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Abstract
The discovery of new medications in a cost-effective manner has become the top priority for many pharmaceutical

companies. Despite decades of innovation, many of their processes arguably remain relatively inefficient. One such process

is the prediction of biological activity. This paper describes a new deep learning model, capable of conducting a pre-

liminary screening of chemical compounds in-silico. The model has been constructed using a variation autoencoder to

generate chemical compound fingerprints, which have been used to create a regression model to predict their LogD

property and a classification model to predict binding in selected assays from the ChEMBL dataset. The conducted

experiments demonstrate accurate prediction of the properties of chemical compounds only using structural definitions and

also provide several opportunities to improve upon this model in the future.
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Abbreviation
ASCII American Standard Code for Information

Interchange

ChEMBL Chemogenomic European Molecular Biol-

ogy Laboratory

DAG Directed Acyclic Graph

EBI European Bioinformatics Institute

EC50 Half maximal effective concentration

ECFP Extended-Connectivity Fingerprints

EMBL European Molecular Biology Laboratory

GC Graph Convolutional

HTC High-Throughput Screening

IC50 half maximal inhibitory concentration

IRV Influence Relevance Voting

Kd Dissociation constant

Ki Inhibition constant

kNN k-Nearest Neighbour

KRR Kernel Ridge Regression

LR Logistic Regression

MLP Multilayer Perceptron

MNN Multitask Neural Network

MPNN Message Passing Neural Network

MUV Maximum Unbiased Validation

pH potential of hydrogen

RF Random Forests

ROC-AUC Receiver Operating Characteristic Area

Under Curve

SMILES Simplified Molecular-Input Line-Entry

System
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XGB eXtreme Gradient Boosting

1 Introduction

Deep learning [24] has been successfully applied in a

number of problem domains from natural language pro-

cessing [39], medical imaging analysis [32] to finance [26].

Deep learning architectures are also successfully used for

many predictive tasks in chemistry and biology domains

[55]. One application of deep learning in the chemistry

domain is to predict important properties of chemical

compounds. It allows for the assessment of chemical

compounds before committing to an expensive synthesis

process [7, 8, 20, 43].

Deep learning theory is based on deep neural networks

(DNN) which consist of many layers. Each layer is com-

prised of a number of neurons. Higher levels of the DNN

represent more complex concepts. To improve network

performance, layers are often implemented using different

methodologies. The overall topology of a neural network is

selected based on the problem to be solved and often is

tuned during an experimental phase.

In this paper, the DNN learns to represent compounds by

their chemical descriptors. This opens a wide range of

opportunities to build sophisticated machine learning

applications for predicting different properties of chemical

compounds.

This research study investigates how the pretrained au-

toencoder can be used for building classification and re-

gression models for predicting the LogD property and

target binding of chemical compounds using data obtained

from different sources.

The remainder of the paper is outlined as follows.

Section 2 provides background information which includes

a description of predicting properties of chemical com-

pounds and other machine learning models used for their

prediction. Section 3 introduces the mathematics behind

the developed autoencoder together with visualizations of

the learning mechanisms. Section 4 provides detail on the

data sets used and experiments carried out, while Sect. 5

describes the obtained results, followed by discussion and

conclusions in Sect. 6.

2 Background

2.1 Predicting properties

2.1.1 LogD

Lipophilicity is possibly one of the most important

physicochemical properties of a potential drug. It plays a

role in solubility, absorption, membrane penetration,

plasma protein binding, distribution, CNS penetration and

partitioning into other tissues or organs such as the liver

and has an impact on the routes of clearance. It is important

in ligand recognition, not only to the target protein but also

CYP450 interactions, HERG binding, and PXR mediated

enzyme induction. Most drugs entering a market are

designed for oral administration. The absorption of drugs

can either be via passive diffusion across membranes or via

carrier mediated transport. Carrier mediated transport is

energy dependent and requires a specific transporter pro-

tein. In contrast passive diffusion does not require the

presence of a specific carrier transporter protein and is less

structure specific than carrier-mediated transport; there is a

general dependence on lipophilicity for structurally diverse

compounds. However, the relationship with LogD is non-

linear with an optimum of LogD 1-2.

Measurement of LogP can be undertaken in a variety of

ways, the most common is the shake-flask method, which

consists of dissolving some of the solute in question in a

volume of octanol and water, shaking for a period of time,

then measuring the concentration of the solute in each

solvent. This can be time-consuming particularly if there is

no quick spectroscopic method to measure the concentra-

tion of the molecule in the phases. A faster method of logP

determination makes use of high-performance liquid

chromatography.

