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Kolaitis and Kopparty have shown that for any first-order formula with parity quantifiers over the language
of graphs, there is a family of multivariate polynomials of constant-degree that agree with the formula on
all but a 2−�(n)-fraction of the graphs with n vertices. The proof bounds the degree of the polynomials by
a tower of exponentials whose height is the nesting depth of parity quantifiers in the formula. We show
that this tower-type dependence is necessary. We build a family of formulas of depth q whose approximating
polynomials must have degree bounded from below by a tower of exponentials of height proportional to q.
Our proof has two main parts. First, we adapt and extend the results by Kolaitis and Kopparty that describe
the joint distribution of the parities of the numbers of copies of small subgraphs in a random graph to the
setting of graphs of growing size. Second, we analyze a variant of Karp’s graph canonical labeling algorithm
and exploit its massive parallelism to get a formula of low depth that defines an almost canonical pre-order
on a random graph.
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1. INTRODUCTION

Since the 0-1 law for first-order logic was established [Fagin 1976; Glebskiı̆ et al. 1969],
there has been much interest in exploring the asymptotic properties of definable classes
of graphs. Many extensions of first-order logic have been shown to have a 0-1 law (see
for instance Kolaitis and Vardi [1992], Dawar and Grädel [2010]) and in many other
cases, weaker forms of convergence have been established (see Compton [1989]). A
recent, remarkable result in this vein is that of Kolaitis and Kopparty [2009a] who
study FO[⊕], the extension of first-order logic with parity quantifiers. They show that
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6:2 A. Atserias and A. Dawar

for every constant edge-probability p and for every FO[⊕]-sentence φ, there are two
explicitly computable rational numbers a0, a1 such that, for i ∈ {0, 1}, as n approaches
infinity, the probability that the random graph G(2n + i; p) satisfies φ approaches ai.
In other words, φ has an asymptotic probability a0 on the sequence of graphs of even
cardinality and a1 on the sequence of those of odd cardinality. The proof of this result
brings entirely new methods to the analysis of the asymptotic behavior of logics on
graphs, based on discrete analysis and polynomials over finite fields. In particular, it
ties this to the study of approximations of circuits by low-degree polynomials, as we
explain next.

The 0-1 law for first-order logic, in its general form, is a quantifier-elimination result.
It states that for any first-order formula φ, there is a quantifier-free formula θ such that
φ is equivalent to θ almost surely. To be precise, φ and θ agree on a fraction 1 − 2−εn of
the graphs on n vertices. We can say that any first-order formula is well approximated
by a quantifier-free formula. This is similar to the phenomenon of depth-reduction for
circuits which has a long history in computational complexity theory. For instance,
Allender showed that AC0-circuits have equivalent TC0-circuits of depth 3 and quasi-
polynomial size [Allender 1989]. The result of Beigel and Tarui that general ACC0-
circuits have equivalent depth-2 circuits of quasi-polynomial size with a symmetric
gate at the root [Beigel and Tarui 1994] has been exploited to remarkable effect recently
in the work of Williams [2011]. In the context of approximation, one of the best known
examples is the Razborov-Smolensky approximation of AC0[⊕]-circuits by multivariate
polynomials over Z2 of polylogarithmic degree [Razborov 1987; Smolensky 1987]. The
method yields an approximation that agrees on a fraction 1 − 2−(log n)c

of the inputs.
The Kolaitis-Kopparty result previously mentioned is proved by a depth-reduction

argument of a similar kind that exploits the higher degree of symmetry that FO[⊕]-
formulas have over AC0[⊕]-circuits. They prove that every FO[⊕]-formula φ is well-
approximated by a formula which is a Boolean combination of quantifier-free formulas
and of polynomials over Z2 of special form, that we call FO[⊕]-polynomials, and the
degree of these polynomials depends only on φ. These polynomials have as variables
Xuv for every potential edge {u, v} over the vertex-set {1, . . . , n}. For example, the FO[⊕]-
polynomial that gives the parity of the number of triples that extend the vertex u to a
triangle is ∑

v:
v �=u

∑
w:

w �=u
w �=v

Xuv Xvw Xwu. (1)

At the heart of the argument is the analysis of the bias of certain low-degree poly-
nomials of this type on uniformly random inputs. This understanding is then used to
carry over a quantifier-elimination argument that eliminates one parity quantifier or
one first-order quantifier at a time. Relevant to our work is the fact that, intriguingly,
the elimination of each parity quantifier in this argument incurs an exponential loss in
the degree. The final outcome is that the degree d of the approximating polynomials is
bounded from below by a function of tower-type on the number q of parity quantifiers
that were eliminated, that is,

d ≥ 222···

, (2)
where the height of the tower is at least q. At first sight, the source of this inefficiency in
the proof appears technical, and it might be tempting to think that a different method
could perhaps avoid it altogether.

In this article, we prove that the non-elementary dependence stated in Equation (2)
cannot be avoided. To be precise, we construct an explicit family of FO[⊕]-formulas
φq of quantifier rank q and prove that they cannot be approximated by a Boolean

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 6, Publication date: February 2014.



Degree Lower Bounds of Tower-Type for Approximating Formulas 6:3

combination of quantifier-free formulas and polynomials of degree bounded by an ele-
mentary function of q. Specifically, we prove the following.

THEOREM 1.1. There exists a constant c > 0 such that for every large enough integer q,
every ε > 0, and every large enough integer n, there exists an FO[⊕]-formula φ(u, v, w) of
quantifier rank q such that for every Boolean combination p of quantifier-free formulas
and FO[⊕]-polynomials of degree bounded by a tower of exponentials of height at most
q/c, the formulas φ and p must disagree on a fraction 1− ε of all graphs with n vertices.

By an FO[⊕]-polynomial we mean a formula that has a direct translation to a
bounded-degree polynomial over Z2: a sequence of parity quantifiers followed by a
conjunction of atomic facts. Since both φ and p have free variables, when we say that φ
and p disagree on a graph G, we mean that the set of tuples of vertices of G satisfying
φ is not the same as the set of tuples satisfying p.

Theorem 1.1 should be contrasted with the 0-1 law for first-order logic. In that
case, the approximating formula is quantifier-free, and such formulas translate into
polynomials of degree at most polynomial in the number of free variables.

Proof Outline and Techniques. Our proof relies on two technical ingredients. On
one hand, we analyze a canonical labeling algorithm for graphs due to Karp [1979]
(see [Hella et al. 1996] for another view on the logical definability of Karp’s canonical
labeling). We exploit its massive parallelism to build an FO[⊕]-formula ψ(u, v) of depth
O(log∗ n) that works on graphs with n vertices. The formula is designed in such a way
that, on almost every graph, it defines a linear pre-order of width at most two on the
set of vertices of the graph. The second ingredient is a refined analysis of one of the
key tools from the Kolaitis-Kopparty paper. Using and extending their techniques for
estimating the frequencies mod 2 of subgraph copies, we show that for every FO[⊕]-
polynomial p(u, v, w) of degree log log log n and for the random graph G(n, 1/2), with
high probability, there exists a triple of distinct vertices (a, b, c) such that p cannot
distinguish it from any of its permutations.

From these two ingredients, the lower bound follows by taking the formula
φ(u, v, w) := ψ(u, v) ∧ ψ(v,w). On one hand this formula distinguishes at least one
permutation of the vertices (a, b, c) from some other. This is because by linearity of
the pre-order, the classes they lie in must be comparable, but by the width-2 condi-
tion on the pre-order, not all three vertices can sit in the same class. On the other
hand, if φ′(u, v, w) is any Boolean combination of quantifier-free formulas and FO[⊕]-
polynomials of degree log log log n, we could choose (a, b, c) in such a way that φ′ is not
able to distinguish any permutation of (a, b, c) from the others. We conclude that φ′ can-
not approximate φ, and since the quantifier rank of φ is still O(log∗ n), the tower-type
lower bound follows. We provide more details in the body of the article.

Section 2 introduces some essential notation. Then, in Section 3, we show that for any
Boolean combination of polynomials of low degree, on a sufficiently large random graph,
there is some tuple of elements which is not distinguished from any of its permutations.
Section 4 contains the construction of the formula ψ(u, v) that defines a linear pre-order
of width at most two on almost all graphs on n vertices. Finally, Section 5 pulls these
ingredients together to establish our result. The construction in Section 3 relies heavily
on elements from Kolaitis and Kopparty [2009a, 2009b]. Similarly, Section 4 borrows
from the analysis in Karp [1979]. The reader wishing to follow all details of the proof
may wish to have copies of these three papers at hand.

2. PRELIMINARIES

We use [n] to denote the set {1, . . . , n}. We identify the nodes of a complete rooted
binary tree with the binary strings that start with the symbol 1: the root is 1, the left
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6:4 A. Atserias and A. Dawar

child of t is t0, and the right child of t is t1. The level order of a complete binary tree
is 1, 10, 11, 100, 101, 110, 111, 1000, 1001, . . . , that is, the nodes are ordered first by
length, and within each length, they are ordered lexicographically. Note that if the
strings are interpreted as numbers written in binary, this is the usual order of the
natural numbers. For a natural number n ≥ 1, we write bin2(n) for its unique binary
encoding with a leading one.

Let G and H be graphs. We write V (G) and E(G) to denote the vertices and edges
of G, respectively, and similarly for H. A homomorphism from G to H is a mapping
h : V (G) → V (H) that maps edges to edges; that is, such that if {u, v} ∈ E(G), then
{h(u), h(v)} ∈ E(H). Let Hom(G, H) denote the collection of all homomorphisms from G
to H.

The collection of FO[⊕]-formulas over the language of graphs is the smallest class of
formulas that contains the atomic formulas E(x, y) and the equalities x= y, and is closed
under negation, conjunction and disjunction, universal and existential quantification,
and parity quantification; that is, quantification of the form ⊕x φ(x). The meaning
of ⊕x φ(x) is that there is an odd number of vertices x that satisfy φ(x). For a tuple
a = (a1, . . . , ak) and a permutation π ∈ Sk, we write a ◦ π for the tuple (aπ(1), . . . , aπ(k)).
If p(x1, . . . , xk) is a formula with free variables x1, . . . , xk, and y1, . . . , yk are variables or
constants, we write p(y1, . . . , yk) for the result of replacing each occurrence of xi by yi.
This applies also to the case where y1, . . . , yk is a permutation of x1, . . . , xk.

