±0.05 0.2±0.03 0.17±0.02 nd n.d. 

Amodiaquine 2.7±0.5 3.3±0.3 1.2±0.2 nd n.d. 

Artesunate 14.4±4.3 14.4±4.8 nd nd n.d. 
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When comparing the activity of the L- and D-aaSA against Dd2 strain, we can detect a 3-

fold decrease in activity for MetSA (L-MetSA EC50 610 nM and D-MetSA EC50 1760 nM), and a 

10-fold decrease in activity when comparing L-ProSA (EC50 96.9 nM) to D-ProSA (EC50 1190 

nM). 

The library of aaSA analogs was also tested against the P. falciparum PRS mutant 

(PRS:L482H) strain in order to verify that none of the analogs targeted PRS non-specifically.  

Interestingly, the ProSA analog did not present significant decrease in activity when 

comparing the EC50 between both strains, EC50 against the Dd2 strain of 96.9 nM and EC50 

against the PRS:L482H strain of 122 nM, as it might have been expected since it targets the same 

enzyme as HFG. Previously, we investigated the L482H PfcPRS mutant to understand the 

observed decreased sensitivity to halofuginone. Molecular modeling studies show Leu482 is 

adjacent to the proline-binding pocket, and although it does not directly participate in the 

hydrogen bond network formed between halofuginone and PfcPRS, it does support the binding 

geometry of the amino acid residues that directly interacts with halofuginone. The histidine in 

the L482H mutant provides an alternative hydrogen bond acceptor, thus destabilizing the 

network, which in turn impacted the halofuginone-ATP interaction, likely to explain the 

experimental observation. 

Analysis of the interactions between ProSA and each of the enzymes (wtPfPRS and 

PfPRS:L482H) may further explain the absence of cross-resitance observed (Data not Published-

Figure 3.13)  
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Figure 3.13 – Molecular docking of the 

complex of PRS with ProSA. (A) Interaction 

with the wild-type fcPRS of P. falciparum and 

(B) the PfcPRS L482H mutant of P. 

falciparum. The lack of cross-resistance can 

be explained by the fact that the mutation in 

residue 482 does interfere with the network of 

possible hydrogen bonds between the enzyme 

and the inhibitor. Image generated using 

PyMOL version 1.7.0.5 for Mac. 

	
Thus, one possible justification is, since ProSA’s antimalarial activity does not rely on 

the interaction with ATP and consequent formation of the ternary complex, as seen for 

halofuginone, its activity may not be affected by the mutation, when tested against P. falciparum 

PRS:L482H strain. As such, a mutation adjacent to the proline-binding pocket, as the one present 

in PRS:L482H strain, which does not directly interfere in the hydrogen bond network between 

the inhibitor and the enzyme, may not significantly affect the antimalarial activity of the ProSA 

analog. 

Cytotoxicity profiling in human MCF-7 cell line shows a wide range of EC50 and 

selectivity index among the aaSA analogs, underscoring the potential to specifically target the 

parasite aaRS with little to no effect over the human homolog, in some cases (Table 3.3). We 

found that some analogs have effectively decreased toxicity against human cells, when compared 

to halofuginone (EC50 against MCF-7 cells of 0.04 µM and SI=38.0). Among the analogs with 

lower cytotoxicity were L-LeuSA, L-IleuSA, L-TrpSA, L-AlaSA and L-SerSA, with EC50 

A 

B 
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against MCF-7 cell line of 11.2 µM, 13.7 µM, >50 µM, >50 µM and 11.6 µM, respectively. 

Interestingly, when comparing the EC50 of halofuginone to that of ProSA against MCF-7 cells, 

we can see a 50-fold decrease in cytotoxicity, although targeting the same enzyme (Table 3.3). 

Thus, emphasizing the potential to improve specificity towards the parasite’s enzyme over the 

human aaRS by modifying the compound’s scaffold or targeting different sites within the 

enzyme. Furthermore, amongst the analogs with higher antimalarial activity, L-AlaSA stands out 

by being one of the compounds with lower cytotoxicity, with EC50 against the Dd2 strain of 119 

nM and EC50 against MCF-7 cell line greater then 50 µM, with a selectivity index higher then 

420. 

The wide range of EC50 observed for the different analogs underlines the differential 

potential among these enzymes to act as antimalarial drug targets. Furthermore it can be argued 

that any of the aaRS can be potential antimalarial drug targets since the inhibitor with lowest 

activity still has a low micromolar EC50. Thus, taken together the blood stage in vitro P. 

falciparum activity results allow the prioritization of the phenylalanyl tRNA synthetase (FRS), 

histidyl tRNA synthetase (HRS), alanyl tRNA synthetase (ARS) and prolyl tRNA synthetase 

(PRS) as the top four enzymes for further exploration as drug targets in blood stage malaria.  

Since HFG and its derivatives, which target P. falciparum prolyl-tRNA synthetase are 

equally active against both in vitro and in vivo P. berghei liver stage parasites,7, 316 we decided to 

profile the library of aaSA analogs for its in vitro liver stage activity in order to investigate the 

potential for dual-stage activity when targeting each of these enzymes. The synthesized 

derivatives were evaluated at 1 µM and 10 µM for their growth inhibitory activity against an in 

vitro P. berghei ANKA liver-stage model (Figure 3.14). 
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 Figure 3.14 – In vitro P. berghei growth (%) and HepG2 A16 human hepatic cell line viability (%) at 10 

µM and 1 µM of drug treatments. DMSO and not infected cultures (NI) were used as controls. 

 

Our results show that most of the aaSA analogs were active against liver stage in vitro P. 

berghei, with >99% parasite growth inhibition at the higher concentration of 10 µM. Compounds 

L-SerSA, L-IleuSA and L-TyrSA, were the exception, with no growth inhibition, 29% and 66% 

growth inhibition, respectively (Figure 3.14). Furthermore, HepG2 A16 human hepatic cell line 

viability was also determined and most compounds displayed cytotoxicity at the higher 

concentration. Among the derivatives tested, we found that only three compounds presented 

moderate to high parasite growth inhibition at the lower concentration of 1 µM (L-HisSA, L-

MetSA and L-Asp, showed 45%, 95% and 99% parasite growth inhibition, respectively), while 

the rest of the analogs showed < 50% parasite growth inhibition at 1 µM. 

Furthermore, halofuginol was also tested against the in vitro P. berghei ANKA liver-

stage model and exhibited >99% parasite growth inhibition at both concentrations (Figure 3.14) 

which confirmed our previous results. 

Taken together results allow the prioritization of the phenylalanyl tRNA synthetase 

(FRS), histidyl tRNA synthetase (HRS), and prolyl tRNA synthetase (PRS) as the top three 

enzymes for further exploration as potential dual-stage drug targets. 

Dual-stage activity is essential for antimalarial drugs that will be used to eliminate 

malaria. The results obtained, together, are consistent with our hypothesis that aaRS family in 
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general is attractive as a novel class of antimalarial drug targets, with some of these enzymes 

having potential for dual-stage activity.  

 

3.3.3 Amino Acid Starvation Pathway Activation 

After profiling the synthetized aaSA analogs for in vitro activity against the different P. 

falciparum strains, we next investigated how these analogs dysregulate the amino acid sensing 

mechanism in the parasite.  

Recent research has confirmed the existence of a functional AAR in the intraerythrocytic 

stage of P. falciparum and has demonstrated induction of phosphorylated eIF2α in response to 

amino acid starvation.281 In mammalian cells, inhibition of EPRS by halofuginone or direct 

amino acid deprivation results in phosphorylation of the eukaryotic initiation factor 2α (eIF2α) 

and consequent activation of the amino acid response (AAR) pathway.8 Additionally, we have 

recently demonstrated the same effect in P. falciparum Dd2 strain.7 

To probe for the activation of the AAR, we treated asynchronous P. falciparum Dd2 

cultures with two concentrations of each aaSA (10x and 100x of each compounds’ EC50), using 

PBS as a positive control and media as a negative control, and compared the amount of 

phosphorylated eIF2α by Western blot analysis (Figure 3.15). 
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Figure 3.15 – Immunohistochemical detection of eIF2α phosphorylation. In brief, the asexual Dd2 

parasites were exposed to the experimental treatments for 90 minutes and the protein lysates from each 

sample were prepared from saponin released parasite pellets. All lysis buffers contained 1x Complete 

protease inhibitor cocktail (Roche) and 1x phosphatase inhibitor cocktail PhosStop (Roche). Western 

blots were probed with a phospho-specific eIF2α pAb raised to a P. falciparum peptide antigen 

MSELpSKRRFRS, an eIf2α pAb raised to T. gondii peptide KGYIDLSKRRVS which recognizes total 

eIF2α  protein and a histone-H3 rabbit pAb (Abcam ab1791). PBS treatment was used as a positive 

control for eIF2α phosphorylation and untreated media as negative control. 
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Halofuginone and halofuginol, treatment increased eIF2α phosphorylation in a dose-

dependent manner that was comparable to eIF2α phosphorylation during amino acid starvation 

(PBS treatment), in accordance to our previously observed results .  

Atovaquone and chloroquine, two known antimalarials that act by different mechanisms 

of action, were also tested. Neither of the compounds increased eIF2α phosphorylation, even at 

100x of EC50, consistent with what was expected since the amino acid sensing mechanism is 

linked to aaRS inhibition, which is not targeted by these compounds . Dimethyl sulfoxide 

(DMSO) and media control treatments also failed to increase eIF2α phosphorylation. 

Treatment with aaSA compounds increased eIF2α phosphorylation at 100X 

concentration, with the exception of L-LeuSA, L-IleuSA and L-AsnSA. At the lower 

concentration (10x of EC50), only treatment with L-Asp resulted in increased eIF2α 

phosphorylation. These results, together, demonstrate that aaSA treatment induced the amino 

acid starvation pathway through direct inhibition of the corresponding PfaaRS, with few 

exceptions. 

Taken together, the results allow the prioritization of the ARS, HRS, TRS, FRS and PRS 

as the top five enzymes for further exploration as drug targets in blood stage malaria. 

Furthermore, the HRS, FRS and PRS are identified as the top three enzymes for further 

exploration as potential dual-stage drug targets. 

 

3.4 Develop	Hybrid-Halofuginone	Derivatives	with	High	Parasite	Specificity	

Within the scope of our efforts to help address the unmet medical need for novel 

antimalarials, we have designed a new chemical cPRS inhibitor series that potentially satisfies 

the development criteria of a lead candidate based on potency, selectivity, in vivo pharmacology 

and efficacy in blood and liver stage P. berghei mouse model. 

It is highly desirable to identify additional cPRS inhibitor chemotypes with alternate 

binding modes, as they provide additional opportunity to develop inhibitors with selectivity over 

the host cPRS homolog. Furthermore, such compounds may retain activity should resistance 

emerge to halofuginol-derived drugs or potentially show a lower propensity to generate 

resistance. 

We aim to develop cPRS inhibitor classes that follow a “traditional” tRNA inhibitor 

design, including targeting the adenosyl-binding pocket. We expect that this strategy will allow 
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us to exploit structural differences between the parasite and host proteins that are not utilized by 

HFol and therefore offers potential to gain high selectivity over the host PRS homolog.  

Taking into account the recently published crystal structure of PfPRS with HFG, we 

propose a structure-based rational design that aims to exploit the three potential target sites in 

aaRS, which may offer a way to explore the structural differences between the human and 

Plasmodium proteins.7 Furthermore, this approach is inspired by the unique complex formed by 

HFG/HFol and ATP in the active site of EPRS. Halofuginone and halofuginol establish a strong 

hydrogen bond between the hydroxyl-group of the piperidine substituent and the α-phosphate of 

ATP. Our preliminary modeling studies show a very good overlap between the proposed hybrid 

compounds and the parent complex (Figure 3.16).  
 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 – (A) Hybrid-analog design; (B) Overlay of ATP-halofuginone complex (green) with hybrid 

structure (gray) using an acetamide linker. 

 

Thus, we propose to synthesize both halofuginone- and halofuginol-adenosyl hybrid 

molecules by replacing the triphosphate of ATP with an appropriate linker to join both ligands 

(Figure 3.17). The hybrid molecules that have been designed enable direct comparison between 

the halofuginone and halofuginol based hybrids, as well as the different points of attachment 

with the adenosyl-substituent.  
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Figure 3.17 – Hybrid-halofuginone derivatives designed. 

 

3.4.1 Chemical	Synthesis	Strategy	
As depicted in Figure 3.18, the retrosynthetically deconstruct shows that the desired 

hybrid compounds can be obtained by coupling with adenosine after reaction of the 4-

quinazolone and the piperidine epoxide, according to what has been cited in the literature.370 

Containing all the necessary functional groups with desired stereochemistry, the β-amido alcohol 

represents a suitable precursor for the key intermediate, piperidine epoxide. The amido alcohol 

can be derived from N-tert-butanesulfinyl imine and TBDPS-protected hydroxyaldehyde by 

employing SmI2-mediated reductive cross-coupling.  
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Figure 3.18 – General retrosynthetic scheme of hybrid-halofuginone derivatives. 

 

3.4.2 Synthesis	of	Halofuginone	Hybrid	Analogs	
The synthesis of the hybrid analogs started with the preparation of the β-amido alcohol 

through a convergent approach using commercially available materials (Scheme 3.3), following 

published procedure by Lin and co-workers.370 Many approaches have been described in the 

literature to synthetize febrifugine and its derivatives, nonetheless this is enatioselective and 

compatible with the introduction of the adenosine moiety. In one of the branches we started with 

the mono-protection of 4-butanediol using TBDPSCl followed by Swern oxidation to afford 

aldehyde 3.65 in 93% yield. On the other branch of the convergent synthesis, the commercially 

available primary alcohol (S)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethanol, was subjected to 

oxidation under Swern’s conditions to afford crude aldehyde which, without further purification, 
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was treated with Ellman’s reagent to afford imine 3.64 in 40% overall yield.  

 

 

 

 

 

 

 

Scheme 3.3 – Synthesis of the β-amido alcohol. Reagents and conditions: a) DMSO, (COCl)2, Et3N, 

DCM, -60 °C, 3 h, 67%; b) (S)-tert-Butanesulfinamide, anhydrous CuSO4, DCM, r.t., 12 h, 59%; c) 

TBDPSCl, imidazole, DMAP, DCM, r.t., 12 h, 50%; d) SmI2, t-BuOH, THF, -78 °C, 58%. 

 

With both, the imine 3.64 and aldehyde 3.65 in hand, we moved on to the crucial SmI2-

mediated reductive cross-coupling reaction (Scheme 3.3). Initial attempts did not afford the 

coupling product, due to degradation of the SmI2 reagent. Using the Hilmersson method to 

synthetize SmI2 we found that the formation of the coupling reagent is remarkably resilient to the 

presence of water and oxygen, however upon contact with metal needles it would degrade within 

a couple of minutes. Furthermore, examination of the literature suggests that commercial 

solutions of SmI2 in THF vary significantly in concentration from the advertised value, where the 

average concentration was found to be 0.04M, instead of 0.1M.371 Thus, the initial attempt to 

synthetize the amido alcohol 3.66 failed likely due to the unexpected lower concentration of 

SmI2 (Entry 1, Table 3.4). Next, we increased the amount of equivalents of SmI2 in an attempt to 

form the desired product, which resulted in a low yielding reaction (Entry 2). The packaging of 

the reagent being used had a sure/seal ™, which led to the use of needles to add the reagent to 

the reaction mixture, resulting in increased degradation of the SmI2. Moreover, the literature 

examined suggested that a specific commercial source of SmI2 (Strem Chemicals) had an 

increased concentration relative to the other sources. Thus, we acquired the SmI2 solution from 

the new source, increased the amount of SmI2 added to the reaction mixture, as well as, avoided 

the use of needles to handle the reagent, which resulted in increased yield (Entry 3). Since we 

were successful in increasing the reaction yield, next we investigated the possibility of 
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decreasing the amount of SmI2 (Entry 4) and increasing the reaction scale (Entry 5), which 

resulted in comparable yields (Table 3.4). 

 

Table 3.4 – Optimization of SmI2-mediated reductive cross-coupling reaction. 

Entry 

SmI2 (0.1M) 

Solvent 
Sure/Seal™ 

Package 

Addition 

via 

Needle 

Scale 

(mg) 

Yield 

(%) Source Equiv. 

1 Sigma aldrich 2.1 THF ✓ ✓ 100 - 

2 Sigma aldrich 4.2 THF ✓ ✓ 100 20% 

3 Strem 6.5 THF ✕ ✕ 380 50% 

4 Strem 3.2 THF ✕ ✕ 380 52% 

5 Strem 2.3 THF ✕ ✕ 1000 58% 

 

After synthesis of the β-amido alcohol 3.66, the key intermediate piperidine epoxide can 

be obtained following 8 steps, first the β-amido alcohol is converted to the N-sulfonyl piperidine 

(Scheme 3.4), which is then converted to the piperidine epoxide as shown in Scheme 3.5. 

The newly formed hydroxyl group in the β-amido alcohol was first converted into benzyl 

ether 3.67 or tert-butyl acetate 3.68, in 52% and 44% yield, respectively, by treatment with 

sodium hexamethyldisilazide (NaHMDS) in THF. Subsequent exposure of each of the 

sulfonamides to meta-chloroperoxybenzoic acid (mCPBA) afforded compounds 3.69 and 3.70 in 

99% and 98% yield, respectively. The silyl group was successfully removed with 

HF/pyridine/THF (1:2:7), resulting in the free hydroxyl intermediates 3.71 and 3.72, in 77% and 

78% yield, respectively. Next, the free hydroxyl group was activated with methanesulfonyl 

chloride (MsCl) under basic conditions followed by cyclization with NaHMDS in THF, 

providing the N-sulfonyl piperidines 3.75 and 3.76 in 60% and 51% yield, respectively, over 2 

steps (Scheme 3.4).  
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Scheme 3.4 – Synthesis of the N-sulfonyl piperidine. Reagents and conditions: a) RBr, NaHMDS, THF, -

20 °C, 16 h; b) MCPBA, DCM, r.t., 3 h; c) HF/Pyridine, THF, r.t., 16 h; d) MsCl,, DIPEA, DCM, -78 °C, 

3 h; e) NaHMDS, THF, -20 °C, 16 h.   

 

To convert the N-sulfonyl piperidine into the key intermediate piperidine epoxide, three 

additional steps are required (Scheme 3.5). First, we optimized the deprotection conditions by 

evaluating three acidic catalysts, camphorsulfonic acid (CSA), p-toluenesulfonic acid (TsOH) 

and pyridinium p-toluenesulfonate (PPTS). The latter, a mild acidic catalyst, afforded the desired 

diol in higher yield compared to the others. Thus, compounds 3.75 and 3.76 were exposed to 

PPTS in methanol to give diols 3.77 and 3.78, which were converted to epoxides 3.81 and 3.82 

in 98% and 91% yield, by sequential monotosylation and then base-induced cyclization.  

 

Scheme 3.5 – Synthesis of the piperidine epoxide. Reagents and conditions: a) PPTS, MeOH, 60 °C, 16 

h; b) TsCl, Bu2SnO, Et3N DCM, r.t., 3 h; c) DBU, DMC, r.t., 16 h; 
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To prioritize our efforts, we chose to progress with the synthetic scheme using the tert-

butyl acetate derivative since it would enable access to two of the desired final hybrid 

compounds. Once the key intermediate piperidine epoxide is obtained the desired halofuginol-

hybrid analog can be synthetized in five steps following Scheme 3.6. Compound 3.82 was 

reacted with the halogenated 4-quinazolone in the presence of potassium hydride to give alcohol 

3.83 in 84% yield, which in turn was treated with 6 M HCl/MeOH, resulting in 

transesterification and amine deprotection, followed by Boc re-protection furnishing 3.85 in 28% 

yield, over two steps. The resulting Boc protected ester was saponified with LiOH in methanol, 

yielding the desired carboxylic acid intermediate 3.86, by LC/MS analysis.  
 

 

 

 

 

 

 

 

 

 

 

Scheme 3.6 – Synthesis of the piperidine epoxide. Reagents and conditions: a) KH, 4-quinazolone, DMF, 

80 °C, 72 h; b) 6 M HCl/MeOH, r.t., 3 h; c) Boc2O, DIPEA, r.t., 5 h; d) 1 M LiOH, 60 °C, 5 h. 
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3.5 Characterize	 the	 Biology	 of	 cPRS	 Inhibition	 and	 Amino	 Acid	 Starvation	

Response	

Understanding the mode of action, systemic responses and mechanisms of resistance to 

novel antimalarials is critical for future therapeutic development efforts, as it will allow to better 

evaluate the potential of new drug targets, address possible issues early in the drug development 

process, help to guide the preclinical drug development process and inform the design of 

treatment strategies. 

Our preliminary data has demonstrated that PfcPRS is the target of HFG and further 

identifies the AAR pathway as a potential downstream consequence of treatment. Like direct 

amino acid deprivation, inhibition of aaRSs results in the accumulation of uncharged tRNA, 

which in turn binds and activates the eIF2α kinase GCN2 as the central control element of the 

conserved Amino Acid Starvation Response pathway, as mentioned (Chapter 3, Section 

3.3.3).283, 372 Recent work by our group in P. falciparum has also demonstrated that amino acid 

starvation results in a broad transcriptional perturbation.7-8, 206 Research has confirmed the 

existence of a functional AAR in P. falciparum’s intraerythrocytic stage and demonstrated the 

phosphorylation of eIF2α in response to isoleucine starvation (the sole amino acid that can be 

fully depleted as it is the only amino acid that is absent from hemoglobin).280-281 However, 

treatment with isoleucine tRNA synthetase inhibitors unexpectedly did not induce eIF2α 

phosphorylation.281 

We have demonstrated in the first section of this chapter that induction of eIF2α 

phosphorylation is not common to all tRNA synthetase inhibitors in P. falciparum Dd2 strain. 

Moreover, in P. falciparum cultures, HFG and ProSA induced eIF2α phosphorylation in a 

similar manner. Nonetheless, in mammalian cells, halofuginone induced phosphorylation to a 

higher extent then ProSA, when compared to the amino acid starvation controls (data not 

published). To fully understand the latter outcome we must further comprehend the mode of 

action of the two different PRS inhibitors, thus we propose to characterize the enzyme-inhibitor 

complex formed by each of these two inhibitors, to gain insights that could justify the observed 

difference. 

Under physiological conditions aminoacylation proceeds in two main steps, in the first 

step the amino acid is adenylated by reaction with ATP to yield aminoacyl adenylate and 

pyrophosphate. The aminoacyl adenylate remains tightly bound to the aaRS until the aa-AMP-
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aaRS complex encounters a tRNA molecule, which fits in the tRNA binding pocket and accepts 

the activated amino acid. The charged tRNA is released to continue protein translation (Figure 

3.19a). We hypothesize that in the presence of ProSA, a transition sate analog, the enzyme will 

remain in a high-affinity state, where the compound occupies both ATP and amino acid binding 

pockets. This complex will scavenge the tRNA molecules to form a stable tRNA-enzyme-

inhibitor complex (Figure 3.19b). In contrast, HFG occupies the tRNA and proline binding 

pockets and forms a ternary complex with ATP bound to the prolyl tRNA synthetase. In this case 

the uncharged tRNA is unable to interact with the enzyme and will accumulate in the cell 

resulting in activation of the amino acid starvation response (Figure 3.19c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 – Aminoacylation of PRS. a) Aminoacylation of PRS under physiological conditions; b) 

Treatment with ProSA results in trapped uncharged tRNA; c) Treatment with HFG results in free 

uncharged tRNA wich in turn activates the amino acid starvation response. 

	
To test our hypothesis we will apply a two-step proteomic approach to isolate the protein 

complex using immunoprecipitation followed by identification of its components using mass 

spectrometry. 
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We expect to obtain detailed mechanistic insights in the biology underlying cPRS 

inhibition through the two different types of inhibitors. We anticipate that our findings will not 

only provide a better understanding of the amino acid starvation response in Plasmodium, but 

will also validate both cPRS specifically and the amino acid starvation response generally as 

pharmaceutically tractable and attractive targets for malaria drug discovery. 

 

3.5.1 Methodological Approach 

In the post-genomic era, the importance of protein–protein interactions is becoming even 

more apparent. We are coming to recognize that most, if not all, catalytic and regulatory 

pathways operate as networks, with frequent and extensive input from signaling pathways, 

feedback, and cross-talk. Owing to the central importance of protein–protein interactions (PPIs) 

in biology, methods have been developed to study multiple aspects of PPIs.373 The identification 

of the components of protein complexes can be obtained by shotgun proteomics using affinity 

purification coupled to mass spectrometry. Affinity purification combined with mass 

spectrometry (AP-MS) has emerged as a particularly attractive method for PPI mapping. A major 

advantage is that this method allows unbiased detection of PPIs under physiological conditions. 

Importantly, AP-MS can assess PPIs in relevant biological contexts such as mammalian cell lines 

or even tissues. Moreover, AP-MS experiments have the advantage that they can provide 

quantitative information.374  

The most commonly used technique for isolating protein complexes using affinity 

purification is Co-Immunoprecipitation (Co-IP), which usually employs ectopically expressed 

tagged bait proteins. In this methodology, the protein of interest and any complex it forms in the 

cell are recovered by the use of high affinity reagents (e.g. antibodies or peptides coupled to 

beads) to the tag. This reliable and flexible approach has been applied in a range of biological 

contexts to study both small protein complexes as well as global protein–protein interaction 

networks.375  

Here, we report the attempted optimization of the co-immunoprecipitation of the PRS 

complex with and without inhibitor treatment.  

First, we tested the general method of affinity purification by Co-IP using His-tag 

coupled metal magnetic beads. These Dynabeads® are coated in a cobalt-based Immobilized 
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Metal Affinity Chromatography (IMAC) chemistry, which binds histidine-tagged proteins with 

higher selectivity. 

We chose two orthogonal systems to test the pull-down conditions, the protein ladder 

(Novex® Sharp Pre-Stained Protein Standard) which has His-tagged proteins (Figure 3.20A), 

and pure His-tagged HDAC8 (Figure 3.20B). In both cases, the Dynabeads® His-Tag protocol 

was followed and the His-tagged proteins were successfully isolated. Samples obtained by 

affinity purification were loaded on SDS-PAGE and differential bands between samples were 

identified by Coomassie blue staining and western blot analysis. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 – Affinity purification with Dynabeads®. Reducing SDS-PAGE (NuPAGE® Novex® 4-12% 

Bis-Tris Gels) stained in coomassie brilliant blue of two representative experiments performed with the 

protein ladder (A) or His-tagged HDAC8 (B). A) Lane 1: Novex® Sharp Pre-Stained Protein Standard; 

Lane 2: Supernatant; Lane 3: pull-down; B) Lane 1: Supernatant; Lane 2: pull-down in coomassie 

brilliant blue; Lane 3: pull-down in western blot. 

 

3.5.2 Studies	in	Yeast	Cultures	
Saccharomyces cerevisiae PRS (ScPRS, YHR020w) is very similar to the P. falciparum 

cPRS and H. sapiens EPRS. Within the core Class II catalytic domains, the yeast PRS shares 

HDAC8 
-41kD 

A B 
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77% and 70% similarity with human and plasmodium enzymes, respectively. Despite the high 

similarity, we discovered that S. cerevisiae was not sensitive to halofuginone. This allowed us to 

use a yeast model for both target confirmation of halofuginone and validation of the resistance 

phenotype of the mutant alleles identified in our drug resistance selections, in our previous 

work.7 

Our group has performed a complementation test of PfcPRS in S. cerevisiae. We deleted the 

chromosomal copy of ScPRS, an essential gene and the only locus that codes for a prolyl tRNA 

synthetase in S. cerevisiae. We found that episomal expression of PfcPRS could complement the 

ScPRS knock-out strain. Next, we generated transgenic yeast strains that would express only 

ScPRS, wild-type and mutant PfcPRS, respectively (Figure 3.21A). The constructs included a 

His-tag fused protein on the N-terminus of PfcPRS, which allowed the use of His as bait in the 

pull-down experiments. While all strains exhibit comparable growth characteristics, only the 

wild type PfcPRS-expressing strain displayed a dose-dependent sensitivity to halofuginone 

treatment (Figure 3.21B).7  

 

Figure 3.21 – A heterologous yeast model. (A) The +/− YHR020w (ScPRS) heterozygous strain of S. 

cerevisiae was transformed with a YHR020w-containing plasmid, and haploid spores were selected for 

genomic deletion of YHR020w. The intermediate strain was transformed with a second plasmid with an 

orthogonal selection marker and YHR020w, wild-type PfcPRS (codon-optimized) or mutant PfcPRS 

(codon-optimized), and was subsequently selected for loss of the first plasmid. (B) Only transgenic S. 

cerevisiae expressing wild-type PfcPRS (green) displayed dose-dependent sensitivity to halofuginone, 

whereas strains expressing ScPRS (blue) or the L482H PfcPRS mutant (red) were insensitive to 

halofuginone treatment up to 100 mM (all strains were pdr1,3-deleted). The control compound MAZ1310 

did not affect growth of PfcPRS expressing yeast (orange). (Work done by another member of our 

group)7 
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Next, using these constructs with a His-tag fused protein on the N-terminus of PfcPRS, 

we optimized the pull-down experiments, the first step in our proteomic approach. Thus, aiming 

to isolate the protein complex, to identify its components thereafter using mass spectrometry. 

 

Co-immunoprecipitation Optimization 

Preliminary studies were performed to identify the best conditions for cell lysis following 

standard protocol the pump-deleted yeast strains were grown overnight in assay media at 23 °C, 

after which either 10 µM halofuginone, 10 µM ProSA or a corresponding volume of DMSO was 

added to cultures, which were then grown at 30 °C for six hours. Yeast pellets were made from 

different amounts of yeast ranging from 10-50 mL (Table 3.5). After pellets were formed, they 

were washed with water and resuspended in 1 mL of lysis buffer, followed by addition of 

corresponding volume of beads. Pellets were bead beaten using one of three techniques for 

increasing periods of time, at 4 °C (Table 3.5).  

The initial attempts to lyse the yeast strains relied on the use of the vortex for the bead 

beating step (Entry 1-4). Increasing amount of yeast, as well as longer duration of lysis was 

tested using acid washed beads, however after SDS-PAGE separation PfPRS band was absente 

in both western blot analysis and commassie blue staining. Next, the mini Bead Beater96 was 

used for lysis with acid washed beads (Entry 5-11). Increasing the amount of yeast from 10 to 50 

mL using the same lysis duration did not result in identification of PfPRS band. Furthermore 

decreasing durations of lysis were tested (Entry 7-10) in an attempt to decrease the other bands 

present, which might indicate degradation of the desired protein. PfPRS was not identified in any 

of the entries and the amount of undesired proteins present plateaued after 2 min of lysis (Entry 

9). 

 

 

 

 

 

Table 3.5 – Optimization of yeast lysis. 
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Entry 
Yeast 

(mL) 

Bead Beating Time 

(Min.) 

Western Blot 
Coomassie 

Blue 

Bead Beater Beads PfcPRS Other PfcPRS Other 

1 10 Vortex Acid washed 5 ✕ ✓ ✕ ✓ 

2 50 Vortex Acid washed 5 ✕ ✓ ✕ ✓ 

3 50 Vortex Acid washed 30 ✕ ✓ ✕ ✓ 

4 50 Vortex Acid washed 60 ✕ ✓ ✕ ✓ 

5 10 Bead Beater96 Acid washed 5 ✕ ✓ ✕ ✓ 

6 50 Bead Beater96 Acid washed 5 ✕ ✓ ✕ ✓ 

7 50 Bead Beater96 Acid washed 4 ✕ ✓ ✕ ✓ 

8 50 Bead Beater96 Acid washed 3 ✕ ✓ ✕ ✓ 

9 50 Bead Beater96 Acid washed 2 ✕ ✓ ✕ ✓ 

10 50 Bead Beater96 Acid washed 1 ✕ ✓ ✕ ✓ 

11 50 
Bead 

Beater96 
Acid washed 2a ✕ ✓ ✕ ✓ 

12 50 
FastPrep-

24™ 
Acid washed 40 s ✕ ✓ ✕ ✓ 

13 50 
FastPrep-

24™ 
Matrix A 40 s ✓ ✓ ✕ ✓ 

14 20 
FastPrep-

24™ 
Matrix A 3X40 s ✕ ✓ ✕ ✕ 

15 30b FastPrep-

24™ 
Matrix A 40 s ✕ ✓ ✕ ✕ 

16 30b 
FastPrep-

24™ 
Matrix A 3X40 s ✕ ✓ ✕ ✕ 

aEthanol Lysis buffer; bOD600 0.01 

 

Additionally a different lysis buffer was unsuccessfully used under the same conditions 

(Entry 11). To continue our efforts to establish lysis conditions, which would render enough 

PfPRS to move forward with the pull-down experiments, we tested a third instrument for the 

bead beating step. The FastPrep-24™ instrument is a high-speed reciprocating homogenizer with 

lysing matrix beads specific for protein isolation from yeast samples. In entries 12 and 13 the 

FastPrep-24™ was used under the same conditions with exception of the type of beads used. 
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When using the matrix A beads with one lysis cycle of 40 s (Entry 13), PfPRS band was present 

after western blot analysis (Figure 3.22) but absent in the commassie blue staining, indicating 

that the amount of protein present was below the stain’s sensitivity. 

 

 

 
 

 

 

 

 

 

Figure 3.22 – Western blot analysis of PfcPRS after treatment with 10 µM halofuginone, 10 µM ProSA or 

with corresponding volume of DMSO. Yeast pellets were lysed using one of two instruments; FastPrep-

24™ or Mini BeadBeater96. Each blot is representative of two independent replicates.  

 

In an attempt to further increase the amount of PfPRS isolated, the number of lysis cycles 

was increased (Entry 14 and 16) and the yeast were treated at log phase of growth (Entry 15 and 

16). Neither strategy yielded the desired result. The presence of other bands in all entries 

indicates that the lysis was potentially efficient despite the desired protein not being present or 

present in small amounts. Taken together we concluded that only a small amount of PfPRS was 

produced in these strains, and it was stable in very specific conditions, which would point to 

revising the plasmid used for complementation of PfcPRS in S. cerevisiae. 

Having investigated the best conditions for lysis, next we studied the conditions for co-

immunoprecipitation of the PfPRS complex. First, we tested the general method of affinity 

purification using the His-tag coupled metal magnetic beads used before. The Dynabeads® were 

incompatible with components of the lysis buffer which required dialysis prior to the pull down 

experiment. Three different sized Amicon ultra-0.5 centrifugal filters were used (30 KDa, 50 

KDa and 100 KDa) for buffer exchange. Samples were loaded on SDS-PAGE and PfPRS band 

was not identified by commasie blue staining or western blot analysis. To avoid the buffer 

exchange step in this protocol we repeated the general method of affinity purification using the 

His-Tag (27E8) mouse mAb magnetic bead conjugate.  

Lysis FastPrep-24 Mini-Bead Beater96 

Drug - HFG PRSA - HFG PRSA 

PfcPRS 
87kD - 
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Preliminary experiments using 10 µM halofuginone, 10 µM ProSA or a corresponding 

volume of DMSO were done to test the conditions optimized thus far. The standard protocol for 

the pump-deleted yeast strain growth and drug treatment was followed. Samples were lysed 

according to conditions in Table 3.5 -Entry 13. Next, to 200 µL of cell lysate was added 10 µL of 

the His-Tag antibody magnetic bead conjugate, which incubated overnight at 4 °C. After 

washing the beads 3-4 times, proteins were eluted from the beads using denaturing conditions 

(SDS). Samples were analyzed by western blot, which revealed the PfPRS band.  

To characterize the enzyme-inhibitor complex formed by the different types of inhibitors 

with PfPRS, and identify its components, both the lysis and co-immunoprecipitation should be 

done under non-denaturing conditions to enable the pull-down of the intact complex. Thus, non-

denaturing conditions were tested to elute the complex from the His-Tag antibody magnetic 

beads. One of three common methods was used to elute the complex from the beads. The SDS 

buffer is the harshest, which will also elute non-covalently bound antibodies and antibody 

fragments along with the protein of interest, and may result in separation of the complex 

components. The Glycine buffer gently elutes the protein with reduced amount of eluted 

antibody, while the His elution buffer consists on less stringent conditions thus yielding more 

functional isolated proteins. As seen above, elution of the protein under denaturing conditions 

resulted in identification of a band at about 90 kD by western blot analysis, while the other two 

elution methods failed to do so (Figure 3.23). The corresponding band was absent when using 

the commassie blue stain.  

 

 

 

 

 

 

Figure 3.23 – Western blot analysis of PfcPRS following pull-down experiments using three different 

bead elution buffers.  

 

Nonetheless, based on western blot analysis, bands were excised from the commassie 

blue stained gel and sent for mass spectrometry analysis. When analyzing the peptides identified 

Bead Elution 
Buffer SDS His Glycine 

PfcPRS 
87kD - 
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from the samples it was evident that the PfPRS protein was not being isolated, underscoring the 

potential problem associated with the efficient transcription of the plasmid used in the 

complementation of PfcPRS in S. cerevisiae.  

Within the scope of our efforts to help establish optimal conditions for co-

imunoprecipitation of the PRS complex we decided to apply the same principles and techniques 

using a mammalian cell line. 

 

3.5.3 Studies	in	Mammalian	Cells	
In previous work, we have also shown that febrifugine and its derivatives activate the 

AAR in mammalian cells by directly inhibiting the prolyl-tRNA synthetase activity of glutamyl-

prolyl-tRNA synthetase (EPRS). The derivatives compete with proline for the prolyl-tRNA syn-

thetase active site, causing the accumulation of uncharged tRNAPro and mimicking reduced 

cellular proline availability. Our group has demonstrated that, in the absence of true nutritional 

deficit, febrifugine-derived compounds block EPRS activity to send intracellular signals 

indicative of proline limitation, activating the AAR pathway and thereby reproducing a key 

component of the beneficial effects of caloric restriction.8  

Based on the validation of EPRS as the molecular target of febrifugine and analogs, we 

turned our interest to understanding the biology underlying EPRS inhibition through the two 

different types of inhibitors in a mammalian model. To test our hypothesis we will apply the 

same two-step proteomic approach to isolate the protein complex using immunoprecipitation 

followed by identification of its components using mass spectrometry. 

 

Co-immunoprecipitation Optimization 

Preliminary studies were performed to identify the best conditions for cell lysis. First we 

used RIPA buffer, a harsher more reliable buffer, next we used a native lysis buffer, which 

allows the protein to be isolation in its active form, thus remaining in complex with all its 

components. The results by western blot analysis were comparable in both cases. Furthermore 

the amount of EPRS present in the MCF-7 cell line using the native lysis buffer was assessed 

(Figure 3.24). 
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Figure 3.24 – Western blot analysis of EPRS following native lysis of MCF7 cell line. Increasing 

amounts of lysate loaded on the SDS-PAGE gel. GAPDH was used as loading control. 

 

To probe for the induction of the AAR, we have treated MCF7 cells with halofuginone, 

halofuginol, ProSA, or equivalent amount of DMSO and quantified the amount of eIF2α and p-

eIF2α by Western blot analysis relative to untreated cells (Figure 3.25). 

 

 

Figure 3.25 – Differential induction of eIF2α phosphorylation in MCF-7 cells. Western blot analysis of p-

eIF2α and total eIF2α protein in drug-treated cultures relative to DMSO treated cultures. Each blot is 

representative of two independent replicates. Both DMSO and drug-treated cultures had similar amount of 

eIF2α. Halofuginone and halofuginol induce phosphorylation of eIF2α after 90 minutes treatment, while 

ProSA is comparable to DMSO treated cultures. 

	
Halofuginone and halofuginol treatment significantly increased eIF2α phosphorylation 

compared to untreated cultures. ProSA, like DMSO control treatment failed to increase levels of 

eIF2α phosphorylation. The deferential activation of AAR observed by the two types of 

inhibitors is consistent with our hypothesis that in the presence of ProSA, the enzyme-inhibitor 

complex will scavenge the tRNA molecules to form a stable tRNA-enzyme-inhibitor complex 

Drug - HFG HFol PrSA - HFG HFol PrSA 

µM - 1 1 10 - 1 1 10 

eIf2α 
36kD - 

p-eIf2α 
36kD -  
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whereas, HFG occupies the tRNA and proline binding pockets forming a ternary complex with 

ATP, which leads to accumulation of uncharged tRNA in the cell resulting in activation of the 

amino acid starvation response. 