However, the majority of known drugs contain ionizable

groups, as shown in Fig. 1, which shows the distribution of

small molecule drugs with DrugBank [53] and are likely to

be charged at physiological pH and LogP only correctly

describes the partition coefficient of neutral (uncharged)

molecules. LogD, the distribution constant is a better

descriptor of the lipophilicity of a molecule. This can be

determined in a similar manner to LogP but instead of

using water, the aqueous phase is adjusted to a specific pH

using a buffer. LogD is thus pH dependent, hence one must

specify the pH at which the logD was measured. Of
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particular interest is the logD at pH = 7.4 (the physiological

pH of blood serum).

Usually, it is not practical to determine the LogD of

every compound made experimentally (and it may be of

interest to calculate logD prior to synthesis) and so calcu-

lated results are used.

2.1.2 Binding

The majority of drug-like small molecules are specifically

designed to bind to protein targets involved in disease

related pathways. The activity of molecules in a biological

assay may be captured by a variety of different measures

IC50, EC50, Ki, % inhib, etc., but most are a measure of a

binding event in some manner. The biological results varies

considerably in quality from single point high-throughput

screening (HTS) data [15] to full dose response curves.

Much of these data are captured in ChEMBL, a database of

bioactive drug-like small molecules and abstracted

bioactivities.

2.2 Models for comparison

The developed DNN model provides an accurate prediction

of LogD and binding properties. To gauge its performance,

a total of ten machine learning (ML) techniques were used.

Taking into consideration a large variety of different

experimental setups, model implementations and evalua-

tion metrics, authors tried to summarize the results from a

number of sources and provide a ‘single’ performance

metric to compare each of the techniques.1

• Logistic regression (LR) [41] is a very straightforward

and popular classification model, which has a long and

successful history of been used in many ML applica-

tions and statistical modelling. It uses a logistic function

for weighting a linear combination of input parameters.

LR models have been used in a large number of

publications involving chemical data types.

• Kernel ridge regression (KRR) [57] uses a modified

approach to find a regression function by adding a bias,

which causes a drop in variance. In other words a better

prediction can be achieved by considering a slightly

less fit model during the training process.

• Another very popular and well recognized model is

random forests (RF) [56]. It can be applied for both

classification and regression problems and uses an

ensemble of decision trees, which are trained on

different subsets of the original data.

• Extreme gradient boosting (XGB) [14] tree is similar to

RF and is an ensemble method. During each training

step it constructs a new tree model, which in combi-

nation with previous models, minimizes the overall

prediction error. It is a very popular approach in the ML

community, and has been successfully applied to many

problems, consistently providing accurate results.

• Multitask neural network (MNN) [49] is a special

modified neural network architecture for solving simul-

taneously multiple problems. There are a number of

different designs of these neural networks. However,

they are all constructed based on the principle that some

fully-connected layers are shared between different

tasks. In this way training processes for solving one task

can influence other tasks and vice versa.

• Graph convolutional (GC) [18] models are designed to

utilize molecules which can be transformed into

undirected graphs where atoms are represented as

nodes and bonds as edges respectively. A convolution

is applied to expand a feature space, by creating

multiple filters representing graph substructures. The

aggregation of these substructures is performed via

multiple convolution layers.

• Message passing neural network (MPNN) [23] model is

based on mathematical framework, which generalizes a

number of graph-based neural network designs. It

performs computation in two phases: message passing

phase (constantly updates a hidden state) and read-out

phase (uses the final hidden state, used for making a

prediction).

• Directed acyclic graph (DAG) [37] is another popular

approach creating classification and regression models.

It is based on a chemical compounds graph structure.

1 This assessment takes into the account, all aspects of carried out

experiments and selects results from those, which correlate with tests

performed in the current study.

Fig. 1 Distribution of small molecule drugs with DrugBank
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The previously reviewed graph-based models are using

undirected graphs (where molecular bonds between

atoms naturally do not have directions). However, the

latest DAG design synthetically introduces an addi-

tional directional feature for the graph-based molecular

representation. It identifies a central atom and creates a

directional-structure of chemical compound from this

central point. Generating the additional features may

provide an improvement in prediction accuracy in

comparison to other graph-based models.