An atomic type on the variables x1, . . . , xk over the language of graphs is a consistent
collection of atomic formulas E(xi, xj) or xi = xj and negated atomic formulas ¬E(xi, xj)
or xi �= xj that is maximal with respect to set-inclusion. A positive atomic type is the
subset of an atomic type containing all its positive atomic formulas. We say that a type
is injective if it contains the formula xi �= xj whenever i �= j. An equality type is the
subset of an atomic type containing all its equalities xi = xj and inequalities xi �= xj .
For a graph G and a tuple a = (a1, . . . , ak) ∈ V (G)k, the atomic type of a in G is the
unique atomic type that is made true in G by the assignment xi �→ ai. The atomic type
of ak over (a1, . . . , ak−1) in G is the subset of the atomic type of a in G containing all
formulas that involve the variable xk.

3. FOOLING POLYNOMIALS OF LOW DEGREE

In this section, we aim to establish that for any FO[⊕]-formula which is a Boolean
combination of polynomials of low degree (growing as O(log log log n)) and a sufficiently
large random graph G, with high probability there is a triple of vertices a, b, c such
that the formula does not distinguish this triple from any of its permutations. To do
this, we first establish a normal form for such FO[⊕]-formulas which will permit an
analysis of their asymptotic behavior. The normal form is established in Section 3.3,
and the analysis in Section 3.4.

Once we have the normal form, the proof strategy is roughly as follows. Fix a formula
in normal form p(x, y, z). For every fixed a, b, c ∈ [n], let Y (a, b, c) be the event that p
cannot distinguish any two permutations of a, b, c. Ideally we would like to show that
the event Y (a, b, c) has nonnegligible probability of happening, and that if a′, b′, c′ ∈ [n]
is a triple disjoint from a, b, c, then the events Y (a, b, c) and Y (a′, b′, c′) are almost
independent. If we were able to do this, the result would follow from an application of
Chebyshev’s inequality. Unfortunately it is not quite true that Y (a, b, c) and Y (a′, b′, c′)
are almost independent in general, so we need to take a detour. The detailed argument
is given in Section 3.5

3.1. Formulas and Polynomials

In this section, we define the formulas to which our result applies. In short, they
are Boolean combinations of FO[⊕]-polynomials. An FO[⊕]-polynomial is a formula of

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 6, Publication date: February 2014.



Degree Lower Bounds of Tower-Type for Approximating Formulas 6:5

FO[⊕] consisting of a sequence of parity quantifiers followed by a conjunction of atomic
formulas and negated equalities. In its general form, an FO[⊕]-polynomial p with free
variables u1, . . . , uk is a formula of the form

⊕uk+1 · · · ⊕um

⎛
⎝∧

i �= j

ui �= uj ∧
d∧

�=1

E(ui� , uj� )

⎞
⎠ , (3)

where i and j range over [m] in the first conjunction, and i1, . . . , id, j1, . . . , jd are indices
in [m]. The number d of atomic facts in the conjunction is called the degree of p. The
number m of distinct variables is the order of p.

To Formula (3), we can associate the graph H on the vertices u1, . . . , um that has
an edge between ui� and uj� for each � ∈ [d], and the first k vertices u1, . . . , uk distin-
guished from the rest. We use the notation H(u1, . . . , uk) for such kind of graphs, and
⊕H(u1, . . . , uk) to denote the FO[⊕]-polynomial corresponding to this graph. Note that
the formula expresses the parity of the number of extensions of u1, . . . , uk to a copy of
H. Note also that the degree of ⊕H(u1, . . . , uk) is the number of edges of H.

Example 3.1. If H is a triangle containing vertex u, then ⊕H(u) is the formula that
expresses the parity of the number of extensions of u to a triangle. Formally, ⊕H(u) is
the formula

⊕v ⊕w (u �= v ∧ u �= w ∧ v �= w ∧ E(u, v) ∧ E(v,w) ∧ E(w, u)).

Note that over undirected graphs, this formula is always false. This is because for every
triangle containing u, there are two assignments to the variables v and w which witness
H. Thus, the total number of satisfying assignments is twice the number of triangles
containing u and is therefore always even. In general, if H has an even number of
automorphisms that fix u1, . . . , uk, then ⊕H(u1, . . . , uk) will always be false, while for
graphs with an odd number of automorphisms, we get nontrivial formulas.

Remark 3.2. The observation at the end of Example 3.1 has one important con-
sequence: if H(u1, . . . , uk) has r isolated vertices outside {u1, . . . , uk} and r ≥ 2, then
⊕H(u1, . . . , uk) is always false, because then the number of automorphisms of H that
fix u1, . . . , uk is a multiple of r!, which is even when r ≥ 2. In particular, this means that
in the general form of FO[⊕]-polynomials displayed in Equation (3), we can always
assume that

m ≤ 2d + 1.

This will be important because, by assuming it, lower bounds on the order imply lower
bounds on the degree.

Remark 3.3. On graphs, an atomic formula of the form E(u1, u1) is just false, while
an atomic formula of the form E(u1, u2) with distinct variables u1 and u2 is equivalent
to u1 �= u2 ∧ E(u1, u2), which is an FO[⊕]-polynomial of order two and degree one.
Similarly, an atomic formula of the form u1 = u1 is just true, while an atomic formula
of the form u1 = u2 with distinct variables u1 and u2 is equivalent to the negation of the
FO[⊕]-polynomial u1 �= u2; this has order two and degree zero. This means that every
quantifier-free formula is equivalent to a Boolean combination of FO[⊕]-polynomials
of order two and degree at most one.

Remark 3.4. There is a precise sense in which FO[⊕]-polynomials correspond
to polynomials over the Boolean edge-variables Xuv. For example, the formula from
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6:6 A. Atserias and A. Dawar

Example 3.1 corresponds to the family of degree-3 polynomials∑
v∈[n]
v �=u

∑
w∈[n]
w �=u
w �=v

Xuv Xvw Xwu.

as u ranges over [n].

3.2. Independence and Plan of Action

The formulas we are interested in are Boolean combinations of polynomials. Let
p(x, y, z) be such a formula and Y (a, b, c) be the event that p cannot distinguish any two
permutations of a, b, c. The main obstacle to carrying out the argument sketched at the
beginning of this section is that it is not true, in general, that the events Y (a, b, c) and
Y (a′, b′, c′) are almost independent, even if a, b, c, a′, b′, c′ are all different. The reason
is that the formula p(x, y, z) may include statements about the graph G which do not
involve the free variables. These are true or false independently of the choice of a, b, c
or a′, b′, c′ and thus create correlations between Y (a, b, c) and Y (a′, b′, c′).

It is illustrative to give an example of this.

Example 3.5. Let p(x, y) be the formula that is the conjunction of the following:
(1) ⊕z E(x, z) (x has odd degree); (2) ¬ ⊕z E(y, z) (y has even degree); and (3) ⊕H for
some fixed nontrivial rigid graph H (x and y do not appear free in this). This is a Boolean
combination of FO[⊕]-polynomials of degree bounded by the number of edges of H.

Note that if p(a, b) holds, then p(b, a) must fail. Therefore, the probability that
p(a, b) �↔ p(b, a) holds is approximately 2 · 1

8 , since each of the three conditions in p(a, b)
holds with probability approximately 1

2 almost independently, and similarly for p(b, a).
On the other hand, the probability that both p(a, b) �↔ p(b, a) and p(a′, b′) �↔ p(b′, a′)
hold simultaneously is approximately 4 · 1

32 . This is because in each of the four cases in
which both hold, condition (3) either holds for both a, b and a′, b′ or for neither (since
x and y do not appear). We are left with five conditions that hold with probability
approximately 1

2 almost independently. Since 4 · 1
32 is not ε-close to (2 · 1

8 )2, this shows
that Y (a, b) and Y (a′, b′) are not almost independent.

The example just sketched suggests that we factor out the condition that does not
depend on neither x nor y from p(x, y) ↔ p(y, x), since this is the cause for the statistical
dependence between Y (a, b) and Y (a′, b′). However, while such an argument can be
made to work in the preceding example, it is not clear what such a factoring would
entail when p contains disjunctions.

The key observation at this point is that the full type of (x, y) in terms of its atomic
type (the pattern of connections and equalities among x and y) and the truth values of
its ⊕H’s as H ranges over all small graphs that contain x and y as vertices is enough to
determine the truth value of p(x, y). Thus, if we were able to find a full type implying
p(x, y) that is symmetric in x and y, we would have reduced the case of general p(x, y)
to the case of a p(x, y) that consists of a single term and eliminated the need to consider
disjunctions. The argument that we use is a bit more delicate than this, but this is the
main idea.

3.3. Normal Forms

In this section, we introduce some definitions and discuss two different types of normal
forms for Boolean combinations of FO[⊕]-polynomials.

An I-labeled graph is a graph with some vertices labeled by elements of I in such a
way that, for every i ∈ I, there is exactly one vertex labeled i, and the set of labeled
vertices induces an independent set. The set of labeled vertices of an I-labeled graph
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H is denoted by L(H). The vertex labeled by i ∈ I is denoted by H(i). An I-labeled
graph H is label-connected if H\L(H) is connected. Let Connt

I be the set of all I-labeled
label-connected graphs with at most t unlabeled vertices. We say that H depends on
label i ∈ I if H(i) is not an isolated node. We say that H is label-dependent if it depends
on all its labels. Let Conn∗,t

I be the subset of all labeled graphs in Connt
I that are

label-dependent.
A k-labeled graph is a [k]-labeled graph. A ≤k-labeled graph is an I-labeled graph for

some I ⊆ [k]. Let H be a ≤k-labeled graph with labels I ⊆ [k]. A homomorphism from
H to a pair (G, a), where G is a graph and a = (a1, . . . , ak) is a tuple in V (G)k, is a ho-
momorphism χ ∈ Hom(H, G) such that χ (H(i)) = ai for each i ∈ I. A homomorphism χ
from H to (G, a) is injective if for any distinct a, b ∈ V (H) such that {a, b} �⊆ L(H), we
have χ (a) �= χ (b). Write ⊕H(G, a) for the parity of the number of injective homomor-
phisms from H to (G, a). We usually omit G and write ⊕H(a). When H is a k-labeled
graph (i.e., I = [k]), the notation for this in Kolaitis and Kopparty [2009a] is [H]2(G, a).

