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ABSTRACT 

 

The main aim of this PhD thesis was the development of nanoporous adsorbents and catalysts 

using industrial by-products of low commercial value as precursors and to investigate their 

application in advanced remediation technologies for the removal and/or degradation of 

aromatic pollutants in aqueous solution.  

The first stage of this study consisted on investigating the valorization of rope industry´s wastes 

through the analysis of their pyrolytic behaviour. The thermal characterization of the residues 

confirmed that although most decomposition occurs at 400 ◦C, some pyrolytic reactions take 

place above 550 ◦C. The yields of the different fractions were 22 wt. % of a carbonaceous residue 

(char), 50 wt. % tars and a gas fraction at 800 ◦C. From the analysis of the different fractions, it 

was possible to conclude that the produced oil was rich in hydrocarbons and alcohols, while the 

gas fraction is mainly composed of CO2, CO and CH4, and the carbonaceous solid residue 

displayed somewhat porous features, with a more developed porous structure as the pyrolysis 

temperature increased. 

Further on, the synthesis of copper-doped activated carbons from sisal residues was explored, 

using a wet impregnation and low temperature calcination procedure. The incorporation of 

copper was also performed in a bituminous coal for comparison purposes. The role of copper 

on the physicochemical and structural features of the materials has shown to be strongly 

dependent on the nature of the carbon matrix. The dual role of copper on the reactivity of the 

carbons was observed; on one hand, favouring the development of microporosity in the case 

of the coal-derived activated carbon, due to the catalysed air gasification of the material at a 

very low temperature (i.e., 325 °C); on the other hand, the immobilization of copper on the sisal-

derived carbon, acted as a combustion retardant during the calcination step, protecting the 

carbon matrix. In both cases, a homogenous distribution of copper within the carbon matrix, 

and a good preservation of large textural properties were observed. 

The incorporation of copper on the carbon material was also carried out through a different 

approach, via impregnation of the carbon precursor followed by activation. This allowed to 

obtain carbon materials displaying a well-developed nanoporous texture (although 

comparatively with a marked inhibition of the textural development), and a homogeneous 

dispersion of copper particles, predominantly as Cu(II) species. These materials were used in 

the photocatalytic degradation of phenol from solution under visible light, as hybrid titania/Cu-

carbon composites. The photo-oxidation tests showed the outstanding role of copper under 

visible light, in terms of increased phenol conversion, mineralization degree and degradation 

rate. Similar overall conversions were obtained with half of the amount of the photoactive 

semiconductor (1:1 composites). The beneficial effect of copper loading was also observed in 



 

 
x 

the marked regioselectivity of the intermediates, towards the preferential formation of 

catechol. Furthermore, the copper-loaded photocatalyst was found to be stable upon long 

irradiation exposure.  

The nanoporous carbons prepared from the activation of sisal wastes were also used as 

additives to TiO2 powders. The incorporation of the carbon material in the formulation of the 

photocatalyst (TiO2/carbon) proved to increase the photocatalytic performance of TiO2 

regardless the studied illumination conditions, although the effect was  more pronounced at λ 

> 200 nm. The photocatalytic runs performed using the carbon alone as catalyst confirmed a 

certain level of self photoactivity under different irradiation conditions (λ > 200 nm or λ > 360 

nm). An evident deactivation of the carbon photocatalyst was observed after 60 min of 

irradiation, most likely due to the consumption of the photoactive sites. As for the photo-

oxidation mechanism for the carbon component, a marked regioselectivity towards the ortho-

substitution was also observed at high energy photons, confirming the strong effect of both 

the composition of the catalyst and the illumination conditions on the nature of the degradation 

intermediates of phenol. 

 

Keywords: sisal, carbon, phenol, photocatalysis, TiO2.  
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RESUMO 

 

O principal objetivo do trabalho que se apresenta nesta tese de doutoramento foi o 

desenvolvimento de adsorventes e catalisadores nanoporosos usando como precursores 

subprodutos industriais de baixo valor comercial e avaliar o seu desempenho em tecnologias 

avançadas para a remediação (remoção e/ou degradação) de poluentes aromáticos em solução 

aquosa.  

A primeira etapa do estudo consistiu em investigar a valorização de resíduos de sisal 

provenientes da indústria de cordoaria. O sisal (Agave sisalana) é uma das fibras naturais de 

origem lenhinocelulósica mais utilizadas em todo o mundo, devido às suas excelentes 

características relacionadas com o baixo custo e densidade, boas propriedades mecânicas e 

ausência de toxicidade. O processo de manufatura de cordas gera uma quantidade elevada de 

desperdícios, que são claramente subaproveitados, sendo utilizados apenas na produção de 

cordas de qualidade inferior ou como combustível. Dado o interesse crescente em explorar 

novas aplicações para estes resíduos, a análise feita neste trabalho relativamente ao seu 

comportamento pirolítico, permitiu avaliar a potencialidade das fibras de sisal para outras 

aplicações que não as tradicionais.  

A caracterização térmica destes desperdícios confirmou que embora a reação de pirólise se 

inicie a 250 ºC, ocorrendo a maioria da decomposição até 400 ◦C, algumas reações pirolíticas 

ocorrem acima de 550 ◦C. Os rendimentos obtidos para as diferentes frações foram de 22 % de 

um resíduo carbonáceo (carbonizado), 50 % de alcatrão e uma fração gasosa a 800 ◦C. A partir 

da análise das diferentes frações, foi possível concluir que o óleo produzido é rico em 

hidrocarbonetos e álcoois, enquanto que a fração gasosa é composta maioritariamente por 

CO2, CO e CH4.e O resíduo sólido exibe alguma porosidade, observando-se um maior 

desenvolvimento da estrutura porosa com o aumento da temperatura de pirólise. 

Seguidamente foi explorada a modificação da química superficial de dois carvões ativados 

resultantes de ativação física dos precursores, resíduos de sisal e carvão betuminoso, com 

dióxido de carbono e vapor de água, respetivamente. Os carvões foram dopados com cobre 

através de um processo de impregnação em solução e subsequente calcinação feita a uma 

temperatura baixa.  

A influência do cobre sobre as características físico-químicas e estruturais dos materiais 

mostrou ser altamente dependente da natureza da matriz de carbono. Verificou-se que a 

influência do cobre na modificação da estrutura depende da reatividade dos carvões, tendo-se 

constatado que no caso do carvão betuminoso o cobre favorece o desenvolvimento da 

microporosidade, catalisando a reação de gaseificação do material a uma temperatura muito 
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baixa (325 ° C); enquanto que a imobilização de cobre no carvão derivado de sisal, atuou como 

um retardante de combustão durante o passo de calcinação, protegendo a matriz de carbono. 

Em ambos os casos, foi observada uma distribuição homogénea de cobre no interior da matriz 

de carbono, e uma boa preservação das propriedades texturais. 

A incorporação de cobre na matriz carbonácea foi também realizada através de uma 

abordagem diferente, por meio de impregnação do precursor, seguida de ativação. Para tal, 

impregnaram-se pedaços de sisal primeiro com uma solução de Cu(NO3)2.3H2O (de modo a 

obter uma concentração de Cu final de 5%) e seguidamente com uma solução de K2CO3, de 

acordo com a proporção sisal: K2CO3 de 2:1. Os materiais preparados apresentaram uma textura 

nanoporosa bem desenvolvida, embora para o carvão dopado com cobre se observe uma 

marcada inibição do desenvolvimento estrutural, comparativamente com o carvão não-

dopado. Através da aplicação de diversas técnicas, como espectroscopia fotoeletrónica de raios 

X, difração de raios X e redução a temperatura programada, foi possível concluir que as 

partículas de cobre apresentam uma dispersão homogénea na matriz de carbono, e são 

predominantemente espécies de Cu(II).  

Estes materiais foram utilizados no processo de fotocatálise heterogénea, uma das tecnologias 

mais promissoras para a degradação e mineralização de compostos orgânicos recalcitrantes, 

em meio aquoso. Este processo, que tem sido amplamente estudado na área ambiental, integra 

os denominados Processos de Oxidação Avançados (POAs), que se baseiam na formação de 

espécies altamente reativas, como por exemplo, os radicais hidroxilo (OH), que vão atacar as 

moléculas orgânicas através de reações sucessivas, até à obtenção de dióxido de carbono e 

água como produtos finais.  

Estudou-se a degradação fotocatalítica de fenol, o qual foi escolhido como molécula modelo, 

uma vez que é frequentemente detetado em águas residuais, nomeadamente em águas 

provenientes de diversas indústrias. Dada a sua persistência, baixa biodegradabilidade e 

toxicidade, alguns compostos fenólicos são considerados poluentes prioritários pelas agências 

ambientais.  

Inicialmente ensaiou-se a degradação de fenol em solução sob irradiação com luz visível, 

usando como catalisadorTiO2, o semicondutor mais investigado em processos fotocatalíticos e 

misturas de dióxido de titânio com carvão dopado com cobre, e com carvão não-dopado. Dada 

a elevada porosidade apresentada pelos carvões ativados, todos os ensaios fotocatalíticos 

foram precedidos por uma etapa de pré-adsorção de fenol, de modo a eliminar a contribuição 

do processo de adsorção na reação de fotocatálise. 

Os testes de fotooxidação demonstraram o papel fundamental do cobre para, sob irradiação 

com luz visível, promover o aumento da conversão de fenol, do grau de mineralização Os 

resultados obtidos mostraram os compósitos 1:1 (i.e. onde se tem apenas metade da 

quantidade do semicondutor fotoativo da utilizada ao ensaiar apenas o semicondutor) 

permitem alcançar conversões globais semelhantes. O resultado mais elevado para a 

mineralização de fenol após 6 h de irradiação foi obtido para o fotocatalisador híbrido TiO2/Cu-

carvão (cerca de 42 %), quase o dobro da mineralização obtida para o compósito TiO2/carvão 

não-modificado. O efeito benéfico da presença de cobre foi também observado na 

regiosselectividade acentuada dos compostos aromáticos intermediários, com a formação 

preferencial de catecol, considerada um percurso reacional preferencial de oxidação de fenol, 
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em relação à formação de quinonas, uma vez que se gera um menor número de intermediários, 

sendo assim mais efetiva para alcançar a mineralização completa (conversão em CO2 e H2O). 

Além disso, o fotocatalisador com cobre mostrou ser estável após um tempo relativamente 

longo de exposição à irradiação, sem ocorrência de lixiviação ou fotorredução das espécies de 

cobre. 

A interpretação dos resultados considerou que as espécies de cobre dispersas na matriz de 

carbono poderão criar um meio de transferência eletrónica rápida, minimizando a 

recombinação dos pares eletrão/lacuna criados com a iluminação do semicondutor e também 

sítios hidrofóbicos, nos quais o oxigénio molecular dissolvido é facilmente adsorvido, o que 

favorecerá a formação de espécies radicais de oxigénio.  

Os carvões nanoporosos preparados a partir da ativação dos resíduos de sisal foram também 

utilizados como aditivos ao TiO2. A incorporação do material de carbono na formulação do 

fotocatalisador (TiO2/carvão) provou aumentar o desempenho fotocatalítico do TiO2 na 

degradação e mineralização de fenol, independentemente das condições de iluminação 

estudadas. Contudo o um efeito é mais pronunciado para λ > 200 nm, dada a presença de fotões 

mais energéticos e de um fluxo fotónico mais elevado, o qual foi medido por actinometria 

química. Para estas condições de irradiação a mineralização de fenol com o catalisador 

TiO2/carvão é 1.5 vezes superior ao que obteve usando apenas TiO2, sendo de salientar que no 

caso da mistura, a quantidade de TiO2 é apenas metade utilizada para o ensaio com apenas o 

semicondutor. 

Os testes fotocatalíticos realizados utilizando como catalisador apenas o carvão confirmaram 

um certo nível de fotoatividade sob diferentes condições de irradiação (λ > 200 nm ou λ > 360 

nm). No entanto, quando a luz é filtrada a λ > 360 nm, após 60 minutos de irradiação é 

observada uma clara desativação do fotocatalisador, provavelmente devida ao consumo dos 

locais fotoativos. Quanto ao mecanismo de fotooxidação para o componente de carbono, no 

caso de fotões de elevada energia foi também observada uma regiosseletividade marcada 

relativamente à substituição na posição orto, o que confirma a forte influência da composição 

do catalisador e das condições de iluminação sobre a natureza dos intermediários de 

degradação de fenol. 
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CHAPTER 1  

WORK CONTEXTUALIZATION 

 

Water scarcity has become a global issue, triggered by the continuous population growth and 

increasing standards of living, the climate changes, the industrialization, the intensive 

agriculture and urbanization. The decrease in water resources worldwide combined with the 

increasing attention of the authorities regarding environmental protection has led to a 

continuous search for new water treatment processes capable not only of eliminating the 

contaminants already recognized as problematic for the environment and public health, but 

also of providing a solution to emerging pollutants. Polluted water from inadequate 

wastewater management contributes to the contamination of freshwater and coastal 

ecosystems, compromising the access to safe drinking water and providing a major health and 

environmental management challenge. The stringent standards on drinking water quality have 

favoured the development of alternative technologies to conventional water treatment 

processes, which are not effective for the treatment of persistent pollutants that remain in the 

discharged effluents of wastewater treatment plants, and hence reach water courses 

(Comninellis, Kapalka, et al., 2008; Poyatos, Muñio, et al., 2010; Sanz, Lombraña, et al., 2013). 

Advanced Oxidation Processes, which are based on the formation of powerful and  

non-selective oxidizing agents, have emerged as effective technologies for the degradation of 

pollutants, as they may lead to their complete mineralization, obtaining carbon dioxide, water 

and some inorganic compounds as the final products. Among them, heterogeneous 

photocatalysis based on semiconductors is one of the most promising technologies for 

wastewater treatment, providing an effective response for the treatment of persistent and 

recalcitrant compounds. The most widely investigated semiconductor is TiO2, due to its cost 

effectiveness, low toxicity and high chemical stability. However, it also presents several 

drawbacks which are mainly related to the low surface area, low activity under visible light, high 

recombination rate of photo-generated electron-hole pairs, and recovery and reutilization 

issues. To overcome these limitations different approaches have been investigated, and the 

incorporation of a carbon component in the composition of the catalyst appears as an adequate 

strategy to improve the efficiency of the semiconductor photocatalyst. 

Activated carbons are the most commonly applied adsorbents in environmental remediation 

processes, both in liquid and gas phase. Integrating a wide array of wastewater treatment 

processes, these materials have recently raised interest concerning their application in 

photocatalytic processes. Despite carbons are strong light absorbing materials, their 

incorporation in hybrid carbon/semiconductor composites has been reported as an interesting 
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strategy to obtain  high photoconversion efficiencies in the degradation of a wide variety of 

pollutants. The enhanced performance of TiO2/carbon composites has been attributed to 

several factors associated to an enhanced visible light absorption, the porosity of the carbon 

support, strong interfacial electronic effects, and/or to the intrinsic photochemical activity of 

certain carbons (Faria and Wang, 2009; Ania, Velasco, et al., 2012).  

Nanoporous carbons are versatile materials that can be easily prepared from diverse industrial 

and agricultural residues, allowing to obtain added-value products from low-cost and readily 

available precursors, thus presenting a clear advantage from the economical point of view. 

Their shape, textural and surface chemistry properties can also be easily modified through 

different approaches, to meet the requirements of a specific end-application. Thus, activated 

carbons remain as an important topic in the field of materials research and environmental 

remediation, with prospects of an increasing demand in the world wastewater management 

market in the near future.  
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CHAPTER 2  

OBJECTIVES 

 

This dissertation addresses an important environmental issue with implications for public 

health, as is the problematic of wastewater contamination by phenolic compounds, major 

contaminants of industrial effluents. These pollutants are not effectively removed by 

conventional treatments at wastewater treatment plants, due to their persistence and low 

biodegradability. The aim of this thesis was the development of nanoporous adsorbent 

materials from industrial by-products of low commercial value, with properties suitable to 

integrate environmental remediation technologies for the removal/degradation of this type of 

pollutants in liquid phase. 

The first stage of this study consisted on the valorization of lignocellulosic wastes discarded 

from the rope industry, which were used as precursors for the preparation of the nanoporous 

carbon adsorbents. These residues are frequently either recycled for the production of low 

quality ropes or used as fuel. In this sense, the potential of this waste to be transformed in an 

added-value product was investigated through the pyrolytic behaviour of sisal wastes, with the 

analysis of the different fractions (gases, tars, solids) originated in this process. 

The second part of this study focused on the photocatalytic degradation of a model pollutant, 

phenol, in aqueous solution. Different methodologies for the preparation of activated carbons 

using sisal residues as precursors were evaluated, either by physical or chemical activation, with 

steam or potassium carbonate, respectively. The incorporation of a transition metal, namely 

copper, in the carbon matrix was also envisaged, with a focus on the subsequent application of 

these materials in photocatalytic processes. This modification was carried out either using a 

post-synthesis approach in the preparation of the materials or through the impregnation of the 

raw sisal waste before the carbonization and activation steps. The synthesized activated 

carbons were thoroughly characterized by different techniques regarding textural and surface 

chemistry properties, along with copper content, dispersion, and speciation. 

Regarding the photocatalytic degradation of phenol, the goal was to explore the role of the 

nanoporous and copper containing carbons as additives to TiO2 in hybrid photocatalysts, under 

visible light irradiation, by comparing their photocatalytic activity with that of metal-free 

carbons and TiO2 alone. Given the porous nature of the carbon materials, the different 

processes taking place during the experimental procedure, photolysis, photocatalysis and 

adsorption, were considered. Phenol conversion and mineralization were assessed, as well as 

the identification and quantification of the degradation intermediates originated during the 

process. The influence of the irradiation wavelength (UV-visible vs visible light) on the photo- 
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-oxidation mechanism and degradation intermediates of phenol was also investigated for the 

hybrid TiO2/carbon photocatalysts. 
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CHAPTER 3  

ACTIVATED CARBONS AND ADVANCED PROCESSES FOR WASTEWATER TREATMENT 

 

Wastewater treatment philosophy dates back to thousands of years ago, making part of many 

ancient civilizations, such as Rome and the Indus Valley. Near the Indus River, in an ancient 

Indian region, it was located one of the oldest known wastewater management systems dating 

from about 1500 BC (Chanan, Vigneswaran, et al., 2013; Ranade and Bhandari, 2014). At that 

time, the local population was established near rivers, thus ensuring an easier water supply and 

discharge. It is believed that these old communities possessed water supply and sewage 

systems. 

Modern sewage treatment systems date back only a few centuries ago, around the sixteenth 

century. The development of biological, physical and chemical treatments began gradually. The 

twentieth century saw the main thrust in this area, and the understanding and knowledge of 

wastewater treatment evolved since 1900 to date. Currently, industrial wastewater treatment 

involves primary, secondary and tertiary stages of treatment, and it also tends to employ a 

combination of chemical and biological treatment methods, in order to satisfy the treated 

water discharge standards.  

In general, wastewater treatment requires a large amount of chemicals, multiple transactions 

and a very high degree of process control and regular maintenance. The contemporary 

economic development has also led to the growth of many water-intensive industries that 

represent the most water polluting sectors. Among them, phenolic compounds are pollutants 

frequently detected in industrial wastewaters that cause great concern due to its persistence, 

ecotoxicity, and low biodegradability. Indeed, phenolic compounds are refractory compounds 

and thus conventional wastewater treatments are not able to effectively remove them from 

water. So, advanced treatments such as adsorption with activated carbon and advanced 

oxidation processes are required. 

The aim of this chapter is to present an overview of the current state of the scientific knowledge 

on the occurrence, fate and the available remediation technologies for phenolic compounds in 

the aquatic environment. The fate of such compounds during conventional wastewater 

treatment processes along with a review of recent advances in the development of treatment 

methodologies in environmental waters focused on their mitigation is addressed, highlighting 

the role of activated carbon adsorption and advanced oxidation processes, namely 

heterogeneous photocatalysis. 
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3.1 Freshwater scarcity: a problem at a global scale  

 “All people have the right to safe drinking water, sanitation, shelter and basic services.” 

“Universal access to safe drinking water and water resources is an imperative that cuts across all 

internationally agreed development objectives, including the Millennium Development Goals.” 

Ban Ki-moon  

Secretary-General of the United Nations 

Water is crucial for all aspects of life, the defining feature of our planet. Water is essential to all 

living organisms on Earth, from the smallest microorganism to the largest living mammal. 

However, although two-thirds of the world are covered by water, only about 2.5 % of this 

volume corresponds to fresh water, most of which located in the polar ice caps, glaciers and as 

permanent snow. Less than 0.7 % of the water found in rivers, lakes and underground water can 

be used directly for human consumption. 

Although it plays a crucial role in maintaining a high quality of life, having an indisputable impact 

on health and an enormous effect on the economic and social development, this natural 

resource has become increasingly scarce. According to the Intergovernmental Panel on Climate 

Change, the four main factors responsible for the water shortage aggravation are population 

growth, the increase in the number and size of urban areas in developing countries, excessive 

consumption and climate changes. 

The global population is expected to exceed 9 billion people by 2050. Urban populations may 

rise nearly twice as fast, projected to nearly double from current 3.4 billion to 6.4 billion by 2050. 

This population increase will mean a greater demand for food, which will be by far the largest 

contributor to the increase in water consumption, since the food industry uses 70-90 % of the 

available fresh water (Shiklomanov, 2000; UN, 2009). Climate change will also have a significant 

impact on the sustainability of water supply in the coming decades, leading to a huge variability 

in water resources worldwide (Oki and Kanae, 2006). 

In addition to these factors, it is important to remember that global water consumption 

continues to grow at an unsustainable rate, increasing twice as fast as population growth. 

Considering that 1.2 billion people lack access to safe drinking water, 2.6 billion have little or no 

sanitation, and millions of people die each year (3900 children a day) due to diseases 

transmitted through contaminated water, and that this number will rapidly increase, it is easy 

to anticipate that, as oil is these days, water may soon become the subject of an international 

conflict. Aware of the importance of water to humanity, in December 2010, following the 

proposal initiated by Tajikistan and submitted by a group of countries, the United Nations 

General Assembly declared 2013 as the United Nations International Year of Water Cooperation 

(A/RES/65/154).  

Fresh water shortage is a problem that has been taking major proportions worldwide. The  

over-exploitation of water resources and recurrent droughts that occurred in recent years are 

the sources of water scarcity. A recent United Nations report indicates that by the year 2025, 

two-thirds of the world's population could face water scarcity (UN, 2012). This shortage may be 
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in the form of physical scarcity, with limited availability of water, or in the form of economic 

scarcity, whereas although there is water availability, there will exist no facilities and 

infrastructures that can provide water with the required quantity and quality (Figure 3.1).  

 
Figure 3.1- Global map of physical and economical water scarcity. Source: UN, 2012. 

Since water distribution throughout the world is not uniform, the origin of this shortage can be 

naturally occurring in some regions due to the reduction of rain or climatic changes. The human 

factor, however, is also quite critical in the aggravation of this problem, through water waste, 

pollution of water resources, and/or inadequate management of these resources. 

The high fresh water consumption in developed and developing countries originates large 

volumes of wastewater, which in many cases are highly contaminated with thousands of 

industrial and natural chemicals. According to recent reports (Corcoran, Nellemann, et al., 

2010), it is estimated that the total wastewater-combining sewer, industrial and agricultural 

wastewaters- which is discharged worldwide rises to tens of million cubic meters per day. 

In addition, a significant portion of all wastewater discharges in developing countries is not 

subject to any treatment, resulting in a high pollution load of rivers and other watercourses, 

thus putting at risk all living species, including the surrounding population dependent on these 

water sources. It is estimated that almost 90 % of all sewage in developing countries is 

discharged without any treatment, polluting rivers, lakes and coastal areas (Figure 3.2) 

(Corcoran, Nellemann, et al., 2010).  

Considering both aspects, it is clear that freshwater contamination is one of the critical 

environmental problems currently faced by humanity. Water management is thus one of the 

most significant challenges in environmental protection and sustainability. The best resolution 

for this issue lies on waste management, through effective treatment, recycling and reuse.  

Water supply is naturally regulated by the hydrological cycle, which continually renews 

watercourses. Surface water flow to the soil (infiltration and percolation) allows the removal 

of some compounds, not being however, usually sufficient to remove the large variety of 

undesirable chemical species (e.g., pesticides, solvents, pharmaceuticals, household chemicals, 

etc.) that can be found in all kinds of water (Kolpin, Furlong, et al., 2002). The leaching of 

compounds which are present in the soil has also to be taken into account as a factor of water 

contamination. 
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In this context, the water treatment industry is a fast-growing market in both developed and 

developing countries, being the five largest contributors to this growth, as follows: 

 

Figure 3.2- The ratio of untreated to treated wastewater reaching water bodies in 10 regions. 
Source: UNEP/GRID-Arendal. Author: Hugo Ahlenius. 

1. The increase in gross domestic product which leads to an increase in water demand 

(through the expansion of industry); 

2. More restrict rules for drinking water and wastewater, due to the implementation of higher 

quality standards;  

3. Increasing drinking water demand with higher health and environmental monitoring 

standards in developing countries, especially in China and India;  

4. The growth of the intensive use of water for the production of alternative energy sources 

(biofuels);  

5. New technologies in the industrial segment, requiring high standards of water purity or 

increased water reuse. 

3.2 Wastewater 

3.2.1 Water usage in industry 

Water is an important requirement in many industrial processes, for example, heating, cooling, 

production, cleaning and rinsing. Although these figures may vary considerably between 

different regions and countries, the industrial (including energy) and domestic sectors 

represent 20 % and 10 % of the total use of the world’s freshwater withdrawals, respectively 

(Guterres and de Aquim, 2013; UN, 2014a). On average, 44 % of total water abstraction in Europe 

is used for agriculture, 40 % for industry and energy production (cooling in power plants), and 

15 % for public water supply. The main water consumption sectors are irrigation, urbanization, 

and manufacturing industry. 

The percentage of a country’s industrial sector water demands is generally proportional to the 

average income level, representing only ~ 5 % of water withdrawals in low-income countries, 

compared to over 40 % in some high-income countries (Shiklomanov, 2000; UN, 2014b). 

Although, at a global scale, industry uses relatively little water in comparison to the agriculture 



Chapter 3  
Activated carbons and advanced processes for wastewater treatment  

 
9 

sector, it requires an accessible, reliable and environmentally supply of consistent and 

acceptable quality.  

Furthermore, water withdrawals for industry are most often reported in combination with 

those for energy. In addition, the water required for small-scale industry and commerce is often 

confused with domestic consumption. As a result, surprisingly little is known about how much 

water is actually withdrawn and consumed by industry for its purposed manufacturing, 

transformation and production needs. 

This observation suggests that the level of a country’s or a region’s economic development is 

an important driver of its industrial water use, and may ultimately have as much influence on 

water use as its population growth. Industry is generally accustomed to have water available at 

a relatively inexpensive price. Increasing water scarcity, however, will result in higher charges, 

including additional taxes for water treatment and discharge. 

Nowadays, environmental contamination by hazardous and toxic chemicals is considered as 

one of the major problems faced by industrialized countries. Industry generates a substantial 

proportion of wastewater that, if unregulated, has the potential to be a highly toxic source of 

pollution. The vast array of complex organic compounds and heavy metals used in modern 

industrial processes, if released into the environment can cause both human health and 

environmental disasters. 

Chemical and allied process industries use water extensively, thus making them water-intensive 

industries (Ranade and Bhandari, 2014). The main uses of water in the industry sector are listed 

in Table 3.1. 

Table 3.1- Typical water uses in chemical and allied industries (Ranade and Bhandari, 2014).  

Usage Volume 
Extent of 
contamination 

Reactant Low High 

Solvent Low High 

Cleaning/stripping agent Medium Medium 

Cooling water Large Low 

Boiler water Large Low 

These needs for water are satisfied using the following sources: 

• Surface water/groundwater 

• Seawater 

• Recycled water (industrial wastewater/urban sewage). 

The industries with the greatest concerns in terms of wastewater are chemical and 

petrochemical (refineries), pharmaceuticals, pulp and paper, food, fertilizers, tanneries, textile 

and municipal wastewater treatment plants (Hancock, 1999; Guterres and de Aquim, 2013; 

Ranade and Bhandari, 2014). In general, the most water-intensive industries are the highest 

contributors to industrial wastewater generation. For example, the normal paper industry 

consumes ~ 300 m3 of water per ton of product, generating a similar amount of wastewater.  

The chemical fertilizers industry also contributes greatly to water consumption, requiring up to 

270  m3  of  water per ton of product, while the high-quality  paper  industry  needs a  maximum 
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amount of water up to 1000 m3 per ton of product and is one of the most water-intensive in the 

industry sector. The most water-polluting industries have to be managed through 

environmental pollution control measures. These industries also represent industry sectors in 

which a strategy for wastewater treatment, recycling and reuse is crucial (Ranade and Bhandari, 

2014).  

3.2.2 Wastewater characterization 

Wastewater characterization is the first step in the seek for solutions to its treatment, recycling, 

and reuse. Typically wastewater is characterized in terms of its biological, chemical and physical 

properties. The major constituents of consideration in wastewater treatment are included in 

the following categories: suspended solids, biodegradable organic pollutants, pathogenic 

organisms, nutrients, priority pollutants, refractory organic pollutants, heavy metals and 

inorganic dissolved solids (Table 3.2) (Tchobanoglous, Burton, et al., 2004a; Guterres and de 

Aquim, 2013).  

Table 3. 2- Principal constituents of concern in wastewater treatment (Tchobanoglous, 
Burton, et al., 2004a). 

Constituents Reason for importance 

Suspended solids Suspended solids can lead to the development of sludge 
deposits and anaerobic conditions when untreated wastewater 
is discharged in the aquatic environment 

Biodegradable organics Composed principally of proteins, carbohydrates, and fats, 
biodegradable organics are measured most commonly in terms 
of BOD and COD. If discharged untreated to the environment, 
their biological stabilization can lead to the depletion of natural 
oxygen resources and to the development of septic conditions 

Pathogens Transmittable diseases by pathogenic organisms that may be 
present in wastewater 

Nutrients Both nitrogen and phosphorus, along with carbon, are essential 
nutrients for growth. When discharged to the aquatic 
environment, these nutrients can lead to the growth of 
undesirable aquatic life. When discharged in excessive amounts 
on land, they can also lead to the pollution of groundwater 

Priority pollutants Organic and inorganic compounds selected on the basis of their 
known or suspected carcinogenicity, mutagenicity, 
teratogenicity, or high acute toxicity. Many of these compound 
are found in wastewater 

Refractory organics These organics tend to resist to conventional methods of 
wastewater treatment. Typical examples include surfactants, 
phenols, and agricultural pesticides 

Heavy metals Heavy metals are usually added to wastewater from industrial 
activities and may have to be removed if the wastewater is to 
be reused 

Dissolved inorganics Inorganic constituents such as calcium, sodium and sulfate are 
added to the original domestic water supply as a result of water 
use and may have to be removed if the wastewater is to be 
reused 

BOD- Biological Oxygen Demand; COD- Chemical Oxygen Demand. 
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The characterization of wastewater includes the evaluation of separate and independent 

parameters. The analysis of organic matter in wastewater comprises a number of organic 

constituents which can not be distinguished separately (Guterres and de Aquim, 2013). Despite 

being desirable a complete wastewater characterization for devising a treatment methodology, 

most of the times, only few parameters are measured and monitored. Some of the most 

important parameters for industrial wastewaters are discussed here.  

To analyse the high levels of organic matter (higher than 1 mg L1), methods commonly used in 

laboratories include biochemical oxygen demand (BOD), chemical oxygen demand (COD) and 

total organic carbon (TOC). The BOD value is representative of the total oxygen requirement 

for oxidizing those chemicals that can be oxidized by bacterial means. These are typically 

biodegradable substances such as organic matter. Since not all chemicals are biodegradable, 

another comprehensive parameter that can account for the pollution due to organics is needed. 

This parameter is COD, which represents the oxygen requirement for oxidizing all the chemicals 

in the wastewater. In recent years, the TOC measurement, which represents the total organic 

fraction in terms of carbon, is also a very widespread technique for better accuracy and 

evaluation of wastewater quality. 

Due to the enormous number of potentially polluting substances contained in wastewater, a 

chemical-specific approach is insufficient to provide the necessary information on water quality. 

Therefore, biological test systems with living cells or organisms give a global response to the 

pool of micropollutants present in the sample. The measurement of biochemical responses to 

chemical contaminants may help improve the assessment of biologically significant exposures 

to toxic chemicals and enhance the ability to assess the risk of effects on the health and survival 

of toxicant exposed populations. The need for effluent toxicity evaluation is being 

acknowledged and toxicity tests have been included in regulatory requirements. The maximum 

toxicity level of a final effluent allowed to be discharged is calculated based on the effluent 

dilution rate in the river and its ecotoxicity. 

Ecotoxicity tests on several trophic level using, for example, the following organisms are 

recommended: producer organisms – algae (e.g., Scenedesmus subspicatus, Chlorella vulgaris,), 

primary consumers – microcrustaceans (e.g., Daphnia magna, Cladocera), secondary consumers 

– like fish (Danio rerio, Brachydanio rerio), and decomposers – bacteria (Vibrio fischeri). The 

crustacean Daphnia magna is the most commonly used organism in the study and control of 

water quality and is used in biological assays to determine the toxicity of wastewater.  

One of the purposes of ecotoxicological tests is to determine the maximum concentration 

which does not affect a given relevant parameter of the test organisms. Ecotoxicity is generally 

expressed as toxicity units, obtained from the equation TU=100/EC50, where EC50 (expressed in 

% v/v) is the effective concentration of toxicant (in mg L1) that reduces by 50 % the response of 

a certain population of organisms, after a specified exposure duration. For example, the 

ecotoxicity assessment performed by the bioluminescence inhibition of the bacterium Vibrio 

fischeri using the Microtox® equipment, has been adopted in the official standards of several 

countries. In this case, the EC50 value corresponds to a decrease of light emission by 50 % after 

a contact time of 5, 15 or 30 minutes.
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3.2.3 Wastewater treatment processes 

As the availability of water for years to come is severely compromised, it is imperative to start 

designing industrial processes to minimize and avoid, as much as possible, the generation of 

wastewater. However, in the meantime it becomes necessary to deal with wastewater resulting 

from the existing industrial facilities, for which the most suitable destination is a wastewater 

treatment plant (WWTP), so promoting public health and preserving water resources in order 

to avoid contamination. The processing of industrial wastewater often requires a combination 

of different methods, since the use of a single method is rarely satisfactory. Currently, the 

treatment of industrial wastewater generally comprises a three-step process designated as 

primary, secondary and tertiary, tending to employ a combination of biological and chemical 

treatment methods, in order to comply with the standards for discharge of treated effluent 

(Tchobanoglous, Burton, et al., 2004b).  

The choice of a treatment methodology will depend on various factors, such as qualitative and 

quantitative composition of the wastewater, the system location and quality objectives to be 

achieved, as well as the imposition of the degree of treatment (Ikehata, 2013). Generally, 

treatment of industrial wastewater requires a large amount of chemicals, multiple operations 

and configurations, a high degree of process control and regular maintenance, as it is 

exemplified in Table 3.3. All this complexity leads to high treatment costs. 