• WEAVE [31] supports graph-based model that utilizes

both properties of chemical compounds: nodes (for

atoms) and edges (for bonds). The constructed features

matrix is processed by convolution-like filters. Similar

to image convolution neural network, WEAVE pro-

vides more informative representations of chemical

compound structures.

• Influence relevance voting (IRV) [51] is not the most

common approach, but it has certain important advan-

tages against other ML models. Its prediction can be

easily interpreted in a similar fashion to k-nearest

neighbours (kNN). IRV tries to identify k-nearest

neighbours using a neural network to compute a more

complex similarity function.

The majority of these models rely on two key factors:

availability of large volumes of training data and knowl-

edge about the physical structure of chemical compounds

(which can be used for converting them to graphs or fin-

gerprints). Despite large collections of stock chemical

compounds, an offering by many research and commercial

entities, the number of compounds in individual assays

investigating a specific problem, is relatively small. It may

significantly impact the performance of many ML models.

Besides, if a model relies on the physical structure of

chemical compounds the training process can become very

computationally expensive.

This study investigates transfer learning using the vari-

ational autoencoder. It reduces reliance on a large volume

of training data from the specific assays.2 This model also

does not require any external knowledge about the physical

structure of chemical compounds. All knowledge required

for making accurate predictions derive from SMILES

representation of chemical compounds.

3 Methodology

The proposed methodology uses a pretrained autoencoder

to build classification and regression models for predicting

properties of chemical compounds. A high-level overview

of the proposed approach is presented in Fig. 2.

The majority of the proposed workflow stays the same

for predicting LogD and binding properties. It starts with

selecting a collection of chemical compounds from the

ChEMBLv23 database [11]. These compounds are used for

training variational autoencoder. Then, a specially

designed process isolates encoder layers of the variational

autoencoder. These layers are combined with an additional

sub-network for performing classification or regression

tasks (depending on the problem being solved). The con-

structed regression or classification neural networks are

trained using screening data derived from HTS. It is

important to mention that the encoder layers remain frozen

throughout this training. The obtained model is used for

evaluation, and if the assessment is successful, the model

can be deployed in a production environment.

The rest of the methodology section is split into three

parts. Section 3.1 describes a variational autoencoder.

Section 3.2 focuses on classification and regression models

for predicting desirable properties of chemical compounds.

2 The variational auto-encoder can be trained to generate chemical

compounds fingerprints using a large database of compounds such as

ChEMBL. Then, this model can use a small portion of training data

(from assays), to predict specific chemical compounds properties of

binding characteristics.

Fig. 2 A summary of the proposed approach where ChEMBL data are

used to train the autoencoder and screening data are used to build and

evaluate a model for predicting desirable properties of chemical

compounds
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Section 3.3 explains a learning process using a simple and

intuitive example.

3.1 Variational autoencoder

An autoencoder is a neural network which can be used to

address representational learning problems [30]. It learns to

reconstruct the original input using an informational bot-

tleneck. Such neural networks have been successfully

applied in various domains such as noise filtering in audio-

video content, translation, and compression. The proposed

approach focuses on the autoencoder for reconstruction of

chemical compounds. It takes simplified molecular-input

line-entry system (SMILES) [52] and tries to reproduce

these SMILES using latent space. SMILES are ASCII

strings for describing the structure of chemical species.

They can be imported by most molecule editors and con-

verted into two-dimensional or three-dimensional struc-

tures of the molecules. For example Aspirin C9H8O4 is

represented by the following SMILES:

CC(=O)OC1=CC=CC=C1C(=O)O, whose 2D structure is

shown in Fig. 3.

A generic autoencoder is trained to minimize the

reconstruction error L defined by Eq. 1:

minfLðx; bxÞ þ Rg; ð1Þ

where x is the original input, x̂ is the reconstructed output

and R is a regularizer. The regularizer penalizes a model

using large weights to prevent memorization and overfit-

ting problems [17]. Ideally, a well-trained autoencoder

should accurately reconstruct an input SMILES x such as

already mentioned CC(=O)OC1=CC=CC=C1C(=O)O.

In this paper, we are focusing on variational autoen-

coder [22], a special type of autoencoder, which uses a

probability distribution to reconstruct the original input x.