We call the number of vertices in H the order of H and the number of edges in H the
degree of H. These are the same as the order and degree, respectively, of the polynomial
⊕H(x). Note that if H has order c, then it has at most c unlabeled vertices.

A KK-normal form of order m with free-variables x = (x1, . . . , xk) is a Boolean combi-
nation of the atomic types on the variables x and formulas ⊕H(x)’s as H ranges over
the k-labeled label-connected graphs of order m with labeled vertices x. A regular nor-
mal form of order m with free-variables x is a Boolean combination of the atomic types
on the variables x and the ⊕H(x)’s as H ranges over the ≤ k-labeled label-connected,
label-dependent graphs of order m with labeled vertices within x.

Example 3.6. Let φ(x, y) be the formula

⊕z (E(x, z)) ∧ ¬ ⊕z (E(y, z)),

saying that x has odd degree and y has even degree. This is a regular normal form. On
the other hand, it is not a KK-normal form, because the formula ⊕z (E(x, z)) cannot be
put in the form ⊕H(x, y) for any 2-labeled graph H. However, as we will see, it is not
hard to transform φ(x, y) into an equivalent KK-normal form.

Example 3.7. Let p(x, y) be the formula

(x �= y∧ E(x, y)∧¬⊕ H1(x, y)∧⊕H2(x, y))∨ (x �= y∧¬E(x, y)∧⊕H1(x, y)∧¬⊕ H2(x, y)),

where H1 is the 2-labeled label-connected graph that has three vertices x, y, and z and
a single edge between x and z, and H2 is the 2-labeled label-connected graph that has
three vertices x, y, and z and a single edge between y and z. This is a KK-normal form.
On the other hand, it is not a regular normal form, because H1 and H2 are not label-
dependent. However, as we will see, it is not hard to transform φ(x, y) into a regular
normal form.

These two examples are actually logically equivalent, and it is a general fact that
Boolean combinations of FO[⊕]-polynomials, KK-normal forms, and regular normal
forms of the same order have the same expressive power.

LEMMA 3.8. Let k ≥ 0 and m ≥ k be integers and let φ(x1, . . . , xk) be an FO[⊕]-
formula. The following are equivalent.

(1) φ is equivalent to a Boolean combination of FO[⊕]-polynomials of order at most m.
(2) φ is equivalent to a KK-normal form of order at most m.
(3) φ is equivalent to a regular normal form of order at most m.

PROOF. We may assume that m ≥ 2, since FO[⊕]-polynomials and normal forms of
order one or less are trivial.
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6:8 A. Atserias and A. Dawar

(1) ⇒ (2). We show how to transform an FO[⊕]-polynomial p of order at most m into
an equivalent Boolean combination of atomic types and formulas of the form ⊕H, where
H is a k-labeled label-connected graph of order at most m. We do this in two steps: in
the first step, we do it with k-labeled graphs that are not necessarily label-connected,
and in the second step, we ensure the connectivity condition.

Let us say p has the form

p(y1, . . . , yt) = ⊕yt+1 · · · ⊕ys

⎛
⎝∧

i �= j

yi �= yj ∧
d∧

�=1

E(yi� , yj� )

⎞
⎠ , (4)

where the indices i and j range over [s] in the first conjunct, i� and j� are also indices
in [s] for each � ∈ [d], the free variables y1, . . . , yt are among x1, . . . , xk, and the bound
variables yt+1, . . . , ys are disjoint from x1, . . . , xk. After renaming the variables, we may
assume that (y1, . . . , yt) = (x1, . . . , xt). Let H be the k-labeled graph of order s with la-
beled vertices x1, . . . , xk, non-labeled vertices yt+1, . . . , ys, and edges {yi� , yj�} as � ranges
over [d]. We claim that for every graph G and every a = (a1, . . . , ak) ∈ V k

G, we have

p(a) ≡
∑
f ∈F

∑
σ∈S f

σ (a) · ⊕H f (a) mod 2, (5)

where the following hold.

—F is the set of partial mappings f : [s]\[t] → [k]\[t] that are injective on their
domain Dom( f ), including the empty map.

—For every f ∈ F , the set S f consists of all atomic types on the variables x1, . . . , xk
that contain the positive atomic type of each yj with j ∈ Im( f ) over x1, . . . , xt in H,
plus the inequalities xi �= xj for every pair i, j ∈ [t] with i �= j, every pair i, j ∈ [k]
with i ∈ [t] and j ∈ Im( f ), and every pair i, j ∈ Im( f ) with i �= j.

—For every f ∈ F , the graph H f is the k-labeled graph that is obtained from H by
deleting all edges between some yi with i ∈ Dom( f ) and x1, . . . , xt, and by identifying
yi with x f (i) for every i ∈ Dom( f ).

To see that Eq. (5) holds, note that the term σ (a) · ⊕H f (a) counts the parity of the
number of injective homomorphisms from H to G that map xi to ai for every i ∈ [t],
and yi to af (i) for every i ∈ Dom( f ), subject to the condition that a satisfies the rest
of atomic relations specified in σ . Since for each f ∈ F all allowed possibilities for the
rest of atomic relations are included, the resulting count is precisely p(a). Now note
that F and S f are finite for every f ∈ F , and therefore Expression (5) is equivalent to
a Boolean combination of atomic types and ⊕H’s, as required.

It remains to see how to ensure that the H’s are label-connected while preserving
the bound on the order. Conveniently, this was done in Lemma 5.6 from Kolaitis and
Kopparty [2009a], and we refer the reader to it.

(2) ⇒ (3). We need to show how to transform a formula ⊕H, where H is a k-labeled
label-connected graph of order at most m into an equivalent Boolean combination of
quantifier-free formulas of the form ⊕F, where F is a ≤k-labeled label-connected,
label-dependent graph of order at most m. The transformation is done in two steps. In
the first step, we reduce the number of isolated labeled vertices in H or the number of
non-labeled vertices of H at the expense of using possibly label-disconnected graphs.
In the second step, we get rid of the label-disconnected graphs. Indeed, the second
step, is as in the proof of Lemma 5.6 in Kolaitis and Kopparty [2009a], so we need only
take care of the first step.

If H is already label-dependent, there is nothing to do. Otherwise let x1, . . . , xk be the
set of labeled vertices of H, assume xk is isolated in H, and let xk+1, . . . , xs be the set of
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non-labeled vertices of H. Then, for every graph G and for every a = (a1, . . . , ak) ∈ V k
G,

we claim that

⊕H(a) ≡ ⊕H−xk(a) +
∑

j∈[s]\[k]

∑
σ∈S j

σ (a) · ⊕Hxj=xk(a) mod 2, (6)

where the following hold.

—H−xk is the ≤k-labeled graph that results from deleting xk in H.
—S j is the set of atomic types on the variables x1, . . . , xk that contain the positive atomic

type of xj over x1, . . . , xk−1 in H, plus the inequalities xj �= xi for every i ∈ [k − 1].
—Hxj=xk is the k-labeled graph that results from deleting all edges from xj to a labeled

vertex and identifying xj and xk in H.

To see why Eq. (6) holds, note two facts. First, the sum over j ∈ [s]\[k] counts the parity
of the number of injective homomorphisms from H−xk into (G, a) that have ak as the
image of some non-labeled vertex. Second, since the term ⊕H−xk(a) counts the parity
of all injective homomorphisms from H−xk into (G, a), this means that each injective
homomorphism from H−xk into (G, a) that has ak as the image of some non-labeled
vertex is counted exactly twice and cancels. What is left is the parity of the number
of injective homomorphisms from H−xk into (G, a) that does not have ak as the image
of some non-labeled vertex. This is precisely ⊕H(a), because xk is isolated in H, and
therefore the only constraint it puts on the injective homomorphisms from H into
(G, a) is that non-labeled vertices are not mapped to ak.

To conclude, note that [s]\[k] and S j are finite for every j ∈ [s]\[k], and therefore (6)
is a Boolean combination of atomic types and ⊕H’s as required.

(3) ⇒ (1). First, each atomic type is a quantifier-free formula, and hence a Boolean
combination of FO[⊕]-polynomials of order at most two and degree at most one by
Remark 3.3. Here we use the assumption made at the beginning that m ≥ 2.

Second, let H be a ≤ k-labeled graph of order at most m. Let y1, . . . , yt be its set
of labeled vertices, which is a subset of x1, . . . , xk, and let yt+1, . . . , ys be its set of
unlabeled vertices, which is a set disjoint from x1, . . . , xk. Then

⊕H(x) ≡
∑
σ∈S

σ (x) · ⊕Hσ (x) mod 2, (7)

where the following hold.

—S is the collection of all equality types on y1, . . . , yt.
—Hσ is the ≤k-labeled graph that results from H by identifying every vertex yj with

j ∈ [t] with the vertex yi with smallest index i ∈ [t] for which the equality yi = yj
appears in σ , and by deleting duplicated edges. If i �= j, we say that yi survives and
yj disappears. All vertices yi with i ∈ [s]\[t] survive.

