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Abstract— Spiking neural networks (SNNs) communicate 
through the all-or-none spiking activity of neurons. However, 
fitting the large number of SNN model parameters to observed 
neural activity patterns, for example, in biological experiments, 
remains a challenge. Previous work using genetic algorithm 
(GA) optimisation on a specific efficient SNN model, using the 
Izhikevich neuronal model, was limited to a single parameter 
and objective. This work applied a version of GA, called non-
dominated sorting GA (NSGA-III), to demonstrate the 
feasibility of performing multi-objective optimisation on the 
same SNN, focusing on searching network connectivity 
parameters to achieve target firing rates of excitatory and 
inhibitory neuronal types, including across different network 
connectivity sparsity. We showed that NSGA-III could readily 
optimise for various firing rates. Notably, when the excitatory 
neural firing rates were higher than or equal to that of 
inhibitory neurons, the errors were small. Moreover, when 
connectivity sparsity was considered as a parameter to be 
optimised, the optimal solutions required sparse network 
connectivity. We also found that for excitatory neural firing 
rates lower than that of inhibitory neurons, the errors were 
generally larger. Overall, we have successfully demonstrated the 
feasibility of implementing multi-objective GA optimisation on 
network parameters of recurrent and sparse SNN.   

Keywords— Multi-objective parameter optimisation, genetic 
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I. INTRODUCTION 
Spiking neural networks (SNNs) are the third generation 

of artificial neural networks that attempt to mimic certain 
functions of real biological brains [1]. SNNs have the ability 
to encode information based on the spike timing of neurons 
while using less computational resources than previous 
generations of neural network models [2]. Spike timing 
allows the ability for SNNs to encode information in both 
“space” (i.e., across neurons) and time [3]. SNNs are used not 
only in computational neuroscience models to understand 
brain functions, but also used in various applications, 
including deep learning and knowledge representation, by 
exploiting its advantage in handling complex temporal or 
spatiotemporal information [4].  

Moreover, with sparsity in network connectivity, as in the 
biological brain, more complex information can be encoded 
[5]. Recently, SNNs have been incorporated into large-scale 
neuromorphic computing systems [6] [7] with the ability to 
process data and large amounts of information even faster and 
at lower power. In addition to information coding in spike 
times, SNNs can also encode information in its firing 
frequencies (or firing rates), and certain cognitive functions 
depend on the pooling of the firing rates of the neuronal 
population [1].  

There are various ways to explicitly model spiking 
neurons, depending on the mechanisms to generate the 
spiking activity. For example, the simplest type is the perfect 
integrate-and-fire neuronal model [8]. In consideration of 
biological realism and computational efficiency, the 
Izhikevich model is known to generate a wide range of 
realistic spiking patterns with only a small set of model 
parameters [9][10], while not being computationally 
expensive to simulate.  

Despite their advantages, the modelling of SNNs poses 
several challenges. Given the larger number of parameters as 
compared to classic neural networks, a major challenge is the 
time-consuming process of model parameter searching [11]. 
Commonly, optimisation methods are required, which are 
processes in searching for some optimal solution(s) with 
respect to the model parameter(s) and some specified goal(s) 
(via some objective mathematical function(s)) [12]. There are 
a range of techniques that can be applied depending on the 
problem space, including finding optimal neural network 
structures or functions [13]. Popular optimisation techniques 
include maximum likelihood estimation, gradient descent and 
genetic algorithm (GA) [14].  

In particular, GA, a class of evolutionary algorithms, 
which is inspired by biological evolution theory, is a 
heuristic, stochastic, randomised search optimisation 
technique and it is relatively simple to describe and 
implement [15] [16] [17]. GA requires no a priori knowledge 
about what it is trying to optimise as domain specific 
knowledge is contained in the fitness function and the genetic 
operators defined for the problem. In previous applications of 
GA to SNNs, [11] proposed a discrete objective function to 
optimise the size and resilience of SNNs, while [18] used GA 
to train spiking neural networks to compete for limited 
resources in simulated environment.  