Following standard protocol for SYBR® Gold nucleic acid gel stain we established a 

calibration curve for tRNA detection, which identified how much tRNA would be detectable 

when analyzing the samples obtained from the co-immunoprecipitation experiments (Figure 

3.26). Despite the fact that the amount of tRNA isolated in the protein complex via co-

immunoprecipitation is potentially below the detection limit of the SYBR® Gold stain method, 

we decided to move forward with the affinity purification experiments because the samples 

isolated would be analyzed by mass spectrometry, which is a more sensitive technique. 

 

 

Figure 3.26 – Yeast tRNA calibration curve on SDS-PAGE using SYBR® Gold stain as detection 

method. 

 

Having established the best conditions for native lysis, next we optimized the conditions 

for co-immunoprecipitation of the EPRS complex. Immunoprecipitation can be performed by 

two different methods using antibodies. We tested both methods using the Protein A coupled 

magnetic beads. In the first approach the anti-glutamyl prolyl tRNA synthetase antibody 

(ab31531) is added to the lysate and allowed to interact with the protein overnight, followed by 

addition of the Protein A Dynabeads®. In the second approach the antibody is allowed to bind to 

the Protein A coupled magnetic beads first, followed by addition to the cell lysate. In both 

methods samples were loaded on SDS-PAGE and western blot analysis revealed the presence of 

EPRS. Nonetheless, the latter approach resulted in less isolated protein when compared to the 

other approach, thus the following experiments were done according to the first method. As 

mentioned in the above section to characterize the enzyme-inhibitor complex formed with EPRS 

when treated with the different inhibitors, and to identify its components, both the lysis and co-

immunoprecipitation should be done under non-denaturing conditions to enable the pull-down of 

µg 0.2 0.3 0.6 1.3 2.6 5.1 10.2 20.5 41 81.2 

Yeast tRNA 
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the intact complex. Thus, non-denaturing conditions were tested to elute the complex from the 

magnetic beads. The SDS buffer is the harshest and will also elute non-covalently bound 

antibodies and antibody fragments along with the complex components, which mostly likely 

disaggregates under these conditions. Both the glycine buffer and the Protein A Dynabeads® 

elution gently elutes the protein with reduced amount of eluted antibody. Elution of the protein 

using the glycine buffer as well as under denaturing conditions resulted in identification of a 

band at about 163 kD by western blot analysis, while the other elution method failed to do so. 

Moreover, we analyzed how associating the different methods of lysis, immunoprecipitation and 

elution would ultimately affect the amount of isolated protein. When using RIPA buffer or native 

lysis buffer, the first immunoprecipitation approach yielded higher amounts of isolated protein in 

both cases. In each of the latter cases the three different elution buffers were also tested and the 

results were consistent among the experiments. Nonetheless, only one set of conditions resulted 

in identification of the EPRS band in both western blot analysis and Coomassie blue stain.  

Preliminary experiments using 1 µM halofuginone, 10 µM ProSA or a corresponding 

volume of DMSO were done to test the conditions optimized thus far. The standard protocol for 

the MCF-7 culture growth and drug treatment was followed. Samples were lysed using the native 

lysis buffer. Next, to 250 µL of cell lysate was added 2.5 µL of the anti-glutamyl prolyl tRNA 

synthetase antibody, which incubated overnight at 4 °C. Followed by incubation with 35 µL of 

Protein A Dynabeads® for 4 h at 4 °C. After washing the beads 3-4 times, proteins were eluted 

from the beads using denaturing conditions (SDS). Samples were analyzed by western blot, 

which revealed the EPRS band (Figure 3.27).  

 

 

 

 

 

 

Figure 3.27 – Western blot analysis of EPRS following co-immunoprecipitation. MCF-7 cells were 

treated with 1 µM halofuginone, 10 µM ProSA or a corresponding volume of DMSO. Each blot is 

representative of two independent replicates. 
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To increase the amount of EPRS isolated, in the ratio of cell lysate to antibody was 

increased as well as the quantity of magnetic beads used.  

Next, cultures were treated with 10 µM ProSA or a corresponding volume of DMSO for 

2 h at 37 °C. Samples were lysed using non-denaturing conditions. To 450 µL of cell lysate was 

added 2.5 µL of the anti-glutamyl prolyl tRNA synthetase antibody, which incubated 

overnight at 4 °C. Followed by incubation with 50 µL of Protein A Dynabeads® for 4 h at 4 °C. 

After the beads were washed, proteins were eluted under denaturing conditions (SDS). Samples 

were loaded on 4–20% SDS-PAGE gel and analyzed by western blot, commassie blue stain and 

SYBR® Gold stain (Figure 3.28). Both lysate and supernatant from the pull-down experiment 

was analyzed. Western blot analysis revealed increased amount of EPRS in the lanes where pull-

down sample was loaded versus lysate. In the commassie stained gel it is apparent that the lysis 

is efficient, since the lanes where lysate was loaded a smear of proteins is observed. The lanes 

where the supernatant was loaded reveal a small band consistent with EPRS, nonetheless the 

amount of protein isolated does not seem sufficient for mass spectrometry analysis (Figure 

3.28a).  
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Figure 3.28 – MCF-7 cells treatement with 10 µM ProSA or a corresponding volume of DMSO. a) 

Western blot analysis of EPRS and commassie blue stained gel with potential EPRS band indicated with 

an arrow. b) SYBR® Gold stain of the same gel shows non-specific nucleic acid bands present in pull-

down lanes (Lane 2 and 3) and absence of bands consistent with tRNA. Each blot is representative of two 

independent replicates. 

	
Furthermore, the SYBR® Gold stain of this gel (Figure 3.28b), shows that even after the 

pull-down experiment there is still a significant amount of non specific nucleic acid bands in the 

sample as well as absence of a band consistent with tRNA migration, which may indicate that the 

amount of tRNA isolated is under the detection limit and underscores the need to further 

optimize the efficiency of the co-immunoprecipitation, as well as potentially use alternative 

methods for tRNA detection. 

The preliminary results obtained thus far are consistent with our hypothesized model, 

nonetheless additional optimization is required to establish this technique. Therefore further 

work needs to be done towards increasing the amount of the enzyme-inhibitor complex isolated 
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to meet the detection requirements of the techniques used, and explore alternative approaches 

that might be more sensitive. 

 

3.5.4 Discussion and Conclusion 

The need for new targets for anti-malarial drug development is universally recognized, 

and many have been proposed. However, well-defined, pharmacologically practical paths 

forward to new classes of drugs remain scarce. Many traditional druggable targets, such as 

kinases, proved challenging to yield promising candidate targets.376  

In addition, widespread resistance to mainstay drugs such as chloroquine, atovaquone, 

pyrimethamine, and sulfadoxine has aggravated the malaria threat.377 Most recently, the 

appearance of parasite strains resistant to artemisinis, last line of defense, has once more 

demonstrated the parasite’s ability to quickly adapt to new treatment regimens.94, 378  

Within the scope of our efforts to help address this unmet medical need, we used an 

integrated chemogenomics approach that combined drug resistance selection, whole-genome 

sequencing, and an orthogonal yeast model, to demonstrate that the cytoplasmic prolyl–tRNA 

(transfer RNA) synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a 

biochemical and functional target of febrifugine and its synthetic derivative halofuginone.7 

PfcPRS is highly conserved across Plasmodium species and related protozoan parasites, 

representing an ideal target for broad-spectrum drug development. This concept is supported by 

our recent findings that P. berghei liver stage parasites are equally susceptible to HFG.316 Thus, 

it is expected that inhibitors of cPRS will be comparably active against P. vivax, possibly also 

targeting the hypnozoite stage, which would be of critical importance for malaria elimination and 

eradication.  

Aminoacyl-tRNA synthetases and associated pathways have been proposed as attractive 

targets for chemotherapeutic intervention in malaria.252 The repertoire of aaRSs in Plasmodium 

diverges from other organisms because of the need to carry out protein synthesis in multiple 

subcellular compartments.287 Our group has established for the first time in Plasmodium that 

inhibition of tRNA synthetases by a small molecule and simultaneous activation of the integrated 

stress response is both feasible and attractive, and provides a rational mechanistic basis for future 

drug discovery and development focused on this novel target and pathway. We hypothesized that 

the inhibition of some but not all, P. falciparum aaRSs will result in activation of amino acid 
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response pathways and that inhibition of this subgroup represents an attractive approach for 

chemotherapeutic intervention in malaria. In this chapter we aimed to build on these important 

findings and in the one hand identify and biologically characterize selective small molecule 

inhibitors for the cPRS, and on the other identify novel targets within the aaRS class. This work 

has the potential to have a major impact on both basic malaria biology and applied biomedical 

research. This project was organized into three different, but complementary, objectives.  

First, to explore tRNA synthetases as novel targets in P. falciparum we designed and 

synthetized a library of 21 reaction intermediate analogs, which allowed us to profile 19 of the 

PfaaRSs as drug targets. The desired aa-AMP analogs were successfully synthetized and tested 

against three different P. falciparum strains. Our results show that most of the aaSA analogs 

were active against blood stage in vitro P. falciparum strains in the nanomolar range with no 

chloroquine cross-resistance. Among the derivatives tested, L-PheSA, L-HisSA, L-AlaSA and L-

ProSA were the analogs that exhibited higher antimalarial activity, with EC50 against the Dd2 

strain of 120 nM, 98.4 nM, 119 nM and 96.9 nM, respectively. Cytotoxicity profiling in human 

MCF-7 cell line revealed a wide range of EC50 and selectivity index among the aminoacyl-tRNA 

synthetase inhibitors tested, underscoring the potential to specifically target the parasite aaRS 

with little to no effect over the human homolog, in certain cases. Furthermore, most of the aaSA 

analogs were active against liver stage in vitro P. berghei, with >99% parasite growth inhibition 

at the higher concentration of 10 µM. aaSA compound treatment increased eIF2α 

phosphorylation at 100X concentration, inducing the amino acid starvation pathway through 

direct inhibition of the corresponding PfaaRS, with few exceptions. Taken together, the results 

allow the prioritization of the ARS, HRS, FRS and PRS as the top four enzymes for further 

exploration as drug targets in blood stage malaria. Furthermore, the HRS, FRS and PRS are 

identified as the top three enzymes for further exploration as potential dual-stage drug targets. 

Thus, underscoring the potential of the aaRS family as an attractive novel class of antimalarial 

drug targets, with some of these enzymes having potential for dual-stage activity.  

Second, to develop novel HFG based inhibitors that will serve as lead compounds in the 

preclinical development of a mechanistically unique class of malaria drugs with activity against 

both liver and blood stage life cycle stages, we designed hybrid-halofuginone derivatives based 

on the complex formed by HFG and ATP in the active site of cPRS. We followed a general 

synthetic approach developed by Lin and coworkers, with optimization of certain steps that were 
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modified to accommodate our target compounds. Despite being a concise asymmetric synthetic 

strategy, there were some challenges that had to be overcome. Nonetheless, further optimization 

efforts regarding the last two steps in the synthesis are necessary to obtain the desired hybrid 

compounds.  

The third and last objective of this chapter consisted in characterizing the biology of 

cPRS inhibition and resulting amino acid starvation response. Understanding the enzyme-

inhibitor complex formed by the different types of inhibitors would further elucidate on the 

differential effect observed on the amino acid starvation response, despite targeting the same 

enzyme. Thus, we applied a two-step proteomic approach to isolate the protein complex using 

immunoprecipitation followed by identification of its components using mass spectrometry. In 

this methodology, the protein of interest and any complex it forms in the cell is recovered by the 

use of high affinity reagents (e.g. antibodies or peptides coupled to beads) to the tag. When 

optimizing the co-immunoprecipitation of the PRS complex optimal conditions had to be 

established for lysis, immunoprecipitation and protein elution from the beads. Initially, 

experiments were optimized using the S. cerevisiae strains, which had been previously 

transformed using a complementation test of PfcPRS, by our group. The constructs included a 

His-tag fused protein on the N-terminus of PfcPRS, which allowed the use of His as bait in the 

pull-down experiments. Despite extensive optimization of lysis and co-immunoprecipitation 

conditions using this system, we concluded that only a small amount of PfcPRS was produced in 

these strains, and that it was stable only in very specific conditions, which would point to 

revising the plasmid used in the complementation experiment of PfcPRS in S. cerevisiae. 

Furthermore, based on our previous work validating EPRS as the molecular target of febrifugine 

and analogs, we turned our interest to understanding the biology underlying EPRS inhibition 

through the two different types of inhibitors in a mammalian model. Using the MCF-7 cell line, 

optimal conditions had to be established once again for lysis, immunoprecipitation and protein 

elution from the beads, to successfully isolate the EPRS complex. Complementary techniques 

were used to assist identification of the different components directly on the gel. Even though 

western blot analysis revealed EPRS isolation, the amount of protein present was not enough to 

successfully identify the complex components using mass spectrometry. Despite not being able 

to establish the protocol and prove beyond doubt that in the presence of ProSA the complex will 

scavenge the tRNA molecules to form a stable tRNA-enzyme-inhibitor complex (AAR not 
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activated), while in the presence of HFG the uncharged tRNA is unable to interact with the 

enzyme and will accumulate in the cell resulting in activation of the amino acid starvation 

response. The results obtained in MCF-7 cells are still consistent with the model proposed, thus 

more work needs to be done towards increasing the amount of the enzyme-inhibitor complex 

isolated to meet the detection requirements of the techniques used, and explore alternative 

approaches that might be more sensitive. Furthermore, the different induction levels of eIF2α 

phosphorylation by ProSA, when comparing MCF-7 cells to Plasmodium falciparum cultures, 

may be related to differences in the amounts of tRNA present in each organism.  

In our work we designed and synthetized valuable chemical tools that establish the amino 

acyl tRNA synthetases as attractive targets for the development of new classes of antimalarials 

active against both the red blood cell and liver stages of malaria. In this project we have also 

designed novel HFG analogs, the hybrid-halofuginone derivatives that target cPRS in an 

innovative form to exploit the differences between the PfcPRS and human EPRS, thus increasing 

parasite specificity. Furthermore we propose an explanation to our previous observation that not 

all aaRS inhibitors are capable of inducing the phosphorylation of eIF2α, which is a sensitive 

indicator of the starvation response and a hallmark of isoleucine withdrawal, and proposed a 

viable methodology to prove our hypothesis. Despite the need for further improvement the 

preliminary results are encouraging.  

We believe that the encouraging results obtained, combined with our published work on 

the identification of cPRS and EPRS, in P. falciparum and humans, respectively, as the 

biochemical targets of halofuginone, provides useful insights for future structure-based drug 

design efforts to identify novel inhibitors that target other aaRSs, as well as PfcPRS inhibitors 

with increased selectivity and potency. 
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4. Fluorescent	Probes	for	Target	Discovery 
 

4.1 Introduction	

Small molecule therapeutic drugs typically exert their effects through binding to one or a 

few protein targets. This critical interaction - a prerequisite of therapeutic drug efficacy - is often 

poorly understood and can generally not be visualized in live cells or entire organisms due to the 

lack of methods to directly measure drug target engagement in a biological setting. As a result, 

most of our knowledge is incomplete, as it relies on target extraction assay systems or indirect 

measurements where critical spatiotemporal information is lost, which further complicates drug 

development.227 

The challenges of discovering a compound’s MoA and subsequent validation of the 

macromolecular target have driven innovative approaches, such as the use of a nonperturbing 

chemical handle within the incorporated biomolecule, which allows for selective attachment of a 

fluorophore or affinity tag.212, 225 Thus, approaches can be used in combination with chemical 

probes, including tagged inhibitors, designed to label proteins targets within cells or cell 

extracts.379-380 Nonetheless, incorporation of bulky tags may eventually limit the probe uptake 

and circulation in living cells.380 As a result two-step labeling may also be introduced via a Cu-

catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC reaction) with a ligation handle, 

which clicks with a chemical tag after the enzyme capturing.381  

Recent advances in chemical techniques have allowed the creation of fluorescently 

labeled drugs, prodrugs and activity based probes to interrogate target engagement.4, 226, 382 

The use of fluorescently labeled small molecules has not yet been extensively exploited 

effectively for malaria drug discovery,228, 231, 383 but has potential for application to target 

validation.  

 

4.1.1 Fluorescent Probes 

Fluorescence is a three-stage process that occurs in certain types of molecules 

(fluorophores), which typically possess heterocyclic or polyaromatic structures.384 The 

fluorescent process is illustrated by Jablonski’s simple electronic state diagram (Figure 4.1) and 

can be summarized in the following sequence of transformations: 1) Excitation-photon 

absorption by a fluorophore; 2) Life time-existence of an excited state; 3) relaxation of the 
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excited state by the emission of a photon.385 It is important to note that not all excited molecules 

decay through a photon emission (i. e., fluorescence) but some of the energy dissipates through 

other mechanisms. Examples of these processes are: collisional quenching, bond rotation or 

vibration, intersystem crossing, and fluorescence resonance energy transfer (FRET) to a suitable 

acceptor molecule.386 

 
 

 

 

 

 

 

Figure 4.1 – Jablonski Diagram385: (1) absorption of a 

photon to an excited state; (2) internal conversion to excite 

state S1; (3) fluorescence. 

 

In fluorescence, the difference between the absorption maxima and the emission maxima 

is known as the Stokes shift and it is a distinct property for each fluorophore. The Stokes shift is 

essential for the sensitivity of various fluorescent techniques and often fluorophores with a small 

Stokes shift are susceptible to self-quenching. Another critical property, which determines the 

fluorescence output of a given fluorophore, is the efficiency with which it absorbs and emits 

photons, termed as the fluorescent brightness (Product of quantum yield (Φ) and molar 

extinction coefficient (ε)). The absorption efficacy is usually quantified in terms of molar 

extinction coefficient and it ranges from 5000 to 200,000 cm-1M-1. 386-387 

Fluorescence microscopy and fluorescence molecular tomography (FMT) are arguably 

amongst the most important and most powerful imaging techniques currently utilized to study 

biological systems with resolutions spanning from single molecules to whole animals.226, 388-390 

Nonetheless, the in vivo penetration capacity may pose as a limitation. Next to fluorescent 

proteins and quantum dots, small molecule fluorescent dyes have been critical components for 

the development of these approaches.385 For the observation of specific phenotypes, fluorescent 

dyes are orthogonal and often superior to alternative probe strategies due to their small size, 
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increased stability and ease of synthetic access. Furthermore, fluorescent dyes can be designed as 

probes to interrogate reactive biological species in their native environment.391 Tagging 

biologically active compounds of interest with a fluorescent tracer can enable visualization of the 

temporal and spatial perturbation of biological systems in their endogenous state, thus allowing 

to map the distribution of bound and unbound drug.227 From these agents, real-time information 

can be gathered on the cellular localization of a small molecule probe as well as other indicators, 

such as the quantitative expression levels of an intended target.392  

In chemical biology, the application of such small molecule tool compounds has been 

fruitful, allowing for the exploration of critical physiological events. Similarly, in drug 

development such fluorescent probes can serve an equally pivotal role in the mechanistic 

investigation of promising clinical candidates and already established chemotherapeutics, to 

study their function in various disease states of importance to human biology.393-394 

Fluorophores are used in many ways and include molecules with endogenous, 

fluorescence such as quinine, and many polycyclic aromatics, such as naphthalene derivatives 

(Figure 4.2). Organic fluorophores can be divided according to the absorption and emission 

wavelength values of their conjugates, thus broadly grouped into either near-ultraviolet to 500 

nm or 500 nm to near-infrared. The second group includes the most important type of 

fluorophores, such as the fluoresceins, rhodamines, BODIPY dyes, squaraines, and cyanines, 

among others (Figure 4.2).385, 395-396 
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Figure 4.2 – Plot of fluorophore brightness for the major classes of fluorophores. The color of the 

structure indicates its wavelength of maximum emission (λem). For clarity, only the fluorophoric moiety 

of some molecules is shown. (Figure adapted from Luke et al.)385 

 

The identification of an organic fluorophore that is suitable for tagging a compound of 

interest without perturbing its biomolecular activity is a critical, yet frequently problematic, 

aspect of probe development. While a wide variety of fluorescent dye classes have been reported 

in the literature, many of which are commercially available, only a few are viable for biological 

applications.385 Moreover, members of this select pool frequently suffer from at least one key 

drawback.  

For bioimaging approaches, the fluorescent tags must have an appropriate balance of 

favorable physical properties. Most importantly they should possess high brightness (the product 

of extinction coefficient to quantum yield), which ideally is independent from the molecular 

environment (e.g. polarity and pH), and exhibit good aqueous solubility while retaining a 
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favorable lipophilicity. The latter two factors are particularly critical for live cell and in vivo 

imaging as they ensure that the dye can easily diffuse through membranes and organelles with 

minimal non-specific staining of lipid membranes.397 Tied with these attributes is a necessity that 

the dye moiety remains a neutral, uncharged species in aqueous environments. Finally, the 

fluorophore should be small and provide a modular functional group for bioconjugate chemistry. 

The endpoint of these stipulations would be a chemically stable fluorophore that readily traffics 

through pertinent cellular compartments, maintains ideal optical properties in the cell, and 

possesses minimal drug-like attributes that would interfere with untangling the mechanism of the 

molecule of interest.226-227 

Recent efforts to develop fluorescent dyes that satisfy the rigorous conditions required for 

routine live cell imaging have involved in the development of non-planar cyanine fluorophores, 

which exhibit low-levels of non-specific staining in preliminary cell studies.398 Novel near-IR 

and cell-permeable fluorophores have also been robustly tested for routine live-cell imaging 

studies and point towards the importance of fluorophore development with explicit consideration 

of the eventual challenges to be faced in the imaging environment of interest.399-400 The 

importance of multiplexing fluorescent signals has also spurred innovation in small organic 

probe development such as the recently optimized second-generation multicolor 

oligodeoxyfluoroside class.401  

Yet, in our estimation, for chemogenomic applications, the difluoro-boron-

dipyrromethene dyes (BODIPYs) (4.1) (Figure 4.3) comprise the compound class that fulfills 

most of the parameters outlined for routine imaging and conjugation to small-molecule and 

protein targets of interest. BODIPYs are fluorescent on account of a highly compact boron 

dipyrromethene core and boast excellent brightness.402 Importantly, their absorption and 

emission profiles can be tuned via accessible chemistry on the dipyrromethene ligand. Finally, a 

series of substitutions on the BODIPY core scaffold have shown the relevancy of this probe class 

for two-photon imaging applications.403-404 Unfortunately, the core fluorophore of the BODIPY 

dyes and their derivatives is inherently lipophilic and thus poorly water-soluble. These physical 

attributes, while allowing for passive cellular uptake, prepossess the fluorophore (or tagged small 

molecule) into lipophilic compartments, resulting in non-specific staining of membranes and 

intracellular organelles. The typical background staining, which we attribute to the endoplasmic 

reticulum (ER) and Golgi membranes, is commonly observed with cell permeable BODIPY dyes 
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and other lipophilic dye classes. 401, 403-406 This characteristic is troublesome as it significantly 

biases cellular distribution of labeled small molecules to membranes, albeit non-specifically, and 

requires stringent washing steps to minimize background signal that is only compatible with very 

tight small molecule-target interactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 – Structures of BODIPY dyes.  

 

To counteract the main drawback of poor aqueous solubility that plague BODIPYs, 

extensive efforts have focused via the addition of charged functional groups such as sulfonate 

groups (4.2)407 and phosphonates (4.3), including the symmetric functionalization of the boron-

core.408-409 Ligands with a net formal charge of zero have also been explored such as zwitterionic 

sulfobetaines (4.4).410 While such approaches yield BODIPY dyes with improved water 

solubility, the applicability for live cell and in vivo imaging is limited due to the ionic character 

of the solubilizing groups, which impair membrane permeability and often result in a 

significantly increased molecular weight of the fluorescent tag. Similarly, modification with 
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multiple PEG-groups (4.5) can improve aqueous solubility, again at the cost of increased size (in 

some examples the solubilizing groups account for >80% of the molecular weight).411 Also of 

interest in this context are dialkoxy (4.6) and diacetoxy (4.7) BODIPY dyes that have been 

reported to exhibit improved aqueous solubility compared to the difluoro analogs.412-414 It is 

important to note that recent departures from the canonical BOIDPY structure have shown 

promise for chemical biology imaging applications although these derivatives have yet to 

demonstrate applicability in live cell imaging with respect to stability and specificity. Notable 

efforts have also involved stabilization of the core BODIPY scaffold and bioconjugation via the 

Boranil dye class, characterized with an N-B-O versus N-B-N heteroatom center.415 Increased 

cell permeability has been accessed with a rigid triazaborolopyridinium core structure that 

appears to address the membrane permeability challenge, however, non-specific intracellular 

staining patterns comparable to our findings with the BODIPY dyes remain.405  

Our previous synthetic aim was to develop a method to improve the biological imaging 

compatibility of the BODIPY fluorophore while retaining opportunities in multimodal imaging 

and ease of bioconjugation. These methods originated from our group’s work on BODIPY dyes 

for hybrid optical/Positron Emission Tomography imaging.416 However instead of 19F/18F 

exchange, we then explored selective access to singly alkoxy-substituted (core mono-alkoxy) 

BODIPY (CMA-BODIPY) dyes (4.8) and evaluated their applicability for biological imaging in 

comparison to BODIPY and dialkoxy-BODIPY dyes (4.6). In this work we found that retaining 

one the fluorine atoms on the dye scaffold allows for exquisite tuning of the physicochemical 

properties of the fluorophore while providing an attachment site for bioconjugate and multimodal 

imaging chemistries. Most importantly, CMA-BODIPYs are characterized by excellent 

membrane permeability, homogenous distribution and low non-specific background in living 

cells.4 Importantly, prior to our work, following published procedures, CMA-BODIPYs (4.8) 

were only obtained as byproducts in mixtures with the corresponding dialkoxy derivatives (4.6) 

that are difficult to separate.412-413  

Furthermore, accessing CMA-BODIPYs using a synthetic methodology that is 

compatible with a broad array of functional groups will allow for direct modification of the well-

established BODIPY dyes, thus providing easy access to diversely functionalized reporters, as 

well as small molecule fluorescent labeling. 
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4.1.2 Indolo[3,2-b]quinoline Antimalarial Scaffold 

The scarcity of validated malaria drug targets and the stringent requirements for 

successful drug candidates suggest that understanding the mechanisms of action of existing 

antimalarial drugs is critical. Antimalarials with demonstrated clinical efficacy like the 

aminoquinolines have represented promising basis for rational drug development.54, 417 

Blood-stage malaria parasites ingest roughly 75% of the hemoglobin from the host red 

blood cell into the lysosome-like food vacuole. Here, the polypeptide chains of hemoglobin are 

cleaved into short peptides and individual amino acids by the concerted action of multiple classes 

of proteases.55 High concentrations of cytotoxic free heme are released. To prevent vacuolar 

damage from free heme accumulation, due to its affinity for lipids in cellular membranes and its 

ability to generate reactive oxygen species the parasite sequesters liberated heme into inert 

crystals of heme dimers termed hemozoin (Hz).53, 418 

Hemoglobin degradation and Hz formation are essential for parasite survival, making 

these processes important targets for antimalarial drug development. Heme detoxification into 

Hz, believed to be the primary target of quinoline antimalarials such as chloroquine (CQ),64, 71 

remains one of the most attractive drug development targets, in part due to the immutable nature 

of heme. Resistance to CQ is associated with mutations in the gene encoding the food vacuole 

(FV) membrane protein P. falciparum chloroquine resistance transporter (PfCRT),78 which 

appears to result in reduced drug concentration at the target without altering the target itself. 

Within the scope of our efforts, we have explored the indoloquinoline scaffold as a 

starting point to develop new antimalarials.5, 419-422 Alkaloids from traditional herbal medicines 

have contributed greatly over the centuries towards the discovery of new therapeutic agents.145, 

423-424 Indoloquinolines are unique natural alkaloids, characterized by an indole ring fused to a 

quinoline ring, which are found almost exclusively in the West African climbing shrub 

Cryptolepis sanguinolenta and have been used for centuries by African traditional healers mainly 

for the treatment of fevers from malaria, hepatitis and bacterial infections.150 Most of the 

compounds isolated from C. sanguinolenta displayed the indolo[3,2-b]quinoline nucleus and of 

these Cryptolepine (Figure 4.4) is by far the most studied. It has two nitrogens but only one 

(N10) has an acidic proton with a pKa of 11.1-11.8. 425-426  

The pharmacological activities of extracts from C. sanguinolenta and its major 

indoloquinoline alkaloid cryptolepine as well as its isomers, neocryptolepine, isocryptolepine 
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and the synthetic isoneocryptolepine (Figure 4.4) have been extensively studied.  

 

 

Figure 4.4 – Indoloquinolines from Cryptolepis sanguinolenta.  

 

Since 1937, several groups have demonstrated that indoloquinolines have a variety of 

biological activities including antibacterial, antifungal, antiprotozoal, antitumoral, 

antihyperglycemic, anti-inflammatory, hypotensive, antithrombotic and vasodilation. Due to its 

synthetic achievable structure and scope of derivatization, the indolo[3,2-b]quinolines have been 

intensively investigated for finding of new derivatives with improved biological properties.150, 

427-428 

Taking into consideration the diverse biological activities demonstrated by these 

compounds, our group has further explored the indolo[3,2-b]quinoline scaffold as a starting point 

in the development of both antimalarial and anticancer drugs.  

 

Anticancer activity 

Since indoloquinolines are tetracyclic aromatic alkaloids and can potentially intercalate 

into DNA these compounds have a high potential to be developed into anticancer drugs. 

Additionally, derivatives of natural indolo[3,2-b]quinolines and cryptolepine have been shown to 

be good G-quadruplex (G4) DNA structure ligands, telomerase inhibitors, oncogene (c-Myc) 

transcription inhibitors, and are able to induce cell-growth arrest. Furthermore, our group has 

identified indolo[3,2-b]quinolines with a 7-carboxylate group and three alkylamine side chains, 

as well as 5-methyl-indolo[3,2-c]quinoline derivatives as effective G4 stabilizers and promising 

selective anticancer leads.429-431 The compounds target, more specifically G4 motifs present in 

oncogene KRAS promoter, down-regulate the expression of the mutant KRAS gene through 

inhibition of transcription and translation, and induce cell death by apoptosis in colon cancer cell 
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lines. Thus, targeting KRAS at the genomic level with G4 ligands may be a new anticancer 

therapy strategy for colon cancer.429, 431 

 

Antimalarial activity 

Our group has designed, synthetized and profiled for malaria therapy new compounds 

based on this natural indoloquinoline alkaloid. The C-11 cryptolepine derivatives showed 

improved in vitro cytostatic activity and parasite selectivity.419, 421 However, the most promising 

compound (C11-alkylamine derivative) was only as active as the parent compound cryptolepine 

in a rodent malaria model, showing modest antimalarial efficacy when administered orally and 

high toxicity when administered ip at 50 mg/kg.432 

Previous studies suggest that cryptolepine may act like chloroquine (CQ), due to its 

ability to bind to hematin monomer and inhibit Hz formation. Nonetheless, this compound 

displayed a low capacity to reach its target due to its low accumulation in acidic food vacuole. 

We have previously reported that a basic amino side chain is needed for CQ accumulation in the 

acidic vacuole of the parasite.419 Furthermore, to get insight into the relevance of targeting 

hemozoin (Hz) crystals, we have evaluated two isomeric bis-alkylamine indolo[3,2-b]quinolines 

for their in vitro activity against chloroquine (CQ)-resistant and sensitive strains of Plasmodium 

falciparum. Both series bounded to hematin monomer, inhibited β-hematin formation in vitro, 

delayed intraerythrocytic parasite development with apparent inhibition of Hz biocrystallization, 

and showed higher cytocidal activity against schizonts.422 Moreover, to improve access and 

binding to the target we then designed novel N10,N11-di-alkylamine bioisosteres (Figure 4.5). 

 

 

 

 

 
 

 

 

 

Figure 4.5 – Structure of target bioisosteres N10,N11-di-alkylamine indolo[3,2-b]quinoline derivatives. 
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All new indolo[3,2-b]quinoline derivatives showed selectivity for malaria parasites 

compared to human hepatic cells (SI > 30) and potent antimalarial activity, with EC50 values in 

the nM range. Bioisosteric replacement of –O– by –NH– at C11 led to slightly more hydrophilic 

compounds, with increased vacuolar accumulation ratios (VAR) but lower lipid accumulation 

ratios (LAR). 

In particular, 3-chloro derivatives showed high activity against Plasmodium falciparum 

chloroquine (CQ)-resistant strain W2 with EC50s between 20 and 158 nM. Nonetheless, 

antimalarial activity of the 3-chloro-N10-ethylpyrrolidine series did not correlate with VAR but 

correlated with β-hematin inhibition. Interestingly, all compounds of this series showed similar 

potential to accumulate in lipid phases and in the vacuolar aqueous phase (LAR/VAR∼1). On the 

other hand, antimalarial activity of 3,7-dichloro-N10-ethylpyrrolidine derivatives increased with 

VAR values and they were better inhibitors of β-hematin formation. Thus, for both series, the 

results suggest inhibition of Hz growth as one possible mechanism of action for these indolo[3,2-

b]quinoline compounds. 5 To further elucidate the mechanism of action of the 3-chloro-N10-

ethylpyrrolidine derivatives we aimed to develop fluorescent probes that will allow subcellular 

fluorescence co-localization of the compound in Plasmodium falciparum cultures, which has not 

been done to the best of our knowledge. 

 

4.2 Purpose	of	This	Study	

This project is designed to explore our synthetic methodology and further develop it to 

enable the use of CMA-BODIPY dyes to label small molecule drugs using an innovative point of 

attachment between drug and dye, which simultaneously labels the drug and increases solubility 

and cell permeability. 

In this work we report the development of a methodology to selectively substitute either 

one or both of the canonical fluorides common to most BODIPY dyes with alkoxy ligands, and 

show that the alkoxy substituent provides an additional, unique attachment site, which can be 

readily exchanged by either an alkoxy-drug or another an alkoxy-ligand without perturbing the 

fluorophore scaffold (Figure 4.6). 
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Figure 4.6 – Structures of alkoxy-drug and alkoxy-ligand BODIPY dyes accessed by the new synthetic 

methodology. 

 

The mild and efficient methodology developed allows access to mono or dialkoxy 

substituted BODIPYs and we further evaluated its applicability for imaging small molecules in 

live cells. Nonetheless, despite having great applicability, this method has limitations regarding 

the acidic conditions required, which are incompatible with some functional groups. Moreover, 

the broad impact of our approach is demonstrated by directly functionalized small molecules of 

interest that feature an appropriate hydroxyl group, using the newly developed methodology. 

This novel synthetic method will be used to label several drugs including a known antimalarial 

drug, thus enabling the subcellular localization in both mammalian and Plasmodium falciparum 

cultures, which may constitute an additional target validation approach. Moreover, to further 

validate the drug target of the 3-chloro-N10-ethylpyrrolidine indoloquinoline derivatives 

developed by our group, we designed a fluorescent probe that will allow subcellular localization 

of the compound in Plasmodium falciparum cultures. 

 

4.3 	Synthetic	Methodology	

4.3.1 Chemical Synthesis Strategy 

The retrosynthetic analysis of the alkoxy BODIPY labeled small molecules (Figure 4.7) 

shows a short and robust synthetic approach starting with 1,3,5,7,8-Pentamethyl BODIPY. After 

flourine/alkoxy exchange to obtained the mono or dialkoxy substituted BODIPYs, a second 
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exchanged occurs between an alkoxy group from the dye and a hydroxyl functionalized 

molecule. To obtain a monoalkoxy fluorescently labeled drug, the alkoxy group in the mono-

alkoxy BODIPY is directly exchanged by the hydroxyl functionalized small molecule, in a 

boronic acid transesterification. Moreover, the monoalkoxy fluorescently labeled drug can also 

be obtained by direct displacement of the fluorine atom. Alternatively, to obtain a dialkoxy 

fluorescently labeled drug, one of the alkoxy groups in the dialkoxy BODIPY is exchanged by a 

hydroxyl-linker followed by coupling with the drug (Figure 4.7). 

 

 

 

 

 

 

 

 

 

Figure 4.7 – Retrosynthetic analysis of the alkoxy BODIPY labeled drug. 

 

 

4.3.2 Synthesis of Alkoxy BODIPYs 

We have selected BODIPY (4.13) as a model substrate since it is well established and 

provides direct access to dimethoxy BODIPY.412, 433 To selectively substitute only one the 

fluorines we applied a two-step one-pot strategy, guided by previous work in our group on 
19F/18F exchange on BODIPYs for hybrid optical/Positron Emission Tomography imaging.416 

The approach relies on abstraction of a single fluoride from the BF2-core to generate a reactive 

boronium intermediate (4.14),434-435 which we found readily reacted with suitable alcohols to 

yield the desired monoalkoxy-BODIPY (CMA-BODIPYs) (4.15-4.16) in high-yields without the 

formation of dialkoxy BODIPY (Scheme 4.1a).4 
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Scheme 4.1 – Synthesis of CMA-BODIPYs. a) One-pot synthesis of CMA-BODIPY analogs 4.15-4.16. 

Reagents: a) TCM, TMSOTf, 0 °C, 150 s; b) TCM, R’OH, 0 °C, 150 s; b) Synthesis of CMA-BODIPY 

4.19.  

  

Specifically, CMA-BODIPYs were obtained by activation of difluoro-BODIPY with 

excess trimethylsilyl trifluoromethanesulfonate (TMSOTf) to access the reactive BODIPY-OTf 

(4.14) intermediate,435 which is directly quenched by addition of a suitable alcohol to afford the 

desired monoalkoxy-BODIPY in high yields (4.15-4.16). The activated BODIPY-OTf is not 

stable for a prolonged time under the reaction conditions and slowly degrades, forming the free 

pyrrole ligand. Therefore, the addition of the desired alcohol ligand has to be timed carefully. 

Simultaneous addition of DIPEA as a mild, non-nucleophilic base to buffer the acidity of the 

crude reaction solution, as well as maintaining the whole system at 0 °C, was found to be 

beneficial.  

This synthesis is highly modular and allows for easy access to an array of different 

alkoxy BODIPY derivatives. Notably, the presented methodology tolerates a wide number of 
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functional groups. For example, as illustrated in Figure 4.1b, the N-hydroxysuccinimide (OSu) 

functionalized BODIPY 4.17 was efficiently converted into the glycol-analog 4.19. We expect 

that these functionalities would be synthetically incompatible with the existing strategies 

(referenced above) to access these analogs as mono and dialkoxy mixtures of compounds such as 

4.16. 

To demonstrate that the favorable properties of CMA-BODIPYs are retained upon 

conjugation to small molecules, we synthesized a HaloTag functionalized BODIPY 4.23 and 

CMA-BODIPY 4.24 from the common NHS-ester precursor 4.17 (Scheme 4.2). The latter was 

coupled with the amine HaloTag, which was obtained in a three-step synthesis starting with the 

Boc protection of the aminoethoxyethanol, followed by SN2 coupling with 1-chloro-6-

iodohexane and Boc deprotection (Scheme 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2 – Synthesis of HaloTag functionalized CMA-BODIPY. Reagents and conditions: a) Boc2O, 

EtOH, r.t., 4 h, 98%; b) NaH, THF:DMF (2:1), r.t., 3 h, 38%; c) 2 M HCl, MeOH, r.t., 2 h, 78%; d) 

DIPEA, DCM, r.t., 30 min, 37%; e) Ethylene glycol, TMSOTf, DIPEA, TCM, r.t., 2:30 min, 60%. 

 

HaloTag ligands bind selectively and covalently to HaloTag, a small protein that can be 

expressed as a fusion protein with a target protein of interest, to allow for selective labeling of 

intracellular targets.436-437 We selected the HaloTag system over other tags like SNAP-tag and 
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CLIP-tag, as the chloroalkane HaloTag ligand is very hydrophobic, thus representing a 

demanding test system.353, 437-438  

To assess the suitability of CMA-BODIPY dyes for biological applications, we 

investigated their physical properties in direct comparison to the relevant reference compound 

difluoroBODIPY 4.13 in aqueous buffer at physiological pH. 

We first investigated the solubility characteristics in aqueous buffer at physiological pH. 

Dry powders of the respective compounds in excess were used to prepare saturated solutions in 

PBS (pH=7.4). The alkoxy derivatives have excellent water solubility while the difluoro-

BODIPY 4.13 appears to be virtually insoluble in PBS. Quantitative measurements showed that 

the alkoxy derivatives are generally soluble at medium to high micromolar concentrations in 

PBS without the requirement of co-solvents or detergents (Table 4.1). Next, we determined the 

logD7.4, which is an important characteristic to gauge membrane permeability and the propensity 

of a small molecule to distribute between aqueous and hydrophobic cellular compartments. 