For fixed σ ∈ S, let A be the set of pairs (i, j) ∈ [s]2 such that both vertices yi and yj
survive in Hσ . Finally, let B be the subset of pairs (i, j) in A such that {yi, yj} is an
edge in Hσ . Then

σ (x) · ⊕Hσ (x) ≡ ⊕yt+1 · · · ⊕ys

⎛
⎝ ∧

(i, j)∈A

yi �= yj ∧
∧

(i, j)∈B

E(yi, yj)

⎞
⎠ .

This is precisely an FO[⊕]-polynomial whose free variables are the yi with i ∈ [t] that
survive in Hσ . Its order is s, which is at most m. Since S is finite, this shows that Eq. (7)
is a equivalent to a Boolean combination of FO[⊕]-polynomials of order at most m.
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3.4. Distribution of Frequency Vectors

The frequency vector of order t in a graph G is the {0, 1}-vector indexed by the set of
all connected graphs with at most t vertices where the component H is ⊕H(G), that is,
the parity of the number of occurrences of H in G. Kolaitis and Kopparty [2009a] give
an analysis of the distribution of frequency vectors in a random graph G ∼ G(n, 1/2),
for constant t. Our aim in the present section is to extend this analysis to orders that
grow with n and to ≤k-labeled graphs.

Let Connt
≤k be the set of all ≤ k-labeled label-connected graphs with at most t un-

labeled vertices. Let Conn∗,t
≤k be the subset of Connt

≤k containing all graphs that are
label-dependent. Let G be a graph, let a be a tuple in V (G)k, and let t ≥ 0 be an integer.
Let freq∗,t

≤k,G(a) be the {0, 1}-vector indexed by the elements Conn∗,t
≤k that has ⊕H(a) as

its component indexed by H. Next we extend the definition of feasible frequency vectors
from Kolaitis and Kopparty [2009a] to the setting of ≤ k-labeled graphs. In defining
FFreq∗(τ,≤k, t), we will restrict our attention to injective atomic types τ . This simpli-
fies matters significantly and is enough for our purposes. If τ is an injective atomic type
on x1, . . . , xk, let FFreq∗(τ,≤k, t) denote the set of all feasible frequency vectors. Explic-
itly, these are all the {0, 1}-vectors indexed by Conn∗,t

≤k whose component F belongs to
aut(F) · Z2. Here aut(F) denotes the number of automorphisms of F that fix the labels.
Let FFreq∗

n(τ,≤ k, t) denote the set of f ∈ FFreq∗(τ,≤ k, t) such that fK1(∅) = n mod 2,
where K1(∅) is the graph with no labels and exactly one unlabeled vertex.

The next lemma describes the distribution of freq∗,t
≤k,G(a) in a random graph. This is

analogous to Theorem 2.4 in Kolaitis and Kopparty [2009a], but see also the statement
of Theorem 8.2 in Kolaitis and Kopparty [2009b] (about subgraph copies), on which
Theorem 2.4 is based. Our statement deviates from theirs in two directions: in gen-
eralizing it from a constant number of vertices to a growing number of vertices up to
log log log n, and from k-labeled graphs to ≤k-labeled graphs.

LEMMA 3.9. For every k ≥ 0, there exists n0 ≥ 0 such that for every n ≥ n0, every in-
jective atomic type τ on k variables, every c ≤ log log log n, and every k-tuple a of distinct
elements in [n], the distribution of freq∗,c

≤k,G(a) as G ∼ G(n, 1/2 | τ (a)) is 2−�k(n/ log n)-close
in statistical distance from the uniform distribution over FFreq∗

n(τ,≤k, c).

Here, the notation �k refers to an unspecified multiplicative constant that depends
only on k, and the notation G(n, 1/2 | τ (a)) denotes the uniform distribution over the
graphs with vertex-set [n] restricted to those on which the set of vertices in the tuple a
induces the subgraph specified by the atomic type τ .

Before we discuss its proof, it is worth pointing out the differences between the
statement of Lemma 3.9 and the statements of Theorem 2.4 in Kolaitis and Kopparty
[2009a] and the more general Theorem 8.2 in Kolaitis and Kopparty [2009b]. Our
statement here extends them in two directions, and both of these require significant
adaptation of the proof.

The first difference concerns the extension which takes us from a bounded number of
vertices to a growing number of vertices up to log log log n. In order to achieve this, we
relax the statistical distance from 2−�k(n) in Kolaitis and Kopparty [2009b] to 2−�k(n/ log n)

here. For our purposes, this weaker bound on the distance is not significant. The proof
is obtained by adapting the one in Kolaitis and Kopparty [2009b]. For this we need
to make an explicit calculation of an ε-bound in Lemma 4.7 in Kolaitis and Kopparty
[2009b]. It is conceivable that a more careful analysis would yield a better bound still.
However, the bound we get is sufficient for our purposes.

The second difference concerns the extension from k-labeled graphs in Theorem 8.2
in Kolaitis and Kopparty [2009b] to ≤ k-labeled graphs here. We need this extension
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to be able to execute the factoring argument sketched in Section 3.2. This modification
in the statement introduces the additional restriction of label-dependency (the ∗ in
freq∗,t). This is required, since the result would not be true without it. Luckily, though,
Lemma 3.8 tells us that we will be able to assume label-dependency without loss of
generality. In this case, discovering the right assumption is the essential step in the
proof. Once the concept is defined, the proof again follows the original one. One final
difference between our statement and Theorem 8.2 in Kolaitis and Kopparty [2009b]
is that we are stating only the case s = �′ = 0 of their theorem, since any other
case is irrelevant for our application. This also has the benefit of shortening the proof
somewhat.

PROOF (SKETCH OF LEMMA 3.9). Handling ≤ k-labeled graphs instead of k-labeled
graphs in the proof of Theorem 8.2 in Kolaitis and Kopparty [2009b] is not problematic
until we realize that the sets of copies of F and F ′ in (Kn, a) need not be disjoint, even
if F and F ′ are non-isomorphic; that is, Proposition 8.1(2) from Kolaitis and Kopparty
[2009b] fails if I = [k] and F and F ′ are ≤k-labeled graphs instead of k-labeled graphs.
This happens, for example, if F and F ′ are ≤k-labeled label-connected graphs that are
identical, except that F ′ has one more labeled vertex than F that is isolated. On the
other hand, if F and F ′ are non-isomorphic and depend on all its labels, then it can be
seen that the sets of copies are disjoint. This is enough to carry over the argument in
Kolaitis and Kopparty [2009a].

However, in order to allow a growing c, we need the following lemma that makes the
ε-bound explicit in the conclusion of Lemma 4.7 in Kolaitis and Kopparty [2009b]. For
the definition of the μ-Gowers norm ||g||U d,μ, see Section 4.1 in Kolaitis and Kopparty
[2009b].

LEMMA 3.10. Let g : Z
d
2 → {−1, 1} be given by g(y) = (−1)

∏d
i=1 yi . Let μ be the uniform

distribution on Z
d
2. Then ||g||U d,μ < 1 − ε, where ε > 1 − exp(−2−d2−2d+1).

PROOF. Let p0 = μ(d)(0, t0), where t0 = (0, . . . , 0), and let p1 = μ(d)(0, t1), where
t1 = (e1, . . . , ed) and e j is the vector in Z

d
2 that is 0 everywhere except at component j,

where it is 1. We claim that

(Dt0 g)(0) =
∏

S⊆[d]

(−1)
∏d

i=1(0i+
∑

j∈S 0i ) =
∏

S⊆[d]

(−1)0 = 1,

and

(Dt1 g)(0) =
∏

S⊆[d]

(−1)
∏d

i=1(0i+
∑

j∈S e j,i ) = (−1)1 ·
∏

S⊂[d]

(−1)0 = −1.

The first is clear. To see the second note that, whenever S is a proper subset of [d], the
factor 0i + ∑

j∈S e j,i in the exponent vanishes at each i ∈ [d]\S, and whenever S = [d],
the factor 0i + ∑

j∈S e j,i is 1 at each i ∈ [d].
From this,

||g||2d

U d,μ = ∣∣E(x,t)∼μ(d) [(Dtg)(x)]
∣∣ =

∣∣∣∣∣∣
∑
(x,t)

μ(d)(x, t)(Dtg)(x)

∣∣∣∣∣∣
≤ ∣∣p0 · (Dt0 g)(0) + p1 · (Dt1 g)(0)

∣∣ +
∑
(x,t):

(x,t)�=(0,t0)
(x,t)�=(0,t1)

μ(d)(x, t) · |(Dtg)(x)|

≤ |p0 − p1| + 1 − p0 − p1,
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where the first inequality follows from the triangle inequality, and the second inequality
follows from the computations above and the fact that each (Dtg)(x) has unit magnitude.

Next we argue that if μ is the uniform distribution over Z
d
2, then μ(i) is the uniform

distribution over (Zd
2)i+1. We show, by induction on i, that μ(i)(x, t1, . . . , ti) = 2−d(i+1) for

every (x, t1, . . . , ti) ∈ (Zd
2)i+1. Since μ(0) = μ, the claim is clear for i = 0. For i > 0, we

have

μ(i)(x, t1, . . . , ti) = μ(i−1)(x, t1, . . . , ti−1) · μ(i−1)(x + ti, t1, . . . , ti−1)∑
z μ(i−1)(z, t1, . . . , ti−1)

.

Applying the induction hypothesis, this is

2−di · 2−di

2d · 2−di = 2−d(i+1).

Thus, p0 = p1 = 2−d(d+1), and we get |p0 − p1| + 1 − p0 − p1 = 1 − 2−d(d+1)+1. Putting
it all together, we conclude that

||g||U d,μ ≤ (1−2−d(d+1)+1)1/2d ≤ e−2−d(d+1)+1·2−d = e−2−d2−2d+1
.