Table 3.3- Typical unit processes in WWTP and target wastewater constituents (Ikehata, 2013).  

Type Unit process Target constituent 

Pre-treatment Flow equalization, maceration - 

 Screens, grit removal Large solid objects (stones, 
plastics, …) 

Primary treatment Sedimentation Heavy solids 

 Flotation Light solids (oil, wax, fibers,…) 

Secondary 
treatment 

Activated sludge, biological filters, 
rotating biological contactors, 
membrane bioreactors 

Biodegradable organics 

Tertiary treatment Filtration Suspended solids, including 
pathogenic microorganisms 

 Biological nutrients removal Nitrogen and phosphorus, 
more recalcitrant organics 

Advanced 
treatment 

Chemical oxidation (ozonation, 
UV/H2O2 AOP) 

Recalcitrant organics, 
pathogenic microorganisms 

 Membrane filtration (NF, RO) Dissolved and suspended 
solids, recalcitrant organics, 
pathogenic microorganisms 

Disinfection Chlorination 

UV disinfection 

Pathogenic microorganisms 
Pathogenic microorganisms 

Low-rate 
treatment 

Stabilization pounds, aerated 
lagoons, constructed wetlands 

Suspended solids, nutrients, 
biodegradable organics, some 
pathogenic microorganisms 

NF- Nanofiltration; RO- Reverse Osmosis; UV/H2O2 AOP- Ultraviolet/Hydrogen Peroxide 

Advanced Oxidation Process. 
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The first step of the treatment process, designated as a primary or pre-processing treatment, 

involves the physical screening and gravity sedimentation of heavy solids or soft solids float, 

such as oil, grease and fibers. This stage consists mainly on filtering solids, sand and other 

floating materials - usually sent to landfill - removing oil and grease using sedimentation and 

primary clarifiers. Chemical coagulants and flocculants can be used before the 

sedimentation/flotation in order to improve the solid/liquid separation. Although some 

pathogenic organisms can be removed in the primary treatment, this is usually insufficient for 

the removal of viruses and bacteria. Furthermore, only the metals in particulate form can be 

removed by gravity separation. A more elaborate treatment (secondary or tertiary treatment 

followed by disinfection) and/or additional security measures would be required when using 

the primary effluent for irrigation of crops and fish farms. The proper discharge of the sludge is 

also needed to prevent the spread of pathogens and other contaminants in the soil and 

watercourses.  

The secondary (or biological) treatment is a combination of biological and physical-chemical 

treatments, consisting in the removal of biodegradable soluble organic substances using 

microorganisms (bacteria). Aerobic processes are commonly used, in which the effluent is 

clarified by separation of the microorganisms from the treated effluent, which is then 

discharged into waterways or subjected to a tertiary treatment. Secondary treatment systems 

are generally classified as fixed film (where the biomass grows on media and the sewage passes 

over its surface) or growth suspension systems (or activated sludge, wherein the biomass is 

mixed with sewage). 

There is currently a wide variety of commercially available conventional and advanced biological 

treatment processes, such as activated sludge sequencing batch reactors, oxidation ditches, 

trickling filters, rotating biological contactors, and membrane bioreactors (MBR). When 

combined with proper disinfection, wastewater with a secondary treatment may be considered 

safe for discharge and for a variety of non-potable applications, including irrigating crops, 

recreational restricted dams and groundwater recharge via basin infiltration. 

Yet, certain restrictions are suggested when reclaimed water is used in places where direct 

contact or incidental ingestion could occur, such as parks, golf courses and recreational lakes, 

and for irrigation of food crops. As in the case of primary sludge, secondary sludge also contains 

high levels of metals, organic compounds and pathogens. Furthermore, proper treatment is 

required for sludge disposal, soil application and reuse. 

Biological processes are most commonly used in the treatment of domestic and urban 

wastewaters, but may also be employed in the treatment of industrial wastewater. In these 

cases, if the concentration of organic compounds is too high or if these are refractory, 

adaptations in the process are required, like introducing a pretreatment or even replacement 

by other techniques (Tchobanoglous, Burton, et al., 2004b). 

Given the wide variety of organic compounds that has been detected after secondary 

wastewater treatment, the purpose of tertiary or advanced treatments is to improve the 

quality of this effluent before discharge, although they are less implemented on a large scale. 

Advanced treatment technologies include diverse operations, such as chemical or biological 

removal of nutrients and pathogens agents through granular media or membrane filtration 

such as microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF), reverse osmosis (RO), 
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disinfection with ultraviolet (UV) radiation, ozone and chlorine and/or adsorption technologies 

with activated carbon and advanced oxidation processes (AOPs). 

Membrane filtration processes are a rapidly growing tertiary treatment technology. Due to 

their very small pore sizes (< 1 mm), membranes can substantially remove all pathogenic 

organisms, including viruses. In many urban water reuse projects, filters are also used as a  

pre-treatment of advanced treatments and in combination with the secondary treatment. 

However, in the case of most persistent pollutants (e.g., phenols, pesticides, solvents, 

household chemicals and drugs, etc.), to produce water with acceptable levels, it is often 

necessary the application of AOPs. This kind of processes are recommended when wastewater 

components have a high chemical stability and/or low biodegradability (Mantzavinos and 

Psillakis, 2004; Lafi and Al-Qodah, 2006). 

Even though conventional treatments, such as decantation, filtration, coagulation and 

flocculation, and biological process are not able to completely face the problem of water 

pollution, they continue however to be the most used, and are still quite effective. In addition, 

they can operate together with new processing techniques for even greater efficiencies, both 

in terms of removing pollutants and in economic terms. 

In Europe, the wastewater treatment process has undergone considerable changes over the 

past decades, as depicted in Figure 3.3. Modifications have been observed towards the 

implementation of tertiary systems in wastewater treatment in the countries of North and 

Central Europe, and, to a lesser extent, also in the South and East. In the South East and West 

Balkan countries, the % of population connected to wastewater collection is very small, and 

tertiary systems represent a small part of the treatment process.  

 
Figure 3. 3- Modifications in the wastewater treatment process in Europe. Source: European 
Environment Agency. 
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Figure 3.4- Simplified wastewater treatment, discharge, and reuse schemes (adapted from Ikehata, 
2013). 

 

Yet, in the context of sewerage in Portugal, and other countries, tertiary treatment is 

considered in some ways a "luxury". In fact, in Portugal the reusability of treated water for 

direct human consumption has not yet been reached, but the available techniques (primary and 

secondary treatments) allow to safely reuse treated water for various purposes, such as 

irrigation.  

Summarizing, the aim of wastewater management is to promote the effective and responsible 

use of water (including reuse), treatment and discharge, as well as protect public health and 

environment. The different types and levels of risk existing in different wastewater 

management scenarios, are shown in Figure 3.4: 

 

 

In the following sections, adsorption technologies with activated carbons and AOPs for 

wastewater treatment will be the subject of a more detailed discussion. 

3.3 Activated carbons 

3.3.1 Historical aspects 

Activated carbons are currently considered the most effectively adsorbents used in sewage and 

drinking water treatment plants, removing many classes of pollutants, such as surfactants, 

pesticides, dyes and aromatic compounds. The good performance of these materials results 

from the unique combination of a highly developed porous network (surface areas and pore 

volumes) and of the presence of heteroatoms (i.e., atoms other than carbon), creating a great 

variety of surface functional groups (Bandosz and Ania, 2006; Marsh and Rodríguez-Reinoso, 

2006).  

The first use of carbons dates back to 3750 BC, being used by the Egyptians and Sumerians in 

the reduction of copper, zinc, and tin minerals in the bronze manufacturing process, and also 

as smokeless fuel (Derbyshire, Jagtoyen , et al., 2001; Przepiórski, 2006). At that time, the 

materials were charred wood, coal or simply a partially devolatilized coals, and not what is now 

known as activated carbons. In the Cave of Altamira, in Spain, that represents the apogee of 

Paleolithic cave art that was developed across Europe, from 35000 to 11000 BC, outstanding 

illustrations drawn using charcoal were found.  
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The first proof of the medicinal use of carbons was found in Thebes (Greece), in an Egyptian 

papyrus dated of 1550 BC. The therapeutic value of carbon was explored later by the Greeks 

and Romans in the treatment of various diseases. By the year 500 BC, the Greek scientist 

Hippocrates recommended that the water for consumption should be filtered with carbonized 

wood before its consumption, so as to eliminate bad flavor and odor (Figure 3.5)  

(Menéndez-Diaz and Martín-Gullón, 2006). Recent studies also indicate that in Phoenicians 

ships, water was stored in carbonized wood barrels, a practice that was continued until the 

eighteenth century. The first application of activated carbons as adsorbents in gas phase, 

occurred only in 1793, when coal was used to mitigate the odors emanating by gangrene.  

 
Figure 3. 5- Hippocrates, an early protagonist in the use of charcoal.  

The introduction of activated carbons in industrial processes took place in England, in 1794, 

when these adsorbents were applied as bleaching agents in the production of sugar. The first 

large-scale application in gas phase took place in 1854 (Menéndez-Diaz and Martín-Gullón, 

2006), with the installation of carbon filters in the sewage ventilation systems in London. In 

1872, carbons filters were also used in masks on chemical industries for preventing the 

inhalation of mercury vapors. 

Activated carbon, as it is currently known, was produced by R. von Ostrejko, who is considered 

the father and/or this type of materials, having patented in 1901, two different methods for their 

production:  

 The carbonization of lignocellulosic materials with metallic chlorides (the base of the 

chemical activation process);  

  The slight gasification of chars with water vapor or carbon dioxide at elevated 

temperatures (thermal or physical activation). 

The starting point for the great development in the production and application of activated 

carbons was undoubtedly World War I, when these materials were used in gas masks 

(Menéndez-Diaz and Martín-Gullón, 2006). The increasing medical and scientific knowledge, the 

restrict environmental regulations referring to water resources, and the applications in the 

purification of gases and recovery of chemical compounds with high economic value boosted 

the use of these materials, increasing its production decade after decade. (Menéndez-Diaz and 

Martín-Gullón, 2006). In the last three decades, the use of activated carbons as a support for 
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metallic catalysts has also been quite widespread (Rodríguez-Reinoso and  

Sepúlveda-Escribano, 2009; Figueiredo and Pereira, 2009). 

Although the development and utilization of activated carbons as adsorbents has brought 

enormous benefits to humanity, only recently there has been to a growing interest in the 

development and application of new carbon materials, as for example activated carbon fibers 

and carbon nanotubes. In this regard, recent advances in the design of carbon materials with 

controlled porosity and also a better understanding of their physical, chemical and mechanical 

properties, opened new horizons and created opportunities for a more vast application.  

3.3.2 Structure and properties 

At atomic scale and from a structural point of view, carbon materials can be considered as 

carbon atoms grouped into layers of fused aromatic rings (graphene layers), with a certain 

degree of planarity, which depends upon the degree of graphitization. Thus, carbon materials 

exhibit a high content of sp2-hybridized carbon, which is responsible for at least a two-

dimensional order in the carbon structure. These graphene layers are stacked by weak van der 

Waals forces either in an ordered (i.e., graphite and graphitizable carbons) or turbostratic -

disordered stacking- structure (i.e. activated carbons, carbon blacks) (Henning, 1966). From 

structural and chemical viewpoints, a clear distinction can be made between basal-plane and 

edge carbon atoms in the graphene layers.  

The reactivity of carbon surfaces is defined by the basal to edges ratio; the edges have higher 

reactivity than the basal planes, and it is associated to chemisorption of heteroatoms giving rise 

to stable surface functionalities (Radovic and Bockrath, 2005).  

The main chemical features of the graphene sheets are: i) the surface functionalities either 

located at the edges (predominantly) or inserted in the basal-plane, and ii) the free edge sites. 

These free sites are associated to armchair (carbyne-like) and zig-zag (carbene type) 

configuration carbon atoms (rather than H-terminated or free radicals as generally assumed for 

a long time), and account for the surface reactivity of carbons to chemisorb heteroatoms or in 

gasification reactions (Radovic, Silva-Villalobos, et al., 2011). 

Due to their electronic structure (1s2, 2s2, 2p2), carbon atoms present a flexible coordination 

chemistry and unique bonding ability, both with carbon atoms or other elements. All this results 

in a wide spectrum of materials and allotropic forms. For instance, depending on the 

hybridization state of carbon atoms bond to other carbon atoms, major carbon allotropic forms 

are: diamond (sp3 hybridization with tetrahedral stereochemistry), graphene (2D sheet of sp2 

carbon atoms), graphite (layered structure of sp2 carbon atoms with a planar trigonal 

stereochemistry) and fullerenes (spherical structure of sp2+x carbon atoms, being 0<x<1). 

At the microscopic scale, carbon materials exhibit very different structures, some of these 

having a preferred arrangement in certain directions, such as synthetic graphite, while others 

disordered microstructures are features of carbonized or activated carbons (Marsh and 

Rodríguez-Reinoso, 2006).  

3.3.2.1 Physical properties 

Generally, activated carbons can be considered as an irregular array of two-dimensional 

microcrystals  arranged in  parallel planes. Each  microcrystal is  formed by crystalline planes of 
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carbon atoms grouped in hexagonal aromatic condensed rings, constituing a structure formed 

by 5 to 15 aromatic layers, also called basal planes or graphenic layers (Figure 3.6).  

 
Figure 3.6- Schematic representation of the microstructure of activated carbons (Bansal, Donnet, 
et al., 1988). 

This microcrystalline structure begins to form during the carbonization process, in which the 

regular arrangement of carbon bonds on the surface of the crystallites is broken. The structure 

of an activated carbon can be visualized as a stack of undeveloped aromatic leaves, cross-linked 

and distributed in a random fashion, separated by disorganized carbonaceous and inorganic 

matter (ash) derived from the raw material. During the activation process the spaces between 

the crystallites become unobstructed of carbonaceous material and the resulting channels, 

together with the inside and parallel cracks, constitute the pore network. This porous structure 

consists of pores of different sizes, which according to the International Union of Pure and 

Applied Chemistry (IUPAC) (Rouquerol, Avnir, et al., 1994), can be classified into three 

categories: micropores, mesopores and macropores (Figure 3.7). The micropores have 

apertures less than 2 nm, mesopores have openings between 2 and 50 nm and in the case of 

macropores the opening is greater than 50 nm.  

 
Figure 3.7- Schematic representation of the pore structure of an activated carbon. 

The micropores in activated carbons are considered to be slit-shaped, in which the size 

corresponds to the width, the distance between opposite walls. These pores, that are most of 

the internal area of the activated carbon, can be further subdivided into ultramicropores (pores 

with sizes less than 0.7 nm) and supermicropores (pore size between 0.7 and 2 nm). Although 

the most significant part of adsorption on activated carbon occurs in the micropores, meso- and 

macropores also play an important role in this process, acting as transport pores, allowing the 

access of the adsorbate to the micropores. 

Porosity, that may be defined as the ratio of the volume of pores and voids to the volume 

occupied by the solid can not be regarded as a characteristic of a simple material, since it 
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depends on the method used for its determination. In a way that is necessarily arbitrary, it is 

considered that the external area corresponds to the area of the protuberances and cavities 

which are wider than deep, and the internal area to the area inside the walls of the pores and 

cracks having a depth greater than the width. For porous solids the internal area is much higher 

than the external.  

3.3.2.2 Chemical Properties 

The knowledge of the surface chemistry of carbon materials is of paramount importance, since 

its physical and chemical properties are strongly dependent of the presence of chemical species 

on the surface. The presence of heteroatoms, even in small amounts, can have a significant 

influence on the physical and chemical properties of these materials, and, consequently, on the 

desired properties for a specific application.  

The versatile surface chemistry of carbons provides a useful and unlimited tool to design 

materials to face new challenges, and thus has become a topic of growing interest among 

researchers. In this regard, a large number of studies have demonstrated the role of surface 

chemistry of carbons in the adsorption of aromatic compounds, dyes, heavy metals, and 

pharmaceutical compounds in solution (Mestre, Marques, et al., 2012; Galhetas, Mestre, et al., 

2014). In the field of catalysis, whether used as catalyst support and or even as catalyst, the role 

of surface chemistry of activated carbons in relation to the dispersion of the catalyst or the 

catalytic activity has also been investigated (Bandosz and Ania, 2006; Menéndez‐Diaz and 

Martín‐Gullón, 2006; Fernandes, Andrade, et al., 2012; Ania, 2013). From the point of view of 

their reactivity, two kinds of activated carbon surfaces can be considered: 

• A flat, non-polar, which comprises the center of the carbon surface, the graphenic layers. 

Adsorption occurs on this surface through van der Waals forces of dispersive character, which 

play a very important role in adsorption processes. 

• A surface formed by the unsaturated carbon atoms located at the edges of the basal planes. 

On these edges are located functional groups (carbon-oxygen, carbon-nitrogen, etc.) as well as 

highly reactive free radicals. 

Oxygen is unquestionably the most abundant heteroatom present on the surface of activated 

carbons, originating, by itself or in combination with hydrogen, the vast majority of functional 

groups that characterize the surface chemistry of carbon materials. The reason for the 

abundance of oxygen-containing functionalities on carbon surfaces is linked to the strong 

affinity of carbons to interact with oxygen when exposed to air (O2 chemisorption occurs even 

at low temperature) (Henning, 1966), although oxygen may also be incorporated from the 

chemistry of the precursor.  

The relatively high area of the edges of the activated carbon results in a strong propensity to 

oxygen chemisorption. The dissociation of molecular oxygen atoms leads to a chemical reaction 

with carbon atoms to form oxygenated compounds on the surface. This oxidation process is of 

particular importance for pre-treated carbons at elevated temperatures, which have a highly 

reactive surface. The oxygen surface groups can also be formed by reaction with other oxidizing 

gases such as ozone, nitric oxide, carbon dioxide, etc., and oxidizing solutions such as nitric acid, 

hydrogen peroxide, etc.  
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The different types of oxygen functional groups which may be present on the surface of carbon 

are shown in Figure 3.8. For some of the schematized functions such as quinone and pyrone- 

type some other arrangements can also be proposed. These highly reactive centers are 

responsible for the ability of activated carbons to participate in halogenation, hydrogenation, 

and oxidation reactions and/or act as catalysts in many chemical reactions.  

Activated carbons also contain other heteroatoms, which may arise from the raw materials 

used, the agent added during activation or some post-synthesis modification. The relatively 

simple and quite numerous methods that are currently known to modify the surface chemistry 

of activated carbons, are quite useful in optimizing several conventional applications as well as 

for the search of new applications. The surface chemistry of the activated carbon can be 

modified by oxidation with various agents, creating oxygen functionalities or by heat treatment 

to promote selective or complete removal of such groups. 

 
Figure 3.8- Schematic representation of the typical O-containing surface groups of carbon materials, 
including free edge sites and carbon-hydrogen complexes: (a) carboxyl groups, (b) lactone, (c) hydroxyl, 
(d) carbonyl, (e) quinone, (f) ether, (g) epoxyde, (h) carboxylic anhydride, (i) chromene, (j) lactol, (k) π 
electron density on carbon basal planes, (l) pyrone, (m) carbyne, and (n) carbene sites (adapted from 
Ania, 2013).  

The remaining elements after complete combustion constitute the ashes, whose amount and 

composition is widely variable, depending on the precursor used in the preparation of the 

adsorbent (Marsh and Rodríguez-Reinoso, 2006). The ash content can vary from less than  

1 wt. % for materials prepared from relatively pure precursors, to more than 10 wt. % for 

activated carbons prepared from coal. In the case of lignocellulosic materials, the major 

constituents of the ash are silicon, magnesium, calcium, iron, aluminum and sodium oxides. 

These compounds may play an important role in adsorption and catalytic processes, since they 

can modify i) the interactions between the surface of the carbon adsorbent/catalyst and the 

molecule to be adsorbed, and ii) the catalytic performance of the supported phases by 

electronic or structural interactions  (Rodríguez‐Reinoso and Sepúlveda‐Escribano, 2001). 

Another important effect of the presence of inorganic matter on the carbon precursor is, as an 

example, a possible catalytic effect on the gasification reaction during the activation. The 
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presence of iron, calcium and alkali compounds may catalyse the reaction of carbon atoms with 

carbon dioxide and water vapor (Marsh and Rodríguez-Reinoso, 2006). This catalytic effect has 

strong effect on the pore size distribution of the activated carbon; usually a larger porosity is 

obtained in the presence of ashes, than that for materials from which inorganic matter has been 

removed by an acid treatment. 

According to the nature of their surface functional groups, activated carbons can be classified 

as: 

Acidic carbons- Carbons that present an acidic character when reacting with appreciable 

amounts of bases, but do not react with acids, are designated acidic carbons. Generally, an 

acidic carbon is obtained when an activated carbon degassed at elevated temperature, in 

vacuum or inert atmosphere, is exposed to a stream of oxygen at moderate temperatures. They 

can also be obtained by oxidation by other oxidizing agents in gaseous or aqueous phase (e.g. 

HNO3); 

Basic carbons- Carbons that have a basic character when reacting with considerable quantities 

of acids, but do not react with bases are considered basic carbon. Activated carbons obtained 

by traditional methods usually have a basic character, although the structure of the functional 

groups responsible for this fact is not known with accuracy. It is considered that certain oxides, 

amine groups and also coal graphene layers are responsible for this basic character. 

3.3.3 Activated carbon production 

The industrial production of activated carbon is essentially based on two steps: carbonization 

of the raw material at a high temperature in the absence of air and activation of the carbonized 

product (Figure 3.9). 

The carbonization step consists in the controlled heat treatment at a final temperature 

between 500 and 800 °C, in which the decomposition of the precursor occurs, eliminating 

elements such as hydrogen, nitrogen, oxygen and sulfur. The more volatile compounds with 

low molecular weight are eliminated first, followed by light aromatics, and finally hydrogen. The 

carbonization product (or char) is generally a material with a relatively low specific surface area 

(< 500 m2 g1). During activation the incipient porous structure of the char is significantly 

developed. 

 

Figure 3. 9- General scheme of the production of activated carbons.  

3.3.3.1 Precursors 

Activated carbons can be produced from almost any raw material rich in carbon. There are many 

low cost materials with a low content of inorganic impurities that can be used in the production 

of activated carbons, such as wood, nut shells and fruit pits, lignite, bituminous coal and coke 

(Table 3.4).  
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Table 3.4- Properties of common precursors for the production of activated carbons (Marsh 
and Rodríguez-Reinoso, 2006). 

Raw material Carbon 
(wt. %) 

Volatiles 
(wt. %) 

Density  

(cm3 g1) 

Ash 
(wt. %) 

Texture of activated 
carbons 

Soft wood 40-50 55-60 0.4-0.5 0.3-1.1 Soft, large pore volume 

Hard wood 40-42 55-60 0.55-0.80 0.3-1.2 Soft, large pore volume 

Lignin 35-40 58-60 0.3-0.4  Soft, large pore volume 

Nutshells 30-45 55-60 1.4  Hard, large micropore 
volume 

Lignite 55-70 25-40 1.0-1.35 5-15 Hard, small pore volume 

Soft coal 65-80 20-30 1.25-1.50 2-12 Medium hard, medium 
pore volume 

Petroleum coke 70-85 15-20 1.35 0.5-0.7 Medium hard, medium 
pore volume 

Hard coal 70-75 10-15 1.45 5-15 Hard, large pore volume 

Anthracite 85-95 5-10 1.5-1.8 2-15 Hard, large pore volume 

The choice of the appropriate precursor is based on the following criteria (Menéndez-Diaz and 

Martín-Gullón, 2006): 

• The possibility of originating materials with good adsorptive capacity, high density and 

hardness. 

• Low inorganic matter content. The presence of these compounds reduces adsorption 

capacity, since it is expressed per unit mass. 

• Availability and cost. As with any product, the price of the raw material affects the final cost, 

so a high availability is important to have to ensure stable prices. The yield of the process must 

also be taken into account, since significant mass losses may occur. Preparation yields can vary 

considerably, reaching very low values, such as 5-10 % for carbon made from wood.  

Most lignocellulosic materials meet these requirements, occupying a prominent position as 

precursors in the production of activated carbons, representing about 45 wt. % of the total raw 

materials used in activation processes (Marsh and Rodríguez-Reinoso, 2006). Materials with 

low density and a high content of volatile constituents (for example, wood) lead to carbons 

with a high pore volume, but with a low density. Moreover, the use of materials with a higher 

density (for example, peel or fruit pits) allows to obtain granular activated carbons with a high 

pore volume, which can be used in different applications. The lignocellulosic materials are 

preferably used in chemical activation processes, while the use of peat, lignite, and various 

types of coal is more common on physical activation processes.  

3.3.3.2 Pre-treatment 

The precursor, or raw material, may have to be subjected to some pre-treatments before the 

activation process, in order for the desired particle size to be obtained by milling and screening, 

especially when the starting material is not quite homogeneous. Sometimes a washing step is 

also applied, using water or acid to remove any dirt and reduce the content of mineral matter 

(ash).  
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3.3.3.3 Carbonization 

The pre-treatment step is followed by carbonization, a critical step in the overall process of 

activated carbons production, during which the formation of the microporous structure is 

initiated. The obtained material consists of a solid with an enriched content in carbon and 

aromaticity, but with a low adsorption capacity. The main experimental parameters that 

influence the process and determine the final yield are the carbonization temperature and the 

heating rate.  

3.3.3.4 Thermal or physical activation  

Physical activation takes place in two steps: thermal carbonization of the raw material and char 

activation by oxidizing gases such as water vapor, carbon dioxide, air or mixtures of both. After 

the first step, a more carbon enriched matrix is obtained, while in the second step, the char is 

gasified with the oxidizing agent at elevated temperatures (800-1000 °C). During activation, the 

active oxygen of the oxidizing agent eliminates the more reactive carbon atoms (more 

unsaturated), such as carbon monoxide. The activation will create additional porosity, and 

extend the existing porosity, "activating" the char.  

The most used activating agents are carbon dioxide, water vapor and mixtures of the two, but 

other activating agents, such as air or oxygen, may be used (Marsh and Rodríguez‐Reinoso, 

2006). The most reactive agent is oxygen and the less reactive carbon dioxide. These gases will 

react with the carbon and remove some of the mass of the inner surface of the solid, creating 

a material with a highly developed porosity. Some blocked internal micropores may also 

become accessible due to the selective removal of carbon atoms. 

The reaction of oxygen with carbon is highly exothermic and much faster than with carbon 

dioxide or water vapor, and therefore more difficult to control (Rodríguez‐Reinoso and  

Sepúlveda‐Escribano, 2001). Due to the high reactivity of oxygen, activated carbons with a low 

development of porosity and wider pores are obtained upon activation under oxygen 

atmosphere. For these reasons, this type of activation is not used at an industrial scale. 

The gasification of the char with steam, carbon dioxide or mixtures of both usually occurs at  

800-1000 °C (reactions 3.1 and 3.2). Activation with water vapor is the most used method for 

activated carbon preparation, allowing to obtain micro and mesoporous materials, with specific 

surface areas > 1000 m2 g1 (Marsh and Rodríguez-Reinoso, 2006). For samples prepared by 

activation with water vapor, the burn-off is directly related to the development of porosity. The 

partial formation of mesopores is reported only when with very high levels of burn-off (80 %).  

 C+CO2→2 CO                  ∆H= +159 kJmol1 reaction 3.1 

 C+H2O→ CO+H2             ∆H= +117 kJmol1                                                                                reaction 3.2 

The endothermic nature of these reactions requires the direct heating to maintain the reaction 

temperatures. The heat supply is generated by the introduction of controlled amounts of air in 

the furnace in order to burn the gases produced during activation, according to the following 

reactions:
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 CO+
1

2
O2→ CO2               ∆H= 285 kJmol1 reaction 3.3 

 H2+
1

2
O2→ H2O                ∆H= 238 kJmol1 reaction 3.4 

Comparing the porosity of two activated carbons prepared from the same precursor, activated 

with water vapor or CO2, with similar burn-off values, it is apparent that both materials will reach 

similar adsorption capacities. However, the porosity developed by CO2 is somewhat narrower 

than that of the sample activated with water vapor (Menéndez‐Diaz and Martín‐Gullón, 2006). 

Thus, the choice of the oxidizing agent will depend on the intended end-application.  

3.3.3.5 Chemical Activation 

Chemical activation involves the co-carbonization of the precursor with a chemical reagent, 

known as activating agent, under inert atmosphere, followed by removal of the resulting 

chemical compounds by exhaustive washing. The most commonly used activating agents in the 

industry are zinc chloride, phosphoric acid and potassium hydroxide. The development of 

porosity during the heat treatment occurs in an inert atmosphere at temperatures in the range 

of 400 to 900 °C (Marsh and Rodríguez-Reinoso, 2006).  

The impregnation step may be performed in solution (the most common method) or by physical 

impregnation. In the first case, the dried precursor is mixed with a solution of an appropriate 

concentration of the activating agent for a certain contact time at a given temperature, and the 

mixture is then dried. In a physical mixture, different amounts of solid activating agent are 

mixed with defined amounts of the dried precursor, without any addition of water, at room 

temperature. After the chemical activation, it is necessary to grind the obtained carbon, and to 

perform a washing step to remove the excess of activating agent and its soluble degradation 

products. 

The activation mechanism differs according to the chosen agent, resulting in a very distinct pore 

development. For example, zinc chloride promotes the extraction of water molecules from the 

structure of the lignocellulosic feedstock (Marsh and Rodríguez-Reinoso, 2006). The activation 

mechanism with potassium hydroxide is more complex involving the disintegration (almost 

explosive) of the structure, followed by intercalation by and gasification the oxygen of the 

hydroxide. The presence of oxygen is not essential (but can be a help) for this form of activation 

(Marsh and Rodríguez-Reinoso, 2006). 

Zinc chloride was one of the most commonly used chemicals in the preparation of activated 

carbons in the 70’s, and its use has declined due to environmental problems caused by zinc 

waste. The activation of lignocellulosic material with zinc chloride yields activated carbons 

having a porosity well developed in one step, resulting in considerable yields. 

Phosphoric acid is perhaps the most commonly used activating agent, preferably in the 

activation of lignocellulosic material, leading to carbons with a well-developed porosity. 

Activation with this activating agent allows to obtain materials with a micro- and mesoporosity 

and high surface areas.  

Alkali hydroxides and carbonates have been used in the preparation of activated carbons with 

high surface areas and developed porosity. These materials, referred to as super activated 
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carbons, with extremely high surface areas (> 3000 m2 g1) were produced for the first time in 

the 70’s and commercialized in the late 80’s (Menéndez-Diaz and Martín-Gullón, 2006). 

The use of raw materials with a low content of volatile compounds and a high carbon content 

is more appropriate for this activating agent. KOH reacts with the carbon backbone, yielding 

solid and liquid products, and in parallel, carbon consumption develops porosity. During the 

reaction that occurs above 600 °C, hydrogen and metallic potassium are formed, as well as CO 

and CO2 (from the carbon matrix) and potassium oxide, according to the proposed mechanism 

(Lillo-Ródenas, Cazorla‐Amorós, et al., 2003) (reaction 3.5), followed by the decomposition of 

potassium carbonate in CO2 and K2O. The ratio KOH/precursor seems to be the factor with the 

greatest influence on the adsorption capacity of the obtained material (Linares-Solano, Lozano-

Castelló, et al., 2008). 

 6 KOH+2 C↔2 K+3 H2+2 K2CO3 reaction 3.5 

Specific areas higher than 1500 m2 g1 can be obtained with average KOH/precursor proportions 

(0.5, 1, 2) ; increasing this ratio, the porosity becomes more developed (more than 3000 m2 g1), 

but the micropore size distribution becomes wider, including pores ranging from very large 

micropores to small mesopores (Linares-Solano, Lozano-Castelló, et al., 2008). The use of very 

high KOH/precursor ratios results in the disintegration of the carbon granules due to 

gasification reactions (Marsh and Rodríguez-Reinoso, 2006). The final temperature treatment 

can also have some influence on the adsorption capacity developed. 

The use of KOH and NaOH is relatively expensive, but above all hazardous and corrosive. 

Compared to these, sodium and potassium carbonates present lower costs, offering the 

advantage of being harmless chemicals, given the use of K2CO3 in the food industry as an 

additive (Adinata, Daud, et al., 2007). Activation with K2CO3 can thus be considered a cleaner 

and more economic production technology.  

This agent has been increasingly used in chemical activation processes, obtaining in the same 

experimental conditions activated carbons with better yields than with the use of KOH, and 

sometimes even higher surface areas (Carvalho, Gomes, et al., 2004; Carrott, Carrott, et al., 

2006;. Tay, Ucar, et al., 2009). Different precursors, such as agricultural wastes, lignin, coal, 

biomass, plastic and newspapers waste, and resins, have been chemically activated with K2CO3. 

Several studies highlight the comparable, or even better results than those obtained with 

commercial samples (Carvalho, Gomes, et al., 2004; Carvalho, Mestre, et al., 2006; Suhas, 

Carrott, et al., 2007).  

The first step of the degradation process of the raw material consists in the intercalation of Na 

or K atoms, originated by the reduction of alkali hydroxides or carbonates. This process causes 

the expansion of the graphenic layers of carbon, requiring however, an increase in temperature 

which causes the exit of the metal from the intercalated system. The porosity of the activated 

carbon will be determined by the strength of this process (Marsh and Rodríguez-Reinoso, 

2006).  

While in severe conditions, the carbon material can be completely disintegrated by potassium 

hydroxide, to yield a flocculent carbon with high adsorption capacities, under the same 

conditions, a less extensive pore development is observed, for activation with potassium 
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carbonate (Mestre, Tyszko, et al., 2015). For milder conditions, no significant activation with 

potassium carbonate occurs, due to the larger size of the carbonate ion, which prevents its 

entry into the micropores of the starting material.  

Due to the ionic nature of the solution, potassium ions can not diffuse into the porosity, without 

its counter ion. Activation mechanisms require the presence of potassium as well as oxygen 

species, otherwise a significant activation is not possible. Another reason for this fact is that, 

although potassium carbonate is able to diffuse through the microporosity, the formation of 

surface oxygen complexes from the carbonate ion is not a favoured reaction. The presence of 

carbonate induces an increased amount of CO2, which confirms that the decomposition of the 

carbonate occurs. Potassium carbonate reacts with the carbon, releasing CO2 from the 

carbonate (reaction 3.6). 

 K2CO3→K2O+CO2↑ reaction 3.6 

The increase in the gasification rate is attributed to the formation of potassium complexes, for 

example, phenoxy groups C-O-K+, which can be considered as a kind of K+ well dispersed 

species.  The activation process is more effective as smaller the thermal stability of the 

carbonate in the presence of carbon. Potassium carbonate and potassium oxide from the 

decomposition of the first will react with carbon, reducing at temperatures above 700 °C, 

according to reactions 3.7 and 3.8: 

 K2CO3+ 2 C→2 K+3 CO↑    reaction 3.7 

 K2O + C →2 K+ CO↑  reaction 3.8 

3.3.4 Classification of activated carbons 

The classification of activated carbons is a difficult task, given the complexity of these materials. 