Our previous GA work had shown the feasibility of 
optimising a single objective function (population-averaged 
firing rate of specific neuronal type) of an Izhikevich-based 
recurrently and fully connected SNN model. The model was 
based on a canonical microcircuit of the mammalian brain [9] 
[19]. Specifically, as computational neuroscientists or 
artificial intelligence practitioners often require a certain 
activity level of the SNN’s neuronal population to be set, e.g. 
to fit to values observed in wet-lab experiments, our previous 
work optimised the (thalamic) input parameter of the neurons 
with the objective of minimising the error between the 
population- and time-averaged firing-rate output and target. 
However, that work did not explore the possibility of multi-
objective optimisation across a set of model parameters 
including connection/synaptic strengths. Further, the SNN 
model investigated had biologically unrealistic all-to-all 
connectivity. Thus, it is unclear whether GA can be used for 
multi-objective optimisation in a sparsely connected version 
of the same model.  
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In this work, the excitatory and inhibitory neurons in the 
cortical SNN model [9] have their population- and time-
averaged neuronal firing rates considered separately as part 
of a multi-objective function to minimise the distance from 
their target firing rates. Then, using a version of GA, named 
nondominated sorting GA (NSGA-III) [20], to optimise the 
model’s connection strengths on excitatory and inhibitory 
neurons, and the network’s connectivity sparsity level.  Using 
the network’s connectivity sparsity as part of the multi-
objective function was also explored.  

 

II. SPIKING NEURAL NETWORK MODELLING 

A. Izhikevich neuronal model 
The Izhikevich neuronal model is a phenomenological 

model that mimics biologically realistic spiking patterns 
without involving the modelling of a variety of ion channel 
currents [9]. The (trans)membrane potential v of the model 
can be described by the coupled differential equations [9] 
[10]: 

!"
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= 0.04𝑣$ + 5𝑣 + 140 − 𝑤 + 𝐼 (1) 
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= 𝑎(𝑏𝑣 − 𝑤)   (2) 

where w is some recovery variable coupled to v, I is the total 
afferent/input current, and a and b are model parameters that 
partially determine the spiking characteristics. The model 
parameter a describes the rate of decay for the neuronal 
membrane potential w while parameter b represents the 
sensitivity of the recovery variable to the membrane potential 
v.  

 When v passes some prescribed peak (set at 30 mV), this 
results in a neuronal firing or a spike of activity. Upon firing, 
v is reset to some level c (-65 mV), another model parameter, 
while the recovery variable w is simultaneously raised by a 
value of d. Both c and d are two additional model parameters, 
randomised across neurons with values of -65 mV and 2, 
respectively, which brings to a total of 4 model parameters. 
Together, these 4 parameters can alter the spiking behavior of 
a neuron. Unless specified these parameters follow that of [9].  

 

B. Synapses and network 
The SNN model consists of 800 excitatory neurons and 

200 inhibitory neurons, based on the observed ratio of 
excitatory to inhibitory neurons in the mammalian cortex to 
be around 4:1. The SNN model was implemented by 
connecting the neurons with excitatory and inhibitory 
synapses. For simplicity, as in [9][19], this model uses 
instantaneous current-based synapses [8], i.e., whenever a 
presynaptic neuron fires a connected postsynaptic neuron will 
receive an instantaneous pulse-like increase (or decrease) by 
some value in the postsynaptic current through the term I in 
Eqn. (1), if the synapses are excitatory (inhibitory).  

The range of the synaptic weights can be adjusted with the 
parameters ge for excitatory neurons and gi for inhibitory 
neurons. (In previous work [9] [19], ge and gi parameters were 
set constant at values of 0.5 and 1.0, respectively.) The 
connections between all neurons are represented by some 
matrix S. When investigating network sparsity, some 
connections in S are set to 0 to mimic sparsity in the network, 
with fraction of connections, f (= total number of connections 

in any considered model divided by total possible connections 
for an all-to-all connectivity model), randomly selected 
between 0 and 1.  

The 4 model parameters to be optimised are mean thalamic 
input currents, ge, gi, and f. The 2 objective functions are the 
population- and time-averaged (over 1 second of simulated 
time) firing rates of the excitatory neurons and inhibitory 
neurons. Also investigated, was sparsity level as the third 
objective function, with model parameters thalamic input 
currents, ge and gi, to be optimised.  