With the ε-bound from Lemma 3.10 in hand, we can mimic the proof of Theorem 8.2
in Kolaitis and Kopparty [2009b] to get the proof of Lemma 3.9. First we note that
the bound in the conclusion of Theorem 4.8 in Kolaitis and Kopparty [2009b] for the
special case in which μ is the uniform distribution is really (1 − ε)r for the ε from
Lemma 3.10. This translates into the same bound for the conclusions of Lemmas 4.1
and 3.3 in Kolaitis and Kopparty [2009b]. The bound in the conclusion of Lemma 3.3 in
Kolaitis and Kopparty [2009b] is eventually plugged into the hypothesis of Vazirani’s
XOR Lemma, which returns the bound 2� · (1 − ε)r on the statistical distance, where in
our case, � is the number of ≤ k-labeled label-connected label-dependent graphs with
at most c unlabeled vertices. A generous bound on this factor is � ≤ 2(c+k)2+1. Now
note that in the proof of Theorem 8.2 in Kolaitis and Kopparty [2009b], the remaining
parameters are r = �k(n/c) and d = O(c2). Using the bound on ε from Lemma 3.10, we
get the following bound on the statistical distance:

2� · (1 − ε)r ≤ 2(c+k)2+1 · (
exp

(−2−O(c4)))�k(n/c)
.

For c ≤ log log log n, this is 2−�k(n/ log n), as required.

3.5. The Argument Itself

Finally, we are at the point where we can execute the plan sketched at the beginning
of Section 3. Fix a positive integer k (for the application in Section 5, it suffices to take
k = 3) and let p(x1, . . . , xk) be a regular normal form of order c ≤ log log log n. For every
a = (a1, . . . , ak) ∈ [n]k, define the following indicator random variables:

X(a) := I[p(a) �↔ p(a ◦ π ) for some π ∈ Sk],
Y (a) := I[p(a) ↔ p(a ◦ π ) for every π ∈ Sk].

Obviously, X(a) = 1 − Y (a), and Y (a) is the indicator random variable for the event
that p does not distinguish any two permuted versions of a. Our goal is to show that in
a random graph G, with high probability, Y (a) holds for some a, and for this, we will
follow the plan sketched at the beginning of this section.
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Write p(x) as a DNF on the (Boolean) variables

τ1(x), . . . , τr(x),⊕H1(x), . . . ,⊕H�(x),

where τ1, . . . , τr are the atomic types on x1, . . . , xk, and H1, . . . , H� are the ≤ k-labeled
label-connected, label-dependent graphs with labeled vertices within x1, . . . , xk and
order at most c. Observe that, in particular, H1, . . . , H� have at most c unlabeled vertices
and thus belong to Conn∗,c

≤k . Let us assume that H1, . . . , He are the ones for which aut(Hi)
is odd, and that He+1, . . . , H� are the rest. Also assume that H1, . . . , Hf are the graphs
from among H1, . . . , He that do not have any label at all, and Hf +1, . . . , He are the rest.
Since atomic types are mutually exclusive and each ⊕Hj(a) is false for j ∈ {e+1, . . . , �},
we may assume that each term in the DNF formula has the form

τi(x) ·
∏
j∈K

⊕Hj ·
∏
j∈K′

⊕Hj ·
∏
j∈I

⊕Hj(x) ·
∏
j∈I′

⊕Hj(x). (8)

for some i ∈ [r], some partition (K, K′) of [ f ], and some partition (I, I′) of [e]\[ f ].
Next note that for every permutation π ∈ Sk, the sequence of Boolean variables

τ1(x◦π ), . . . , τr(x◦π ) is equivalent to a permutation of the sequence of Boolean variables
τ1(x), . . . , τr(x). Similarly, the sequence of Boolean variables ⊕Hf +1(x◦π ), . . . ,⊕He(x◦π )
is equivalent to a permutation of the sequence ⊕Hf +1(x), . . . ,⊕He(x). Therefore, p(x)
and p(x◦π ) are functions of the same Boolean variables, and we can write p(x◦π ) also
as a DNF formula with terms of type Eq. (8).

From now on, for every K ⊆ [ f ], let RK be the term

RK :=
∏
j∈K

⊕Hj ·
∏
j∈K′

⊕Hj,

where K′ = [ f ]\K. Recall that H1, . . . , Hf are all label-free, and therefore RK does not
depend on x. Similarly, for every I ⊆ [e]\[ f ], let SI(x) be the term

SI(x) :=
∏
j∈I

⊕Hj(x) ·
∏
j∈I′

⊕Hj(x),

where I′ = ([e]\[ f ])\I. For every K ⊆ [ f ], let pK(x) denote the disjunction of the terms
in p(x) that are consistent with RK. Therefore, p(x) is equivalent to the disjunction∨

K⊆[ f ] pK(x).
Define the all-positive-term as one in which ⊕Hj(x) appears positively for all j ∈

[e]\[ f ]:

ZK(x) := σ (x) · RK · S[e]\[ f ](x),

where σ is the atomic type that forces xi �= xj for i �= j, and all possible edges among
different xi, xj . We show that for every a ∈ [n]k, the event ZK(a) = 1 implies p(a) ↔
p(a ◦ π ) for every π ∈ Sk.

LEMMA 3.11. ZK(a) ≤ Y (a).

PROOF. Fix a permutation π ∈ Sk. First note that the choice of σ guarantees that σ (a)
is equivalent to σ (a ◦ π ). Also, the sequence ⊕Hf +1(a ◦ π ), . . . ,⊕He(a ◦ π ) is equivalent
to a permutation of the sequence ⊕Hf +1(a), . . . ,⊕He(a), and all appear positively in
ZK(a). It follows from these facts that either the term ZK(a) appears in both DNFs for
p(a) and p(a ◦ π ), or in neither. If it appears in both, then clearly ZK(a) = 1 implies
both p(a) and p(a ◦ π ). If it does not appear in either, then ZK(a) = 1 implies p(a)
and p(a ◦ π ), since ZK(a) is incompatible with any other term of the DNFs for p(a) and
p(a ◦ π ). In either case, ZK(a) implies p(a) ↔ p(a ◦ π ).
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At this point, it will suffice to show that for every K ⊆ [ f ], the event ZK(a) = 1 holds
for some a ∈ [n]k with high probability in the probability space conditioned on RK.
From now on, for every event A, write

PK[A] := P[A | RK].

Let us start by computing the probability of ZK(a) for a ∈ [n]k with ai �= aj for i �= j
in this probability space. Let δ be the maximum, over all injective atomic types τ (x),
of the statistical distance between the distribution freq∗,c

≤k,G(a) as G ∼ G(n, 1/2 | τ (a))
and the uniform distribution over FFreq∗(τ,≤k, c). Note that, by symmetry, δ does not
depend on a provided ai �= aj for i �= j.

LEMMA 3.12.

PK[ZK(a)] ≤
(

2−e

2− f + δ · 1
2− f − δ

+ δ · 2−e

2− f · (2− f − δ)

)
· 2−(k

2);

and

PK[ZK(a)] ≥
(

2−e

2− f − δ · 1
2− f + δ

− δ · 2−e

2− f · (2− f + δ)

)
· 2−(k

2).

PROOF. We have

PK[ZK(a)] = P[ZK(a) · RK]
P[RK]

= P[S[e]\[ f ](a) · RK | σ (a)] · P[σ (a)]
P[RK]

.

The denominator is at most 2− f + δ and at least 2− f − δ by choice of δ. Similarly, the
numerator is at most (2−e + δ) · 2−(k

2) and at least (2−e − δ) · 2−(k
2)also by choice of δ. Note

that P[σ (a)] = 2−(k
2). Now,

2−e + δ

2− f − δ
− 2−e

2− f = 2−e · 2− f + δ · 2− f − 2−e · 2− f + 2−e · δ

2− f · (2− f − δ)

which simplifies to

δ · 1
2− f − δ

+ δ · 2−e

2− f · (2− f − δ)
.

Similarly,

2−e

2− f − 2−e − δ

2− f + δ
= δ · 1

2− f + δ
+ δ · 2−e

2− f · (2− f + δ)
.

Next we compute, for every a, a′ ∈ [n]k with all a1, . . . , ak, a′
1, . . . , a′

k distinct, the
probability of ZK(a) · ZK(a′) in the probability space conditioned on RK. Let γ be the
maximum, over all injective atomic types τ (x, x′), of the statistical distance between
the distribution freq∗,c

≤2k,G(a, a′) as G ∼ G(n, 1/2 | τ (a, a′)) and the uniform distribution
over FFreq∗(τ,≤ 2k, c). Note that, by symmetry, γ does not depend on a, a′ provided
they are all distinct.

LEMMA 3.13.

PK[ZK(a) · ZK(a′)] ≤
(

2−2e

2−2 f + γ · 1
2− f − γ

+ γ · 2−2e+ f

2− f · (2− f − γ )

)
· 2−2(k

2).
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PROOF. Let A denote the event that σ (a) and σ (a′) both hold. We have

PK[ZK(a) · ZK(a′)] = P[ZK(a) · ZK(a′) · RK]
P[RK]

= P[S[e]\[ f ](a) · S[e]\[ f ](a′) · RK | A] · P[A]
P[RK]

.

The denominator is at least 2− f − γ by choice of γ . The numerator is at most (2−2e+ f +
γ ) · 2−2(k

2) also by choice of γ . The trailing 2−2(k
2) factor is P[A]. Now:

2−2e+ f + γ

2− f − γ
− 2−2e+ f

2− f = 2−2e+ f · 2− f + γ · 2− f − 2−2e+ f · 2− f + 2−2e+ f · γ

2− f · (2− f − γ )

which simplifies to

γ · 1
2− f − γ

+ γ · 2−2e+ f

2− f · (2− f − γ )
.

Let us note at this point that the number of ≤k-labeled graphs of order at most c is
bounded by 2c2+1. Therefore, using the bound c ≤ log log log n, we have � ≤ 1

2 log n for
sufficiently large n, and in particular

2� ≤ √
n. (9)

We use this to prove the main consequence of this analysis up to now.

LEMMA 3.14. Let a, a′ ∈ [n]k be such that a1, . . . , ak, a′
1, . . . , a′

k are all different. The
following hold.

(1) PK[ZK(a)] ≥ n−1/2 · 2−(k
2) − 2−�k(n/ log n).