One possible classification can be made considering its particle size, or shape. In Figure 3.10, 

different morphologies of activated carbons are presented. 

 

Figure 3.10- Carbon materials obtained in different morphologies: grains, powders, pellets, films 
and coatings on monolith and foam structures (Morales-Torres, Carrasco-Marín, et al., 2015).  

Powdered activated carbons (PAC) present a fine granulometry/grain size < 100 micrometers 

and an average diameter between 15 and 25 micrometers (Bansal, Donnet, et al., 1988). They 

have relatively high external areas, being preferably used in adsorption processes in liquid 

phase, in which the solute may have diffusional problems, instead of granular activated 

carbons, which might require higher equilibrium times. Included in this group are carbons used 

for municipal and industrial wastewater treatment, discoloration, food industry and 

pharmaceutical applications.  
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Granular activated carbons (GAC) present an average particle size between 1 and 5 mm (Bansal, 

Donnet, et al., 1988). These materials present an increased particle size compared to PAC, and 

a smaller external area. Most applications in gas phase (gas purification, solvent recovery, 

masks and air filters for gases, gas separation by pressure swing adsorption, catalysis, etc.) use 

granular activated carbons, those having replaced PAC in many liquid phase applications, as for 

example, in the extraction of precious metals and in water treatment. Compared with PAC, GAC 

have lower pressure drops which facilitates their regeneration and reuse. However, granular 

carbons should also have a high bulk density and a low hardness and abrasion index.  

Activated carbon fibers (ACF) and cloths are basically carbonized carbon fibers which are 

subsequently subjected to a heat treatment in an oxidizing atmosphere. The ACF development 

started in 1970, along with carbon cloths. These materials present all the characteristics of 

activated carbons, such as high specific surface area, high adsorption capacity, uniform and 

essentially microporous pore size distribution (1-40 µM), being soft and moldable (Donnet and 

Bansal, 1990). Although representing a small portion of the market, activated carbons in the 

form of fabrics or filters screen, have a number of additional advantages directly related to their 

structural characteristics such as high efficiency of contact, very low pressure drop, high 

adsorption rate in dynamic tests, as well as ease in handling and flexibility. Besides the internal 

area, the porous network of these materials is also determined by their fibrous (open) 

structure, ensuring a much faster adsorption kinetics. Consequently, diffusion resistance 

associated to the accessibility of the adsorbates to the active centers is much lower. 

Monolithic carbon structures will likely be the base of the next generation of adsorption 

processes for environmental applications. These structures have the potential to overcome 

many of the limitations of the granular carbon beds in terms of low pressure drops, more 

regenerability, dusting elimination and abrasion (Menéndez-Diaz and Martín-Gullón, 2006). 

These benefits can lead to substantial reductions in capital cost and power consumption along 

with increased operability. The solid monoliths are used in various applications such as storage 

and gas separation, adsorption and as catalyst support.  

Activated carbon membranes are mainly used in molecular separation processes of gases 

based on the differences in molecular size and shape. Activated carbon membranes allow the 

separation of N2/O2 from air, H2/CxHy from mixtures of light hydrocarbons or CO2/CH4 from 

biogas (Menéndez-Diaz and Martín-Gullón, 2006). Besides this type of membranes, referred to 

as molecular sieve membranes, there are also adsorbent membranes that allow the separation 

of gases according to their textural and surface chemistry properties. Two types of membranes 

have been prepared: unsupported and supported. The unsupported materials offer high 

selectivity, although suffering from an extreme fragility. This disadvantage can be avoided by 

forming carbon layers on supports, such as porous graphite, sintered stainless steel and ceramic 

supports. The fast development of this technology and a more thorough investigation will 

certainly lead to large-scale production of activated carbon membranes. 

3.3.5 Regeneration of activated carbons 

Once the adsorption capacity of an activated carbon is exhausted, two options can be taken: 

the carbon can be disposed, by incineration or landfill, or can be regenerated for reuse. The 

second option seems to offer clear advantages, such as lower carbon consumption and the 

possibility of recovering an adsorbed product of potential economic value (Rodríguez-Reinoso,  
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McEnaney, et al., 2002). However, the regeneration of exhausted carbon also entails costs, 

which in some cases are not lower than the production cost of a new activated carbon. 

Furthermore, in most regeneration processes, after a certain number of regeneration cycles, 

the adsorption capacity of the material decreases to a level at which the carbon can no longer 

be regenerated (Roskill Report, 1998; Ania, Menéndez, et al., 2004; Ania, Parra, et al., 2005; Ania, 

Parra, et al., 2007). The regeneration step is almost exclusively carried out with GAC; PAC are 

typically discarded after use given the difficulties associated to the regeneration of fine 

powders, leading to high carbon losses.  

There exist several methods for the regeneration of exhausted activated carbons, involving 

thermal treatments on different atmospheres (CO2, steam, hot inert gases), chemical or 

biological processes, electrochemically-assisted, desorption under vacuum, with supercritical 

fluids, microwave-assisted, and more important, the use of conventional liquid solvents (Marsh 

and Rodríguez-Reinoso, 2006; Ania and Béguin, 2008; Çalışkan, Bermúdez, et al., 2012; Guo and 

Du, 2012; Foo and Hamed, 2012; Cazetta, Junior, et al., 2013).  

3.3.6 Applications of activated carbons 

Activated carbons are the most versatile adsorbent materials due to their high surface areas, 

developed porous structure (of essentially micropores), high adsorption capacity and variable 

surface chemistry. These multifunctional materials are used in a wide range of applications in 

numerous productive sectors such as the energy sector and the environment, the aircraft 

industry, electronics, medicine, etc. (Przepiórski, 2006). A summary of the major applications of 

activated carbon divided into applications in liquid or gas phase adsorption processes is shown 

in Table 3.5. 

3.3.6.1 Applications in adsorption processes 

Liquid phase applications account for about 80 % of total consumption of the activated carbon 

produced (Marsh and Rodríguez-Reinoso, 2006). Both GAC and PAC are largely used; GAC are 

mainly applied in continuous (dynamic adsorption carbon beds) processes due to their capacity 

to be regenerated, while PAC are mainly used in batch processes (being separated from the 

coal liquid after the completion of process and discarded or eluate). As an example, almost 60 

wt. % of the activated carbon used in the United States in liquid phase applications is PAC, due 

to the need for a rapid distribution of liquid to the interior of the carbon particles.  

In liquid phase applications, activated carbons act as adsorbents, eliminating substances of 

variable concentration, composition and size, with the aim of improving the taste and odor of 

water, as well as reducing natural organic matter, limiting thus the maximum formation of 

disinfection and/or oxidation by-products, as trihalomethanes. This topic will be the subject of 

further discussion in section 3.3.7. 

3.3.6.2 Applications in catalysis 

Activated carbons are also employed as catalysts and catalyst supports in a wide number of 

reactions (Faria and Wang, 2009; Figueiredo and Pereira, 2009) due to their versatility of forms 

and architectures. Their physical and chemical properties can be easily adapted to develop a 

high surface area on which the active phase can be dispersed, while an appropriate pore size 

distribution facilitates the diffusion of reactants and products to and from the surface. The 

acidic/basic character necessary to achieve the best performance can also be tailored. 
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Table 3.5- Industrial applications of activated carbons in adsorption processes (Przepiórski, 
2006). 

Although catalysts supported on activated carbons are considered the best choice for a large 

number of reactions (Rodríguez-Reinoso and Sepúlveda-Escribano, 2001), a few large-scale 

processes currently use these systems, and less than 1 % of the world production of activated 

carbon is used as catalyst support. This may be due to the lack of reproducibility that sometimes 

is associated with this type of catalysts as a result of a lack of the knowledge of the properties 

that might influence their behaviour. 

However, the growing number of scientific publications on this subject has contributed to a 

better understanding of the behaviour of this type of catalysts. Many types of carbonaceous 

materials have been used as catalysts and catalyst support: graphite, carbon black, activated 

carbons, carbon fibers and fabrics fullerenes, nanotubes, among others (Rodríguez-Reinoso 

and Sepúlveda-Escribano, 2001). Among them, the most important are undoubtedly activated 

carbons with high surface areas and carbon blacks. Carbon materials may act as supported  

Application field Common use 

Adsorption from liquid phase 

Drinking water treatment Removal of dissolved organics, control of taste and odor, lead, 
chlorine, color 

Soft drinks and brewing Removal of chlorine and dissolved organic contaminants from 
potable water, after disinfection with chlorine 

Food industry Decolorization of liquid sugars (glucose, maltose) 

Pharmaceutical  Purification and separation of antibiotics, vitamins, hormones, 
etc. 

Semiconductors Production of ultra-high purity water 

Petrochemical Removal of oil and hydrocarbon contaminations from recycled 

steam condensate for boiler feed water 

Groundwater Reduction of total organic halogens and adsorbable organic 
halogens  

Wastewater treatment Process effluent treatment  

Swimming pools Removal of residual ozone and control of chloramine levels 

Adsorption from gas phase 

Solvent recovery Control of vapor emissions and recovery of organic solvents 

Carbon dioxide production Purification of carbon dioxide from fermentation processes 

Gas purification Purification of industrial off-gases 

Waste disposal Removal of heavy metals and dioxins from flue gas formed 

during incineration of various wastes 

Tobacco manufacturing Removal of some harmful substances (nicotine and tar) 

Air conditioning Removal of contaminants from air subjected to heating, 

ventilation, and air conditioning in airports, offices, hospitals 

Semiconductors production Production of ultra-high purity air 

Toxic gas removal Purification of greenhouse gases  

Fridge deodorizers Removal of general food odors  
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catalysts in about 50 reactions of industrial interest from a list of 69 reactions catalysed by noble 

metals according to "The Catalytic Reaction Guide" published by Johnson Matthey, leader of 

catalysts suppliers worldwide (Rodríguez-Reinoso and Sepúlveda-Escribano, 2001). One of the 

first applications of activated carbons as a catalyst support was in the hydroprocessing of 

petroleum raw materials, and still remains as a major area of research and application in this 

field. Other areas of interest are hydrogenation reactions, ammonia synthesis and 

environmental catalysis, including the reduction of NO with CO (Rodríguez-Reinoso and 

Sepúlveda-Escribano, 2001; Rodríguez-Reinoso and Sepúlveda-Escribano, 2009). 

Although the primary use of carbon materials in catalytic processes is as a porous support, 

several industrial reactions use activated carbons themselves as catalysts (Figueiredo and 

Pereira, 2009). An example of this fact is the production of carbonyl chloride (phosgene) by 

combining CO and Cl2 over a carbon catalyst. The reactions catalysed by different carbons range 

from hydrogenation reactions by oxidation and reduction, polymerization and chlorination. 

Examples of such reactions include oxidative dehydrogenation reactions, cumene oxidation, 

H2S oxidation, alcohols dehydration and dehydrogenation. For the performance of carbon as 

catalyst both the textural and surface chemistry properties are of great importance. However, 

it is difficult to distinguish the role played by each of these two factors. 

Activated carbons are also of great importance in photocatalytic processes. In this regard, the 

use of activated carbons in carbon/semiconductor composites has become an important area 

of research in recent years, due to the increase of the efficiency of photocatalytic 

semiconductors (Faria and Wang, 2009; Ania, Velasco, et al., 2012). New materials prepared 

through the immobilization of the active semiconductor on the porous carbon have been 

explored due to the good results observed for these composites in the photocatalytic 

degradation of environmental pollutants in liquid or gaseous phase. The increase in the 

photocatalytic efficiency is attributed to several factors related to the absorption of visible 

light, strong interfacial textural properties and electronic effects (Faria and Wang, 2009).  

More recently, the photocatalytic activity of certain carbon materials, in the absence of a 

semiconductor has also been demonstrated (Ania, Velasco et al., 2012). These results mark a 

starting point for future research in this field, offering the possibility of coupling the 

photocatalytic degradation of refractory pollutants to classical adsorption technologies based 

on activated carbon. This topic will be the subject of further discussion in section 3.4.6.4. 

3.3.7 Nanoporous carbons in wastewater treatment 

As it was already stated, water purification is the most important application of activated 

carbons in liquid phase. The use of these materials as adsorbents is of fundamental importance 

in industrialized societies, being cited by the United States Environmental Protection Agency 

(USEPA) as one of the best environmental control technologies available (Radovic,  

Moreno-Castilla, et al., 2000).  

Adsorption on activated carbon has been widely used for the removal of odor and taste of 

drinking water, and persistent organic pollutants (priority and emerging) of sewage, both in 

classical adsorption methods (Marsh and Rodríguez-Reinoso, 2006) or coupled to advanced 

techniques (Carvalho, Mestre, et al., 2013). In developed countries, where there is a high water 

sanitation coverage, activated carbons are used in the final stages of wastewater treatment 
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(tertiary treatment), allowing the removal of both priority and emerging pollutants. On the 

other hand, in areas with a low health coverage, where the process water treatment consists 

in applying only primary or secondary treatments, the removal of most contaminants is usually 

not effective. 

The adsorption of micropollutants onto activated carbon can be implemented either as a  

line-end technology or added to an existing technology in wastewater treatment plants, such 

as activated carbon in a bioreactor in a pumped-bed membrane (Dosoretz and Böddeker, 2004; 

Li, Hai, et al., 2011). Although most activated carbons are generally used in sewage treatment 

plants in the final stages of the treatment process (tertiary treatment), this technology can also 

be positioned at an early stage in the process (Figure 3.11), especially in the case of highly 

polluted influent, thus preserving the biological treatment facility. According to the literature, 

about two thirds of the water treatment facilities in the United States and Canada have the 

ability to use activated carbons in a pre- and/or post-treatment when necessary (Snyder, 

Adham, et al., 2007). Activated carbons may also be added to the biological treatment tank, 

thus improving the removal of conventional and emerging pollutants (Delgado, Charles, et al., 

2012; Stoquart, Servais, et al., 2012). The greater efficiency of these hybrid systems for the 

removal of pharmaceutical compounds has recently been studied (Rúa-Gomez, Guedez, et al., 

2012). 

 

Figure 3. 11- Simplified scheme of a wastewater treatment plant with activated carbons 
adsorption as a pre and/or post-treatment (adapted from Carvalho, Mestre, et al., 2013). 

There are many available technologies for the implementation of activated carbons in 

wastewater treatment (Ternes and Joss, 2006; Rúa-Gómez, Guedez, et al., 21012). After the 

secondary treatment, GAC can be applied through columns (Figure 3.12A), or added in the form 

of powder to the ultrafiltration membrane module of MBR systems, as it is schematized in 

Figure 3.12B. The fact that MBR systems produce free suspended solids effluent, makes them 

especially suitable to be coupled to of activated carbons technology, since that the presence of 

natural organic matter reduces the adsorption capacity of the activated carbon due to 

competitive adsorption (Cho, Huang, et al., 2011; Bui and Choi, 2010; Pastrana-Martinez,  

López -Ramón, et al., 2009). 

Over the last few years the application of activated carbon adsorption in laboratory, pilot and 

full scale water treatment plants has been increasing, with satisfactory results for the removal 

of some micropollutants, including phenols, pesticides, solvents, pharmaceuticals and personal 

care products (Ahmaruzzaman and Sharma, 2005; Dias, Alvim-Ferraz, et al., 2007; 

Ahmaruzzaman, 2008; El-Naas, Al-Zuhair, et al., 2010; Baransi, Dubowski, et al., 2012; Mailler, 

Gasperi, et al., 2015).  

Activated carbon filters to 
treat specific contaminant

clarifier

Biological
treatment

clarifier

Activated carbon filters
for final treatment
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A large number of studies on the mechanism of adsorption of contaminants on activated 

carbon can be found in the literature (Salame and Bandosz, 2003; Moreno-Castilla, 2004; 

Mestre, Pires, et al., 2007; Velasco and Ania, 2011; Carvalho, Mestre, et al., 2013). The main 

objective of these studies is to obtain a deeper knowledge of the adsorption mechanism and to 

evaluate the potential use of new carbon materials in water treatment processes. The use of 

green or eco-friendly carbons, raises a special interest in this field considering the low economic 

viability associated with manufacturing and regeneration costs of activated carbons, which in 

many cases restricts the implementation of these materials in large-scale industrial processes. 

 

 

 

Figure 3.12- Schematic diagrams of the use of activated carbons in water treatment plants at 
different stages in the form of GAC or PAC: (A) Adsorption on activated carbon as sludge post -
treatment; (B) Addition of activated carbon to the MBR system (adapted from Carvalho, Mestre, 
et al., 2013). 

Carbon materials synthesized from several agricultural or industrial waste, as for example, cork 

(Mestre, Pires, et al., 2007), sisal (Mestre, Bexiga, et al., 2011), olive pomace (Baccar, Sarrà, et 

al., 2012) and Artemisia (Dubey, Dwivedi, et al., 2010), and municipal waste such as plastics 

(Mestre, Pires, et al., 2009) have been tested in the removal of emerging pollutants in aqueous 

medium, achieving removal efficiencies, in many cases, comparable to those obtained with 

activated carbons commercially available. 

The importance of these studies lies not only in the search for new low-cost materials of high 

performance, but it is also of fundamental importance for disclosing the mechanisms of the 

adsorption of micropollutants. This is a highly complex process, dependent on many factors, 

including the texture (specific surface area and pore size distribution) and surface chemistry 

(presence of functional groups) of the activated carbon, the physical and chemical properties 

of the target compound and operational conditions (such as the solution pH and temperature).  
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Municipal and industrial wastewater treatment plants are examples of large scale activated 

carbon consumer markets, for which carbons are considered the best adsorbent materials 

(Przepiórski, 2006). The environmental concerns about water quality will surely keep the high 

demand for carbon materials in WWTP, and wastewater treatment with activated carbon will 

be mandatory in certain countries. Also the need for further treatment for recycling water, 

especially in cities, will increase the demand for activated carbon.  

The available results demonstrate the effectiveness of the adsorption processes based on 

activated carbon to deal with the removal of pollutants at trace level. The non-specificity of 

these materials allows them to be effective adsorbents for a variety of micropollutants with 

different physical and chemical properties. Thus, activated carbons are used in different phases 

of the wastewater treatment process, as an independent process or coupled to another 

treatment process. 

3.4 Advanced Oxidation Processes  

In the course of the last decade there has been an increase in research in the field of AOPs for 

the removal and degradation of recalcitrant compounds in wastewater (Brito and Rangel, 2008; 

Comninellis, Kapalka, et al., 2008; Klavarioti, Mantzavinos, et al., 2009; Poyatos, Muñio, et al., 

2010; Ziylan, Ince, et al., 2011; Babuponnusami and Muthukumar, 2012a; Adishkumar, Kanmani, 

et al., 2014).  

AOPs can be generally defined as oxidation methods based on the formation of highly reactive 

species such as the hydroxyl radical (•OH) and others, leading to the destruction of target 

pollutants (Poyatos, Muñio, et al., 2010). These radicals are very powerful oxidizing agents and 

non-selective which can readily attack organic molecules by dehydrogenation reactions and/or 

hydroxylation leading to the digestion of pollutants, obtaining as final products carbon dioxide, 

water and some inorganic compounds (ammonia, nitrates, sulfates), or at least the conversion 

of organic compounds to preferably more highly oxidized and less harmful products. 

These advanced technologies can be classified either as homogeneous or heterogeneous 

processes, the former being further divided into photochemical and non-photochemical 

processes (Figure 3.13). Most of these methods include Fenton reactions, ozonation, 

photocatalysis, sonolysis, combinations of UV irradiation and oxidizing chemical agents, etc. 

(Carvalho, Mestre, et al., 2013).  

The environmental applications of AOPs are quite numerous, including the treatment of 

domestic and industrial wastewater (i.e., removal of pollutants and organic and inorganic 

pathogens agents), reducing atmospheric pollution, and odor control and soil remediation. In 

the field of water treatment, the effectiveness of AOPs in destroying contaminants such as 

halogenated hydrocarbons, aromatic compounds (benzene, phenol, toluene), volatile organic 

compounds, detergents, dyes or pesticides, as well as inorganic contaminants has been 

demonstrated (Comninellis, Kapalka, et al., 2008; Poyatos, Muñio, et al., 2010; Sanz, Lombraña, 

et al., 2013). 

The range of application of these different technologies is wide, depending on the flow of 

wastewater and organic load flow to be purified. Many of these techniques can be used not 

only for purifying water, but also for disinfection, to kill or inactivate bacteria and viruses. They 

offer the advantage to destroy contaminants, as opposed to some conventional techniques  
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such as physical adsorption, or air stripping, in which the contaminants are only transferred 

from one phase to another. In contrast, the main problem of most AOPs is the high cost of the 

necessary reagents (for instance O3, H2O2, and UV radiation).  

 

Figure 3.13- Advanced Oxidation Processes classification (adapted from Poyatos, Muñio, et al., 
2010).  

The use of AOPs has been the subject of extensive research, being a central theme of studies 

covering various areas such as (Comninellis, Kapalka, et al., 2008): 

 Treatment of industrial influent including, among others, distillery waste, agrochemicals, 

kraft-bleaching, pulp and paper, textile dyeing, oil field and coating of metals; 

 Treatment of hazardous urban waste including hospital and slaughterhouses influents; 

 Removal of persistent pathogenic agents, pharmaceutical residues of endocrine disruptors 

from municipal WWTP effluent (i.e., after the secondary treatment); 

 Removal of organic micropollutants from aqueous phase, such as pesticides and heavy 

metals (e.g. arsenic and chromium); 

 Conditioning and stabilization of biological sludge from WWTPs. 

These processes can provide technological solutions for water treatment that are vital to 

support and enhance the competitiveness of several industrial sectors -including water 

technology sector- in the global market. Furthermore, the use of solar energy in these 

technologies is gaining interest, as it could represent an effective and economically competitive 

solution to several environmental problems. 

In the following sections a brief description of the most representative AOPs for the removal 

and/or degradation of water pollutants is presented. 
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3.4.1 Photolysis 

Direct photolysis is the simplest process for the oxidation of pollutants involving the interaction 

of Ultraviolet-visible (UV-vis) radiation with the polluted water, in the absence of a catalyst. 

Irradiation with ultraviolet light has been used for the disinfection of drinking water, as an 

alternative to chlorination, avoiding the formation of harmful by-products (Pereira, Weinberg, 

et al., 2007). This technique is usually combined with other methods due to its low efficiency.  

3.4.2 Ozonation 

Ozone is a strong oxidant that can easily react with organic molecules -eventually causing their 

decomposition- in water through the formation of superoxide and hydroxyl radicals (stronger 

oxidizing agents than ozone) or the selective attack of certain functional groups in the organic 

molecules through an electrophilic mechanism (Carvalho, Mestre, et al., 2013). The reaction 

between ozone and superoxide radical gives rise to the formation of ozonide radical anions 

(•O3
), which also decomposes generating •OH radicals. 

Although it is widely used in wastewater disinfection (Ternes, Stüber, et al., 2003), and drinking 

water treatment for odors and taste control, this technology presents some drawbacks. Its 

main disadvantages are the high energy costs for ozone generation and the low pollutant 

mineralization degree usually obtained for wastewater containing organic compounds. Very 

often complete oxidation can only be achieved by coupling the O3 oxidation with, for instance, 

UV irradiation or H2O2 (O3/UV and/or O3/H2O2/UV processes), which considerably increases 

operating costs (Skoumal, Cabot, et al., 2006). 

Alternative ozonation processes catalysed by transition metals have been investigated for 

degradation of organic compounds in drinking water and wastewater, with an increasing 

number of data demonstrating the efficiency of this process (Legube, Leitner, et al., 1999;  

Kasprzyk-Hordern, Ziółek, et al., 2003). Catalytic ozonation can be considered firstly as 

homogeneous catalytic ozonation, which is based on ozone activation by metal ions present in 

aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of metal 

oxides or metals/metal oxides on supports.  

3.4.3 Fenton and photo-Fenton 

Fenton reaction was described over one hundred years ago (Fenton, 1884), and the oxidative 

power of Fenton's reagent (H2O2/Fe2+) based on the generation of hydroxyl radicals was shown 

about forty years later (Haber and Weiss, 1934). Since then, the Fenton process has become 

one of the most studied catalytic processes for the remediation of polluted water. Mixtures of 

Fe3+/H2O2 (Fenton's systems) may also be used to promote the oxidation of the pollutants. 

Although the reaction mechanism is not completely elucidated yet, the generation of hydroxyl 

radicals in the presence of Fenton’s reagent can be described very briefly by the following 

reactions: 

 Fe2++H2O2→ Fe3++ OH+OH− reaction 3.9 

 Fe3++H2O2→ Fe2++OOH +H+ reaction 3.10 

The rate constant of reaction 3.9 is very high and since it forms the ferric ion, the excess 

hydrogen peroxide is decomposed, generating more hydroxyl radicals according to reaction  
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presented in reaction 3.10. The Fenton reaction is quite sensitive to solution pH, with an 

optimum pH of about 2.8-3.0, at which it is spread by the pair of catalytic behaviour Fe3+/Fe2+. 

However, secondary reactions based on consumption of •OH by Fenton reagent may also 

occur, contributing to the reduction of the oxidizing potential of Fenton systems. Fenton 

reaction efficiency can be increased under UV or solar irradiation, designated as photo-Fenton 

reaction, since it increases the production of hydroxyl radicals. This reaction is of particular 

interest, as the use of solar light with wavelengths below 580 nm, can reduce the cost of the 

process (the main drawback of most AOPs). 

Fenton's systems are usually applied in the tertiary stage of water treatment, although in the 

case of effluents with a high pollution load -for example, hospital waste or pharmaceutical 

industries-, this technology can be applied in an early stage of the process, since it can 

mineralize a substantial fraction of the polluting species, increasing the efficiency of the 

subsequent biological treatment (Méndez, Melián, et al., 2015). Satisfactory results have been 

obtained by Fenton processes in real wastewater samples (both domestic and industrial, 

covering for instance carpet dyeing wastewater, cork processing wastewater, textile secondary 

effluents, dye wastewater) (Mandal, Maity, et al., 2010; Kavitha, Palanivelu, et al., 2004, Li, 

Nanaboina, et al., 2012); even solar photo-Fenton has proven to be an effective process, 

achieving removal rates of around 90 % (Méndez-Arriaga, Esplugas, et al., 2010; Klamerth, 

Malato, et al., 2011; Nogueira, Nascimento, et al., 2012; Klamerth, Malato, et al., 2013; Ioannou, 

Michael, et al., 2014; Freire, da Fonseca, et al., 2014). 

The main disadvantages of this technology are related to the quite narrow operational range of 

pH and the need of introducing an additional stage for recovery of iron ions after treatment. 

The treated effluent will also have to be neutralized prior to reuse, increasing the salt content, 

which would be negative for certain purposes, such as irrigation. However, the high efficiency 

of photo-Fenton reaction natural pH was demonstrated using UV radiation at 254 nm, 

highlighting the possibility of its use in actual large-scale applications (De la Cruz, Giménez, et 

al., 2012).  

3.4.4 Electro-assisted degradation 

The use of electricity for water treatment was first proposed in 1889 (Chen, 2004), and although 

its application to environmental processes is still quite recent, it is expanding rapidly. Extensive 

research has been done over the last decade on direct or integrated electrochemical processes 

applied to environmental remediation processes. Compared to the classical techniques of 

wastewater remediation, this technology offer many advantages, such as environmental 

compatibility (the electrons are cleaned reagents alone), energy efficiency, versatility (freedom 

of choice in setting potential and electrode material, ability to handle a wide range of 

pollutants), low cost and easy automation (Comninellis and Pulgarin, 1993; Sirés and Brillas, 

2012; Martinez-Huitle and Ferro, 2006). 

This technology still presents some challenges, especially related to the stability, cost and 

erosion of electrodes, reduction of energy costs by coupling with solar or renewable energy 

sources and increasing the mineralization efficiency in order to prevent the formation of 

oxidation intermediates, potentially more toxic than the original compound. Electrochemical 

techniques can be classified into separation and oxidation technologies. In separation 

techniques (membrane technologies, internal electrocoagulation, and internal 
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microelectrolysis) the pollutant is isolated, unlike the electrochemical oxidation techniques 

(direct and indirect anodic oxidation, electrooxidation, electro-Fenton, photoelectron-Fenton 

and photoelectrocatalysis) in which the pollutant is decomposed.  

Indirect electrooxidation methods with H2O2 electrogeneration, such as electro-Fenton and 

photoelectron-Fenton, have also been recently applied to wastewater treatment 

(Babuponnusami and Muthukumar, 2012b), as well as in tandem with sunlight as powerful and 

economical source of UV radiation (Salazar, Brillas, et al., 2012). 

Despite the excellent performance obtained for the electrochemical technologies based on 

Fenton's reaction at laboratory scale for synthetic solutions, these processes have not yet been 

applied to real wastewaters. The complexity of real matrices prevents the study of the 

electrochemical oxidation process, since the parasitic uncontrolled reactions can be easily 

produced, thereby decreasing the electrode degradation performance and/or generating 

potentially toxic side products. Moreover, much research is being done in order to improve the 

performance of existing noble metals oxides based electrode devices, without disregarding 

new possible electrode materials. 

3.4.5 Sonolysis 

Sonolysis or ultrasonic irradiation is based on the application of high intensity acoustic radiation 

(typically in the range of 20-1000 kHz), to the aqueous medium to generate cavitation (i.e., 

bubbles), immediately followed by the implosion of these bubbles, leading to the release of 

hydroxyl radicals. The sonochemical reactions may occur in the cavitation bubble, at the 

interface or within the solution. 

The application of ultrasounds to wastewater treatment is an area of increasing interest and 

promising results. In fact, over the past few years, sonochemistry was considered one of the 

successful degradation techniques of persistent organic pollutants (Méndez-Arriaga, Torres-

Palma, et al., 2008; Isariebel, Carine, et al., 2009). Sonolysis efficiency can be improved by 

combination with other techniques (Méndez-Arriaga, Torres-Palma, et al., 2009; Wang and Yu, 

2013; Wu, Zhang, et al., 2014). For example, for the application of Fenton, sono-Fenton, and 

sonophoto-Fenton processes for the oxidation of phenol in aqueous solution, the 

mineralization efficiency was 50.5, 55.8 and 71.0 %, respectively. The overall results suggest an 

additive or synergistic effect of the tested hybrid processes (Babuponnusami and Muthukumar, 

2011). 

3.4.6 Heterogeneous Photocatalysis 

Photocatalysis originated from different catalysis laboratories in England and Germany, with 

the pioneering studies on the photocatalytic oxidation of CO in ZnO (Barry and Stone, 1960; 

Romero-Rossi and Stone, 1960; Doerfler and Hauffe, 1964a; Doerfler and Hauffe, 1964b), with 

the latter including the term “photocatalysis” for the first time in its title. The re-publication in 

English of a previous work by Fujishima and Honda (Fujishima, Honda, et al., 1969) on the photo-

water electrolysis using a titanium dioxide anode irradiated with UV in “Nature” (Fujishima and 

Honda, 1972) constituted the initial event for a globalization of photocatalysis, which had a 

preferential development in Japan.  

Photocatalysis became a major discipline owing to the mutual enrichment of scientists arising 

from different fields, as illustrated in Figure 3.14. The interest in heterogeneous photocatalysis  
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semiconductors has rapidly expanded in many fields, with an exponential number of 

publications globally appearing in the literature, turning this process into one of the most 

popular and promising AOPs in the environmental remediation area (Pelizzetti and Serpone, 

1989; Legrini, Oliveros, et al., 1993; Ollis and Al-Ekabi, 1993; Oppenlander, 2003; Fujishima, 

Zhang, et al., 2008; Comninellis, Kapalka, et al., 2008).  

 
Figure 3. 14- Contributions to photocatalysis from various sub-disciplines of chemistry (adapted from 

Herrmann, 2010). 

Efficient photocatalytic processes have the potential to tackle some of society’s greatest 

challenges; most prominently in meeting clean energy demand and controlling environmental 

pollution. Photocatalysis applications of far-reaching importance include water splitting for 

hydrogen generation, degradation of environmental pollutants in aqueous medium, carbon 

dioxide remediation, self-cleaning activity and air purification (Leary and Westwood, 2011; 

Grabowska, Reszczyńska, et al., 2012). 

Despite the large gaps still existing concerning the knowledge of the chemistry involved in most 

photocatalytic processes, its use for wastewater and drinking water treatment has attracted 

increasing interest in recent years, specially for the degradation of organic compounds in 

aqueous medium (Ollis and Al-Ekabi, 1993; Parsons, 2004; Thu, Karkmaz, et al., 2005; Martins, 

Vasconcelos, et al., 2008; Faria and Wang, 2009; Ahmed, 2012).  

The success of heterogeneous photocatalysis as an effective tool in environmental remediation 

relates mainly to the choice of titanium dioxide (TiO2) as a photoactive layer. The use of TiO2 in 

photocatalysis presents several advantages, since it is non-toxic, photo stable, cheap and very 

efficient under UV irradiation. It also requires a low operation temperature, low energy 

consumption, being insoluble under most environmental conditions, thus preventing the 

formation of undesirable by-products. 

Other semiconductors based on oxides and sulfides of transition metals (such as ZnO, MgO, 

WO3, Fe2O3, CdS) , mixed oxides (Bi2MoO6, BiVO4 ) or metal-doped semiconductors (Ag/TiO2, Ag-

AgBr and Cu2O/BiVO4) are also being used as photocatalysts; some of them show remarkakble 

photoactivity under visible light and quite high mineralization rates for the degradation of 

various pollutants have been reported (Klavarioti, Mantzavinos, et al. 2009; Zhang, Wang, et al., 

2012; Wang, Tang, et al., 2012; Wang, Huang, et al., 2013; Nalbandian, Zhang, et al., 2015).  

Triggered by the low photonic efficiency of most photocatalysts (particularly under visible 

light), new approaches are being explored. Among them, strategies based on the 
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immobilization of active phases in porous supports (silicas, glass fibers, carbonaceous 

supports), the synthesis of porous semiconductors with high surface areas (Choi, Stathatos, et 

al., 2006;. Fernández, Lassaletta, et al., 1995; Hsien, Chang, et al., 2011; Velasco, Parra, et al., 

2010a; Velasco, Parra, et al., 2010b), and the development of photocatalysts with improved light  

absorption, seem  interesting alternatives to be explored to attain a more efficient use of solar 

energy (Méndez-Arriaga, Esplugas, et al., 2008; Méndez-Arriaga, Maldonado, et al., 2009; 

Miranda-García, Suárez, et al., 2011; Klamerth, Miranda, et al., 2009; Spasiano, Marotta, et al., 

2015).  

The results found from solar photocatalytic technologies employed in different markets 

encourage further research in the use of solar photochemistry to advance in the field of 

commercial and industrial processes. In particular, application of heterogeneous solar 

photocatalysis with TiO2 should have a future beneficial impact on the environment, public 

health and a greener economy, and thereby, on the quality of life. Regardless the good results 

obtained for the degradation of organic pollutants present in wastewaters, there are only a few 

examples of medium and large-scale application of solar photocatalytic chemical processes 

(Spasiano, Marotta, et al., 2014). Solar photocatalysis it is still far for commercialization and 

implementation in the industry sector, despite its significant interest in the research 

community. 