Compounds with a logD7.4 of 1-3 strike this balance best and demonstrate the greatest membrane 

permeability.397 The increased aqueous solubility of CMA-BODIPYs correlates with a lower 

logD7.4 compared to difluoro BODIPY 4.13 (Table 4.1). Notably, the methoxy (4.15) and glycol 

analogs (4.16) exhibit ideal logDs of 1.4 and 2.2, respectively. In contrast, the difluoro-BODIPY 

9 had an unfavorable logD of >5. Furthermore, the solubility of compound 4.24 in PBS was 231 

µM, almost two orders of magnitude greater than the BODIPY 4.23 (Table 4.1). Similarly, this 

increased aqueous solubility also translated into an improved logD. 

Table 4.1 – Physico-chemical Characterization of BODIPYs4 

Compound LogDa Solubility (µM)b 

4.13 > 5 3 
4.15 1.4 24 
4.16 2.2 122 
4.23 > 5 2.4 
4.24 3.85 230 

a LogD was determined via the shake-flask method by partitioning a saturated solution of the probes in 1X PBS 

(pH=7.4) with 1-octanol; b Solubility was determined in 1X PBS (pH=7.4) from the concentration of a saturated 

solution of each probe. 
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Since we had established that the new class of BODIPY fluorophores, which we term 

MayaFluors, display significantly improved physicochemical properties that are ideally suited 

for biological applications, we then turned our focus into exploring the possibility of selectively 

substituting one of the fluorines with a hydroxyl functionalized small molecule, using the same 

two-step one-pot strategy. 

The first drawback encountered, was regarding the amount of hydroxyl-reagent (100 

equiv.) used when synthetizing the CMA-BODIPYs, which is inefficient in some cases. 

Furthermore, the synthetic conditions used also resulted in some degradation products, as 

mentioned above, which still had room for improvement. The first approach to address these 

problems was to optimize the current conditions to enable the use of reduced amounts of the 

hydroxyl functionalized small molecule as well as increase overall stability, thus decreasing the 

amount of degradation products (Table 4.2). 

To optimize the CMA-BODIPY synthesis we chose to start by using the mono-methoxy 

BODIPY as a reference system, thus aiming to substantially decrease the number of equivalents 

of MeOH required in this reaction. First, in an attempt to decrease the amount of degradation 

products observed using the original synthetic methodology (Entry 1), the solvent was changed 

to DCM and the temperature decreased to -78 °C (Entry 2), which did not result in the desired 

product. Next, a Lewis acid catalyst was added after the trifluoromethanesulfonic acid 

trimethylsilylester (TMSOTf), resulting in elimination of degradation products by LC/MS 

analysis of the crude reaction (Entries 3-4). This may occur due to a stabilizing effect of the 

SnCl4 on the reactive BODIPY-OTf intermediate. The results obtained when using low (2 

equiv.) and high (30 equiv.) amounts of SnCl4 were comparable. Once conditions were 

optimized to eliminate the degradation products observed, the amount of hydroxyl-reagent was 

gradually reduced (Entries 5-10), which also required reduction of the catalysts used, to avoid 

degradation products. Nonetheless, an alternative solvent and a different Lewis acid catalyst 

(Entries 8-9) were both tested with no improved results. 

Therefore, the mono-methoxy BODIPY was accessed by activation of difluoro-BODIPY 

with a slight excess of TMSOTf (1.5 equiv.) to access the reactive BODIPY-OTf intermediate, 

which was stabilized by a small amount of SnCl4 (0.5 equiv.), followed by addition of one 

equivalent of methanol to afford the desired monoalkoxy-BODIPY in high yield (Entry 10). 	
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Table 4.2 – Optimization of CMA-BODIPY synthesis. 

Entry 
ROH Catalyst 

(Equiv.) 
Solvent 

Time 

(min.) 

Temp. 

(°C) 

Degradation 

Products 
Product 

R Equiv. 

1 Me 100 TMSOTf (5) TCM 2 0 30% 4.15 

2 Me 100 TMSOTf (5) DCM 2 -78 - 4.15 

3 Me 100 
TMSOTf (5)/ 

SnCl4 (30) 
TCM 2 0 < 5% 4.15 

4 Me 100 
TMSOTf (5)/ 

SnCl4 (2) 
TCM 2 0 < 5% 4.15 

5 Me 10 
TMSOTf (5)/ 

SnCl4 (2) 
TCM 2 0 15% 4.15 

6 Me 10 
TMSOTf (1.5)/ 

SnCl4 (2) 
TCM 2 0 < 5% 4.15 

7 Me 5 
TMSOTf (1.5)/ 

SnCl4 (0.5) 
TCM 2 0 < 5% 4.15 

8 Me 5 
TMSOTf (1.5)/ 

SnCl4 (0.5) 
MeCN 2 0 15% 4.15 

9 Me 5 
TMSOTf (1.5)/ 

ZnCl2 (2) 
MeCN 2 0 20% 4.15 

10 Me 1 
TMSOTf (1.5)/ 

SnCl4 (0.5) 
TCM 5 0 < 5% 4.15 

11 CH2CH2OH 5 
TMSOTf (5)/ 

SnCl4 (2) 
TCM 2 0 20% 4.16 

12 CH2CH2OH 10 
TMSOTf (5)/ 

SnCl4 (30) 
TCM 2 0 20% 4.16 

13 Bn 5 
TMSOTf (5)/ 

SnCl4 (2) 
TCM 2 0 - - 

14 Bn 10 
TMSOTf (5)/ 

SnCl4 (30) 
TCM 2 0 - - 

 

Next, to test the applicability of the improved synthetic methodology to other 

monoalkoxy-BODIPYs, we used ethylene glycol (Entries 11-12) or benzyl alcohol (Entries 13-

14) as the hydroxyl-reagent. In the first case, using the Lewis acid catalyst to stabilize the 

reactive BODIPY-OTf intermediate, allowed a substantial reduction of the ethylene glycol used 
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(5 equiv.), despite the presence of some degradation products. Unfortunately, when using this 

methodology with benzyl alcohol, as the hydroxyl-reagent, the desired product was not formed, 

which indicated that further optimization would be required. Thereafter, the optimization of the 

latter reaction involved assessment of the ideal catalyst to promote reactivity and adjustment of 

the solvent used to allow increase in the temperature, thus we chose toluene as the reaction 

solvent since it is a common solvent with a high boiling point (111 °C) (Table 4.3). Since the 

reactive BODIPY-OTf intermediate is not stable under temperatures above 0 °C, the TMSOTf 

was not used in these reactions. 

First, difluoro-BODIPY was dissolved in toluene followed by addition of SnCl4 and 

benzyl alcohol. The reaction was heated to 60 °C, and stirred for 30 min. The starting material 

decomposed and the desired product was not formed (Entry 1). Next, the reaction was set up 

without the Lewis acid catalyst and heated to reflux for 3 h (Entry 2), resulting in formation of 

desired product as well as decomposition products. Additionally, three other catalysts with a 

wide array of characteristics were tested, including camphorsulfonic acid, which is a relatively 

strong acid (Entry 3), DIPEA, which is a mild base (Entry 4) and 5Å molecular sieves, which is a 

porous material able to trap smaller molecules (Entry 5). Furthermore, the 5Å molecular sieves 

are an aluminum silicate, which will scavenge the displaced group. The presence of the first two 

catalysts resulted in a mixture of desired and degradation products, while the last catalyst yielded 

a clean conversion to a mix of the mono- and dialkoxy BODIPY. Next, using the 5Å molecular 

sieves, the amount of benzyl alcohol used was decreased by 10 fold, also resulting in a mix of the 

mono- and dialkoxy BODIPY products (Entry 6). 
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Table 4.3 – Optimization of benzyl-alkoxy BODIPY synthesis. Compound structure for 4.25 and 4.30 in 

scheme 4.3. 

Entry 
ROH Catalyst 

 (Equiv.) 
Solvent 

Time 

(min.) 

Temp. 

(°C) 

Degradation 

Products 
Product 

R Equiv. 

1 Bn 10 SnCl4 (30)  Toluene 30 60 - - 

2 Bn 10 - Toluene 180 reflux 25% 
4.25 

(25%) 

3 Bn 10 CSA (30) Toluene 30 60 35% 
4.25 

(20%) 

4 Bn 10 DIPEA (30) Toluene 30 60 35% 
4.25 

(15%) 

5 Bn 10 
5Å molecular 

sieves 
Toluene 30 60 - 

4.25/4.30 

(2:1.5) 

6 Bn 1 
5Å molecular 

sieves 
Toluene 30 60 - 

4.25/4.30 

(2:1) 

7 Bn 1 
5Å molecular 

sieves 
Toluene 180 r.t. - 

4.25/4.30 

(2:2) 

8 Bn 1 
4Å molecular 

sieves 
Toluene 30 60 - 

4.25/4.30 

(2:1) 

9 Bn 1 Silica Toluene 30 60 - - 

10 Bn 1 
Basic Alumina 

Oxide 
Toluene 30 60 - - 

11 Bn 1 

Neutral 

Alumina 

Oxide 

Toluene 30 60 - - 

 

 

Furthermore, in an attempt to slow down the kinetics of the reaction, thus increasing the 

proportion of mono- to dialkoxy BODIPY products, the temperature was decreased, with no 

success (Entry 7). Moreover, a different size of molecular sieves, as well as other catalyst 

supports, such as silica, basic alumina oxide and neutral alumina oxide were tested to evaluate 

the potential to singly form the monoalkoxy product (Entries 8-11). Despite not establishing 
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conditions, which would only yield the monoalkoxy BODIPY product, we identified a catalyst 

that allows the synthesis of both species in a step-wise manner.  

Once we identified the 5Å molecular sieves as the best catalyst support for this new 

methodology, we turned our focus to studying the kinetics of the conversion, as well as 

determining the ideal amount of the catalyst necessary (Table 4.4). 

 

Table 4.4 – Optimization of catalyst amount for new methodology. Reaction conditions: toluene, 60 °C. 

Entry 

Catalyst 

(ms/mg 

fluorophore) 

ROH 

(2.5 

Equiv.) 

Product (Ratio) 

Time (h) 

0.1 1 2 24 

1 1 Bn 4.13 
4.13/4.25 

(4:1) 

4.13/4.25 

(3:1) 

4.13/4.25/4.30 

(1:2:1) 

2 2 Bn 4.13 
4.13/4.25 

(3:1) 

4.13/4.25 

(2:1) 

4.13/4.25/4.30 

(1:2:2) 

3 4 Bn 4.13 
4.25/4.30 

(2:1) 

4.13/4.25/4.30 

(1:2:1) 

4.25/4.30 

(1:4) 

4 6 Bn 
4.13/4.25 

(2:1) 

4.13/4.25/4.30 

(2:2:1) 

44.25/4.30 

(1:1) 
4.30 

 

The difluoro-BODIPY starting material was dissolved in toluene followed by addition of 

2.5 equiv. of benzyl alcohol. The reaction was heated to 60 °C and the 5Å molecular sieves were 

added. Four different amounts of catalyst were tested (1, 2, 4 and 6 molecular sieves (ms) per mg 

of difluoro-BODIPY) and LC/MS analysis of the crude reaction was done at four time points to 

assess the amount of starting material, mono- and dialkoxy BODIPY. The kinetics of the reaction 

becomes faster with the increase of molecular sieves used. At 6 ms/mg (50 mg of molecular 

sieves/ mg of fluorophore), we achieve ideal proportion of monoalkoxy to dialkoxy BODIPY at 

2 h and after 24 h we observed a clean conversion to the dialkoxy BODIPY (Entry 4). To further 

evaluate the potential of the new synthetic method we used the optimized conditions with four 

different hydroxyl-reagents and tested eight additional solvents, which included pyridine, 

DMSO, DMF, NMP, THF, 2-Methyl THF, lutidine and 1,4-dioxane, of these only three were 

compatible with the new methodology. Each of the four alcohols was tested in all nine solvents 
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following the procedure described above and LC/MS analysis of the crude reaction was done at 

three time points to assess the amount of starting material, mono- and dialkoxy BODIPY 

products (Table 4.5).The results show that all four alcohols tested display a stepwise reaction 

with similar kinetics (Table 4.5). Furthermore, from the nine solvents tested only three (Toluene, 

THF and 1,4-dioxane) were compatible with our synthetic method, resulting initially in the 

formation of mono- and dialkoxy BODIPYs followed by full conversion to the dialkoxy product 

after 24 h (Table 4.5). The fact that this synthesis works with more than one solvent expands the 

solubility compatibility of this approach, when compared to the initial method, which required 

chloroform under acidic conditions.  
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Table 4.5 – Optimized solvents for the new methodology. Reaction conditions: 50 mg of molecular 

sieves/ mg of fluorophore (catalyst), 60 °C. 

Solvent 
ROH 

(2.5 Equiv.) 

Product (Ratio) 

Time (h) 

1 8 24 

Toluene 

Bn 4.13/4.25/4.30 

(2:2:1) 

4.25/4.30 

(1:5) 
4.30 

Phenyl 
4.13/4.26/4.31 

(1:1:1) 

4.26/4.31 

(1:5) 
4.31 

4-NO2-

Phenyl 

4.13/4.27/4.32 

(1:1:1) 

4.27/4.32 

(1:5) 
4.32 

F5-Phenyl 
4.13/4.28/4.33 

(1:1:1) 

4.28/4.33 

(1:2) 
4.33 

THF 

Bn 4.13/4.25 

(10:1) 

4.13/4.25/4.30 

(4:1:1) 

4.13/4.25/4.30 

 (2:3:2) 

Phenyl 
4.13/4.26 

(10:1) 

4.13/4.26 

(5:1) 

4.13/4.26 

(5:1) 

4-NO2-

Phenyl 

4.13/4.27 

(10:1) 

4.13/4.27 

(5:1) 

4.13/4.27 

(5:1) 

F5-Phenyl 
4.13/4.28/4.33 

(10:1) 

4.28/4.33 

(5:1) 

4.33 

(5:1) 

1,4-dioxane 

Bn 
4.13/4.25 

(10:1) 

4.13/4.25/4.30 

(4:1:1) 
4.13/4.25/4.30 

 (1:2:1) 

Phenyl 
4.13/4.26 

(10:1) 

4.13/4.26/4.31 

(2:2:1) 

4.13/4.26/4.31 

(1:2:1) 

4-NO2-

Phenyl 

4.13/4.27 

(10:1) 

4.13/4.27/4.32 

(2:2:1) 

4.13/4.27/4.32 

(1:2:1) 

F5-Phenyl 
4.13/4.28 

(10:1) 

4.13/4.28 

(3:2) 
4.28 

•  

 Once the new synthetic methodology had been established, a variety of mono- and 

dialkoxy BODIPY dyes was synthetized (Scheme 4.3). 
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Scheme 4.3 – Synthesis of mono- and dialkoxy BODIPY analogs. Reagents and conditions: a) Molecular 

sieves, Toluene or THF, 60 °C, 24 h; b) Molecular sieves, Toluene, 60 °C, 3 h. Isolated yield after 

purification is given in parentheses. 

 

We found that using this methodology the difluoro-BODIPY readily reacts with a slight 

excess (1.5 - 2.5 equiv.) of the suitable alcohols to yield the desired monoalkoxy-BODIPYs in 

moderate yields (4.15, 4.25-4.29) and the dialkoxy BODIPYs in moderate to high yields (4.30-

4.34), without any degradation products. Alcohols, such as 3-oxetanol and 1-Fmoc-3-

hydroxyazetidine are of particular interest due to its particular properties, suitable for 

bioimaging. On the one hand, 3-oxetanol is an alcohol with increased solubility and has the 

smallest footprint439, on the other 1-Fmoc-3-hydroxyazetidine provides an additional site for 

further functionalization. Moreover, secondary alcohols display higher stability towards 

hydrolysis (data not published). 

Specifically, monoalkoxy-BODIPYs were accessed by dissolving difluoro-BODIPY in 

toluene, followed by addition of a suitable alcohol (2.5 equiv.) and 5Å molecular sieves (50 mg 

of molecular sieves/ mg of fluorophore), at 60 °C for 3 h to afford the desired monoalkoxy-

BODIPY in moderate yields (4.15, 4.25-4.29). The yields observed result from the balance 

between monoalkoxy and dialkoxy formation at the time the reaction is stopped. Furthermore, 

following the same procedure the reaction mixture is heated at 60 °C for 24 h to afford the 

desired dialkoxy-BODIPYs in moderate to high-yields (4.30-4.34). All three BODIPY species 

(difluoro-, mono- and dialkoxy BODIPYs) are stable for a prolonged time (96 h) under the 

reaction conditions and no degradation is observed by LC/MS analysis. We therefore predict this 

strategy will tolerate a wider number of functionalities and allow for easy access to an array of 

different alkoxy BODIPY derivatives, including BODIPY labeled hydroxyl functionalized small 
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molecules.   

To further test the applicability of the newly developed method we attempted to displace 

the alkoxy group on the synthetized BODIPYs (4.15, 4.25-4.34) with other alcohols, as well as 

with tetra-n-butylammonium fluoride (TBAF). Regarding the displacement of one alkoxy group 

by another, using our reaction conditions, we observed that the mono-methoxy BODIPY had a 

fast kinetic reaction when compared to the parent difluoro-BODIPY, which we could use to our 

advantage when applying this method to labeling small molecules. Moreover, most alkoxy 

BODIPYs were stable but unreacted. Furthermore, regarding the reactivity of the synthetized 

dialkoxy BODIPYs, only the Fmoc-azetidine BODIPY reacted under these conditions with other 

alcohols, namely with 3-oxetanol (Scheme 4.4). 

 

 

 

 

Scheme 4.4 – Synthesis of mono- and dioxetanol BODIPY analogs. Reagents and conditions: a) 

Molecular sieves, Toluene, 60 °C, 1 h (4.35: 8% yield) or 8 h (4.36: 55% yield). 

 

When attempting to synthetize an asymmetrical dialkoxy BODIPY, starting with the bis- 

Fmoc-azetidine BODIPY, thus displacing one of the Fmoc-azetidine groups with a 3-oxetanol, 

we observed that the kinetics of this reaction was very fast and at any point in time the mixture 

of products favored the dialkoxy BODIPY product. The isolated yield of the monoalkoxy 

displacement (4.35) product after a 1 h reaction was low (8%) compared to the other 

monoalkoxy BODIPY dyes synthetized. When the reaction is heated at 60 °C for 8 h, a complete 

conversion to the bis-3-oxetanol BODIPY (4.36) is observed and the desired product is isolated 

in moderate yield (55%). The asymmetrical dialkoxy BODIPY derivatives would represent 

interesting materials, but with the low yield obtained for compound 4.35, it requires further 

optimization to use these dyes for small molecule labeling. Nonetheless, it further demonstrates 

the potential of the new synthetic methodology to enable the synthesis of a new class of CMA- 

BODIPY dyes. 
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4.3.3 Synthesis	of	Small	Molecule	Probes	
We first synthesized the monomethoxy BODIPY 4.15, following a two-step one-pot 

strategy via the reactive BODIPY-OTf (4.14) intermediate, as shown in Scheme 4.1a.  

Next, a series of BODIPY labeled small molecules was designed to explore small molecules of 

interest that feature an appropriate hydroxyl group, which may be directly functionalized by 

reaction with the monomethoxy BODIPY (Scheme 4.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.5 – Synthesis of CMA-BODIPY labeled small molecules. Reagents and conditions: a) 

molecular sieves, THF, 60 °C, 8 h; b) molecular sieves, Toluene, 60 °C, 8 h. 
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These compounds were obtained by displacement of the methoxy group, in the presence 

of 5Å molecular sieves at 60 °C, to give the title compounds 4.37-4.40 (Scheme 4.5), with yields 

ranging from 40%-65%.  

Two of the derivatives from this series were obtained using commercially available 

hydroxyl functionalized small molecules (4.37 and 4.40). The 3-azidopropanol, used in the 

synthesis of compound 4.38, was obtained from our collaborator Vamsi Mootha (at MGH) and 

used without further modification. Whereas, the alcohol used in the synthesis of compound 4.39, 

was previously obtained by HCTU coupling of 2-(2-aminoethoxy)ethanol with (+) JQ1 

carboxylic acid, which was a gift from our collaborator James Bradner at Dana–Farber Cancer 

Institute. 

This new methodology allowed us to synthetize three BODIPY labeled small molecules 

and an azide alkoxy BODIPY, which may be further used in click chemistry reactions suitable 

for the chemical labeling of biomolecules for live fluorescence imaging.440 

 

4.3.4 Synthesis	of	Indolo[3,2-b]quinoline	Probe	
Our group has previously reported that bis-alkylamine indolo[3,2-b]quinoline derivatives 

target hemozoin crystals. The results suggest inhibition of Hz growth as one possible mechanism 

of action for these antimalarials.5, 422 To further elucidate the mechanism of action of these 

derivatives we aim to develop a fluorescent probe that will allow subcellular fluorescence co-

localization of the compound in Plasmodium falciparum. We sought to develop an imaging agent 

for 3,7-dichloro-N10-ethylpyrrolidine inhibitors by making minor modifications to the parent 

inhibitor scaffold (Figure 4.8). 

 
 
 
 
 
 
 
	

 

Figure 4.8 – Structure of 3,7-dichloro-N10-ethylpyrrolidine parent compound and designed fluorescent 

probe. 
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A CMA-BODIPY modified 3,7-dichloro-N10-ethylpyrrolidine was designed to be access 

in four steps, starting with synthesis of the hydroxyl functionalized di-alkylamine indolo[3,2-

b]quinoline (Scheme 4.6). 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.6 – Synthesis of CMA-BODIPY labeled indolo[3,2-b]quinoline. Reagents and conditions: a) 

130 °C, 16 h, 62%; b) NaBH(OAc)3, DCE, r.t., 4 h, 51%; c) HF/Pyridine/THF (1/2/7), r.t., 16 h, 58%; d) 

molecular sieves, 60 °C, 8 h. 

 

Briefly, nucleophilic substitution of 3,7,11-trichloro-10-[2-(pyrrolidin-1-yl)ethyl]-10H-

indolo[3,2-b]quinoline by ethylethane-1,2-diamine, followed by reductive amination239 of the 

amine intermediate 4.41 with the TBDPS protected hydroxyl-butanal yielded compound 4.42. 

Next, deprotection using HF/pyridine afforded the desired hydroxyl functionalized di-alkylamine 

indolo[3,2-b]quinoline in 18% overall yield. Thereafter, we attempted to displace the methoxy 

group of the monoalkoxy BODIPY dye, in the presence of 5Å molecular sieves, unfortunately 

compound 4.43 was not soluble in any of the three solvents compatible with our newly 

developed methodology, thus preventing the coupling. The novel di-alkylamine indolo[3,2-

b]quinolines obtained in this synthetic scheme were tested against CQ-resistant Dd2 strain for 

their antimalarial activity. EC50 of compounds 4.41, 4.42, and 4.43, was 0.47 µM, 2.6 µM and 

0.23 µM, respectively. The hydroxyl functionalized di-alkylamine indolo[3,2-b]quinoline shows 
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comparable activity to the parent compound (EC50 of 0.22 µM)5, which validates the chemical 

modification proposed. An alternative synthetic approach to overcome the solubility problem 

observed in the latter coupling, which involved synthesis of the of mono-butanaloxy BODIPY 

prior to reaction with the di-alkylamine indolo[3,2-b]quinoline 4.41, was tested with little to no 

success. 

Despite the solubility problem observed with the synthesis of di-alkylamine indolo[3,2-

b]quinoline probe, we are confident on the broad applicability of the methodology developed.  

 

4.4 In	vitro	Profiling	of	Labeled	Small	Molecules	

To evaluate the applicability of this unique attachment site for CMA-BODIPY labeling of 

small molecules for live cell imaging, we interrogated representative derivatives for their ability 

to penetrate mammalian cell membranes and their propensity for non-specific background 

staining. Furthermore, the hydroxychloroquine probe was also profiled for its ability to penetrate 

Plasmodium falciparum and determine its subcellular localization. 

 

4.4.1 In	Mammalian	Cell	Cultures	
MCF-7 cells were incubated with 10 µM of 4.39 and 4.37. Following a 30 minutes 

incubation at 37 °C, the culture medium was replaced twice over 10 minutes to remove excess 

dye. Live cells were imaged by multi-channel fluorescence microscopy to assess penetration 

efficiency and subcellular staining patterns. Both of the tested compounds exhibited efficient cell 

uptake (Figure 4.9).  
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Figure 4.9 – Cellular uptake and intracellular distribution of compound 4.39 (a) and compound 4.37 (b) 

in MCF-7 cells. Acumulation is indicated by white arrows.  

 

Importantly, (+) JQ1 labeled compound (4.39, Figure 4.9a) showed a relatively 

homogenous intracellular distribution, while probe 4.37 displayed a subcellular staining pattern 

that is consistent with accumulation in acidic vesicles in the cytoplasm (Figure 4.9b). Since 

hydroxychloroquine, like chloroquine, is a known lysosomotropic agent441, the latter was 

expected.  

To confirm the effect of CMA-BODIPY modification on the inhibition efficacy of the 

drug, half-maximal inhibitory concentration (EC50) of (+) JQ1 and (+) JQ1-CMA-BODIPY were 

determined against purified BRD4 protein. The labeled compound had an EC50 of 26 nM, which 

is comparable to the parent compound (EC50 of 17 nM) (Data obtained with my colleague Dr. 

Yelena Wainman). 
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Figure 4.10 – Half-maximal inhibitory concentration (EC50) of (+) JQ1 and (+) JQ1-CMA-BODIPY 4.39 

determined against purified BRD4 protein. 

 

Furthermore, JQ1 is a cell-permeable small molecule that binds competitively as a potent 

inhibitor of the BET family of bromodomain proteins, thus acting on the nucleus of the cell. 

Nonetheless, bromodomain proteins may also be present in the cytoplasm. Moreover, BRD4 

exists in tight complexes that may not tolerate binding of labeled drugs.442 In spite of exhibiting 

cellular uptake, compound 4.39 does not seem to preferably accumulate in the nucleus as 

expected.  

We found favorable membrane permeability in both examples shown above, despite the 

low specificity of the (+) JQ1 probe towards the nucleus as it was expected due to its known 

target. Nonetheless, the latter compound had comparable activity to the parent compound in an in 

vitro assay with BRD4 protein, thus demonstrating that our synthetic approach does not affect 

the compound’s activity. Moreover, the hydroxychloroquine probe was distributed throughout 

the cytoplasm with increased accumulation in acidic vesicles, consistent with what would be 

expected due to its chemical structure.  
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were imaged by multi-channel fluorescence microscopy to assess penetration efficiency and 

subcellular staining patterns. Images were comparable amongst both strains. At the two lowest 

concentrations no signal was observed. Furthermore, at 10 µM and 1 µM concentration there was 

only faint staining of the membrane but the majority of the probe is in the parasites as expected, 

while at a 100 nM there is only staining in the parasites.  

The probe exhibited efficient parasite uptake at a 100 nM, with subcellular staining 

pattern that is consistent with accumulation in the food vacuole (Figure 4.11). 
 

 
 
 
 
 
	
		

Figure 4.11 – Cellular uptake and intracellular distribution of compound 4.37 in Plasmodium falciparum 

Dd2 strain. a) Structure of the hydroxychloroquine CMA-BODIPY labeled compound; Brightfield (b) 

and Fluorescent (c) images of an infected erythrocyte with ring stage parasite using 100X immersion oil 

objective. Accumulation is indicated by white arrows. 

	
Hydroxychloroquine, like chloroquine, is a 4-aminoquinoline antimalarial drug that acts, 

at least in part, by inhibition of hemozoin formation. Thus, as expected the free base of our probe 

can diffuse freely and rapidly across the membranes of cells and organelles, but once inside the 

acidic food vacuole, it protonates and becomes trapped. Microscopy experiments revealed that 

the hydroxychloroquine CMA-BODIPY labeled probe accumulated in the food vacuole at a 

higher concentration, compared to the rest of the parasite, as reported in the literature.231 

Next, to confirm the effect of CMA-BODIPY modification on the inhibition efficacy of 

the drug, half-maximal inhibitory concentration (EC50) of chloroquine, hydroxychloroquine and 

hydroxychloroquine-CMA-BODIPY, were determined against CQ-resistant Dd2 and CQ-

sensitive 3D7 strains. The labeled compound had an EC50 of 25 nM against the sensitive strain, 

which is comparable to both the parent compound (EC50 of 19 nM) and CQ (EC50 of 14 nM), 

thus the modification does not affect the compound’s activity (Data obtained by my colleague 

Lola Fagbami). 

These results thus validate the unique attachment site on the BODIPY dye, which is 
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accessed by our new synthetic methodology.  

 

4.5 Conclusion	

The challenges of discovering a compound’s MoA and subsequent validation of the 

macromolecular target have driven innovative approaches, such as the use of a non-perturbing 

chemical handles within the small molecule, which allows for selective attachment of a tag. 

Thus, target identification and validation approaches have included the use of chemical probes, 

such as fluorescently tagged inhibitors, which allows co-localization within cells or cell extracts 

and further elucidate on drug target. 

The BODIPY dyes are an exciting fluorophore class for diverse imaging applications. 

They are particularly promising for tagging bioactive compounds for intracellular live cell 

imaging. However, poor aqueous solubility and high lipophilicity significantly limit the scope of 

BODIPYs for bioimaging. Although extensive efforts have focused on developing derivatives 

that have improved water solubility by either installing charged substituents or large PEG chains, 

these modifications also severely impair or inhibit cell permeability.  

In an effort to develop broadly applicable dyes that are suitable for tagging bioactive 

compounds for intracellular live cell imaging, we developed a new class of BODIPY dyes based 

on an alkoxy-fluoro-boron-dipyrromethene core. These novel fluorescent dyes, which we term 

MayaFluors, are characterized by good aqueous solubility and favorable in vitro pharmacological 

properties.  

MayaFluors are readily accessible in good to excellent yields in a one-pot, two-step 

approach starting from well-established BODIPY dyes and allow facile modification with a 

broad array of functional groups commonly used in bioconjugate chemistry and bioorthogonal 

labeling.4 This new class of BODIPY fluorophores has significantly improved physicochemical 

properties that are ideally suited for biological applications. MayaFluors retain the optical 

attributes of the parent BODIPY dye class while enjoying significant improvements in their 

lipophilicity. We have validated the applicability of these dyes as fluorescent reporters for live 

cell imaging and demonstrated that MayaFluors have excellent membrane permeability and show 

little to no nonspecific staining.4 We hypothesize that the low propensity of MayaFluors to insert 

into biological membranes is the result of aqueous solubility imparted by the increased out of 

plane dipole moment these analogs experience as opposed to difluoro BODIPYs. Furthermore, 
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addition of the alkoxy substituent disrupts the planarity of the BODIPY core, which is expected 

to reduce their ability to self-aggregate and insert into lipid leaflets via the formation of π−π 

stacks.443 

In this work we report the development of a new methodology, which originated from 

our efforts to synthetize MayaFluors in a one-pot, two-step approach via BODIPY-OTf 

intermediate. The latter method presented one main drawback with regards to the amount of 

hydroxyl-reagent (100 equiv.) required when synthetizing the CMA-BODIPYs. Therefore we 

successfully developed a new synthetic methodology, which overcomes aforementioned 

problem. Thus, allowing substitution of either one or both of the canonical fluorides on the 

BODIPY dye with alkoxy ligands. Moreover, we show that the alkoxy substituent provides an 

additional, unique attachment site, which can be readily exchanged by either an alkoxy-drug or 

another alkoxy-ligand, using the new synthetic conditions. 

We synthetized a small library of novel mono- and dialkoxy BODIPY dyes in moderate 

to high yields, as well as a series of three BODIPY labeled small molecules and an azide alkoxy 

BODIPY, which may be further used in click chemistry reactions. Thus, our synthetic method 

allows for direct modification of the well-established BODIPY dyes and provides easy access to 

diversely functionalized small molecule probes.  

Importantly, (+) JQ1 labeled compound showed a relatively homogenous intracellular 

distribution in MCF-7 cells, while BODIPY labeled hydroxychloroquine displayed a subcellular 

staining pattern that is consistent with accumulation in acidic vesicles in the cytoplasm. 

Furthermore, the latter probe was also tested in Plasmodium falciparum cultures, where results 

show a subcellular staining pattern that seems consistent with accumulation in the food vacuole. 

The half-maximal inhibitory concentration (EC50) of both probes was determined to confirm the 

effect of CMA-BODIPY modification on the inhibition efficacy of the drug.  

In the first example, (+) JQ1-CMA-BODIPY had an EC50 of 26 nM against purified 

BRD4 protein, which is comparable to the parent compound (EC50 of 17 nM), demonstrating that 

the structural modification does not affect the activity of the probe but other factors, such as for 

example, size of the molecule, may lead to low accumulation in the nucleus. 

In the second example, EC50 of chloroquine, hydroxychloroquine and 

hydroxychloroquine-CMA-BODIPY, were determined against CQ-sensitive 3D7 strain. The 
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labeled compound had an EC50 of 26 nM, which is comparable to the parent compound (EC50 of 

19 nM) and CQ (EC50 of 14 nM), thus the modification does not affect the compound’s activity.  

The results obtained with both of these probes thus validate the unique attachment site on 

the BODIPY dye, which is accessed by our new synthetic methodology. Nonetheless, our 

method has a limitation regarding its solvent compatibility that in some cases prevents the 

reaction from occurring.  

We aimed to further elucidate the mechanism of action of the di-alkylamine indolo[3,2-

b]quinoline derivatives previously developed by our group, thus designing a fluorescent probe 

that would allow subcellular fluorescence co-localization of the compound in Plasmodium 

falciparum cultures. A CMA-BODIPY modified 3,7-dichloro-N10-ethylpyrrolidine was 

designed to be accessed in four steps, starting with synthesis of the hydroxyl functionalized di-

alkylamine indolo[3,2-b]quinoline. We successfully synthetized the hydroxyl intermediate and 

attempted the labeling with the dye, using our newly developed synthesis. However, the 

intermediate was not soluble in Toluene, THF or 1,4-dioxane, the three solvents compatible with 

the synthesis, thus preventing access to the desired probe. Nevertheless, the hydroxyl 

intermediate retained antimalarial activity comparable to the parent compound, which 

underscores the potential of the new methodology.  

To conclude, here we have developed a promising novel synthetic methodology utilizing 

molecular sieves as a catalyst, which, for the first time, allows direct labeling of small molecules 

through a unique attachment site on the BODIPY dye. Despite the identified limitation, this 

method allows direct labeling of hydroxyl-functionalized drugs, which we believe may have 

broad applications for rapid and specific imaging of elusive biological targets in living cells. 
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5. General	Conclusions	and	Future	Perspectives 
	

Malaria is one of the most life-threatening diseases. With almost one-third of the world’s 

population at risk it represents a major public health problem due to its morbidity and mortality.1, 

9 An estimated 198 million cases led to nearly 584,000 deaths in 2013, 90% of which were 

reported in sub-Saharan Africa.1 Malaria has a broad impact throughout tropical and subtropical 

areas of the globe, affecting indigenous populations as well as an increasing number of 

travelers.10-12 

According to the 2014 World Health Organization (WHO) Malaria Report, about 78% of 

deaths attributed to malaria occur in African children under age of 5 1. In addition to the human 

cost of malaria, the economic burden of the disease is significant, with a huge impact upon 

individual households due to lost wages and healthcare costs as well as detrimental effects on the 

national scale with about 40% of African health budgets spent on malaria every year. 13 

The emergence of drug resistance has already rendered once-effective malaria treatments 

such as, chloroquine and sulfadoxine-pyrimethamine, less reliable. Today, ACTs are the weapon 

of choice against malaria, and the possibility of losing them with the first signs of resistance, 

rendered the urgent need for novel antimalarial chemotypes.76, 87 Furthermore, new technologies 

and high throughput approaches are being applied to identify a burgeoning number of lead drug 

candidates and novel drug classes with antimalarial activity.2-3 Although efforts have been made 

to improve existing molecules, most new classes of potential antimalarials have come from high-

throughput screens. Thus, drug discovery strategies include extensive compound screening, of 

which, natural sources, chemical libraries and virtual screening stand out. 21, 122-123 

In this thesis we have explored three different medicinal chemistry approaches to address 

the unmeet needs in malaria drug discovery.  

Here we have employed two different drug discovery strategies to develop novel 

antimalarials, as well as, a novel target identification and validation tool: 

I. Hit to lead optimization 

II. aaRS as a new class of antimalarial drug target 

III. Fluorescent labeling of drugs for bioimaging 
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Figure 5.1 – Outline of the diverse medicinal chemistry approaches used in this work. 

 

The first approach focused on a hit to lead optimization strategy designed to explore the 

antimalarial potential of the 3-piperidin-4-yl-1H-indole scaffold. 

A library of 2 million compounds from GlaxoSmithKline’s chemical library was 

screened against P. falciparum cultures, from which 13.500 inhibited parasite growth and more 

than 8.000 also showed potent activity against a multidrug resistant strain.6 The public 

availability of these results provides reasonable staring points for further drug development. 

Furthermore, we were intrigued by TCMDC-134281 (2.1, Figure 2.1), which emerged as a very 

potent antimalarial compound, with a reported EC50 of 34 nM against the chloroquine-sensitive 

P. falciparum 3D7 strain. Moreover, indoles are an emerging antimalarial fragment present in 

several lead drug candidates with new mechanisms of action, such as the spiroindolone170, 234-237 

and aminoindoles classes.236, 238 

Three series of derivatives were synthesized following a reagent-based diversity 
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approach, in a total of 38 compounds, and profiled for their antimalarial activity. SAR analysis 

suggests that the 3-piperidin-4-yl-1H-indole scaffold is very sensitive to most N-piperidinyl 

modifications. Furthermore, the (4-(1H-indol-3-yl)piperidin-1-yl)(pyridin-3-yl)methanone (2.29) 

showed in vitro antimalarial activity (EC50 values ∼3 µM), no cross-resistance with chloroquine, 

selectivity for the parasite, and lead-like properties (cLogP < 3; MW ∼ 300), which represents a 

promising new antimalarial chemotype with a potential novel mechanism of action. Further 

medicinal chemistry efforts are needed to improve the potency of compound 2.29 and disclose its 

antimalarial mechanism of action 

Although high-throughput screens are powerful tools for identifying novel antimalarial 

scaffolds, the inverse approach in drug discovery, starting from the target, is still extremely 

useful. Thus, in a second approach we explored the aaRSs as a potential new class of antimalarial 

drug target. 

Aminoacyl-tRNA synthetases are already the target of commercialized drugs (Bactroban, 

GlaxoSmithKline), and have been used as drug targets in the search of novel antibacterials. 

However, until recently, they have remained unexplored as potential antimalarial drug targets.246 

Our group has established in Plasmodium that inhibition of tRNA synthetases by a small 

molecule and simultaneous activation of the integrated stress response is both feasible and 

attractive, and provides a rational mechanistic basis for future drug discovery and development 

focused on this novel target and pathway.7 Furthermore, we aimed to build on these important 

findings and in the one hand identify and biologically characterize selective small molecule 

inhibitors for the cPRS, and on the other identify novel targets within the aaRS class. This part of 

the project was organized into three different, but complementary, objectives.  

First, to explore tRNA synthetases as novel targets in P. falciparum we designed and 

synthetized a library of 21 reaction intermediate analogs, which allowed us to profile 19 of the 

PfaaRSs as drug targets. Analogues were profiled for their antimalarial activity, against blood 

and liver stage in vitro P. falciparum strains, cytotoxicity and eIF2α phosphorylation induction. 

Among the derivatives tested, L-PheSA, L-HisSA, L-AlaSA and L-ProSA were the analogs that 

exhibited higher antimalarial activity, (EC50 against the Dd2 strain < 120 nM) and lower 

cytotoxicity (SI > 20). Most of the aaSA analogs were active against liver stage in vitro P. 

berghei, with >99% parasite growth inhibition at the higher concentration of 10 µM, and 

increased eIF2α phosphorylation at 100X concentration. Taken together, the results allow the 
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prioritization of the ARS, HRS, FRS and PRS as the top four enzymes for further exploration as 

drug targets in blood stage malaria. Furthermore, the HRS, FRS and PRS are identified as the top 

three enzymes for further exploration as potential dual-stage drug targets. 