(2) |PK[ZK(a) · ZK(a′)] − PK[ZK(a)] · PK[ZK(a′)]| ≤ 2−�k(n/ log n).

PROOF. By Lemma 3.9, both δ and γ are 2−�k(n/ log n). On the other hand, we have
2e− f ≤ 2e ≤ 2� ≤ n1/2 by Eq. (9) and also 2 f ≤ 2� ≤ n1/2 by (9). Therefore, 2 f −e ≥ 2−e ≥
2−� ≥ n−1/2 and 2− f ≥ 2−� ≥ n−1/2. Now (1) follows from plugging these bounds into
the lower bound in Lemma 3.12 and (2) follows from plugging these bounds into the
upper bound in Lemma 3.12 and the bound in Lemma 3.13 and recalling that k is a
constant.

Now we conclude by proving the main result of this section.

LEMMA 3.15. For every k > 0 and ε > 0, there exists n0 ≥ 0 such that for every n ≥ n0
and every regular form p(x1, . . . , xk) of order bounded by log log log n, for G ∼ G(n, 1/2),
the probability that there exists a ∈ [n]k with ai �= aj for i �= j such that p(a) ↔ p(a ◦ π )
for every π ∈ Sk is at least 1 − ε.

PROOF. Fix k and ε and choose n0 large. Let m = �n/k�. Divide [n] into m disjoint
k-tuples (a1, . . . , am) arbitrarily but in such a way that a�,i �= a�, j for i �= j. Define
Y = ∑

�∈[m] Y (a�) and ZK = ∑
�∈[m] ZK(a�), the second for every K ⊆ [ f ]. Note that by

Lemma 3.11, we have ZK ≤ Y . We want to show that PK[ZK = 0] ≤ ε. This will be
enough, since then,

P[Y = 0] =
∑

K⊆[e]

P[Y = 0 | RK] · P[RK] ≤
∑

K⊆[e]

PK[ZK = 0] · P[RK] ≤ ε.

To show that PK[ZK = 0] ≤ ε, we proceed by the second moment method. To simplify
notation, let us fix K ⊆ [ f ] and abbreviate ZK by Z, and ZK(a�) by Z�. Similarly, all
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6:16 A. Atserias and A. Dawar

expectations E, variances V, and probabilities P appearing next refer to the probability
space PK. In computing the variance V[Z] = E[Z2] − E[Z]2, we have

E[Z2] − E[Z]2 =
∑
i, j

E[Zi · Zj] −
∑
i, j

E[Zi] · E[Zj]

≤
∑

i

E[Z2
i ] + 2 ·

∑
i �= j

(E[Zi · Zj] − E[Zi] · E[Zj])

≤
∑

i

E[Zi] + 2 ·
∑
i �= j

(P[Zi · Zj] − P[Zi] · P[Zj])

= E[Z] + 2 ·
(

m
2

)
· 2−�k(n/ log n)

= E[Z] + 2−�k(n/ log n),

where the first inequality follows from considering the case i = j in the first double
sum and ignoring it in the second, the next inequality follows from the fact that Zi is
a 0-1-random variable, the equality after it follows from Lemma 3.14.2 (recall that P

really stands for PK here), and the last equality follows from m = �n/k� and the fact
that k is a constant.

Now by Lemma 3.14.1, we have

E[Z] ≥ m · (
n−1/2 · 2−(k

2) − 2−�k(n/ log n)) = �k(n1/2).

Applying it to Chebyshev’s inequality, we obtain

P[Z = 0] ≤ V[Z]
E[Z]2 ≤ E[Z] + 2−�k(n/ log n)

E[Z]2 ≤ ε

for sufficiently large n.

4. DEFINING A LINEAR PRE-ORDER OF WIDTH TWO

In this section, we construct the formula of very low depth that defines a linear pre-
order of width 2 with high probability. The proof strategy is to analyze a variant of an
algorithm for graph canonization due to Karp [1979], and to exploit its massive implicit
parallelism to get formulas of very low depth.

4.1. Plan of Action

Informally, the graph canonization algorithm works as follows. For a given graph G,
split the vertices into two classes: those of even degree and those of odd degree. Induc-
tively, we split the classes further by dividing the vertices according to the parity of
the numbers of neighbours they have in each of the existing classes. We continue this
process until no more classes are split.

We will need three facts about this process: (1) that for G ∼ G(n, 1/2) the process
will reach a state where each class has at most two vertices with high probability,
(2) that this will happen in fewer than n “generations” of the splitting process with
high probability, and (3) that the process is massively parallel: all the classes created
between the �/2-th generation and the �th generation are definable in terms of the
classes created in the (log2 �)-th generation.

4.2. Splitting Procedure

Let G = (V, E) be an undirected graph. For a vertex x and a set B, we write p(G, x, B)
for the parity of the number of neighbours that x has in B. We extend this to the
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following set.

p(G, A, B) =
∑
x∈A

p(G, x, B) mod 2.

A splitting tree for G is a rooted binary tree T with each node t carrying a label Lt ⊆ V
and a sign Mt ∈ {+,−} denoting whether t is marked or unmarked, and satisfying the
following properties:

(1) the label of the root is V ,
(2) no two siblings are marked,
(3) if t is an internal node, then1 Lt0 ∪ Lt1 = Lt and Lt0 ∩ Lt1 = ∅,
(4) if s is a leaf, x, y ∈ Ls and t is marked, then p(G, x, Lt) = p(G, y, Lt).

Given a splitting tree T for G, let R(T ) denote the set of unmarked nodes that are
either the root or are a left child. Let R′(T ) be the subset of R(T ) containing the root
and all nodes t such that the label of t and its sibling are both nonempty.2 One step of
the splitting procedure works as follows.

(1) Let t be the least node in R(T ) in level-order3 and mark it.
(2) For every leaf s, let Lsa := {x ∈ Ls : p(G, x, Lt) = a} for both a = 0 and a = 1.
(3) Make4 s0 and s1 the left and right children of s and leave them unmarked.

Let P(T ) be the result of applying one step of the splitting procedure to T . If the node
t that is chosen in the first step also belongs to R′(T ), we say that the step is proper,
otherwise improper. When R′(T ) is empty, we say that the procedure stalls at T . Note
that when it stalls, it will never make a proper step again. The procedure starts at the
splitting tree T0 that has only an unmarked root labeled by V .

4.3. Analysis of the Splitting Procedure

Let T0 be the tree that has only an unmarked root labeled by V . For k ≥ 1, let Tk :=
P(Tk−1). Ideally, we would like to show that after a modest number of steps, all leaves
of the splitting tree are labeled by singletons or empty sets. Unfortunately, the splitting
procedure is not able to produce a tree with this property in general, not even with high
probability on a random graph. The best we will be able to show is that for a randomly
generated graph, with high probability, all leaves will have at most two vertices.

We identify three key desirable properties of Tk, where the third is our goal:

(Ak). Tk has Lt �= ∅ for every node t,
(Bk). Tk has been generated through proper steps only,
(Ck). Tk has |Lt| ≤ 2 for every leaf t.

Next, we will show the following.

(1) Property (Ak) holds with high probability for suitable values of k.
(2) Property (Ak) implies (B2k) for every graph and every k ≥ 0.
(3) Conditioned on (B2k), property (C2k) holds with high probability for suitable values

of k.

1Karp requires also Lt0 �= ∅ and Lt1 �= ∅. For us, it is convenient to not require it, and Karp’s analysis still
goes through with minor modifications that we point out.
2Karp defines R(T ) as the set of unmarked nodes t that are either the root or that have a sibling t′ such
that |Lt′ | > |Lt|, or |Lt′ | = |Lt| and are a left child. This difference is inessential to the analysis. The only
important point is to unambiguously choose one of the two children when both are unmarked and nonempty.
3Karp used symmetric order. This difference is not essential for Karp’s analysis but is important for us.
4Karp’s version makes this step only if Lsa �= ∅ for both a = 0 and a = 1; this note is related to footnote 1.
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Before we analyse the probability of (Ak), we need to introduce some terminology
and a lemma from Karp [1979]. Let T be a splitting tree for some graph H on the
vertices V . To every node t ∈ R′(T ), we associate a set St ⊆ V : the set of all x for which
t is the maximal node in R′(T ) such that Lt contains x. Let S(T ) be the collection of
all such sets. For every t ∈ R′(T ), let βt be t together with the set of nodes s ∈ R′(T )
such that s �= t and Ls is a maximal subset of Lt. Note that St = �s∈βt Ls, where �
denotes symmetric difference. Define �(x, St) := ∑

s∈βt
p(H, x, Ls) mod 2. We will say

that another graph G on the vertices V is consistent with T if p(G, x, Lt) = p(H, x, Lt)
holds for every x ∈ V and every node t ∈ R′(T ).

We state a consequence of Lemmas 4 and 5 in Karp [1979].5

LEMMA 4.1. Let T be the splitting tree of some graph on the vertices V and let H
be chosen uniformly at random among the graphs on the vertices V that are consistent
with T . If t is a node in R′(T ), then the distribution of {p(H, x, Lt)}x∈V is uniform over
the assignments that satisfy the constraints

p(H, S, Lt) = �(Lt, S) for every S ∈ S(Tk)\{Y },
where Y is the unique set in S(T ) of which Lt is a proper subset.

In order to be able to make use of this lemma, it is important to notice that if
G denotes a random graph drawn from G(n, 1/2) and T0, T1, . . . denotes the random
sequence of splitting trees produced by this random graph, then the distribution of
Tk+1 conditioned on Tk is equally produced as follows: first choose a graph H uniformly
at random among those consistent with Tk, and then run one step of the splitting
procedure on Tk with respect to H. This follows from the fact that the restriction of a
uniform distribution to a subset of its support is uniformly distributed on that subset.

Now we can analyze the probability of (Ak).

LEMMA 4.2. Let n≥1 and k≥1 be integers such that 4k≤ log2 n, and let G∼G(n, 1/2).
Then, the probability that (Ak) fails is 2k+1 · exp(−n/26k).