3.4.6.1 Fundamentals of heterogeneous photocatalysis  

According to the IUPAC, photocatalysis is defined as a change in the rate of a chemical reaction 

or its initiation under the action of ultraviolet, visible, or infrared radiation in the presence of a 

substance -the photocatalyst- that absorbs light and is involved in the chemical transformation 

of the reaction partners (Braslavsky, 2007). Heterogeneous photocatalysis takes place at the 

interfacial boundary between two phases (solid/liquid, solid/gas, liquid/ gas) (Braslavsky, Braun, 

et al., 2011). Compared to photolysis, the presence of a catalyst typically accelerates the rate of 

degradation reactions, increasing the efficiency of the process (Fujishima, Rao, et al., 2000). As 

in heterogeneous catalysis, the overall kinetics of heterogeneous photocatalysis follows the 5 

step process of chemical engineering, with the only difference that in photocatalysis, in step 3, 

instead of thermal activation, it implies the activation of the solid by photons (Herrmann, 2010): 

1. Transfer of the reactants in the fluid phase; 

2. Adsorption of the reactants at the surface of the catalyst; 

3. Reaction in the adsorbed phase: 

a. Absorption of photons by the solid; 

b. Generation of excitons (namely pairs electron/ hole) and their separation; 

c. Electron transfer reactions (ionosorption, charge neutralization, radical formation, 
surface reactions,…). 

4. Desorption of the final products; 

5. Removal of the final products in the fluid phase. 

Solids have different energy levels or delocalized orbitals that are spread throughout the  

three-dimensional network of the materials, being the result of the combination of discrete 

atomic orbitals of similar energy of the individual atoms of the solid. These electronic levels are 

grouped into two energy bands: the higher energy band occupied by electrons, called valence  
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band (VB) and the lowest free energy, known as conduction band (CB). The energy gap 

between the two bands is called forbidden energy band or bandgap (Ebg), and its magnitude 

will define the behaviour of the solid as conductor, insulator or semiconductor (ranging from 1-

4 eV for semiconductors) (Figure 3.15A).  

The photocatalytic reaction on a semiconductor (Figure 3.15B) is initiated by the absorption of 

a photon of energy equal or higher than the Ebg of the semiconductor (3.2 eV for TiO2), causing 

the excitation of an electron (e) from the valence band to the conduction band; simultaneously 

a vacancy of electron or hole (h+) is created in the valence band of the semiconductor, according 

to equation 3.11: 

 h + semiconductor = h++ e‐ reaction 3.11 

The photo-generated charge carriers (electron-hole pairs, e/h+) may recombine (radiatively or 

non-radiatively) or migrate to the surface of the photoactive material where they can react with 

electron donors or acceptors adsorbed on the surface of the photocatalyst. The competition 

between these processes determines the efficiency of the photocatalytic process. 

Spectroscopic studies have also demonstrated that the electron–hole trapping or 

recombination rates are extremely fast (of the order of 10–6–10–15 s) (Colombo and Bowman, 

1996) and therefore can largely affect the photocatalytic efficiency of the catalyst. 

The photo-generated hole is a strong oxidant (redox potential of +2.53 eV vs standard hydrogen 

electrode - SHE), that can react with the pollutant (photo-oxidation, if the redox potential is 

less negative than that of the valence band of the semiconductor), or react with water 

molecules to produce hydroxyl radicals (+2.81 eV vs SHE), which leads to the oxidation of the 

pollutant by means of radical chain reactions (reaction 3.12). 

  

Figure 3.15- A) Location of the conduction band and valence of different semiconductors. (SHE- Standard 

Hydrogen Electrode). B) Major processes in semiconductor photocatalysis. (i) Photon absorption and 

electron–hole pair generation. (ii)a Charge separation and migration to surface reaction sites or (ii)b to 

recombination sites. (iii) Surface chemical reaction at active sites (adapted from Leary and Westwood, 

2011). 

Similarly, the electron in the conduction band is a strong reducing agent ( 0.52 eV vs SHE) that 

may react with electron acceptors such as dissolved oxygen creating superoxide radicals O2
 

(+0.89 eV vs SHE) (reaction 3.13) or hydrogen peroxide, H2O2 (+1.78 eV vs SHE) (reactions 3.14 e 

3.15), or other species, with a more positive redox potential than the conduction band of the 
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photocatalyst (photorreduction). These reactions avoid the recombination of the e/h+ pairs, 

thereby contributing to the increased photo-oxidation of the target pollutants. 

 H2O+h+→  OH+H+ reaction 3.12 

 O2+e→  O2
 reaction 3.13 

  O2
+ H+→ HO2

 reaction 3.14 

 2 HO2 
→ O2 + H2O2 reaction 3.15 

These oxidizing and reducing agents are able to promote the degradation of contaminants 

(inorganic and organic) through the solid/fluid interface, and in the case of organic pollutants 

can achieve complete mineralization (reaction 3.16): 

 Organic pollutant+h (TiO2)→ Intermediates→ CO2+H2O  reaction 3.16 

The principle governing the efficiency of the photocatalytic oxidative degradation is to 

minimize the recombination of the photo-generated e/h+ pairs and to enhance their separation 

through the solid/liquid interface, being its driving force the difference between the redox 

potential of the adsorbed species and the corresponding energy levels where the generated 

e/h+ pairs in the semiconductor are located.  

The overall reaction mechanism usually involves the formation of intermediate species resulting 

from the partial conversion of the pollutant, whose complexity and number depend on the 

nature of the molecule to degrade. 

3.4.6.2 Operational parameters of the photocatalytic process 

Understanding the impact that certain parameters have on the photocatalytic degradation 

efficiency and identifying the role that they play is of paramount importance -from the design 

and the application point of view-, to ensure an optimal performance of the photocatalytic 

system, as well as a sustainable and efficient operation in wastewater treatment (Chiou, Wu, et 

al., 2008; Ahmed, 2012). These parameters influence both qualitatively and quantitatively the 

photocatalytic reaction being decisive in the overall efficiency of the process. Some of the most 

important parameters are discussed below. 

Photocatalyst composition and load- The photocatalytic activity depends on the characteristics 

of the semiconductor such as crystal composition, surface area, particle size distribution, 

porosity, band gap and surface hydroxyl density. Particle size is of primary importance in 

heterogeneous catalysis, because it is directly related to the efficiency of a catalyst through the 

definition of its specific surface area. The photocatalyst titanium dioxide Degussa (Evonik) P25 

has been widely used in most of the experimental conditions; P25 contains 75 % anatase and 25 

% rutile with a specific surface area of 50 m2 g1 and a primary particle size of 20 nm (Fujishima, 

Zhang, et al., 2008). 

Crystalline properties have an influence mainly on the generation of the e/h+ pairs and 

availability of surface redox reactions. In this context, the degree of crystallinity, the crystalline 

phases and their ratio, and the crystal size must be taken into account (Tanaka, Capule, et al., 

1991) since, for instance, the presence of defects in the crystal structure may promote 

recombination processes. On the other hand, textural properties will affect the contact  
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between the catalyst and the reacting species. Generally, the process efficiency increases for 

photocatalysts with high surface area and uniform particle size and spherical shape (Herrmann, 

2010). 

The photocatalytic degradation rate increases with the increase in the catalyst loading and the 

number of active sites in solution, up to a point where the light penetration is compromised 

due to excessive particle concentration; then the rate decreases at high values due to light 

scattering and screening effects (Herrmann, 2010). Also, the tendency towards agglomeration 

of fine catalyst powders results in a reduction in the catalyst surface area available for light 

absorption and hence in a decrease of the photocatalytic degradation rate. The optimal 

concentration of photocatalyst will correspond to the least amount thereof, for which the 

maximum reaction rate is obtained. In the case of titanium oxides with specific surface areas 

between 50-200 m2 g1, the optimal concentration lies in the range of 0.5-3.0 g L1, depending 

on the chemical and technical characteristics of the system (Kisch, 2010).  

Pollutant type and concentration- The successful application of the photocatalytic oxidation 

system requires the investigation of the dependence of the degradation rate on the pollutant 

concentration (Co). It has been indicated in several studies that as the concentration of the 

target pollutant increases, more and more molecules of the compound are adsorbed on the 

surface of the photocatalyst. Therefore, the reactive species required for the degradation of 

the pollutant also increases. However, the formation of these species remains constant for a 

given light intensity, catalyst amount and duration of irradiation. Hence, the available OH 

radicals are inadequate for the degradation of pollutant at higher concentrations, with a 

decrease of the degradation rate.  

An increase in the pollutant concentration also leads to the generation of more intermediates, 

which may adsorb on the surface of the catalyst. Slow diffusion of these intermediates can also 

result in the deactivation of active sites of the photocatalyst, and thus a drop in the degradation 

rate. In contrast, at low concentrations, the number of catalytic sites will not be the limiting 

factor and the rate of degradation is proportional to the concentration following an apparent 

first-order kinetics (Herrmann, 2010), with most photocatalytic reactions obeying the 

Langmuir–Hinshelwood rate form (Annex B.4). 

Light intensity and wavelength- Light intensity determines the extent of light absorption by the 

semiconductor catalyst at a given wavelength. The variations of the reaction rate as a function 

of the wavelength follow the absorption spectrum of the catalyst, with a threshold 

corresponding to its band gap energy. Additionally, the rate of initiation of photocatalysis, and 

the photogeneration of e/h+ pairs is strongly dependent on the light intensity. Light intensity 

distribution within the reactor invariably determines the overall pollutant conversion and 

degradation efficiency.  

Radiant power- For all types of photocatalytic reactions, the reaction rate r is reported to be 

proportional to the radiant power, P (power emitted, transferred or received as radiation), for 

P < 25 mW cm2. Above this value, the reaction rate was shown to vary as P1/2, indicating an 

increase of the electron-hole recombination rate. At higher intensity, the reaction rate is 

independent of light intensity (Herrmann, 2010). This is likely due to predominant low intensity 

reactions involving electron-hole formation, so that electron-hole recombination is 



Chapter 3  
Activated carbons and advanced processes for wastewater treatment  

 
43 

insignificant. The optimal light power utilization corresponds to the domain where the reaction 

rate is proportional to P. 

Quantum yield- In photochemistry, the efficiency in substrate conversion, number of molecules 

converted per quantum absorbed by the medium, is characterized by the quantum yield, which 

according to its definition assumes knowledge of the number of photons of a particular 

wavelength absorbed by the system. While in homogeneous photochemistry this quantity can 

be measured with great accuracy, in heterogeneous photocatalysis the situation is more 

complex, and one can only easily know the number of photons incident onto the surface of the 

photocatalyst (Braslavsky, Braun, et al., 2011). This corresponds to an upper limit for the actual 

number of absorbed photons, because due to scattering phenomena, in general the number of 

active photons are reduced, being able to be determined exactly only in a few cases.  

For the above reasons, in addition to the quantum yield, the term photonic yield is convenient 

in photocatalysis. In this context, the term photonic is thus defined in terms of the incident 

amount of photons arriving at the internal surface of the irradiation window, rather than in 

terms of the absorbed. In addition, the use of efficiency was also adopted when irradiation 

within a wavelength range is used, whereas the term yield is reserved for excitation with 

monochromatic photons (i.e., photons of energy in the wavelength range λ and λ + δλ). 

The notion of instantaneous quantum yield (QY), is closer to the kinetic reality and can be 

defined as a dimensionless, “doubly kinetic” magnitude equal to the ratio of two rates: the 

reaction rate, r (in molecules converted per second), divided by the efficient photonic flux, qp 

(in UV photons per second) actually absorbed by the solid (Herrmann, 2010). The photon flux, 

qp, the number of photons per time interval (s–1) can be used on a chemical amount basis by 

dividing the photon flux, number basis, qp, by the Avogadro constant, the symbol then being 

qn,p, photon flux, amount basis (SI unit mol s–1 and common unit is Einstein s–1). 

The maximum values of QY are obtained at maximum coverage of reactants. On the contrary, 

for trace pollutant eliminations, QY mathematically decreases to less than 1 %, because of very 

low coverages resulting from the Langmuir-Hinshelwood equation. High quantum yields are 

indicative of the facility of the photocatalytic reactions performed. For low QY, it is not 

necessary to use over-powered electrical lamps. 

Oxygen- Generally, O2 is assumed to be adsorbed on the catalyst surface from the liquid phase, 

where its concentration according to Henry's law, is proportional to the gas phase. Acting as an 

electron acceptor, the presence of oxygen minimizes the recombination of the e/h+ pairs, and 

it does not compete with the contaminant for the adsorption centers. However, some authors 

have found that too high concentrations of oxygen slow down the degradation rate; this has 

been attributed to a high hydroxylation of the semiconductor surface, which inhibits the 

adsorption of the compounds on the catalyst surface (Albini and Germani, 2009). 

Solution pH- The pH is an important parameter in wastewater treatment since it may 

significantly influence the characteristics of the pollutants, particularly their ionization state, 

solubility and hydrophobicity. While some compounds are uncharged at common pH conditions 

typical of natural water or wastewater, others exhibit different surface charges depending on 

their dissociation constant (pKa). For instance for a given compound (HA) dissociating as a 

Bronsted acid (A- + H+), at pH below the pKa value, the neutral state is the predominant form  
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in solution; above the pKa value, the compound is negatively charged. Hence, some compounds 

can exist in positive, neutral, and negative forms in aqueous solutions.  

Wastewater pH varies significantly and can play an important role in the photocatalytic 

degradation of organic contaminants since it does not only control the ionization state of the 

pollutant, but it also determines the surface charge of the photocatalyst and thus the size of 

the eventual particle aggregates formed. As a result, the electrostatic interactions between a 

semiconductor surface, the solvent molecules, the pollutant and other charged species (i.e., 

radicals) formed during the photocatalytic reaction strongly depend on the solution pH. In 

addition, protonation and deprotonation of the pollutants can occur depending on the solution 

pH. Sometimes protonated products are more stable under UV radiation than its main 

structures (Saien and Khezrianjoo, 2008).  

Temperature- Since the photocatalyst activation occurs through the absorption of radiant 

energy, the temperature of the reaction medium is not expected to play an important role in 

the photocatalytic reaction (Albini and Germani, 2009). However other parameters such as the 

solubility and volatility of the contaminants and other participants species (O2, additives, etc.), 

or the adsorption-desorption kinetics, must be taken into consideration if the working 

temperature changes during the process. 

Photocatalytic reactor- The design of the photoreactors is subjected to two inherent difficulties 

in heterogeneous photocatalysis: it must ensure perfect contact between two different phases 

(solid/fluid) and allow uniform illumination of all the catalyst particles. Different configurations 

have been developed, based on aspects such as the location of the radiation source (external 

or internal), the required range of wavelengths, continuous operation or batch, liquid or gas 

phase, etc. The two more important factors to optimize in reactor design are the efficiency of 

energy use and the disposal of the catalyst. Different types of photocatalytic reactors used in 

the literature are classified and described in Table 3.6 (Zangeneh, Zinatizadeh, et al., 2015, and 

references therein). The classification is based on batch or continuous processes operating with 

suspended and immobilized systems as well as slurry configurations.  

Slurry reactors have been widely used due to their simplicity and enhanced degradation 

efficiency. Whereas, in the catalyst immobilized systems, the photocatalyst powders are 

immobilized on a support transparent to photoradiation, which facilitates the recovery and 

reuse in successive cycles in the case of working with powdered materials. Nevertheless, the 

use of supports also presents a number of disadvantages such as reduced useful semiconductor 

surface, and in the case of continuous operation, also limitations in mass transfer at low flow 

rates and increased pressure drop, thereby increasing energy costs.  

In contrast, when working with a suspended material and in order to prevent sedimentation, it 

is important to design the system so as to guarantee a turbulent flow. As for energy efficiency, 

better results are obtained for designs in which the power supply is in the center of an annular 

reactor, and in fact, commercial prototypes are based on this principle. However, the way 

radiation reaches the reactor and the optical path length of the inside are fundamental to 

determine the optimal concentration of catalyst and avoid shielding effects. 

From a fundamental point of view, the analysis of the heterogeneous photocatalytic process in 

such systems requires the determination of all physical parameters governing the kinetics: the 
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mass of catalyst, the wavelength and radiant flux of the irradiating source, the quantum yields 

or turnover numbers of the photocatalytic process, the initial concentration of reactants, and 

the influence of oxygen pressure and temperature (Faria and Wang, 2009).  

The optimization of the degradation parameters is crucial from the perspective of efficient 

design and the application of a photocatalytic oxidation process to ensure sustainable 

operation. The potential of this technique using industrial effluent needs further attention to 

yield stable pollutant removal through the optimization of process parameters. 

Table 3. 6- Different types of photocatalytic reactors (adapted from Zangeneh, Zinatizadeh, et al., 
2015). 

Reactor features Schematic of reactor setup 

Multiple tube reactor  

This set-up consists of hollow glass tubes that 
irradiated from the outside by light source and 
TiO2 coated on hollow glass tubes. 

 

Fluidized bed photoreactor 

This photoreactor consists of small particles of 
TiO2 coated on different supports. This 
configuration meets the requirements of higher 
surface area-to-volume ratio, makes better use of 
light, and shows improvement in mass transfer 
conditions and thus efficient reactant-catalyst 
contact. Other advantages include a low pressure 
drop, and high throughput.  

Batch reactor 

A cylindrical reactor placed in a thermostatic tank 
at certain temperature and photocatalytic media 
is immobilized on the inner wall of the 
photoreactor. The solution is mixed in the reactor 
by means of an impeller. Atmospheric dried air 
was introduced through a bubbler. 

 

Hexagonal annular photoreactor  

In this type of photocatalytic reactor, the outer 
configuration is in hexagonal shape. 
Photocatalyst can be in suspended form or 
immobilized on the quartz tube. 

 

Solar photocatalytic reactor  

The design depends on the type of sunlight 
provided, concentrated or non-concentrated, and 
also on the photocatalyst form (suspended or 
supported). Its main advantage is that it requires 
a smaller reactor volume for the same light-
harvest area. It can also be operated at much 
higher flow rates.  
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Despite extensive studies on photocatalysis, the commercial exploitation of this technique has 

been hindered by the lack of efficient and low-cost visible light-harvesting catalyst, a relatively 

poor understanding of the reactor design, and inadequate scale-up strategies.Despite 

numerous reported approaches to the synthesis and fabrication of various photocatalyst 

materials with demonstrated application potentials, a generalized and cost-effective method 

must be addressed before a photocatalyst can be practically used.  

In addition, more work is required on the modeling of photoreactor to optimize its design for 

pollutant degradation. Because most of the presented data on photocatalytic system were 

collected at bench scale, performance and stability of the whole photocatalytic system at a pilot 

scale should be substantiated to utilize this process on a commercial basis (Ghatak, 2014). 

3.4.6.3 Enhancement of TiO2 photocatalysis  

As it was already mentioned, TiO2 is the most broadly used semiconductor in environmental 

applications (Pelizzeti and Serpone, 1989; Kwon, Fan, et al., 2003; Choi, 2006; Ochiai and 

Fujishima, 2012; Park, Park, et al., 2013), due to several reasons: many organic compounds have 

Table 3.6 (continued). 

Photocatalytic membrane reactor 

The catalyst is used in the suspended form. 
Membrane filtration may be used as a single step 
for the complete recovery of catalyst particles 
from solution. The major disadvantages of such 
configuration are deterioration of the permeate 
flux and membrane fouling. Different reactors 
have been tested including light source irradiation 
of the membrane module, the feed tank, catalyst 
supported in/on the membrane and the light 
source positioned above the membrane module 
or inside the membrane module and feed tank. 

 

 

 
 

Rayonet multi-lamp photocatalytic reactor 

A cylindrical vessel with a multi- lamp 
arrangement in which the cylinders are fabricated 
from quartz to allow for maximum UV 
transmission into the reaction zone from the 
inside and outside. The bottom portion of the 
reactor is conical to allow water to enter and then 
be distributed through the distributor. The 
photocatalyst particles are retained by a 425 m 
Nylon mesh screen held between steel plates with 
58 holes of 5 mm diameter. 

 

Photocatalytic reactor  

This reactor consists of a quartz tube, with an inlet 
tube for oxygen purging during photocatalysis 
and another outlet for the collection of samples 
from the reactor. After being sampled, the 
suspension is centrifuged and the centrifugate is 
subjected to further analysis. 
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an oxidation potential above the titanium oxide valence band, being for this reason 

photocatalytically oxidized by this material. Secondly, the redox potential of the pair H2O/•OH 

is located within the domain of the band gap of the material. Furthermore, the high resistance 

of TiO2 to light-induced corrosion, along with its low cost and safety, makes this material the 

most suitable for application in heterogeneous catalysis based AOPs. Nevertheless its 

widespread application, the use of TiO2 in heterogeneous photocatalysis presents some 

drawbacks. 

The major disadvantage is related to its Ebg (3.2 eV), which requires irradiation with UV light 

below 380 nm, to obtain its total capacity as a photocatalyst. Thus, TiO2 can use only 3-4 % of 

the solar energy that reaches the Earth, since its band gap limits the use of visible light. 

Moreover, the quantum efficiency of the photocatalytic process with TiO2 is low, as a result of 

the rapid recombination of e/h+ pairs photo-generated.  

In this sense, three fundamental approaches for the enhancement of photocatalytic activity are 

currently being investigated (Kudo and Miseki, 2009; Hu, Li, et al., 2010; Daghrir, Drogui, et al., 

2013): 

 Photocatalyst band gap tuning via chemical modification; 

 Minimizing charge carrier recombination; 

 Promotion of the forward reaction and adsorption of reactants through provision of 

adequate quality and quantity of active sites. 

Moreover, as the degradation rate is connected to the surface contact between the active sites 

in the photocatalyst and the compounds in solution, most research efforts on this field focus 

on incorporating porous catalysts, either via synthesis of porous semiconductors or 

immobilization on porous supports (Pelizzetti and Serpone, 1989, Faria and Wang, 2009, Leary 

and Westwood, 2011; Dozzi and Selli, 2013). 

Modification of TiO2 with non-metals has been suggested as an efficient approach to tuning the 

band gap energy for visible light. However, the overall photocatalytic performance still does 

not meet the requirements for industrial application and remains an important area for further 

investigation. On this matter, the development of a stable and reliable photocatalyst using 

visible or solar light irradiation is of great relevance to enable the commercial viability of 

photocatalysis.  

Another clear disadvantage of TiO2 photocatalysis, which in most cases is used as a suspension 

of fine powders, is related to the difficult recovery and further reuse of the catalyst after water 

treatment. This issue remains as the major obstacle towards large-scale implementation in the 

industry. This limitation can be overcome by semiconductor immobilization on different 

substrates, such as glass spheres and ceramics, polymers, thereby facilitating the need for a 

post-removal treatment. This strategy may allow the reuse of the photocatalyst in several 

sequential cycles while maintaining its activity, although slightly longer times may be needed 

for the completion of treatment (Miranda-García, Suárez, et al., 2011). 

A combined process comprising photocatalysis and membrane separation, can alternatively be 

used, wherein the membrane retains the catalyst, the unreacted pollutant and its by-products, 

and may then be recycled to the photoreactor (Mozia and Morawski, 2012, Benotti, Stanford,  
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et al., 2009). However, it should be noted that the immobilization of the catalyst inevitably leads 

to a decrease in surface area available for the reaction compared to suspension systems, slightly 

lowering the efficiency of the degradation. 

In the following section, the role of carbon materials in heterogeneous photocatalysis will be 

discussed, whether as part of composites or as photocatalysts on their own. 

3.4.6.4 Role of carbon materials in heterogeneous photocatalysis  

Triggered by the rising interest in heterogeneous photocatalysis for environmental 

remediation, numerous efforts have been made in the last decades to improve the 

photocatalytic activity of semiconductors. Aside from tuning their nanostructure and chemical 

composition, novel hybrid materials prepared by immobilization of the photoactive 

semiconductor on appropriate substrates have been explored.  

Despite carbons are strong light absorbing materials, extensive work has been carried out on 

the improvement of the catalytic activity of photo-active materials upon immobilization on 

different carbon supports (Hu, Wang, et al., 2002; Inagaki, Park, et al., 2010; Leary and 

Westwood, 2011). Indeed, many studies have shown that adding a carbonaceous phase to the 

catalyst provides superior performance in a number of photocatalytic degradation reactions, 

both in liquid and gaseous phase (Leary and Westwood, 2011; Faria and Wang, 2009; Ania, 

Velasco, et al., 2012). The enhancement on the photocatalytic response of 

carbon/semiconductor composites has been attributed to either single or collective factors 

traditionally associated to visible light absorption, textural features (i.e. surface area) and 

strong interfacial electronic effects.  

Most recently, the visible-light photochemical activity of certain carbon materials has been 

demonstrated in the absence of conventional semiconductors under monochromatic light 

(Velasco, Maurino, et al., 2013a; Velasco, Maurino, et al., 2013b; Velasco, Lima, et al., 2014). An 

overview of the photochemical response of carbon-containing photocatalysts and their 

efficiency for the degradation of different pollutants will be presented in the next sections. 

Carbon/TiO2 Photocatalysts- The majority of the studies in the literature deal with the use of 

TiO2 as photocatalyst, due to its low cost, high photoactivity and stability. As it was already 

mentioned, TiO2 doping is nowadays considered a promising route to tune its band gap, 

allowing a more efficient use of sunlight in photocatalytic processes. Most of the approaches 

on TiO2 photoactivity enhancement have been focused on the use of metallic (Fe, Cr, Ag, and 

Ce) and non-metallic (N, C, S, B, and F) doping (Asahi, Morikawa, et al., 2001; Sakthivel and Kisch, 

2003; Choi, Umebayashi, et al., 2004). Non-metallic TiO2 doping is considered to be more 

effective than transition metal doping due to their high photostability and lack of 

photocorrosion of the resulting catalyst. In this sense, nitrogen and most recently carbon have 

been widely investigated and were considered to be more effective than other non-metal 

heteroatoms for the degradation of organic pollutants (Asahi, Morikawa, et al., 2001; Nie, Zhuo, 

et al., 2009). Carbon doping seems to have a more beneficial effect, compared to nitrogen 

doping, despite the synthesis, structural and electronic control of carbon-doped TiO2 are usually 

more complex (Di Valentin, Pacchioni, et al., 2005). 
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Although still uncertain, the origin of the improved photocatalytic performance of  

carbon-doped TiO2 is explained by most authors in terms of the shift in the absorption 

properties towards the visible region and the modifications in the electronic band structure of 

titanium oxide associated to band gap narrowing (Ania, Velasco, et al., 2012). 

Photocatalytic techniques based on carbon-containing catalysts have been employed for water 

splitting into H2 and O2, and in the gas-phase and liquid-phase degradation of a vast number of 

pollutants, being phenol and related aromatic compounds, dyes, pesticides, and herbicides, 

among the most representative classes of compounds studied in this context (Pelizzetti and 

Serpone, 1989; Oppenlander, 2003; Silva, Wang, et al., 2006; Chong, Jin, et al., 2010; Ahmed, 

2012; Adishkumar, Kanmani, et al., 2014;). 

Besides semiconductor doping, the incorporation of porous supports in carbon/TiO2 

composites is another promising approach for the preparation of more efficient 

photocatalysts, overcoming the operational cornerstones usually associated to limited 

recovery and reuse of the catalyst. Extensive work has been carried out upon immobilization of 

photo-active materials on different carbon supports (Leary and Westwood, 2011; Faria and 

Wang, 2009; Ania, Velasco, et al., 2012), and carbon/TiO2 composites have shown quite high 

efficiencies for the photodegradation of a variety of pollutants (Leary and Westwood, 2011; 

Faria and Wang, 2009; Tryba, Morawski, et al., 2003; Puma, Bono, et al., 2008; Matos, Laine, et 

al., 1998; Araña, Doña-Rodríguez, et al., 2003a; Silva, Wang, et al., 2006; Velasco, Parra, et al., 

2010; Velasco, Fonseca, et al., 2012). 

The photocatalytic performance of carbon/TiO2 composites has been reported over a variety of 

carbon sources,  forms, and morphologies, using different  synthetic routes  for the preparation 

of the hybrid catalyst (mechanical mixture, coating by liquid impregnation, hydrothermal 

process, chemical vapor deposition) (Leary and Westwood, 2011; Faria and Wang, 2009; Puma, 

Bono, et al., 2008).  

The superior response of the carbon/TiO2 photocatalysts has been usually attributed to single 

or collective factors traditionally associated with to the nature of the carbon matrix itself, the 

increase in visible light absorption by the composite, synergistic effects based on the target 

pollutant confinement in the activated carbon porosity, and strong interfacial electronic effects 

in the carbon support (Leary and Westwood, 2011; Ania, Velasco, et al., 2012). Furthermore, it 

seems generally accepted that the role of carbon on the overall photocatalytic enhancement 

differs greatly for porous carbons compared to other forms of nanostructured carbons (such 

as carbon nanotubes, fullerenes and graphene). 

Beyond the above-mentioned synergistic effect, the presence of a carbon matrix in the catalyst 

composition has been reported to change the catalytic behaviour of TiO2 (Araña,  

Doña-Rodríguez, et al, 2003a; Velasco, Parra, et al., 2010; Velasco, Fonseca, et al., 2012; Araña,  

Doña-Rodríguez, et al, 2003b). Different degradation intermediates have been detected using 

activated carbon/TiO2 photocatalysts, compared to bare titania, confirming the outstanding 

role of the carbon matrix on the photodegradation mechanism of a target pollutant (Velasco, 

Parra, et al., 2010a; Velasco, Parra, et al., 2010b; Araña, Doña-Rodríguez, et al., 2003b; Tryba, 

2008). The modification of the photo-oxidation pathway observed for the organic pollutants 

can also be explained by some changes in the interactions occurring between the pollutant and  
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the photocatalyst surface in the presence of the carbon, as revealed by Infrared Spectrometry 

studies (Araña, Doña-Rodríguez, et al., 2003b). 

 Carbon as Photocatalyst- Heretofore, knowledge on carbon/semiconductor photocatalysis is 

based mainly on the role of carbons as non-photoactive additives and supports (Matos, Laine, 

et al., 1998; Matos, Chovelon, et al., 2009) (see above sections). Research carried out in our 

group has demonstrated the photochemical activity of semiconductor-free nanoporous 

carbons under different irradiation conditions, demonstrating their ability to photogenerate 

radical oxygen species in aqueous environments (Velasco, Parra, et al., 2010; Velasco, Fonseca, 

et al., 2012). This has opened new perspectives in the field of applied photochemistry based on 

carbon materials covering environmental remediation, water splitting, enhanced 

adsorption/oxidation, or photoluminescence. 

Beyond the synergistic effect observed for carbon/TiO2 composites, these results have shown 

that the nanoporous carbon alone was capable of a significant level of self-photoactivity under 

different illumination conditions, resulting in improved photochemical conversions for several 

reactions (i.e., photo-oxidation of phenol and water splitting) (Velasco, Gomis-Berenguer, et al., 

2015). To shed light on the origin and mechanisms of the photoinduced reactions initiated upon 

illumination of carbon materials, spin trapping electron spin resonance data of activated 

carbons have confirmed their ability to generate a similar or even higher quantity of hydroxyl 

radicals than commercial P25, when exposed to UV irradiation in an aqueous system (Haro, 

Velasco, et al., 2012; Velasco, Maurino, et al., 2013a; Velasco, Maurino, et al., 2013b).  

The visible light photochemical activity of nanoporous carbons under monochromatic light was 

also demonstrated, showing the ability of semiconductor-free nanoporous carbons to convert 

the low-energy photons from the visible spectrum into chemical reactions (i.e. phenol photo-

oxidation and photoelectrochemical water splitting) (Velasco, Lima, et al., 2014; Velasco, Gomis-

Berenguer, et al., 2015; Gomis-Berenguer, Iniesta, et al., 2016).  

In spite of the growing interest in this discussion, the exact role of carbon materials in the sharp 

response of the photocatalytic composites TiO2/carbon is not yet completely understood. Even 

though the relative abundance of the degradation intermediates detected in solution seems to 

be highly dependent on the characteristics (composition and structure) of the carbonaceous 

material itself, this singular photocatalytic behaviour does not apply for all types of carbon 

adsorbents. 

The interesting results obtained so far in this field will definitely stand as a starting point for 

further studies in this area. The possibility of coupling the photocatalytic degradation of 

refractory pollutants with classic and highly skilled adsorption technologies based on carbon 

materials is very attractive and will certainly be a topic of intensive research of the scientific 

community in years to come. 

3.5 Phenolic compounds in the aquatic environment 

Phenol is a fairly important molecule in the area of environmental research, being often chosen 

as a model molecule of an aromatic organic pollutant, due to the following reasons (Mayani, 

Vishal, et al., 2011): 

• It is refractory to the biologic process; 

• It is involved as an intermediate in the oxidation path of many aromatic molecules; 
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 • Its presence in water in very low concentrations (in the order of ppb), is sufficient to 
generate disagreeable odor and taste; 

• It is extremely toxic to humans. 

3.5.1 Physical and chemical properties 

Phenols are a very heterogeneous group of compounds with different physical and chemical 

properties. Phenol (Chemical Abstracts Service -CAS- number 108-95-2), a monosubstituted 

aromatic hydrocarbon, is the simplest member of this family of products. It is also known as 

carbolic acid, benzenol, phenylic acid, hydroxybenzene and phenic acid. Pure phenol is a 

colorless or white crystalline solid with a powerful antiseptic sweet odor, detectable to most 

people at 40 ppb in air and at about 1-8 ppm in water (Rappoport, 2003; Fiege, Voges, et al., 

2012). When exposed to air and light, the white crystals of phenol turn pink or red. This 

compound is moderately soluble in water, being commercially sold as a liquid product. Some 

physical properties of phenol are reported in Table 3.7.  

Table 3. 7- Physical properties of phenol (Weber, Weber, et al., 2004). 

Molecular formula C6H5OH 

Molecular weight 94.1 g mol1 

Appearance White crystalline solid 

Density 1.071 g cm3 (20 ºC) 

Melting point 40.9 ºC 

Boiling point 181.8 ºC 

Water solubility 8.36 g/100 mL (20 ºC) 

Acidity (pKa) 9.95 

Phenols are widely distributed in nature, being produced by plants and animals, including 

humans. Naturally occurring phenols are responsible for the flavor and color of certain foods. 

They are also used by plants to produce lignin, the main natural polymer in timber. 

3.5.2 Phenol production  

By the late nineteenth century, phenol was obtained mainly from coal tar, but currently, only a 

small amount of phenol is still obtained in this way. In the early twentieth century, synthetic 

routes have been developed, in order to meet a growing demand of this compound caused by 

the marketing of phenolic resins (Weber and Weber, 2010). The first synthetic method for the 

production of phenol, which is no longer in use, involved chlorination and sulfonation of 

benzene.  