Suppose z represents hidden variables (from the latent

space) used to reconstruct the original input:

pðzjxÞ ¼ pðxjzÞpðzÞ
pðxÞ ¼ pðz; xÞ

pðxÞ : ð2Þ

The computation of the marginal distribution p(x) is very

complex, since the following integral is intractable (in

majority cases):

pðxÞ ¼
Z

pðxjzÞpðzÞdz: ð3Þ

There are two main approaches available to tackle this

problem: Monte Carlo [38] and variational inference (used

to build variational autoencoder) [27]. Let’s approximate

p(z|x) with another distribution q(z|x), where q can be

chosen as a tractable distribution (such as Gaussian) [29].

Then, it is possible to find distribution parameters when q

becomes close enough to p by minimizing the Kullback–

Leibler divergence [47], which measures an amount of lost

information for the chosen approximation:

KLðqðzjxÞjjpðzjxÞÞ ¼ �
X

qðzjxÞ log pðzjxÞ
qðzjxÞ: ð4Þ

By replacing p(z|x) in Eq. 4 it is possible to derive to the

following equation:

KLðqðzjxÞjjpðzjxÞÞ ¼ �
X

qðzjxÞ log pðz; xÞ
qðzjxÞ þ pðxÞ; ð5Þ

and express p(x) as:

pðxÞ ¼ KLðqðzjxÞjjpðzjxÞÞ þ
X

qðzjxÞlog pðz; xÞ
qðzjxÞ ; ð6Þ

where the second term is called a variational low bound:

L ¼
X

qðzjxÞlogpðz; xÞ
qðzjxÞ : ð7Þ

This allows us to rewrite Eq. 6 as:

pðxÞ ¼ KLðqðzjxÞjjpðzjxÞÞ þ L; ð8Þ

where p(x) in Eq. 8 can be considered as a constant, since x

is given (as the original input). The rest of this equation

represents a sum of two quantities, where KL-divergence

needs to be minimized. The minimization of KL-diver-

gence is effectively a maximization of the variational low

bound L defined by Eq. 7. By substituting p(z, x) in Eq. 7

it is possible to derive to the following equation:

L ¼
X

qðzjxÞ log pðxjzÞ þ
X

qðzÞ log pðzÞ
qðzjxÞ; ð9Þ

where p(x|z) is the expectation with respect to q(z) and can

be written as EqðzÞ log pðxjzÞ. The second term

�KLðqðzjxÞjjpðzjxÞÞ represents the KL-divergence. This

allows us to rewrite Eq. 9 as following:

L ¼ EqðzÞ log pðxjzÞ � KLðqðzjxÞjjpðzjxÞÞ: ð10Þ

Let’s build the variational autoencoder based on varia-

tional low bound Eq. 9. The observed distribution q is a

function mapping x to z, which should match an another

distribution p. The observed distribution p is a function

mapping z to x̂, where p can be chosen. Both q and p are

implemented as neural networks and for the further refer-

ences are called encoder and decoder accordingly. A

visualization of the variational autoencoder model is

shown in Fig. 4.

Let’s select p to be the Gaussian distribution. This

requires us to make the distribution q (in the latent layer)

also similar to Gaussian. The cost function can then be

expressed as:

min jx� x̂j2 � KLðqðzjxÞjjNðl; rÞÞ; ð11Þ
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where N is a normal distribution defined by two parameters

l-mean and r-variance. jx� x̂j2 in 11 has been derived

from the definition of the reconstruction error for the

Gaussian distribution pðxjx̂Þ ¼ e�jx�x̂j2 .
As shown in Fig. 5, the encoder learns to represent the

original input x as a set of attributes z in the latent space,

where each attribute is defined as the probability distribu-

tion (with parameters l and r). The decoder learns to

reconstruct x̂ close to the original input x using a set of

attributes z from the latent space.

A set of attributes z in the latent space represents

chemical compounds fingerprints and can be used for

building classification and regression models. A typical

approach for building classification and regression models

is to join together trained encoder and problem-dependent

prediction layers as shown in Fig. 6.

The training process in such architecture learns some

function f(y|z) which predicts y (category value for a

classification problem or real value for a regression prob-

lem) using chemical compounds fingerprints z generated by

encoder. In the classical approach the encoder neural net-

work q(z|x) only generates z and does not take part in the

training process (so it weights remain frozen thorough out

all training cycle).3

3.2 Architecture

The variational autoencoder was implemented using a

Convolution Neural Network [6] in combination with a few

layers for supporting the variational training process. Its

neural network topology is presented in Fig. 7.