Second, to further explore PfcPRS, which our group has identified as the target of 

antimalarial halofuginone, we designed hybrid-halofuginone derivatives based on the complex 

formed by HFG and ATP in the active site of cPRS. We followed a general synthetic approach 

developed by Lin and coworkers,370 with optimization of certain steps. Despite being a concise 

asymmetric synthetic strategy, there were some challenges that had to be overcome. Nonetheless, 

further optimization efforts regarding the last two steps in the synthesis are necessary to obtain 

the desired hybrid compounds.  

Third, we aimed to characterize the biology of cPRS inhibition and resulting amino acid 

starvation response. Understanding the enzyme-inhibitor complex formed by the different types 

of inhibitors (HFG and ProSA) would further elucidate on the deferential effect observed on the 

amino acid starvation response observed in mammalian cells, despite targeting the same enzyme. 

Moreover, the induction of eIF2α phosphorylation differs when comparing MCF-7 cell culture to 

P. falciparum, which may be potentially explained by differences in the amounts of tRNA 

available in each organism. We applied a two-step proteomic approach to isolate the protein 

complex using immunoprecipitation followed by identification of its components using mass 

spectrometry. Despite not being able to completely establish the protocol, the results in MCF-7 

cells are consistent with the model proposed, thus further work needs to be done towards 

increasing the amount of the enzyme-inhibitor complex isolated to meet the detection 

requirements of the techniques used. In conclusion, in the second part of this thesis we aimed to 

characterize the set of aaRS in P. falciparum, then select the best potential drug targets amongst 

the set of plasmodial aaRS, and finally design hybrid-HFG analogs, which would selectively 

inhibit plasmodial aaRS. From this work we find that plasmodial aminoacyl-tRNA synthetases 

are indeed druggable enzymes that can be used as antimalarial drug targets.  

 

The third approach used in this project focused on developing a method to fluorescently 

label drugs, towards a target identification/validation approach. The challenges of discovering a 

compound’s MoA and subsequent validation of the macromolecular target have driven 

innovative approaches, such as the use of a non-perturbing chemical handles within the small 
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molecule, which allows for selective attachment of a tag. Thus, target identification and 

validation approaches have included the use of chemical probes, such as fluorescently tagged 

inhibitors, which allows co-localization within cells or cell extracts and further elucidate on drug 

target. First, we developed a new class of BODIPY fluorophores with significantly improved 

physicochemical properties that are ideally suited for biological applications, which were termed 

MayaFluors.4 We successfully developed a new synthetic methodology, which uses moleculaer 

scieves as a catalyst under mild conditions. The latter originated from our efforts to synthetize 

MayaFluors in a one-pot, two-step approach via BODIPY-OTf intermediate. We synthetized a 

small library of novel mono- and dialkoxy BODIPY dyes in moderate to high yields, as well as a 

series of three BODIPY labeled small molecules and an azide alkoxy BODIPY, which may be 

further used in click chemistry reactions. Thus, our synthetic method allows for direct 

modification of the well-established BODIPY dyes and provides easy access to diversely 

functionalized small molecule probes. Of these, two known drugs ((+) JQ1 and 

hydroxychloroquine) were evaluated for their activity and cellular localization. In both cases the 

labeled drug presented comparable activity to the parent drug and were cell permeable. 

Furthermore, the fluorescently labeled antimalarial displayed a subcellular staining pattern in 

mammalian cells that is consistent with accumulation in acidic vesicles in the cytoplasm. 

Moreover, the probe was also tested in Plasmodium falciparum cultures, where results show 

subcellular staining pattern that seems consistent with accumulation in the food vacuole. Despite 

the identified limitation concerning the solvent compatibility of the method, this approach allows 

for direct labeling of hydroxyl-functionalized drugs, which we believe may have broad 

applications for rapid and specific imaging of elusive biological targets in living cells. 

In conclusion, the work developed during this project demonstrated how different 

medicinal chemistry approaches might contribute to the malaria drug discovery global efforts. 

The results obtained are of the outmost importance towards the malaria agenda and will certainly 

contribute to its further scientific development, since we have: i) identified a promising new 

antimalarial chemotype with a potential novel mechanism of action, ii) we have profiled the set 

of aaRS in P. falciparum as a novel class of antimalarial targets, selecting the most promising 

drug targets amongst the set of plasmodial aaRS, as well as further explored the inhibition of 

PfcPRS, and iii) developed a new synthetic methodology which enables cellular localization of 

fluorescently labeled drugs for target identification and validation.  
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Finally, in this work we present a wide range of promising results for future development. 

The results obtained when profiling the aaRS class as novel targets for malaria drug discovery 

provides a rationale to prioritize the enzymes for further development. Although our studies 

identify the most promising targets, the tool aaSA compounds synthetized also constitute an 

attractive starting point for rational development of aaRS inhibitors as next-generation 

antimalarials. Future efforts to further explore cPRS as an antimalarial target, include the 

synthesis of the designed hybrid derivatives, which we expect will yield lead candidate 

compounds with increased parasite selectivity, suitable for preclinical development. Moreover, 

novel small molecule inhibitors of PfcPRS will be developed through a rational structural design 

approach that follows a traditional aaRS targeting strategy based on the aminoacyl-AMP analogs 

and will allow us to exploit distinct structural features that will enable higher selectivity.  
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6. Materials	and	Methods 
 

6.1 Chemistry	

6.1.1 General	
All chemicals were purchased from Chem-Impex International, Fluka, and Sigma-

Aldrich Co. and used without further purification unless otherwise noted. All solvents for 

syntheses were anhydrous. Thin layer chromatography was performed with precoated aluminum-

backed TLC plates obtained from VWR: Aluminum Oxide 60, Neutral F254 & Silica Gel 60, 

Neutral F254. Visualization of TLC plates was performed with ninhydrin, iodine, or an UVGL-

25 Compact UV Lamp 254/365 UV (UVP 115V~60Hz/0.16 Amps). Purifications were 

performed on a Biotage Isolera 4 Purification System equipped with a 200-400 nm diode array 

detector. For flash purifications, Biotage SNAP Flash Chromatography Cartridges were used. 

Purity of compounds was determined by analytical LC-ELSD-MS performed on a Waters 2545 

HPLC equipped with a 2998 diode array detector, a Waters 3100 ESI-MS module, using a 

XTerraMS C18 5 µm, 4.6 x 50 mm column at a flow rate of 5 mL/min with a linear gradient 

(95% A: 5% B to 100% B with 90 seconds and 30 seconds hold at 100% B, solvent A = water + 

0.1% formic acid, solvent B = acetonitrile + 0.1% formic acid). Proton and carbon nuclear 

magnetic resonance (1H and 13C NMR spectra) were recorded on a Bruker Ascend
TM instrument 

at 400 and 101 MHz, respectively. Chemical shifts for protons are reported in parts per million 

(ppm) and are referenced to residual solvent peaks for DMSO (2.5 ppm), CHCl3 (7.26 ppm), 

H2O (4.79 ppm) and CH3OH (3.31 ppm). Data is reported as follows: chemical shift, multiplicity 

(s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, br =broad), coupling constants 

(Hz) and integration. Instant JChem was used for structure database management, search and 

prediction, Instant JChem 5.9.3, 2012, ChemAxon (http://www.chemaxon.com). 
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6.1.2 Synthesis	of	3-piperidin-4-yl-1H-indole	Derivatives	
 

3-(1-benzyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (2.2) 

5 g (42.7 mmol) of indole were dissolved in isopropanol (50 mL). To this 

solution, potassium hydroxide (7.18 g, 128 mmol) in isopropanol (50 mL) 

was added, followed by the addition of 1-benzypiperidine-4-one (20 mL, 

108 mmol) in isopropanol (50 mL). The reaction refluxed for 6 h, after 

which it was cooled to room temperature. The solvent was removed under 

reduced pressure. The crude product was purified by flash chromatography using a gradient 

elution of Hexane/Ethyl Acetate. The desired product was obtained as a yellow solid (12.0 g, 

98%).  

ESI-MS: C20H20N2, m/z calculated for [M+H]+: 289.2, Found: 289.2. 
1H NMR δ (MeOD) 7.84 (d, J = 8.1 Hz, 1H), 7.47 – 7.31 (m, 6H), 7.28 (s, 1H), 7.14 (ddd, J = 

8.2, 7.0, 1.2 Hz, 1H), 7.07 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 6.20 (tt, J = 3.5, 1.5 Hz, 1H), 3.70 (s, 

2H), 3.26 (m, 2H), 2.80 (t, J = 5.8 Hz, 2H), 2.67 (m, 2H); 13C NMR δ (MeOD) 138.8, 138.3, 

131.7, 130.9, 129.4, 128.5, 126.4, 123.1, 122.5, 121.2, 120.4, 118.3, 117.7, 112.5, 63.8, 54.1, 

51.1, 29.6. 

 

3-(piperidin-4-yl)-1H-indole (2.3) 

 4 g (13.8 mmol) of compound 2.2 were dissolved in 10% acetic acid in ethyl 

acetate (160 mL). To this solution, 1.2 g of 10% Pd/C were added. The reaction 

was placed under 1 atm of H2 (balloon) and stirred at r.t. for 50 h. The reaction 

mixture was filtered over Celite™ and washed with ethyl acetate followed by 

acetonitrile:water:methanol (1:1:1). The solvent was removed under reduced 

pressure and the crude product purified with flash chromatography using a gradient elution of 

ethyl acetate/acetonitrile:water:methanol (1:1:1) with 1% ammonium hydroxide to afford 

compound 2.3 as a yellow solid (2.66 g, 96%). 

ESI-MS: C13H16N2, m/z calculated for [M+H]+: 201.1, Found: 201.4.  
1H NMR δ (MeOD) 7.60 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.09 (ddd, J = 8.1, 7.1, 

1.2 Hz, 1H), 7.06 (s, 1H), 7.01 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 3.46 (dt, J = 12.8, 3.1 Hz, 2H), 
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H

N
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H
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3.22 – 3.06 (m, 3H), 2.23 (d, J = 12.3 Hz, 2H), 1.99 (m, 2H), 1.92 (s, NH); 13C NMR δ (MeOD) 

136.9, 126.0, 121.1, 119.9, 118.3, 118.0, 117.9, 111.1, 44.2, 31.5, 29.7. 

 

tert-butyl 4-(4-(1H-indol-3-yl)piperidine-1-carbonyl)piperidine-1-carboxylate (2.4) 

 To 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (1.00 g , 4.36 

mmol) in acetonitrile (25 mL) was added compound 2.3 (873.2 mg, 4.36 

mmol) in acetonitrile (25 mL), followed by N,N'-

dicyclohexylcarbodiimide (900 mg, 4.36 mmol) and 1-

hydroxybenzotriazole (590 mg, 4.36 mmol). The reaction stirred at room 

temperature for 2 h. The suspension was filtered and the solvent removed 

under reduced pressure. The crude product was purified by reverse phase 

flash chromatography using a gradient elution of water/acetonitrile to 

afford compound 2.4 as a white solid (1.08 g, 60%). 

ESI-MS: C24H33N3O3, m/z calculated for [M+ H]+: 412.3, Found: 412.4.  
1H NMR δ (MeOD) 7.61 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.12 (ddd, J = 8.1, 7.9, 

1.2 Hz, 1H), 7.08 – 6.99 (m, 2H), 4.69 (d, J = 13.2 Hz, 1H), 4.21 (d, J = 13.2 Hz, 1H), 4.15 (d, J 

= 13.4 Hz, 2H), 3.32 (m, 1H), 3.21-3.13 (tt, J = 12.8, 3.5 Hz, 1H), 2.97 (m, 2H), 2.85 (m, 2H), 

2.21 (d, J = 12.9 Hz, 1H), 2.12 (d, J = 13.0 Hz, 1H), 1.79 – 1.60 (m, 6H), 1.50 (s, 9H); 13C NMR 

δ (MeOD) 173.7, 155.0, 136.9, 126.3, 120.9, 119.9, 119.8, 119.0, 118.1, 110.9, 79.7, 45.9, 42.5, 

37.9, 33.7, 32.5, 28.2, 27.3. 

 

tert-butyl 4-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)piperidine-1-carboxylate (2.5) 

 To a solution of 2.4 (100 mg, 0.24 mmol) in THF (3 mL) at -78 

°C was added DIBAL in THF (730 µL of 1M solution, 0.73 

mmol). The reaction stirred at -78 °C for 1 h and then quenched 

with MeOH followed by addition of 1 M aq. sodium potassium 

tartrate. The reaction mixture stirred until clear and was extracted 

with ethyl acetate. The organic phase was washed with brine and 

dried over anhydrous Na2SO4. Solvent was removed under reduced pressure and the crude 

product purified with flash chromatography using a gradient elution of ethyl 
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acetate/acetonitrile:water:methanol (1:1:1) to afford compound 2.5 as an off-white solid (33.4 

mg, 35%). 

ESI-MS: C24H35N3O2, m/z calculated for [M+ H]+: 398.3, Found: 398.5.  
1H NMR δ (CDCl3) 8.05 (s, NH), 7.64 (d, J = 8.1 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 7.17 (ddd, J 

= 7.9, 7.1, 1.2 Hz, 1H), 7.09 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 4.10 (d, J = 

11.5 Hz, 2H), 2.99 (d, J = 11.5 Hz, 2H), 2.82 (m, 1H), 2.71 (t, J = 12.3 Hz, 2H), 2.23 (d, J = 6.9 

Hz, 2H), 2.11 (td, J = 11.9, 1.9 Hz, 2H), 2.03 (d, J = 12.3 Hz, 2H), 1.87 – 1.64 (m, 5H), 1.46 (s, 

9H), 1.11 (qd, J = 12.1, 3.4 Hz, 2H); 13C NMR δ (CDCl3) 154.8, 136.2, 126.5, 121.7, 121.4, 

119.5, 118.9, 118.8, 111.0, 79.0, 64.9, 54.8, 33.7, 33.4, 32.8, 30.8, 28.3, 28.2. 

 

 3-(1-(piperidin-4-ylmethyl)piperidin-4-yl)-1H-indole (2.6) 

Compound 2.5 (30 mg, 0.08 mmol) was dissolved in a solution of 2 M 

HCl in MeOH (3 mL) and stirred at room temperature for 20 min. The 

solvent was removed under reduced pressure and the crude product was 

purified by reverse phase flash chromatography using a gradient elution 

of water/acetonitrile to afford the desired product as a yellow solid (22.4 

mg, quantitative yield).  

ESI-MS: C19H27N3, m/z calculated for [M+ H]+: 298.2, Found: 298.5. 
1H NMR δ (D2O) 7.75 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.29 (dd, J = 8.2, 8.1 Hz, 

1H), 7.25 (s, 1H), 7.20 (dd, J =8.2, 8.0 Hz, 1H), 3.71 (d, J = 12.5 Hz, 2H), 3.53 (d, J = 13.2 Hz, 

2H), 3.24 – 3.05 (m, 7H), 2.32 (d, J = 12.5 Hz, 2H), 2.16 – 1.97 (m, 4H), 1.85 (m, 1H), 1.60 (q, J 

=11.9 Hz, 2H); 13C NMR δ (D2O) 136.3, 125.4, 122.1, 121.3, 119.3, 118.7, 117.5, 112.1, 61.3, 

53.7, 43.2, 30.5, 29.6, 28.7, 26.2. 
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4-(4-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)piperidin-1-yl)-6-chloroquinoline (2.1) 

To a solution of compound 2.6 (20 mg, 0.07 mmol) and 

DIPEA (35.2 µL, 0.20 mmol) in isopropanol (2 mL) was 

added 4,6-dichloroquinoline (19.8 mg, 0.10 mmol). The 

reaction mixture stirred under reflux for 56 h. The solvent 

was removed under reduced pressure and the crude product 

was purified by flash chromatography using a gradient 

elution of ethyl acetate/acetonitrile:water:methanol (1:1:1) 

to afford compound 2.1 as an off-white oil (4.6 mg, 15%). 

ESI-MS: C28H31ClN4, m/z calculated for [M+ H]+: 459.22, Found: 459.37.  
1H NMR δ (MeOD) 8.68 (d, J = 5.1 Hz, 1H), 8.46 (br, 1H), 8.06 (d, J = 2.3 Hz, 1H), 7.98 (d, J = 

9.0 Hz, 1H), 7.73 (dd, J = 9.0, 2.3 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 

7.17 – 7.11 (m, 3H), 7.05 (dd, J = 8.0, 7.9 Hz, 1H), 3.67-3.81 (m, 4H), 3.24-3.29 (m, 5H), 3.04 

(t, J = 12.1 Hz, 2H), 2.37 (d, J = 13.4 Hz, 2H), 2.28-2.16 (m, 3H), 2.11 (d, J = 13.3 Hz, 2H), 1.79 

(qd, J = 12.5, 3.7 Hz, 2H). 

 

General Procedure A: 

Aldehyde (1.5 equiv.) and amine (1 equiv.) were mixed in 1,2-dichloroethane, followed 

by addition of sodium triacetoxyborohydride (1.4 equiv.). The reaction was stirred at room 

temperature under inert atmosphere for 4 h. The reaction mixture was quenched with sat. aq. 

NaHCO3, followed by extraction with ethyl acetate. The organic phase was dried (Na2SO4), and 

the solvent was removed under reduced pressure. The crude product was purified by flash 

chromatography with a gradient of ethyl acetate/acetonitrile:water:methanol (1:1:1) to afford the 

desired product.  

 

General Procedure B: 

To a solution of acid chloride (1 equiv.) in DCM (3 mL) was added a suspension of 

compound 2.3 (1.1 equiv.) in sat. aq. NaHCO3 (3 mL). The reaction mixture stirred vigorously at 

room temperature for 10 min. The organic phase was washed with HCl (aq., 10%), sat. aq. 

NaHCO3 and brine, dried over anhydrous Na2SO4 and the solvent removed under reduced 
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pressure. The crude product was purified by flash chromatography with ethyl 

acetate/acetonitrile:water:methanol (1:1:1) to afford the desired product. 

 

General Procedure C: 

To a solution of acid chloride (1 equiv.) in DCM (2 mL) was added a solution of 

compound 2.3 (1.1 equiv.) and DIPEA (3 equiv.) in DCM (2 mL). The reaction mixture stirred at 

room temperature for 1 h and the solvent was removed under reduced pressure. The crude 

product was purified by flash chromatography with ethyl acetate/acetonitrile:water:methanol 

(1:1:1) to afford the desired product. 

 

General Procedure D: 

To a solution of carboxylic acid (1 equiv.) in DCM (2 mL) was added a solution of 

compound 2.3 (1 equiv.) and DIPEA (3 equiv.) in DCM (2 mL) followed by PyBOP (1.1 equiv.). 

The reaction mixture stirred at room temperature for 1 h and the solvent was removed under 

reduced pressure. The crude product was purified by flash chromatography ethyl 

acetate/acetonitrile:water:methanol (1:1:1) to afford the desired product. 

 

4-(piperidin-1-ylmethyl)benzaldehyde 

Reaction of terephthaldehyde (235 mg, 1.75 mmol), piperidine (100 

mg, 1.17 mmol) and sodium triacetoxyborohydride (349 mg, 1.64 

mmol) according to general procedure A, gave 166 mg (70%) of 

desired aldehyde as a light yellow oil. 

ESI-MS: C13H17NO, m/z calculated for [M+H]+: 204.1, Found: 204.3. 
1H NMR δ (MeOD) 10.01 (s, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 3.64 (s, 

2H), 2.52 – 2.46 (m, 4H), 1.70 – 1.60 (m, 4H), 1.53 – 1.49 (m, 2H); 13C NMR δ (MeOD) 192.4, 

144.6, 135.8, 129.9, 129.3, 62.8, 54.1, 25.1, 23.7. 

 

4-(morpholinomethyl)benzaldehyde 

Reaction of terephthaldehyde (231 mg, 1.73 mmol), morpholine (100 

mg, 1.15 mmol) and sodium triacetoxyborohydride (340.6 mg, 1.60 

mmol) according to general procedure A, gave 137 mg (58%) of 
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desired aldehyde as a light yellow oil. 

ESI-MS: C12H15NO2, m/z calculated for [M+H]+: 206.1, Found: 206.7. 
1H NMR δ (MeOD) 10.01 (s, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 3.77 – 3.71 

(m, 4H), 3.65 (s, 2H), 2.55 – 2.48 (m, 4H); 13C NMR δ (MeOD) 192.4, 144.8, 135.8, 129.6, 

125.7, 66.4, 62.4, 53.3. 

 

4-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-

one (2.7) 

 Reaction of compound 2.3 (20 mg, 0.10 mmol), 1,5-dimethyl 3-

oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbaldehyde (32.4 

mg, 0.15 mmol) and sodium triacetoxyborohydride (29.7 mg, 

0.14 mmol) according to general procedure A, gave 28.4 mg 

(79%) of desired compound as a yellow oil. 

ESI-MS: C25H28N4O, m/z calculated for [M+H]+: 401.2, Found: 

401.1. 
1H NMR δ (MeOD) 7.61 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.47 (ddd, J = 7.6, 7.2, 

1.2 Hz, 1H), 7.42 (dd, J = 8.4, 1.2 Hz, 2H), 7.35 (d, J = 8.1 Hz, 1H), 7.10 (ddd, J = 8.0, 7.2, 1.2 

Hz 1H), 7.04 (s, 1H), 7.00 (ddd, J = 8.0, 7.2, 1.0 Hz, 1H), 3.53 (s, 2H), 3.26 (s, 3H), 3.22 (d, J = 

10.5 Hz, 2H), 2.90 (m, 1H), 2.49 (t, J = 10.5? Hz, 2H), 2.43 (s, 3H), 2.11 (d, J = 12.6 Hz, 2H), 

1.92 (qd, J = 12.1, 3.4 Hz, 2H); 13C NMR δ (MeOD) 166.0, 154.4, 136.9, 134.2, 129.2, 127.9, 

126.4, 125.9, 120.8, 119.7, 119.4, 118.2, 117.9, 110.9, 101.4, 53.3, 49.3, 33.7, 32.9, 32.0, 10.0. 

 

1-(3-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)-1H-indol-1-yl)ethan-1-one (2.8) 

Reaction of compound 2.3 (20.0 mg, 0.10 mmol), 1-acetyl-1H-

indole-3-carbaldehyde (28.1 mg, 0.15 mmol) and sodium 

triacetoxyborohydride (29.7 mg, 0.14 mmol) according to 

general procedure A, gave 25.3 mg (76%) of desired amine as 

an off-white solid. 

ESI-MS: C24H25N3O, m/z calculated for [M+H]+: 372.2, Found: 

372.4. 
1H NMR δ (CDCl3) 8.45 (d, J = 7.9 Hz, 1H), 8.01 (s, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 
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8.0 Hz, 1H), 7.46 – 7.28 (m, 4H), 7.17 (ddd, J = 8.4, 8.2, 1.2 Hz 1H), 7.10 (ddd, J = 8.4, 8.0, 1.0 

Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 3.75 (s, 2H), 3.15 (d, J = 11.8 Hz, 2H), 2.87 (tt, J = 12.9, 3.6 

Hz, 1H), 2.30 (td, J = 11.8, 2.1 Hz, 2H), 2.07 (d, J = 12.9 Hz, 2H), 1.88 (qd, J = 12.3, 3.6 Hz, 

2H); 13C NMR δ (CDCl3) 169.0, 136.9, 136.4, 131.3, 127.1, 125.7, 124.8, 124.6, 123.9, 123.5, 

122.4, 121.8, 120.1, 119.6, 117.0, 111.9, 111.7, 54.9, 54.0, 33.9, 33.4, 24.5. 

 

2-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)quinolin-8-ol (2.9)  

Reaction of compound 2.3 (50 mg, 0.25 mmol), 8-

hydroxyquinoline-2-carbaldehyde (64.8 mg, 0.38 mmol) 

and sodium triacetoxyborohydride (74.1 mg, 0.35 mmol) 

according to general procedure A, gave 92.6 mg (99%) of 

desired amine as a light yellow oil. 

ESI-MS: C23H23N3O, m/z calculated for [M+H]+: 358.2, Found: 358.2.  
1H NMR δ (MeOD) 8.17 (d, J = 8.3 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 

7.39 (d, J = 8.6 Hz, 1H), 7.36 – 7.24 (m, 2H), 7.11 (dd, J = 7.5, 1.3 Hz, 1H), 7.05 (ddd, J = 7.5, 

6.9, 1.3 Hz, 1H), 7.01 (s, 1H), 6.96 (ddd, J = 7.9, 6.9, 1.0 Hz, 1H), 4.22 (s, 2H), 3.28 – 3.25 (m, 

2H), 2.97 (tt, J = 11.4, 4.1 Hz, 1H), 2.75 (td, J = 11.6, 1.6 Hz, 2H), 2.14 – 1.96 (m, 4H); 13C 

NMR δ (MeOD) 154.2, 153.7, 139.4, 138.5, 138.3, 129.6, 128.9, 127.7, 122.6, 122.4, 121.3, 

119.9, 119.6, 119.0, 118.4, 112.54, 112.4, 63.6, 55.2, 33.5, 32.2. 

 

3-(1-(benzo[b]thiophen-3-ylmethyl)piperidin-4-yl)-1H-indole (2.10) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), 

benzo[b]thiophene-3-carbaldehyde (60.7 mg, 0.38 mmol) and 

sodium triacetoxyborohydride (74.1 mg, 0.35 mmol) according to 

general procedure A, gave 47.6 mg (55%) of desired amine as a 

light yellow oil. 

ESI-MS: C22H22N2S, m/z calculated for [M+H]+: 347.2, Found: 347.2.  
1H NMR δ (DMSO) 10.77 (s, 1H), 8.03 (d, J = 7.4 Hz, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.57 (s, 

1H), 7.54 (d, J = 7.5 Hz, 1H), 7.45 – 7.31 (m, 3H), 7.10 – 7.01 (m, 2H), 6.95 (t, J = 7.4 Hz, 1H), 

3.77 (s, 2H), 3.00 (d, J = 11.2 Hz, 2H), 2.77 (tt, J = 12.0, 3.7 Hz, 1H), 2.18 (t, J = 10.8 Hz, 2H), 

1.98 – 1.89 (m, 2H), 1.69 (qd, J = 12.3, 3.7 Hz, 2H); 13C NMR δ (DMSO) 139.9, 138.8, 136.4, 
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133.4, 126.3, 124.8, 124.3, 123.9, 122.8, 122.7, 120.8, 120.5, 119.6, 118.5, 118.0, 111.4, 56.2, 

53.9, 33.1, 32.8. 

 

3-(1-benzylpiperidin-4-yl)-1H-indole (2.11) 

Reaction of compound 2.3 (100 mg, 0.50 mmol), benzaldehyde (79.4 

mg, 0.70 mmol) and sodium triacetoxyborohydride (118.6 mg, 0.75 

mmol) according to general procedure A, gave 76.2 mg (53%) of 

desired amine as a dark yellow solid. 

ESI-MS: C20H22N2, m/z calculated for [M+H]+: 291.2, Found: 291.1.  
1H NMR δ (MeOD) 7.58 (d, J = 7.8 Hz, 1H), 7.38 – 7.26 (m, 6H), 7.08 

(ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.03 – 6.96 (m, 2H), 3.56 (s, 2H), 3.00 

(m, 2H), 2.80 (tt, J = 11.9, 3.8 Hz, 1H), 2.18 (td, J = 12.2, 2.6 Hz, 2H), 2.02 – 1.96 (m, 2H), 1.84 

(qd, J = 12.1, 3.3 Hz, 2H); 13C NMR δ (MeOD) 136.9, 132.8, 129.6, 128.0, 127.9, 127.1, 126.5, 

120.8, 119.7, 118.4, 117.9, 110.9, 63.1, 53.8, 33.4, 32.3. 

 

3-(1-(2-methylbenzyl)piperidin-4-yl)-1H-indole (2.12) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), 2-

methylbenzaldehyde (44.9 mg, 0.38 mmol) and sodium 

triacetoxyborohydride (74.1 mg, 0.35 mmol) according to general 

procedure A, gave 41.8 mg (55%) of desired amine as a light orange 

solid. 

ESI-MS: C21H24N2, m/z calculated for [M+H]+: 305.2, Found: 305.2.  
1H NMR δ (CDCl3) 8.15 (s, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.22 – 7.13 (m, 

4H), 7.09 (m, 1H), 6.96 (d, J = 2.3 Hz, 1H), 3.62 (s, 2H), 3.09 (d, J = 12.1 Hz, 2H), 2.87 (tt, J = 

12.0, 3.8 Hz, 1H), 2.41 (s, 3H), 2.28 (td, J = 12.1, 2.6 Hz, 2H), 2.12 – 1.98 (m, 2H), 1.84 (qd, J = 

12.2, 3.3 Hz, 2H); 13C NMR δ (CDCl3) 137.7, 136.5, 130.5, 130.3, 130.3, 127.4, 126.8, 125.8, 

121.9, 121.3, 119.9, 119.2, 119.1, 111.3, 60.7, 54.3, 33.5, 32.8, 19.6. 
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4-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)-3,5-dimethoxyphenol (2.13) 

Reaction of compound 2.3 (20.0 mg, 0.10 mmol), 4-hydroxy-2,6-

dimethoxybenzaldehyde (27.3 mg, 0.15 mmol) and sodium 

triacetoxyborohydride (29.7 mg, 0.14 mmol) according to general 

procedure A, gave 13.6 mg (42%) of desired amine as a yellow 

solid. 

ESI-MS: C22H26N2O3, m/z calculated for [M+H]+: 367.2, Found: 

367.1. 1H NMR δ (DMSO) 10.91 (s, 1H), 10.12 (s, 1H), 7.65 (d, J 

= 7.7 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.13 – 7.02 (m, 2H), 6.96 (m, 1H), 6.21 (s, 2H), 4.08 (s, 

2H), 3.79 (s, 6H), 3.40 – 3.34 (m, 2H), 3.11 – 2.94 (m, 3H), 2.22 – 1.92 (m, 4H); 13C NMR δ 

(DMSO) 161.1, 160.1, 136.4, 125.8, 120.9, 120.8, 118.8, 118.2, 117.7, 111.5, 91.9, 55.8, 55.4, 

51.9, 48.8, 43.5, 31.0, 30.7, 29.5, 29.0. 

 

2-(3-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)phenoxy)ethan-1-ol (2.14) 

 Reaction of compound 2.3 (50 mg, 0.25 mmol), 3-(2-

hydroxyethoxy)benzaldehyde (62.3 mg, 0.38 mmol) and 

sodium triacetoxyborohydride (74.1 mg, 0.35 mmol) according 

to general procedure A, gave 86.7 mg (99%) of desired amine 

as an orange oil. 

ESI-MS: C22H26N2O2, m/z calculated for [M+H]+: 351.2, 

Found: 351.2. 
1H NMR δ (CDCl3) 8.36 (s, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.35 

(d, J = 8.4 Hz, 1H), 7.27 (m, 1H), 7.19 – 7.12 (m, 2H), 7.08 (ddd, J = 7.9, 7.1, 1.1 Hz, 1H), 6.97 

(m, 2H), 6.87 (dd, J = 8.2, 2.5 Hz, 1H), 4.13 (dd, J = 5.3, 4.0 Hz, 2H), 3.96 (dd, J = 5.3, 4.0 Hz, 

2H), 3.71 (s, 2H), 3.15 (d, J = 11.5 Hz, 2H), 2.88 (tt, J = 11.4, 4.3 Hz, 1H), 2.36 (t, J = 10.9 Hz, 

2H), 2.13 – 1.93 (m, 4H); 13C NMR δ (CDCl3) 159.1, 136.5, 129.5, 126.6, 122.6, 121.9, 120.6, 

120.1, 119.2, 119.0, 115.9, 114.4, 111.4, 69.4, 62.8, 61.5, 53.9, 33.1, 32.1. 
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3-(1-(2,6-dichloro-3,4-dimethoxybenzyl)piperidin-4-yl)-1H-indole (2.15) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), 2,6-dichloro-

3,4-dimethoxybenzaldehyde (87.6 mg, 0.38 mmol) and sodium 

triacetoxyborohydride (74.1 mg, 0.35 mmol) according to general 

procedure A, gave 62.9 mg (60%) of desired amine as red solid. 

ESI-MS: C22H24Cl2N2O2, m/z calculated for [M+H]+: 419.1, 

Found: 419.3.  
1H NMR δ (DMSO) 10.74 (s, 1H), 7.52 (dd, J = 7.8, 1.2 Hz, 1H), 

7.31 (d, J = 8.0 Hz, 1H), 7.18 (s, 1H), 7.09 – 7.01 (m, 2H), 6.94 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 

3.86 (s, 3H), 3.75 (s, 3H), 3.68 (s, 2H), 2.92 (d, J = 11.1 Hz, 2H), 2.77 (tt, J = 12.0, 3.6 Hz, 1H), 

2.35 (t, J = 11.1 Hz, 2H), 1.92 (d, J =13.7 Hz, 2H), 1.62 (qd, J = 12.2, 3.5 Hz, 2H); 13C NMR δ 

(DMSO) 152.6, 143.9, 136.3, 130.3, 130.2, 126.3, 120.7, 120.4, 119.5, 118.5, 117.9, 112.6, 

111.4, 60.1, 56.5, 56.4, 53.7, 32.8. 

 

3-(1-(4-fluorobenzyl)piperidin-4-yl)-1H-indole (2.16) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), 4-

fluorobenzaldehyde (46.4 mg, 0.38 mmol) and sodium 

triacetoxyborohydride (74.1 mg, 0.35 mmol) according to general 

procedure A, gave 55 mg (72%) of desired amine as yellow oil. 

ESI-MS: C20H21FN2, m/z calculated for [M+H]+: 309.2, Found: 

309.1.  
1H NMR δ (MeOD) 7.60 (d, J = 7.9 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.35 (d, J = 8.2 Hz, 1H), 7.17 

– 7.07 (m, 3H), 7.05 – 6.96 (m, 2H), 3.81 (s, 2H), 3.17 (d, J = 12.1 Hz, 2H), 2.94 (tt, J = 11.9, 

3.8 Hz, 1H), 2.51 (t, J = 11.1 Hz, 2H), 2.11 (d, J =12.9 Hz, 2H), 1.93 (qd, J = 12.1, 3.3 Hz, 2H); 
13C NMR δ (MeOD) 164.1 (d, 1JCF = 245 Hz), 138.3, 133.3, 127.7, 122.3, 121.2, 120.3, 119.6, 

119.5, 116.4, 116.2, 112.4, 62.6, 54.7, 34.0, 32.9. 
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3-(1-(4-(trifluoromethyl)benzyl)piperidin-4-yl)-1H-indole (2.17) 

Reaction of compound 2.3 (20 mg, 0.10 mmol), 4-

(trifluoromethyl)benzaldehyde (26.1 mg, 0.15 mmol) and sodium 

triacetoxyborohydride (29.7 mg, 0.14 mmol) according to 

general procedure A, gave the desired amine as a beige oil 22.2 

mg (69%). 

ESI-MS: C21H21F3N2, m/z calculated for [M+H]+: 359.2, Found: 

359.3.  
1H NMR δ (MeOD) 7.72 – 7.55 (m, 5H), 7.34 (d, J = 8.1 Hz, 1H), 7.09 (ddd, J = 8.1, 7.1, 1.1 

Hz, 1H), 7.03 (s, 1H), 7.00 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 3.72 (s, 2H), 3.06 (d, J = 12.3 Hz, 

2H), 2.88 (tt, J = 12.3, 3.9 Hz, 1H), 2.31 (td, J = 12.3, 2.5 Hz, 2H), 2.07 (m, 2H), 1.89 (qd, J = 

12.3, 3.6 Hz, 2H); 13C NMR δ (MeOD) 143.3, 138.3, 131.3, 127.9, 126.2, 126.2, 126.1, 122.2, 

121.1, 121.0, 119.6, 119.3, 112.3, 63.7, 55.3, 34.7, 33.8. 

 

4-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)benzaldehyde (2.18) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), 

terephthaldehyde (50.3 mg, 0.37 mmol) and sodium 

triacetoxyborohydride (74.1 mg, 0.35 mmol) according to general 

procedure A, gave 19.9 mg (25%) of desired amine an off-white 

solid. 

ESI-MS: C21H22N2O, m/z calculated for [M+H]+: 319.2, Found: 

319.2.  
1H NMR δ (CDCl3) 10.00 (s, 1H), 8.07 (s, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 7.9 Hz, 

1H), 7.55 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.2 Hz, 1H), 7.18 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.10 

(ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 6.97 (d, J = 1.2 Hz, 1H), 3.66 (s, 2H), 3.01 (d, J = 11.8 Hz, 2H), 

2.86 (tt, J = 11.9, 3.8 Hz, 1H), 2.23 (td, J = 11.8, 2.5 Hz, 2H), 2.05 (d, J = 13.9 Hz, 2H), 1.86 

(qd, J = 11.9, 3.3 Hz, 2H); 13C NMR δ (CDCl3) 191.9, 145.7, 136.2, 135.2, 129.6, 129.5, 126.8, 

121.7, 121.1, 119.5, 118.9, 111.0, 62.9, 54.2, 33.2, 32.7. 
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1,4-bis((4-(1H-indol-3-yl)piperidin-1-yl)methyl)benzene (2.19) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), 

terephthaldehyde (50.3 mg, 0.38 mmol) and 

sodium triacetoxyborohydride (74.1 mg, 0.35 

mmol) according to general procedure A, gave 

37.7 mg (30%) of desired amine as an off-white 

solid. 

ESI-MS: C34H38N4, m/z calculated for [M+H]+: 503.3, Found: 503.3.  
1H NMR δ (DMSO) 10.74 (s, 2H), 7.53 (d, J = 7.6 Hz, 2H), 7.39 – 7.25 (m, 6H), 7.08 (s, 2H), 

7.04 (dd, J = 7.5, 1.1 Hz, 2H), 6.94 (dd, J = 7.6, 1.2 Hz, 2H), 3.49 (s, 4H), 2.91 (d, J = 12.1 Hz, 

4H), 2.75 (tt, J = 12.2, 3.8 Hz, 2H), 2.11 (td, J = 11.8, 2.5 Hz, 4H), 1.96 – 1.86 (m, 4H), 1.69 

(qd, J = 12.0, 3.4 Hz, 4H); 13C NMR δ (DMSO) 137.2, 136.3, 128.6, 126.3, 120.7, 120.5, 119.6, 

118.5, 117.9, 111.4, 62.4, 53.8, 33.1, 32.8. 

 

4-(4-((4-(1H-indol-3-yl)piperidin-1-yl)methyl)benzyl)morpholine (2.20) 

Reaction of compound 2.3 (20 mg, 0.10 mmol), 4-

(morpholinomethyl)benzaldehyde (30.8 mg, 0.15 mmol) and 

sodium triacetoxyborohydride (29.7 mg, 0.14 mmol) 

according to general procedure A, gave 14.8 mg (38%) of 

desired amine as an off-white solid. 

ESI-MS: C25H31N3O, m/z calculated for [M+H]+: 390.3, 

Found: 390.2.  
1H NMR δ (CDCl3) 8.25 (s, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.44 – 7.32 (m, 5H), 7.16 (ddd, J = 

8.1, 7.1, 1.2 Hz, 1H), 7.08 (ddd, J = 7.8, 7.1, 1.1 Hz, 1H), 6.97 (d, J = 1.9 Hz, 1H), 3.81 (s, 2H), 

3.76 – 3.67 (m, 4H), 3.51 (s, 2H), 3.22 (d, J = 11.5 Hz, 2H), 2.90 (m, 1H), 2.52 – 2.37 (m, 6H), 

2.10 – 2.06 (m, 4H); 13C NMR δ (CDCl3) 136.5, 130.4, 130.3, 129.6, 129.6, 126.6, 122.1, 120.1, 

119.3, 118.9, 111.5, 67.1, 63.2, 62.2, 53.7, 32.8, 31.7. 
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3-(1-(4-(piperidin-1-ylmethyl)benzyl)piperidin-4-yl)-1H-indole (2.21) 

Reaction of compound 2.3 (20.0 mg, 0.10 mmol), 4-

(piperidin-1-ylmethyl)benzaldehyde (30.5 mg, 0.15 mmol) 

and sodium triacetoxyborohydride (29.7 mg, 0.14 mmol) 

according to general procedure A, gave the desired amine as 

an off-white solid (20.9 mg, 54%). 