After the end of World War II, the cumene-to-phenol process (Hock Process) was developed 

and marketed. This process, that generates acetone as a by-product, remains until today as the 

predominant route for the production of phenol, responsible for about 95 % of the phenol used 

in the world. However, it presents some disadvantages such as a high environmental impact, 

formation of explosive intermediates (cumene hydroperoxide), multiple steps, which makes it 

difficult to obtain a high conversion of the overall process, decreasing its cost-effectiveness. In 

the 1960’s, phenol production process from toluene was also explored, although currently 

there is no commercial production of phenol by this process. 
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Over the last two decades, several attempts have been explored in order to develop new routes 

for obtaining phenol by the direct oxidation of benzene, in a single step. However, none of 

these alternative processes have yet been commercialized, since it is still necessary to improve 

process selectivity (Molinari and Lavorato, 2012; Fiege, Voges, et al., 2012). Currently, phenol is 

produced at a rate of about 6 million ton/year worldwide, with a significant increasing trend 

(Busca, Berardinelli, et al., 2008), particularly as an intermediate in the production of other 

chemicals.  

3.5.3 Phenol industrial applications 

Phenolic compounds are used in diverse industries, such as in the production of resins, nylon, 

plasticizers, antioxidants, oil additives, pesticides, dyes, explosives, disinfectants, etc. (Fiege, 

Voges, et al., 2012; Weber and Weber, 2010). Phenol is generally used as a disinfectant, as a 

reactant in chemical analysis and in the manufacture of artificial resins, drugs, pharmaceuticals, 

organic compounds, fertilizers, explosives, industrial dyes and coke. 

The largest application of phenol (35 %) is as an intermediate in the production of phenolic 

resins, like phenol-formaldehyde resins (Bakelite), which are low-cost thermosetting resins 

used in plywood adhesive, construction, automotive and appliances industries. It may also be 

converted in bisphenol-A, a monomer used in the manufacture of epoxy and other resins (28 %) 

by reaction with acetone, and also used for the production of caprolactam (16 %),which is used 

in the manufacture of Nylon 6 and other synthetic fibers.  

3.5.4 Phenolic compounds in industrial wastewater 

The wide-ranging use of phenols, combined with their toxicity and unavoidable discharge of 

considerable amounts into the environment, has promoted extensive research on phenolic 

compounds and their fate in the environment. These compounds are some of the key organic 

contaminants in industrial wastewater, considered as harmful pollutants because they are toxic 

and harmful for the life of organisms even when present in low concentrations. The detection, 

identification and quantification of phenol compounds in water and their subsequent 

monitoring is of great importance for the control and protection of the environment and for 

emission control. 

Phenols present in wastewater discharged into water courses can be transported over great 

distances because of their stability and water solubility. The presence of phenols in surface 

water or groundwater can lead to the generation of more toxic chlorinated phenols during 

water disinfection processes. Chlorophenols can also be formed from different industrial 

activities or degradation of other pollutants like pesticides. Due to their broad spectrum of 

antimicrobial properties, chlorophenols are widely used as fungicides, herbicides, insecticides, 

being also widely used as intermediates in chemical syntheses. These compounds tend to be 

much more persistent, ecotoxic and susceptible to bioaccumulation. For example, 

pentachlorophenol that is used as a wood preservative and general biocide is widespread in the 

environment, being found in 80 % of human urine specimens, in an EPA study (Glezer, 2003). 

Alkyl-substituted phenols are also very widely used phenol derivatives. The alkylation of 

phenols is a very important industrial reaction, and alkylphenols are used in a variety of 

applications, such as antioxidants, herbicides, insecticides, or polymers. The transformation and 

biodegradation of alkylphenol polyethoxylates, present in detergents as non-ionic surfactants, 
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leads to the formation of free alkylphenol, such as nonyl- and octylphenols that adsorb readily 

onto suspended soils and are known to exhibit estrogen-like properties, possibly linked to  

carcinogenic effects. In Figure 3.16, some of the most frequently detected phenolic compounds 

in aqueous medium are shown. The presence of phenolic compounds in the aquatic 

environment causes serious problems, such as unpleasant taste and odor at very low 

concentrations (approximately 5 ppb), being extremely toxic at concentrations higher than 2 

mg L1 and exhibiting a high BOD (2.4 mg O2 mg1 phenol), generating a wide variety of problems 

to aquatic life (De Luis, Lombraña, et al., 2011). 

 
Figure 3.16- Chemical structure of some the most frequently phenolic compounds detected in 
wastewater- a) phenol; b) 2-methylphenol; c) 3-methylphenol; d) 2,4-dimethylphenol;  
e) 2-chlorophenol; f) 2,4-dichlorophenol; g) 2,4,6-trichlorophenol; h) pentachlorophenol;  
i) 2-nitrophenol; j) 4-nitrophenol; k) 2,4-dinitrophenol; l) 4-chloro-3-methylphenol. 

The Ec50 values for phenol and some of its oxidation intermediates are presented in Table 3.8. 

From the analysis of the data, it is possible to conclude that some of the species generated 

during the oxidation process, namely hydroquinone, catechol and 4-methylphenol, present 

higher ecotoxicity than phenol itself, given their lower EC50 values. Phenol oxidation mechanism 

will be discussed further in this dissertation, in section 3.5.5.4. 

Table 3. 8- Ecotoxicity of phenolic compounds according to the Microtox test on luminescent 
bacteria for an exposure of 15 minutes (De Luis, Lombraña, et al., 2011). 

Compound EC50 (% v/v) 

Phenol 13.87 

Hydroquinone 0.55 

Cathecol 12.70 

3-methylphenol 19.18 

2-methylphenol 18.53 

4-methylphenol 0.08 

a b c d

e

i j

hgf

k l
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Phenol causes local and systemic ecotoxic effects when entering the body through ingestion or 

by inhalation. Locally, phenol can cause irritation, skin burns, acute poisoning and death, as the 

result of respiratory failure. Chronic exposure to phenol is characterized by systemic problems 

and the long term effects of phenol exposure include a lifespan decrease, reproductive 

disorders, and changes in appearance or behaviour.  

Due to its toxicity, phenolic compounds are subject to regulation as water environmental 

pollutants. The European Union (EU) specifies a level of legal tolerance of 0.5 µg L1 of each 

phenolic compound in water for human consumption. The EU has also classified several 

phenolic compounds, such as nonylphenols, octylphenols and pentachlorophenol, as priority 

contaminants, being part of a list of 45 priority substances in the field of water policy (Directive 

2013/39/EU). In Table 3.9, the environmental quality standards regarding the phenolic 

compounds classified as priority substances are summarized. 

Table 3. 9- Environmental quality standards for EU phenolic priority substances (Directive 
2013/39/EU). 

Name CAS  

number 

AA- Inland 
surface waters 

(μg L1) 

AA- Other 
surface waters 

(μg L1) 

MAC- Inland 
surface waters 

(μg L1) 

MAC- Other 
surface waters 

(μg L1) 

Nonylphenol 84852-15-3 0.3 0.3 2.0 2.0 

Octylphenol 140-66-9 0.1 0.1 n.a. n.a. 

Pentachlorophenol 87-86-5 0.4 0.4 1.0 1.0 

AA- Annual Average; MAC- Maximum Allowable Concentration.  

In Portugal, the recommended quality standards for different types of water, and also for 

WWTP discharges, regarding the presence of phenols, are presented in Table 3.10. 

Table 3. 10- Portuguese water quality standards regarding phenolic compounds (Decreto-Lei nº 236, 
1998). 

 RMV PMV ELV 

Surface waters for the production of 

water for human consumption (mg L1) 
-a/0.001b/0.100c 0.001a/0.005b/0.100c n.a. 

Water for human consumption (µg L1) - 0.5 n.a. 

Bathing water quality (mg L1) 0.005 0.05 n.a. 

Wastewater discharges (mg L1) n.a. n.a. 0.5 

RMV- Recommended Maximum Value; PMV- Permissible Maximum Value; ELV- Emission Limit 
Value; a- Physical treatment and disinfection; b- Physical and chemical treatment and 
disinfection; c- Physical and chemical, advanced treatment and disinfection; n.a.- not applicable.  

The United States Environmental Protection Agency, USEPA has set a water purification 

standard of less than 1 ppb of phenol in surface water and a maximum concentration of 0.5 µg 

L1 for total phenols in drinking water. The limits for wastewater emissions are 0.5 mg L1 for 

surface water and 1 mg L1 for the sewerage system. Eleven phenolic compounds, among the 

different classes of these group of chemicals, have also been classified as priority pollutants by 

this entity, being listed in Table 3.11.  
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Table 3.11- Phenolic compounds classified as priority pollutants by USEPA (USEPA, 2015). 

Compound CAS number 

Phenol 108-95-2 

2-chlorophenol 95-57-8 

2-metilphenol 95-48-7 

2-nitrophenol 88-75-5 

2,4-dimetilphenol 105-67-9 

2,4-dichlorophenol 120-83-2 

4-chloro-3-metilphenol 59-50-7 

2,4,6-trichlorophenol 88-06-2 

2,4-dinitrophenol 51-28-5 

4-nitrophenol 93951-79-2 

Pentachlorophenol 87-86-5 

Phenols are present in wastewater of diverse industries, such as refineries, coking operations, 

coal processing, and petrochemicals manufacture, being also the main organic constituents of 

condensate streams in coal gasification and liquefaction processes. Other sources of 

wastewater containing phenols are pharmaceutical, plastics, polymeric resins, tanneries, food 

products preservatives, wood products, paints, pulp and paper, and herbicides and fungicides 

production industries. Reported levels of phenols in diverse industrial wastewater are 

presented in Table 3.12.  

Table 3.12- Reported levels of phenol in industrial wastewater (Busca, 
Berardineli, et al., 2008; Zangeneh, Zinatizadeh, et al., 2015). 

Industry Phenol concentration (mg L1) 

Petroleum refineries 40 - 500 

Petrochemical 200 - 1220 

Textile 100 - 150 

Leather 4.4 - 5.5 

Coke ovens 600 - 3900 

Coal conversion 1700 - 7000 

Ferrous industry 5.6 – 9.1 

Rubber industry 3 – 10 

Pulp and paper industry 22 

Wood preserving industry 50 – 953 

Phenolic resin 1270 - 1345 

Fiberglass manufacturing 40 – 2564 

The occurrence of phenol and phenolic compounds in the year 2013, in European waters is 

documented by the European Pollutant Emission Transfer and Register of the European 

Environment Agency (EEA, 2013), and in Portuguese waters in the corresponding Registo de  
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Emissões e Transferências de Poluentes of Agência Portuguesa do Ambiente (APA, 2013), which 

is presented in Table 3.13.  

Table 3.13- Portugal and Europe emission of phenolic compounds into water by 
sector in tonnes and correspondent number of facilities (in brackets) for the 
year of 2013. 

 

 

 

 

 

 

 

According to the data available, relating to the year of 2013, the emission of phenolic 

compounds from the European Community countries was of 713 tonnes (corresponding to 395 

manufacturing facilities). With respect to emissions in Portuguese waters, 3.31 tonnes were 

ascertained, accounting for only about 0.5 % of the European total. The largest contribution to 

these emissions is from the energy sector, from oil and gas refineries, gasification and 

liquefaction processes, power plants and other combustion plants and coke ovens. In Portugal, 

phenolic compounds emissions are attributed to the energy sector, wastewater treatment and 

processing of paper and wood. 

3.5.5 Treatment of wastewater contaminated with phenolic compounds 

Phenolic compounds are a particular class of organic molecules that raises great concern in the 

field of industrial wastewater treatment. Often chosen to be representative of a dangerous 

pollutant, a large amount of data is available on phenol, especially as regards its removal or 

destruction through wastewater treatment technologies.  

3.5.5.1 Conventional treatments 

In the last decade, the treatment of wastewater contaminated with phenol and phenolic 

species has attracted much attention due to the ecotoxicity and low biodegradability of these 

organic compounds. A number of technologies, both destructive and non-destructive, are 

available for the removal of phenolics from industrial wastewater. Conventional technologies 

for phenolic wastewater treatments include as secondary treatment physicochemical and/or 

biological methods (Busca, Berardinelli, et al., 2008; Ranade and Bhandari, 2014).  

Biodegradation processes are applied to phenolic effluents when low phenol concentrations 

are present, due to the ecotoxicity of these compounds towards most of the microorganisms. 

Phenol may be converted into less toxic compounds by microorganisms under aerobic or 

anaerobic conditions (Zangeneh, Zinatizadeh, et al., 2015). Although the treatment of industrial  

Sector Portugal Europe 

Energy sector 0.0531 (2) 459 (333) 

Metal production and processing - 32.5 (23) 

Mining industry - 0.675 (6) 

Chemical industry - 53.1 (49) 

Residues and wastewater 
management 

2.16 (3) 147 (158) 

Paper production industry 1.09 (2) 20.4 (20) 

Intensive livestock production and 
aquaculture 

- 0.115 (2) 

Animal and vegetable products of 
the food and beverages sector 

- 0.0381 (1) 

Other activities - 0.294 (3) 
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effluents by microorganisms units is difficult due to the high phenol concentration in batch 

systems, total phenol degradation of solutions with initial concentrations of 300 and 500 mg L1 

can be achieved (Busca, Berardinelli, et al., 2008). Nevertheless, biological treatment is 

incapable of obtaining satisfactory phenol removal with current conventional biodegradation 

processes, which are severely affected by the large amounts of phenolic compounds usually 

found, for example, in olive oil mills effluents, coal chemistry, or solvents (De Luis, Lombraña, 

et al., 2011). Furthermore, phenol accumulation on concentrated sludge creates also a disposal 

problem.  

Biological treatment may be combined with a subsequent photocatalytic treatment, when 

lower concentrations of phenol are achieved. For example, an initial phenol concentration of 

50 mg L1 can be can be biologically degraded to 6.8 mg L1, and then subjected to a 

photocatalytic treatment (Suryaman, Hasegawa, et al., 2006). This combination provides some 

advantages, namely a shorter mineralization time and the decomposition of non-biodegradable 

intermediate compounds, although requiring a higher energetic cost than the biological 

treatment alone. 

Chemical methods include several processes, like coagulation or flocculation combined with 

flotation and filtration, precipitation–flocculation with Fe(II)/Ca(OH)2, electroflotation, 

conventional oxidation methods by oxidizing agents, irradiation or electrochemical processes. 

These chemical techniques are often expensive, and although phenols can be successfully 

removed, the excessive use of chemicals may originate a secondary pollution problem. 

Different physical methods are also widely used, such as membrane-filtration processes (NF, 

RO, electrodialysis, etc.) and adsorption techniques. The major disadvantage of the membrane 

processes is that they have a limited lifetime before membrane fouling occurs and the cost of 

periodic replacement must thus be included in any analysis of their economic viability. In the 

next section, phenol adsorption by activated carbons will be the subject of a more detailed 

discussion. 

3.5.5.2 Phenol adsorption on activated carbons 

Adsorption is a well-known equilibrium separation process and an effective method for water 

decontamination applications. The use of activated carbons in water treatment is probably one 

of the oldest chemical technologies, and a vast literature has accumulated on this subject (Faust 

and Aly, 1987; Derbyshire, Jagtoyen, et al., 2001; Cheremisinoff, 2002; Bansal and Goyal, 2005; 

Le Cloirec and Faur, 2006; Marsh and Rodríguez‐Reinoso, 2006; Rúa-Gómez, Guedez, et al., 2012; 

Przepiórski, 2006; Ranade and Bhandari, 2014; Sorokhaibam and Ahmaruzzaman, 2014).  

Adsorption on activated carbons has been found to be superior, when compared to other 

techniques, for water treatment in terms of initial cost, flexibility and simplicity of design, ease 

of operation and insensitivity to toxic pollutants. Activated carbons are the most common 

adsorbents used for the removal of pollutants from wastewater, due to their excellent 

adsorption abilities for organic pollutants (Derbyshire, Jagtoyen, et al., 2001; Radovic, Moreno-

Castilla, et al., 2000; Moreno-Castilla, 2004; Nakagawa, Namba, et al., 2004; Ahmaruzzaman, 

2008; Mayani, Vishal, et al., 20011).  

Adsorption of phenolic compounds from aqueous solutions is one of the most investigated of 

all liquid-phase applications of carbon adsorbents. This technology is suggested for high  
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concentration and low volume of phenolic wastewater in wastewater (Ahmaruzzaman and 

Sharma, 2005; Dąbrowski, Podkościelny, et al., 2005; Zangeneh, Zinatizadeh, et al., 2015).  

As for the liquid adsorption of aromatic compounds, phenol adsorption is a complex process 

governed by numerous factors that exert an important influence on this phenomenon  

(Moreno-Castilla, 2004; Dąbrowski, Podkościelny, et al., 2005):  

 The nature of the adsorbent, its pore structure, functional groups, ash content;  

 The nature of the adsorbate, its pKa, functional groups present, polarity, aqueous solubility, 

molecular size and weight; 

 The solution conditions, such as pH, ionic strength; 

 The adsorbate concentration.  

Other factors as the type of precursor of the carbon, and the oxygen availability in the solution, 

i.e., ‘‘oxic or anoxic conditions of adsorption’’ are also important.  

The mechanism of phenol adsorption is still not well understood and has been the subject of 

several investigations. Especially, the more contentious issue is the role of surface-oxygen 

functionalities in the adsorption process. Several literature studies have contributed to a 

comprehensive knowledge of the adsorption mechanism and identification of the adsorption 

sites on the carbon surface (Salame and Bandosz, 2003; Terzyk, 2003; Velasco and Ania, 2011). 

According to these studies, phenol uptake is dependent on both the textural characteristics 

and surface chemistry of the activated carbons.  

Both physi- and chemisorption sites for phenol were identified on activated carbons (Castillejos-

López, Nevskaia, et al., 2008; Velasco and Ania, 2011). It has been demonstrated that phenol 

physisorption depends strictly on the porosity, regardless the oxidation state of the carbon 

surface, as a result of dispersive interactions between the aromatic part of the phenol and the 

carbon’s basal planes. On the other hand, phenol molecules interact with the edges of the basal 

planes in the carbons, showing various chemisorption sites desorbing at temperatures above 

400°C (likely due to different orientations of phenol molecules). Consequently, carbon 

oxidation treatments, that promote the incorporation of surface functionalities on the edges 

of the basal planes suppresses the fraction of chemisorbed phenol (Velasco and Ania, 2011). 

The adsorption of phenolic compounds is also well known to be pH dependent. Phenol 

adsorption from solution on carbons with acidic pH depends on the porosity, but more 

importantly, on the surface chemistry of the carbons, showing a strong dependence on the 

number of carboxylic groups. Phenol adsorption for pH < 10 is independent of the solution pH. 

On the other hand, for pH values higher than 10 an accentuated decrease in the phenol removal 

is observed. A favourable mechanism of adsorption observed when the carbon materials 

presented basic characteristics and the pH of the adsorptive-adsorbent system is lower than 

the point of zero charge. 

Phenol adsorption occurs via two possible mechanisms being the first one attributed to the 

adsorption by means of dispersive interactions between the phenol aromatic ring and the 

activated carbon aromatic structure. In this case the electrostatic interactions do not have a 

significant role on the adsorption. The second mechanism based on the dispersive attractive  
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forces and the electrostatic repulsion interactions, occurs when phenol is predominantly in the 

phenolate form and the activated carbon surface is negatively charged. 

In an attempt to clarify the role of the surface chemistry of activated carbons in the adsorption 

process, the nature of the surface functional groups of the adsorbents has been modified by 

thermal and chemical treatments. (Ania, Parra, et al., 2002; Yin, Aroua, et al., 2007; Stavropoulos, 

Samaras, et al., 2008; Mourão, Laginhas, et al., 2011). In the light of the reported results, the 

treatment with HNO3 seems to affect the adsorption of phenol, decreasing the amount 

adsorbed and changing the isotherm shape. This last fact can be interpreted as a specific 

interaction of the water molecules with the oxygen surface groups, which act by inhibiting the 

adsorption of phenol at lower equilibrium concentrations. 

Although commercial activated carbon is a preferred adsorbent for phenol removal, its 

widespread use is restricted due to the high cost. As such, alternative non-conventional 

adsorbents have been investigated over the last decade to overcome this drawback. Natural 

materials, industry and agriculture waste materials and bioadsorbents might be promising 

materials for environmental and purification purposes, as interesting alternatives to replace 

activated carbons for the adsorption of phenolic compounds (Sorokhaibam and 

Ahmaruzzaman, 2014). 

Low-cost adsorbents have demonstrated high removal capabilities for certain phenolic 

compounds. Some promising results were found in the case of biomass, bentonite, starch, fly 

ash, petroleum coke, coal, charred sawdust, cyclodextrin, silica beads and sludge materials 

(Ioannidou and Zabaniotou, 2007; Ahmaruzzaman, 2008; Singh, Malik, et al., 2008; Nabais, 

Gomes, et al., 2009; Gupta, Nayak, et al., 2014). However, despite the number of published 

laboratory data, non-conventional low-cost adsorbents have not yet been applied at an 

industrial scale.  

The adsorption technique in the treatment of effluents, particularly using new adsorbent 

materials, provides a promising alternative for the treatment of industrial effluents in general 

and phenolic effluents, in particular. There are still some issues and drawbacks concerning the 

adsorption of phenolic compounds, such as the need of regeneration of the adsorbent 

materials and a post-treatment of the solid wastes, which are expensive operations. Activated 

carbon adsorption is a commercialized process but the spent carbon needs to be disposed 

safely.  

3.5.5.3 Advanced oxidation processes for phenolic wastewater treatment 

The limitations of conventional wastewater treatment methods previously discussed have 

prompted researchers to develop more efficient and environmentally friendly systems for 

wastewater treatment. Advanced oxidation technologies are emerging as the most effective 

option for the treatment of persistent organic pollutants, such as phenolic compounds. As it 

was discussed in the previous section, the use of advanced treatments for phenolic wastewater 

is critical to achieve high removal efficiencies of these compounds.  

Different AOPs have already been applied as wastewater treatment technologies for phenol 

degradation in aqueous solution (ozonation, photolysis and UV/H2O2, Fenton and photo Fenton 

and photocatalysis). These techniques were used both in real and simulated effluents, achieving  
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in the majority of cases, high mineralization rates (Esplugas, Giménez, et al., 2002; Sanz, 

Lombraña, et al., 2013; Suzuki, Araki, et al., 2015; Mohammadi, Kargari, et al., 2015).  

Typical effluents used in these studies are wastewater originated from olive mills, paper mills, 

petroleum refineries, textile and pharmaceutical industries, and also biologically pretreated 

wastewater. These technologies may be used alone, in combination with other physical, 

chemical and biological processes, or in hybrid processes, in order to improve the removal 

efficiency of target molecules. Table 3.14 gathers information on published data reporting 

phenol degradation by AOPs throughout the last decade. 

According to the literature, the most effective AOPs for phenolic wastewater remediation are 

semiconductor heterogeneous photocatalysis, ozonation and Fenton reactions. Among these, 

heterogeneous photocatalysis is pointed out as one of the most promising approaches for the 

treatment of wastewater contaminated with phenolic compounds. In fact, phenol and phenol 

derivatives have been some of the most investigated compounds on this topic (Matos, Laine, 

et al., 2001; Wang, Serp, et al., 2005; Kubo, Fukuda, et al., 2007; Tryba, Morawski, et al., 2003; 

Tryba, Morawski, et al., 2006a; Tryba, Morawski, et al., 2006b; Velasco, Parra, et al., 2010).  

The increasing number of publications on this research topic in peer-reviewed journals is an 

indicator of the important potential of the photocatalytic degradation of phenol and 

substituted phenols in wastewater (Sobczyński, Duczmal, et al., 2004; Busca, Berardinelli, et al., 

2008; Liotta, Gruttadauria, et al., 2009; Ahmed, Rasul, et al., 2010; Chong, Jin, et al., 2010; 

Zangeneh, Zinatizadeh, et al., 2015).  

The photocatalytic degradation process presents several advantages, such as a high 

mineralization efficiency, and mild temperature and pressure conditions. The use of solar light 

could also be an excellent alternative in heterogeneous photocatalysis since this natural and 

clean energy source could help to overcome the economical drawbacks associated with 

photochemical methods, reducing the costs of the treatment. The obtained results using solar 

photocatalysis process, mostly from preliminary tests at a pilot scale, suggest that this is a 

feasible technique for phenol degradation.  

Several authors have also reported the beneficial effect of hybrid processes, through the 

combination of photocatalysis with other processes, conventional or advanced, for phenol 

degradation, highlighting the better results obtained in comparison when the individual 

treatment methods are applied (Malato, Fernández-Ibañez, et al., 2009; Adishkumar, Kanmani, 

et al., 2010). Recent findings suggested that the following operating parameters can play an 

important role on the photocatalytic degradation of phenolic compounds in wastewater 

(Ahmed, Rasul, et al., 2010; Saratale, Noh, et al., 2014; Zangeneh, Zinatizadeh, et al., 2015):  

• Photocatalyst type and composition 

• Light intensity 

• Pollutant type and initial concentration 

• Catalyst loading 

• Initial pH of the reaction medium 

• Catalyst application mode 

• Oxidizing agents/electron acceptors 

• Presence of ionic components in solution 
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The optimization of these parameters is therefore, crucial from the perspective of an efficient 

design and the application of the photocatalytic oxidation process to ensure a sustainable 

operation. The application of this technique for real wastewater treatment calls for further 

investigation through the optimization of these parameters. This would make a significant 

impact on the potential commercial application of this technique to industrial systems. 

However, the major disadvantages presented by this technology are still low quantum 

efficiency, the design of the photoreactor, the recovery and reuse of titanium dioxide, the 

generation of toxic intermediates, and catalyst deactivation. 

3.5.5.4 The mechanism of phenol photocatalytic degradation 

Phenol photocatalytic oxidation mechanism has been the subject of plenty of studies, and it is 

now known with enough reliability (Santos, Yustos, et al., 2002; Guo and Ma, 2006; Grabowska, 

Reszczyńska, et al., 2012). According to the literature, in the presence of titanium dioxide and 

irradiation, phenol can be degraded by •OH radicals or directly via photo-generated carriers, 

depending on the used photocatalyst and irradiation source. However, some differences 

between identified by-products have been observed, and probably resulted not only from 

various reaction conditions but also from different analytical techniques applied for enrichment 

step and final detection of samples. 

For pure TiO2 (in the form of anatase or a mixture of anatase and rutile) excited by UV 

irradiation, •OH radicals are a primary oxidation species responsible for phenol degradation or 

mineralization. Phenol is thereby photocatalytically degraded through the attack of free 

hydroxyl radicals to the aromatic ring, resulting in various oxidation intermediates. As depicted 

in Figure 3.17, among the detected intermediates there is a predominantly aromatic nature of 

the compounds: catechol, hydroquinone, p-benzoquinone, and short chain organic acids (e.g., 

maleic acid, acetic acid, malonic acid and oxalic acid), the latter being more resistant to full 

oxidation to CO2 and H2O (mineralization).  

 
Figure 3.17- Phenol oxidation mechanism (Santos, Yustos, et al., 2002). 
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In the case of metal doped-TiO2 excited by visible light, both OH radicals and direct oxidation 

could be employed. However, OH radicals are not involved in phenol degradation during visible 

light excitation of non-metal-doped TiO2. The analysis of intermediates also revealed the lack of 

hydroxyl by-products after irradiation of phenol in the presence of non-metal doped-TiO2 and 

visible light, while they are found in P25/UV system.  

The most probable degradation pathway using non-metal doped-TiO2 irradiated by visible light 

is via the formation of electrons via carbonaceous species sensitizing and electron transfer to 

oxygen or direct charge transfer to the adsorbed compounds. 

Hydroquinone and catechol, formed through hydroxyl radical’s attack of the phenol ring at the 

first step of reaction, were observed in most investigated systems. Although, for some systems, 

formation of benzoquinone, hydroquinone, 1,2,3- benzenetriol and even salicylic acid were 

confirmed. Further irradiation leads to phenol ring cleavage and formation of low molar mass 

compounds such as 2-hydroxy-propaldehyde, glycerol, 3-hydroxypropyl acid, hydroxy-acetic 

acid, maleic acid and oxalic acid.  

Phenol oxidation pathway via the initial formation of catechol originates less intermediates, so 

total mineralization occurs more rapidly. Furthermore, degradation through the formation of 

hydroquinone/benzoquinone pair is a much more complex process which results in the 

appearance of several of intermediates, which makes phenol mineralization much more 

difficult. It would therefore be desirable to enhance phenol degradation through the formation 

of catechol through the development of selective catalysts. 

3.6 Conclusions 

Phenolic compounds are currently considered, among other chemicals, a major threat to 

watercourses due of its long persistence, and continuous discharge into the environment, 

driven by its high consumption at industrial level. It is widely known that conventional 

wastewater treatment systems have serious shortcomings that can be addressed by the 

implementation of advanced treatments, such as activated carbon adsorption and advanced 

oxidation processes.  

The well-established adsorption technologies for the removal of phenolic compounds from 

aqueous medium allows to achieve high removal efficiencies, that may be coupled to 

conventional water treatment or other advanced treatments. Activated carbons can be 

prepared from virtually any carbon rich material, allowing the use of several industrial and 

agricultural residues, thus also enabling the valorization of these wastes. The main 

disadvantage of the adsorption technologies relates to the fact that these are non-destructive 

processes, involving the regeneration of the spent adsorbent. 

Different AOPs can be applied simultaneously to promote the oxidation rate of organic 

compounds or sequentially to increase selectivity; of a separation treatment can be applied 

before treatment by AOPs, so as to transfer the pollutant from the liquid phase to another 

phase, so that they can be handled more easily or AOPs can be applied as a pre-treatment to 

increase the biodegradability and lower toxicity, followed by a biological after-treatment. 

In the light of the basic and applied researches reported in the literature, photocatalytic 

degradation of phenolic compounds appears to be a promising route for the treatment of 

wastewater contaminated with phenolic compounds. In most cases, high levels of phenolic  
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compounds degradation and almost total removal were obtained. Nevertheless, the extent of 

mineralization (complete conversion to CO2 and H2O) is still a major drawback. 

Despite the great advances that have been made in the most recent decades, the low quantum 

efficiency due to inefficient visible light-harvesting catalysts, the design of the photoreactor, 

the recovery and reuse of titanium dioxide, the generation of toxic intermediates, and the 

concern over catalyst deactivation have been reported to be the major drawbacks toward the 

development of this technology. In this context, the interest in carbon materials for 

photocatalysis has been increasing in recent years, given their reported potential on the 

enhancement of semiconductor photoactivity enhancement, due to factors associated with to 

visible light absorption, the porosity of the carbon support, strong interfacial electronic effects, 

and to the intrinsic photochemical activity of certain carbons. 

The coupling of a semiconductor oxide and carbon additive appears as an interesting strategy 

for the semiconductor photocatalytic activity enhancement, leading to better efficiencies in 

environmental remediation processes. Novel TiO2/carbon combinations offer opportunities for 

the design of new photocatalytic systems, even though the understanding of the underlying 

mechanisms of the photocatalytic enhancement is still a great challenge. 
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CHAPTER 4  

VALORIZATION OF SISAL WASTE  

 

Environmental and economic concerns are stimulating research towards the development of 

new materials for construction, furniture, packaging and automotive industries. New materials 

derived from natural renewable resources are particularly attractive, since their use can prevent 

further stress on the environment. Examples of such raw material sources are native crops, 

plants and fibres that are abundantly available in tropical regions. If new uses of fast growing 

native plants can be developed for high value, non-timber based materials, they could reduce 

the use of traditional materials such as wood, minerals and plastics in some major applications. 

4.1 The potential of natural fibres 

Natural fibres have been used in human clothing and in the construction of housing since early 

4000 BC in Europe, 3000 BC in Egypt and 6000 BC in China (FAO, 2012). Natural fibers of some 

kind are produced in almost all countries: in tropical countries, such as Brazil (several crop 

fibres), Colombia (fique), Ecuador and Philippines (abaca), India (coir and jute), Pakistan and 

Bangladesh (jute and coir), China (ramie), there exist a large variety of natural fibres with 

different mechanical, physical and chemical characteristics. Natural fibres are generally of 

lignocellulosic nature, containing mainly, lignin and cellulose, and consisting of helically-wound 

cellulose microfibrils in a matrix of lignin and hemicellulose (Mohanty, Misra, et al., 2005). The 

sources of these substances include agricultural and agro-industrial residues, agricultural fibres, 

aquatic, grassy plants and other vegetal substances. The chemical composition of the main 

commercial fibres is given in Table 4.1. The purest one is cotton with ca. 90 % of cellulose, while 

the rest range between 70-75 % of cellulose, depending on the processing method used.  

Table 4. 1- Chemical composition (% relative abundance) of the most important 
commercial fibres (Cherian, Leão, et al., 2011). 

Fibres Cellulose Hemicellulose Pectins Lignin Extractive 

Flax 71.2 18.6 2.0 2.2 6.0 

Hemp 74.9 17.9 0.9 3.7 3.1 

Jute 71.5 13.4 0.2 13.1 1.8 

Kenaf 63.0 18.0 2.1 17.0 2.0 

Ramie 76.2 14.6 0.6 0.7 6.4 

Abaca 70.1 21.8 0.9 5.7 1.8 

Sisal 73.1 13.3 2.6 11.0 1.6 

Cotton 92.9 2.6 2.6 - 1.9 

Curaua 70.7 10.7 4.5 11.1 3.0 
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Another important factor that influences the final properties of natural fibres is the presence 

of extractives (pectins, hemicellulose and lignin), which are of variable quality and amount 

(Cherian, Leão, et al., 2011). The dimensions of natural fibres are also an important aspect. The 

physical properties vary sufficiently in function of the specific variety, place of growth, time of 

harvest, localization in the plant, methods of processing, and so forth.  

4.2 Sisal fibre 

Sisal fibre is one of the most widely used natural fibres and is very easily cultivated. It is 

extracted from the leaves of the sisal plant (Agave sisalana). Though native to tropical and sub-

tropical North and South America, sisal plant is now widely grown in tropical countries of Africa, 

the West Indies and the Far East (Li, Mai, et al., 2000). A sisal plant produces about 200-250 

leaves and each leaf contains 1000-1200 fibre bundles which are composed of 4 % fibre, 0.75 % 

cuticle, 8 % dry matter and 87.25 % water. Normally, a leaf weighing about 600 g will yield about 

3 % by weight of fibre. 

Despite sisal is one of the most widely used natural fibres worldwide, a large quantity of this 

economic and renewable resource is still under-utilised. Until recently, sisal fibre was mainly 

used as ropes for the marine industry and agriculture. Other applications of sisal include twines, 

cords, upholstery, padding and mat making, fishing nets, fancy articles such as purses, wall 

hangings, table mats, etc. However, over the past decades, a pronounced downtrend in sisal 

production reflected the drop in demand for the fibre in traditional uses.  

It was only recently that significant research has started to be conducted on the technological 

and economic implications of using sisal in various innovative applications, in particular as a 

component in industrial products (Li, Mai, et al., 2000). Among the new potential applications 

which attracted early interest was the possible use of sisal for the production of paper and pulp. 