PROOF. In order to simplify notation, in this proof, we let nt := |Lt|. For a node t at
depth � ≤ k in Tk, we say that t is unbiased if |nt − n · 2−�| ≤ n · 2−(2k−�+1) holds, and
biased otherwise. Note for later use that we allow the error-term n · 2−(2k−�+1) to grow
with �, but that it always stays below n · 2−� because � ≤ k. Let us consider the event
defined as follows.

(A′
k). Tk has every node unbiased.

Note that since the error-term for � = k is smaller than n · 2−k, property (A′
k) implies

(Ak). Thus, it suffices to bound the probability that (A′
k) fails.

Since (A′
0) holds, if (A′

k) fails, then there is a largest � ∈ {0, . . . , k − 1} such that (A′
�)

is true and (A′
�+1) is false. Fix � ∈ {0, . . . , k − 1}, a leaf r of T�, and a ∈ {0, 1}, and we

bound the probability that the child ra of r becomes biased in T�+1 conditioned on T�

satisfying (A′
�). Let t be the node with respect to which the splitting step � + 1 is made.

Since we are assuming that T� satisfies (A′
�), each label is nonempty, and therefore, t

belongs to R′(T�). Let Y be the unique set in S(T�) of which Lt is a proper subset. By the
discussion after Lemma 4.1, the tree T�+1 can be seen as produced by first choosing H
uniformly at random among the graphs that are consistent with T�, and then applying
the splitting procedure on T� with respect to t and H. By Lemma 4.1, the distribution

5It would seem from Lemma 4 in Karp [1979] that we also need the constraint p(G, Lt, Lt) = 0. However, in
our notation this constraint is implicit, since p(G, Lt, Lt) counts each edge within Lt exactly twice.
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of {p(H, x, Lt)}x∈V is uniform over the assignments that satisfy the constraints

p(H, S, Lt) = �(Lt, S) (10)

for every S in S(T�)\{Y }. In particular, since all sets in S(T�) are pairwise disjoint,
if S is the unique minimal set in S(T�) that contains Lr, then the distribution of
{p(H, x, Lt)}x∈S is uniform over the assignments that satisfy Constraint (10) for this S
only, or no constraint at all if S = Y .

Since r is unbiased, the set Lr is nonempty. Fix x0 ∈ Lr ⊆ S. A different way of
generating the distribution {p(H, x, Lt)}x∈S without sampling H is by first choosing
values for p(−, x, Lt) for x ∈ S\{x0} uniformly and independently at random, and
then setting the value for p(−, x0, Lt) to the unique value that satisfies the constraint
p(−, S, Lt) = �(Lt, S), or setting it uniformly and independently at random if S = Y . In
either case, the number X of elements x in Lr\{x0} for which p(−, x, Lt) = a is a random
variable distributed according to the binomial distribution B(m, 1

2 ) with m = nr − 1.
Note for later use that |nra − X| ≤ 1, because only x0 could be missed in the count. By
Hoeffding’s inequality for the binomial distribution, the probability that |X − 1

2 · m| ≥ t
is bounded by 2e−2t2/m, which is bounded by

2e−2t2/(2n·2−�), (11)

because r is unbiased, and hence m = nr − 1 < n · 2−� + n · 2−(2k−�+1) ≤ 2n · 2−� because
� < k. Now, if ra were biased, we would have∣∣nra − n · 2−(�+1)

∣∣ > n · 2−(2k−(�+1)+1).

Since |nra − X| ≤ 1 and since | 1
2 · nr − n · 2−(�+1)| ≤ 1

2 ·n·2−(2k−�+1) because r is unbiased,
by the triangle inequality, this would mean that∣∣∣∣X − 1

2
· nr

∣∣∣∣ > n · 2−(2k−(�+1)+1) − 1
2

· n · 2−(2k−�+1) − 1,

and in particular, using 0 ≤ � ≤ k − 1 and 4k ≤ log2 n, that∣∣∣∣X − 1
2

· (nr − 1)
∣∣∣∣ ≥ n · 2−3k.

The probability of this happening is bounded by Eq. (11) with t = n · 2−3k, which is at
most ε := 2 exp(−n · 2−6k).

The argument is now finished by two union bounds. By the union bound over the 2�

leaves of T�, the probability that some leaf of T� generates a biased child is at most
2� · ε. By the union bound over �, the probability that there exists an � ∈ {0, . . . , k − 1}
for which (A′

�) holds but (A′
�+1) fails is at most

∑k−1
�=0 2� · ε. Thus, the probability that

(A′
k) fails is bounded by 2k+1 · exp(−n · 2−6k).

Next we observe that (Ak) implies (B2k).

LEMMA 4.3. For any graph G and k ≥ 0, if (Ak) holds, then (B2k) holds.

PROOF. In a complete binary tree of depth k, the number of left children at depth at
most k is

∑k
i=1 2i−1 = 2k − 1. Now, if Tk satisfies (Ak), then the root and every left child

at depth at most k has generated a proper step in the process of producing T2k; these
are 2k proper steps as claimed.

Finally we note that 3-element sets split with high probability if enough steps are
proper. This is similar to Lemma 7 in Karp [1979].
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LEMMA 4.4. Let G ∼ G(n, 1/2) and let k ≥ 0. Then, the probability that (Bk) holds
and (Ck) fails is at most

(n
3

) · 2−2k.

PROOF. Fix a 3-element set A ⊆ V and fix � ≤ k. Let S� denote the event that the set
A is not split at step � and P� denote the event that step � is proper. We aim to show
that P[

⋂k
�=1 S� ∩ ⋂k

�=1 P�] ≤ 2−2k and the result then follows by a union bound over all
three element subsets.

Now,

P

[
k⋂

�=1

S� ∩
k⋂

�=1

P�

]
=

k−1∏
�=0

P

[
S�+1 ∩ P�+1 |

�⋂
i=1

(Si ∩ Pi)

]
,

which is bounded by
k−1∏
�=0

P

[
S�+1 | P�+1 ∩

�⋂
i=1

(Si ∩ Pi)

]
. (12)

So, it suffices to show that each term in Eq. (12) is bounded by 1
4 .

Fix � ∈ {0, . . . , k − 1} and let T denote the sequence of splitting trees T0, . . . , T�. Let
T denote the set of all sequences of splitting trees of length � + 1 and TA denote the
subset of T consisting of those sequences U = U0, . . . ,U� in which all steps are proper
and A does not split at any stage and U� splits properly, that is, with respect to a node
in R′(U�). In other words, the sequence U satisfies P�+1 ∩ ⋂�

i=1(Si ∩ Pi). We now argue
that, for any given U ∈ T , we have P[ S�+1 | T = U ] ≤ 1

4 .
Let r be a leaf of T� such that A ⊆ Lr. Let t be the node of T� with respect to which

the splitting step � + 1 is made. We argue that, conditioned on the event that this step
is proper, that is, t belongs to R′(T�), the probability that the elements of A are not split
apart in T�+1 is at most 1/4. Let Y be the unique set in S(T�) of which Lt is a proper
subset. By the discussion after Lemma 4.1, the tree T�+1 can be seen as produced by first
choosing H uniformly at random among the graphs that are consistent with T�, and
then applying the splitting procedure on T� with respect to t and H. By Lemma 4.1,
the distribution of {p(H, x, Lt)}x∈V is uniform over the assignments that satisfy the
constraints

p(G, S, Lt) = �(Lt, S), (13)
for every S ∈ S(T�)\{Y }. In particular, since all sets in S(T�) are pairwise disjoint,
if S is the unique minimal set in S(T�) that contains Lr, then the distribution of
{p(H, x, Lt)}x∈S is uniform over the assignments that satisfy Constraint (13) for this S
only, or no constraint at all if S = Y . Thus, in case S �= Y , there are 2|S∪Lt|−1 choices for
{p(H, x, Lt)}x∈S and 2|S∪Lt|−3 such choices that are constant over A, and in case S = Y ,
there are 2|S∪Lt| choices for {p(H, x, Lt)}x∈S and 2|S∪Lt|−2 such choices that are constant
over A. In both cases, this gives probability 1/4, as claimed.

To complete the argument, let E� denote the event P�+1 ∩ ⋂�
i=1(Si ∩ Pi). We have

P[S�+1 | E�] = P[S�+1 ∩ E�] · P[E�]−1

=
∑
U∈T

P[S�+1 ∩ E� | T = U] · P[T = U] · P[E�]−1

=
∑
U∈TA

P[S�+1 | T = U] · P[T = U] · P[E�]−1

≤ 1
4

·
∑
U∈TA

P[T = U] · P[E�]−1
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= 1
4

· P[E�] · P[E�]−1

= 1
4

.

This completes the proof of the lemma.

We are ready to synthesize what we have learned in a single lemma. In its statement,
the choice of parameters is made to minimize the probability of failure. Other choices
with other goals would work as well.

LEMMA 4.5. Let G ∼ G(n, 1/2). Then, the probability that T�n1/5� does not satisfy
(C�n1/5�) is at most 2−�(n1/6).

PROOF. Choose k = � 1
5 log2 n� in Lemma 4.2 and k = �n1/5� in Lemma 4.4 and link

them through Lemma 4.3.

4.4. Defining the Splitting Steps

In this section, we show that sets Lt of the splitting trees Tk are definable by formulas
ψt(x) of very low quantifier rank. First, let us recall that if the splitting step is made
with respect to node t, then every leaf s splits into the following sets.

Ls0 = {x ∈ Ls : p(G, x, Lt) = 0},
Ls1 = {x ∈ Ls : p(G, x, Lt) = 1}.

Note that the nodes at depth � are generated by the �th splitting step. For every non-
root node t in a splitting tree T , let vT (t) be the node of T that generated t. In the
following, let u(1) := 1 and u(�) := bin2(2(� − 1)) for every � ≥ 2.

LEMMA 4.6. Let G be a graph and let k ≥ � ≥ 1. Then, for every node t at depth � in
Tk, we have vTk(t) = u(�).