ESI-MS: C26H33N3, m/z calculated for [M+H]+: 388.3, 

Found: 388.4.  
1H NMR δ (CDCl3) 8.02 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 7.32 – 7.24 

(m, 4H), 7.18 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.10 (ddd, J = 7.9, 6.9, 1.1 Hz, 1H), 6.96 (d, J = 1.8 

Hz, 2H), 3.56 (s, 2H), 3.47 (s, 2H), 3.03 (d, J = 11.9 Hz, 2H), 2.84 (tt, J = 11.9, 3.8 Hz, 1H), 2.45 

– 2.31 (m, 4H), 2.17 (td, J = 11.9, 2.4 Hz, 2H), 2.08 – 1.98 (m, 2H), 1.83 (qd, J = 12.0, 3.5 Hz, 

2H), 1.58 (m, 4H), 1.44 (m, 2H); 13C NMR δ (CDCl3) 137.2, 137.1, 136.4, 129.1, 129.0, 126.7, 

121.9, 121.7, 119.6, 119.0, 111.1, 63.7, 63.4, 54.5, 54.4, 33.5, 33.1, 25.9, 24.4. 

 

3-(1-(pyridin-4-ylmethyl)piperidin-4-yl)-1H-indole (2.22) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), isonicotinaldehyde 

(40.1 mg, 0.37 mmol) and sodium triacetoxyborohydride (74.1 mg, 

0.35 mmol) according to general procedure A, gave 70.6 mg (97%) of 

desired amine as orange oil. 

ESI-MS: C19H21N3, m/z calculated for [M+H]+: 292.2, Found: 292.4. 
1H NMR δ (MeOD) 8.49 (d, J = 6.0 Hz, 2H), 7.58 (d, J = 7.9 Hz, 1H), 

7.45 (d, J = 6.0 Hz, 2H), 7.33 (d, J = 8.1 Hz, 1H), 7.08 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.02 – 

6.92 (m, 2H), 3.63 (s, 2H), 3.01 (m, 2H), 2.84 (tt, J = 11.9, 3.9 Hz, 1H), 2.27 (t, J = 11.9 Hz, 

2H), 2.04 (d, J = 13.8 Hz, 2H), 1.86 (qd, J = 12.0, 3.5 Hz, 2H); 13C NMR δ (MeOD) 150.0, 

149.8, 149.7, 138.3, 127.9, 126.0, 122.7, 122.2, 121.1, 120.9, 119.7, 119.4, 112.3, 62.8, 55.4, 

34.6, 33.8. 
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3-(1-(thiophen-2-ylmethyl)piperidin-4-yl)-1H-indole (2.23) 

Reaction of compound 2.3 (20.0 mg, 0.10 mmol), thiophene-2-

carbaldehyde (16.8 mg, 0.15 mmol) and sodium triacetoxyborohydride 

(29.7 mg, 0.14 mmol) according to general procedure A, gave 19.2 mg 

(65%) of desired amine as a light yellow oil. 

ESI-MS: C18H20N2S, m/z calculated for [M+H]+: 297.1, Found: 297.4. 
1H NMR δ (CDCl3) 8.00 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 

8.1 Hz, 1H), 7.25 (d, J = 1.5 Hz, 1H), 7.18 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.10 (ddd, J = 7.9, 7.1, 

1.1 Hz, 1H), 6.99 – 6.95 (m, 3H), 3.82 (s, 2H), 3.08 (d, J = 12.9 Hz, 2H), 2.84 (tt, J = 11.9, 3.8 

Hz, 1H), 2.24 (t, J = 11.8 Hz, 2H), 2.06 (d, J = 12.9 Hz, 2H), 1.86 (qd, J = 11.8, 3.3 Hz, 2H); 13C 

NMR δ (CDCl3) 142.0, 136.8, 127.2, 126.9, 126.7, 125.4, 122.4, 121.9, 120.1, 119.6, 119.5, 

111.6, 57.9, 54.4, 33.9, 33.4. 

 

3-(1-(cyclohexylmethyl)piperidin-4-yl)-1H-indole (2.24) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), (S)-3,7-dimethyloct-

6-enal (42.1 mg, 0.38 mmol) and sodium triacetoxyborohydride (74.1 

mg, 0.35 mmol) according to general procedure A, gave 74.1 mg 

(quantitative yield) of desired amine as orange oil. 

ESI-MS: C20H28N2, m/z calculated for [M+H]+: 298.2, Found: 298.2. 
1H NMR δ (CDCl3) 8.19 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 

8.1 Hz, 1H), 7.18 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.10 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 6.96 (d, J = 

2.3 Hz, 1H), 3.03 (d, J = 11.6 Hz, 2H), 2.83 (tt, J = 11.9, 3.8 Hz, 1H), 2.21 (d, J = 6.9 Hz, 2H), 

2.15 – 1.97 (m, 4H), 1.95 – 1.79 (m, 4H), 1.78 – 1.62 (m, 3H), 1.36 – 1.08 (m, 4H), 1.02 – 0.82 

(m, 2H); 13C NMR δ (CDCl3) 136.5, 126.8, 121.9, 121.6, 119.9, 119.2, 119.1, 111.3, 66.3, 55.1, 

35.3, 33.7, 32.9, 32.3, 26.9, 26.3. 
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3-(1-((S)-3,7-dimethyloct-6-en-1-yl)piperidin-4-yl)indoline (2.25) 

Reaction of compound 2.3 (50.0 mg, 0.25 mmol), (S)-

3,7-dimethyloct-6-enal (57.7 mg, 0.38 mmol) and 

sodium triacetoxyborohydride (74.1 mg, 0.35 mmol) 

according to general procedure A, gave 83.4 mg 

(98%) of desired amine as a dark orange oil. 

ESI-MS: C23H36N2, m/z calculated for [M+H]+: 341.3, Found: 341.3.  
1H NMR δ (DMSO) 10.75 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.09 – 7.00 

(m, 2H), 6.94 (t, J = 7.4 Hz, 1H), 5.01 (m, 1H), 2.94 (d, J = 9.3 Hz, 2H), 2.72 (tt, J = 11.9, 3.8 

Hz, 1H), 2.30 (t, J = 7.3 Hz, 2H), 2.11 – 1.80 (m, 6H), 1.67 (m, 1H), 1.65 (s, 3H), 1.58 (s, 3H), 

1.46 (m, 2H), 1.39 – 1.07 (m, 4H), 0.87 (d, J = 6.3 Hz, 3H); 13C NMR δ (DMSO) 136.4, 130.4, 

126.3, 124.7, 120.7, 120.4, 119.7, 118.5, 117.9, 111.4, 58.8, 56.3, 54.3, 53.9, 36.7, 33.6, 33.3, 

32.9, 30.2, 25.5, 24.9, 19.6, 17.5. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(phenyl)methanone (2.26) 

Reaction of compound 2.3 (78.6 mg, 0.39 mmol) and benzoyl chloride (50.0 

mg, 0.36 mmol) according to general procedure B, gave 59.9 mg (55%) of 

desired amide as a beige solid. 

ESI-MS: C20H20N2O, m/z calculated for [M+H]+: 305.2, Found: 305.1.  
1H NMR δ (DMSO) 10.81 (s, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.47 – 7.40 (m, 

5H), 7.34 (d, J = 7.9 Hz, 1H), 7.14 (d, J = 2.3 Hz, 1H), 7.06 (dd, J = 7.9, 1.4 

Hz, 1H), 6.96 (dd, J = 7.8, 1.3 Hz, 1H), 4.61 (br, 1H), 3.68 (br, 1H), 3.23 (br, 

1H), 3.08 (tt, J = 3.4, 12.2 Hz, 1H), 2.95 (br, 1H), 2.15 – 1.80 (m, 2H), 1.68 – 1.58 (m, 2H); 13C 

NMR δ (DMSO) 169.4, 137.0, 136.8, 129.7, 128.9, 127.1, 126.6, 121.4, 121.3, 119.4, 118.9, 

118.6, 111.9, 48.2, 42.6, 33.6. 
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(4-(1H-indol-3-yl)piperidin-1-yl)(2,5-dimethoxyphenyl)methanone (2.27) 

Reaction of compound 2.3 (54.9 mg, 0.27 mmol) and 2,5-dimethoxybenzoyl 

chloride (50.0 mg, 0.25 mmol) according to general procedure B, gave 91.0 

mg (quantitative yield) of desired amide as a white solid. 

ESI-MS: C22H24N2O3, m/z calculated for [M+H]+: 365.2, Found: 365.2. 1H 

NMR δ (CDCl3) 8.37 (s, NH), 7.62 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 

1H), 7.19 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.11 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 

6.93 (d, J = 2.2 Hz, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.51 (t, J = 2.3 Hz, 1H), 

4.85 (br, 1H), 3.91 (br, 1H), 3.80 (s, 6H), 3.20 (br, 1H), 3.13 (tt, J = 11.8, 3.6 Hz, 1H), 2.98 (br, 

1H), 2.18 (br, 1H), 2.06 (br, 1H), 1.82 (br, 1H), 1.66 (br, 1H); 13C NMR δ (CDCl3) 170.1, 160.9, 

138.3, 136.6, 126.4, 122.1, 120.2, 119.9, 119.3, 118.9, 111.5, 104.8, 101.6, 55.6, 48.4, 42.9, 33.9, 

32.6, 29.8. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(4-fluorophenyl)methanone (2.28) 

Reaction of compound 2.3 (69.6 mg, 0.35 mmol) and 4-fluorobenzoyl 

chloride (50.0 mg, 0.32 mmol) according to general procedure B, gave 97.9 

mg (95%) of desired amide as a yellow oil. 

 ESI-MS: C20H19FN2O, m/z calculated for [M+H]+: 323.2, Found: 323.3.  
1H NMR δ (DMSO) 10.73 (s, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.47 – 7.40 (m, 

2H), 7.30 – 7.16 (m, 3H), 7.06 (d, J = 2.4 Hz, 1H), 6.99 (m, 1H), 6.90 (m, 

1H), 4.52 (br, 1H), 3.59 (br, 1H), 3.10 (br, 1H), 3.01 (tt, J = 11.8, 3.7 Hz, 

1H), 2.91 (br, 1H), 1.91 (br, 2H), 1.57 (m, 2H); 13C NMR δ (DMSO) 168.5, 

162.9 (d, 1JCF = 246 Hz), 136.8, 133.4, 129.8, 126.6, 121.3, 119.4, 118.9, 118.6, 115.9, 111.9, 

48.4, 42.7, 33.6, 33.2, 29.5. 
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(4-(1H-indol-3-yl)piperidin-1-yl)(pyridin-3-yl)methanone (2.29) 

Reaction of compound 2.3 (78.1 mg, 0.39 mmol), nicotinoyl chloride (50.0 

mg, 0.35 mmol) and DIPEA (182.9 µL, 1.05 mmol) according to general 

procedure C, gave 26.7 mg (25%) of desired amide as an off-white solid. 

ESI-MS: C19H19N3O, m/z calculated for [M+H]+: 306.2, Found: 306.4. 
1H NMR δ (CDCl3) 8.73 (d, J = 2.2 Hz, 1H), 8.68 (dd, J = 4.9, 1.7 Hz, 1H), 

8.46 (s, NH), 7.80 (dd, J = 7.8, 1.9 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.42 – 

7.32 (m, 2H), 7.19 (dd, J = 7.7, 1.1 Hz, 1H), 7.12 (dd, J = 7.8, 1.2 Hz, 1H), 

6.95 (d, J = 2.4 Hz, 1H), 4.88 (br, 1H), 3.85 (br, 1H), 3.28 (br, 1H), 3.15 (tt, J = 11.9, 3.7 Hz, 

1H), 3.01 (br, 1H), 2.20 (br, 1H), 2.08 (br, 1H), 1.83 (br, 1H), 1.70 (br, 1H); 13C NMR δ 

(CDCl3) 167.8, 150.7, 147.9, 136.6, 135.0, 132.3, 126.4, 123.6, 122.2, 120.0, 119.9, 119.3, 

118.9, 111.5, 48.6, 43.2, 33.8, 33.7, 32.5. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(thiophen-2-yl)methanone (2.30) 

Reaction of compound 2.3 (76.1 mg, 0.38 mmol) and 2-thiophenecarbonyl 

chloride (50.0 mg, 0.35 mmol) according to general procedure B, gave 71.1 

mg (66%) of desired amide as an off-white solid. 

ESI-MS: C18H18N2OS, m/z calculated for [M+H]+: 311.1, Found: 311.3.  
1H NMR δ (CDCl3) 8.12 (s, NH), 7.64 (d, J = 7.9 Hz, 1H), 7.44 (dd, J = 5.0, 

1.2 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.33 (dd, J = 3.7, 1.2 Hz, 1H), 7.20 

(ddd, J = 7.9, 7.1, 1.2 Hz, 1H), 7.12 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.06 (dd, 

J = 5.0, 3.7 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 4.59 (br, 2H), 3.25 – 3.08 (m, 3H), 2.17 (br, 1H), 

2.14 (br, 1H), 1.79 (m, 2H); 13C NMR δ (CDCl3) 163.8, 137.7, 136.6, 128.7, 128.4, 126.8, 126.5, 

122.3, 120.5, 119.9, 119.5, 119.0, 111.5, 34.0, 33.3, 29.9, 22.9, 14.3. 
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1-(4-(1H-indol-3-yl)piperidin-1-yl)ethan-1-one (2.31) 

Reaction of compound 2.3 (140 mg, 0.70 mmol) and acetyl chloride (50.0 mg, 

0.64 mmol) according to general procedure B, gave 113 mg (73%) of desired 

amide as a yellow solid. 

ESI-MS: C15H18N2O, m/z calculated for [M+H]+: 243.1, Found: 243.4. 
1H NMR δ (CDCl3) 8.04 (s, NH), 7.63 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 8.1 

Hz, 1H), 7.20 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 7.12 (ddd, J = 7.9, 7.1, 1.1 Hz, 

1H), 6.96 (d, J = 2.5 Hz, 1H), 4.77 (m, 1H), 3.92 (m, 1H), 3.26 (ddd, J = 13.4, 12.9, 2.7 Hz, 1H), 

3.09 (tt, J = 11.8, 3.8 Hz, 1H), 2.75 (ddd, J = 13.4, 12.9, 2.9 Hz, 1H), 2.15 (s, 3H), 1.76 – 1.60 

(m, 4H); 13C NMR δ (CDCl3) 168.9, 136.4, 126.4, 122.2, 120.5, 119.7, 119.3, 118.9, 111.3, 

47.1, 42.3, 33.8, 33.6, 32.3, 21.6. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(pyridin-4-yl)methanone (2.32) 

Reaction of compound 2.3 (20.0 mg, 0.100 mmol), isonicotinic acid (12.3 

mg, 0.10 mmol), DIPEA (52.3 µL, 0.30 mmol) and PyBOP (57.2 mg, 0.11 

mmol) according to general procedure D, gave 18.30 mg (60%) of desired 

amide as a yellow oil. 

ESI-MS: C19H19N3O, m/z calculated for [M+H]+: 306.2, Found: 306.1. 
1H NMR δ (CDCl3) 8.71 (dd, J = 5.9, 1.6 Hz, 2H), 8.06 (s, NH), 7.62 (d, J 

= 7.9 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.33 (d, J = 5.9 Hz, 2H), 7.21 (ddd, 

J = 8.1, 7.1, 1.2 Hz, 1H), 7.13 (ddd, J = 7.9, 7.1, 1.0 Hz, 1H), 6.98 (d, J = 2.5 Hz, 1H), 4.86 (d, J 

= 13.2 Hz, 1H), 3.74 (d, J = 15.9 Hz, 1H), 3.27 (td, J = 12.5, 2.3 Hz, 1H), 3.16 (tt, J = 3.7, 11.9 

Hz, 1H), 3.0 (td, J = 12.9, 2.8 Hz, 1H), 2.23 (d, J = 13.3 Hz, 1H), 2.08 (d, J = 13.0 Hz, 1H), 1.84 

(m, 1H), 1.63 (m, 1H); 13C NMR δ (CDCl3) 167.5, 150.1, 143.9, 136.3, 126.1, 122.1, 120.9, 

119.9, 119.5, 119.2, 118.7, 111.2, 48.0, 42.6, 33.6, 32.2, 29.5. 
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(4-(1H-indol-3-yl)piperidin-1-yl)(pyridin-2-yl)methanone (2.33) 

Reaction of compound 2.3 (20.0 mg, 0.10 mmol), picolinic acid (12.3 mg, 

0.10 mmol), DIPEA (52.3 µL, 0.30 mmol) and PyBOP (57.2 mg, 0.11 mmol) 

according to general procedure D, gave 29.0 mg (95%) of desired amide as a 

beige solid. 

ESI-MS: C19H19N3O, m/z calculated for [M+H]+: 306.2, Found: 306.4. 
1H NMR δ (CDCl3) 8.71 (s, 2H), 8.22 (s, NH), 7.62 (d, J = 8.0 Hz, 1H), 7.39 

– 7.31 (m, 3H), 7.20 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.12 (ddd, J = 8.0, 7.1, 

1.1 Hz, 1H), 6.97 (d, J = 2.5 Hz, 1H), 4.86 (d, J = 12.8 Hz, 1H), 3.73 (d, J = 13.0 Hz, 1H), 3.27 

(td, J = 12.7, 2.9 Hz, 1H), 3.15 (tt, J = 11.9, 3.7 Hz, 1H), 3.01 (td, J = 12.9, 2.7 Hz, 1H), 2.23 (d, 

J = 13.1 Hz, 1H), 2.08 (d, J = 13.0 Hz, 1H), 1.85 (m, 1H), 1.60 (m, 1H); 13C NMR δ (CDCl3) 

167.7, 150.3, 144.0, 136.4, 126.3, 122.2, 121.1, 119.9, 119.8, 119.3, 118.8, 111.4, 48.2, 42.8, 

33.7, 33.6, 32.4. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(pyrazin-2-yl)methanone (2.34) 

Reaction of compound 2.3 (20.0 mg, 0.10 mmol), pyrazine-2-carbonyl 

chloride (14.2 mg, 0.10 mmol), DIPEA (52.3 µL, 0.30 mmol) and PyBOP 

(57.2 mg, 0.11 mmol) according to general procedure D, gave 30.6 mg 

(quantitative yield) of desired amide as a yellow solid. 

ESI-MS: C18H18N4O, m/z calculated for [M+H]+: 307.2, Found: 307.4.  
1H NMR δ (CDCl3) 8.94 (d, J = 1.5 Hz, 1H), 8.63 (d, J = 2.5 Hz, 1H), 8.56 

(dd, J = 2.5, 1.5 Hz, 1H), 8.10 (s, NH), 7.64 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 

8.1 Hz, 1H), 7.20 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.12 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 6.98 (d, J = 

2.3 Hz, 1H), 4.89 (d, J = 13.3 Hz, 1H), 4.05 (d, J = 13.5 Hz, 1H), 3.31 (td, J = 12.7, 2.8 Hz, 1H), 

3.18 (tt, J = 11.8, 3.7 Hz, 1H), 3.04 (td, J = 12.9, 2.9 Hz, 1H), 2.23 (d, J = 13.2 Hz, 1H), 2.08 (d, 

J = 12.9 Hz, 1H), 1.95 – 1.76 (m, 2H); 13C NMR δ (CDCl3) 165.7, 150.4, 145.7, 145.6, 143.2, 

138.2, 126.8, 122.6, 120.7, 120.3, 119.8, 119.3, 111.8, 48.5, 43.8, 34.2, 33.9, 32.9. 
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1,4-phenylenebis((4-(1H-indol-3-yl)piperidin-1-yl)methanone) (2.35) 

Reaction of compound 2.3 (20.0 mg, 0.10 mmol), 

terephthalic acid (8.30 mg, 0.05 mmol), DIPEA (52.3 µL, 

0.30 mmol) and PyBOP (57.2 mg, 0.11 mmol) according to 

general procedure D, gave 53.0 mg (quantitative yield) of 

desired amide as a white solid. 

ESI-MS: C34H34N4O2, m/z calculated for [M+H]+: 531.3, 

Found: 531.5.  
1H NMR δ (DMSO) 10.81 (s, 2H), 7.59 (d, J = 7.9 Hz, 2H), 

7.50 (s, 4H), 7.33 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 2.3 Hz, 

2H), 7.05 (ddd, J = 8.1, 7.0, 1.2 Hz, 2H), 6.96 (ddd, J = 7.9, 7.0, 1.1 Hz, 2H), 4.61 (br, 2H), 3.70 

(br, 2H), 3.26 (br, 2H), 3.09 (tt, J = 11.9, 3.6 Hz, 2H), 2.97 (br, 2H), 2.07 (br, 1H), 1.93 (br, 1H), 

1.70 – 1.60 (m, 4H); 13C NMR δ (DMSO) 168.8, 137.8, 136.8, 127.3, 126.6, 121.4, 121.3, 119.4, 

118.9, 118.6, 111.9, 49.1, 48.2, 33.6, 33.1, 14.4. 

 

4-(4-(1H-indol-3-yl)piperidin-1-yl)-6-chloroquinoline (2.36) 

To a solution of compound 2.3 (20 mg, 0.10 mmol) and DIPEA (52.3 µL, 

0.30 mmol) in isopropanol (2 mL) was added 4,6-dichloroquinoline (19.8 mg, 

0.10 mmol). The reaction mixture stirred under reflux for 56 h. The solvent 

was removed under reduced pressure and the crude product was purified by 

flash chromatography using a gradient elution of ethyl 

acetate/acetonitrile:water:methanol (1:1:1) to afford compound 11 as a yellow 

oil (9.05 mg, 25%). 

ESI-MS: C22H20ClN3, m/z calculated for [M+H]+: 362.1, Found: 361.1.  
1H NMR (DMSO) 10.89 (s, NH), 8.66 (d, J = 6.9 Hz, 1H), 8.22 – 8.09 (m, 2H), 8.02 (dd, J = 

9.1, 1.3 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 7.0 Hz, 1H), 7.18 

(d, J = 2.3 Hz, 1H), 7.08 (ddd, J = 7.8, 7.0, 1.3 Hz, 1H), 7.00 (m, 1H), 4.28 (d, J = 13.1 Hz, 2H), 

3.70 (td, J = 12.8, 2.9 Hz, 2H), 3.29 (tt, J = 11.4, 3.8 Hz, 1H), 2.20 (dd, J = 11.9, 2.0 Hz, 2H), 

2.02 (qd, J = 12.9, 2.4 Hz, 2H); 13C NMR δ (DMSO) 159.5, 142.0, 138.5, 136.4, 133.5, 131.9, 

130.3, 126.1, 125.3, 121.0, 120.9, 120.0, 118.6, 118.4, 118.2, 111.5, 106.2, 52.4, 32.4. 
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(4-(1H-indol-3-yl)piperidin-1-yl)(piperidin-4-yl)methanone (2.37) 

Compound 2.4 (200 mg, 0.49 mmol) was dissolved in a solution of 2 M 

HCl in MeOH (6 mL) and stirred at room temperature for 40 min. The 

solvent was removed under reduced pressure and the crude product was 

purified by reverse phase flash chromatography using a gradient elution of 

water/acetonitrile to afford the desired product as a yellow solid (151 mg, 

quantitative yield).  

ESI-MS: C19H25N3O, m/z calculated for [M+H]+: 312.2, Found: 312.4.  
1H NMR δ (MeOD) 8.49 (s, NH), 7.59 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.10 (ddd, J 

= 8.1, 6.9, 1.2 Hz, 1H), 7.04 (s, 1H), 7.01 (ddd, J = 7.9, 6.9, 1.1 Hz, 1H), 4.66 (d, J = 13.3 Hz, 

1H), 4.21 (d, J = 13.7 Hz, 1H), 3.49 (m, 2H), 3.39 (m, 1H), 3.24 – 3.08 (m, 4H), 2.87 (td, J = 

12.9, 2.8 Hz, 1H), 2.21 (d, J = 13.1 Hz, 2H), 2.12 (d, J = 13.9 Hz, 2H), 2.07 – 1.86 (m, 4H), 1.70 

(m, 2H); 13C NMR δ (MeOD) 173.7, 138.3, 127.7, 122.3, 121.2, 120.3, 119.5, 119.4, 112.3, 

47.5, 44.4, 43.9, 36.7, 35.2, 34.9, 33.9, 26.8, 26.6, 25.9. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(1-benzoylpiperidin-4-yl)methanone (2.38) 

Reaction of compound 2.37 (20 mg, 0.06 mmol) and benzoyl chloride 

(7.56 mg, 0.05 mmol) according to general procedure B, gave 22.4 mg 

(80%) of desired product as a beige solid. 

ESI-MS: C26H29N3O2, m/z calculated for [M+H]+: 416.2, Found: 416.2.  
1H NMR δ (CDCl3) 8.66 (s, NH), 7.60 (m, 1H), 7.47 – 7.36 (m, 5H), 

7.33 (d, J = 8.2 Hz, 1H), 7.17 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.10 (ddd, 

J = 8.0, 7.0, 1.1 Hz, 1H), 6.90 (s, 1H), 4.76 (m, 1H), 4.52 (br, 1H), 4.03 

(m, 1H), 3.87 (br, 1H), 3.25 (t, J = 12.1 Hz, 2H), 3.09 (tt, J = 11.9, 3.7 

Hz, 1H), 2.96 – 2.70 (m, 5H), 2.23 – 2.05 (m, 2H), 1.92 – 1.80 (m, 2H), 

1.74 – 1.59 (m, 2H); 13C NMR δ (CDCl3) 172.6, 170.7, 136.6, 135.9, 133.1, 129.7, 128.6, 128.4, 

126.9, 126.3, 121.9, 120.0, 119.8, 119.1, 118.8, 111.5, 51.9, 47.4, 46.3, 42.9, 42.0, 40.9, 38.4, 

33.9, 32.5, 28.9. 
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(4-(1H-indol-3-yl)piperidin-1-yl)(1-(3,5-dimethoxybenzoyl)piperidin-4-yl)methanone (2.39) 

Reaction of compound 2.37 (20.0 mg, 0.06 mmol) and 3,5-

dimethoxybenzoyl chloride (10.8 mg, 0.05 mmol) according to 

general procedure B, gave 19.2 mg (75%) of desired product as a 

beige oil. 

ESI-MS: C28H33N3O4, m/z calculated for [M+H]+: 476.3, Found: 

476.4.  
1H NMR δ (MeOD) 7.61 (d, J = 8.2 Hz, 1H), 7.36 (d, J = 8.1 Hz, 

1H), 7.11 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.07 – 7.00 (m, 2H), 6.61 

(dd, J = 2.9, 2.3 Hz, 1H), 6.57 (d, J = 2.3 Hz, 1H), 4.70 (d, J = 13.6 Hz, 2H), 4.24 (d, J = 13.1 

Hz, 1H), 3.84 (s, 6H), 3.80 (br, 1H), 3.30 – 3.07 (m, 3H), 3.01 (d, J = 11.6 Hz, 1H), 2.90 (m, 

1H), 2.22 (d, J = 12.6 Hz, 1H), 2.14 (d, J = 12.6 Hz, 1H), 1.99 – 1.55 (m, 7H); 13C NMR δ 

(MeOD) 174.8, 172.1, 162.6, 138.9, 138.3, 127.7, 122.3, 121.2, 120.4, 119.5, 119.4, 112.3, 

105.5, 102.5, 56.0, 47.4, 43.9, 39.3, 35.3, 35.1, 33.9. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(1-(4-fluorobenzoyl)piperidin-4-yl)methanone (2.40) 

Reaction of compound 2.37 (20.0 mg, 0.06 mmol) and 4-

fluorobenzoyl chloride (8.53 mg, 0.05 mmol) according to general 

procedure B, gave 17.5 mg (75%) of desired product as a beige solid. 

ESI-MS: C26H28FN3O2, m/z calculated for [M+H]+: 434.2, Found: 

434.2.  
1H NMR δ (CDCl3) 8.11 (s, NH), 7.62 (d, J = 7.9 Hz, 1H), 7.46 – 

7.39 (m, 2H), 7.37 (d, J = 8.1 Hz, 1H), 7.20 (dd, J = 7.5, 7.1 Hz, 

1H), 7.14 – 7.06 (m, 3H), 6.95 (d, J = 2.4 Hz, 1H), 4.78 (d, J = 12.4 

Hz, 1H), 4.67 (br, 1H), 4.03 (d, J = 12.4 Hz, 1H), 3.89 (br, 1H), 3.27 

(t, J = 12.9 Hz, 1H), 3.12 (tt, J = 11.9, 3.7 Hz, 1H), 3.01 (br, 1H), 2.93 – 2.69 (m, 2H), 2.19 (d, J 

= 12.3 Hz, 1H), 2.12 (d, J = 12.9 Hz, 1H), 1.96 – 1.56 (m, 7H); 13C NMR δ (CDCl3) 172.3, 

169.6, 163.4 (d, 1JCF = 248 Hz), 136.4, 132.0, 129.2, 126.3, 122.2, 120.2, 119.7, 119.3, 118.8, 

115.7, 115.5, 111.4, 46.2, 42.7, 40.9, 38.4, 33.9, 32.4. 
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(4-(1H-indol-3-yl)piperidin-1-yl)(1-nicotinoylpiperidin-4-yl)methanone (2.41) 

Reaction of compound 2.6 (20 mg, 0.06 mmol), nicotinoyl chloride 

(7.61 mg, 0.05 mmol) and DIPEA (52.3 µL, 0.16 mmol) according to 

general procedure C, gave 5.6 mg (25%) of desired product as an off-

white solid. 

ESI-MS: C25H28N4O2, m/z calculated for [M+H]+: 417.2, Found: 417.4.  
1H NMR δ (CDCl3) 8.73 – 8.60 (m, 2H), 8.23 (s, NH), 7.76 (dt, J = 8.0, 

1.9 Hz, 1H), 7.61 (dd, J = 8.2, 1.2 Hz, 1H), 7.36 (m, 2H), 7.20 (ddd, J = 

8.2, 7.0, 1.2 Hz, 1H), 7.11 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.95 (d, J = 

2.9 Hz, 1H), 4.78 (d, J = 12.9 Hz, 1H), 4.69 (br, 1H), 4.02 (d, J = 12.7 Hz, 1H), 3.79 (br, J = 

1H), 3.28 (m, 1H), 3.12 (tt, J = 11.9, 3.8 Hz, 1H), 3.01 (br, 1H), 2.86 (td, J = 9.1, 4.6 Hz, 1H), 

2.77 (t, J = 11.7 Hz, 1H), 2.19 (d, J = 12.4 Hz, 1H), 2.12 (d, J = 12.7 Hz, 1H), 1.95 – 1.79 (m, 

3H), 1.77 – 1.58 (m, 4H); 13C NMR δ (CDCl3) 172.1, 167.8, 150.7, 147.8, 136.5, 134.9, 131.9, 

126.3, 123.5, 122.1, 120.1, 119.8, 119.3, 118.8, 111.4, 50.8, 46.2, 42.7, 38.2, 33.9, 32.4. 

 

(4-(1H-indol-3-yl)piperidin-1-yl)(1-(thiophene-2-carbonyl)piperidin-4-yl)methanone (2.42) 

 Reaction of compound 2.6 (20 mg, 0.06 mmol) and thiophene-2-

carbonyl chloride (7.88 mg, 0.05 mmol) according to general procedure 

B, gave 16.6 mg (73%) of desired product as a white solid. 

ESI-MS: C24H27N3O2S, m/z calculated for [M+H]+: 422.2, Found: 422.2.  
1H NMR δ (CDCl3) 8.19 (s, NH), 7.62 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 

5.0 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 3.7 Hz, 1H), 7.20 (ddd, 

J = 8.1, 7.0, 1.2 Hz, 1H), 7.12 (ddd, J = 7.9, 7.0, 1.0 Hz, 1H), 7.04 (dd, J 

= 5.0, 3.7 Hz, 1H), 6.96 (s, 1H), 4.47 (d, J = 13.9 Hz, 2H), 3.18–3.01 (m, 

4H), 2.91–2.84 (m, 2H), 2.16 (d, J = 12.2 Hz, 2H), 2.03–1.52 (m, 8H); 
13C NMR δ (CDCl3) 172.8, 164.2, 137.6, 136.9, 129.1, 128.9, 127.1, 126.8, 122.6, 120.6, 120.2, 

119.7, 119.3, 111.8, 52.4, 41.4, 38.8, 34.3, 29.2, 28.7. 
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1-(4-(4-(1H-indol-3-yl)piperidine-1-carbonyl)piperidin-1-yl)ethan-1-one (2.43) 

Reaction of compound 2.6 (20 mg, 0.06 mmol) and acetyl chloride (4.21 mg, 

0.05 mmol) according to general procedure B, gave 7.62 mg (40%) of desired 

product as a white solid. 

ESI-MS: C21H27N3O2, m/z calculated for [M+H]+: 354.2, Found: 354.2.  
1H NMR δ (CDCl3) 8.15 (s, NH), 7.62 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.2 

Hz, 1H), 7.20 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.12 (ddd, J = 8.0, 7.0, 1.1 Hz, 

1H), 6.96 (d, J = 2.4 Hz, 1H), 4.77 (d, J = 13.0 Hz, 1H), 4.60 (d, J = 13.2 Hz, 

1H), 4.03 (d, J = 13.1 Hz, 1H), 3.90 (d, J = 13.5 Hz, 1H), 3.26 (t, J = 12.9 Hz, 

1H), 3.17 – 3.08 (m, 2H), 2.88 – 2.66 (m, 2H), 2.24–2.16 (m, 2H), 2.10 (s, 3H), 1.91 (m, 1H), 

1.83–1.56 (m, 6H); 13C NMR δ (CDCl3) 172.9, 169.4, 136.9, 126.8, 122.6, 120.7, 120.2, 119.7, 

119.3, 111.8, 49.6, 46.7, 46.3, 43.1, 41.5, 38.8, 34.4, 32.8, 26.1, 25.4, 21.9. 
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Table 6.1 – Final step and global yield of synthesized compounds. 

Se
ri

es
 

Compound R Yield (%) Global 
Yield (%) 

A
m

in
e 

2.7 
 

79 
 

76 
 

2.8 
 

76 73 

2.9 
 

99 95 

2.10 
 

55 53 

2.11  53 51 
2.12  55 53 

2.13 
 

42 40 

2.14 
 

99 95 

2.15 
 

60 58 

2.16  72 69 

2.17  69 66 

2.18  25 24 

2.19 
 

30 29 

2.20 
 

38 36 

2.21 
 

54 52 

2.22  97 93 
2.23  65 62 
2.24  Quant. 96 

2.25  98 94 

A
m

id
e 

 

2.26  55 53 

2.27 
 

Quant. 96 

2.28  95 91 
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2.30  66 63 
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 Se
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es
 

Compound R Yield (%) Global 
Yield (%) 

A
m

id
e 

2.31  73 70 

2.32  60 58 

2.33  95 91 

2.34  Quant. 96 

2.35 
 

Quant. 6.1.2.1 96 

 2.36 - 25 24 

B
is

-a
m

id
e 

2.38  80 77 

2.39 
 

75 72 

2.40 
 

75 72 

2.41  10 10 

2.42  73 70 
2.43  40 38 
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6.1.3 Synthesis	of	Sulfamoyl	Aminoacyl	AMP	Analogs	

	
2’,3'-O-Isopropylidene-5’-O-sulfamoyladenosine (3.17) 

To a magnetically stirred solution of 2’,3’- O-

isopropylideneadenosine (1.00 g, 3.26 mmol) in DME (100 mL) at 

0 °C, was added NaH (196 mg of a 60% suspension in mineral oil, 

4.89 mmol) under nitrogen atmosphere. After 30 min at 0 °C, a 

solution of sulfamoyl chloride (565 mg, 4.89 mmol) in DME (30 

mL) was added over 5 min. After warming to r.t. and stirring for 4 h, anhydrous methanol (50 

mL) was added and the resulting mixture was concentrated in vacuo to render a viscous oil. The 

crude product was purified by flash chromatography with ethyl 

acetate/acetonitrile:water:methanol (1:1:1) to afford the desired product as a white crystalline 

solid (0.8 g, 2.1 mmol, 65% yield). 

ESI-MS: C13H18N6O6S, m/z calculated for [M+H]+: 387.1, Found: 387.1. 
1H NMR δ (DMSO) 8.31 (s, 1H), 8.17 (s, 1H), 7.61 (brs, 2H), 7.36 (brs, 2H), 6.23 (d, J = 2.3 

Hz, 1H), 5.44 (dd, J = 6.3, 2.3 Hz, 1H), 5.08 (dd, J = 6.3, 3.1 Hz, 1H), 4.44 (m, 1H), 4.23 (dd, J 

= 10.8, 5.6 Hz, 1H), 4.15 (dd, J = 10.8, 5.6 Hz, 1H), 1.55 (s, 3H), 1.34 (s, 3H). 13C NMR δ 

(DMSO) 158.8, 150.5, 141.7, 140.7, 121.3, 115.1, 93.6, 87.2, 86.6, 81.8, 59.2, 26.6, 25.2. 

 

General Procedure E: 

To a solution of sulfamoyladenosine 3.17 (250 mg, 1 equiv.) in DMF (10 mL) was added 

the N-protected succinimide activated amino acid (1 equiv.) and DBU (0.23 mL, 2.4 equiv.). The 

reaction mixture stirred at r.t. for 2 h and the solvent was removed under reduced pressure. The 

crude product was purified by flash chromatography using ethyl 

acetate/acetonitrile:water:methanol (1:1:1) to afford the desired product. 
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2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-alanyl)-sulfamoyl]adenosine (3.18) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Boc-L-alanine N-hydroxysuccinimide ester (185.4 mg, 

0.07 mmol) according to general procedure E, gave 151.6 

mg (42%) of desired product as a white solid. 

ESI-MS: C21H31N7O9S, m/z calculated for [M-H]-: 556.2, 

Found: 556.2; m/z calculated for [M+H]+: 558.2, Found: 558.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Z-O-tBu-L-aspartlyl)-sulfamoyl]adenosine (3.19)  

Reaction of compound 3.17 (250 mg, 0.06 mmol) 

and Z-O-tButyl-L- aspartate N-hydroxysuccinimide 

ester (272.2 mg, 0.07 mmol) according to general 

procedure E, gave 179.2 mg (40%) of desired 

product as a white solid. 

ESI-MS: C29H37N7O11S, m/z calculated for [M-H]-: 690.2, Found: 690.2; m/z calculated for 

[M+H]+: 692.2, Found: 692.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-O-tBu-L-glutamyl)-sulfamoyl]adenosine (3.20) 

Reaction of compound 3.17 (250 mg, 0.06 

mmol) and Boc-O-tButyl-L- glutamate N-

hydroxysuccinimide ester (259.3 mg, 0.07 

mmol) according to general procedure E, gave 

100 mg (23%) of desired product as a white 

solid. 

ESI-MS: C27H41N7O11S, m/z calculated for [M-H]-: 670.3, Found: 670.3; m/z calculated for 

[M+H]+: 672.3, Found: 672.3. 

 

 

 

 

NH2
N

N

N N

O

OO

O
S

O

N
HHN

O

O
Boc

Cbz

O
O

HN
O

O

H
N

O
S O

O

O

NH2

N
N

N

N

O

Boc
O

OO

O
NH

N
H

O
S
O

O O

O

NN

N
N

NH2



Chapter	6	–	Materials	and	Methods	

 206	 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-phenalalanyl)-sulfamoyl]adenosine (3.21) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) 

and Boc-L-phenylalanine N-hydroxysuccinimide 

ester (234.6 mg, 0.07 mmol) according to general 

procedure E, gave 160 mg (39%) of desired product 

as a white solid. 

ESI-MS: C27H35N7O9S, m/z calculated for [M-H]-: 632.2, Found: 632.2; m/z calculated for 

[M+H]+: 634.2, Found: 634.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-glycinyl)-sulfamoyl]adenosine (3.22) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Boc-L-glycine N-hydroxysuccinimide ester (176.3 

mg, 0.07 mmol) according to general procedure E, 

gave 147.8 mg (42%) of desired product as a white 

solid. 

ESI-MS: C20H29N7O9S, m/z calculated for [M-H]-: 542.2, Found: 542.2; m/z calculated for 

[M+H]+: 544.2, Found: 544.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Bis-Boc-L-histidinyl)-sulfamoyl]adenosine (3.23) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) 

and Bis-Boc-L-histidine N-hydroxysuccinimide 

ester (293 mg, 0.07 mmol) according to general 

procedure E, gave 135.9 mg (29%) of desired 

product as a white solid. 