The original MATLAB code by [9] was rewritten in 
Python 3.7. Python Pandas [21] software library was used for 
data manipulation and analysis, while Plotly [22] was used for 
data visualisation. Fig. 1 shows a sample simulated spike 
raster diagram (neuron number vs time) of the network model 
using the same parameters as that in [9].  

 

 
Fig. 1. Sample simulation of 1000 fully connected spiking neurons over 1000 
ms and their aggregated activities. Top: Vertical (horizontal) axis: neuron 
number (time in ms). 800 excitatory neurons (blue) and 200 inhibitory 
neurons (red). Each blue/red dot denotes a spike of activity for some neuron 
at some time point. Model parameters’ values based on original model [9]. 
Bottom: Instantaneous population-averaged firing rates using a time bin of 
1 ms. Timescale same as in top panel. Black: All 1000 neurons’ averaged 
firing rates; blue: averaged over 800 excitatory neurons; red: averaged over 
inhibitory neurons.  

 

III. MULTIPLE-OBJECTIVE OPTIMISATION AND GENETIC 
ALGORITHM 

In a single-objective optimisation problem, where some 
objective function, G, is to be maximised (minimised) for 
some set of n number of parameters, {p}, the optimal set of 
parameters is the set that results in maximal (minimal) values 
of G. In multi-objective optimisation e.g. with two objective 
functions, G and H, for some set of parameters {p} where one 
needs to optimise both G and H, the complexity of the problem 
is increased [23]. In particular, if the set of parameter values 
optimising one objective function is in conflict with another 
set of parameter values for optimising the other objective 
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function, a trade-off may be required. One such compromising 
approach is the Pareto frontier or set, which is a set of 
solutions where N solutions exist where one objective can be 
made better without making another objective worse [23].  

In GAs [15] [16] [17], the procedures typically begin with 
an initial population which could be randomly generated. 
Each member of a population is referred to as a chromosome 
that represents a set of parameters (genes) to reach a solution. 
A fitness function is applied to every chromosome essentially 
scoring each solution (chromosome). Informed by the fitness 
of each chromosome several genetic operators can be applied 
to the current population to generate the next. Initially the 
selection operator would be applied, selecting the “fittest” 
chromosomes to enter the next generation without change. 
Then a crossover operator is applied selecting pairs of 
chromosomes to “mate” the likelihood of a chromosome being 
selected is proportional to its fitness. Finally, a mutation 
operator is applied to the entire new population, with low 
probability to make changes to the genes.  

A random search for a Pareto set can be performed with 
minor modifications to the GA described above. Notably, 
defining an objective function that accepts a vector of 
continuous or discrete decision variables for ranking. During 
implementation, the fitness is assumed to be a scalar for each 
chromosome. This is used to apply genetic operators to the 
population with respect to the fitness of each solution. 
However, with multi-objective optimisation there is no single 
objective to rank the population. This is resolved with some 
modifications, through introducing a fluctuating population 
and ranking multiple objectives to create a possible Pareto 
frontier.  

The GA used in this work was the pymoo [24] 
implementation of nondominated sorting GA (NSGA-III) 
[25]. A summary of the steps is illustrated in Fig. 2. The GA 
uses genetic operators to generate new chromosomes for each 
generation after the entire population has been assessed for 
fitness of the population. A tournament selection algorithm is 
applied which randomly selects pairs of chromosomes and pits 
one against another. The winning ones in the tournament will 
be identified. Nondominated ones will be selected based on 
larger crowding distance (i.e. average distance between 
neighboring solutions) as a secondary criterion. Then the 
crossover operator is applied to the population using a 
simulated binary crossover algorithm. Finally, a polynomial 
mutation is performed to add variance to the set and avoid 
ending up in a local minimum. See [23] [25] for further details.  

The SNN model and NSGA-III algorithm were computed 
initially using a 1.6 GHz Dual-Core Intel Core i5 with 4 GB 
1600 MHz DDR3, and later with Kelvin-2 HPC (8000 AMD-
based CPU cores and 32 GPU nodes with a high performance 
2 Petabyte of scratch storage interconnected via high-speed 
network). Source codes for simulating the SNN and NSGA-
III are available within Jupiter notebook environments at 
github.com/FitzgeraldJames/SNNMOO. Data was serialised 
to csvs and analysed in Jupyter notebook. 

