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Abstract: Current research in automated disease detection focuses on making algorithms “slim- 12 

mer,” reducing the need for large training datasets and accelerating recalibration for new data while 13 

achieving high accuracy. The development of slimmer models has become a hot research topic in 14 

medical imaging. In this work, we develop a two-phase model for glaucoma detection, identifying 15 

and exploiting a redundancy in fundus image data relating particularly to the geometry. We pro- 16 

pose a novel algorithm for cup and disc segmentation “EffUnet” with an efficient convolution block 17 

and combine this with an extended spatial generative approach for geometry modelling and classi- 18 

fication, termed “SpaGen.” We demonstrate the high accuracy achievable by EffUnet in detecting 19 

the optic disc and cup boundaries, and show how our algorithm can be quickly trained with new 20 

data, by recalibrating the EffUnet layer only. Our resulting glaucoma detection algorithm “EffUnet- 21 

SpaGen” is optimized to significantly reduce the computational burden while at the same time sur- 22 

passing current state-of-art in glaucoma detection algorithms with AUROC 0.997 and 0.969 in the 23 

benchmark online datasets ORIGA and DRISHTI respectively. Our algorithm also allows deformed 24 

areas of optic rim to be displayed and investigated, providing explainability, which is crucial to 25 

successful adoption and implementation in clinical settings. 26 
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 28 

1. Introduction 29 

Glaucoma is a neurodegenerative disease resulting in progressive optic nerve dam- 30 

age with a characteristic pattern of optic nerve damage and visual field loss. Late diagno- 31 

sis is a major risk factor for permanent visual loss [1] and early glaucoma detection is key 32 

to preventing avoidable blindness. Detection of structural changes to the optic nerve us- 33 

ing imaging or clinical examination is central to diagnosis but challenging even for highly 34 

skilled specialists. Patients can be misclassified which is a significant challenge, especially 35 

in low resource settings, where access to clinical expertise and specialist diagnostic equip- 36 

ment is limited. A low-cost and accurate automated method of quantifying glaucomatous 37 

structural changes would help meet this need [2].  38 

A significant challenge of developing automated glaucoma detection algorithms is 39 

that a vast number of labeled color fundus images is required for training (Figure 1). Cur- 40 

rent algorithms are very promising and show high accuracy; however, they are computa- 41 

tionally very complex, which requires strong computing infrastructure as well as large 42 

datasets for training, for example 30 thousand images to achieve an AUROC of 0.996 [3]. 43 

TheSuch computationally complex algorithms mayare be challenging to implement on 44 

mobile devices for community and particularly rural disease screening, necessitating the 45 
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investigation of further solutions. The access to a large amount of good quality of anno- 46 

tated data in glaucoma for training is a persistent challenge, due in part to the complexity 47 

of the diagnosis. Therefore, an automated detection system that is computationally flexi- 48 

ble to require less computing power and that also requires fewer training images is a fun- 49 

damental requirement. 50 

 51 

 52 
Figure 1. Colour fundus photograph of optic disc with two features: disc (red), and cup (blue). 53 

In our paper, we present a new machine learning and generative model-based 54 

method that is able to discriminate between glaucomatous and healthy patients from 55 

standard fundus images of the optic nerve head. The proposed method revisits the con- 56 

volution layers [4] and improves the generative statistical model [5]. The contribution of 57 

our work is as follows: (1) we propose a novel two-step algorithm for glaucoma detection, 58 

which traces the boundaries of the optic cup and disc efficiently, facilitating the extraction 59 

of the whole cup-to-disc profile and allowing presentation of this to the clinician for fur- 60 

ther inspection if desired, and provides an accurate glaucoma diagnosis; (2) we propose 61 

EffUnet, an efficient U-shaped convolutional neural network for efficient segmentation of 62 

the cup and disc; (3) to detect glaucoma, we propose a refined and extended spatial sta- 63 

tistical generative model SpaGen, which takes into account the extracted profile and the 64 

cup to disc area ratio to improve detection; (4) we demonstrate the performance of our 65 

algorithm on two large publicly available datasets and show how it can be quickly recali- 66 

brated for independent data, by recalibrating the EffUnet layer only. 67 

1.1. Background 68 

Glaucoma is still diagnosed manually in clinical practice. Research into automated 69 

glaucoma diagnosis from fundus photographs is showing promising results. There are 70 

two main approaches to automated glaucoma detection from fundus photographs [6]. 71 

One approach involves initially automatically detecting the boundaries of the cup and 72 

disc using automated segmentation [7], which allows for the cup and disc boundaries to 73 

be used for glaucoma classification. See [8], [9], [10] for reviews and a recent approach in 74 

[5]. The alternative artificial intelligence (AI) approach to automated glaucoma diagnosis 75 

uses direct Deep Learning (DL) [3], with a. While this has clear benefits of achieving good 76 

results while obviating the necessity for explicit automated cup and disc segmentation. 77 