ESI-MS: C29H41N9O11S, m/z calculated for [M-H]-: 722.3, Found: 722.3; m/z calculated for 

[M+H]+: 724.3, Found: 724.3. 
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2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-isoleucinyl)-sulfamoyl]adenosine (3.24) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Boc-L-isoleucine N-hydroxysuccinimide ester (212.6 

mg, 0.07 mmol) according to general procedure E, 

gave 124.2 mg (32%) of desired product as a white 

solid. 

ESI-MS: C24H37N7O9S, m/z calculated for [M-H]-: 598.2, Found: 598.2; m/z calculated for 

[M+H]+: 600.2, Found: 600.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Bis-Boc-L-lysyl)-sulfamoyl]adenosine (3.25)  

 Reaction of compound 3.17 (250 mg, 0.06 

mmol) and Bis-Boc-L-lysine N-

hydroxysuccinimide ester (287.1 mg, 0.07 

mmol) according to general procedure E, 

gave 101.8 mg (22%) of desired product as 

a white solid. 

ESI-MS: C29H46N8O11S, m/z calculated for [M-H]-: 713.3, Found: 713.3; m/z calculated for 

[M+H]+: 715.3, Found: 715.3. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-leucinyl)-sulfamoyl]adenosine (3.26) 

 Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Boc-L-leucine N-hydroxysuccinimide ester (212.6 mg, 

0.07 mmol) according to general procedure E, gave 120.4 

mg (31%) of desired product as a white solid. 

ESI-MS: C24H37N7O9S, m/z calculated for [M-H]-: 598.2, 

Found: 598.2; m/z calculated for [M+H]+: 600.2, Found: 600.2. 
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2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-methionyl)-sulfamoyl]adenosine (3.27) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) 

and Boc-L-methionine N-hydroxysuccinimide ester 

(224.3 mg, 0.07 mmol) according to general 

procedure E, gave 223.9 mg (56%) of desired 

product as a white solid. 

ESI-MS: C23H35N7O9S2, m/z calculated for [M-H]-: 616.2, Found: 616.2; m/z calculated for 

[M+H]+: 618.2, Found: 618.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-asparginyl)-sulfamoyl]adenosine (3.28)  

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Z-O-tButyl-L-Asparagine N-hydroxysuccinimide ester 

(213.2 mg, 0.07 mmol) according to general procedure 

E, gave 58.3 mg (15%) of desired product as a white 

solid. 

ESI-MS: C22H32N8O10S, m/z calculated for [M-H]-: 599.2, Found: 599.2; m/z calculated for 

[M+H]+: 601.2, Found: 601.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-prolyl)-sulfamoyl]adenosine (3.29) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Boc-L-proline N-hydroxysuccinimide ester (202.2 mg, 

0.07 mmol) according to general procedure E, gave 

151.2 mg (40%) of desired product as a white solid. 

ESI-MS: C23H33N7O9S, m/z calculated for [M-H]-: 

582.2, Found: 582.2; m/z calculated for [M+H]+: 584.2, Found: 584.2. 
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2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-glutaminyl)-sulfamoyl]adenosine (3.30) 

Reaction of compound 3.17 (250 mg, 0.06 

mmol) and Boc-L-glutamine N-

hydroxysuccinimide ester (222.3 mg, 0.07 mmol) 

according to general procedure E, gave 119.4 mg 

(30%) of desired product as a white solid. 

ESI-MS: C23H34N8O10S, m/z calculated for [M-H]-: 613.2, Found: 613.2; m/z calculated for 

[M+H]+: 615.2, Found: 615.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Tris-Z-L-arginyl)-sulfamoyl]adenosine (3.31) 

Reaction of compound 3.17 (250 mg, 0.06 

mmol) and Tris-Z-L-arginine N-

hydroxysuccinimide ester (436.2 mg, 0.07 

mmol) according to general procedure E, 

gave 238.6 mg (39%) of desired product 

as a white solid. 

ESI-MS: C43H48N10O13S, m/z calculated for [M-H]-: 943.3, Found: 943.3; m/z calculated for 

[M+H]+: 945.3, Found: 945.3. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Cbz-O-Bn-L-seryl)-sulfamoyl]adenosine (3.32) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) 

and Cbz-O-benzyl-L-serine N-hydroxysuccinimide 

ester (254.1 mg, 0.07 mmol) according to general 

procedure E, gave 296.5 mg (69%) of desired 

product as a white solid. 

ESI-MS: C31H35N7O10S, m/z calculated for [M-H]-: 696.2, Found: 696.2; m/z calculated for 

[M+H]+: 698.2, Found: 698.2. 

 

 

 

O

N
N

N N

NH2
O

O

O
S
ON

H
H2N

O

NH

O O

Boc

O

N
N

N N

NH2
O

O

O
S
ON

H
N
H

N
H

N

HN

O O

Cbz

Cbz

Cbz

HN
BnO N

H
S
O N

N

N N

NH2
O

OO

O

O

O

Cbz



Chapter	6	–	Materials	and	Methods	

 210	 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	

2’,3'-O-Isopropylidene-5’-O-[N-(Cbz-O-tBu-L-threonyl)-sulfamoyl]adenosine (3.33) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Cbz-O-tButyl-L-threonine N-hydroxysuccinimide 

ester 

 (263.2 mg, 0.07 mmol) according to general 

procedure E, gave 201.86 mg (46%) of desired 

product as a white solid. 

ESI-MS: C29H39N7O10S, m/z calculated for [M-H]-: 676.3, Found: 676.3; m/z calculated for 

[M+H]+: 678.3, Found: 678.3.  

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-valyl)-sulfamoyl]adenosine (3.34) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Boc-L-valine N-hydroxysuccinimide ester (203.5 mg, 

0.07 mmol) according to general procedure E, gave 

144.1 mg (38%) of desired product as a white solid. 

ESI-MS: C23H35N7O9S, m/z calculated for [M-H]-: 

584.2, Found: 584.2; m/z calculated for [M+H]+: 586.2, Found: 586.2.  

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-tryptophanyl)-sulfamoyl]adenosine (3.35) 

Reaction of compound 3.17 (250 mg, 0.06 

mmol) and Boc-L-tryptophan N-

hydroxysuccinimide ester (259.9 mg, 0.07 

mmol) according to general procedure E, gave 

52.3 mg (12%) of desired product as a white 

solid. 

ESI-MS: C29H36N8O9S, m/z calculated for [M-H]-: 671.2, Found: 671.2; m/z calculated for 

[M+H]+: 673.2, Found: 673.2.  

 

 

 

HN

O

N
H
S
O N

N

N N

NH2
O

OO

O

O

O

Cbz

NH2
N

N

N N

O

OO

O
S
ON

HHN

O O

Boc

NH2
N

N

N N

O

OO

O
S
ON

HHNHN

O O

Boc



  Chapter	6	–	Materials	and	Methods	

	Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	 211	

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-L-tyrosyl)-sulfamoyl]adenosine (3.36) 

Reaction of compound 3.17 (250 mg, 0.06 

mmol) and Boc-L-tyrosine N-

hydroxysuccinimide ester (245 mg, 0.07 mmol) 

according to general procedure E, gave 201.9 

mg (48%) of desired product as a white solid. 

ESI-MS: C27H35N7O10S, m/z calculated for [M-H]-: 648.2, Found: 648.2; m/z calculated for 

[M+H]+: 650.2, Found: 650.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-D-methionyl)-sulfamoyl]adenosine (3.37) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) 

and Boc-D-methionine N-hydroxysuccinimide ester 

(224.3 mg, 0.07 mmol) according to general 

procedure E, gave 75.99 mg (19%) of desired 

product as a white solid. 

ESI-MS: C23H35N7O9S2, m/z calculated for [M-H]-: 616.2, Found: 616.2; m/z calculated for 

[M+H]+: 618.2, Found: 618.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(Boc-D-prolyl)-sulfamoyl]adenosine (3.38) 

Reaction of compound 3.17 (250 mg, 0.06 mmol) and 

Boc-D-proline N-hydroxysuccinimide ester (202.2 mg, 

0.07 mmol) according to general procedure E, gave 

132.3 mg (35%) of desired product as a white solid. 

ESI-MS: C23H33N7O9S, m/z calculated for [M-H]-: 

582.2, Found: 582.2; m/z calculated for [M+H]+: 584.2, Found: 584.2. 

 

 

General Procedure F: 

To a solution of the acylsulfamate intermediate (50 mg) in DMF (2 mL) was added 10% 

Pd/C (50% m/m). The reaction was placed under 1 atm of H2 (balloon) and stirred at r.t. for 8 h. 

The reaction mixture was filtered over Celite™ and washed with methanol. The solvent was 
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removed under reduced pressure and the crude product purified by reverse phase flash 

chromatography using water/acetonitrile to afford the desired product. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(O-tBu-L-aspartlyl)-sulfamoyl]adenosine (3.39) 

Compound 3.39 was obtained according to general 

procedure F, as a white solid (2.1 mg, 5%). 

ESI-MS: C21H31N7O9S, m/z calculated for [M-H]-: 

556.2, Found: 556.2; m/z calculated for [M+H]+: 558.2, 

Found: 558.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(L-arginyl)-sulfamoyl]adenosine (3.40)  

Compound 3.40 was obtained according to 

general procedure F, as a white solid (7.2 

mg, 25%). 

ESI-MS: C19H30N10O7S, m/z calculated for 

[M-H]-: 541.2, Found: 541.2; m/z calculated for [M+H]+: 543.2, Found: 543.2. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(L-seryl)-sulfamoyl]adenosine (3.41) 

Compound 3.41 was obtained according to general 

procedure F, as a white solid (2.14 mg, 60%). 

ESI-MS: C16H23N7O8S, m/z calculated for [M-H]-: 

472.1, Found: 472.1; m/z calculated for [M+H]+: 

474.1, Found: 474.1. 

 

2’,3'-O-Isopropylidene-5’-O-[N-(O-tBu-L-threonyl)-sulfamoyl]adenosine (3.42) 

Compound 3.42 was obtained according to general 

procedure F, as a white solid (2.2 mg, 56%). 

ESI-MS: C21H33N7O8S, m/z calculated for [M-H]-: 

542.2, Found: 542.2; m/z calculated for [M+H]+: 

544.2, Found: 544.2. 
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General Procedure G: 

A solution of the acylsulfamate intermediate (50 mg) and 2.5 mL of TFA: H2O (5:1) was 

stirred at room temperature for 30 min. The solvent was removed under reduced pressure. The 

crude product was purified by reverse phase flash chromatography using water/acetonitrile to 

afford the desired product. 

 

5’-O-[N-(L-alanyl)-sulfamoyl]adenosine (3.43) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (13.1 mg, 35%). 

ESI-MS: C13H19N7O7S, m/z calculated for [M-H]-: 416.1, 

Found: 416.1; m/z calculated for [M+H]+: 418.1, Found: 

418.1. 
1H NMR δ (D2O) 8.42 (s, 1H), 8.27 (s, 1H), 6.16 (d, J = 5.2 Hz, 1H), 4.77 (1H) 4.54 (dd, J = 

5.9, 4.7 Hz, 1H), 4.47 (m, 1H), 4.44 – 4.41 (m, 2H), 3.88 (q, J = 7.2 Hz, 1H), 1.51 (d, J = 7.2 Hz, 

3H). 13C NMR δ (D2O) 176.5 , 152.9 , 139.7 , 114.9 , 100.0 , 87.4 , 82.3 , 79.9 , 74.0 , 70.1 , 68.3 

, 51.4 , 16.5 . 

 

5’-O-[N-(L-aspartlyl)-sulfamoyl]adenosine (3.44) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (3.3 mg, 

40%). 

ESI-MS: C14H19N7O9S, m/z calculated for [M-H]-: 

460.1, Found: 460.1; m/z calculated for [M+H]+: 462.1, Found: 462.1. 
1H NMR δ (D2O) 8.47 (s, 1H), 8.25 (s, 1H), 5.94 (d, J = 5.7 Hz, 1H), 4.58 (dd, J = 7.0, 5.3 Hz, 

1H), 4.16 – 4.08 (m, 3H), 3.75 (td, J = 7.7, 4.4 Hz, 1H), 3.10 (m, 1H), 2.85 (dd, J = 9.6, 5.2 Hz, 

1H), 2.62 (dd, J = 17.4, 5.2 Hz, 1H). 13C NMR δ (D2O) 175.6, 171.8, 156.6, 149.3, 139.4, 139.4, 

119.5, 93.3, 83.3, 75.4, 70.1, 58.2, 45.6, 35.7. 
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5’-O-[N-(L-glutamyl)-sulfamoyl]adenosine (3.45) 

The desired AMP analog was obtained according 

to general procedure G, as a white solid (13.8 mg, 

39%). 

ESI-MS: C15H21N7O9S, , m/z calculated for [M-

H]-: 474.1, Found: 474.1; m/z calculated for [M+H]+: 476.1, Found: 476.1. 
1H NMR δ (D2O) 8.43 (s, 1H), 8.26 (s, 1H), 6.15 (d, J = 5.2 Hz, 1H), 4.76 (dd, J = 6.3, 5.2 Hz, 

1H), 4.54 (dd, J = 6.3, 4.6 Hz, 1H), 4.47 (dt, J = 4.6, 2.2 Hz, 1H), 4.44 – 4.41 (m, 2H), 3.86 (dd, 

J = 7.1, 5.0 Hz, 1H), 2.45 (m, 2H), 2.19 (m, 2H). 13C NMR δ (D2O) 180.3, 175.3, 155.3, 152.4, 

148.9, 139.9, 118.6, 114.9, 87.4, 82.3, 74.1, 70.1, 55.3, 32.7, 27.1. 

 

5’-O-[N-(L-phenalalanyl)-sulfamoyl]adenosine (3.46) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (24.9 mg, 

64%). 

ESI-MS: C19H23N7O7S, m/z calculated for [M-H]-: 

492.1, Found: 492.1; m/z calculated for [M+H]+: 494.1, Found: 494.1. 
1H NMR δ (D2O) 8.33 (s, 1H), 8.19 (s, 1H), 7.34 – 7.02 (m, 5H), 6.10 (d, J = 5.1 Hz, 1H), 4.73 

(dd, J = 6.2, 5.1 Hz, 1H), 4.46-4.28 (m, 4H), 4.05 (dd, J = 6.4, 5.8 Hz, 1H), 3.16 (dd, J = 14.4, 

7.2 Hz, 1H), 3.06 (dd, J = 14.4, 7.2 Hz, 1H). 13C NMR δ (D2O) 174.7, 155.4, 152.7, 148.8, 

139.7, 134.2, 129.3, 128.8, 127.5, 118.6, 87.4, 82.2, 74.0, 70.0, 68.4, 56.5, 36.6. 

 

5’-O-[N-(L-glycinyl)-sulfamoyl]adenosine (3.47) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (12.6 mg, 34%). 

ESI-MS: C12H17N7O7S, m/z calculated for [M-H]-: 

402.1, Found: 402.1; m/z calculated for [M+H]+: 404.1, 

Found: 404.1. 
1H NMR δ (D2O) 8.34 (s, 1H), 8.15 (s, 1H), 6.13 (d, J = 5.3 Hz, 1H), 4.73 (dd, J = 6.0, 4.6 Hz, 

1H), 4.50 - 4.41 (m, 4H), 3.70 (s, 2H). 13C NMR δ (D2O) 172.7, 156.4, 152.4, 148.8, 139.7, 

118.4, 87.4, 82.2, 74.1, 70.1, 68.2, 42.7. 

NH2
N

N

N N

O

OHHO

O
S
ON

HNH2

O O

OOO

HO
NH2

N
H O
S
O

HO OH

O

NN

N
N

NH2

NH2
N

N

N N

O

OHHO

O
S
ON

H
H2N

O O



  Chapter	6	–	Materials	and	Methods	

	Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	 215	

 

5’-O-[N-(L-histidinyl)-sulfamoyl]adenosine (3.48) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (9.9 mg, 

30%). 

ESI-MS: C16H21N9O7S, m/z calculated for [M-H]-: 

482.1, Found: 482.1; m/z calculated for [M+H]+: 484.1, Found: 484.1. 
1H NMR δ (D2O) 8.38 (s, 1H), 8.24 (s 1H), 7.72 (s, 1H), 7.00 (s, 1H), 6.14 (d, J = 5.4, Hz, 1H), 

4.75 (1H), 4.52 (dd, J = 6.3, 4.6 Hz, 1H), 4.43 (m, 1H), 4.39 – 4.35 (m, 2H), 4.02 (t, J = 5.1 Hz, 

1H), 3.11 – 3.08 (m, 2H). 
13C NMR δ (D2O) 175.1, 152.9, 148.9, 139.7, 137.8, 136.1, 132.1, 125.4, 120.2, 87.4, 82.2, 74.0, 

70.1, 68.4, 55.5, 28.6. 

 

5’-O-[N-(L-isoleucinyl)-sulfamoyl]adenosine (3.49) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (15.3 mg, 40%). 

ESI-MS: C16H25N7O7S, m/z calculated for [M-H]-: 

458.2, Found: 458.2; m/z calculated for [M+H]+: 

460.2, Found: 460.2. 
1H NMR δ (D2O) 8.42 (s, 1H), 8.25 (s, 1H), 6.14 (d, J = 5.4 Hz, 1H), 4.76 (dd, J = 6.2, 5.4 Hz 

1H), 4.54 (dd, J = 4.8, 4.4 Hz, 1H), 4.48 (m, 1H), 4.43 – 4.0 (m, 2H), 3.72 (d, J = 4.2 Hz, 1H), 

1.97 (m, 1H), 1.95 (m, 1H), 1.42 (m, 1H), 1.18 (d, J = 6.8 Hz, 3H), 0.90 (dd, J = 7.5, 7.3 Hz, 

3H). 13C NMR δ (D2O) 175.2, 155.6, 152.9, 149.0, 139.7, 118.6, 87.2, 82.4, 74.0, 70.2, 68.3, 

60.1, 36.4, 24.1, 14.4, 10.9. 

	
5’-O-[N-(L-lysyl)-sulfamoyl]adenosine (3.50) 

 The desired AMP analog was obtained 

according to general procedure G, as a white 

solid (11.6 mg, 35%).  

ESI-MS: C16H26N8O7S, m/z calculated for 

[M-H]-: 473.2, Found: 473.2; m/z calculated for [M+H]+: 475.2, Found: 475.2. 
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1H NMR δ (D2O) 8.38 (s, 1H), 8.31 (s, 1H), 6.17 (d, J = 5.4 Hz, 1H), 4.72 (dd, J = 5.4, 5.2 Hz, 

1H), 4.54 (dd, J = 4.6, 4.4 Hz, 1H), 4.47 – 4.21 (m, 3H), 3.59 (dd, J = 6.3, 6.2 Hz, 1H), 2.70 – 

2.63 (m, 2H), 1.82 – 1.78 (m, 2H), 1.54 – 1.47 (m, 2H), 1.26 – 1.19 (m, 2H). 13C NMR δ (D2O) 

175.9, 155.9, 152.1, 149.1, 139.9, 119.4, 97.2, 81.4, 72.9, 70.8, 63.1, 53.2, 42.1, 33.4, 28.7, 22.3. 

 

5’-O-[N-(L-leucinyl)-sulfamoyl]adenosine (3.51) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (7.3 mg, 19%). 

ESI-MS: C16H25N7O7S, m/z calculated for [M-H]-: 

458.2, Found: 458.2; m/z calculated for [M+H]+: 

460.2, Found: 460.2. 
1H NMR δ (D2O) 8.41 (s, 1H), 8.25 (s, 1H), 6.14 (d, J = 5.5 Hz, 1H), 4.75 (dd, J = 6.2, 5.5 Hz 

1H), 4.45 (dd, J = 4.9, 4.7 Hz, 1H), 4.47 (m, 1H), 4.42 – 4.38 (m, 2H), 3.80 (m, 1H), 1.96 – 1.94 

(m, 2H), 1.01 (m, 1H), 0.89 (d, J = 6.5, 3H), 0.87 (d, J = 6.5, 3H). 13C NMR δ (D2O) 176.4, 

155.6, 152.9, 149.0, 139.7, 118.6, 87.2, 82.4, 74.0, 70.2, 68.3, 54.2, 40.2, 24.0, 21.8, 20.9. 

 

5’-O-[N-(L-methionyl)-sulfamoyl]adenosine (3.52) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (13.1 mg, 

34%). 

ESI-MS: C15H23N7O7S2, m/z calculated for [M-H]-: 

476.1, Found: 476.1; m/z calculated for [M+H]+: 478.1, Found: 478.1. 
1H NMR δ (D2O) 8.47 (s, 1H), 8.15 (s, 1H), 6.04 (d, J = 5.3 Hz, 1H), 4.75 (1H), 4.59 (dd, J = 

5.4, 5.2 Hz, 1H), 4.35 (dd, J = 5.1, 3.6 Hz, 1H), 4.33 – 4.22 (m, 3H), 3.30 (m, 1H), 2.50 (m, 2H), 

2.00 (s, 3H), 1.87 (m, 2H). 13C NMR δ (D2O) 172.4, 158.1, 156.5, 149.2, 139.3, 119.4, 93.2, 

83.3, 83.2, 75.4, 69.9, 58.1, 30.7, 25.1, 14.3. 
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5’-O-[N-(L-asparginyl)-sulfamoyl]adenosine (3.53) 

The desired AMP analog was obtained according 

to general procedure G, as a white solid (37.2 mg, 

97%). 

ESI-MS: C14H20N8O8S, m/z calculated for [M-H]-: 

459.1, Found: 459.1; m/z calculated for [M+H]+: 461.1, Found: 461.1. 
1H NMR δ (D2O) 8.60 (s, 1H), 8.36 (s, 1H), 6.48 (d, J = 5.3 Hz, 1H), 5.08 (1H), 4.47 (dd, J = 

4.9, 4.7 Hz, 1H), 4.39 – 4.26 (m, 3H), 4.12 (dd, J = 7.9, 3.8 Hz, 1H), 3.03 (m, 2H). 13C NMR δ 

(D2O) 163.1, 162.8, 156.5, 149.3, 140.0, 119.6, 114.9, 93.2, 82.9, 75.2, 70.1, 61.2, 58.4, 35.1. 

 

5’-O-[N-(L-prolyl)-sulfamoyl]adenosine (3.54) 

Desired AMP analog was obtained according to general 

procedure G, as a white solid (13.6 mg, 36%). 

ESI-MS: C15H21N7O7S, m/z calculated for [M-H]-: 

442.1, Found: 442.1; m/z calculated for [M+H]+: 444.1, 

Found: 444.1. 
1H NMR δ (DMSO) 8.36 (s, 1H), 8.15 (s, 1H), 7.27 (s, 2H, -NH2), 5.91 (d, J = 5.2 Hz, 1H), 4.76 

(dd, J = 5.4, 5.2 Hz, 1H), 4.18 (dd, J = 5.4, 4.8 Hz, 1H), 4.16 – 4.06 (m, 3H), 3.90 (dd, J = 6.5, 

6.3 Hz, 1H), 3.21 (m, 1H), 3.06 (m, 1H), 2.19 (m, 1H), 1.91 (m, 1H), 1.84 – 1.74 (m, 2H). 13C 

NMR δ (DMSO) 172.2, 156.5, 153.1, 149.9, 139.7, 119.6, 87.4, 82.8, 73.9, 71.1, 68.2, 62.4, 

45.2, 29.6, 23.8. 

 

5’-O-[N-(L-glutaminyl)-sulfamoyl]adenosine (3.55) 

The desired AMP analog was obtained 

according to general procedure G, as a white 

solid (16.9 mg, 44%). 

ESI-MS: C15H22N8O8S, m/z calculated for [M-

H]-: 473.1, Found: 473.1; m/z calculated for [M+H]+: 475.1, Found: 475.1. 
1H NMR δ (D2O) 8.30 (s, 1H), 8.12 (s, 1H), 6.02 (d, J = 5.4 Hz, 1H), 4.75 (1H), 4.60 (dd, J = 

5.5, 5.4 Hz, 1H), 4.43 (dd, J = 4.6, 4.4 Hz, 1H), 4.39 – 4.25 (m, 3H), 3.75 (dd, J = 6.3, 6.0 Hz, 
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1H), 2.40 (m, 1H), 2.14 (m, 1H), 1.50 (m, 1H), 1.33 (m, 1H). 13C NMR δ (D2O) 177.1, 174.8, 

155.5, 152.8, 149.3, 139.9, 113.0, 87.2, 82.2, 73.9, 70.0, 68.3, 54.8, 30.4, 26.4. 

 

5’-O-[N-(L-arginyl)-sulfamoyl]adenosine (3.56) 

The desired AMP analog was obtained 

according to general procedure G, as a 

white solid (3.5 mg, 38%). 

ESI-MS: C16H26N10O7S, m/z calculated for 

[M-H]-: 501.2, Found: 501.2; m/z calculated for [M+H]+: 503.2, Found: 503.2. 
1H NMR δ (D2O) 8.32 (s, 1H), 8.18 (s, 1H), 6.03 (d, J = 5.2 Hz, 1H), 4.85 (1H), 4.48 – 4.14 (m, 

4H), 3.81 (m, 1H), 3.08 (m, 2H), 1.84 – 1.81 (m, 2H), 1.57 – 1.53 (m, 2H). 13C NMR δ (D2O) 

175.2, 156.8, 155.5, 152.9, 149.2, 140.0, 87.1, 82.3, 74.2, 68.4, 54.9, 53.3, 40.3, 28.2, 27.9. 

 

5’-O-[N-(L-seryl)-sulfamoyl]adenosine (3.57) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (6.3 mg, 69%). 

ESI-MS: C13H19N7O8S, m/z calculated for [M-H]-: 

432.1, Found: 432.1; m/z calculated for [M+H]+: 

434.1, Found: 434.1. 
1H NMR δ (D2O) 8.50 (s, 1H), 8.21 (s, 1H), 6.09 (d, J = 5.2 Hz, 1H), 4.75 (1H), 4.62 (dd, J = 

5.2, 5.0 Hz, 1H), 4.43 – 4.26 (m, 3H), 3.97 (dd, J = 11.5, 4.0 Hz, 1H), 3.93 – 3.78 (m, 2H).13C 

NMR δ (D2O) 170.5, 156.0, 152.9, 149.2, 139.4, 118.9, 87.1, 82.3, 73.5, 70.7, 67.4, 60.9, 57.3. 

 

5’-O-[N-(L-threonyl)-sulfamoyl]adenosine (3.58) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (3.8 mg, 46%). 

ESI-MS: C14H21N7O8S, m/z calculated for [M-H]-: 

446.1, Found: 446.1; m/z calculated for [M+H]+: 448.1, 

Found: 448.1. 
1H NMR δ (D2O) 8.51 (s, 1H), 8.19 (s, 1H), 6.08 (d, J = 5.2 Hz, 1H), 4.76 (1 H), 4.61 (dd, J = 

4.8, 4.6 Hz, 1H), 4.45 – 4.27 (m, 3H), 3.99 (dd, J = 6.1, 5.9 Hz, 1H), 3.45 (d, J = 4.5 Hz, 1H), 
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1.31 (d, J = 6.5 Hz, 3H).13C NMR δ (D2O) 174.5, 157.0, 153.9, 149.9, 140.4, 120.1, 89.1, 84.3, 

76.5, 71.7, 68.4, 67.6, 62.9, 21.0. 

 

5’-O-[N-(L-valyl)-sulfamoyl]adenosine (3.59) 

Desired AMP analog was obtained according to general 

procedure G, as a white solid (16.4 mg, 43%). 

ESI-MS: C15H23N7O7S, m/z calculated for [M-H]-: 

444.1, Found: 444.1; m/z calculated for [M+H]+: 446.1, 

Found: 446.1. 
1H NMR δ (D2O) 8.32 (s, 1H), 8.16 (s, 1H), 6.05 (d, J = 5.2 Hz, 1H), 4.68 (1H), 4.45 (dd, J = 

4.7, 4.5 Hz, 1H), 4.38 (m, 1H), 4.36 – 4.33 (m, 2H), 3.55 (d, J = 4.4 Hz, 1H), 2.17 (m, 1H), 0.92 

(d, J = 6.9 Hz, 3H), 0.85 (d, J = 7.0 Hz, 3H). 13C NMR δ (D2O) 175.5, 155.6, 152.9, 149.0, 

139.7, 118.6, 87.3, 82.3, 74.0, 70.2, 68.3, 60.9, 29.8, 17.9, 16.3. 

 

5’-O-[N-(L-tryptophanyl)-sulfamoyl]adenosine (3.60) 

The desired AMP analog was obtained 

according to general procedure G, as a white 

solid (13.5 mg, 34%). 

ESI-MS: C21H24N8O7S, m/z calculated for [M-

H]-: 531.2, Found: 531.2; m/z calculated for [M+H]+: 533.2, Found: 533.2. 
1H NMR δ (D2O) 8.40 (s, 1H), 8.14 (s, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 

7.23 (d, J = 12.6 Hz, 1H), 7.05 – 7.01 (m, 2H), 5.92 (d, J = 5.8 Hz, 1H), 4.73 (1H), 4.59 (dd, J = 

5.3, 5.1 Hz, 1H), 4.24 – 4.03 (m, 5H), 3.68 (dd, J = 8.2, 4.4 Hz, 1H), 3.05 (dd, J = 15.1, 8.2 Hz, 

1H). 13C NMR δ (D2O) 172.5, 156.6, 152.9, 149.7, 139.7, 136.6, 127.3, 124.6, 121.1, 119.0, 

118.6, 118.4, 111.5, 108.2, 87.3, 82.3, 74.0, 70.8, 67.3, 55.7, 27.8. 

 

5’-O-[N-(L-tyrosyl)-sulfamoyl]adenosine (3.61) 

The desired AMP analog was obtained 

according to general procedure G, as a white 

solid (11.8 mg, 30%). 

ESI-MS: C19H23N7O8S, m/z calculated for [M-
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H]-: 508.1, Found: 508.1; m/z calculated for [M+H]+: 510.1, Found: 510.1. 
1H NMR δ (DMSO) 8.40 (s, 1H), 8.15 (s, 1H), 7.23 (br, 2H, -NH2), 7.05 (d, J = 8.4 Hz, 2H), 

6.68 (d, J = 8.4 Hz, 2H), 5.97 (d, J = 5.8 Hz, 1H), 4.62 (dd, J = 5.1, 4.9 Hz, 1H), 4.59 (dd, J = 

5.3, 5.1 Hz, 1H), 4.24 – 4.03 (m, 3H), 3.55 (dd, J = 8.4, 5.2 Hz, 1H), 3.04 (dd, J = 14.3, 4.8 Hz, 

1H), 2.81 (dd, J = 14.3, 8 Hz, 1H). 

 

5’-O-[N-(D-methionyl)-sulfamoyl]adenosine (3.62) 

 The desired AMP analog was obtained according 

to general procedure G, as a white solid (11.9 mg, 

31%). 

ESI-MS: C15H23N7O7S2, m/z calculated for [M-H]-: 

476.1, Found: 476.1; m/z calculated for [M+H]+: 478.1, Found: 478.1. 
1H NMR δ (D2O) 8.47 (s, 1H), 8.13 (s, 1H), 5.99 (d, J = 5.3 Hz, 1H), 4.76 (1H), 4.56 (dd, J = 

5.4, 5.2 Hz, 1H), 4.35 (dd, J = 5.1, 3.6 Hz, 1H), 4.33 – 4.22 (m, 3H), 3.27 (m, 1H), 2.50 (m, 2H), 

2.00 (s, 3H), 1.87 (m, 2H). 13C NMR δ (D2O) 172.7, 158.4, 156.6, 149.1, 139.4, 119.1, 93.2, 

83.3, 82.9, 75.4, 69.9, 58.1, 30.7, 25.4, 14.5. 

 

5’-O-[N-(D-prolyl)-sulfamoyl]adenosine (3.63) 

The desired AMP analog was obtained according to 

general procedure G, as a white solid (14.1 mg, 37%). 

ESI-MS: C15H21N7O7S, m/z calculated for [M-H]-: 

442.1, Found: 442.1; m/z calculated for [M+H]+: 444.1, 

Found: 444.1. 
1H NMR δ (D2O) 8.38 (s, 1H), 8.23 (s, 1H), 6.12 (d, J = 5.2 Hz, 1H), 4.76 (1H), 4.54 (dd, J = 

5.1, 4.8 Hz, 1H), 4.49 – 4.36 (m, 3H), 4.19 (dd, J = 6.5, 6.3 Hz, 1H), 3.38 –3.35 (m, 2H), 2.37 

(m, 1H), 2.02 (m, 1H), 1.99 – 1.95 (m, 2H). 13C NMR δ (D2O) 175.3, 155.5, 152.9, 148.9, 139.7, 

118.6, 87.4, 82.2, 73.9, 70.1, 68.5, 62.2, 46.2, 29.5, 23.6. 
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6.1.4 Synthesis	of	HFG-hybrid	Analogs	
 

(S)-tert-Butanesulfinyl aldimine (3.64) 

At -60 °C a solution of DMSO (3.95 mL, 56.1 mmol) in DCM (12 mL) was 

added dropwise to a solution of oxalyl chloride (2.5 mL, 28.1 mmol) in 

DCM (66 mL). The mixture was stirred for 15 min and then a solution of 

the primary alcohol (S)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethan-1-ol (3.6 

g, 25.6 mmol) in DCM (12 mL) was added dropwise. The mixture was stirred for 90 min 

followed by slow addition of Et3N (17.7 mL, 129 mmol). Stirring was continued for an 

additional 15 min. The reaction mixture was then warmed up to r.t., stirred for 60 min and H2O 

(66 mL) was added. When the mixture became clear, it was extracted with DCM and then 

washed with citric acid (1 M), saturated NaHCO3 solution and then brine, and dried over 

anhydrous Na2SO4. The filtered solution was concentrated to give the aldehyde (2.4 g, 67%) 

without further purification. 

To a solution of (S)-tert-butanesulfinamide (2.22 g, 18.3 mmol) in DCM (30 mL) was added 

anhydrous CuSO4 (6.4 g, 40.3 mmol) followed by the above aldehyde (2.9 g, 20.1 mmol). The 

mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through a 

pad of Celite, and the filter cake was washed thoroughly with DCM. The filtrate was 

concentrated to dryness. The residue was purified by flash chromatography using hexanes/ethyl 

acetate to afford the desired (S)-tert-butanesulfinyl aldimine (2.6 g, 59%) as a yellow oil.  

ESI-MS: C11H21NO3S, m/z calculated for [M+H]+: 248.1, Found: 248.1; m/z calculated for 

[M+Na]+: 270.1, Found: 270.1. 
1H NMR δ (CDCl3) 7.98 (t, J = 4.5 Hz, 1H), 4.46 (p, J = 6.3 Hz, 1H), 4.11 (dd, J = 8.2, 6.3 Hz, 

1H), 3.61 (dd, J = 8.2, 6.3 Hz, 1H), 2.82 (dd, J = 6.3, 4.6 Hz, 2H), 1.35 (s, 3H), 1.29 (s, 3H), 1.14 

(s, 9H). 13C NMR δ (CDCl3) 165.96, 109.13, 72.37, 69.20, 56.76, 40.50, 26.76, 25.34, 22.28.  

 

4-((tert-butyldiphenylsilyl)oxy)butan-1-ol (3.65a) 

A solution of butanediol (10.32 g, 114.0 mmol), TBDPS-Cl (6.40 g, 23.2 

mmol), imidazole (6.48 g, 95.2 mmol), and DMAP (418 mg, 3.4 mmol) 

in DCM (30 mL) was stirred at room temperature for 12 hours. The reaction mixture was 

extracted between EtOAc (150 mL) and H2O (40 mL). The organic layer was washed with brine 
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(3 x 20 mL), dried over anhydrous Na2SO4, filtered and evaporated under reduced pressure. The 

residue was purified by silica gel column chromatography using hexanes/ethyl acetate to give the 

title alcohol (3.8 g, 50%). 

ESI-MS: C20H28O2Si, m/z calculated for [M+H]+: 329.2, Found: 329.2; m/z calculated for 

[M+Na]+: 351.2, Found: 351.2. 
1H NMR δ (CDCl3) 7.75 – 7.60 (m, 4H), 7.50 – 7.35 (m, 6H), 3.75 – 3.55 (m, 4H), 1.97 (brs, 

1H), 1.75 – 1.60 (m, 4H), 1.06 (s, 9H). 13C NMR δ (CDCl3) 135.7, 133.8, 129.8, 127.8, 64.2, 

62.6, 30.2, 29.4, 27.0, 19.3. 

 

4-((tert-butyldiphenylsilyl)oxy)butanal (3.65) 

At -60 °C, a solution of DMSO (4.2 mL, 59.2 mmol) in DCM (12 mL) was 

added dropwise to a solution of oxalyl chloride (2.6 mL, 28.7 mmol) in 

DCM (70 mL). The mixture was stirred for 15 min and then a solution of 

the primary alcohol 3.65a (8.6 g, 26.2 mmol) in DCM (12 mL) was added dropwise. The mixture 

was stirred for 90 min followed by slow addition of Et3N (17 mL, 124 mmol). Stirring was 

continued for an additional 15 min. Then the reaction mixture was warmed up to room 

temperature, stirred for 60 min and H2O (90 mL) was added. When the mixture became clear, it 

was extracted with DCM and then washed with HCl (aqueous, 10%), saturated NaHCO3 solution 

and then brine, and dried over anhydrous Na2SO4. The filtrate was concentrated. The residue was 

purified by flash chromatography to afford compound 6 (7.9 g, 93%) as a viscous yellow oil.  

ESI-MS: C20H26O2Si, m/z calculated for [M+H]+: 327.2, Found: 327.2; m/z calculated for 

[M+Na]+: 349.2, Found: 349.2. 
1H NMR δ (CDCl3) 9.80 (s, 1H), 7.72-7.70 (m, 4H), 7.45-7.34 (m, 6H), 3.68-3.72 (m, 2H), 2.61-

2.54 (m, 2H), 1.98-1.89 (m, 2H), 1.05 (s, 9H). 13C NMR δ (CDCl3) 202.9, 136.0, 134.1, 130.1, 

128.1, 63.4, 41.2, 27.3, 25.7, 19.7. 

 

β-amido alcohol (3.66) 

 To a solution of SmI2 (9 mmol in 100 mL of THF) under argon 

at -78 °C, was added dropwise the solution of imine 3.64 (1 g, 3.9 

mmol), aldehyde 3.65 (1.9 g, 5.9 mmol) and t-Butanol (778 µL, 

8.2 mmol) in 20 mL of THF. The mixture was stirred vigorously 
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for 3 h at the same temperature and then quenched by a saturated Na2S2O3 solution (10 mL). The 

organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The 

combined organic extracts were washed by saturated brine and then dried over anhydrous 

Na2SO4, filtered, and concentrated under vacuum. The residue was purified by flash 

chromatography using hexanes/ethyl acetate to afford the desired product (1.3 g, 58%) as yellow 

oil.  

ESI-MS: C31H49NO5SSi, m/z calculated for [M+H]+: 576.3, Found: 576.3; m/z calculated for 

[M+Na]+: 598.3, Found: 598.3; m/z calculated for [M-H]-: 574.3, Found: 574.3. 
1H NMR δ (CDCl3) 7.68–7.63 (m, 4H), 7.46–7.33 (m, 6H), 4.44 (d, J = 4.8 Hz, 1H), 4.29 (m, 

1H), 4.12 (dd, J = 8.0, 6.0 Hz, 1H), 3.77–3.63 (m, 3H), 3.52 (t, J = 7.9 Hz, 1H), 3.42 (m, 1H), 

2.99 (d, J = 4.8 Hz, 1H), 1.94–1.70 (m, 3H), 1.67–1.46 (m, 3H), 1.40 (s, 3H), 1.36 (s, 3H), 1.24 

(s, 9H), 1.05 (s, 9H). 13C NMR δ (CDCl3) 135.7, 133.9, 129.7, 127.8, 109.8, 73.9, 72.8, 69.9, 

64.0, 58.2, 55.8, 32.4, 30.0, 29.4, 27.1, 27.0, 25.9, 22.8, 19.3. 

 

General Procedure H  

Sulfinamide 3.66 (250 mg, 0.4 mmol) was dissolved in dry THF (5 mL), and the solution was 

cooled to -20 °C and stirred under argon. NaHMDS (1 mL, 1 mmol) was added. After 30 min, 

bromide reagent (1.3 equiv., 0.5 mmol) was added dropwise with a syringe. After the addition, 

the cooling bath was removed, and the reaction mixture was stirred at r.t. overnight. The reaction 

was quenched with a saturated solution of NH4Cl (5 mL), and the mixture was extracted with 

DCM (3 x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over 

anhydrous Na2SO4, filtered, and concentrated under vacuum. The residue was purified by flash 

chromatography using hexanes/ethyl acetate to afford the desired product. 