It consists of two joined neural networks: encoder and

decoder. The encoder neural network consists of nine

layers. The Input layer takes SMILES transformed to the

one-hot 150x78 matrix representation (each row represents

a SMILES character and column its encoding). A visual-

ization of SMILES transformation is shown in Fig. 8.

This figure demonstrates a process of one-hot encoding

for the Aspirin SMILES, introduced earlier. If the input

SMILES is less than 150 characters, the original sequence

is padded with empty spaces on the right. When the input

sequence is adjusted, the transformation process creates a

zero-matrix with 150 rows (equals to the maximum number

of characters in the input sequence) and 78 column (equals

to SMILES vocabulary size). A transformation loop selects

each character in the padded sequence and use a dictionary

to identify the character code. A position of the selected

Fig. 3 Aspirin 2D structure

Fig. 4 A schema of variational autoencoder model

Fig. 5 The mechanism of the input reconstruction using latent space

Fig. 6 A schema of built classification and regression models based

on the variational autoencoder

3 The conducted experiments showed that relaxing encoder weights
may help to improve prediction accuracy and will be discussed in the

following sections.

Neural Computing and Applications

123



character and its code are used to set the according element

to 1 in the one-hot matrix.4

The input layer is followed by three 1D-convolution

layers (Conv1D-1, Conv1D-2 and Conv1D-3) with 512,

256, 128 filters and 7, 5, 3 kernel sizes accordingly. These

convolution layers perform a very similar role to 2D-con-

volution layers in image processing. They identify specific

patterns of elements (atom and bonds) in chemical com-

pounds and aggregate them in bigger substructures at each

consequent layer. A useful insight of how these layers work

is presented in the discussion Sect. 6.

The Flatten layer vectorizes convolution weights, so

they can be processed by the following Dense-1 layer. This

layer has 1024 neurons, which is exactly the same size as

an output latent vector z. The size of this layer has been

defined via a hyper-parameters tuning procedure. Dense-2

and Dense-3 layers implement variational learning, which

computes l and r accordingly. The final Lambda layer

combines l and r into a single latent vector (consisting of

1024 real values). Effectively this latent vector represents a

chemical compound fingerprint.

The decoder consists of five layers. The input layer

receives the latent vector from the encoder and passes it via

two dense layers: Dense-4 and Dense-5. The Dense-5

scale-up original dimensionality from 1024 to 11700. This

step is needed to transform a 1D into a 2D vector which is

performed by the Reshape layer. This layer passes a 2D

vector straight to the output. The final output of all these

layers is 150x78 matrix, which can be reversed to the

SMILES sequence.

Fig. 7 A neural network topology of variational autoencoder

Fig. 8 SMILES one-hot encoding

Fig. 9 A neural network topology of classification and regression
models

4 The reverse process is applied to reconstruct the original sequence

from the one-hot matrix representation.
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A neural network topology of classification and re-

gression models constructed based on pretrained encoder is

shown in Fig. 9.

The encoder in classification and regression models has

exactly the same topology structure as already described in

variational autoencoder. However, the attached layers are

designed to perform classification or regression tasks. The

Dense-1 layer receives chemical compounds fingerprints

and passes it to the next layer Dense-2. There is no dif-

ference in the current neural network topology whether it’s

applied for a classification or regression problem. The only

difference is in an inactivation for the Dense-2 layer.5 In

case of the regression problem the activation function as

relu and in case of the classification problem the activation

function as sigmoid.

Due to the high level of complexity defined above

methodology and architecture, it is helpful to review a

simple example, which illustrates a prediction process.

3.3 Prediction example

An example of neural network classifier built based on an

encoder is shown in Fig. 10.

This is a high level of visualization intends to demon-

strate some key concepts described above. Let us assume

we have three types of compounds: red, green and blue.

The red and green compounds have a very similar rectan-

gular shape (despite the green compound has slightly

rounded edges). The blue compound has the triangle shape.

A constructed neural network should identify two classes:

rectangle or triangle for the input compound.

According to the variational autoencoder methodology

the trained encoder generates a latent vector representation

for each input compound. This latent vector is a ‘compact’

representation6 of the original input and in chemistry

domain can be also refereed as a chemical compound fin-

gerprint. It is likely that similar inputs will have a similar

latent vector representation. It also means that similar

compounds should be closely located in the latent space.

The latent space is an abstract concept, which can be very

useful to visualize a distributing of encoded compounds.