With regard to building materials, the use of renewable resources has also been recognized as 

contributing to sustainability by slowing the rate of deforestation for wood construction 

products. Thus, fibres were seen as offering potential in such uses as fibreboard, insulation, 

reinforcement or filler in lightweight concrete, bricks and building blocks and as a substitute for 

asbestos cement. The replacement of asbestos in cement by sisal is a particular aspect of the 

market of construction materials that has gained ground as the prohibition of asbestos has 

gained momentum, particularly in some large populous countries, and is expected to continue 

to do so.  

Lignocellulosic resources have low densities, are low in cost, renewable, non-abrasive, have 

excellent specific mechanical properties, and are potentially outstanding reinforcing fillers in 

thermoplastic composites. These new advanced composite materials, that take advantage of 

the properties of agro-fibres (lignocellulosics) and other types of resources, are finding 

innovative applications and fresh markets never before envisioned by the agro-industrial sector 

anywhere (Leão, Sartor, et al., 2006). The main advantages of composite materials based on 

natural fibres are the following (FAO, 2012):  

• Replacement of man-made fibres (glass and asbestos) with lower costs; 

• Reduction of the demand for petroleum-based products (carbon-based). 

• Substitution of solid wood by plastics reinforced with wood or other natural polymers. 

• Enhancement of fibre quality in end-use applications. 
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• Renewability, recyclability. 

• Resistance, good mechanical properties.  

• Release into the environment of only harmless residues when incinerated for energy 

recovery or final disposal. 

• Absorption of renewable carbon (green carbon) contributes to a reduction of climate 

change. 

• Low-energy consumption when processed. 

• Possible applications with higher levels of reinforcement with new technologies such as 

extrusion and injection moulding. 

• Enhancement of fibre quality in end-use applications through the use of better hybrids 

or varieties. 

To a certain degree, the transformation of research results into a commercial reality has already 

taken place, for example in Brazil, where Ford is using sisal in various automobile parts. Among 

these potential new uses of sisal, the utilization of sisal waste to generate biogas, in Tanzania, 

has been demonstrated to be technically feasible. Other applications of natural fibres are in 

geotextiles, biocomposites, aerospace applications and nanocomposite applications 

(electronic Industry, pharmaceutical and biomedical applications) (FAO, 2012). There is, 

however, a need to provide greater information regarding the multitude of innovative 

applications of natural fibres that exist and which go beyond their traditional uses.  

4.3 Sisal waste valorization 

4.3.1 Sisal waste as precursor of activated carbons 

Activated carbons are the prefered adsorbents for the removal of micropollutants from the 

aqueous phase. The major drawbacks associated with the use of activated carbons, already 

discussed in section 3.3, are a poor economic feasibility, and a short lifetime, often due to low 

and expensive regeneration capacities, that can be overcome by the use of low-cost 

adsorbents. 

In this context, the production of low-cost activated carbons is an important research subject 

due to its vital importance for the water treatment process. Any cheap material, with a 

relatively high carbon content can be used as a raw material for the production of activated 

carbons. It is clear that conventional (from agriculture and wood industry) and non-

conventional (from municipal and industrial activities) wastes can be used to prepare activated 

carbons (Dias, Alvim-Ferraz, et al., 2007). Moreover, high surface areas can be obtained using 

either physical or chemical activation. Activated carbons prepared from both conventional and 

non-conventional wastes might effectively compete with the commercial ones.  

Agricultural by-products and wastes are highly recommendable sources because they are 

readily available, low-cost, regularly produced with renewable feed stocks. They can be used 

for the production of activated carbons with a high adsorption capacity, considerable 

mechanical strength, and low ash content (Ioannidou and Zabaniotou, 2007). There have been 

many attempts to obtain adsorbents from agricultural wastes using the most diverse waste 

materials. In this sense, the use of largely available residues, as is the case of sisal waste, as 

precursors is an interesting strategy since it enables to deal with the problem of waste disposal  
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and recycling (Ioannidou and Zabaniotou, 2007; Michailof, Stavropoulos, et al., 2008; Cabrita, Ruiz, 

et al., 2010; Mestre, Bexiga, et al., 2011; Delgado and Mendez, 2014). 

Sisal residues, discarded from the rope manufacture industry, were already used in our research 

group as precursors for the preparation of activated carbons by chemical activation. Sisal-based 

activated carbons prepared with K2CO3 presented high apparent surface areas (ABET up to 1038 m2 

g1) and pore volumes (ca. 0.49 cm3 g1) (Mestre, Bexiga, et al., 2011). Furthermore, the obtained 

materials proved to have suitable properties for the removal of pharmaceutical compounds from 

liquid phase.  

4.3.2 Pyrolityc degradation of sisal waste 

The thermal treatment of wastes, by gasification or pyrolysis, is considered an excellent approach 

for their valorization as energy resources and raw materials for chemical processes. It is also a viable 

alternative to the traditional strategies for solid waste transformation and disposal that include 

landfilling or incineration, minimizing its discharge into the environment. 

Conventional pyrolysis consists on the slow, irreversible thermal decomposition of the organic 

components of biomass, most of which are lignocellulosic polymers. Gasification and pyrolysis 

enable the production of gaseous and/or liquid fuels from the waste materials thus recovering (at 

least partially) the energetic and organic value of these wastes. Wastes are subjected to high 

temperatures in the absence of air or in an oxygen-deficient atmosphere, producing a hydrocarbon 

mixture (vapour and liquid fractions) that can be used as fuel or as feedstock in chemistry 

industries, and a carbon-rich solid by-product (char) that can be directly used or, alternatively, 

upgraded to activated carbon (Buekens and Huang, 1998; Yaman, 2004). The carbonaceous residue 

is mostly constituted of carbon, but also contains the mineral matter initially present in the wastes 

and a significant amount of condensed by-products with high molecular weight, formed during the 

pyrolysis process. Generally, the pyrolytic char does not possess properties of sufficiently high 

quality to be further used as raw material, thus, unless an upgrade step is performed, its final 

destination is landfilling (Helleur, Popovic, et al., 2001).  

Biomass pyrolysis has a long history and a considerable future potential, driven by the increased 

interest in renewable energy, following the growing environmental commitments and the recently 

increased market prices for fossil fuels. The pyrolysis method has been used for commercial 

production of a wide range of fuels, solvents, chemicals and other products from biomass 

feedstocks. In comparison with coal, biomass pyrolysis starts earlier and the volatile matter content 

is higher. The fractional heat contribution by volatile matter is of the order of 70 %, compared with 

36 % for coal; however, biomass char has more oxygen and its fractional heat contribution is of the 

order of 30 %, compared with 7 % for coal (Vamvuka, 2011). 

The terms pyrolysis and carbonization are often used without any kind of distinction, and although 

they are in fact almost identical processes, there are some differences between the two. The aim 

of the pyrolysis process is the collection of gases and volatile compounds released from the solid, 

in which all of the process conditions (temperature, residence time, etc.) are focused on the 

production of gaseous compounds, regardless of the final carbonized residue. On the other hand, 

the heat treatment of the carbonization process focuses on the properties of the obtained 

carbonized (porous texture, hardness, density, etc.), disregarding the volatiles released. 
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The investigation of the pyrolytic behaviour of sisal fibres discarded from the rope industry, by 

analyzing the composition of the different fractions obtained allows to explore its potential 

applications in different fields. 

In this sense, the objective of the work developed and reported in Article I (Andrade, M.; Parra, J. 

B.; Haro, M.; Mestre, A. S.; Carvalho, A. P. and Ania, C. O., 2012. Characterization of the different 

fractions obtained from the pyrolysis of rope industry waste. Journal of Analytical and Applied 

Pyrolysis 95, 31-37), was to study the possible valorization of sisal wastes discarded from the rope 

industry through pyrolysis. The different fractions (gas, tars, solid) originated by the pyrolysis 

process of this lignocellulosic residue were thoroughly characterized; this allowed to investigate 

potential applications of these materials.  
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CHAPTER 5  

COPPER-DOPED ACTIVATED CARBONS  

 

Porous carbon materials constitute a very flexible set of supports for the preparation of 

heterogeneous catalysts. Besides providing high-energy adsorption sites for physical or specific 

adsorption, nanoporous carbons, which consist of both small pores and functional groups, are 

able to catalyse surface reactions (Leon y Leon and Radovic, 1990; Radovic and  

Rodríguez-Reinoso, 1996). 

A large variety of carbon materials can and have been widely applied in catalysis (either as 

supports or as catalysts on their own) due to their superior structural, mechanical, chemical, 

thermal, and unique electrical transporting properties (Rodríguez-Reinoso and  

Sepúlveda-Escribano, 2009; Figueiredo and Pereira, 2009). The most investigated carbon 

materials in catalytic applications are carbon blacks and granular and powdered activated 

carbons, but there is increasing interest in related materials, such as activated carbon fibers and 

cloths, nanotubes, and nanofibres.  

The physical and chemical surface properties of activated carbons can easily be tailored to: 

i) develop a large surface area to disperse the active phases; ii) adjust a proper pore size 

distribution to facilitate the diffusion of reactants and products to and from the surface; and iii) 

define the adequate acid-base character needed for obtaining the best performance. These 

properties can be exploited in a great number of catalytic reactions, as indicated in Table 5.1.  

Table 5.1- Main reactions catalysed by carbons as catalysts and catalysts support 

(Rodríguez-Reinoso and Sepúlveda-Escribano, 2009; Figueiredo and Pereira, 2009, and 

references therein). 

Carbon as catalyst Carbon as catalyst support 

Oxidative dehydrogenation of hydrocarbons Hydroprocessing of petroleum feedstocks 

Dehydration and dehydrogenation of alcohols Ammonia synthesis 

NOx reduction Hydrodesulfurization  

NO, SOx and H2S oxidation Hydrodenitrogenation 

Ozonation Hydrogenation of carbon oxides 

Catalytic wet oxidation  

The factors affecting the performance of a carbon catalyst are the nature of surface groups, its 

concentration and accessibility, while the properties affecting carbon’s role as catalyst support 

include its surface area and porosity, surface chemical properties and inertness. 
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Regarding the surface chemistry of an activated carbon (usually originating from the precursor 

or activation agent), the specific adsorbate–adsorbent interactions or the catalytic properties 

of the carbon surfaces may be enhanced by post-synthesis modifications of their surfaces, via 

the incorporation of the desired heteroatoms. The incorporation of metallic species with 

catalytic activity (e.g., Pt, Co, Ni, Cu) into the carbon matrix is known to improve the stability, 

efficiency, and dispersion of the catalyst. Several approaches have been explored for the 

immobilization of transition metals in carbon materials, including: 

 Incorporation in the precursor of the activated carbon (Hines, D., Bagreev, et al., 2004; Ania 

and Bandosz, 2006a; Liou and Chen, 2009; de Castro, Martínez-Escandell, et al., 2010);  

 Incorporation directly in the activated carbon, by means of oxidation treatments (Qiu, Han, 

et al., 2011);  

 Impregnation with metal oxides or metal chlorides (Ma, Rodriguez, et al., 2000; Petit, 

Karwacki, et al., 2007; Bian, Wei, et al., 2010; Hermans, Deffernez, et al., 2010; Álvarez-

Montero,  

Gómez-Sainero, et al., 2011); 

 Carbonization of polymers of organic salts with metals on its composition, and so forth 

(Ania and Bandosz, 2006b).  

Most common synthetic methods for the preparation of metal-doped carbons is usually 

performed by impregnation (wet and incipient wetness) or ion-exchange methods, often 

followed by calcination and reduction treatments (Ania, 2013). The role of oxygen groups and 

basic sites on the dispersion of metals on carbon supports is widely documented in the 

literature, and as a general rule, oxidation leads to better dispersion and strong anchoring of 

the metallic species (Sepúlveda-Escribano, Coloma, et al., 1998; Moreno-Castilla, López-Ramón, 

et al., 2000; Fraga, Jordão, et al., 2002; Bandosz, 2009; Ania, 2013). However, basic groups are 

more beneficial than acidic ones, and owing to the low thermal stability of acidic groups (i.e., 

carboxylic), sintering of the metallic particles might occur if high temperature reduction 

treatments are applied.  

Despite the fact that impregnation is the most common method used to deposit metal and 

semi-metal compounds on the surface of an activated carbon, an attractive alternative method 

to this post-treatment consists in the preparation of activated carbon using a mixture of a 

chemical compound and the carbon precursor. This method is particularly interesting if the 

metal/semi-metal compound can be dissolved in the carbon precursor, since a homogeneous 

distribution and a higher dispersion in the activated carbon is expected, although aggregation 

may occur during the thermal treatment inherent to the activation process. In all cases it is 

crucial to obtain a high dispersion and distribution of the metal in the carbon, while developing 

or maintaining the porosity of the support (Rodríguez-Reinoso and Sepúlveda-Escribano, 2009; 

Figueiredo and Pereira, 2009). 

The transition metals present in an organic precursor can also influence the porosity of the final 

product and therefore its performance as adsorbent and/or catalyst. Moreover, thermal 

treatments (i.e., carbonization) in the presence of catalytic metals can create new forms of 

carbon. For instance, at high temperature the organic matter vaporizes, dehydrogenation 

occurs, and carbon particles can be deposited back on the surface of an inorganic support, 



Chapter 5 

Copper-doped activated carbons 

 

 
85 

typically with formation of carbon nanotubes or filaments. The resulting carbons show high 

porosity and highly dispersed catalytically active metals (Ania and Bandosz, 2006a).  

An important aspect of the preparation procedure is that the surface properties can be tailored 

using various contents of the metals and different ligands. Moreover, the exposure of the active 

surface formed during carbonization to various gases reacting with metals present can result 

in expansion of graphene layers and formation of additional porosity (Hines, Bagreev, et al., 

2004). This may open the door for engineering the texture of the materials toward desired 

applications. Besides the unique porous nature of these materials, metal-doped carbons may 

find applications as catalysts due to the high dispersion of catalytic metals on the surface and 

high micropore volumes.  

In Article II (Haro, M.; Ruiz, B., Andrade, M.; Mestre, A. S.; Parra, J. B., Carvalho, A. P. and Ania, 

C. O., 2012. Dual role of copper on the air reactivity of carbons from different precursors, 

Microporous and Mesoporous Materials 154, 68-73), the synthesis of copper-doped activated 

carbons from different origins (i.e., lignocellulosic and bituminous coal) by a wet impregnation 

and low temperature calcination procedure was explored, as well as the role of copper particles 

on the physical, chemical and structural features of the resulting materials. The choice of cooper 

in this study is related to the fact that many oxidative reactions are catalysed by different 

complexes and oxides of this metal, namely water oxidation, hydrodechlorination, of 

dichloromethane, desulfurization, N2O decomposition, ammonia adsorption (Chen and Meyer, 

2013; Chen, Zhang, et al., 2013; Ania, Bandosz, 2006b, Ma, Rodriguez, et al., 20oo; Petit, C., 

Karwacki, et al., 2007; Seredych and Bandosz, 2010). Furthermore, copper-doped carbons were 

used as additives to TiO2 powders in the preparation of hybrid semiconductor/carbon 

photocatalysts; this issue will be discussed in Chapter 6 (Article III).  
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CHAPTER 6  

PHOTOCATALYTIC DEGRADATION OF PHENOL BY HYBRID TiO2/CARBON CATALYSTS 

 

As discussed in previous sections, the minimum wavelength required to promote the excited 

state of a semiconductor depends on the band-gap energy. For TiO2, only photons with energy 

correspondent to λ<400 nm can be absorbed to induce the excitation of electrons from the 

valence to the conduction band and to enable the charge separation that would eventually lead 

to the degradation reaction, of for instance, a target pollutant. Many organic compounds 

present a strong absorption of light at λ < 400 nm, that could lead to direct degradation in the 

absence of a catalyst (photolytic reaction). Given its limitations, the photocatalytic 

enhancement of TiO2 has been the subject of extensive research, as previously discussed in 

section 3.4.6.3, with great efforts being made to extend the useful response of this material to 

the visible region, in order to improve the solar conversion efficiency. So as to enhance TiO2 

photocatalysis, as well as the response to visible light, different approaches have been 

investigated, and TiO2 has been doped with certain transition metals, non-metals and ionic 

components.  

TiO2 doping with transition metals has been widely employed with reported improved 

photoactivities, being clearly related to the efficiencies of the doping centers in trapping charge 

carriers and interceding in the interfacial transfer (Colón, Maicu, et al., 2006, Rashad, Elsayed, 

et al., 2013). Metal ions also serve as charge trapping sites and thus reduce electron-hole 

recombination rate. The doping of metal/metal oxides enables the formation of a hybrid O 2p 

conduction band with a lower band gap energy, favouring absorption over the whole visible 

spectrum.  

Numerous metal ions have been investigated as potential dopants, including iron, chromium, 

manganese, cobalt, copper, etc. The effect of metal doping on the photoactivity depends on 

many factors, e.g. the method of doping, and the type and concentration of the dopant. Among 

these, copper has been used as an effective dopant for electron trapping in the conduction 

band of TiO2, improving the photocatalytic performance (Choi, Termin, et al., 1994; Inturi, 

Boningari, et al., 2014; Colón, Maicu, et al., 2006). The introduction of copper (II) into the TiO2 

matrix results in a composite catalyst with an enhanced absorption ability for visible light, fast 

charge transfer rates and better charge separation efficiency (Zhang, 2010).  

Despite these many enhancement attempts, efficient and commercially viable photocatalysts 

for important processes such as water splitting and degradation of various pollutants are yet 

to be realized. In this sense, given the known deactivation of metal-doped semiconductors, due 

to aggregation of the metallic dopants, a different approach can be entailed, through the 

incorporation of transition metals in the surface of carbonaceous materials. This procedure, 
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already addressed in Chapter 5, however in a different context, envisages the preparation of 

more efficient photocatalysts, allowing a good dispersion of metallic species on the 

carbonaceous matrix. These metal doped carbons can be used with TiO2 in hybrid 

photocatalysts in the photodegradation of organic compounds.  

In Article III (Andrade, M.; Mestre, A. S.; Matos, J.; Carvalho, A. P. and Ania, C. O., 2014. Visible 

light driven photo-oxidation of phenol on TiO2/Cu-loaded carbon catalysts. Carbon 76, 183-196), 

the aim was precisely to explore the role of copper on the photocatalytic activity of a hybrid 

TiO2/copper containing carbon photocatalyst towards phenol degradation in liquid phase under 

visible light irradiation. 

Hybrid TiO2/carbon photocatalysts have shown so far a good performance with increased 

photo-oxidation conversions under sunlight and certain semiconductor-free carbons have even 

demonstrated the ability to convert photons from the visible spectrum in chemical reactions. 

Despite these facts, the origin and dependence of the carbon/light interactions with the 

irradiation source is not so straightforward, and in the case of hybrid carbon/semiconductor 

catalysts it becomes more complex (Ania, Velasco, et al., 2012). Additionally, in photocatalytic 

reactions involving hybrid catalysts with porous materials, several reactions occur 

simultaneously upon irradiation of the catalysts (namely adsorption, direct photolysis and 

photocatalysis) that have to be considered when comparing the performance of different 

systems.  

The irradiation wavelength will have an influence on the degradation mechanism, and 

consequently on the amount and distribution of degradation intermediates. In the case of the 

photocatalytic degradation of phenol, a regioselectivity towards the formation of catechol over 

quinones has already been reported for nanoporous carbons under UV illumination (Velasco, 

Fonseca, et al., 2012). This is quite an important fact since catechol has a higher reactivity over 

quinones, which would account for the improved conversion of phenol upon UV radiation, as 

discussed in section 3.4.6.4. Given the growing interest of the use of carbon materials in 

photocatalytic applications, to clarify the role played by these materials upon irradiation under 

different wavelengths would be an interesting contribution to this research area.  

The focus of Article IV (Andrade, M. A.; Carmona, R. J.; Mestre, A. S.; Carvalho, A. P. and Ania, 

C. O., Effect of the irradiation wavelength on the performance of nanoporous carbon as an 

additive to TiO2. Applied Catalysis A: General 507, 91-98) was the study of the effect of the 

irradiation wavelength on the performance of nanoporous carbon as an additive to TiO2 on the 

photocatalytic degradation of phenol.
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Article III- Supplementary Information 

Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts 

 

Marta A. Andrade1,2, Rocio J. Carmona2, Ana S. Mestre1, Juan Matos3, Ana P. Carvalho1*, 
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Processes for Energy and Environment, Instituto Nacional del Carbón, INCAR-CSIC, 

Apdo. 73, 33080 Oviedo, Spain 

3 Dpt. Photocatalysis and Alternative Energies, Venezuelan Institute for Scientific Research 

(IVIC), 20632, Caracas 1020-A, Venezuela 

*Corresponding author 

apcarvalho@fc.ul.pt (AP Carvalho) conchi.ania@incar.csic.es (CO Ania) 

 

Water Adsorption. The surface hydrophobicity of the nanoporous carbons was determined 

by their affinity to adsorb water. Predetermined amounts of dry samples were exposed either 

to water vapors in air-tight environments for 24 hours at room temperature. The amounts 

adsorbed were measured gravimetrically in a Setaram instrument thermal analyzer under 

inert atmosphere. The weight in nitrogen between 25 and 120 ºC was assumed as an 

equivalent to the quantity of water adsorbed on the surface. Data showed a 9.6 and 6.3 wt.% 

increased mass for S and SCu5 samples, respectively, confirming the more hydrophobic 

character of the copper-loaded carbons.  
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Figure S1. Emission spectrum of the high pressure mercury lamp (Helios Italquartz, 125 

W) used as irradiation source for the photocatalytic experiments. 

 

 

Figure S2. Phenol concentration decay curves of the investigated materials in the pre-

adsorption step and under irradiation. 

 

0

20

40

60

80

100

-30 30 90 150 210 270 330

C
 (

m
g

 d
m

3
)

time (min)

TiO2 irrad

TiO2/S irrad

TiO2/SCu5 irrad
A

d

s

o

r

p

t

i

o

n

0

2000

4000

6000

8000

10000

12000

200 300 400 500 600 700

In
te

n
si

ty
 (

a.
u

.)

Wavelength (nm)



Chapter 6 

Photocatalytic degradation of phenol by hybrid TiO2/carbon catalysts 

 
107 

 

Figure S3. UV/Vis diffuse reflectance spectra of the TiO2/carbon composites employed as 

photocatalysts. Spectra were recorded on a Shimadzu spectrometer (UV-2501) equipped 

with an integrating sphere and using BaSO4 as a blank reference. 
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Figure S1. Emission spectra of the high pressure mercury lamp used (Helios Italquartz, 

125 W) with and without pyrex filter. 
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Figure S2. Phenol adsorption kinetics for the catalysts (in the same experimental conditions 

of the photocatalytic runs). For 2xTiO2/S (catalyst loading 1 g L-1) only the data 

corresponding the 30 min is shown, allowing the comparison of the amount adsorbed. 
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Figure S3. a) Phenol concentration decay curve, including the pre-adsorption step, for 

sample 2xTiO2/S; b) Evolution of phenol degradation intermediates detected upon 

irradiation of sample 2xTiO2/S: QU-quinones, CAT-catechol, RES- resorcinol; 124THB-

1,2,4-trihydroxybenzene. 
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Table S1- Elemental analysis of carbon S and of the catalysts (after irradiation of the 

catalyst’s suspensions in water in the absence of phenol).*-normalized per gram of carbon. 

 C H O 

S 82.8 1.2 16.0 

S λ>200nm 79.5 1.4 15.6 

S λ>360nm 81.0 1.1 15.4 

*TiO2/S λ>200nm 82.4 1.4 16.2 

*TiO2/S λ>360nm 82.9 1.2 15.9 
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CHAPTER 7 

CONCLUSIONS 

 

The main aim of this PhD thesis was the development of nanoporous adsorbents and catalysts 

using industrial by-products of low commercial value as precursors and to investigate their 

application in advanced remediation technologies for the removal and/or degradation of 

aromatic pollutants in aqueous solution.  

The valorization of sisal residues was explored through thermochemical conversion reactions 

for the preparation of nanoporous carbons. These sisal-based carbon materials were further 

used in hybrid TiO2/carbon materials for the photocatalytic degradation of phenol in aqueous 

medium. The most important concluding remarks that can be inferred from this work are as 

follows:  

 The pyrolysis of the rope wastes showed two decomposition peaks between 300 and  

350 ◦C assigned to the depolymerization of hemicelluloses and the decomposition of 

cellulose oligomers into tars, along with some degradation occurring to a small extent 

above 400 ◦C, due to the decomposition of cyclic rings and further carbonization of the 

formed tars.  

 The different fractions (solid, tar, gas) obtained from the pyrolysis of lignocellulosic wastes 

from the rope industry were collected and characterized. The oil fraction was the most 

abundant during the pyrolysis of the rope waste, regardless the temperature, with solid and 

gas yields varying between 20 and 30 wt. %. The pyrolysis gases were mainly composed of 

CO and CO2, with a significant amount of CH4 when the pyrolysis was carried out above  

600 ◦C.  

 The analysis of the liquid fraction revealed that the bio-oil was rich in flavoring compounds 

and other valuable chemicals such as furfural, which have large applications in synthetic 

chemistry, food industry, and pharmaceuticals.  

 The yield of the solid fraction can be modulated by the pyrolysis temperature, which also 

defines the surface chemistry of the final char residue, and therefore its reactivity. The solid 

carbonaceous char displayed interesting features to be used as precursor in the synthesis 

of low cost high performance porous adsorbents and catalysts supports. 

 The immobilization of copper on the carbon matrix of activated carbon materials from 

different origins (coal-derived and lignocellulosic biomass), revealed the dual role played by 

the transition metal, as both catalyst and chemical protector.  
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 In the first case, copper catalyses the air gasification of the studied carbon, avoiding the 

sintering of metallic species, and thus enabling an homogenous dispersion of metallic 

particles within the carbon matrix, while displaying an enlargement of the existing 

microporous network (to mesopores).  

 The copper immobilized on a highly reactive sisal derived activated carbon prevented the 

structural collapse of the materials during calcination, while promoting the porosity 

development. In this case, copper particles acted as a protective layer of the carbon (to 

avoid its burning-out), and also promoted the enlargement of the microporosity to create 

mesopores.  

 These materials showing a good dispersion of nanosized copper particles and large textural 

development are promising candidates as highly selective adsorbents and catalysts to be 

used in advanced remediation techniques. 

 A well-developed porosity and a good dispersion of metallic particles was also obtained 

with the incorporation of the transition metal on the carbon matrix, by impregnation of the 

carbon precursor with a copper salt and subsequent chemical activation. The analysis of the 

chemical status of the metal showed that oxidized copper species are dominant in the 

prepared material, as expected by the oxidizing atmosphere during the activation.  

 The performance of the synthesized titania/carbon composites for the photodegradation 

of phenol under visible light was evaluated and compared to that of commercial TiO2. An 

overall enhancement of the efficiency in terms of phenol conversion, mineralization degree 

and degradation rate using visible light was observed for the copper-loaded hybrid 

composites compared to titania powders even when using half of the amount of 

semiconductor  

 The analysis of the textural properties of the composites after irradiation showed an 

interesting insight on the photo-oxidation process. A similar clogging of the porosity of the 

photocatalysts was found in dark and irradiation conditions, demonstrating that the higher 

conversion values cannot be attributed to the adsorption of the intermediates inside the 

pore structure of the carbons.  

 The beneficial effect of copper is attributed to several factors, including its role as oxygen 

activator and/or the fast electron transfer environment, which would minimize the 

recombination of the excited electron/hole pairs.  

 Regarding the dependence of the photochemical activity of hybrid titania/carbon 

photocatalysts with the wavelength of the irradiation source, phenol photooxidative 

efficiencies were found to be larger at 200 < λ < 600 nm, for both the photolytic and 

catalysed reactions. The use of a nanoporous carbon as additive increased the 

photoconversion of phenol and the mineralization extent, with a more pronounced effect 

at λ > 200 nm.  

 The carbon material alone also demonstrated a certain level of intrinsic photochemical 

activity under both irradiation conditions. However, the conversion of phenol upon 

irradiation of the nanoporous carbon alone dropped significantly for λ > 360 nm, with a 
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steady conversion above 60 min, suggesting that the photoactive sites of the carbon under 

visible light are consumed or deactivated in the course of the reaction. 

 In all the studied systems the photo-oxidation of phenol follows an electrophilic mediated 

pathway, with a marked regioselectivity depending on the composition of the catalyst and 

the illumination conditions. Quinones are favoured over catechol at low energy photons 

and when titania is the major component of the photocatalyst, and vice-versa when the 

carbon component is added to the catalyst composition. At λ > 200 nm higher amounts of 

polyhydroxylated intermediates were detected, suggesting that more hydroxyl radicals are 

involved under these illumination conditions. 

The results presented in this thesis are undoubtedly important findings to the valorization of 

sisal residues, by showing the potentialities of these lignocellulosic materials for other end-

applications beyond their traditional use. The data obtained regarding the photocatalytic 

degradation of phenol in aqueous medium, where sisal-derived carbon materials proved to be 

efficient photocatalysts, are also a significant contribution to enlightenment of some questions 

related to the photocatalytic role of carbon materials, an increasingly growing research area. 
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ANNEX A   

EXPERIMENTAL  

 

A.1 Pyrolysis of sisal wastes 

The pyrolysis of sisal wastes was the topic of Article I (Chapter 4). In Figure A.1, some images of 

the pyrolysis equipment are presented for a clearer understanding of the experimental process. 

In each run, ca. 20 g of sisal was used, and experiments were carried out in a quartz reactor 

placed in a tubular horizontal furnace. To ensure an inert environment during the experiments 

a 100 mL min1 flow rate of nitrogen was continuously fluxed through the reactor. The volatiles 

evolved during the pyrolysis passed through various consecutive glass condensers immersed in 

an ice salt cooling mixture (ca. −20 ºC) where the condensable liquid fraction was collected. The 

non-condensable gases were collected in 3 L Tedlar® bags (with a polypropylene fitting for 

sampling). The aqueous fraction recovered in the condensers (mostly water) was separated 

from the organic fraction by centrifugation. 

  

  

Figure A.1- Images of the experimental procedure of sisal waste pyrolysis.  
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The organic fraction obtained upon pyrolysis of the sisal wastes was analysed by gas 

chromatography coupled to mass spectrometry, using an Agilent 7890A gas chromatograph 

coupled to an Agilent 5975C quadrupole detector. The compounds in the oil fraction were 

identified by comparison with those reported in the literature and in the Wiley and NIST 

computer libraries. The gases were analysed in a Hewlett-Packard HP 6890 gas chromatograph 

fitted to a thermal conductivity detector and two packed columns. 

A.2 Preparation of materials 

The sisal samples used in this study for the preparation of activated carbons are from the 

industrial facilities of the CORDEX Group, in Esmoriz, Portugal. These materials are residues of 

the final stage of string or wire production. The experimental procedure of the preparation of 

the sisal-based and coper-doped sisal-based activated carbons by physical and chemical 

activation with carbon dioxide and K2CO3 is detailed in Article II and Article III (Chapters 5 and 

6). Briefly, 1 cm long sisal pieces were impregnated with a K2CO3 solution (weight ratio sisal: 

K2CO3 of 2:1) and activated in a horizontal furnace at 700 ºC for 1 h under N2 flow (5 cm3 s−1). After 

the activation, the sample was thoroughly washed with distilled water until pH 7 and dried at 

100 ºC.  

A.3 Characterization of materials 

A.3.1 Textural characterization 

The prepared carbons were characterized regarding their apparent specific surface area and 

pore volume properties, obtained from the respective N2 and CO2 adsorption isotherms at  196 

and 0 °C, respectively, in automatic equipments (ASAP 2010 and 2020 and Tristar 3020, 

Micromeritics). All the analysed samples were previously outgassed under vacuum (ca. 103 

torr) at 120 C overnight. The apparent specific surface area, ABET was assessed from the 

application of the BET equation to the experimental data obtained from the N2 adsorption 

isotherms, in the range of relative pressures 0.05-0.15. To determine the total pore volume the 

amount adsorbed at p/p°=0.95 was considered. The microporosity evaluation was made using 

the Dubinin–Radushkevich formulism to the N2 and CO2 adsorption data, (W0,N2, W0,CO2). The 

mesoporous volume Vmeso was obtained by the difference between the total pore volume Vtotal 

and micropore volume, W0,N2. 

The characterization of the textural parameters of the several batches of carbons S and SCu5 

prepared was made, to assure that the variations of these parameters was not significant, and 

is presented in Table A.1.  

Table A.1- Textural parameters of the different batches of carbons 
S and SCu5 prepared in this study. 

 

 

 

 

 

 

Sample Batch 
ABET 

(m2 g1) 
Vtotal

 

(cm3 g1) 
Vmeso 

(cm3 g1) 

W0,N2  

(cm3 g1) 
W0,CO2 

(cm3 g1) 

S 

A 968 0.45 0.04 0.41 0.37 

B 915 0.41 0.01 0.41 0.40 

C 932 0.43 0.02 0.42 - 

D 834 0.38 0.01 0.37 - 

 A 674 0.31 0.01 0.30 0.34 

SCu5 B 678 0.32 0.02 0.30 - 

 C 787 0.36 0.01 0.35 - 
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A.3.2 Elemental Analysis 

Elemental analysis was used for the chemical characterization of the solid fraction obtained 

after the pyrolysis of sisal waste. For the determination of carbon, hydrogen, nitrogen and 

sulfur content, the samples were burned at a very high temperature (~ 1200 °C) under oxygen 

flow. The solids were previously dried under vacuum at 120 °C for 17 hours. The measurements 

were carried out in LECO automatic analysers (LECO CHNS-932 and LECO VTF-900 for the 

oxygen content). 

A.3.3 Thermal Analysis 

The as-received rope waste and the solid carbonaceous residue obtained after pyrolysis were 

characterized by thermogravimetric analysis. The thermal analyser (Labsys, Setaram) was set 

to operate at a heating rate of 15 °C min−1 under a nitrogen flow rate of 100 mL min−1; for each 

measurement about 25 mg of sample was used. The ash content of samples S and SCu5 was 

also determined by thermogravimetric analysis in air atmosphere. 

The Temperature Programmed Reduction analysis was performed to determine the chemical 

state of the copper species in sample SCu5, in a chemisorption analyser (Autochem 2920, 

Micromeritics) equipped with a thermal conductivity reactor and a mass spectrometer 

(OmniStar 3000). For each analysis approximately 40 mg of sample was treated with a 50 cm3 

min1 stream of 10 % H2 in Argon from 100 to 600 °C at 5 °C min1. 

A.3.4 X-ray Difraction 

X-ray Difraction (XRD) patterns were obtained for the sisal waste and the solid fraction (char) 

obtained after pyrolysis at 550 C, for the copper impregnated carbons, SCu and QCu, and for 

the analysis of the chemical state of copper species in the carbon matrix for sample SCu5.The 

analysed samples were previously pulverized in an agate mortar and placed on a metal 

horizontal sample holder with a cylindrical cavity of about 1 mm deep.  

The diffractograms were obtained on a D8 X-ray diffractometer Bruker AXS with automatic data 

acquisition, equipped with a graphite crystal curved monochromator coupled to a goniometer 

and using kα1 radiation of a copper bulb (λ = 1.5406 Å). Scans were carried out between 0.7 ° 

and 6 ° 2θ, with a step size of 0.03 ° 2θ and a time per step of 4 s, operating at 40 kV and 40 mA 

in the X-ray tube. 