 

Benzyl ether sulfanamide (3.67) 

The desired compound 3.67 was obtained according to general 

procedure H, as yellow oil (138.3 mg, 52%). 

ESI-MS: C38H55NO5SSi, m/z calculated for [M+H]+: 666.4, Found: 

666.4; m/z calculated for [M+Na]+: 688.4, Found: 688.4; m/z calculated for [M-H]-: 664.4, 

Found: 664.4. 
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1H NMR δ (CDCl3) 7.72–7.51 (m, 4H), 7.50–7.36 (m, 6H), 7.36–7.25 (m, 5H), 4.65 (d, J = 11.5 

Hz, 1H), 4.50 (d, J = 11.5 Hz, 1H), 4.34 (d, J = 3.7 Hz, 1H), 4.29 (m, 1H), 4.11 (dd, J = 8.0, 6.0 

Hz, 1H), 3.71–3.64 (m, 2H), 3.62–3.55 (m, 2H), 3.50 (dd, J = 8.0, 7.7 Hz, 1H), 1.85 (m, 1H), 

1.74 (m, 1H), 1.67–1.52 (m, 4H), 1.42 (s, 3H), 1.36 (s, 3H), 1.21 (s, 9H), 1.05 (s, 9H). 13C NMR 

δ (CDCl3) 139.1, 136.0, 134.4, 130.0, 128.8, 128.1, 128.1, 128.0, 109.9, 81.6, 75.3, 73.0, 70.1, 

64.2, 56.4, 56.1, 34.5, 29.2, 27.7, 27.5, 27.4, 26.2, 23.3, 19.7. 

 

tert-butyl acetate ether sulfanamide (3.68) 

The desired compound 3.68 was obtained according to general 

procedure H, as yellow oil (121.3 mg, 44%). 

ESI-MS: C37H59NO7SSi, m/z calculated for [M+H]+: 690.4, 

Found: 690.4; m/z calculated for [M+Na]+: 712.4, Found: 712.4; 

m/z calculated for [M-H]-: 688.4, Found: 688.4. 
1H NMR δ (CDCl3) 7.67–7.63 (m, 4H), 7.46–7.33 (m, 6H), 4.58 (d, J = 4.2 Hz, 1H), 4.31 (m, 

1H), 4.12–3.98 (m, 2H), 3.67–3.60 (m, 2H), 3.57–3.43 (m, 3H), 1.89 (m, 1H), 1.75 (m, 1H), 

1.68–1.52 (m, 4H), 1.46 (s, 9H), 1.41 (s, 3H), 1.35 (s, 3H), 1.22 (s, 9H), 1.04 (s, 9H). 13C NMR 

δ (CDCl3) 169.7, 135.6 133.9, 129.6, 127.7, 109.3, 83.0, 81.4, 74.8, 69.6, 68.7, 63.8, 56.1, 55.7, 

33.7, 29.2 28.1, 27.2, 26.9, 25.8, 22.8, 19.2. 

 

General Procedure I 

To a solution of sulfinamide (100 mg) in DCM (10 mL), was added m-CPBA (55%, 1.4 equiv at 

ambient temperature. After 3 h, the reaction mixture was diluted with a mixture of saturated 

aqueous NaHSO3 (5 mL) and NaHCO3 (5 mL). The aqueous layer was extracted with DCM (2 x 

10 mL). The organic extracts were combined, dried over anhydrous Na2SO4, filtered, and 

concentrated under vacuum. The residue was purified by flash chromatography using 

hexanes/ethyl acetate to afford the desired product. 

 

Benzyl ether sulfonamide (3.69) 

The desired compound 3.69 was obtained according to general 

procedure I, as colorless oil (101.3 mg, 99%). 

ESI-MS: C38H55NO6SSi, m/z calculated for [M+H]+: 682.4, Found: 
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682.4; m/z calculated for [M+Na]+: 704.4, Found: 704.4; m/z calculated for [M-H]-: 680.4, 

Found: 680.4. 
1H NMR δ (CDCl3) 7.72–7.51 (m, 4H), 7.50–7.36 (m, 6H), 7.36–7.25 (m, 5H), 4.56 (s, 2H), 

4.26-4.19 (m, 2H), 4.05 (m, 1H), 3.70-3.42 (m, 5H), 1.96 (m, 1H), 1.74 (m, 1H), 1.67–1.52 (m, 

4H), 1.40 (s, 3H), 1.37 (s, 9H), 1.34 (s, 3H), 1.05 (s, 9H); 13C NMR δ (CDCl3) 138.28, 135.47, 

133.70, 129.57, 128.35, 127.78, 127.65, 127.60, 109.02, 81.95, 73.86, 72.53, 69.47, 63.35, 59.84, 

55.16, 33.44, 28.78, 27.18, 26.92, 26.80, 25.59, 24.08, 19.13. 

 

tert-butyl acetate ether sulfonamide (3.70) 

The desired compound 3.70 was obtained according to general 

procedure I, as colorless oil (100.2 mg, 98%). 

ESI-MS: C37H59NO8SSi, m/z calculated for [M+H]+: 706.4, 

Found: 706.4; m/z calculated for [M+Na]+: 728.4, Found: 728.4; 

m/z calculated for [M-H]-: 704.4, Found: 704.4. 
1H NMR δ (CDCl3) 7.65–7.55 (m, 4H), 7.45–7.35 (m, 6H), 4.35 (m, 1H), 4.21 (d, J = 16.8 Hz, 

1H), 4.14 (dd, J = 8.0, 5.8 Hz, 1H), 3.94 (d, J = 16.8 Hz, 1H), 3.70–3.65 (m, 2H), 3.59–3.49 (m, 

2H), 3.42 (m, 1H), 2.04 (m, 1H), 1.73 (m, 1H), 1.67–1.50 (m, 4H), 1.47 (s, 9H), 1.40 (s, 12H), 

1.34 (s, 3H), 1.05 (s, 9H).13C NMR δ (CDCl3) 171.4, 135.5, 133.8, 129.6, 127.7, 108.7, 87.7, 

82.2, 74.0, 69.9, 69.6, 63.5, 59.6, 54.9, 33.4, 29.1, 28.1, 27.0, 26.9, 25.7, 24.2, 19.2. 

 

General Procedure J 

A solution of the sulfonamide (100 mg) in 3 mL of HF/Pyridine/THF (1/2/7) stirred at r.t. 

for 16 h, before trimethylmethoxysilane (3 mL) was added. The reaction crude was concentrated 

under reduced pressure and purified by flash chromatography using DCM/Methanol to afford the 

desired product. 

 

N-((2R,3R)-3-(benzyloxy)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-6-hydroxyhexan-2-yl)-2-

methylpropane-2-sulfonamide (3.71) 

 The desired compound 3.71 was obtained according to general procedure 

J, as colorless oil (50 mg, 77%). 

ESI-MS: C22H37NO6S, m/z calculated for [M+H]+: 444.2, Found: 444.2; 

O

O

NH
S

O

AcBTO

TBDPSO

O

O

O

NH
S

O

BnO

HO

O



Chapter	6	–	Materials	and	Methods	

 226	 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	

m/z calculated for [M+Na]+: 466.2, Found: 466.2; m/z calculated for [M-H]-: 442.2, Found: 

442.2. 
1H NMR δ (CDCl3) 7.41–7.25 (m, 5H), 4.66 (s, 2H), 4.33 (d, J = 8.7 Hz, 1H), 4.28 (m, 1H), 4.11 

(dd, J = 8.1, 5.9 Hz, 1H), 3.79 (m, 1H), 3.65–3.59 (m, 2H), 3.52 (d, J = 8.1, 7.6 Hz, 1H), 1.92 

(m, 1H), 1.79 (m, 1H), 1.72–1.47 (m, 4H), 1.40 (s, 3H), 1.38 (s, 9H), 1.34 (s, 3H). 13C NMR δ 

(CDCl3) 138.3, 128.4, 127.9, 127.8, 109.2, 82.2, 74.0, 73.0, 69.6, 62.5, 60.0, 55.6, 33.5, 28.9, 

27.5, 27.0, 25.7, 24.2. 

 

N-((2R,3R)-3-((acetylboranyl-t)oxy)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-6-hydroxyhexan-2-

yl)-2-methylpropane-2-sulfonamide (3.72) 

The desired compound 3.72 was obtained according to general 

procedure J, as colorless oil (51.7 mg, 78%). 

ESI-MS: C21H41NO8S, m/z calculated for [M+H]+: 468.3, Found: 

468.3; m/z calculated for [M+Na]+: 490.3, Found: 490.3; m/z 

calculated for [M-H]-: 466.3, Found: 466.3. 
1H NMR δ (CDCl3) 4.35 (m, 1H), 4.25 (d, J = 16.8 Hz, 1H), 4.14 (dd, J = 8.1, 5.8 Hz, 1H), 4.03 

(d, J = 16.8 Hz, 1H), 3.72–3.59 (m, 3H), 3.59–3.45 (m, 2H), 2.04 (m, 1H), 1.77 (m, 1H), 1.69–

1.59 (m, 4H), 1.46 (s, 9H), 1.45 (m, 3H), 1.40 (s, 9H), 1.34 (s, 3H). 13C NMR δ (CDCl3) 171.3, 

108.8, 87.5, 82.3, 74.0, 70.0, 69.5, 62.4, 59.7, 55.1, 33.4, 29.1, 28.9, 28.1, 27.0, 25.7, 24.2. 

 

General Procedure K 

To an ice-cooled solution of sulfonamide 3.71 or 3.72 (50 mg) in DCM (3 mL), was 

added methanesulfonyl chloride (1.2 equiv.) and DIPEA (2 equiv.) at -78 °C. The solution was 

stirred at -78 °C for 3 h followed by addition of a sat. aq. NH4Cl (5 mL). The aqueous fraction 

was extracted with DCM (3 x 5 mL). The organic extracts were combined, dried over anhydrous 

Na2SO4, filtered, and concentrated under vacuum to give the crude product as a yellow solid 

without further purification.  

To a solution of the above crude product in dry THF (5 mL) under argon, was added NaHMDS 

(1.3 equiv.) at -20 °C. The solution was stirred for 16 h before sat. aq. NH4Cl (5 mL) was added. 

The aqueous fraction was extracted with DCM (3 x 5 mL). The organic extracts were combined, 

dried over anhydrous Na2SO4, filtered, and concentrated under vacuum. The crude residue was 
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purified by flash column chromatography hexanes/ethyl acetate to afford the desired product.  

 

Benzyl ether N-sulfonyl piperidine (3.75)  

Desired compound 3.75 was obtained according to general procedure K, as 

colorless oil (28.8 mg, 60%). 
1H NMR δ (CDCl3) 7.82–7.66 (m, 5H), 4.99–4.95 (m, 2H), 4.65 (m, 1H), 4.52–

4.49 (m, 2H), 4.09 (dd, J = 8.2, 6.1 Hz, 1H), 4.05–3.97 (m, 2H), 3.56 (m, 1H), 2.58–2.32 (m, 

3H), 2.26–2.00 (m, 3H), 1.87 (s, 3H), 1.84 (s, 9H), 1.77 (s, 3H). 13C NMR δ (CDCl3) 138.7, 

128.8, 128.1, 128.0, 109.3, 73.5, 70.9, 69.5, 62.2, 42.8, 34.8, 30.1, 27.4, 25.8, 24.9, 23.5, 20.3. 

 

tert-butyl acetate ether N-sulfonyl piperidine (3.76) 

 The desired compound 3.76 was obtained according to general procedure K, as 

colorless oil (24.5 mg, 51%). 
1H NMR δ (CDCl3) 4.22 (m, 1H), 4.09 (dd, J = 8.2, 6.0 Hz, 1H), 4.03 – 3.92 

(m, 3H), 3.66 (dd, J = 8.2, 7.7 Hz, 1H), 3.55 – 3.50 (m, 2H), 3.10 (m, 1H), 2.05 – 1.90 (m, 3H), 

1.80 – 1.57 (m, 3H), 1.45 (s, 9H), 1.40 (s, 3H), 1.38 (s, 9H), 1.30 (s, 3H). 13C NMR δ (CDCl3) 

170.1, 109.2, 82.0, 73.4, 69.4, 67.0, 62.2, 42.7, 34.4, 30.1, 28.5, 27.4, 25.7, 24.8, 23.8, 20.1. 

 

General Procedure L 

To a stirred solution of N-sulfonyl piperidine 3.75 or 3.76 (25 mg) in MeOH (3 mL) was 

added pyridinium p-toluenesulfonate (5 mol%) at 60 °C. After 16 h, the reaction crude was 

concentrated under reduced pressure and purified by flash chromatography using DCM/methanol 

to afford the desired product. 

 

(S)-3-((2R,3S)-3-(benzyloxy)-1-(tert-butylsulfonyl)piperidin-2-yl)propane-1,2-diol (3.77) 

 The desired compound 3.77 was obtained according to general procedure L, as 

colorless oil (13.6 mg, 60%). 

ESI-MS: C19H31NO5S, m/z calculated for [M+H]+: 386.2, Found: 386.2; m/z 

calculated for [M+Na]+: 408.2, Found: 408.2; m/z calculated for [M-H]-: 385.2, Found: 385.2. 
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1H NMR δ (CDCl3) 7.38–7.27 (m, 5H), 4.54 (s, 2H), 4.38–3.98 (m, 2H), 3.94–3.26 (m, 5H), 

2.06–1.47 (m, 6H), 1.39 (s, 9H). 13C NMR δ (CDCl3) 138.2, 129.6, 128.3, 127.6, 73.9, 70.5, 

66.8, 62.0, 42.8, 37.4, 35.2, 29.7, 24.2, 22.7, 19.7. 

 

tert-butyl 2-(((2R,3S)-1-(tert-butylsulfonyl)-2-((S)-2,3-dihydroxypropyl)piperidin-3-

yl)oxy)acetate (3.78) 

 The desired compound 3.78 was obtained according to general procedure L, 

as colorless oil (17 mg, 75%). 

ESI-MS: C18H35NO7S, m/z calculated for [M+H]+: 410.2, Found: 410.2; m/z 

calculated for [M+Na]+: 432.2, Found: 432.2; m/z calculated for [M-H]-: 408.2, Found: 408.2. 
1H NMR δ (MeOD) 4.25 (br, 1H), 4.17–4.02 (m, 2H), 3.73–3.66 (m, 2H), 3.62 (br, 1H), 3.54 (d, 

J = 5.4 Hz, 2H), 3.18 (m 1H), 2.16–1.95 (m, 4H), 1.78–1.72 (m, 2H), 1.54 (s, 9H), 1.45 (s, 9H). 
13C NMR δ (MeOD) 171.7, 82.6, 75.5, 70.4, 67.6, 67.3, 62.6, 55.5, 43.7, 35.3, 28.4, 24.8, 23.9, 

20.9. 

 

General Procedure M 

To a solution of the diol 3.77 or 3.78 (10 mg) in DCM (3 mL), were added Bu2SnO (0.2 

equiv.), p-TsCl (1 equiv.) and Et3N (1 equiv.). The reaction mixture was stirred for 3 h. The 

mixture was filtered, and the filtrate was concentrated under reduced pressure, followed by 

purification with flash chromatography using DCM/Methanol to afford the desired product. 

 

(S)-3-((2R,3S)-3-(benzyloxy)-1-(tert-butylsulfonyl)piperidin-2-yl)-2-hydroxypropyl 4-

methylbenzenesulfonate (3.79) 

Th desired compound 3.79 was obtained according to general procedure M, as 

colorless oil (13 mg, 93%). 

ESI-MS: C26H37NO7S2, m/z calculated for [M+H]+: 540.2, Found: 540.2; m/z 

calculated for [M+Na]+: 562.2, Found: 562.2; m/z calculated for [M-H]-: 538.2, Found: 538.2. 
1H NMR δ (CDCl3) 7.78 (d, J = 8.3 Hz, 2H), 7.38–7.26 (m, 7H), 4.52 (s, 2H), 4.08 (dd, J = 6.6, 

6.2 Hz, 1H), 4.03–3.89 (m, 2H), 3.61–3.48 (m, 2H), 3.45 (m, 1H), 3.03 (m, 1H), 2.44 (s, 2H), 

2.03–1.83 (m, 3H), 1.66–1.41 (m, 3H), 1.36 (s, 9H). 
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13C NMR δ (CDCl3) 145.2, 138.2, 132.7, 130.1, 128.5, 128.1, 127.8, 127.7, 80.4, 73.3, 70.7, 

67.6, 62.1, 55.3, 42.9, 35.0, 24.3, 22.9, 21.8, 19.8. 

 

tert-butyl-2-(((2R,3S)-1-(tert-butylsulfonyl)-2-((S)-2-hydroxy-3-(tosyloxy)propyl)piperidin-3-

yl)oxy)acetate (3.80) 

 The desired compound 3.80 was obtained according to general procedure M, 

as colorless oil (12.8 mg, 93%). 

ESI-MS: C25H41NO9S2, m/z calculated for [M+H]+: 564.2, Found: 564.2; m/z 

calculated for [M+Na]+: 586.2, Found: 586.2; m/z calculated for [M-H]-: 

562.2, Found: 562.2. 
1H NMR δ (CDCl3) 7.78 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 4.09–3.97 (m, 2H), 3.96 

(s, 2H), 3.92 (m, 1H), 3.60–3.41 (m, 3H), 2.99 (m, 1H), 2.44 (s, 3H), 1.94 (br, 2H), 1.79–1.72 

(m, 2H), 1.62–1.55 (m, 2H), 1.46 (s, 9H), 1.38 (s, 9H). 13C NMR δ (CDCl3) 169.6, 145.0, 132.6, 

129.9, 129.0, 128.0, 125.3, 81.8, 75.2, 73.1, 67.3, 66.8, 62.0, 54.9, 42.6, 34.6, 28.1, 24.2, 23.0, 

21.6, 19.6. 

 

General Procedure N 

To a solution of the above product (7 mg for 3.79 and 13 mg for 3.80) in dry THF (2 

mL), was added DBU (2 equiv.) at room temperature. The solution was stirred for 16 h and then, 

concentrated under reduced pressure. The crude residue was purified by flash chromatography 

using DCM/Methanol to afford the desired product. 

 

 (2R,3S)-3-(benzyloxy)-1-(tert-butylsulfonyl)-2-(((S)-oxiran-2-yl)methyl)piperidine (3.81) 

 The desired compound 3.81 was obtained according to general procedure N, as a 

colorless oil (4.1 mg, 98%). 

ESI-MS: C19H29NO4S, m/z calculated for [M+H]+: 368.2, Found: 368.2; m/z 

calculated for [M+Na]+: 390.2, Found: 390.2. 
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tert-butyl 2-(((2R,3S)-1-(tert-butylsulfonyl)-2-(((S)-oxiran-2-yl)methyl)piperidin-3-

yl)oxy)acetate (3.82) 

 The desired compound 3.82 was obtained according to general procedure N, as 

colorless oil (8.2 mg, 91%). 

ESI-MS: C18H33NO6S, m/z calculated for [M+H]+: 392.2, Found: 392.2; m/z 

calculated for [M+Na]+: 414.2, Found: 414.2. 
1H NMR δ (CDCl3) 4.50 (m, 1H), 4.37 (d, J = 8.3 Hz, 2H), 4.00–3.88 (m, 2H), 3.53–3.39 (m, 

2H), 3.17 (t, J = 4.4 Hz, 1H), 2.91 (dd, J = 4.4, 2.6 Hz, 1H), 2.50 (m, 1H), 2.39–2.33 (m, 2H), 

2.13 (m, 1H), 2.01 (m, 1H), 1.85 (s, 9H), 1.79 (s, 9H). 13C NMR δ (CDCl3) 169.6, 81.7, 75.2, 

66.8, 61.8, 54.7, 49.6, 47.2, 42.5, 33.2, 28.1, 24.4, 23.2, 19.7. 

 

tert-butyl 2-(((2R,3S)-2-((S)-3-(7-bromo-6-chloro-4-oxoquinazolin-3(4H)-yl)-2-

hydroxypropyl)-1-(tert-butylsulfonyl)piperidin-3-yl)oxy)acetate (3.83)  

Potassium hydride (4 mg, 0.9 mmol) was suspended in DMF (2 

mL). It was cooled in an ice-water bath, and 7-bromo-6-chloro-4-

quinazolinone (26 mg, 0.1 mmol) was added in. After 30 min, a 

solution of oxirane 3.82 (18 mg, 0.05 mmol) in DMF (2 mL) was 

added in. The reaction mixture was then heated at 80 °C for 72 h 

under argon atmosphere prior to addition of sat. aq. NH4Cl (5 mL). 

The aqueous fraction was extracted with DCM (3 x 5 mL). The organic extracts were combined, 

dried over anhydrous Na2SO4, filtered, and concentrated under vacuum. The crude residue was 

purified by flash column chromatography using DCM/Methanol to afford the desired alcohol (27 

mg, 84%) as white solid. 

ESI-MS: C26H37BrClN3O7S, m/z calculated for [M+H]+: 650.1, Found: 650.1; m/z calculated for 

[M+Na]+: 672.1, Found: 672.1; m/z calculated for [M-H]-: 648.1, Found: 648.1. 
1H NMR δ (MeOD) 8.32 (s, 1H), 8.13 (s, 1H), 8.07 (s, 1H), 4.31–4.20 (m, 2H), 4.11 (s, 2H), 

4.07–3.97 (m, 2H), 3.72–3.52 (m, 2H), 3.19 (td, J = 13.4, 2.6 Hz, 1H), 2.12–1.61 (m, 6H), 1.50 

(s, 9H), 1.44 (s, 9H). 13C NMR δ (MeOD) 170.4, 160.1, 150.0, 146.5, 132.7, 131.8, 128.7, 126.8, 

122.0, 81.3, 66.3, 65.9, 61.4, 51.8, 42.1, 34.6, 31.7, 29.4, 27.0, 23.4, 22.3, 19.4. 
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Methyl-2-(((2R,3S)-2-((S)-3-(7-bromo-6-chloro-4-oxoquinazolin-3(4H)-yl)-2-

hydroxypropyl)piperidin-3-yl)oxy)acetate (3.84) 

A solution of 3.83 (25 mg, 0.04 mmol) in 6 M HCl in MeOH (3 

mL) was stirred at r.t. for 3 h, under argon atmosphere. Solvent 

was removed under pressure and the crude was used without 

further purification (6.8 mg, 35%). 

ESI-MS: C19H23BrClN3O5, m/z calculated for [M+H]+: 488.1, 

Found: 488.1; m/z calculated for [M+Na]+: 510.1, Found: 510.1; m/z calculated for [M-H]-: 

486.1, Found: 486.1. 

 

tert-butyl-(2R,3S)-2-((S)-3-(7-bromo-6-chloro-4-oxoquinazolin-3(4H)-yl)-2-hydroxypropyl)-3-

(2-methoxy-2-oxoethoxy)piperidine-1-carboxylate (3.85) 

To a solution of 3.84 (5 mg, 0.01 mmol) in DMF (2 mL), was 

added DIPEA (5 µL, 3 equiv.) followed by Boc2O (2.5 µL, 1.1 

equiv.). The reaction stirred at r.t. for 5 h, under argon atmosphere. 

The solvent was removed under pressure and the crude was 

purified by flash column chromatography using DCM/Methanol to 

afford the desired compound 3.85 (4 mg, 75%) as a white solid. 

ESI-MS: C24H31BrClN3O7, m/z calculated for [M+H]+: 588.1, Found: 588.1; m/z calculated for 

[M+Na]+: 610.1, Found: 610.1; m/z calculated for [M-H]-: 586.1, Found: 586.1. 
1H NMR δ (CDCl3) 8.33 (s, 1H), 8.20 (s, 1H), 8.04 (s, 1H), 4.52 (m, 1H), 4.33 (m, 1H), 4.15 (s, 

2H), 4.10 – 3.95 (m, 2H), 3.74 (s, 3H), 3.60 (m, 1H), 3.55 (t, J = 5.1 Hz, 1H), 3.49 (m, 1H), 1.98 

– 1.71 (m, 6H), 1.45 (s, 9H). 

 

2-(((2R,3S)-2-((S)-3-(7-bromo-6-chloro-4-oxoquinazolin-3(4H)-yl)-2-hydroxypropyl)-1-(tert-

butoxycarbonyl)piperidin-3-yl)oxy)acetic acid (3.86) 

Compound 3.85 (2 mg, 0.003 mmol) was dissolved in 1 M LiOH 

(20 µL, 0.02 mmol) and stirred at 60 °C for 5 h. The solvent was 

removed under pressure and the crude was analyzed by LC/MS. 

ESI-MS: C23H29BrClN3O7, m/z calculated for [M+H]+: 574.1, 

Found: 574.1; m/z calculated for [M+Na]+: 596.1, Found: 596.1; 
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m/z calculated for [M-H]-: 572.1, Found: 572.1. 

 

6.1.5 Synthesis	of	Fluorescent	Probes	

6.1.5.1 Synthesis	of	CMA-BODIPYs	

	
General Procedure O 

In a round-bottom flask, 1,3,5,7,8-Pentamethyl BODIPY 4.13 (1 equiv.) was dissolved in 

DCM to give a final concentration of 1.9 mM. The solution was cooled to 0 °C on an ice-water 

bath and, upon stirring, TMSOTf (5 equiv.) was added from a 10% (v/v) stock-solution in TCM. 

The reaction was allowed to proceed for 2 minutes and 30 seconds. Then, a premixed solution of 

alcohol (~100 equiv.) and DIPEA (10 equiv.) was rapidly injected into the reaction. The mixture 

was then partitioned between DCM: H2O (1:1). The organics were washed 3 times with H2O 

containing 10% NaCl (sat), dried over Na2SO4 and gravity filtered. The solvents were removed 

in vacuo at room temperature. All purifications were performed immediately after obtaining the 

dry crude product, by flash column chromatography using toluene/acetonitrile to afford the 

desired compound. 

 

1,3,5,7,8-Pentamethyl fluoro methoxy BODIPY (4-fluoro-4-methoxy-1,3,5,7,8- 

pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.15) 

The desired compound 4.15 was obtained according to general procedure O, as 

an orange powder (14 mg, 0.051 mmol, 46%).  

ESI-MS: C15H20BFN2O, m/z calculated for [M-H]-: 273.2 Found: 273.3; m/z 

calculated for [M+Na]+: 297.2, Found: 297.2; m/z calculated for [M-F]+ 

Calculated: 255.2, Found: 255.2. 
1H NMR δ (C6D6) 5.76 (s, 2H), 3.11 (s, 3H), 2.66 (s, 6H), 1.99 (s, 6H), 1.87 (s, 3H). 13C NMR δ 

(C6D6) 154.08, 141.42, 139.75, 133.17, 121.25, 49.12 (d, J = 6.9 Hz), 17.22, 16.07, 14.75 (d, J = 

2.6 Hz). 
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1,3,5,7,8-Pentamethyl fluoro glycol BODIPY (4-fluoro-4-hydroxyethoxy-1,3,5,7,8- 

pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.16) 

The desired compound 4.16 was obtained according to general procedure 

O, as an orange powder (20 mg, 0.066 mmol, 43%).  

ESI-MS: C16H22BFN2O2, m/z calculated for [M+Na]+: 327.2, Found: 

327.2.  
1H NMR δ (C6D6) 5.74 (s, 2H), 3.56 (q, J = 5.3 Hz, 2H), 3.10 (t, J = 4.9 Hz, 2H), 2.60 (s, 6H), 

2.21 (t, J = 6.2 Hz, 1H), 1.98 (s, 6H), 1.86 (s, 3H). 13C NMR δ (C6D6) 154.34, 141.76, 140.26, 

133.32, 121.72, 63.93, 63.39 (d, J = 5.7 Hz), 17.52, 16.39, 15.12 (d, J = 2.8 Hz). 

 

(4-fluoro-4-hydroxyethoxy-1,3,5,7-tetramethyl-8-(N-succinimidyl carboxypropyl)-4- 

bora-3a,4a-diaza-s-indacene) (4.19) 

To BODIPY-NHS 4.17 (20 mg, 0.048 mmol) in CHCl3 (10 mL) was added 

TMSOTf from a 10% (v/v) stock solution in CHCl3 (434 µL, 0.24 mmol) 

upon stirring at 0 °C. After, 4 min activation, the reaction was rapidly 

quenched with a premixed solution of ethylene glycol (1.38 mL, 2.4 mmol) 

and DIPEA (52 µL, 0.30 mmol). After 5 minutes, the reaction was poured 

into 100 mL of a 1:1 mixture of 2-methyltetrahydrofuran: NaCl (sat). The 

organic layer was dried over Na2SO4, filtered and the solvents removed in vacuo. The crude was 

purified by flash column chromatography using toluene/acetonitrile to afford the desired 

compound 4.19 (10.4 mg, 0.023 mmol, 47%) as an orange solid. 

ESI-MS: C22H27BFN3O6, m/z calculated for [M+Na]+: 482.2, Found: 482.2.  
1H NMR δ (CDCl3) 6.08 (s, 2H), 3.53 (q, J = 5.1 Hz, 2H), 3.45–3.40 (m, 2H), 2.96 (t, J = 4.8 

Hz, 2H), 2.92–2.84 (m, 6H), 2.52 (s, 6H), 2.45 (s, 6H). 

 

6.1.5.2 Synthesis	of	HaloTag	functionalized	CMA-BODIPY	
HaloTag was synthesized following the procedure published by Neklesa et al444. 

 

tert-Butyl (2-(2-hydroxyethoxy)ethyl)carbamate (4.20) 

 To a solution of 2-(2-aminoethoxy)-ethanol (2.1 g, 20 mmol) in 

EtOH (5 mL) at 0 °C was added Boc2O (4.36 g, 20 mmol). The 
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reaction mixture was stirred at r.t. for 4 h, evaporated, and diluted with DCM (20 mL) and H2O 

(20 mL). The mixture was extracted twice with DCM, and the combined extracts were washed 

with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by flash 

column chromatography using hexanes/ethyl acetate to afford the desired compound tert-butyl 

(2-(2-hydroxyethoxy)ethyl)carbamate (4 g, 98%).  

ESI-MS: C9H19NO4, m/z calculated for [M+Na]+: 228.4, Found: 228.4.  
1H NMR δ (CDCl3) 5.01 (br s, 1H), 3.76-3.72 (m, 2H), 3.58-3.54 (m, 4H), 3.35-3.32 (m, 2H), 

2.39 (t, J = 5.9 Hz, 1H), 1.44 (s, 9H). 13C NMR δ (CDCl3) 156.1, 79.3, 72.1, 70.3, 61.7, 40.3, 

28.7 

 

tert-Butyl (2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)carbamate (4.21) 

 To a solution of tert-butyl (2-(2-

hydroxyethoxy)ethyl)carbamate 4.20 (2.2 g, 

10.5 mmol) in THF (20 mL) and DMF (10 mL) 

at 0 °C added portion wise NaH (60% dispersion in mineral oil, 560 mg, 14.0 mmol). After 

stirring at 0 °C for 0.5 h, 6-chloro-1-iodohexane (2.4 mL, 15.72 mmol) was added to the mixture 

at 0 °C. The reaction mixture was stirred at 0 °C for 20 min, at r.t. for 3 h, and quenched at 0 °C 

with saturated NH4Cl solution in H2O. The mixture was extracted twice with ethyl acetate and 

the combined extracts were washed with brine, dried over Na2SO4, filtered, and concentrated. 

The residue was purified by fash chromatography using hexanes/ethyl acetate to afford the tert-

butyl (2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl) carbamate 4.21 (1.3 g, 38%).  

ESI-MS: C15H30ClNO4 , m/z calculated for [M+Na]+: 346.2, Found: 346.2.  
1H NMR δ (CDCl3) 4.98 (br s,1H), 3.61-3.51 (m, 8H), 3.46 (t, J = 6.7 Hz, 2H), 3.31 (t, J = 4.7 

Hz, 2H), 1.81-1.74 (m, 2H), 1.61-1.57 (m, 2H), 1.49-1.33 (m, 4H), 1.43 (s, 9H). 13C NMR δ 

(CDCl3) 155.9, 79.2, 71.2, 70.3, 70.2, 70.0, 45.0, 32.5, 29.4, 28.4, 26.7, 25.4. 

 

2-(2-((6-Chlorohexyl)oxy)ethoxy)ethanamine (4.22) 

 A 2 M HCl solution in MeOH of tert -butyl (2-(2-((6-

chlorohexyl)oxy)ethoxy)ethyl)carbamate 4.21 (1.3 g, 

4.2 mmol) was stirred at r.t. for 2 h. The solvent was removed under reduced pressure and the 

crude amine was purified by flash column chromatography using ethyl 
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O
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acetate/water:methanol:acetonitrile (1:1:1) to give 2-(2-((6-chlorohexyl)oxy)ethoxy)ethanamine 

4.22 (727.2 mg, 78%).  

ESI-MS: C10H22ClNO2, m/z calculated for [M+H]+: 224.7, Found: 224.7; m/z calculated for 

[M+Na]+: 246.6, Found: 246.6.  
1H NMR δ (CDCl3) 6.47 (br s, 1H), 3.69 (t, J = 4.9 Hz, 2H), 3.63-3.60 (m, 2H), 3.56-3.53 (m, 

2H), 3.52 (t, J = 6.6 Hz, 2H), 3.44 (t, J = 6.8 Hz, 2H), 3.12 (t, J = 4.9 Hz, 2H), 1.79-1.71 (m, 

2H), 1.60-1.53 (m, 2H), 1.46- 1.39 (m, 2H), 1.36-1.28 (m, 2H). 13C NMR δ (CDCl3) 71.1, 70.1, 

69.7, 45.0, 39.4, 32.4, 29.1, 26.5, 25.1.  

 

(4,4-difluoro-1,3,5,7-tetramethyl-8-(3-((2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)amino)-3-

oxopropyl)-4-bora-3a,4a-diaza-s-indacene) (4.23) 

BODIPY-NHS 4.17 (12.5 mg, 0.03 mmol) was 

dissolved in DCM (2 mL).  

To this solution was added 2-(2-((6-

chlorohexyl)oxy)ethoxy)ethanamine hydrochloride (6.7 

mg, 0.03 mmol) and DIPEA (16 uL, 0.09 mmol). The 

reaction mixture was left to stir at r.t. for 30 min. The 

solvent was removed in vacuo at room temperature. The 

crude mixture was purified by flash column chromatography using toluene/acetonitrile to afford 

an orange solid (5.8 mg, 0.01 mmol, 37%).  

ESI-MS: C26H39BClF2N3O3, m/z calculated for [M-H]-: 524.2, Found: 524.2; m/z calculated for 

[M+Na]+: 548.3, Found: 548.3.  
1H NMR δ (C6D6) 5.67 (s, 2H), 5.41 (br s, 1H,-NH), 3.32-3.30 (m, 6H), 3.21-3.07 (m, 8H), 2.60 

(s, 6H), 2.15 (s, 6H), 1.82-1.78 (m, 2H), 1.42-1.36 (m, 4H), 1.16-1.06 (m, 4H). 13C NMR δ 

(C6D6) 170.40, 154.44, 144.47, 140.49, 131.30, 121.82, 71.29, 70.34, 70.02, 69.60, 44.99, 39.36, 

37.39, 32.47, 32.47, 29.45, 26.63, 25.38, 23.84, 16.52, 14.47. 
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(4-fluoro-4-hydroxyethoxy-1,3,5,7-tetramethyl-8-(3-((2-(2-((6-

chlorohexyl)oxy)ethoxy)ethyl)amino)-3-oxopropyl)-4-bora-3a,4a-diaza-s-indacene) (4.24) 

To BODIPY 4.23 (3.1 mg, 0.01 mmol) in TCM (3 mL) 

was added TMSOTf from a 10%(v/v) stock solution in 

TCM (33 µL, 0.02 mmol) under stirring at 0 °C. After 2 

mins and 30 seconds activation, the reaction was 

quenched with ethylene glycol (~100 equiv.) and the 

reaction was allowed to stir for an additional two 

minutes. The mixture was then partitioned between a 1:1 

solution of DCM: NaHCO3 (sat). The organics were 

washed 3 times with H2O containing 10% NaCl (sat), 

dried over Na2SO4 and filtered. The combined organic fractions were removed under reduced 

pressure at room temperature. The crude was purified by flash column chromatography using 

toluene/acetonitrile to afford the desired compound 4.24 as an orange solid (2 mg, 0.004 mmol, 

60%).  

ESI-MS: C28H44BClFN3O5, m/z calculated for [M-H]-: 566.2 Found: 566.2; m/z calculated for 

[M+Na]+: 590.3 Found: 590.3.  
1H NMR δ (C6D6) 5.71 (s, 2H), 5.50 (br s, 1H,-NH), 3.58 (br s, 1H,-OH), 3.32-3.30 (m, 8H), 

3.20-3.08 (m, 10H), 2.58 (s, 6H), 2.19 (d, J = 5.6 Hz 6H), 1.40-1.30 (m, 6H), 1.15-1.11 (m, 4H). 

 

6.1.5.3 Synthesis	of	Monoalkoxy	BODIPYs	

	
General Procedure P 

1,3,5,7,8-Pentamethyl BODIPY (250 mg, 1 equiv.) was dissolved in toluene and heated 

to 60 °C, followed by addition of the appropriate alcohol (1.5 equiv.) and 5Å molecular sieves 

(50 mg of molecular sieves/ mg of fluorophore). The reaction was allowed to proceed for 3 h and 

gravity filtered. The solvent was removed under reduced pressure and the crude was purified 

immediately, by flash column chromatography using toluene/acetonitrile to afford the desired 

compound. 
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1,3,5,7,8-Pentamethyl fluoro benzyloxy BODIPY (4-fluoro-4-benzyloxy-1,3,5,7,8-pentamethyl-

4-bora-3a,4a-diaza-s-indacene) (4.25) 

Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) and 

benzyl alcohol (149 µL, 1.43 mmol) according to general procedure P, gave 

116.9 mg (35%) of desired fluorophore as an orange solid. 

ESI-MS: C20H22BFN2O, m/z calculated for [M-H]-: 349.2 Found: 349.2; 

m/z calculated for [M+Na]+: 373.2 Found: 373.2; m/z calculated for [M-F]+ 

Calculated: 331.2, Found: 331.2. 
1H NMR δ (CDCl3) 7.24–7.08 (m, 5H), 6.02 (s, 2H), 4.02 (s, 2H), 2.60 (s, 3H), 2.52 (s, 6H), 

2.43 (s, 6H). 13C NMR δ (CDCl3) 153.9, 140.1, 128.4, 127.9, 127.7, 127.3, 127.0, 126.4, 121.3, 

64.2, 17.4, 16.4, 14.6. 

 

1,3,5,7,8-Pentamethyl fluoro phenoxy BODIPY (4-fluoro-4-phenoxy-1,3,5,7,8-pentamethyl-4-

bora-3a,4a-diaza-s-indacene) (4.26) 

Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) and 

phenol (121 µL, 1.43 mmol) according to general procedure P, gave 

144.3 mg (45%) of desired fluorophore as orange solid. 

ESI-MS: C20H22BFN2O, m/z calculated for [M-H]-: 335.2 Found: 335.2; 

m/z calculated for [M+Na]+: 359.3 Found: 359.2; m/z calculated for [M-F]+ Calculated: 317.2, 

Found: 317.2. 
1H NMR δ (CDCl3) 7.03 (dd, J = 7.2, 7.1 Hz, 2H), 6.73 (t, J = 7.1 Hz, 1H), 6.45 (d, J = 7.2, 2H), 

6.00 (s, 2H), 2.64 (s, 3H), 2.47 (s, 6H), 2.43 (s, 6H). 

 

1,3,5,7,8-Pentamethyl fluoro 4-nitrophenoxy BODIPY (4-fluoro-4-(4-nitrophenyl)oxy-

1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.27) 

Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) and p-

nitrophenol (198.9 mg, 1.43 mmol) according to general procedure P, 

gave 181.8 mg (50%) of the desired fluorophore as orange solid. 

ESI-MS: C20H21BFN3O3, m/z calculated for [M-H]-: 380.2 Found: 380.2; 

m/z calculated for [M+Na]+: 404.2 Found: 404.2; m/z calculated for [M-

F]+ Calculated: 362.2, Found: 362.2. 
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1H NMR δ (CDCl3) 7.98–7.92 (m, 2H), 6.54 (d, J = 9.2 Hz, 1H), 6.48 (d, J = 9.2 Hz, 1H), 6.03 

(s, 2H), 2.49 (s, 3H), 2.46–2.46 (m, 12H). 13C NMR δ (CDCl3) 162.3, 154.7, 154.1, 142.6, 

141.9, 140.7, 140.4, 132.2, 126.1, 125.9, 122.8, 122.0, 118.0, 117.6, 115.7, 17.5, 17.3, 16.5, 15.2, 

14.8. 