With such approaches, the AI is trainedsuch approaches are trained to use all information 78 

in fundus images to differentiate glaucoma patients from those without glaucoma (see 79 

review in [11]), much of which may beis redundant. These approaches require large num- 80 

bers of expert-labelled images, are can be more difficult to translate to new devices and 81 

are typically not explainable. The large number of the expert-labelled images is a still a 82 
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problem in glaucoma due the complexity of the gold standard definition of glaucoma. To 83 

remedy the problem of large number of images, there are other approaches like transfer 84 

learning. To solve the lack of inherent explainability there is a current research that inves- 85 

tigates computational approaches to bring explainability to the algorithms. 86 

A current focus is to make AI glaucoma detection algorithms “slim” in order to allow 87 

for wider use (including in low-resource settings) while also requiring fewer labelled im- 88 

ages for training. One approach to achieve this is in realizing the redundancy in retinal 89 

fundus images for disease recognition and using this knowledge to develop lean algo- 90 

rithms. For example, attention maps from simple eye tracking experiments from glau- 91 

coma grading have been successfully used to improve automated glaucoma detection via 92 

an attention-based convolutional network (AG-CNN) approach [4]. However, this 93 

method requires additional data on attention maps. 94 

Another approach to redundancy is in recognizing that the boundaries of the cup 95 

and disc in healthy eyes are similar to ellipses and hence a deviation from the ellipse can 96 

be utilized for discrimination [5]. Using this approach, the fundus image is reduced to a 97 

cup-to-disc profile vector of 24 numbers and a generative model is used for classification. 98 

However, this approach uses a computationally complex DL algorithm for cup and disc 99 

segmentation. One AI approach using slimmer algorithms is to create models that are easy 100 

to calibrate on new datasets. One such approach has been used in detecting diabetic reti- 101 

nopathy [12]; the researchers used a two-step architecture. The first step was an auto- 102 

mated segmentation and the second step was a disease discrimination algorithm. Using 103 

this approach, the authors showed that, for new datasets, one needs to recalibrate the seg- 104 

mentation algorithm while the discrimination algorithm does not change, making the 105 

computation slimmer. This approach however still requires a computationally intensive 106 

DL method for discrimination. 107 

 108 

1.1.1. Existing Segmentation Methods 109 

U-Net is a U-shaped convolutional network which was originally developed for bio- 110 

medical image segmentation [13]. It is composed of a down-sampling encoder layer and 111 

up-sampling decoder layer. The encoder consists of repeated groups of two convolution 112 

layers followed by a ReLU activation function and max pooling to produce a set of en- 113 

coder feature maps. The decoder path also consists of convolution layers to output de- 114 

coder feature maps. Skip connections transfer the corresponding feature maps from the 115 

encoder path and concatenate them with them to the upsampled decoder path. 116 

Recently, there have been various adaptations of Unet. Mnet [14] is a convolution 117 

neural network with a multi-scale input layer and a multi-scale output layer. TernausNet 118 

[15] uses a pretrained VGG model as an encoder section of Unet. LinkNet [16] exploits 119 

ResNet-18 as an encoder and also used residual blocks instead of concatenation. In [7], a 120 

pretrained ResNet-34 is used as an encoder. However, most of these models are heavy 121 

and computationally expensive. There have also been several recent attempts to segment 122 

the optic cup and disc using deep learning-based approaches, including Unet [17] and a 123 

modified Mnet with bidirectional convolutional LSTM [18]. Some methods have also 124 

aimed to deliver models with lower memory requirements. Other methods [19] proposed 125 

a modified Unet with a novel augmentation based on contrast variations and [20] pro- 126 

posed CDED-Net, a computationally less expensive encoder-decoder approach with fea- 127 

ture re-use, allowing a shallower structure to be employed. 128 

1.1.2. Generative spatial generative model 129 

Generative models are commonly used in statistics and also known as predictive 130 

models. The idea is to fit a model and to use the model for prediction or interpolation. 131 

This is a common paradigm in statistics for longitudinal data [21], [22].  132 

In computer vision, statistical generative models are less frequently used, though 133 

their value is now being studied. For example, one group introduced a probabilistic 134 
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generative layer to their convolutional neural network, and on standard benchmarks, they 135 

required 300-fold less training data, while achieving similar accuracy [23].  136 

In glaucoma detection, one group published an algorithm that uses a generative 137 

model layer for classification after a DL algorithm is used for the segmentation of the cup 138 

and disc [5]. This approach required a dataset 100-times smaller for training and achieved 139 

similar accuracy of 0.996 in internal validation. The algorithm is however computationally 140 

expensive due to requiring a large DL network. 141 

2. Materials and Methods 142 

Our automated supervised classification of glaucoma from fundus images aims to be 143 

computationally lean to allow wide-spread use, and to allow simple calibration on new 144 

datasets. In this section, our methods are described.  145 

2.1. Our framework 146 

We propose a generative AI algorithm in a two-stage architecture (Figure 2). Firstly, 147 

automated segmentation of the optic cup and disc via EffUnet is done to extract the 148 

boundaries of the cup and disc (see Output 1, Figure 2). Then SpaGen algorithm [5] is 149 

updated by having two parameters for variance of noise (rather than one), and by intro- 150 

ducing cup-to-disc area ratio (CDAR). The two variance parameter reflect the fact that 151 

variability in glaucoma images is larger than those of normal images. The CDAR is added 152 

to reflect the observation of clinicians. The boundaries of the cup and disc are then used 153 

to calculate the cup-to-disc ratio (CDR) values in 24 directions at 15-degree intervals (0, 154 