As it can be seen from Fig. 10 red and green crosses rep-

resent location of ‘rectangular’ instances in close approx-

imation from each other. The blue cross represents a

‘triangular’ sample accordingly. The dashed line represents

areas of distribution of compounds with similar shapes in

the latent space.

MLP neural network can provide an efficient architec-

ture to learn a distribution of compounds in the latent

space. Since the latent vector has much smaller size in

comparison to the original input, MLP does not require a

complex topology. One or two hidden layers can be suffi-

cient to handle prediction of properties of chemical com-

pounds for the majority of cases.

The next section describes a series of experiments for

evaluating the proposed solutions.

4 Data and experiment design

In order to evaluate the proposed methodology three

studies are presented in this paper:

• An evaluation of the variational autoencoder for

reconstruction of SMILES Sect. 4.1.

• An evaluation of regression model for predicting LogD

properties of chemical compounds Sect. 4.2.

• An evaluation of classification model for drug-target

predictions Sect. 4.3.

4.1 Experimental data and setup for SMILES
reconstruction problem

ChEMBL is a chemical database of bio-active molecules

with drug-like properties [16]. It is maintained by the

European Bioinformatics Institute (EBI) of the European

Molecular Biology Laboratory (EMBL), located at the

Wellcome Trust Genome Campus in Hinxton, UK.

ChEMBL data are widely used by pharmaceutical com-

panies and research organizations around the World for

creating screening libraries in drug discovery.

ChEMBLv23 (version 23) has been selected for the current

study. It includes approximately 1.7M chemical

compounds.

The initial study [21] already showed an accurate

SMILES reconstruction using a variational autoencoder

neural network. This work is focusing on an optimization

of a training process. To train a neural network based on all

chemical compounds containing in ChEMBL already

requires a powerful architecture. However, to process

collections such as ZINC [28] or Enamine [50] with hun-

dreds of million chemical compounds requires a much

more sophisticated approach.

5 In this publication we are referring to the binary-classification task.

This topology requires a slight modification for multi-class classifi-

cation problems.
6 A latent vector is a point representing the original input in the latent

space. The latent space is a collection of vectors, generated by a

complex compression function (encoder). It is extremely difficult

(and more likely impossible) to demonstrate this on a practical

example. This figure is an attempt to demonstrate the variational
autoencoder concept in relation to chemical compounds. By intro-

ducing this figure we are trying to help our reader to understand how

variational autoencoder works within the scope of this paper. If the

reader wants to take a deeper dive into variational autoencoder
theory, we recommend the following publication [33].
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This experiment tries to define, what is an optimal size

of a training data set for an accurate reconstruction of

SMILES. This will help to scale down training data set and

to preserve reconstruction accuracy at the same time. A

design of proposed experiments is shown in Fig. 11.

All data taking part in the experiment were normalized

and filtered using MolVS Open Source software [4].

SMILES exceeding 150 characters were removed. This had

no significant impact on overall quality of experimental

results, since only a very small percentage of these com-

pounds were discarded. After filtering the data set com-

prises 1688073 samples.7 This data set had been randomly

split into training and evaluation partitions in proportions

of 75% and 25% of samples respectively. The evaluation

data (422,019 samples) remained unchanged throughout all

experiments. It helped to score all produced models against

the same benchmark. The size of training data varied from

10% to 100% of the original size (1,266,054 samples)

depending on an experiment configuration. Generators

were developed to feed data to a training model during a

fitting processes. These generators streamed data directly

from files using fixed size batches (equals to 1024), pre-

venting any memory overflow.

Ten groups of experiments were carried out. Five tests

were performed in each group, except for the last one.8

Each test randomly selected a certain percentage of sam-

ples from the internal training partition. Then, these sam-

ples were divided into fitting and validation subsets in

proportions of 75% to 25% respectively. The validation

subset was used in each training epoch to assess model

performance. This assessment was necessary to control

learning rate, checkpoints and earlier stopping mecha-

nisms. An approximate number of chemical compounds

selected for each test is shown in Table 1.

The best setup (experiment 5) shown in Table 2 was

selected to build a production autoencoder model (which

was used in the further tests for building classification and

regression models). A explanation for the selected data

split (defined by the experiment 5) is provided in Sect. 5.1

and discussed in Sect. 6.

Fig. 10 Classification example using the latent space

Fig. 11 Design of experiments for autoencoder model

7 A number chemical compounds used in the referenced study [21] is

different, due to an outdated filtering algorithm.