A.3.5 Surface pH 

The pHPZC of the carbon samples in Article III was determined by mass titration, adapted from 

the method proposed by Noh and Schwarz (1989). The carbon samples were first dried in an 

oven at 105 °C overnight. Millipore water (previously degassed with N2 to eliminate the possible 

presence of CO2), was used to prepare a mixture corresponding to the weight fraction of 10 % 

of carbon.  

The air that was inside the container was also eliminated before sealing. The container was kept 

closed for at least 24 hours, leaving the mixture under magnetic stirring at room temperature. 

After this period, the pH of the mixture was measured with a microelectrode (pH meter VWR 

Symphony SP70P). Then a volume of Millipore water was added to the mixture, repeating the 

same procedure to obtain mixtures containing mass fractions of 8, 6 and 4 wt. %.  
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A.3.6 Infrared Spectroscopy 

Interferograms of samples S, TiO2 and TiO2/S were obtained using a Nicolet Magna-IR560 

spectrometer. Spectra were obtained using the attenuated total reflectance method on powdered 

samples, without KBr addition. Each spectrum was obtained by collecting 300 interferograms with 

a 4 cm1 resolution. 

A.3.7 Diffuse Reflectance Spectroscopy 

The optical features of samples S, TiO2 and TiO2/S, were determined by UV–vis diffuse reflectance 

spectroscopy, recorded on a Shimadzu spectrometer (UV-2501) equipped with an integrating 

sphere and using BaSO4 as a blank reference. Measurements were recorded in the diffuse 

reflectance mode (R) and transformed to a magnitude proportional to the extinction coefficient 

through the Kubelka–Munk function, F(R∞).  

The Energy band gap (Ebg) of the photocatalysts was calculated as the intersection point of the 

extrapolation of the linear segment of the plot (F(R) x E)n (being n =1/2 for direct allowed transition 

in n-type semiconductors such as TiO2) as a function of the energy in eV (López and Gomés, 2012), 

in the region  near the onset of the the light absorption. As an example, the calculation of the Ebg 

for TiO2 is presented in Figure A.2. 

 
Figure A.2- Graphical representation of a modified Kubelka–Munk function for 

the experimental determination of the Ebg value forTiO2. 

A.3.8 X-ray Photoelectron Spectroscopy 

The chemical state of the copper species in sample SCu5 was investigated by X-ray Photoelectron 

Spectroscopy (XPS) measurements, carried out in high vacuum conditions, with previously dried 

samples.  

A.3.9 Ion Coupled Plasma-Optical Emission Spectrocopy (ICP-OES)  

This technique was used to determine the actual copper content of sample SCu5, in a Perkin Elmer 

Optima 2000 DV equipment. 

A.3.10Transmission Electron Microscopy 

Transmission Electron Microscopy (TEM) images of samples S and SCu5 were obtained in a Hitachi 

H-8100 equipment, operating at 200 kV, which corresponds to a point-to-point resolution of 2.7 Å.  
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A.3.11 Scanning Electron Microscopy 

The morphology of the samples and the dispersion of the metallic particles incorporated to the 

carbon matrices was investigated through Scanning Electron Microscopy (SEM) micrographs of the 

copper-loaded activated carbons, and EDX (Energy Dispersive X-ray Spectroscopy) analysis 

(qualitative) of the distribution of heteroatoms on the carbon surface was made using a Ziess DS 

942 and a JEOL JSM-7001F equipments, operating at 25 kV. Particles were dispersed on a graphite 

adhesive tab placed on an aluminum stub. The images were generated in the back scattered 

electron signal mode, which yielded better quality pictures. 

In the following figures (Figure A.3, A.4 and A.5), SEM images obtained for the sisal wastes used as 

precursor for the preparation of the carbon materials, for carbon S and carbon SCu5, are presented. 

  

Figure A.3- SEM images of the pristine sisal wastes. 

  

  
Figure A.4- SEM images of the unloaded carbon S. 
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Figure A.5- SEM images of the copper-containing carbon, SCu5. 

A.4 Photodegradation experiments methodology 

A detailed procedure of the experiments carried out for phenol degradation will be here described. 

The methodology used included a pre-adsorption step for the activated carbons, before irradiation 

of the phenol solution. The results obtained from these assays are presented in Article III and IV 

(Chapter 6).  

A.4.1 Photodegradation tests with pre-adsorption 

Photodegradation experiments were schematized in order to eliminate the contribution of phenol 

adsorption within the porosity of the activated carbon; thus, the irradiation of samples was 

preceded by a pre-adsorption step, to ensure that during irradiation, the contribution of the 

adsorption process can be minimized, and photocatalysis and photolysis are the only occurring 

processes. 

The activated carbons were put in contact with a phenol solution, with mechanical stirring, during 

30 minutes. This contact time was assessed by phenol kinetic adsorption assays, which allowed to 

determine the time needed to reach phenol adsorption equilibrium. Once phenol adsorption 

equilibrium was attained, irradiation with UV light was started.  

A.4.2 Phenol adsorption kinetics of carbons S and SCu5 in dark conditions 

Phenol adsorption studies under dark conditions were initially performed for carbon S and carbon 

SCu5 (Figure A.6) and the residual concentration of the phenol was determined by UV–vis 

spectrophotometry (Genesys 10S) at the wavelength corresponding to the maximum absorbance 

(269 nm) (Figure A.7).  
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Figure A.6- Phenol concentration decay curves for the studied carbons.  

 
Figure A.7- UV absorption spectra of phenol (C= 100 mg L1, optical length= 5 mm). 

Phenol uptake was calculated according to the following equation:   

 
q

t
=

(C0‐Ct)

W
V equation A.1 

where qt is the amount (mg g1) of phenol adsorbed at time t, C0 is its initial concentration (mg dm3) 

and Ct the concentration at time t (mg dm3), V is the volume (dm3) of the adsorbate solution and 

W is the weight (g) of dried carbon. After 30 min of dark exposure to phenol, equilibrium was 

reached for the two cases. Phenol removal efficiencies achieved were of 42 and 32 % for samples 

SC and SCu5, respectively. Phenol dark uptake on P25 was also assayed, but its contribution to the 

amount adsorbed in the case of the composites TiO2/carbon was found to be negligible, which was 

expected given the non-porous nature of the bare catalyst. 

Pseudo-first and pseudo-second order kinetic models, whose theoretic fundamentals are 

presented in section B.4, were applied to the experimental data. The coefficients of determination 

of the pseudo-first order (not shown) were very unfavourable, which indicated that this model 

does not adjust to the experimental data. The fitting results clearly show that the adsorption of 

phenol onto the activated carbons obeys to the pseudo-second order equation. The kinetic 

parameters are presented in Table A.2. 
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Table A.2- Pseudo-second order phenol adsorption parameters for the studied carbons, C0= 100 mg dm3.  

K2- pseudo-second order rate constant; h- initial adsorption rate; t1/2- half-life time; qe- phenol uptake at 

equilibrium; Ce- phenol concentration at equilibrium; re- removal efficiency.  

Sample k2 (g mg1 h1) R2 h (g mg1 h1) t1/2 (h) qe (mg g1) Ce (mg dm3) re (%) 

S 0.639 0.9995 5000 0.0177 88.5 59.2 42.4 

SCu5 0.316 0.9995 1250 0.0503 62.9 66.4 32.4 

A.4.3 Configuration of the photocatalytic reactor  

Phenol photodegradation experiments were carried out at room temperature using a photo-

reactor of 500 cm3 capacity; the irradiation source was provided by a high pressure mercury lamp 

(Helios Italquartz, 125 W, emitting at 313, 360, 404, 436, 546, 577 and 579 nm), whose spectrum is 

presented in Figure A.8. 

 
Figure A.8- Emission spectrum of the high pressure mercury lamp (Helios Italquartz, 125 W) used as irradiation 
source for the photocatalytic experiments. 

The lamp was vertically suspended in a cylindrical, double-walled jacket cooled by flowing water, 

immersed in the solution (Figure A.9). The incident photon flux, evaluated by actinometric 

determinations was 1.35 x 105 Einstein s1 and 9.14 x 106 Einstein s1, when a Pyrex filter was used. 

The water cell was used to control the temperature during the experiments, preventing any 

overheating of the suspension due to the irradiation. The reactor was open to air in all the 

experiments to ensure that enough oxygen was present in the reaction solution. The catalysts were 

added to 500 cm3 of phenol solution under vigorous stirring (900 rpm).  

High Performance Liquid Chromatography (HPLC) was used to analyse the aliquots (~ 1 cm3) taken 

from the reaction solution at pre-determined time intervals of irradiation. A Shimadzu 

chromatograph with a reverse phase column (Spherisorb C18, 125 mm x 4 mm) was used, using as 

mobile phase a mixture of methanol-water, and a detector UV-Vis photodiode array. Coinciding 

with the respective maximum absorption spectra the selected wavelengths in the detector were 

245, 269, 273, 275 and 285 nm for the concentration measurement of benzoquinone, phenol, 
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resorcinol, catechol and hydroquinone, respectively. All samples were filtered through 0.45 µm 

pore size membranes prior to chromatographic analysis. 

   

Figure A.9- Irradiation source and photocatalytic reactor used in the experiments. 

Total Organic Carbon (TOC) analysis was performed to determine the mineralization degree of the 

contaminant reached after the photocatalytic process. The equipment used was a Shimadzu  

TOC-VCPH E200V.
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ANNEX B  

THEORETICAL FUNDAMENTALS OF THE CHARACTERIZATION METHODS  

 

The full characterization of activated carbons (texture, composition, structure) is quite 

challenging, given their extreme complexity regarding size and shape of pores, and variety of 

structures and surface functionalities. However, a good knowledge of the porous structure of 

activated carbons, and of the factors that control the extent of adsorption, as well as the energy 

associated with it becomes imperative due to the wide range of application of these materials.  

The most effective experimental approach for obtaining information on the adsorption process 

is the experimental determination of an isotherm, which contains information on the 

adsorption process. On the other hand, knowledge of the surface chemistry of carbon materials 

is also of fundamental importance, since their physical and chemical properties are strongly 

influenced by the presence of chemical species at the surface that will determine many of its 

applications.  

Throughout this section the theoretical fundamentals of the techniques used for the 

characterization of the activated carbons prepared in the course of this dissertation will be 

briefly described. 

B.1 Textural characterization 

B.1.1 Adsorption of gases and vapors 

Adsorption is a spontaneous process that occurs whenever the surface of a solid is exposed to 

a gas or a liquid. More specifically, it can be defined as the adsorptive enrichment of a given 

fluid, or the increased density of this fluid, in the vicinity of an interface. One of the most suitable 

methods for the interpretation of the adsorption data, especially for the general 

characterization of their micro- and mesoporosity of carbon materials, is the adsorption of 

gases and vapors. 

Physical adsorption of gases is fundamentally a thermodynamic phenomenon. Being essentially 

a spontaneous process, at constant temperature the free energy variation ΔG is negative; on 

the other hand, adsorption corresponds to an ordering of the molecules on the solid surface, 

carrying an entropy change, ΔS, also negative. Thus, at constant temperature: 

 ∆G= ∆HT∆S equation B.1 

from what it can be concluded that the enthalpy variation, H, should also be negative, 

indicating that the adsorption processes are exothermic and therefore not favoured by 

temperature. 
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B.1.2 General definitions and terminology 

The adsorption phenomenon is the result of interaction forces between the solid and gas 

molecules. According to the nature of such interactions a distinction can be made between 

physical adsorption (or physisorption) and chemical adsorption (or chemisorption). Some of 

the key terms and properties associated with the adsorption are presented in Table B.1.  

Table B.1- Some definitions regarding the adsorption process. 

Term Definition 

Adsorption Enrichment of the interface in one or more components 

Adsorbate Substance in the adsorbed state 

Adsorptive Substance that will be adsorbed 

Adsorbent The solid material in which adsorption occurs 

Chemical adsorption 
Adsorption process which involves the formation of a 

chemical bond with the solid 

Physical adsorption 
Adsorption process that does not involve the formation of 

a chemical bond with the solid 

Simultaneously with the process of adsorption, which is a surface phenomenon, absorption 

may occur, with regard to the entire mass of solid. In cases in which it is practically impossible 

to distinguish between the two processes, it is convenient to use the wider term sorption.  

B.1.3 Classification of pores 

Porosity may be defined as the ratio between the volume of pores and voids and the volume 

occupied by the solid. However, a given porosity value can not be regarded as characteristic of 

the material, since it depends on the method used for its determination. In a way that is 

necessarily arbitrary, it is considered that the outer area corresponds to the area of the 

protuberances and cavities which are wider than deep, and the inner area to the walls of the 

pores and slits having a depth greater than the width. Porous solids usually have an internal 

area that is of a much higher order of magnitude than the external area. According to IUPAC 

(Rouquerol, Avnir, et al., 1994), the pores can be classified upon their size as:  

 Micropore- Pore of internal width >2 nm; 

 Mesopore- Pore of internal width between 2 and 50 nm; 

 Macropore- Pore of internal width <50 nm; 

 Nanopore- Pore of internal width less than 100 nm. 

B.1.4 Chemical and physical adsorption 

The distinction between chemical and physical adsorption is based on the interactions between 

the solid and the molecules that are adsorbed. Physical adsorption always occurs whether or 

not accompanied by chemical adsorption. Both phenomena can be distinguished by the 

following characteristics (Rouquerol, Roquerol, et al., 2014): 

 Physical adsorption is a general phenomenon with a relatively low degree of specificity, 

while chemical adsorption is selective, depending on the reactivity of the adsorbent and the 

adsorbate; 

 The adsorbed molecules are chemically bound to the surface active centers, for which 

adsorption occurs in a monolayer. At high relative pressures, physical adsorption usually 

occurs in multilayer; a physically adsorbed molecule retains its identity when it desorbs, 
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returning to its original shape. If a chemically adsorbed molecule undergoes reaction or 

dissociation, it loses its original identity; 

 The energy of chemical adsorption is of the same order of magnitude of the energy of a 

chemical reaction. The physical adsorption is always exothermic, but the energy involved is 

not much larger than the energy of the condensing adsorbable. However, this can be 

considerable high when the physical adsorption occurs at very small pores; 

 In chemical adsorption, an activation energy is often involved and at low temperatures, it 

may not be possible to achieve thermodynamic equilibrium. In physical adsorption 

equilibrium is reached quickly, since activation energy is not required. 

 The chemical adsorption involves the formation of chemical bonds, whereby the heat of 

adsorption is of the order of magnitude of the heat of reaction. 

B.1.5 Adsorption of gases in solids 

In the case of gas adsorption on solids, the amount of gas adsorbed by a solid sample is 

proportional to the mass of the sample and depends on the temperature, T, the pressure, p, 

and of the nature of the solid and gas. The amount of gas adsorbed at a given temperature, nads 

(usually expressed in mmol g1), is given by:  

 nads=f (p, T, gas, solid) equation B.2 

where p is the equilibrium pressure, for constant temperature, gas composition and mass of 

the solid. Alternatively, if the gas is below its critical pressure, the amount adsorbed can be 

expressed in terms of relative pressure p/p°, where p° is the gas saturation pressure at the 

temperature of the isotherm, replacing p, in equation B.2, by p/p°. This form can be 

advantageous, since for each temperature, p/p° varies between 0 and 1. Equation B.2 is a general 

expression for an "adsorption isotherm”, which represents the relation, at constant 

temperature, between the amount adsorbed and the equilibrium pressure, or concentration. 

B.1.6 Adsorption isotherms 

The theory of gas/solid adsorption was developed especially from experimental isotherms, 

which is the reason why most of the fundamental equations do not include temperature. The 

experimental determination of adsorption isotherms can be made by static or dynamic 

methods. In either case, it is necessary to clean the surface of the solid before the analysis and 

the exact conditions for this depend on the nature of the sample. Nevertheless, degassing 

under vacuum and applying temperature is the recommended (Sing, Everett, et al., 1985). In 

static methods, successive amounts of the substance to adsorb are added to a previously 

evacuated volume in which the sample is located, and the amount adsorbed is determined 

when equilibrium is reached for each value of pressure. The adsorbed amount may be 

determined gravimetrically, using a balance, or volumetrically. In this case, the calculation is 

based on the application of the ideal gas equation, once the volume of the system is known (by 

prior calibration). 

The adsorbed amount may be expressed in different units: moles, cubic centimeters or grams 

at standard temperature and pressure conditions. It is recommended, however, that the 

amount adsorbed would be expressed in moles per gram of solid, nads. There are several 

mechanisms by which a porous solid can retain a vapor. The physical adsorption originates 

adsorbed multilayers at low temperature (close to the boiling point). This is the mechanism 
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responsible for adsorption on meso and macropores, as well as on the geometric surface of the 

materials. 

The dimensions of the micropores are of the same order of magnitude as the dimensions of the 

molecules, whereby the adsorption on these pores has special characteristics, namely as a 

result of the overlay of the adsorption potential fields due to the proximity of the walls of the 

pores. The chemical adsorption energies are high, and the adsorbed is held in a condensed state 

and the amounts adsorbed at low pressures are relatively very high. 

A third mechanism for vapor retention (temperatures below the critical temperature) on 

porous solids is capillary condensation. In reality, the vapor saturation pressure in the interior 

of a pore is lower than the value determined in contact with surfaces without curvature. This 

pressure is as smaller as the pore size, according to the Kelvin equation. When adsorption 

equilibrium isotherms are determined, as the pressure increases, increasingly larger pores 

become saturated by condensation of the adsorbed. 

The shape of the adsorption isotherm depends not only on pore size distribution but also on 

the molecular dimensions of the adsorbate molecule. Thus, the critical parameter is not the 

pore size, but the relation between the pore size and the critical dimension of the adsorbate 

molecule. Thus, the adsorption isotherm analysis of different molecules in a given adsorbent 

generates a complete set of information for the characterization of its porous texture. 

B.1.7 Classification of adsorption isotherms 

In 1940, Brunauer, Deming, Deming and Teller grouped all known isotherms into five types 

(BDDT classification) (Brunauer, Deming, et al., 1940). The IUPAC included a sixth type of 

isotherm which had been observed later on (Sing, Everett, et al., 1985). However, given the new 

characteristic types of isotherms identified and shown to be closely related to particular pore 

structures, over the past 30 years, a refinement of the original IUPAC classification of isotherms 

was necessary (Thommes, Kaneko, et al., 2015). The current IUPAC classification of adsorption 

isotherms is presented in Figure B.1. The existence of hysteresis is associated with the isotherm 

types IV and V. Each type of isotherm is associated to a particular mechanism (physical 

adsorption, chemical adsorption, capillary condensation). As a result, from the simple 

observation of experimental isotherms, some conclusions can be drawn on the porous texture 

of the material.  

Reversible Type I isotherms are given by microporous solids presenting relatively small external 

surface areas, as is the case of some activated carbons, molecular sieve zeolites and certain 

porous oxides. A Type I isotherm is concave to the p/p° axis, and characterized by a limiting 

value of the amount adsorbed, which begins to set at relatively low relative pressure and is 

extended to the saturation pressure. The threshold corresponds to the complete filling of the 

micropores, and therefore its height is proportional to the micropore volume. Type I(a) 

isotherms are given by microporous materials having mainly narrow micropores (of width < ~ 1 

nm), while Type I(b) isotherms are characteristics of materials with wider pore size distributions 

(including wider micropores and narrow mesopores, of width < ~ 2.5 nm). These isotherms also 

represent chemical adsorption, in which case the threshold value corresponds to the formation 

of a monomolecular layer adsorbed on the active sites. 
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Figure B.1- IUPAC classification of adsorption isotherms (adapted from Thommes, Kaneko, et al., 2015). 

Reversible Type II isotherms are characteristics of the adsorption of most gases on non-porous 

or macroporous adsorbents, with unrestricted monolayer-multilayer adsorption. These 

isotherms are concave relative to the x-axis up to a certain point, normally referred to as point 

B, when the middle almost linear section starts. If the knee is sharp, point B usually corresponds 

to the completion of monolayer coverage, while a less distinctive point B is an indication of a 

significant amount of overlap of monolayer coverage and the onset of multilayer adsorption. 

After this almost straight section, the slope increases and the curve becomes convex to the axis 

of abscissas. 

The Type III isotherm is convex in relation to the axis of the abscissas and does not present a 

point B, with no monolayer formation. This indicates that the adsorbent-adsorbate interactions 

are relatively weak and the adsorbed molecules are clustered around the most favourable sites 

on the surface of a non-porous or macroporous solid. 

Type IV isotherms are characteristic of mesoporous adsorbents, as many oxide gels, industrial 

adsorbents and mesoporous molecular sieves. The adsorbent-adsorptive interactions and the 

interactions between the molecules in the condensed state rule the adsorption behaviour in 

mesopores. The initial monolayer-multilayer adsorption on the mesopore walls, which is similar 

to the corresponding part of a Type II isotherm, is followed by capillary condensation, with the 

existence of a final saturation plateau of variable length. In Type IV(a) isotherms, capillary 

condensation is accompanied by hysteresis (different equilibrium points obtained for 

adsorption and desorption), that occurs when pore widths exceeds a certain critical width, 

depending on the adsorption system and temperature (for nitrogen adsorption at – 196 °C, 

hysteresis occurs at pores > ~ 4 nm). Completely reversible Type IV(b) are observed for 

adsorbents having mesopores of smaller width.
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Type V isotherms are, to a certain pressure value, similar to the isotherms of Type III, which is 

an indication of relatively weak adsorbent-adsorbate interactions. At higher relative pressure 

values, molecular clustering is followed by pore filling. These isotherms are obtained for water 

adsorption on hydrophobic microporous and mesoporous adsorbents. 

Reversible stepped Type VI isotherms are associated with layer-by-layer adsorption on highly 

homogeneous non-porous surfaces. The levels, at approximately equal heights, correspond to 

the formation of successive adsorbed layers, and the sharpness of the step depends on the 

system and the temperature. Type VI isotherms are typically obtained with argon or krypton at 

low temperature on graphitized carbon blacks. 

The hysteresis phenomenon is a result of the capillary condensation that occurs in the 

mesopores and results from the fact that condensation and evaporation of the adsorbed gas 

does not occur at the same relative pressure. Normally this phenomenon is attributed to the 

thermodynamic effects (formation of metastable vapor states), or constrictions in the porous 

network (percolation, cavitation), or even a combination of the two effects (Rouquerol, 

Rouquerol, et al., 2014). In addition, hysteresis may also be caused by the effects of connectivity 

of the pores (Choma and Jaroniec, 2006). 

The original IUPAC hysteresis classification, that reported Types H1, H2, H3 and H4 (Sing, 

Everett, et al., 1985), was extended to six characteristic types, for carbons or other non- 

carbonaceous materials, corresponding to different pore structures, in the light of recent 

findings (Thommes, Kaneko, et al., 2015), as presented in Figure B.2: 

 

 
Figure B.2- Classification of hysteresis loops, according to the IUPAC (adapted from Thommes, Kaneko, 
et al., 2015). 

The characteristic features of some types of loop are associated with certain well defined pore 
structures:  

 Type H1 loop is characterized by two almost parallel branches of the isotherm, a clear sign 

of delayed condensation of the adsorption branch. It is associated to porous materials with 

a narrow range of uniform pores (e.g., template silicas and ordered mesoporous carbons); 

 The Type H2 loop, in which only the desorption branch is almost vertical, is associated to 

materials with complex pore structures and that tend to be made up of interconnected 

networks of pores of different size and shape. Type H2(a) displays a very steep desorption 
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branch, attributed to pore-blocking/percolation in a narrow range of pore necks or to 

cavitation-induced evaporation, being characteristic of many silica gels and ordered 

mesoporous materials. In the Type H2(b) loops, also associated with pore blocking, the size 

distribution of neck widths is much larger. Mesocellular silica foams and certain 

mesoporous ordered silicas exhibit this type of hysteresis loop; 

 Type H3 loop is characterized by the resemblance of the adsorption branch to a Type II 

isotherm and a lower limit of the desorption branch. This type of loop is usually given by the 

aggregates of platy particles or adsorbents containing slit-shaped pores; 

 Type H4 loop presents an adsorption branch that is a composite of Types I and II, in which 

the marked uptake at low relative pressures is associated to the filling of micropores. 

Examples of this type of hysteresis is found for aggregated crystals of some mesoporous 

zeolites and micro-mesoporous carbons; 

 Type H5 loop is rather unusual, although it has a distinctive form associated with certain 

pore structures containing both open and partially blocked mesopores. 

Activated carbons typically have loops of type H4 hysteresis, returning to a zero adsorbed 

amount after desorption to relative pressures of approximately zero (Marsh and  

Rodríguez-Reinoso, 2006).  

B.1.8 Quantitative Interpretation of Isotherms 

In addition to the analysis of the isotherms shape, these must be quantitatively interpreted, so 

that comparisons between materials can be made. For an analysis of the texture of activated 

carbon is necessary to know the amount of carbon porosity along with an indication of the type 

of porosity, namely pore size distribution. Numerous analytical methods for determining the 

specific surface area from adsorption data are available, which are generally of a semi-empirical 

character. The methods and models employed in the analysis of the adsorption isotherms of N2 

and CO2 of materials obtained throughout this work will be described in the next section. A 

thorough and comprehensive analysis of the many proposed methods for the analysis of 

adsorption isotherms will not be presented here. The discussion on the characterization 

techniques of porous solids can be further consulted in a wide bibliography  

(Rodríguez-Reinoso, McEnaney, et al., 2002; Choma and Jaroniec, 2006; Marsh and  

Rodríguez-Reinoso, 2006; Rouquerol, Rouquerol, et al., 2014; and references therein). 

B.1.9 Assessment of surface area- Model and equation of Brunauer-Emmett-Teller 

The most often used mathematical treatment for the determination of the specific surface area, 

is the model proposed by S. Brunauer, P. H. Emmett and E. Teller, in 1938, which aimed to 

quantitatively describe the physical adsorption of vapor, and thus, the Type II or Type IV(a) 

isotherms (Brunauer, Emmett, et al., 1938). Nevertheless, this model has been subjected to a 

number of criticisms and there is a general awareness of the shortcomings in relation to the 

underlying theory.  

The BET model is based on the kinetic model on the monolayer adsorption proposed by 

Langmuir. A dynamic equilibrium of adsorption and desorption is recognized, but the possibility 

of forming adsorbed multilayers is included, an hypothesis that on one hand explains the 

general shape of a type II isotherm and on the other is not admissible in chemical adsorption, 

being yet compatible with the phenomenon of physical adsorption. It is based on the following 

assumptions:
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 In each layer, the adsorption rate is equal to the desorption rate; 

 The heat of adsorption from the second layer is constant and equal to the vapor condensation 

heat; 

 When p = p, the vapor condenses as a liquid and the ordinary number of adsorbed layers is 

infinite. 

The mathematical equation that results from BET model is generally used in the linear form: 

 p p°⁄

nads (1(p p°⁄ ))
=

1

nmcBET
+

cBET1

nmcBET
(p p°⁄ )   where  cBET=e

(
E1EL

RT
)
 equation B.3 

where nads corresponds to the amount adsorbed at the relative pressure p/p, and temperature T, 

pº corresponds to the vapor saturation pressure at temperature T, nm is the adsorbed amount 

needed to fill the monolayer, and cBET is designated the BET constant defined as (E1-EL)/RT, with E1 e 

EL, being the heat of adsorption of the first layer and the vapor condensation heat, respectively. 

The application of this equation to the experimental data, allows the determination of the number 

of adsorbed moles in the monolayer (nm); from this value, the area occupied by a monolayer on the 

surface of a solid (ABET) can be calculated by the expression: 

 ABET=nmNAam equation B.4 

where NA is the Avogadro's number (6.02 x 1023 mol1), nm is the monolayer capacity, and am is the 

average area occupied by a molecule of adsorbate in the monolayer. For nitrogen at  

 196° C (the temperature of liquid nitrogen), am = 0.162 nm2 (Gregg and Sing, 1982). The value of am 

should be, as much as possible, constant and characteristic of adsorbate, which presupposes the 

existence of a poorly localized interface. However, the higher the value of the parameter c, more 

energetic and localized will be the adsorption, and therefore the value of am will be more 

dependent of the adsorbent itself. 

The BET equation, originally proposed to describe the Type II sigmoid isotherms, can reproduce the 

initial part of any of the BDDT isotherms, varying the value of parameter CBET. When the adsorbents 

are not microporous, this equation usually has a maximum validity in the relative pressure range 

p/p° =0.05 and p/p° =0.3, respecting to the equation linearity area. At higher or lower pressures, the 

BET equation provides adsorbed quantities which are, respectively, lower and higher than real. 

In the case of microporous adsorbents such as activated carbon, the range of validity of equation 

is generally much more restricted, usually between values of p/pº from 0.05 to 0.20. In this study 

the range of relative pressures used was limited to 0.05 < p/pº< 0.15. In microporous samples, the 

surface area determined by the BET method can not have a real physical meaning. This results from 

the fact that adsorption on this type of materials does not take place by superimposing layers, but 

rather by microporosity filling. In this context, the surface area determined by the BET method 

should only be seen as an apparent surface area. 

B.1.10 Assessment of microporosity- Dubinin-Radushkevich equation 

The Dubinin-Raduskhevich equation (DR equation) is based on the Polany potential theory and 

admits that the adsorption process involves the filling the micropore volume and not the formation 

of several layers on the pore walls, as proposed by the BET or Langmuir models. This equation was 

proposed in 1947, arguably occupying a central position in the physical adsorption of gases and 

vapors in microporous solids theory (Theory of Volume Filling of micropores) (Choma and Jaroniec, 
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2006). The DR equation is different from the BET equation, because it is not based on a model that 

describes gas physical adsorption, being an empirical method that takes into account the distinct 

adsorption energies. The fractional filling of the micropore volume, W/ W0, is expressed in the 

general form: 

General form W W0⁄ = exp [ (A E⁄ )2] equation B.5 

Linearized equation ln W = ln W0 (R . T  . E0⁄ )2. ln2(p p⁄ ) equation B.6 

where W is the volume occupied by adsorbed phase, W0 the microporous volume, A is the 

adsorption potential (A=  RT ln (p/p), E is the characteristic energy of the system under study and 

 is an affinity coefficient. Being a linear equation (B.6), the graphical representation of ln W vs ln 

(p0/p)2 is a straight line whose intersection with the y-axis allows the determination of the 

micropore volume (w0). 

Ultramicroporous carbons generally originate linear DR plots, over a wide ranges of p/p°, but the 

extent of the linear region is much more restricted for most nanoporous carbons. Also, the 

significance of the empirical parameters of the DR equation is questionable, and as consequence, 

it must be emphasized que the DR simple plot can not always give a true assessment of the 

effective micropore volume.  

The linearity of the DR equation is only observed at low relative pressures values, since the linearity 

deviations occur in the case of not exclusively microporous solids, deviations which are 

accentuated for the progressive increase of pressure values. In many cases the upward positive 

deviation is associated with the loss of rectangularity in the adsorption isotherm due to a higher 

contribution of the wider micropores and even mesopores (Rodríguez-Reinoso and  

Sepúlveda-Escribano, 2001), in which filling occurs through a cooperative mechanism. The most 

usual explanation for this kind of deviations is the capillary condensation in the mesopores. 

However, the existence of two types of microporous in the solid, with different dimensions, has 

also been pointed as a reason for this fact, since it originates the same sort of deviations. 

As part of this work, the DR equation was applied to the results obtained for the adsorption of 

nitrogen at  196 °C and CO2 at 0 °C, allowing to estimate the total micropore volume and the volume 

of narrower micropores (ultramicropores), respectively, of the studied activated carbons. The 

comparison of the micropore volume obtained by applying the DR equation to the nitrogen 

adsorption isotherm at  196 °C, with the value obtained by applying the same equation to the CO2 

adsorption isotherm at 0 °C for a given carbon material can lead to three different observations 

(Rodríguez-Reinoso and Sepúlveda-Escribano, 2001): 

(i) W0,N2 < W0,CO2 – This situation occurs when the microporosity is too narrow, and may attributed 

to the difficulty in achieving equilibrium in the adsorption of N2 molecules at the low temperature 

at which the process occurs; 

 (ii) W0,N2  W0,CO2 – This case is observed on carbons with intermediate activations. The DR 

representations of these solids are substantially linear over a wide range of relative pressures, 

although there may be some positive deviation for the adsorption of nitrogen at high relative 

pressures. The characteristic curves of the two adsorbates (ln W vs A2) can be adjusted by the same 
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line. The carbons that exhibit this behaviour have relatively narrow microporosity but sufficiently 

wide to avoid diffusional limitations for N2 at  196 °C; 

 (iii) W0,N2 > W0,CO2 – This kind of results is observed for carbons with high degrees of activation. 

When it is not possible to obtain results for the adsorption of N2 at  196 °C at low relative pressures 

(p/p° = 0.01), the extrapolation of the characteristic curve for N2 at  196 °C and CO2 at 0 ° C is not 

coincidental. Thus, the range of relative pressures used for applying the DR equation is not the 

same, and the micropore volume obtained for N2 is superior to that obtained with CO2. These 

carbons have a very wide microporosity and the adsorption of N2 at  196 °C occurs in micropores 

of larger dimensions than the micropores in which adsorption of CO2 at 0 °C takes place, due to the 

fact that different ranges of relative pressures are used. 

The resulting uncertainty of the limit of application of the DR equation to the nitrogen adsorption 

data at  196 °C in carbons with a wider pore size distribution, resulting from the heterogeneity of 

the porous system, and consequently, the adsorbate and the range of pressures used, suggests the 

use of other complementary approaches to the analysis of these adsorption isotherms. 

B.1.11 Pore size distribution assessment 

There are many methods to calculate the pore size distribution, most of them based on classical 

methods (i.e., Horvath-Kawazoe and t-plot method for micropores, and those based on the Kelvin 

equation for the mesoporosity, such as Barrett, Joyner and Halenda (BJH) or Broekhoff and de Boer 

(BdB), and their modifications  (Choma and Jaroniec, 2006).  

All pore distribution calculation methods are based on the assumption that the experimental 

isotherm can be expressed as the sum of the isotherms of individual pores forming the porous solid 

structure.  

In the 80’s considerable progress was made on the understanding of fluid behaviour constrained 

by the presence of walls, which led to the application of the Density Functional Theory (DFT) to the 

adsorption phenomena (Tarazona, Marconi, et al., 1987; Seaton, Walton, et al., 1989; Lastoskie, 

Gubbins, et al., 1993). From a mathematical approach, the DFT method applied to the calculation of 

PSD is based on the integral of the individual isotherms of defined given sizes: 

 

n(p) = ∫ f(w) .  (p, w) .

Wmax

Wmin

 dw equation B.7 

where n(p) is the amount of adsorbed gas at a p pressure, wmin and wmax are the minimum and 

maximum pore widths, f(w) is the distribution of pore volumes as a function of the pore width, and 

 (p,w) is the molar density of the adsorbate dependent on p and pore width w.  