PROOF. Let us write T =Tk. If t is one of the two nodes at depth 1, then vT (t) is the root,
which agrees with u(1). Assume now that t is a node at depth �≥2. Let num2 be such
that num2(bin2(n)) = n for every positive integer n. We show that num2(vT (t)) = 2(�−1).
We proceed by induction on �. For � = 2, we have it, since then, vT (t) is the left child of
the root 10, and num2(10) = 2. Now, if t is a node at depth � ≥ 2 and we assume that
num2(vT (t)) = 2(� − 1), then for every a ∈ {0, 1}, we have

num2(vT (ta)) = num2(vT (t)) + 2 = 2(� − 1) + 2 = 2((� + 1) − 1),

where the first follows from the fact that the nodes at level � + 1 are generated by
the next left-child following vT (t) in the level-order, and that the level-order on nodes
agrees with the order of the natural numbers when they are read in binary.

Now, for a1, . . . , a� ∈ {0, 1}, define

ψ1a1···a�
(x) :=

�∧
i=1

ai=1

⊕z (ψu(i)(z) ∧ E(x, z)) ∧
�∧

i=1
ai=0

¬ ⊕z (ψu(i)(z) ∧ E(x, z)).

Note that ψ1(x) is true, since then the conjunctions are empty. We show that the ψt(x)
are the formulas we are after.

LEMMA 4.7. Let G be a graph and let k ≥ � ≥ 0. Then, for every node t at depth at
most � in Tk, the formula ψt(x) defines the set Lt in G.
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PROOF. For every nonleaf node t at depth � − 1, we have vT (ta) = u(�) for both a = 0
and a = 1 by Lemma 4.6. Therefore,

Lt0 = {
x ∈ Lt : p(G, x, Lu(�)) = 0

}
,

[6pt]Lt1 = {
x ∈ Lt : p(G, x, Lu(�)) = 1

}
.

Now, if t=1a1a2 · · · a�, then unfolding the recursion, we have that Lt is the set of vertices
x ∈ V for which p(G, x, Lu(i)) = ai holds for every i ∈ {1, . . . , �}. This is precisely what
ψt(x) says.

Note that the quantifier rank of ψt(x) depends only on the depth of t. Therefore, let
q(�) be the quantifier rank of ψt(x) for some and hence every t of depth �. Note that q(�)
is monotone nondecreasing.

LEMMA 4.8. q(�) = O(log∗
�).

PROOF. If t is a node at depth �, the largest u(i) in the definition of ψt is 2(�−1). Since
q is monotone nondecreasing, we have

q(�) = 1 + q(|bin2(2(� − 1))|).
Since the length of bin2(2(�−1)) is log2(�)+ O(1), this recurrence gives q(�) = O(log∗

�),
as claimed.

4.5. Defining the Linear Pre-Order

Finally we are ready to prove the main lemma of this section.

LEMMA 4.9. There exists d > 0 such that for every δ > 0, there exists n0 ≥ 0 such that
for every n ≥ n0, there is a formula ψ(x, y) of quantifier rank at most d log∗ n such that,
for G ∼ G(n, 1/2), the probability that ϕ defines a linear pre-order of width at most 2 is
at least 1 − δ.

PROOF. Choose d to be the universal multiplicative constant in the O(log∗
�) notation

in Lemma 4.8. Fix δ>0 and let n0 be large enough so that for every n≥n0, the probability
in Lemma 4.5 is at most δ, and q(n) ≤ d log∗ n. For fixed n ≥ n0, let k = �n1/5�, and let
ψ(x, y) be the following formula. ∨

s,t
s≤t

ψs(x) ∧ ψt(y),

where s and t range over the leaves of Tk in the disjunction. If Tk has all its leaves
labeled by sets of size at most two, this defines a linear pre-order of width at most two.
By choice of n0, this happens with probability at least 1 − δ. Finally, by Lemma 4.8, the
quantifier rank of ψ is q(k) ≤ q(n) ≤ d log∗ n.

5. ESTABLISHING THE LOWER BOUND

Here we put it all together to prove Theorem 1.1.

THEOREM 1.1. There exists a constant c > 0 such that for every large enough integer q,
every ε > 0, and every large enough integer n, there exists an FO[⊕]-formula φ(u, v, w) of
quantifier rank q such that, for every Boolean combination p of quantifier-free formulas
and FO[⊕]-polynomials of degree bounded by a tower of exponentials of height at most
q/c, the formulas φ and p must disagree on a fraction 1− ε of all graphs with n vertices.

PROOF. Let d be the constant in Lemma 4.9 and choose c := d + 1. Choose q0 large
enough (to be determined later), fix q ≥ q0 and ε > 0, and choose n0 large enough (to be
determined later) and fix n ≥ n0. Let ψ(x, y) be the formula from Lemma 4.9 for δ = ε/2
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and the fixed n; in particular, n0 must be larger than the n0 from Lemma 4.9 for this
particular δ. Let φ(x, y, z) := ψ(x, y) ∧ ψ(y, z). Since we want the quantifier rank of φ to
be at most q, we choose n0 large enough so that d log∗ n ≥ q whenever n ≥ n0. We claim
that this φ(x, y, z) witnesses the theorem.

Suppose p(x, y, z) is a Boolean combination of quantifier-free formulas and FO[⊕]-
polynomials of degree bounded by a tower of exponentials of height q/c that agrees
with φ(x, y, z) on more than an ε-fraction of graphs with n vertices. Since q ≥ q0 is large
enough, a tower of exponentials of height q/c = q/(d + 1) has height at most q/d − 4,
and since q ≤ d log∗ n, the degree is bounded by log log log log n. By Remarks 3.2 and 3.3
we may assume that p(x, y, z) is a Boolean combination of FO[⊕]-polynomials of order
2 log log log log n + 1, which is at most log log log n if n ≥ n0 is large enough.

By Lemma 3.8, we may assume that p(x, y, z) is a regular normal form of this order.
If n0 is large enough, with probability at least 1 − ε/2, there exists a triple a, b, c of
distinct vertices for which Y (a, b, c) holds. Also if n0 is large enough, with probability
at least 1 − ε/2, the formula ψ(x, y) defines a linear pre-order of width at most 2. By
the union bound, with positive probability, all three hold.

(1) φ(x, y, z) and p(x, y, z) agree on G.
(2) ψ(x, y) defines a linear pre-order � of width at most 2 in G.
(3) There exists a triple of distinct vertices a, b, c of G for which Y (a, b, c) holds.

Now assume, without loss of generality, that a � b � c: otherwise, permute them
accordingly. Note that we cannot have c � a, as otherwise, all three a, b, c would belong
to the same class of the pre-order, which is not possible, because its width is 2 and
a, b, c are distinct. But then φ(a, b, c) holds and φ(c, a, b) does not hold, which means
that φ distinguishes one permutation of (a, b, c) from another. But then p also does; a
contradiction to Y (a, b, c).

Final Remarks. The lower bound is achieved by a formula with free variables. In
particular, when we say that p(x, y, z) cannot agree with φ(x, y, z) on more than an
ε-fraction of the graphs with n vertices, what we mean is that, on at least a (1 − ε)-
fraction of the graphs, the ternary relations on the set of vertices that are defined
by φ(x, y, z) and p(x, y, z) are not identical. It would be nice to obtain a similar kind
of lower bound for sentences, that is, formulas without free variables. However, since
every sentence φ agrees on at least half the graphs with n vertices with one of the two
constant polynomials p = 0 or p = 1, the correct lower-bound statement in this setting
is different: that for every ε > 0 and every sufficiently large n, any low-degree p cannot
agree with φ on more than a ( 1

2 + ε)-fraction of the graphs with n vertices. A candidate
such as sentence φ could be the one saying that the number of edges between the
minimum and the maximum classes in the pre-order is odd. However, we were not able
to prove that this sentence φ must be uncorrelated to any low-degree FO[⊕]-polynomial
p, that is, that for any such p, the probability that φ and p agree on a random graph is
very close to 1/2. We leave this as an interesting open problem.
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A. Dawar and E. Grädel. 2010. Properties of almost all graphs and generalized quantifiers. Fundameta
Informaticae 98, 4 (2010), 351–372.

R. Fagin. 1976. Probabilities on finite models. J. Symbol. Logic 41, 1 (1976), 50–58.
Y. V. Glebskiı̆, D. I. Kogan, M. I. Ligon’kiı̆, and V. A. Talanov. 1969. Range and degree of realizability of

formulas in the restricted predicate calculus. Kibernetika 2 (1969), 17–28.
L. Hella, P. G. Kolaitis, and K. Luosto. 1996. Almost everywhere equivalence of logics in finite model theory.

Bull. Symbol. Logic 2 (1996), 422–443.
R. M. Karp. 1979. Probabilistic analysis of a canonical numbering algorithm for graphs. In Proceedings of

the AMS Symposium in Pure Mathematics, vol. 34, 365–378.
Ph. G. Kolaitis and S. Kopparty. 2009a. Random graphs and the parity quantifier. In Proceedings of the 41st

ACM Symposium on the Theory of Computing (STOC). 705–714.
Ph. G. Kolaitis and S. Kopparty. 2009b. Random graphs and the parity quantifier. Technical Report 33,

Electronic Colloquium on Computational Complexity (ECCC).
Ph. G. Kolaitis and M. Y. Vardi. 1992. Infinitary logics and 0-1 laws. Inform. Computation 98, 2 (1992),

258–294.
A. A. Razborov. 1987. Lower bounds on the size of bounded depth networks over a complete basis with logical

addition. Math. Notes Acad. Sci. USSR 41 (1987), 333–338.
R. Smolensky. 1987. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In

Proceedings of the 19th ACM Symposium on the Theory of Computing (STOC). 77–82.
R. Williams. 2011. Non-uniform ACC circuit lower bounds. In Proceedings of the 26th IEEE Conference on

Computational Complexity (CCC). 115–125.

Received October 2012; accepted May 2013

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 6, Publication date: February 2014.