 

1,3,5,7,8-Pentamethyl fluoro pentafluorophenoxy BODIPY (4-fluoro-4-

(pentafluorophenyl)oxy-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.28) Reaction 

of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) and 

pentafluorophenol (263.2 mg, 1.43 mmol) according to general procedure 

P, gave 182.9 mg (45%) of the desired fluorophore as an orange solid. 

ESI-MS: C20H17BF6N2O, m/z calculated for [M-H]-: 425.1 Found: 425.1; 

m/z calculated for [M+Na]+: 449.1 Found: 449.1; m/z calculated for [M-F]+ 

Calculated: 407.1, Found: 407.1. 
1H NMR δ (CDCl3) 6.04 (s, 2H), 2.53 (s, 3H), 2.49 (s, 6H), 2.40 (s, 6H). 

13C NMR δ (CDCl3) 154.3, 141.3, 132.3, 121.6, 17.3, 16.5, 14.6. 

 

1,3,5,7,8-Pentamethyl fluoro oxetan-3-yloxy BODIPY (4-fluoro-4-oxetan-3-yloxy-1,3,5,7,8-

pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.29) 

Reaction of 1,3,5,7,8-Pentamethyl BODIPY (50 mg, 0.19 mmol) and 3-

oxetanol (14.8 µL, 0.28 mmol) according to general procedure P, gave 18.5 

mg (30%) of the desired fluorophore as an orange solid. 

ESI-MS: C17H22BFN2O2, m/z calculated for [M-H]-: 315.1 Found: 315.1; m/z 

calculated for [M+Na]+: 339.1 Found: 339.1; m/z calculated for [M-F]+ 

Calculated: 297.1, Found: 297.1. 
1H NMR δ (CDCl3) 6.02 (s, 2H), 4.46–4.28 (m, 2H), 4.26–4.12 (m, 2H), 4.07 (m, 1H), 2.58 (s, 

3H), 2.42 (s, 6H), 2.39 (s, 6H).  
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6.1.5.4 Synthesis	of	Dialkoxy	BODIPYs	

	
General Procedure Q 

1,3,5,7,8-Pentamethyl BODIPY (250 mg, 1 equiv.) was dissolved in toluene or THF (5 

mL) and heated to 60 °C, followed by addition of the appropriate alcohol (2.5 equiv.) and 5Å 

molecular sieves (50 mg of molecular sieves/ mg of fluorophore). The reaction was allowed to 

proceed for 24 h and gravity filtered. The solvent was removed under reduced pressure and the 

crude was purified immediately by flash column chromatography using toluene/acetonitrile to 

afford the desired compound. 

 

1,3,5,7,8-Pentamethyl di(benzyloxy) BODIPY (4,4-dibenzyloxy-1,3,5,7,8-pentamethyl-4-bora-

3a,4a-diaza-s-indacene) (4.30) 

 Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) and 

benzyl alcohol (247.7 µL, 2.38 mmol) according to general procedure Q, 

gave 388.7 mg (93%) of the desired fluorophore as an orange solid. 

ESI-MS: C28H31BN2O2, m/z calculated for [M-H]-: 437.3 Found: 437.3; 

m/z calculated for [M+Na]+: 461.3 Found: 461.3.  
1H NMR δ (CDCl3) 7.33–7.27 (m, 5H), 7.24–7.19 (m, 5H), 5.97 (s, 2H), 4.04 (s, 4H), 2.63 (s, 

3H), 2.58 (s, 3H), 2.54 (s, 3H), 2.46 (s, 3H), 2.44 (s, 3H), 2.42 (s, 3H). 13C NMR δ (CDCl3) 

154.1, 141.8, 139.4, 128.3, 127.7, 127.3, 127.0, 126.2, 121.3, 64.2, 17.6, 16.5, 14.8. 

 

1,3,5,7,8-Pentamethyl diphenoxy BODIPY (4,4-diphenoxy-1,3,5,7,8-pentamethyl-4-bora-

3a,4a-diaza-s-indacene) (4.31)  

Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) and 

phenol (202 µL, 2.38 mmol) according to general procedure Q, gave 

246.5 mg (63%) of the desired fluorophore as an orange solid. 

ESI-MS: C26H27BN2O2, m/z calculated for [M-H]-: 409.2 Found: 409.2; 

m/z calculated for [M+Na]+: 433.2 Found: 433.2.  
1H NMR δ (CDCl3) 7.06 – 6.99 (m, 4H), 6.76 (d, J = 8.2 Hz, 1H), 6.70 

(d, J = 8.1 Hz, 1H), 6.54 – 6.49 (m, 4H), 5.95 (s, 2H), 2.66 (s, 3H), 2.51 (s, 6H), 2.43 (s, 6H).13C 

NMR δ (CDCl3) 156.7, 154.6, 141.0, 132.8, 129.5, 129.1, 122.1, 119.5, 118.6, 17.7, 16.6, 15.2 
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1,3,5,7,8-Pentamethyl di(4-nitrobenzyloxy) BODIPY (4,4-di(4-nitrobenzyl)oxy-1,3,5,7,8-

pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.32) 

Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) 

and p-nitrophenol (331.2 mg, 2.38 mmol) according to general 

procedure Q, gave 365.9 mg (65%) of the desired fluorophore as 

an orange solid. 

ESI-MS: C26H25BN4O6, m/z calculated for [M-H]-: 499.2 Found: 

499.2; m/z calculated for [M+Na]+: 523.2 Found: 523.2. 
1H NMR δ (CDCl3) 7.90 (d, J = 9.2 Hz, 4H), 6.47 (d, J = 9.2 Hz, 4H), 5.96 (s, 2H), 2.70 (s, 3H), 

2.43 (s, 6H), 2.34 (s, 6H). 13C NMR δ (CDCl3) 162.3, 154.7, 142.6, 141.6, 140.7, 132.5, 125.9, 

122.8, 118.0, 17.7, 16.6, 14.9. 

 

1,3,5,7,8-Pentamethyl di(pentafluorobenzyloxy) BODIPY (4,4-di(pentafluorobenzyl)oxy-

1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.33) 

Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) 

and pentafluorophenol (438.4 mg, 2.38 mmol) according to general 

procedure Q, gave 365.9 mg (65%) of the desired fluorophore as an 

orange solid. 

ESI-MS: C26H17BF10N2O2, m/z calculated for [M-H]-: 589.1 Found: 

589.1; m/z calculated for [M+Na]+: 613.1 Found: 613.1. 
1H NMR δ (CDCl3) 6.02 (s, 2H), 2.58 (s, 3H), 2.42 (s, 6H), 2.39 (s, 

6H). 13C NMR δ (CDCl3) 154.5, 142.1, 133.0, 122.5, 18.0, 17.0, 15.1. 
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1,3,5,7,8-Pentamethyl di(1-Fmoc-3-hydroxyazetidine) BODIPY (4,4-(di(1-Fmoc-3-

hydroxyazetidine)-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.34) 

 Reaction of 1,3,5,7,8-Pentamethyl BODIPY (250 mg, 0.95 mmol) and 

1-Fmoc-3-hydroxyazetidine (703.6 mg, 2.38 mmol) according to general 

procedure Q, gave 503.6 mg (65%) of desired fluorophore as orange 

solid. 

ESI-MS: C50H49BN4O6, m/z calculated for [M-H]-: 811.4 Found: 811.4; 

m/z calculated for [M+Na]+: 835.4 Found: 835.4. 
1H NMR δ (CDCl3) 7.66–7.60 (m, 4H), 7.45–7.40 (m, 4H), 7.36–7.11 (m, 8H), 6.04 (s, 2H), 

4.23–4.01 (m, 6H), 3.93–3.51 (m, 10H), 2.55 (s, 3H), 2.47 (s, 6H), 2.39 (s, 6H). 13C NMR δ 

(CDCl3) 156.6, 144.1, 141.5, 141.4, 133.1, 127.7, 127.1, 125.3, 122.1, 120.1, 120.0, 67.1, 60.4, 

47.3, 29.8, 22.8, 17.7, 16.7, 15.3. 

 

Reaction of 1,3,5,7,8-Pentamethyl di(1-Fmoc-3-hydroxyazetidine) BODIPY (50 mg, 0.06 

mmol) and 3-oxetanol (7.9 µL, 0.15 mmol) according to general procedure Q for 1 h, yielded a 

mixture of mono- (4.35) and di-substitution (4.36) by LC/MS.  

 

1,3,5,7,8-Pentamethyl 4-(1-Fmoc-3-hydroxyazetidine)-4-(oxetan-3-yloxy) BODIPY (4,4-

di(oxetan-3-yloxy)-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.35) 

ESI-MS: C35H38BN3O5, m/z calculated for [M-H]-: 590.3 Found: 590.3; m/z 

calculated for [M+Na]+: 613.3 Found: 613.3. 
1H NMR δ (CDCl3) 7.82 (dd, J = 9.2, 8.2Hz, 2H), 7.66 (dd, J = 18.5, 8.2Hz, 

2H), 7.46–7.24 (m, 4H), 6.25–6.07 (m, 2H), 4.46–4.28 (m, 4H), 4.26–4.12 (m, 

3H), 4.07 (m, 1H), 3.98 (m, 1H), 3.87–3.71 (m, 2H), 3.59–3.56 (m, 2H), 2.73–

2.64 (m, 3H), 2.49 (m, 12H). 13C NMR δ (CDCl3) 158.3, 154.9, 145.2, 145.2, 

143.7, 143.3, 143.0, 142.6, 141.8, 134.8, 134.2, 128.8, 128.8, 128.2, 128.1, 126.1, 126.0, 123.0, 

122.7, 122.4, 121.0, 120.9, 81.6, 71.7, 69.6, 68.2, 68.0, 65.6, 63.9, 61.7, 17.5, 17.0, 16.9, 15.3, 

14.8. 

 

 

 

N
B
N

O O

N
N

Fmoc
Fmoc

N
B
N

O O

N
O

Fmoc



Chapter	6	–	Materials	and	Methods	

 242	 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	

1,3,5,7,8-Pentamethyl di(oxetan-3-yloxy) BODIPY (4,4-di(oxetan-3-yloxy)-1,3,5,7,8-

pentamethyl-4-bora-3a,4a-diaza-s-indacene) (4.36) 

 

ESI-MS: C20H27BN2O4, m/z calculated for [M-H]-: 369.2 Found: 369.2; m/z 

calculated for [M+Na]+: 393.2 Found: 393.2. 
1H NMR δ (CDCl3) 6.02 (s, 2H), 4.46–4.28 (m, 4H), 4.26–4.12 (m, 4H), 4.07 

(m, 2H), 2.58 (s, 3H), 2.42 (s, 6H), 2.39 (s, 6H).  

 

 

6.1.5.5 Synthesis	of	Small	Molecule	Probes	

	
General Procedure R 

1,3,5,7,8-Pentamethyl fluoro methoxy BODIPY 4.15 (10 mg, 1 equiv.) was dissolved in 

toluene or THF and heated to 60 °C, followed by addition of the appropriate alcohol (1.5 equiv.) 

and 5Å molecular sieves (50 mg of molecular sieves/ mg of fluorophore). The reaction was 

allowed to proceed for 8 h and gravity filtered. The solvent was removed under reduced pressure 

and the crude was purified immediately after obtaining the dry crude product, by reverse flash 

column chromatography using water/acetonitrile to afford the desired compound. 

 

1,3,5,7,8-Pentamethyl Ethoxychloroquine BODIPY (4.37) 

Reaction of 1,3,5,7,8-Pentamethyl fluoro methoxy 

BODIPY 4.15 (10 mg, 0.04 mmol) and 

hydroxychloroquine (20.1 mg, 0.06 mmol) in THF, 

according to general procedure R, gave 8 mg (60%) 

of the desired fluorophore as an orange solid. 

ESI-MS: C32H42BClFN5O, m/z calculated for [M-

H]-: 576.3, Found: 576.3; m/z calculated for [M+Na]+: 600.2 Found: 600.2. 
1H NMR δ (DMSO) 8.40–8.32 (m, 2H), 7.78 (dd, J = 2.4, 1.9 Hz, 1H), 7.44 (dd, J = 9.0, 1.9 Hz, 

1H), 6.99 (d, J = 9.0 Hz, 1H), 6.53 (s, 1H), 6.10 (s, 1H), 3.55 (t, J = 5.9 Hz, 2H), 2.81–2.67 (m, 

4H), 2.62–2.53 (m, 3H), 2.45 (s, 3H), 2.35 (s, 3H), 2.11 (s, 3H), 2.01 (s, 3H), 1.70 (s, 3H), 1.63–

1.37 (m, 4H), 1.22 (dd, J = 12.5, 6.3 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H). 13C NMR δ (DMSO) 
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152.7, 151.5, 149.7, 148.9, 139.6, 133.5, 127.1, 126.4, 126.2, 124.4, 123.9, 121.0, 120.7, 117.4, 

116.2, 108.7, 98.8, 57.3, 54.5, 52.5, 47.5, 47.4, 21.8, 19.8, 16.9, 16.0, 14.5, 12.6, 11.7, 10.1. 

 

1,3,5,7,8-Pentamethyl fluoro 3-azidopropoxy BODIPY (4.38) 

Reaction of 1,3,5,7,8-Pentamethyl fluoro methoxy BODIPY 4.15 (10 mg, 

0.04 mmol) and 3-azidopropanol (6.1 mg, 0.06 mmol) in toluene, 

according to general procedure R, gave 8.9 mg (65%) of the desired 

fluorophore as an orange solid. 

ESI-MS: C17H23BFN5O, m/z calculated for [M-H]-: 342.2 Found: 342.2; 

m/z calculated for [M+Na]+: 366.2, Found: 366.2 . 
1H NMR δ (C6D6) 6.05 (s, 2H), 3.32 (t, J = 6.8 Hz, 2H), 2.95 (t, J = 6.0 

Hz, 2H), 2.59 (s, 3H), 2.51 (s, 6H), 2.42 (s, 6H), 1.65 (p, J = 6.5 Hz, 2H). 13C NMR δ (C6D6) 

153.8, 141.4, 140.4, 132.9, 121.4, 58.3, 49.0, 31.1, 17.6, 16.6, 14.7. 

 

(S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-

6-yl)-N-(2-(2-hydroxyethoxy)ethyl)acetamide (4.39a) 

To a stirring solution of (+)-JQ1-COOH (20 mg, 0.05 

mmol) in DMF (2 mL), HCTU (22.8 mg, 1.2 equiv.) 

was added in one portion. Following 10 minutes of 

stirring, 2-(2-aminoethoxy)ethan-1-ol (6.1 µL, 0.06 

mmol) and DIPEA (26.1 µL, 0.15 mmol) were added 

sequentially. The solution was left to stir at room 

temperature for 2 h. The reaction mixture was quenched with sat. aq. NaHCO3, and the product 

was extracted with DCM. The organic phase was dried (Na2SO4), and the solvent was removed 

under reduced pressure. The crude product was purified by flash chromatography with 

DCM/methanol to afford the desired product (12.8 mg, 53%). 

ESI-MS: C23H26ClN5O3S, m/z calculated for [M-H]-: 486.1 Found: 486.3; m/z calculated for 

[M+H]+: 488.1, Found: 488.3; m/z calculated for [M+Na]+: 510.1, Found: 510.3. 
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1,3,5,7,8-Pentamethyl fluoro alkoxy-(+)-JQ1 BODIPY (4.39) 

 

Reaction of 1,3,5,7,8-Pentamethyl fluoro 

methoxy BODIPY 4.15 (5 mg, 0.02 mmol) 

and hydroxy-compound 4.39a (14.6 mg, 0.03 

mmol) in toluene, according to general 

procedure R, gave 5.8 mg (40%) of desired 

fluorophore as orange solid. 

ESI-MS: C37H42BClFN7O3S, m/z calculated 

for [M-H]-: 728.3 Found: 728.3; m/z calculated for [M+Na]+: 752.3, Found: 752.3. 
1H NMR δ (CDCl3) 7.41 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.06 (s, 1H), 4.65 (dd, J = 

7.7, 6.3 Hz, 1H), 3.49 (t, J = 5.4 Hz, 2H), 3.47-3.44 (m, 4H), 3.37 (dd, J = 14.6, 7.7 Hz, 2H), 

3.08 (t, J = 5.4 Hz, 2H), 2.66 (s, 3H), 2.59 (s, 3H), 2.55 (s, 6H), 2.42 (s, 6H), 2.39 (s, 3H), 1.67 

(s, 3H). 

 

1,3,5,7,8-Pentamethyl fluoro selumetinib BODIPY (4.40) 

Reaction of 1,3,5,7,8-Pentamethyl fluoro methoxy 

BODIPY 4.15 (5 mg, 0.02 mmol) and selumetinib (13.7 

mg, 0.03 mmol) in THF, according to general procedure R, 

gave 6.9 mg (50%) of the desired fluorophore as an orange 

solid. 

ESI-MS: C31H31BBrClF2N6O3, m/z calculated for [M-H]-: 

697.1 Found: 697.1; m/z calculated for [M+Na]+: 721.1, 

Found: 721.1. 
1H NMR δ (CDCl3) 8.04 (s, 1H), 7.94 (s, 1H), 7.70 (d, J = 

4.1 Hz, 1H), 7.49 (d, J = 2.2 Hz, 1H), 7.45 (dd, J = 4.1, 2.2 Hz, 1H), 6.05 (s, 2H), 3.99–3.79 (m, 

7H), 2.59 (s, 3H), 2.48 (s, 6H), 2.41 (s, 6H). 
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N1-(3,7-dichloro-10-(2-(pyrrolidin-1-yl)ethyl)-10H-indolo[3,2-b]quinolin-11-yl)-N2-

ethylethane-1,2-diamine (4.41) 

A solution of 3,7,11-trichloro-10-[2-(pyrrolidin-1-yl)ethyl]-

10H-indolo[3,2-b]quinoline (50 mg, 0.1 mmol) in N1-

ethylethane-1,2-diamine (1 mL), stirred at 130 °C for 16 h. The 

solvent was removed under reduced pressure and the crude 

product was purified by reverse flash column chromatography 

using water/acetonitrile to afford the desired compound as a 

dark yellow solid (35 mg, 62%). 

ESI-MS: C25H29Cl2N5, m/z calculated for [M-H]-: 468.4, Found: 468.4; m/z calculated for 

[M+H]+: 470.4, Found: 470.4. 
1H NMR δ (MeOD) 8.39 (d, J = 9.2 Hz, 1H), 8.35 (d, J = 2.0 Hz, 1H), 8.10 (d, J = 2.2 Hz, 1H), 

7.68 (d, J = 8.8 Hz, 1H), 7.64 (dd, J = 8.8, 2.0 Hz, 1H), 7.56 (dd, J = 9.2, 2.2 Hz, 1H), 4.80 (dd, J 

= 7.2, 6.7 Hz, 2H), 3.63 (dd, J = 7.9, 6.3 Hz, 2H), 3.57–3.39 (m, 8H), 3.16 (dd, J = 7.9, 6.3 Hz, 

2H), 2.74 (dd, J = 7.2, 6.7 Hz, 2H), 2.66 (q, J = 4.3 Hz, 2H), 1.77 (t, J = 4.3 Hz, 3H). 13C NMR 

δ (MeOD) 147.0, 145.2, 144.1, 137.0, 133.1, 130.0, 126.5, 126.2, 126.1, 125.4, 123.5, 123.2, 

121.5, 120.9, 112.0, 54.0, 53.2, 44.5, 42.8, 41.8, 37.8, 22.9, 11.8, 11.1, 10.2. 

 

N1-(4-((tert-butyldiphenylsilyl)oxy)butyl)-N2-(3,7-dichloro-10-(2-(pyrrolidin-1-yl)ethyl)-10H-

indolo[3,2-b]quinolin-11-yl)-N1-ethylethane-1,2-diamine (4.42) 

 TBDPS-hydroxybutanal (36.4 mg, 0.1 mmol) 

and amine 4.41 (35mg, 0.07 mmol) were mixed 

in 1,2-dichloroethane (4 mL), followed by the 

addition of sodium triacetoxyborohydride (33.1 

mg, 0.15 mmol). The reaction was stirred at r.t. 

under inert atmosphere for 4 h. The reaction 

mixture was quenched with sat. aq. NaHCO3, 

and the product was extracted with ethyl acetate. The organic phase was dried (Na2SO4), and the 

solvent was removed under reduced pressure. The crude product was purified by flash 

chromatography with ethyl acetate/acetonitrile:water:methanol (1:1:1) to afford the desired 

product as a dark yellow solid (28 mg, 51%). 

N

N

N

Cl

Cl

N
H

HN

N

N

N

Cl

Cl

N
HN

OTBDPS



Chapter	6	–	Materials	and	Methods	

 246	 Medicinal	Chemistry	Approaches	to	Malaria	Drug	Discovery	

ESI-MS: C45H55Cl2N5OSi, m/z calculated for [M-H]-: 778.4, Found: 778.5; m/z calculated for 

[M+H]+: 780.4, Found: 780.4.  
1H NMR δ (MeOD) 8.37 (d, J = 2.0 Hz, 1H), 8.37 (d, J = 9.2 Hz, 1H), 8.10 (d, J = 2.1 Hz, 1H), 

7.69 – 7.56 (m, 6H), 7.49 (dd, J = 9.2, 2.2 Hz, 1H), 7.45 – 7.28 (m, 6H), 4.80 (dd, J = 7.2, 6.7 

Hz, 2H), 3.61 (dd, J = 7.9, 6.3 Hz, 2H), 3.54 (dd, J = 7.1, 6.5 Hz, 2H), 2.77 (d, J = 7.2, 6.4 Hz, 

1H), 2.68 – 2.45 (m, 4H), 2.55 – 2.49 (m, 2H), 1.97 – 1.94 (m, 2H), 1.79 – 1.71 (m, 4H), 1.50 – 

1.45 (m, 4H), 1.02 (t, J = 7.2 Hz, 3H), 0.98 (s, 9H). 13C 13C NMR δ (MeOD) 146.8, 145.4, 

144.2, 138.6, 135.2, 133.5, 133.1, 129.8, 129.4, 127.3, 126.3, 126.1, 125.5, 124.9, 123.7, 123.4, 

121.0, 120.8, 112.1, 63.3, 54.0, 53.2, 53.1, 53.0, 52.7, 46.6, 42.6, 30.0, 26.0, 22.9, 22.5, 18.6, 9.8. 

 

4-((2-((3,7-dichloro-10-(2-(pyrrolidin-1-yl)ethyl)-10H-indolo[3,2-b]quinolin-11-

yl)amino)ethyl)(ethyl)amino)butan-1-ol (4.43) 

A solution of compound 4.42 (10 mg, 0.01 mmol) in 2 

mL of HF/Pyridine/THF (1/2/7) stirred at r.t., for 16 

h, before trimethylmethoxysilane (2 mL) was added. 

The reaction crude was concentrated under reduced 

pressure and purified by reverse flash column 

chromatography using water/acetonitrile to afford the 

desired compound as a yellow solid (4.1 mg, 58%). 

ESI-MS: C29H37Cl2N5O, m/z calculated for [M-H]-: 540.4, Found: 540.4; m/z calculated for 

[M+H]+: 542.4, Found: 542.5. 
1H NMR δ (CDCl3) 8.48 (d, J = 9.2 Hz, 1H), 8.25 (d, J = 2.1 Hz, 1H), 8.14 (d, J = 2.1 Hz, 1H), 

7.91 (d, J = 8.8 Hz, 1H), 7.69 (dd, J = 8.8, 2.1 Hz, 1H), 7.59 (dd, J = 9.2, 2.1 Hz, 1H), 4.92 (br, 

2H), 3.54 (br, 2H), 3.35 (t, J = 6.2 Hz, 2H), 3.12 (br, 2H), 2.99–2.91 (m, 6H), 2.89 (br, 2H), 2.80 

(br, 2H), 1.78–1.73 (m, 4H), 1.51 (m, 2H), 1.35 (q, J = 7.0 Hz 2H), 1.05 (t, J = 7.0 Hz, 3H). 13C 

NMR δ (DMSO) 147.1, 146.0, 144.0, 137.3, 132.1, 130.1, 127.8, 126.0, 125.4, 125.2, 125.0, 

124.3, 122.0, 120.9, 113.4, 60.6, 54.3, 52.8, 52.4, f52.3, 47.5, 46.0, 41.7, 30.1, 23.3, 21.5, 9.9. 
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6.2 Physico-chemical	Characterization	of	BODIPYs	

6.2.1 Solubility	Test	
Solubility tests were performed on a monochromator based TECAN Safire 2 multiwell 

plate reader. Stock solutions for solubility tests were prepared by dissolving each compound (in 

quantities at least 2 mg and greater) in 1X PBS until fully saturated. Upon reaching saturation, 

solutions were centrifuged at 15,000 rpm for 10 min to ensure that no free particles were 

suspended in the supernatant. Aliquots from the saturated solution were removed and dissolved 

into DMSO (10-fold dilution). 30 µL aliquots of replicates were transferred into black, flat-

bottom 384-well plates and fluorescence intensity readings were acquired. The multiwavelength 

fluorescence detector settings were optimized for monitoring BODIPY fluorescence (λex = 490 

nm, λem = 512 nm). These values were referenced to concentration calibration curves (nM to 

mM) of each compound dissolved in DMSO acquired under identical instrument settings. 

 

6.2.2 LogD	Determination	
Determination of LogDs were performed on a monochromator based TECAN Safire 2 

multiwell plate reader. Prior to performing the experiment, a 1:1 mixture of 1-octanol 

(spectrophotometric grade) and 1X PBS were equilibrated for 24 h at room temperature. This 

equilibrated 1-octanol was used as the nonpolar cosolvent for logD measurements. To perform 

LogD, aliquots of the saturated 1X PBS stocks, described in the solubility test, were added to an 

equivalent volume of 1-octanol. 

The biphasic solutions were continuously and vigorously shaken for 1 h. Solutions were 

centrifuged for 2 min at 15,000 rpm to assist in layer separation and then aliquots (in triplicate) 

were removed from each layer and subsequently dissolved in DMSO (10-fold dilution). 30 µL 

aliquots of replicates were transferred into black, flat-bottom 384-well plates and fixed 

fluorescence intensity readings were acquired. The multiwavelength fluorescence detector 

settings were optimized for monitoring BODIPY fluorescence (λex = 490 nm, λem = 512 nm). 

Each set of measurements (sat. 1X PBS layer in DMSO and octanol layer in DMSO) per 

compound was obtained under identical instrument settings. 
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6.3 Biological	Methods	

 
6.3.1 Plasmodium	falciparum	Blood	Stage	in	vitro	Drug	Sensitivity	Assay	

Drug assays were performed following reported literature procedures 445, adapting them 

for a 384-well format. Briefly, synchronized ring-stage parasites were cultured in the presence of 

triplicate 12 point 2-fold serial dilutions of test compounds in 40 µL of RPMI-1640 (Sigma, 

USA) supplemented with 0.5% AlbuMAX® II (Gibco®, 11021-045) at 1.0% hematocrit and an 

initial parasitemia of 1.0% in black clear-bottom plates (Greiner Bio-one, 781090). Following a 

72 h incubation under standard culture conditions, SYBR Green I dye (Invitrogen, S7563) was 

added to a dilution of 1:5000, and plates were stored at room temperature until fluorescence 

signal was read on a Spectramax M5 plate reader (Molecular Devices, ex 494 nm, em 530 nM). 

After background subtraction and normalization, EC50 values were calculated using a non-linear 

regression curve fit as implemented in the Mac OS X Prism 6.0c software package (GraphPad 

Software, Inc.). 

 

6.3.2 Plasmodium	berghei	Liver	Stage	in	vitro	Drug	Sensitivity	Assay	
As previously published, human liver cells (HepG2) were seeded at 10,000 cells/well and 

incubated 22 hours at 37 °C, followed by addition of compounds and controls at 1 µM and 10 

µM. After 2 h, luciferase-expressing P. berghei parasites obtained from freshly dissected 

mosquitoes were added to the plates at 8,500 spz/well and incubated for 48 h. The parasite load 

and HepG2 viability were quantified using Luciferase and Alamar Blue readout, respectively.316 

(Work done at the Instituto de Medicina Molecular (Portugal), in Maria Mota’s Lab.) 

 

6.3.3 Plasmodium	falciparum	Whole	Cell	Lysate	Western	Blot	
Dd2 parasites were allowed to grow to asynchrony for 7 replicative cycles. 10 mL 

aliquots of asynchronous asexual Dd2 parasites were exposed to the experimental treatments for 

90 minutes. Drug treated cells were incubated in the presence of small molecule inhibitors in 

standard RPMI media (GIBCO). Control samples were incubated with either complete RPMI 

media or PBS (US Biological). The PBS culture served as a positive control for AAR. (29) 

Protein lysates from each of the 10 mL cultures were prepared by first lysing infected 

erythrocytes with 0.15% saponin (Sigma) and the resultant parasite pellets were lysed in 1x 
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Laemmli Sample Buffer (Bio-Rad) supplemented with 5% beta-mercaptoethanol and 2% NP40 

(GBiosciences). All lysis buffers contained 1x Complete protease inhibitor cocktail (Roche) and 

1x phosphatase inhibitor cocktail PhosStop (Roche). 10 µL aliquots of lysate were subsequently 

separated by SDS-PAGE. Proteins were resolved and transferred using standard techniques, and 

membranes were blotted for a phospho-specific eIF2α pAb raised to a Plasmodium falciparum 

peptide antigen MSELpSKRRFRS, an eIf2α pAb raised to T. gondii peptide KGYIDLSKRRVS 

which recognizes total eIF2α protein (48), and a histone-H3 rabbit pAb (Abcam ab1791). 

 

6.3.4 Yeast	Growth	Assays	
Yeast strains were grown overnight in assay media (0.17% yeast nitrogen base without 

amino acids, without ammonium sulfate (Bio101), 0.1% glutamic acid, 2% glucose 

supplemented with complete amino acid mix minus histidine (Sunrise Bioproducts) at 23 °C to 

maintain log growth phase. The OD600 of cultures was measured and yeast strains were diluted 

to 0.01 OD600 in assay media with indicated concentrations of drugs or a corresponding volume 

of DMSO (Sigma). In indicated experiments, media was supplemented with 1 mg/mL proline 

(Sigma). Cells were grown in 100 µL of media in covered 96-well Nunc Edge assay plates at 30 

°C with interval shaking every 15 minutes in a ThermoScientific Multiskan GO instrument that 

read OD600 every 15 minutes. 

 

6.3.5 Yeast	Western	Blots	
Pump-deleted yeast strains were grown overnight in assay media at 23 °C, after which 

either drug or a corresponding volume of DMSO was added to cultures, which were then grown 

at 30 °C for six hours. Yeast pellets were washed with water and resuspended in lysis buffer (100 

mM Tris, pH 8.0, 20 mM NaCl, 2 mM MgCl2, 50 mM ß-mercaptoethanol, 0.025 U/mL 

benzonase, 1% Triton X-100, 2 x Halt protease inhibitor (Sigma-Aldrich), 1x Halt Phosphotase 

Inhibitor (Thermo-Fisher) and acid-washed beads and bead beaten for five minutes at 4°C. 

Supernatants were collected and normalized for total protein content using a BCA assay (Pierce). 

Proteins were resolved and transferred using standard techniques, and membranes were blotted 

for His-Tag (27E8) Mouse mAb #2366 (Cell Signaling Technology). 
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6.3.6 MCF-7	Cell	Culture	
MCF-7 cells were propagated in RPMI media (+10%FBS +1% L-glutamine +1% 

Pen/Strep) at 37 °C and 5% CO2. Cell culture media and supplements were sterile filtered prior 

to use and were obtained from Gibco (FBS, 1X Attachment Factor), Life Technologies (CO2 

Independent Medium, RPMI 1640, 1X PBS), and Invitrogen (RPMI 1640). Prior to assays, cells 

were transferred to phenol red free RPMI medium and seeded into black/clear bottom 96-well 

plates (BD Biosciences #BD356692) at 10,000 cells/well for experiments. One day post plating, 

compounds were added to cells using an HP D300 Digital Dispenser (Hewlett-Packard). 

 

6.3.7 	Cytotoxicity	Assay	
6.3.7.1 MCF-7		

20,000 MCF-7 cells/well were seeded in 96-well cell culture plates. The next day, cells 

were incubated with varying concentrations of AMP analogues, HFG and oligomicin as positive 

controls, for 96 h at 37 °C. Assay compounds were dispensed from 10 mM DMSO stock 

solutions using an HP D300 digital dispenser. Following incubation, cells were washed with 1X 

PBS and the cytotoxicity was evaluated using CellTiter-Glo Luminescent Cell Viability Assay 

Kit according to the manufacturer’s protocol. Briefly, plates were equilibrated to room 

temperature for 30 min and CellTiter-Glo reagent was added to each well in a 1:1 volumetric 

ratio with the culture medium present in the assay wells. After 10 min incubation at room 

temperature to stabilize luminescent signal, the plates were read in a Luminescent Plate Reader 

(Envision, PerkinElmer 2103 Multi Reader). Control wells containing medium without cells 

were prepared to establish background luminescence. All assays were performed with technical 

triplicates and two biological replicates. The EC50 was estimated for each compound by non-

linear interpolation of the dose-dependence curve (GraphPad Software). 

 

6.3.7.2 HepG2		
HepG2 A16 human hepatic cell line viability was determined based on the MTT assay. 

An in vitro culture of HepG2 cells was maintained in standard culture conditions. Briefly, cells 

were seeded in a flat-bottomed 96-well tissue culture plate at a density of 1×104 cells/well and 

allowed to adhere overnight. After removing the medium, 200 µL of fresh medium containing 7 

ten-fold dilutions (100 µM – 1 nM) of each compound was added; 200 µL of drug free medium 
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was added to negative control wells. The plate was incubated for 24 h under standard culture 

conditions, medium was then substituted by fresh medium containing identical concentrations of 

the compounds and the plates incubated an additional 24 h. At the end of the incubation period 

(48 h), 20 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium (Sigma-Aldrich) 

(MTT; 5 mg/mL in PBS) was added to each well, wells were incubated for 3 h at standard 

culture conditions, supernatant was removed and 200 µL of acidified isopropanol was added to 

each well. Absorbance was read at 570 nm on a multi-mode microplate reader (Triad, Dynex 

Technologies), to produce a log dose-dependence curve. The EC50 was estimated for each 

compound by non-linear interpolation of the dose-dependence curve (GraphPad Software). 

(Work done at the Instituto de Medicina Molecular (Portugal), in Maria Mota’s Lab.) 

 

6.3.8 MCF-7	Western	Blots	
MCF-7 cells were propagated to confluency in a 75 cm2 or 125 cm2 flask. Cells were 

incubated with vehicle control or experimental compounds (HFG, HFol or ProSA) at the desired 

final concentration for 90 min at 37 °C.  Cells were lysed with RIPA or Native lysis buffer and 

debris was removed by centrifugation at 14,000 rpm for 15 min, at 4 °C. All lysis buffers 

contained 1x Complete protease inhibitor cocktail (Roche) and 1x phosphatase inhibitor cocktail 

PhosStop (Roche).  Supernatants were collected and normalized for total protein content using a 

BCA assay (Pierce). 10 µL aliquots of lysate were subsequently separated by SDS-PAGE. 

Proteins were resolved and transferred using standard techniques, and membranes were blotted 

for phospho-eIF2α monoclonal antibody (Ser51) #9721, eIF2α polyclonal antibody #4837 (Cell 

Signaling Technology), Anti-Glutamyl Prolyl tRNA synthetase antibody (abcam # 31531). 

 

6.3.9 BRD4	in	vitro	EC50	Determination	
Following the BRD4 (BD2) TR-FRET Assay Kit (BPSBioscience, Catalog# 32617) 

protocol, the components were added to a 384-well white plate in a total volume of 30 µL. Assay 

compounds were dispensed from 10 mM DMSO stock solutions using a HP D300 digital 

dispenser. The EC50 was estimated for each compound by non-linear interpolation of the dose-

dependence curve (GraphPad Software). All assays were performed in duplicates in two 

biological replicas. 
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6.3.10 Pull-down	Assays	

6.3.10.1 Dynabeads®	His-Tag		

Plasmodium falciparum expressed His-tagged PRS protein was affinity-purified with 

His-Tagged Dynabeads® (Thermo Fisher Scientific #10103D). 50 µL of Dynabeads® slurry 

were transferred to a microcentrifuge tube and placed on a magnet for 2 min, followed by 

aspiration of the supernatant. The sample was added to the beads and incubated under continuous 

end over end rotation at 4 °C for 5-10 minutes. The beads were washed 4 x 2 minutes with 300 

µL of wash buffer (which buffer?). Dynabeads® were mixed with an equal volume of SDS 

loading buffer and bound proteins were eluted by incubation for 2 min at 90°C. 20 µL aliquots of 

eluted proteins were subsequently separated on SDS-PAGE gels. Proteins were resolved and 

transferred using standard techniques, and membranes were blotted for His-Tag (27E8) Mouse 

mAb #2366 (Cell Signaling Technology). 

 

6.3.10.2 His-Tag	(27E8)	Mouse	mAb	Magnetic	Bead	Conjugate		

Plasmodium falciparum expressed His-tagged PRS protein was affinity-purified with 

His-Tag (27E8) Mouse mAb Magnetic Bead Conjugate (Cell Signaling Technology #8811). 10 

µL of well-vortexed beads were incubated with 200 µL of sample under continuous end over end 

rotation at 4 °C for 5-10 minutes. The beads were washed 4 x 2 minutes with 300 µL of lysis 

buffer. Beads were mixed with an equal volume of SDS loading buffer or elution buffers and 

bound proteins were eluted by incubation for 2 min. at 90 °C. 20 µL aliquots of eluted proteins 

were subsequently separated on SDS-PAGE gels. Proteins were resolved and transferred using 

standard techniques, and membranes were blotted for His-Tag (27E8) Mouse mAb #2366 (Cell 

Signaling Technology). 

 

6.3.10.3 Dynabeads®	Protein	A		

Mammalian EPRS protein was affinity-purified with Anti-Glutamyl Prolyl tRNA 

synthetase antibody (abcam # 31531) coupled to Dynabeads® Protein A (Cell Signaling 

Technology #10002D). To 450 µL of cell lysate, 2.5 µL of the primary antibody was added and 

incubated with gentle rocking overnight at 4°C. 50 µL of pre-washed protein A magnetic bead 

(one?) was added to the mix and incubated with gentle rocking for 4 h, at 4 °C. The beads were 

washed 4 x 2 minutes with 300 µL of lysis buffer. Beads were mixed with an equal volume of 
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SDS loading buffer or elution buffers and bound proteins were eluted by incubation for 2 min at 

90°C. 20 µL aliquots of eluted proteins were subsequently separated on SDS-PAGE gels. 

Proteins were resolved and transferred using standard techniques, and membranes were blotted 

for Anti-Glutamyl Prolyl tRNA synthetase antibody (abcam # 31531) 

 

6.3.11 Cell	Imaging	
Live-cell imaging was performed on a Zeiss Axiovert 100M inverted epifluorescence 

microscope with a 40X objective. For each region of interest, a bright field view was acquired as 

well as GFP and DAPI fluorescence channels.  

Imaging of mammalian cells: two days prior to imaging, MCF-7 cells were seeded at 

10,000 cells/well on a 96-well transparent bottom microwell plate. Imaging media was used for 

experiments, RPMI 1640 1X [(-) phenol red, (+) 10% FBS]. On the imaging day, each well was 

incubated for 30 minutes with 10 µM of the title compound suspended in cell imaging media 

(final DMSO content = 0.1%). Subsequently two washes (5 mins each with medium …) were 

performed.  

Imaging of Plasmodium falciparum cell lines: Chloroquine resistant and sensitive strains, 

Dd2 and 3D7, respectively, were cultured under standard conditions (cite Trager and Jensen) 

prior to assay.  The day of imaging, asynchronized parasites were incubated for 30 minutes with 

desired concentration of the title compound suspended in cell imaging media (final DMSO 

content = 0.1%). Two washes were performed and the live parasites were imaged.  

No imaging enhancing processing was performed for acquired data. Imaging data was 

analyzed with ImageJ software (http://rsbweb.nih.gov/ij). 
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