The most advanced form of this theory is called the non-local approach (NL-DFT) that that is based 

on calculating model isotherms that may be used to determine pore size distribution from gas 

adsorption data. The first approaches made assumptions concerning the functional form of the size 

distribution; more recently, a generalization was accomplished by numerical deconvolution of the 

isotherm data using a set of pore shape dependent model isotherms calculated from DFT, each 

member of the set being representative of a unique, narrow range of pore sizes. Nowadays, the 

advanced methods based on NLDFT succeed in determining the pore size distribution in the entire 
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range of pore sizes accessible by the adsorptive molecule (Jagiello and Olivier, 2013a; Jagiello and 

Olivier, 2013b).  

More sophisticated methods based on the DFT have been recently developed for the 

determination of the pore size distribution, although few studies in the literature are related to CO2 

adsorption in carbon materials. These methods are however difficult to implement due to its 

mathematical complexity.  

In a study by Pinto and coworkers (Pinto, Mestre, et al., 2010), the authors make a comparison of 

the methods for the determination of pore size distribution of carbonaceous materials from the 

CO2 adsorption isotherm, concluding that the results of applying the DR equation to estimate the 

pore size distribution are highly dependent on the method used to make the adjustment of the 

experimental data. The authors propose a more suitable method that does not assume a Gaussian 

distribution (equation B.8).  

 w(A)= ∑ w0i exp [ (
A

βE0i
)

2

]

m

i=1

 equation B.8 

where  (=E/E0) is the affinity coefficient, and E0 is the characteristic energy that depends on the 

adsorbent. From the practical point of view, it is preferable to always use this method for the 

determination of pore size distribution of carbon materials, because there often is no previous 

indication of how developed is the porosity of a new carbon adsorbent (activated carbon or char) 

and how this could influence the microporous distribution results. 

B.2 Chemical and structural characterization 

The complexity of the surface of carbon materials makes it difficult to select a single 

characterization technique to successfully explain all the chemical properties of the surface. There 

are numerous available techniques to characterize the surface chemistry of activated carbons, such 

as infrared spectroscopy, Boehm and potentiometric titrations and thermal analysis that provide 

information about the composition and concentration of surface groups. Other techniques are 

focused on the crystal structure, as for example, electron microscopy and X-ray spectroscopy. The 

combination of complementary techniques with chemical analysis is a powerful tool for 

determining the composition and concentration of functional groups present in carbon materials. 

A description of the chemical characterization methods used in this study will be presented below. 

B.2.1 Elemental analysis and ash content 

The amount of heteroatoms present in carbons may result from the raw material, the activation 

process or some after-treatment. The elements which remain after the complete combustion of a 

carbonaceous material to constitute the ashes of the material. The quantity and composition 

(inorganic matter) of the ashes may vary according to the precursor used. Activated carbons may 

contain up to about 20 wt. % of ash content (Rodríguez-Reinoso and Sepúlveda-Escribano, 2001). In 

addition to the quantification of inorganic matter by the determination of the ash content, the 

remaining heteroatoms can also be quantified by elemental analysis, including oxygen, hydrogen, 

nitrogen and sulfur, as well as carbon, which is the major component. 

The elemental analysis of an activated carbon allows the quantification of the heteroatoms present 

on the carbon matrix, providing first information about the possible functional groups present in 

the sample. Even though the percentage of heteroatoms is quite low compared to the percentage  
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of carbon atoms, these atoms, especially oxygen, play a decisive role in the chemical 

characteristics of the materials. 

B.2.2 pH at the point of zero charge 

The surface charge of activated carbon is determined by the nature of the surface groups and 

pH, as the surface may present characteristics of acidic or basic centers, thereby displaying an 

amphoteric character. The surface chemistry depends essentially on the presence of 

heteroatoms, and most frequently on the content and nature of oxygen functional groups on 

the surface. These groups will also determine the hydrophobicity of the carbon and the 

electronic density of graphenic layers. When an activated carbon is immersed in an aqueous 

solution it develops a surface charge resulting from the dissociation of surface groups or the 

adsorption of ions in solution. The surface charge depends on the pH of the solution and the 

surface characteristics of the material. 

The dissociation of acidic surface oxygenated functionalities, such as phenolic or carboxyl 

groups (Brönsted acids) originates a negative charge. Moreover, the source of a positive 

surface charge is more uncertain, since in carbons with nitrogenated groups it can be assigned 

to oxygen surface complexes as pyrones or chromenes, or due to the existence of high electron 

density regions in the graphenic layers that act as basic Lewis centers, which accept protons 

from the solution (Marsh and Rodríguez-Reinoso, 2006). 

The determination of the surface charge can be achieved by electrokinetic methods or mass 

titration. These methods are complementary, especially in the case of activated carbons. The 

former measures the surface charge on the outer surface area of the particle, while the latter 

provides a measure of the total surface charge. Also, determining the surface pH value of the 

carbon material can provide useful information on the surface charge distribution. In this 

regard, the pH value required to present zero surface charge -pH at the point of zero charge -

pHPZC- is considered a crucial parameter for the characterization of the electronic charge of the 

surface of activated carbons. In the model presented by Noh and Schwarz (Noh and Schwarz, 

1989), the pHPZC is evaluated in an aqueous suspension. It is assumed that near neutrality, at 

pHPZC of 7, the pH of the suspension is independent of the mass of carbon. Otherwise the pH 

variation is due to the dissociation of ionizable groups on the surface of the carbon materials.  

Carbons that present a pHPZC < 7 carbons are referred to as acidic ones, while basic carbons are 

those which have a pHPZC > 7. For an amphoteric material, the surface is positively charged at 

pH < pHPZC and negatively charged when pH > pHPZC. Thus, it is possible to measure the tendency 

of a carbon surface to be positively or negatively charged. This is generally considered an 

indicator of the carbon surface oxidation, as it allows to identify an acidity or basicity increase 

of the surface after modification treatments. 

The pHPZC measurements can be performed independently using solutions with different 

weight percentages of carbon, or from successive dilutions of the same sample. The pH of the 

equilibrium in the plateau of the curve pH curve vs mass concentration of the suspension 

corresponds to the pHPZC. This method presents however some practical limitations, since 

weight concentrations above 20 % can not be used, because above this value the solutions 

become too dense to allow pH measurements. A low ionic strength value may also condition 

the pH value; in these cases the use of support electrolyte solutions may be advantageous. 
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Finally, the presence of impurities in the carbon may lead to an increase in pH and pHPZC may 

not be representative. 

B.2.3 Thermal Analysis 

Thermal analysis is a general term which groups the measurement methods of the physical and 

chemical properties variations essentially as a function of temperature or time, when the 

sample is subjected to a controlled temperature program (Brown, 1988).  

B.2.3.1 Thermogravimetry 

The mass change of a sample as a function of temperature is the basis for thermogravimetry 

(TG). The sample is subjected to a controlled heating or cooling program, and mass variations 

are measured continuously (Hill, 1991). The most frequently used procedure consists in 

subjecting the sample to a constant heating rate. The measuring instrument used 

(thermogravimetric analyser or thermobalance), consists of a furnace and a microbalance with 

a control device to measure the temperature and mass of the sample during the test. The gas 

flow within the thermobalance follows a longitudinal path and is introduced into the upper part 

of the furnace. The entire scale of the mechanism is in an inert atmosphere, with a carrier gas 

stream of all the gases generated. The curve obtained for the representation of the weight 

change versus time or temperature is the thermogravimetric or TG profile. 

The information obtained from the thermogravimetric profiles is of empirical nature, since the 

transition temperatures depend on instrumental parameters and sample characteristics, which 

makes it difficult to make comparisons between data obtained in different equipments. The 

thermogravimetric parameters are not intrinsic to a substance, depending on the method used 

for its acquisition. Among these experimental parameters are the heating rate, reaction 

atmosphere, the material and the geometry of the sample holder, furnace size and shape.  

In the case of carbon materials, TG profiles induce the thermal decomposition of the surface 

functionalities chemically bound to carbons. These profiles are usually characterized by wide 

humps. The evolved gases can be analysed by different techniques (mass spectrometry, IR, gas 

chromatography). CO, CO2 and H2O are the dominant desorbed gases although some other 

compounds (NO, NH3, SO, SO2) can also be detected in N- and S-doped carbons. The correlation 

between the gaseous species detected upon thermal decomposition (the number and 

temperature of the desorption peaks) and the nature of the carbon surface functionalities has 

been widely studied (Bandosz and Ania, 2006).  

B.2.3.2 Temperature Programmed Reduction 

Temperature Programmed Reduction (TPR) with hydrogen is a widely used technique for the 

characterization of reducible solids and catalysts. This technique is often used in the field of 

heterogeneous catalysis to find the most efficient reduction conditions. The experimental 

method of TPR for the investigation of gas/solid reactions is well established and widely used 

since the 1970s. In TPR experiments, a reducible catalyst or catalyst precursor is exposed to a 

flow of a reducing gas mixture (typically a few vol. % of hydrogen in an inert gas) while the 

temperature is linearly increased. The rate of reduction is continuously followed by measuring 

the composition (H2 content) of the reducing gas mixture at the outlet of the reactor with 

appropriate detectors (thermal conductivity detector, mass spectrometer). The experiment 

allows the determination of the total amount of hydrogen consumed, from which the degree 

of reduction 
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and thus, the average oxidation state of the solid after reduction can be calculated (Reiche, 

Maciejewski, et al., 2000).  

B.2.4 Fourier Transformed Infrared Spectroscopy (FTIR) 

Infrared (IR) spectroscopy is one of the instrumental analysis techniques most commonly used in 

the characterization of surface features of activated carbons. The introduction of the Fourier 

transform increased the range of application of this technique for the qualitative and quantitative 

analysis of surface functionalities.The infrared region of the electromagnetic spectrum is generally 

divided into three zones, with respect to the visible region: far (400-10 cm1), mid (4000-400 cm1) 

and near (4000-14000 cm1). FTIR is applied to the intermediate region of the spectrum, and it may 

be used for a direct and rapid characterization of solid samples.  

When a sample is irradiated, light is selectively absorbed according to the specific frequency 

vibration (vibrational level) of the molecules, reason why compounds with similar chemical groups 

exhibit characteristic absorption bands in the IR, giving rise to a spectrum. The absolute reflectance 

measurements depend, for example, on the experimental conditions, the angle of incidence and 

reflection, and thickness and state of the sample surface. Since the ratio of the intensities of the 

bands remains constant with no change of particle size, it is essential to previously prepare the 

sample, pulverizing it in a mortar. 

The assignment of the infrared absorption bands and peaks to different functionalities of the 

carbon surfaces is made by comparison with the spectra for organic compounds containing similar 

functional groups. In Table B.3 a summary of bands and peaks assignment corresponding to oxygen 

functionalities in carbon materials is presented (Fanning and Vannice, 1993; Bandosz and Ania, 

2006).  

Table B.3- Principal functional groups on carbon surfaces and their corresponding infrared 
assignments. 

Group or functionality 
Assignment regions (cm1) 

100-1500  1500-2050 2050-3700 

C-O stretch of ethers 1000-1300   

Ether bridge between rings 1230-1250   

Cyclic ethers containing COCOC groups 1025-1141   

Alcohols 1049-1276  3200-3640 

Phenolic groups: 
C-O stretch 

O-H bend/stretch 
1000-1220 
1160-1200 

 2500-3620 

Carbonates; carboxyl-carbonates 1000-1500 1590-1600  

Aromatic C=C stretching  1585-1600  

Quinones  1550-1680  

Carboxylic acids 1120-1200 1665-1760 2500-3300 

Lactones 1160-1370 1675-1790  

Anhydrides 980-1300 1740-1880  

Ketenes (C=C=O)   2080-2200 

C-H stretch   2600-3000 
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The main challenge in FTIR analysis of carbon materials is that most of them are too opaque for 

direct transmission analysis in the mid-infrared spectral region. Partial dilution in an appropriate 

transparent additive (KBr) is not always satisfactory, for which alternative sampling techniques 

such as diffuse reflectance, photo acoustic spectroscopy, or attenuated reflectance are extensively 

used to overcome these problems. Furthermore, in the case of carbon materials IR spectroscopy 

does not provide quantitative information. The modification of the surface chemistry of carbon 

materials originated by, for example, oxidation treatments and under different operating 

conditions, detected by FTIR, have been widely disclosed in the literature.  

Although this technique does not provide quantitative information on the carbon surface 

chemistry, it enables the identification of the groups created or removed during the modification 

treatment. In addition to oxygen functional groups, nitrogen groups have also been studied, 

although the interpretation of the spectra is still unclear due to the existence of a broadband where 

there is an overlap due to the contribution of various bands. This technique was also used for the 

determination of sulfur compounds present on the surface of activated carbons after 

adsorption/oxidation with H2S (Bandosz and Ania, 2006). 

B.2.5 UV-vis Diffuse Reflectance Spectroscopy 

UV-vis spectroscopy is a useful technique for obtaining information about the electronic structure 

of the materials and their optical properties. It is based in the electronic absorption of 

electromagnetic radiation when it interacts with matter in the range of wavelengths of ultraviolet 

and visible (190-800 nm). In the case of solid catalysts, the most used technique is the diffuse 

reflectance, observing the transition of electrons from the valence band to the conduction band 

and therefore, allowing the calculation of the band gap energy. 

Diffuse reflectance measurement is defined as the fraction of incident radiation that is reflected in 

all directions by the sample, due to absorption and dispersion processes and predominates when 

the materials of the reflecting surface are weak absorbents at the incident wavelength and when 

the penetration of the radiation is large in relation to the wavelength. Reflection has two 

components, specular and diffuse, with the latter providing useful information about the sample. 

The calculation of the diffuse reflectance can be rationalized by the Kubelka-Munk theory (Kubelka 

and Munk, 1931), which provides a relationship for the reflected radiation based on the absorption 

(kab) and dispersion (ks) constant, according to equation B.9:  

 
f(RL)=

(1‐RL)2

2 RL
=

kab

ks
 equation B.9 

where RL is the relative reflectance using a reference pattern. 

B.2.6 X-ray Photoelectron Spectroscopy  

X-ray Photoelectron Spectroscopy, commonly known as XPS, is an interesting technique for the 

characterization of solid and powder samples, due to its ability to measure binding energy 

variations resulting from the surrounding chemical environment. This type of spectrometry is 

currently a key tool in surface analysis, essentially due to two main characteristics: the possibility 

of a quantitative analysis and also knowledge of the chemical nature and state of the detected 

elements. Other advantages of this technique are a highly specificity due to the short range 

photoelectrons that are excited from the solid and also the fact of being a non-destructive  
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technique. XPS is able to determine the chemical composition of the surface of various materials 

by 1 nm in depth, being also possible to know if the material surface is oxidized and what elements 

are present (Bandosz and Ania, 2006). 

The XPS technique uses X-rays to excite electrons from the sample by measuring their kinetic 

energy. Photons with energy h (the typical energy of the incident photons is 1 to 2 keV) are 

directed to the sample being absorbed by its atoms, leading to ionization and emission of an 

electron from an inner layer. By absorbing a photon, an electron is emitted in order to return to its 

original energy state. The electron ejected retains the energy of the incident photon, thus being 

able to escape from the atom with a kinetic energy that will depend on its binding energy, the 

energy of the incident photon and a correction factor. To return to the ground state, the atom can 

emit another photon (fluorescence) or suffer an Auger transition. Thus, different chemical species 

can be identified, since the kinetic energy of the ejected electrons depends on its binding energy. 

For each element there is a series of characteristic peaks in the photoelectronic spectrum, whose 

intensity is related to the concentration of the element in the analysed region, allowing a 

quantitative analysis. However, the analysis of porous samples can sometimes be misleading, since 

the outer surface of these materials is often found more oxidized or functionalized to its core. In 

these cases, the quantification corresponds only to the surface of the materials.  

XPS is used to characterize the surface chemistry of carbon materials, providing useful information 

about the binding energies of photoelectrons (i.e., C1s, N1s, O1s, P2p, S2p and so forth) of surface 

groups. The allocation of bond energies to features of the surface of activated carbon has been 

extensively reported in the literature (Bandosz and Ania, 2006). The assignment is largely affected 

by the local environment of the heteroatoms, the state of bonding to neighboring atoms, etc., for 

which identification is not straightforward. Despite this, XPS analysis can be very convenient to 

identify any likely changes on the surface of carbon materials during pyrolysis/carbonization 

treatments, or those arising after long-term uses. 

B.2.7 X-Ray Diffraction 

The X-radiation is an electromagnetic radiation of the same kind of visible light, strongly energetic 

due to its short wavelength (0.1 to 100 Å). Generally, the longer wavelength used for inorganic and 

organic materials studies varies between 0.5 and 2.5 Å due to the interatomic distances of the 

materials is located in this interval. The X-ray diffraction is the most widely used method to identify 

crystalline structures. The diffractograms result of the interference between the waves associated 

with X-ray and the electronic cloud of the constituents of the crystal lattice. The analysis of the 

diffractograms thus enables to determine the distribution of atoms, ions or molecules in a crystal 

lattice. 

X-ray diffraction is generally considered the "optimal" technique for structural characterization of 

materials, since it allows to distinguish between the various allotropic forms, but also to determine 

the graphitization degree of an activated carbon in comparison with the ideal graphite structure. 

More specifically, the XRD technique reflects the degree of graphitization in terms of the 

stacking/packaging of basic constituents. The X-ray diffraction has been used to study activated 

carbon and other carbon materials since the first uses of this technique for the characterization of 

microstructures (Iwashita, Park, et al., 2004).  
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In powder diffractometry, the sample is composed by a large number of crystallites whose 

orientation is statistically random; a number of crystallites are in the Bragg position for a given 

family of hkl planes, that is, an incidence angle θ such that n λ = 2 d (hkl) sin θ (Bragg's law), where 

n is an integer number of wavelengths of incident radiation, λ, d represents the distance between 

the interlattice planes, (hkl) are the Miller indices, of the family of hkl planes, integers numbers 

corresponding to the ratio between the dimensions of the crystal lattice a, b and c, of the 

intersection distances of the respective planes in the crystallographic axis, and θ is the Bragg angle, 

the angle between the incident radiation and the crystal plane (Pecharsky and Zavalij, 2003). 

B.2.8 Scanning Electron Microscopy  

Scanning electron microscopy, designated as SEM, is a widely used technique for the study of the 

surface morphology, due to the simplicity of sample preparation, ease of operation, and the high 

amount of information made available. SEM images have a three dimensional characteristic 

appearance and are useful to evaluate the surface structure of a given sample (Cahn, 2001). The 

surface to be analysed is systematically covered by a beam of energetic electrons. When the surface 

is hit by a beam, secondary electrons are emitted, generating a signal that is used to form an image 

through a cathode ray tube. 

The resolution obtained is much higher than of optical microscopes, since electrons are used, 

achieving also a high field depth. Given the range of interactions between electrons and matter, it 

is possible to obtain specific information, depending on the detected signal. The signals commonly 

used in materials science are: secondary electrons, retrodiffused electrons and X-rays. Secondary 

electrons have very little energy (0 up to 50 eV), being derived from the more superficial layers of 

the sample, holding information on the topography of surface. The retrodiffused electrons, more 

energetic (50 eV to beam energy), "carry" information about the composition of the sample, i.e., 

are sensitive to the atomic number. Thus, the image obtained can be a reproduction of the sample 

topography or an image whose contrast is qualitatively related to the chemical composition of the 

sample (higher atomic number, higher intensity). The characteristic X-rays detected by  

Energy-Dispersive X-ray spectroscopy (EDX) or Wavelength-Dispersive X-Ray Spectroscopy (WDS) 

identify and quantify the elements present in the sample. 

B.2.9 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is a powerful tool that allows to obtain a great amount of 

information about the material, such as characterization of the morphology and the crystalline 

structure, determination and quantitative analysis of the crystalline defects, relating these to 

specific sample areas. The use of this technique, which is often used in conjunction with SEM, has 

contributed to the development of advanced materials (Williams and Carter, 1996). 

In a transmission electron microscope, a sufficiently thin sample amount (5 nm to 0.5 µm of 

maximum thickness) is irradiated with a monochromatic electron beam of uniform current density. 

The energy of the electrons is typically in the range between 100 and 400 keV. The electrons 

interact strongly with matter through elastic and inelastic dispersions. TEM permits high spatial 

resolution because the elastic dispersion, predominant in this technique, is a highly localized 

process. The use of electrons has the major advantage of high resolution, but has implications on 

the design of this kind of equipment: the lenses used to collimate the beam must be magnetic and 

the interior of the TEM must be kept in vacuum, assures through several pumps and valves. 
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At the exit, in addition to a direct or primary beam, several diffracted beams are present. The 

primary beam, has the same direction of the initial beam, being also called transmitted 

(although in reality it is involved in the phenomena of successive dispersion). In fact, not only 

the primary beam gives rise to several diffracted beams that interfere with each other, but 

these beams themselves also may contribute to the intensity of the so called transmitted beam. 

The formed image is a two dimensional projection of the sample and its contrast depends on 

the amplitude and phase of the beams at the output of the sample. 

TEM image forming system is constituted, generally, by the same components as an optical 

transmission microscope: the light source (electron gun), the illumination system (the beam is 

focused on the sample), the lens objective, with a clear specimen in the middle of its magnetic 

field (which is to form the image), the magnification and projection system and the detector 

(screen and/or camera and/or charge-coupled device camera). TEM can be operated in two 

different modes, so as to form diffraction patterns using the diffraction diaphragm or bright 

field, dark field or high resolution images. 

When the electron beam passes through the crystalline sample it is diffracted according to the 

Bragg law. The resulting beams are made to converge through the objective lens, forming a 

diffraction pattern on its back focal plane. Intermediate lenses and projecting form a 

magnification of the pattern in the fluorescent screen. 

B.3 Analytical Techniques for the Photocatalytic Assays 

B.3.1 Total Organic Carbon 

Since the early 70’s, the determination of the Total Organic Carbon (TOC) has been a widely 

used analytical technique in the evaluation of water quality during the process of drinking water 

purification. TOC analysis emerged as a rapid and accurate alternative to other more time-

consuming analysis, as BOD and COD, traditionally used for the evaluation of potential 

wastewater pollution. TOC content can be measured directly or can be determined by 

difference if the total carbon content and inorganic carbon contents are measured. 

In the case of the analysis of the total carbon, the sample is injected the sample onto a platinum 

catalyst at 680 °C in an oxygen rich atmosphere, subjected to a catalytic combustion and a 

posterior analysis of the generated CO2 by a non-dispersive infrared detector. For the 

determination of inorganic carbon, that corresponds to carbonates and dissolved carbon 

dioxide, the sample is acidified with phosphoric acid (H3PO4), and the CO2 formed is analysed 

similarly to the previous case.  

B.3.2 Reversed-Phase High Performance Liquid Chromatography 

High performance liquid chromatography (HPLC) is a type of chromatography that can separate 

molecules according to their polarity. In the reversed-phase mode, the separation is based on 

the hydrophobicity of the molecules, and their ability to bind the immobilized hydrophobic 

ligands attached to a stationary phase. The stationary phase is an apolar matrix commonly 

constituted by chemically modified silica with saturated or unsaturated hydrocarbons or 

aromatic compounds, while the mobile phase is polar.  

The solute mixture is initially applied to the sorbent in the presence of aqueous buffers, and the 

solutes are eluted by the addition of organic solvent to the mobile phase. Elution can proceed 

either by isocratic conditions where the concentration of the organic solvent is constant, or by 
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gradient elution whereby the amount of organic solvent is increased in time. The solutes are, 

therefore, eluted in order of increasing molecular hydrophobicity. The most commonly 

employed column for such applications is a functionalized silica, octadecylsilane, designated as 

C18. 

B.3.3 Actinometry 

According to the "Glossary of terms used in photochemistry" (Bravslasky, 2007) an actinometer 

is a chemical system for the determination of the number of photons absorbed (integral or per 

time unit) in a defined space of a chemical reactor. This name is generally applied to systems 

used in the ranges of ultraviolet and visible light. A chemical actinometer is a chemical system 

(fluid, gas, solid, or in a micro heterogeneous environment) which undergoes a light induced 

reaction (at a particular wavelength) for which the quantum yield Φ(λ) is accurately measured. 

The measurement of the velocity of the reaction allows the calculation of the flux of the 

absorbed photon. The quantum yield of a photochemical reaction is defined as Φ(λ) = number 

of events, i.e. the change, formation or destruction of molecules divided by the number of 

absorbed photons at a particular wavelength in the same period of time. 

The actinometric determinations carried out in this study were performed according to the 

standard procedure L31 of liquid phase (Kuhn, Braslavsky, et al., 2004), commonly referred to 

as ferrioxalate actinometry. This is the most widely accepted actinometric method, consisting 

in the photoreduction of potassium ferrioxalate and determination of the absorbance at 510 

nm of the complex [tris (1,10-phenanthroline) iron (II)] in an acidic buffered solution. The 

exposure of an ion ferrioxalate solution at a wavelength lower than 490 nm leads to the 

photodecomposition in accordance with the following equation: 

 2 Fe3++C2O4
2‐→ 2 Fe2++2 CO2 equation B.10 

The iron (II) produced is quantified with 1,10-phenanthroline upon the formation of a reddish 

ferrous phenanthroline complex which absorbs at 510 nm: 

 Fe2++3 phen→[Fe (phen)3]
2+

 equation B.11 

A buffer solution (sodium acetate and H2SO4) was used to keep the pH around 5. The 

experiments were held in a dark room under red safety light, and carried out in duplicate. All 

solutions were prepared immediately before the beginning of the experimental procedure. A 

solution of 0.006 M of green crystals of K3 [Fe(C2O4)3].3H2O, was prepared and its spectrum 

was obtained. Then, a volume (V1) of this solution was irradiated with vigorous stirring. At 

predetermined time intervals (0 to 5 min), 1 cm3 (V2) of the irradiated solution was taken to a 

volumetric flask of variable volume (V3) containing a mixture of a 0.1 % solution of  

1,10-phenanthroline (kept in the dark) and a buffer solution, and completed with distilled water. 

A reference solution is also prepared in the same way, which however is not irradiated. Both 

solutions are kept in the dark (for about one hour) until the full color development and then 

the absorbance difference between the two samples is measured at 510 nm [optical path l = 1 

cm, ε (510 nm) = 11100 dm3 mol1 cm1]. The photon flux, amount basis, qn,p (Einstein s1), which 

enters the sample cell is given by (in consistent SI units): 

 q
n,p

=
∆Abs V1V3

Φ(λ) ε(510 nm) V2l t
 equation B.12 
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where ∆Abs is the absorbance difference between the irradiated and the reference solution, 

measured at 510 nm, Φ(λ)  is the quantum yield of production of ferrous ions from potassium 

ferrioxalate as a function of the excitation wavelength, and t is the time of irradiation. In this 

case, the value of the photon flux must be divided by the fraction of absorbed light at the 

irradiation wavelength (1–10–A).  

B.4 Kinetic Models 

B.4.1 Pseudo-first order kinetic model 

The pseudo-first order kinetic model used to describe the rate of adsorption from liquid phase 

on a solid adsorbent, was initially proposed in 1989 by Lagergren (Lagergren, 1898) for the 

adsorption of oxalic and malonic acid on carbon. This is the first known model that describes 

the adsorption rate based on the adsorption capacity, and in the last four decades has been 

widely applied to the adsorption of pollutants in aqueous phase (Ho, 2006). The Lagergren 

equation considers that the driving force is the difference between the concentration of solute 

adsorbed and the equilibrium concentration of solute adsorbed at a given time, so that the 

adsorption rate is determined by the following expression (Lagergren, 1898): 

 
dq

t

dt
= k1(q

e
− q

t) equation B.13 

where k1 is a constant for pseudo first order rate (h1), qe and qt correspond to the amount of 

solute adsorbed (mg g1) at equilibrium and at time t, respectively. Integrating Equation B.12 for 

the boundary conditions qt = 0 when t = 0, and qt = t when t = t, and after rearranging it in the 

linear form, we obtain the following equation: 

 ln (q
e

− q
t)= ln q

e
− k1t       equation B.14 

Thus, the of pseudo-first order constant rate, k1, can be obtained directly from the slope of the 

representation (qe  qt) vs t and the amount of solute adsorbed in equilibrium, qe, it is obtained 

from the intercept. 

B.4.2 Pseudo-second order kinetic model 

The pseudo-second order was proposed by Ho and McKay (1999) and, as in the case of the 

pseudo-first order kinetic model, the prefix pseudo indicates that it is based on the adsorption 

capacity of a solid (Ho, 2006). Thus, a pseudo-second order kinetic can be expressed by the 

following equation: 

 
dq

t

dt
= k2(q

e
− q

t
)

2
 equation B.15 

where k2 is the constant of the pseudo-second-order rate (mg g1 h1), qe and qt correspond to 

the amount of solute adsorbed (mg g1) at equilibrium and at time t, respectively. Integrating 

Equation B.14 for the boundary conditions qt = 0 when t = 0, and qt = t, when t = t, and 

rearranging it to the linear form, we obtain the following equation: 

 
t

q
t

=
1

k2q
e
2

+ (
1

q
e

) t equation B.16 

The qe and k2 values can be estimated from the slope and intercept, respectively, of the 

representation (t/qt) vs t. The product k2q
e
2  is the Initial adsorption rate, h. The half-life, t1/2, that 
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is, the time required for half the quantity of adsorbate that will be adsorbed in the equilibrium 

is on the surface of the adsorbent is often used to measure the adsorption speed and is 

determined by the following equation: 

 t1
2⁄ =

1

k2q
e

 equation B.17 

The pseudo-second order equation has been successfully applied to the adsorption of metal 

ions, dyes, herbicides, oils and other organic substances in aqueous solution. In the study by Ho 

and McKay, in which 12 systems of adsorbents and bioadsorbents were used to treat 

wastewater containing dyes and metal or organic ions also, it is shown that while the pseudo-

first order model only shows a good fit to the experimental data for an initial period of the 

reaction, the pseudo-second order model presents better correlations for all studied systems 

(Ho and McKay, 1999). 

B.4.3 Langmuir–Hinshelwood kinetics 

Langmuir–Hinshelwood (LH) kinetics is the most commonly used kinetic model for 

heterogeneous catalytic processes during the photodegradation of organic contaminants in 

solution. The application of this model to an ideal batch reactor produces the following 

expression: 

 −
dC

dt
=

krKeC

1+KeC
 equation B.18 

where C represents the concentration in solution of the molecule being degraded (mg L1), kr is 

the reaction rate constant (mg L-1 min-1) and Ke is the equilibrium constant for the adsorption of 

the molecule on the catalyst surface at the reaction temperature (L mg1). The term krKe is 

globally evaluated as an apparent constant rate (kapp; min1), and thus, Equation B.17 can be 

rewritten as: 

 −
dC

dt
=

kappC

1+KeC
 equation B.19 

In most photocatalytic kinetic studies it is assumed that the low concentration used in the 

experiments allows that KeC≪1, and therefore equation B.20 can be reduced to a classical  

first-order equation: 

 −
dC

dt
= kappC equation B.20 

To fit the experimental data the following linear form of the integrated equation is generally 
used: 

 ln (
C0

C
) = kappC equation B.21 

where kapp value can be obtained from the representation of ln(C0/C) vs C.
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INTRODUCTION 

Pharmaceutical and personal care products (PPCPs) are a class of compounds of emerging 

concern, corresponding in most cases to unregulated contaminants that have recently been 

detected in water streams worldwide. PPCPs encompass compounds of great consumption, 

such as over-the-counter medication and many disinfectants that are continuously 

introduced into the aquatic environment. Amongst Advanced Oxidation Processes, 

heterogeneous photocatalysis is one of the most promising technologies for the degradation 

of these compounds in wastewater treatment plants. Carbon materials have been 

successfully used as supports of photoactive species, and TiO2/carbon composites have 

shown quite high efficiencies for the photodegradation of a variety of pollutants. Most of 

the studies on photocatalysis do not encompass an ecotoxicity evaluation, being more 

focused on the degradation efficiency and mineralization of the pollutants. Given the usual 

increase of ecotoxicity accompanying the early stages of oxidation treatments, an 

assessment of the effluent ecotoxicity is therefore essential. Nevertheless, data on the 

ecotoxicity of treated effluents after photocatalytic reactions is still scarce. In this context, 

the aim of the present work is to screen the photocatalytic degradation of ibuprofen (IBU) 

and sulfamethoxazole (SMX) and mixtures of these compounds (IBU/SMX) using 

TiO2/carbon composites as catalysts. The results are interpreted in terms of the compounds 

mineralization and ecotoxicity levels of the initial and final effluents, focusing on the role 

of the carbon component on the photocatalytic degradation.  
 

MATERIALS AND METHODS 

Catalysts and pharmaceutical compounds 
Carbon S, a nanoporous carbon prepared by chemical activation of a lignocellulosic 

precursor (sisal fibers, discarded from the rope industry), and commercially available titania 

(P25, Evonik) were used as catalysts for the photoxidation of IBU and SMX (Sigma-

Aldrich). 
 

Experimental procedure 

IBU, SMX and IBU/SMX photodegradation experiments with titania and titania/carbon 

(TiO2/S) composites as catalysts - using a 1:1 weight ratio- were carried out at room 

temperature in a Rayonet RMR-600 photochemical reactor equipped with eight 350 nm light 

sources, and an initial concentration of 50 ppm of the pollutant(s) in all cases. To minimize 

the photolytic reaction, a Pyrex vessel was used. In the case of composites, the suspensions 

were allowed to equilibrate under dark conditions before being illuminated. After the 

equilibration step, the suspensions were irradiated for 180 min. Total organic carbon (TOC) 

of the solution at the end of each run was measured in a TOC Shimadzu 5000. The 
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ecotoxicity assessment was performed by the bioluminescence inhibition of the bacterium 

Vibrio fischeri, through the evaluation of the Effective Concentration of 50% 

bioluminescence inhibition for 30 min of exposure (EC50-30 min) in a Microtox equipment. 

RESULTS AND DISCUSSION 

The results obtained so far reveal that additionally to the individual ecotoxicity of each 

compound, a positive synergic effect is observed when these compounds are simultaneously 

present in solution (Table 1). While the individual solutions of IBU and SMX had no 

ecotoxicity, their mixtures presented lower EC50 values, with a significant increase of the 

ecotoxicity.  

Table 1- EC50 (%) values for mixtures of SMX and IBU 50 ppm solutions. 

% SMX  % IBU  EC50-30 min (% v/v) 

- 100 > 100 

25 75 90.4 

50 50 85.8 

75 25 76.5 

100 - > 100 

 

The photodegradation assays with titania/carbon catalysts proved to be effective, since high 

mineralization rates were achieved (Fig.1) within three hours of irradiation, along with the 

absence of ecotoxicity of the final solutions (EC50-30 min > 100% v/v). 

 

Figure 1- SMX and IBU mineralization rates with a load of 0.125 g L-1 of TiO2. 

CONCLUSIONS 

The study proceeds with the evaluation of the best operating conditions for the 

photocatalytic assays, so as to achieve high mineralization along with low ecotoxicity, 

providing a new insight on the aquatic environment impact of the degradation products of 

pharmaceutical compounds.  
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