15, 30…360 degrees), (see Output 2 in Figure 2). These 24 CDR values, as well as the cup- 155 

to-disc area ratio (CDAR), are then input to a spatial generative model, SpaGen. Finally, 156 

classification is carried out for each eye and output as a probability of glaucoma (see Out- 157 

put 3, Figure 2). 158 

 159 

Figure 2. Framework of our EffUnet-SpaGen network. EffUnet is explained in Figure 3 and 160 
4, SpaGen is explained in Figure 5. 161 

2.2. Segmentation of cup and disc via EffUnet 162 

We developed EffUnet as a U-shaped convolution network with a pre-trained effi- 163 

cient net-B1 [24] as the encoder. This is a modification of U-Net as the main body in our 164 

deep network (Figure 3 and 4). 165 

 166 

 167 
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Figure 3: Architecture of EfficientNetB1 with MBConv as basic building blocks. The overall archi- 168 
tecture can be divided into seven blocks as shown. Each MBConvX block is shown with the corre- 169 

sponding filter size. 170 
 171 

In our modified U-Net architecture, we employ the EfficientNet-B1 as the down sam- 172 

pling encoder section of the U-Net architecture, while the decoder section is similar to the 173 

original U-Net architecture. EfficientNet’s main building block is a mobile inverted bot- 174 

tleneck MBConv [24], [25], to which squeeze-and-excitation optimization [26] is also 175 

added.  176 

To use EfficientNet-B1, the upsampling network has decoder blocks and each de- 177 

coder block is composed of 2 × 2 upsampling 2D convolution of the previous layer output 178 

with stride of 2, concatenated corresponding feature maps from the encoder section. The 179 

concatenated tensor is then passed through two convolution layers with ReLU activation 180 

and batch normalized before passing to the next decoder block. The final layer of the ar- 181 

chitecture is convolution with softmax with channel number the same as the target classes 182 

and output image size the same as the input image. 183 

 184 

 185 

Figure 4. Framework of our EffUnet model. The Details of Block 1-7 are shown in Figure 3. 186 
The Output image (green rectangle on the right) is the Output 1 in the whole architecture 187 

shown in Figure 2. 188 

Most existing segmentation models for cup and disc segmentation use a two-step 189 

process; disc segmentation to crop the region of interest and then multi-label segmenta- 190 

tion to segment both cup and disk. Our model is applied on the entire image with just the 191 

black boundaries removed and resized to 512 x 512. Our EffUnet model is computationally 192 

less expensive with 12.6 M parameters hence 1.9x less parameters than ResNet34-Unet [7] 193 

which has 24.4M parameters. Our model converges a lot faster than the other models com- 194 

pared in Table 2. 195 

 196 

2.3. Classification of images via SpaGen 197 

We present here an improved generative spatial algorithm (Figure 54) for disease 198 

discrimination from the shape of the cup and disc of [5]. The key novelty is in allowing 199 

for different noise modelling in disease groups, and the incorporation of the cup-to-disc- 200 

area ratio (CDAR) (Figure 54), which is a significant factor in detecting glaucoma [27], not 201 

previously used in an automated model. This is accomplished by including two additional 202 

parameters: one for the noise component (𝜎𝐺
2 ) and one for the fixed component (see 203 

𝛽𝐶𝐷𝐴𝑅). Then the final improved spatial model is a hierarchical model 204 

 205 
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𝑌𝑖,𝑑 = 𝛽0 + 𝛽𝐺,0𝐼𝐺 + 𝛽𝐶𝐷𝐴𝑅𝐶𝐷𝐴𝑅

+𝛽𝐺,1 sin(2𝜋𝑑/24)𝐼𝐺,𝑑 + 𝛽𝐺,1 cos(2𝜋𝑑/24)𝐼𝐺,𝑑

+𝛽𝐺,3 sin(4𝜋𝑑/24)𝐼𝐺,𝑑 + 𝛽𝐺,3 cos(4𝜋𝑑/24)𝐼𝐺,𝑑

+𝛽𝐻,1 sin(2𝜋𝑑/24)𝐼𝐻,𝑑 + 𝛽𝐻,1 cos(2𝜋𝑑/24)𝐼𝐻,𝑑

+𝛽𝐻,3 sin(4𝜋𝑑/24)𝐼𝐻,𝑑 + 𝛽𝐻,3 cos(4𝜋𝑑/24)𝐼𝐻,𝑑

+𝑧𝑖 + 𝑒𝑖,𝑑

     (1) 206 

 207 

where 𝑌𝑖,𝑑 is CDR value of 𝑖th eye in 𝑑th direction (𝑑 = 1, … ,24); 𝐼𝐺  and 𝐼𝐻  are the indi- 208 

cator functions for glaucoma and healthy; 𝐼𝐺,𝑑 and 𝐼𝐻,𝑑 are interaction terms. The term 209 