 
Fig. 2. Flowchart summarising the steps when implementing the 
nondominated sorting genetic algorithm III (NSGA-III) for multi-objective 
optimisation problem. Adapted from [27].  

 

IV. MULTIPLE-OBJECTIVE OPTIMISATION OF CORTICAL SNN 
 As mentioned above, there are two parts to our study. First, 
for any fixed network connectivity fraction f, a search was 
performed for ge and gi parameters that minimize the 
(absolute) difference (i.e. the error) between the population- 
and time-averaged firing rate of the excitatory neurons and 
inhibitory neurons and their respective targeted values. 
Second, we include the parameter f together with ge and gi to 
form a set of parameters to be optimized with respect to the 
population- and time-averaged firing rates of the excitatory 
and inhibitory neurons.  

 For both parts of the study, the Pareto frontiers are mapped 
out. For the first part of the study, Pareto frontiers could be 
identified for each value of f. Fig. 3 showed the sample Pareto 
frontiers in the network’s output distance from targeted values 
(of excitatory and inhibitory neural firing rates) while the 
model parameters, ge and gi, were being optimised. The 
objective targets were 5 Hz and 2 Hz for the excitatory and 
inhibitory neural firing rates, respectively. Each dot in Fig. 3 
represented 25 chromosomes at the end of 50 generations with 
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the NSGA-III algorithm. For this specific target values, the 
Pareto frontier remained similar despite the fraction of 
network connectivity f being varied from a value of 1 (all-to-
all connectivity case) to 0.2 (legend in Fig. 3).  

 

 
Fig. 3. Sample Pareto frontiers in network’s output errors (of excitatory and 
inhibitory neural firing rates). Parameters optimized were the range of the 
synaptic weights to excitatory and inhibitory neurons, ge and gi, respectively. 
Firing rates were obtained by averaging over all the neurons of the same type 
during the 1000 ms simulated duration. Dot: 25 chromosomes at the end of 
50 generations with the NSGA-III algorithm. Legend and colour label: 
Different values of fraction of network connectivity, f.  

  

 Next, we investigated different sets of neural firing rate 
targets for a set of network connectivity fraction values f. In. 
Each f value was optimised for different target excitatory and 
inhibitory neural firing rate targets (5 Hz, 2 Hz), (2 Hz, 2 Hz), 
and (5 Hz, 2 Hz). The f values used were 1 (all-to-all 
connectivity), 0.5 (half the connections), and 0.2 (one fifth the 
connections).  

 Fig. 4 illustrated the results for these combinations – a total 
of 9 combinations. From these results, we observed that for 
the cases where the targeted excitatory neural firing rate was 
larger than the targeted inhibitory neural firing rate, the 
distances between the network outputs and targeted values 
were generally small (< 2.5 Hz). As the network sparsity 
increased (smaller f values), the distances slightly increased. 

  For the cases where the targeted excitatory neural firing 
rate was smaller than the targeted inhibitory neural firing rate, 
the distances between the network outputs and targeted values 
were generally larger (< 20 Hz). The results were not affected 
by network sparsity. When the targeted excitatory neural 
firing rate was the same as the targeted inhibitory neural firing 
rate (at 2 Hz), the distances were intermediate (< 5 Hz). Again, 
the results were not affected by network sparsity.  

Finally, we had the sparsity parameter f, together with ge 
and gi parameters, to be optimised, with respect to minimising 
the two neural firing rate distances. Fig. 5 illustrated the Pareto 
frontiers for three sets of targets, with larger firing rate ranges: 
(2 Hz, 10 Hz), (5 Hz, 5 Hz) and (10 Hz, 2 Hz). Interestingly, 
the three targets led to three non-overlapping manifolds of the 
solutions (Fig. 5, left). Consistent with the results in Fig. 4, we 
found that the distances (errors) were larger when the 
excitatory neural firing rates were smaller than that of the 
inhibitory neurons (Fig. 5, middle, green). When the 
excitatory neural firing rates were higher than that of 

inhibitory neurons, the network connectivity had to be very 
sparse (< 0.16).  