8 The last group handled 100% of data, no random sampling was

needed.
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Autoencoder model efficacy was evaluated by recon-

struction accuracy, Hamming [44] and Levenshtein [42]

editing distances.

4.2 Experimental data and setup for regression
problem

LogD values for training and evaluation of a regression

model were obtained from the ChEMBL database. To

prevent influence outliers on the overall model only values

in the interval between LogD 2 ½�20;þ20� were consid-

ered. Chemical compounds with normalization issues were

also excluded during the pre-processing step. The total

number of chemical compounds taking part in testing was

1669058.

A data set containing these values was obtained from

ChEMBL using the following steps:

1. Data fields smi and val were retrieved from ChEMBL

using the SQL statement, where ’smi’ is a chemical

compound SMILES and ’val’ a LogD value.

2. MolVS Open Source software [4] was used to

normalize each SMILES.

3. Records with lengthðsmiÞ[ 150 were removed;

4. Records with LogD values outside the specified

interval val 2 ½�20;þ20� were removed;

5. All LogD values were normalized between 0 and 1.

10-fold cross-validation was conducted to assess the model

performance. The design is presented in Fig. 12.

The data selected for cross-validation was split into 10

folds where nine folds (90% of data) were taken for

training and one fold (10% of data) for evaluation

accordingly. The data set allocated to training was also

randomly split into fitting/validation partitions in the fol-

lowing proportion 75%/25%. The validation partition was

used at each training epoch for assessing model quality.

R2-score [10] metrics were recorded for each fold, and

later generalized into the final result.

An additional 10-cross validation test was introduced to

evaluate the regression model based on the experimental

LogD data. Data were downloaded from latest ChEMBL

version (on 30 Sept 2018) and pre-processed by industry

experts in drug-discovery.

• The data was curated to remove results obtained with

solvents other than octanol/aqueous buffer.9

• Results derived from HPLC retention times were also

removed.10

• Results obtained from experiments conducted at pH

other than pH7.4 were also removed (both high and low

pH.11

• Duplicates were removed by using of InChiKeys.12

Table 1 ChEMBL data set split
Experiment group Percent of samples (%) # of training samples # of validation samples

1 10 94,953 31,651

2 20 189,907 63,302

3 30 284,861 94,953

4 40 379,815 126,605

5 50 474,768 158,256

6 60 569,722 189,907

7 70 664,676 221,558

8 80 759,630 253,210

9 90 854,583 284,861

10 100 949,537 316,512

Table 2 ChEMBL data set production split

# of samples Description

474,768 Fitting compounds

158,256 Validation compounds

422,019 Evaluation compounds

9 The vast majority of the historical data available was determined

using octanol/aqueous buffer as the liquid phases, there is a body of

data using cyclohexane/aqueous buffer but this was excluded to

reduce the number of variables involved in the experiments.
10 Traditionally partition coefficients are determined experimentally

using the Shake Flask Method [45]. Since this test can be time-

consuming, alternative methods have been explored; HPLC retention

times [34], however, applying a regression equation derived from one

chemical class to a second one may not be reliable. For internal

consistency only data from experiments using the shake flask method

were used.
11 The majority of the experiments were carried out at physiological

pH (7.4) there is small amount of data from different pH but since this

will affect the extent of ionization of the molecules alternative pH

data was removed.
12 Some molecules had been tested many times, to give equal weight

to every molecule a single record for each molecule was required.

InChiKeys were generated for each molecule [3] and used to compare

records, duplicate structures were removed.
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After cleaning and pre-processing this data set consisted of

12413 samples which LogD property defined in the interval

�12:0;þ12:0.

The second data set ‘Lipophilicity’ was obtained from

the ML resource described in [55]. It consists of 4200

chemical compounds which LogD property is defined in

the following interval ½�1:5;þ4:5�. This data set was used

to gauge the performance of developed system against

other ML models.