𝑧𝑖 is a random effect for of 𝑖th eye allowing to account for differences between eyes, 𝑒𝑖,𝑑 210 

is the random term accounting for random variations within eye. The joint probability 211 

distribution of random effect and random terms is 212 

 213 

[
𝑧𝑖

𝑒𝑖
] ~𝑁 ([

0
0

] , [
𝜎𝑧

2 0
0 𝑉𝑒

]),      (2) 214 

 215 

where 𝑉𝑒 is a 24 × 24 variance-covariance matrix of error term. We allow this matrix to 216 

be different for glaucomatous and healthy groups: 217 

 218 
𝑉𝑒 = 𝜎𝐺

2𝐼24×24 in glaucomatous eye 219 
𝑉𝑒 = 𝜎𝐻

2𝐼24×24 in healthy eye.      (3) 220 

 221 

 222 
Figure 523. Framework of our SpaGen Model, with 15 parameters (1+11+3). This constitutes the 223 

second stage of the whole architecture (see Figure 2). 224 

Then, assuming the prior probabilities of the diagnostic groups glaucomatous and 225 

healthy, 𝑝𝐺  and 𝑝𝐻 , and applying Bayes theorem, the posterior probability that a new eye 226 

with the observed profile vector 𝑌𝑛𝑒𝑤  of 24 values of CDR (pCDR) is glaucomatous: 227 

 228 

 𝑝𝑛𝑒𝑤,𝐺 =
𝑝𝐺𝑓𝐺(𝑌𝑛𝑒𝑤  | 𝛽, 𝑉)

𝑝𝐺𝑓𝐺(𝑌𝑛𝑒𝑤  | 𝛽, 𝑉) + 𝑝𝐻𝑓𝐻(𝑌𝑛𝑒𝑤  | 𝛽, 𝑉)
, (41) 

 229 

The posterior probability in equation (14) can be used to propose a glaucoma detec- 230 

tion rule. The simplest detection rule is to compare this posterior probability with a pre- 231 

defined probability threshold, 𝑝𝑡ℎ: 232 

 233 
if 𝑝𝑛𝑒𝑤,𝐺 ≥ 𝑝𝑡ℎ ,conclude that the eye is glaucomatous 234 
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if 𝑝𝑛𝑒𝑤,𝐺 < 𝑝𝑡ℎ , conclude that the eye is healthy.    (5) 235 

 236 

The probabilities have the following property 237 

 238 

log (
𝑝𝑛𝑒𝑤,𝐺

1−𝑝𝑛𝑒𝑤,𝐺

1−𝑝𝐺

𝑝𝐺
 ) =

1

2
[𝑑𝑀(𝑌𝑛𝑒𝑤 , 𝜇𝐻) − 𝑑𝑀(𝑌𝑛𝑒𝑤 , 𝜇𝐺)]    (6) 239 

 240 

where 𝑑𝑀(𝑌𝑖 , 𝜇𝐻) and 𝑑𝑀(𝑌𝑖 , 𝜇𝐺) is the Mahalanobis distance [28] of the observed data of 241 

patient 𝑖 from the Healthy and Glaucomatous groups, respectively.  242 

We then define the Rim Deformation Score (RDS) as 243 

 244 

 
𝑅𝐷𝑆 =

1

2
[𝑑𝑀(𝑌𝑛𝑒𝑤 , 𝜇𝐻) − 𝑑𝑀(𝑌𝑛𝑒𝑤 , 𝜇𝐺)] (72) 

 245 

and this can be compared to a predefined threshold, 𝑅𝐷𝑆𝑡ℎ  to yield an equivalent deci- 246 

sion rule 247 

 248 
if 𝑅𝐷𝑆𝑛𝑒𝑤,𝐺 ≥ 𝑅𝐷𝑆𝑡ℎ , conclude that the eye is glaucomatous 249 

if 𝑅𝐷𝑆𝑛𝑒𝑤,𝐺 < 𝑅𝐷𝑆𝑡ℎ, conclude that the eye is healthy.    (8) 250 

2.4. Experiments 251 

We carried out internal validation of the performance of our EffUnet-SpaGen method 252 

in glaucoma detection on the ORIGA and DRISHTI datasets.  253 

The ORIGA dataset is a subset of the data from the Singapore Malay Eye Study 254 

(SiMES), collected from 2004 to 2007 by the Singapore Eye Research Institute and funded 255 

by the National Medical Research Council. All images were anonymised before release. 256 

The ORIGA dataset comprises 482 healthy and 168 glaucoma images from Malay adults 257 

aged 40-80. The 650 images with manually labelled optic masks are divided into 325 train- 258 

ing images (including 72 glaucoma cases), called ORIGA-A; and 325 testing images (in- 259 

cluding 95 glaucoma cases), called ORIGA-B [29]. The images were manually annotated, 260 

by an ophthalmologist clicking on several locations of the image to indicate the optic disc 261 

and optic rim, then a best-fitting ellipse was calculated automatically. We refer to this 262 

segmentation as the ground truth. Four graders also graded the image, and a fifth grader 263 

was used for consensus. 264 

The DRISHTI dataset [30], called DRISTHI-GS1 by the authors and referred to here 265 

as DRISHTI) is a dataset collected and annotated by Aravind Eye Hospital, Madurai, In- 266 

dia. All 101 images are provided with segmentation ground truth. Altogether, the set con- 267 

tains 70 Asian glaucomatous eyes. Selected patients were 40-80 years old. DRISHTI is split 268 

into 50 training images, called DRISHTI-A; and 51 testing images, called DRISHTI-B.  269 