 

 
Fig. 4. Pareto frontiers for different connectivity sparsity, and excitatory and 
inhibitory neural firing rate targets. Vertical (horizontal) axis label: Distance 
– difference between network outputs and targeted firing rates. f: fraction of 
network connectivity; exc: excitatory; inh: inhibitory. Distances in absolute 
values.  

 

 
Fig. 5. Pareto frontiers with network sparsity as a parameter to be optimised. 
Left: 3D plot for the 3 different sets of target neural firing rates. Green: exc 2 
Hz, inh 10 Hz; yellow: exc 5 Hz, inh 5 Hz; purple: exc 10 Hz, inh 2 Hz.  
Middle: Different angle of view of the same 3D plot in left panel. Right: Zoom 
in for the target set with excitatory and inhibitory neural firing rates at 10 and 
2 Hz, respectively.  

 

V. CONCLUSION AND DISCUSSON 
In this work, we have successfully applied a version of the 

GA algorithm, called NSGA-III, in search for optimal model 
parameter of a cortical column-like recurrent SNN consisting 
of coupled populations of excitatory and inhibitory neurons. 
In particular, we were able to search for optimal connectivity 
parameters with respect to two network firing rate outputs in 
parallel. The connectivity parameters used were the range of 
the synaptic weights (ge and gi), and later the level of 
connectivity sparsity (f, fraction of network connections). We 
defined the NSGA-III objective function as the distance, i.e. 
(absolute) difference, between the simulated and targeted 
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population- and time-averaged firing rates of the excitatory 
and inhibitory neurons.  

Our work was an extension of our previous work [19] in 
various ways. First, our work utilised a more recent GA 
algorithm called NSGA-III [20] [25]. Second, unlike our 
previous work, we optimised for multiple model parameters 
linked to network connectivity ((ge, gi) or (ge, gi, f)) instead 
of just a thalamic input current parameter. Third, our work had 
multiple objectives, the two population firing rates, instead of 
a single population firing rate as in [19]. Fourth, we made use 
Pareto frontiers to identify the sets of solutions. Fifth, we 
investigated how connectivity sparsity (in terms of the fraction 
of network connections, f) influence the optimal sets of 
solutions.  

We found that the NSGA-III algorithm performed the best 
when the targeted excitatory neural firing rate was larger than 
the targeted inhibitory neural firing rate. The results were 
slightly improved with higher connectivity. When the targeted 
excitatory neural firing rate was smaller than the targeted 
inhibitory neural firing rate, the algorithm generally had larger 
distances, and the latter were not affected by network 
connectivity sparsity. In neurophysiology, under baseline, 
resting condition in the cortex, regular spiking excitatory 
pyramidal neurons typically fire below 10 Hz, while fast-
spiking inhibitory neurons typically fire within the range of 5-
20 Hz [8] [9] [10]. To achieve biological plausibility in which 
the excitatory neurons fire at a slower rate than that of fast-
spiking inhibitory neurons, our work showed that the range of 
errors could be quite high. This could possibly be due to the 
not too realistic implementation of instantaneous synapses [8]. 
In comparison, when excitatory neurons fire at higher rate 
than that of inhibitory neurons in the model, our work 
suggested that network connectivity had to be sufficiently 
sparse.  

In this work, GA-based parameter optimization had been 
performed for only connectivity parameters. With the 
convenience of the NSGA-III algorithm, it should be 
relatively straightforward to incorporate other model 
parameters e.g. intrinsic neuronal model parameters, 
(thalamic) input current and neuronal noise level. A limitation 
of our work was the relatively large errors for certain 
combinations of target firing rates. Future work may require 
modification of the algorithm, such as additional constraints. 
In fact, we had conducted further investigations (available in 
the abovementioned GitHub repository) using additional 
optimization measures to further reduce the errors in candidate 
solution space. In particular, by constraining the firing rate 
solutions, or minimising the distance of candidate solutions 
from their mean, the algorithms were able to “pull” the Pareto 
frontier more towards the centre of the error space to further 
reduce the errors. Future work could also employ similar 
methods to search for model parameters to fit high-
dimensional firing-rate data which is rich in temporal structure 
(e.g. [26]), and compare performances with other methods, 
including method using backpropagation through time [27], 
and explore how such algorithms can be applied to recurrent 
SNNs in neuromorphic computing system [6].  
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