For the glaucoma classification threshold, we choose a so-called mathematically op- 270 

timal threshold, which is the one that gives the closest point in receiver operating charac- 271 

teristic curve (ROC) to the top left corner, where the ROC is derived from the training 272 

dataset. We used the following criteria for accuracy: area under receiver operating char- 273 

acteristic curve (AUROC), sensitivity, specificity, negative predictive value (NPV) and 274 

positive predictive value (PPV). We used a division of the 650 images of ORIGA into two 275 

sets, A and B, as recommended [29]. 276 

All experiments were run on a desktop computer with intel i7,16 GB RAM and a 277 

Nvidia RTX 2080 GPU, which was used to train the CNN. We trained the segmentation 278 

for 200 epochs, and use the best training result for the evaluation. Training time for seg- 279 

mentation is provided in Table1. We trained the SpaGen model by maximising the likeli- 280 

hood, which has global maximum due normal distribution of errors, the training time was 281 

7 seconds. 282 

3. Results 283 
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3.1. Segmentation model: computational complexity and accuracy 284 

We used ORIGA’s training and testing datasets (325 images, see Experiments). For 285 

each image, black boundaries were removed and the images were resized to 512 x 512. 286 

The performance of the proposed method EffUnet for segmenting the optic disc and optic 287 

cup was compared to the ground truth and evaluated using several standard metrics: IOU 288 

(Overlap), Dice coefficient (F-Measurement), Accuracy (Acc), Number of parameters and 289 

Number of Epochs needed: 290 

 291 

Dice: 𝐷𝐶 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
      (10) 292 

Jaccard: 𝐽𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
        (11) 293 

Accuracy: 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (12) 294 

 295 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 are true positive, true negative, false positive and false neg- 296 

ative, respectively. 297 

Our EffUnet method is computationally less complex than the ResNet algorithm (see 298 

Number of parameters and Number of Epochs, Table 2). The ResNet algorithm requires 299 

1.134 and 1.93 times more parameters to be tuned (see Ratio, Table 2). EffUnet is also more 300 

accurate for detecting boundaries of cup and disc (see IOU, Dice and Accuracy, in Table 301 

2) than ResNet. ResNet-18. 302 

 303 

Table 1. Computational efficiency and accuracy of segmentation of cup and disc jointly via EffUnet 304 

and ResNet-Unet. The training dataset is ORIGA-A, the test set is ORIGA-B. Ratio of parameters is 305 

the ratio of number of parameters in a method divided by the number of parameters in EffUnet 306 

method. 307 

Methods JC DC Acc 
Number of 

Parameters 

Ratio of Parame-

ters 

Training time 

(min) 

ResNet34-Unet [7] 0.845 0.910 0.9966 24456444 1.93 55 

ResNet18-Unet 0.846 0.911 0.9967 14340860 1.134 49 

EffUnet (our 

method) 
0.854 0.916 0.9968 12641459 1 42 

 308 

The EffUnet algorithm achieves high accuracy in detecting the boundaries of the op- 309 

tic disc when compared to 18 published algorithms (Table 3). It achieves the highest DC 310 

of 0.9991 and the highest JC of 0.9983. Its Accuracy is very high at Acc=0.9985 which is 311 

only 0.0004 smaller than that of the fully convolutional DenseNet, which used the same 312 

ORIGA dataset and same train-test split. The rest of the 15 algorithms used other datasets. 313 

 314 

  315 
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Table 32. Comparison of segmentation methods for optic disc. Note: [31], [32] and [33] did segmentations of both cup and disc. 316 

Author Method 
Optic Disc   Dataset 

DC JC Acc  

Wong et al [34] 
Support vector machine based classifica-

tion mechanism 
- 0.940 0.990 SiMES 

Yu et al. [30] 
Directional matched filtering and level 

sets 
- 0.844 - MESSIDOR 

Mookiah et al. [35] 
Attanassov intuitionistic fuzzy histon (A-

IFSH) based method 
0.920 - 0.934 Private 

Giachetti et al. [36] 
Iteratively refined model based on con-

tour search constrained by vessel density 
- 0.861 - MESSIDOR 

Dashtbozorg et al. [37] Sliding band filter 
- 0.890 - MESSIDOR 

- 0.850 - INSPIRE-AVR 

Basit and Fraz [38] 

Morphological operations, smoothing fil-

ters, 3*and the marker controlled water-

shed transform 

- 0.710 - Shifa 

- 0.456 - 3*CHASE-DB1 

- 0.547 - 3*DIARETDB1 

- 0.619 - DRIVE 

Wang et al. [39] Level set method 

- 0.882 - DRIVE 

- 0.882 - DIARETDB1 

- 0.891 - DIARETDB0 

Hamednejad et al. [40] DBSCAN clustering algorithm - - 0.782 DRIVE 

Roychowdhury et al. 

[41] 

Region-based features and supervised 

classification 

- 0.807 0.991 DRIVE 

- 0.802 0.996 DIARETDB1 

- 0.776 0.996 DIARETDB0 

- 0.808 0.991 CHASE-DB1 

- 0.837 0.996 MESSIDOR 

- 0.729 0.985 STARE 

Girard et al. [42] Local K-means clustering - 0.900 - MESSIDOR 

Akyol et al. [43] 
Keypoint detection, texture analysis, and 

visual dictionary 

- - 0.944 DIARETDB1 

- - 0.950 DRIVE 

- - 0.900 ROC 

Abdullah et al. [44] 
Circular Hough transform and grow-cut 

algorithm 

- 0.786 - DRIVE 

- 0.851 - DIARETDB1 

- 0.832 - CHASE-DB1 

- 0.879 - MESSIDOR 

- 0.861 - Private 

Tan et al. [45] 7-Layer CNN - - - DRIVE 

Zahoor et al. [46] Polar transform 

- 0.874 - DIARETDB1 

- 0.844 - MESSIDOR 

- 0.756 - DRIVE 

Sigut et al. [47] Contrast based circular approximation - 0.890 - MESSIDOR 

Noor et al. [31] Colour multi-thresholding segmentation 0.590 - 0.709 DRIVE 

Khalid et al. [32] 
Fuzzy c-Means (FCM) and morphologi-

cal operations 
- - 0.937 DRIVE 

Yin et al. [48] Statistical model - 0.920 - ORIGA 

Fu et al. [14] 
Multi-label deep learning and Polar 

transformation (DL) 
- 0.929 - ORIGA 

Al-Bander et al. [33] Fully convolutional DenseNet 0.965 0.933 0.999 ORIGA 

Proposed method EffUnet 0.999 0.998 0.999 ORIGA 
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The EffUnet algorithm achieved high accuracy in detecting the boundaries of the op- 317 

tic cup when compared to 5 published algorithms (Table 4). It achieved DC 0.8706, JC 318 

0.7815 and Acc 0.9983. The values of DC and JC are higher than those of DenseNet and 319 

value of Acc was similar to that derived from DenseNet, which also used the ORIGA da- 320 

taset with the same split to train and test subsets. 321 

Table 34. Comparison of segmentation methods for optic cup. 322 

Author Method 
Optic Cup   

Dataset 
DC JC Acc 

Hatanaka et al. [49] 

Detection of blood vessel bends 

and features determined from the 

density gradient 

- - - Private 

Almazroa et al. [50] 
Thresholding using type-II Fuzzy 

method 

- - 0.761 BinRushed 

- - 0.724 Magrabi 

- - 0.815 MESSIDOR 

Noor et al. [31] 
Colour multi-thresholding seg-

mentation 
0.510 - 0.673 DRIVE 

Khalid et al. [32] 
Fuzzy c-Means (FCM) and mor-

phological operations 
- - 0.903 DRIVE 

Yin et al. [51] 
Sector based and intensity with 

shape constraints 
0.830 - - ORIGA 

Yin et al. [48] Statistical model 0.810 - - ORIGA 

Xu et al. [52] 
Low-rank superpixel representa-

tion 
- 0.744 - ORIGA 

Tan et al. [53] 
Multi-scale superpixel classifica-

tion 
- 0.752 - ORIGA 

Fu et al. [14] 
Multi-label deep learning and Po-

lar transformation 
- 0.770 - ORIGA 

Al-Bander et al. [33] Fully convolutional DenseNet 0.866 0.769 0.999 ORIGA 

Proposed method EffUnet 0.870 0.782 0.998 ORIGA 

 323 

The EffUnet algorithm, when trained on ORIGA and fine-tuned on DRISHTI-A, 324 

achieves high accuracy in detecting the optic cup and optic disc in DRISHTI-B compared 325 

4 published algorithms (Table 5). The model achieves a cup DC 0.9229, cup JC 0.8612, disc 326 

DC 0.9991 and disc JC 0.9983, which is the state-of-the-art performance on the DRISHTI- 327 

B set. 328 

 329 

Table 45. Comparison of segmentation methods for optic cup and disc. The model was finetuned on 330 

DRISHTI-A (n=50 images) and evaluated on DRISHTI-B set (n=51 images). 331 

Author 
Optic Disc 

 
Optic Cup 

DC JC DC JC 

Sevastopolsky [54] - -  0.850 0.750 

Zilly et al. [55] 0.973 0.914  0.871 0.850 

Al-Bander et al. [33] 0.949 0.904  0.828 0.711 

Shuang et al. [7] 0.974 0.949  0.888 0.804 

Proposed method 0.999 0.998  0.923 0.861 

 332 

  333 



J. Imaging 2021, 7, x FOR PEER REVIEW 11 of 18 
 

 

3.2. Segmentation model: reliability of vertical CDR 334 

The segmentation model has very good reliability for determining the vertical CDR 335 

(vCDR, Figure 56). After EffUnet segmented the cup and disc, the vertical heights of the 336 

cup and disc were calculated (in pixels) and the vertical cup-to-disc ratio was calculated 337 

(see vCDR_EffUnet in Figure 56). This was then compared to the values from the manual 338 

annotation of the images where an ophthalmologist clicks several pixels of cup and disc 339 

(see vCDR_Manual in Figure 56, which is the same as vCDR in Figure 1). For this reliabil- 340 

ity analysis, we used Bland-Altman analysis (Figure 5A6A). 341 

 342 

Figure 6. Reliability analysis of vertical cup-to-disc ratio (CDR) and rim deformation score (RDS) 343 

via Bland-Altman plot. Data used: segmentation trained on ORIGA-A, test set is ORIGA-B. 344 

3.3. EffUnet-SpaGen: reliability of RDS 345 

The segmentation model has very high reliability in terms of the Rim Deformation 346 

Score (RDS, equation (72)) (Figure 5B6B). The RDS values calculated from EffUnet (see 347 

RDS_EffUnet, Figure 5B6B) are in good agreement with those calculated using the manu- 348 

ally segmented cup and disc (see RDS_Manual in Figure 5B6B). 349 

3.4. EffUnet-SpaGen: internal validation for glaucoma detection in ORIGA and DRISHTI 350 

datasets 351 

The accuracy of EffUnet-SpaGen is high in internal validation. We trained both stages 352 

of EffUnet-SpaGen on the ORIGA-A data, and achieved 0.997 AUROC (Table 6). The 353 

CDAR alone gives 0.844 and 0.856 accuracy, for ORIGA and DRISHTI, respectively. 354 

CDAR improves the accuracy from 0.939 to 0.994 for ORIGA, and 0.879 to 0.923 for 355 

DRISHTI, if 1 variance parameter used. CDAR improves the accuracy from 0.965 to 0.997 356 

for ORIGA, and 0.923 to 0.969 for DRISHTI, if 2 variance parameters are used. So, in sum- 357 

mary, it improves the accuracy by 3.7 to 5.5%. 358 

 359 

Table 56. Ablation study of accuracy of EffUnet-SpaGen in internal validation on ORIGA and on 360 

DRISHTI. For ORIGA: train set for segmentation and glaucoma detection is ORIGA-A (n=325) 361 

(253:72 of healthy: glaucomatous), test set is ORIGA-B (n=325) (229:96 of healthy:glaucomatous). For 362 

DRISHTI: train set for segmentation is whole ORIGA and DRISHTI-A, train set for glaucoma detec- 363 

tion is ORIGA and test is DRISTHI-B. CDAR is the Cup/Disc Area Ratio. 364 

Segmentation 

Model 

Generative model 

(n of parameters) 

Results for ORIGA (top),  

DRISHTI (bottom) 

AUROC Sen Spe PPV NPV 

EffUnet 
Cup/Disc Area RatioC-

DAR (2) 

0.844 0.847 0.726 0.882 0.663 

0.856 0.737 0.923 0.966 0.545 
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EffUnet 

CDR profile of 24 

values & 1 variance pa-

rameter (13) 

0.939 0.842 0.921 0.816 0.934 

0.879 0.789 0.923 0.968 0.600 

EffUnet 

CDR profile of 24 values 

& 2 variance parameters 

(14) 

0.965 0.863 0.961 0.901 0.944 

0.933 0.895 0.923 0.971 0.750 

EffUnet 

CDR profile of 24 values 

& 1 variance parameters 

& Cup/Disc Area RatioC-

DAR (14) 

0.994 0.979 0.961 0.912 0.991 

0.923 0.842 0.923 0.970 0.667 

EffUnet 

CDR profile of 24 values 

& 2 variance parameters 

& Cup/Disc Area Rati-

oCDAR (15) 

0.997 0.989 0.974 0.940 0.996 

0.969 0.947 0.923 0.973 0.857 

 365 

3.5. Comparison results of our method for ORIGA dataset 366 

Our approach EffUnet-SpaGen on the ORIGA dataset has the best performance pub- 367 

lished to date (AUROC=0.997) when compared to state-of-art architectures (Table 3). Ga- 368 

bor [56] and Wavelet [57] methods use manual features with Support Vector Machine 369 

(SVM) classifiers to get the diagnostic results. GRI [58] is a probabilistic two-stage classi- 370 

fication method to extract the Glaucoma Risk Index. The Superpixel [59] method segments 371 

the optic disc and optic cup using superpixel classification for glaucoma screening. Chen 372 

et al. [60] and Zhao et al. [61] proposed two convolutional neural network (CNN) meth- 373 

ods, both of which achieved good accuracy. MacCormick et al. [5] used dense fully con- 374 

volutional deep learning (DL) models for segmentation and a spatial model for Disc De- 375 

formation Index (DDI) and classification had high accuracy (0.996 AUROC) but this pro- 376 

cess was highly computationally intensive (Table 76). 377 

 378 

Table 76. Detection of glaucoma in ORIGA. The training set is ORIGA-A and the test set is ORIGA- 379 

B. 380 

Author Method of Glaucoma Detection AUROC 

Dua et al. [57] Wavelet 0.660 

Acharya et al. [56] Gabor 0.660 

Cheng et al. [59] Superpixel 0.830 

Bock et al. [58] GRI 0.810 

Chen et al. [60] CNN 0.830 

Zhao et al. [61] CNN 0.869 

Liao et al. [62] EAMNet 0.880 

MacCormick et al. [5] DL + DDI 0.996 

Proposed method EffUnet-SpaGen 0.997 

 381 

The visual results of our segmentation show good results on challenging images (Fig- 382 

ure 7). 383 
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 384 

Figure 7. Visual results of several images, of normal eyes (A-C) and glaucomatous eyes 385 

(D-F). The challenging images are E, C and F. 386 

4. Discussion 387 

We present a new interpretable approach to glaucoma diagnosis, which combines a 388 

computationally-lean cup and disc segmentation algorithm (EffUnet) with an improved 389 

generative spatial algorithm (SpaGen). This hybrid approach is an important improve- 390 

ment over existing machine learning algorithms, allowing for an interpretable explanation 391 

of the findings by providing visualization measurements of the cup and disc, on which 392 

the diagnosis is based. As well as allowing us to present these areas and the key points of 393 

interest, such as rim thinning, this approach provides us with a point at which errors can 394 

be detected and mitigated, which direct deep learning approaches cannot currently do. 395 

Our approach allows lean computation, excellent results with less data, and the incorpo- 396 

ration of additional information. 397 
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The EffUnet-SpaGen algorithm for the automated grading of optic nerve head images 398 

from fundus photographs achieves excellent performance in identifying eyes with glau- 399 

coma and distinguishing them from eyes without glaucoma. We have also demonstrated 400 

the generalisability of our work to two distinct populations by updating our method for 401 

and evaluating it on the DRISHTI dataset. As with all projects in medical imaging, it 402 

would be beneficial to demonstrate that these improved results persist in additional da- 403 

tasets and particularly on additional populations. It has been demonstrated already that 404 

deep learning models for glaucoma, as well as other diseases, experience a drop in per- 405 

formance when evaluated on new populations, even though the imaging may appear to 406 

be similar [63]. While we have tested on multiple populations in this work, it is important 407 

to continue to evaluate on the widest possible demographic., highlighting This highlights 408 

the need for the development of more publicly available datasets with glaucoma ground 409 

truth. To address this issue, we are currently developing segmentation masks for the LAG 410 

[64] dataset with Aravind Eye Hospital, Pondicherry, India, in an attempt to alleviate this 411 

problem. 412 

In the task of accurately diagnosing glaucoma, we achieved an AUROC of 0.997 on 413 

the ORIGA dataset and 0.969 on DRISHTI, performing similarly or better than competing 414 

approaches, including [5] (0.996) and [62] (0.88). This represents an almost perfect result 415 

for internal validation and is the best performance reported to date for AI algorithms tar- 416 

geted at the diagnosis of glaucoma, compared with results that are publicly available and 417 

tested on curated datasets. Furthermore, our AUROC improves on that of a recent deep 418 

learning algorithm, which achieved 0.986 [3]. We have also demonstrated that our cup 419 

and disc segmentation technique achieves excellent performance compared with previous 420 

work. 421 

Both EffUnet and SpaGen are computationally lean, with EffUnet requiring almost 422 

half the number of parameters of ResNet34. This allows it to estimate the glaucoma score 423 

in less than a second, making our computational speed comparable with Deep Learning 424 

approaches, while achieving similar results. Furthermore, the interpretation of the results 425 

is intuitive: the deformation of the rim is calculated along the whole cup and disc as a 426 

deviation from the normal ellipsoid-like shape, meaning that the exact deformation can 427 

be easily visualised by a clinician. Our approach also allows us to intuitively factor in 428 

additional information such as the cup to disc size and area ratio which, as we have 429 

demonstrated, allows for more accurate results. 430 

5. Conclusions 431 

We have presented a supervised hybrid machine and statistical learning classifica- 432 

tion framework for glaucoma detection from fundus images that is computationally flex- 433 

ible for wide clinical use. We achieved this by introducing a two-step framework consist- 434 

ing of computationally lean automated segmentation (EffUnet) and statistical learning 435 

spatial generative algorithm (SpaGen).  436 

The segmentation produced by our proposed AI acts as a device-independent repre- 437 

sentation of the shape of the cup and disc, up to changes in field of view and aspect ratio, 438 

which our SpaGen algorithm can accommodate. This means that, while we may need to 439 

update the segmentation training with new data, we do not need to retrain the glaucoma 440 

classification rule.  441 

On the standard benchmark dataset, EffUnet-SpaGen outperformed state-of-art 442 

deep-learning methods (0.997 AUROC) while requiring smaller datasets (n=325) for train- 443 

ing the segmentation and classification approaches.  444 

EffUnet is computationally less demanding (using 1.9x fewer parameters than other 445 

machine learning approaches) and SpaGen is a generative model that efficiently models 446 

the noise in data, requiring only 15 parameters. The 15-parameter model is a probabilistic 447 

generative model, that efficiently models the ellipsoid shape of the optic nerve head. It 448 

shows that there is large data redundancy in the fundus image, with most of the necessary 449 

information appearing to lie in the boundaries of the optic nerve head. Combined, this 450 
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allows EffUnet-SpaGen to be trained efficiently on a n=325 dataset, which is consistent 451 

with a 300-fold decrease in training data compared to [23]. 452 

Our work removes the barriers to wider clinical use without requiring a prohibitive 453 

amount of training data in a real-world setting. Given tested in real clinical settings, this 454 

AI will translate to improvements in the management of eye care and help with the pre- 455 

vention of blindness from glaucoma. 456 
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