4.3 Experimental data and setup
for classification problem

ChEMBL13 contains approximately 13.5M bio-activity

measurements, where 1.1M assays are assigned to

approximately 11K targets. The majority of available bio-

activity data are highly unbalanced. More than 50% of

assays have just a single measurement while others contain

tens of thousands. On the other hand, a lot of targets belong

only to a single assay, while others to hundreds. A large

proportion of these data contain duplicate records. Such

heterogeneity of data prevents clear identification, which

measurements can be considered as active or inactive

accordingly. A special protocol proposed in [40] helps to

generate benchmark data sets for binary classification. It

has the following six steps:

1. Data fields smi, typ, unt, rel were retrieved from

ChEMBL using the SQL statement, where ’smi ’ field

represents a SMILES, ’typ ’ a type of measurement,

’val ’ a measurement value, ’com ’ a measurement

comment, ’unt ’ a measurement unit and ’rel ’ a

measurement relation. These fields abbreviations are

used throughout this study for referencing. All identi-

fied assays are belonged to the ’B’-type. These data are

measures of compound binding to a molecular target,

e.g. Ki, IC50, Kd.;

2. MolVS Open Source software [4] was used to

normalize each of the SMILES.

3. Records with lengthðsmiÞ[ 150 were removed;

4. A measurement was considered as active if com 2 A.

A measurement was considered as inactive if com 2 I.

Sets (A and I) of strings in comment-field are defined

below. If a record is identified as inactive all further

steps are discarded. A = (’active’, ’note: corresponding

ic50 reported as active’) I =(’inconclusive’, ’not

active’, ’inactive’, ’not active (inhibition \ 50% @

10 um and thus dose-response curve)’)

5. Removed all records passed the previous step where

val ¼ ; j unt 6¼0 nM0 j rel 62 f0 [ 0;0 � 0;0 \0; � 0;0 ¼0;
0 � 0g.

6. Assigned labels to each record according to the defined

thresholds presented in Sect. 12:

label ¼
1 : val� 5:5

0 : val\5:5

�

ð12Þ

7. All records with duplicates and contradictory measure-

ments obtained during the previous steps were

discarded.

56 assays were identified for this study. Each assay reflects

in vitro measurements obtained during HTS. A break down

between active or inactive chemical compounds together

with associated target are presented in Tables 3 and 4.

Three cross-validation experiments were carried out for

each data set. A design of these experiment is shown in

Fig. 12. This folds number was chosen due to the relatively

small assay sizes. As it can be seen from Table 5, a large

proportion of assays have approximately 800 compounds.

Three folds provide a fair representation of active or in-

active chemical compounds across training, validation and

evaluations partitions.

The Maximum Unbiased Validation (MUV) [48] is

another benchmark data set selected from PubChem

BioAssay by applying a refined nearest neighbour analysis.

The MUV data set contains 17 challenging tasks for around

90 thousand compounds and is specifically designed for

validation of virtual screening techniques. The detail

breakdown between active and inactive compounds is

shown in Table 5.13 version 23

Fig. 12 Design of experiments for predicting LogD using a regression

model and drug-target binding using a classification model
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For comparing prediction models the Receiver Operat-

ing Characteristics - Area Under The Curve (ROC-AUC)

[12] was used. This metric is widely excepted by a ML

community to assess performance of classification models.

5 Results

According to the experimental setup defined in Sect. 4,

results are presented in three sub-sections. The first

Sect. 5.1 shows results for variational autoencoder, the

second Sect. 5.2 for prediction of LogD (regression prob-

lem) and the final Sect. 5.3 for prediction of compounds-

targets binding (binary classification problem). The main

rationale behind these experiments is to validate the ver-

satility of latent vector based fingerprint, in other words, to

prove that it works well regardless of the selected problem

(classifier or regression).

5.1 SMILES reconstruction

Forty-six tests (9x5?1 for more details see 4.1) were

conducted to assess the accuracy of SMILES reconstruc-

tion on different portion of training data. The results

obtained are detailed in Table 6.

Changes in accuracy and editing distance for different

size of training data sets are presented in Figs. 13 and 14.

As it can be seen from Fig. 13, the reconstruction accuracy

increases from 0.247 � 0.027 for 10% of randomly

selected samples to 0.877 � 0.009 for 50% of samples

accordingly. From 60% onwards accuracy stays around 0.8

on average with slight fluctuations. This is an expected

result. However slight variations in accuracy starting from

60% of samples needs to be addressed. It is a difficult task

to identify the exact reason of what is influencing these

Table 3 Classification

ChEMBL data set statistics

(Part I)

ChEMBL ID Active count Inactive count Target description

1794375 4473 78672 Unchecked

1614421 11,391 37,563 Microtubule-associated protein TAU

1614249 813 41,195 Ferritin light chain

1614166 98 34,096 Muscleblind-like protein 1

1614364 1519 10,298 Tyrosyl-DNA phosphodiesterase 1

3214913 872 3474 Unchecked

3215169 542 2651 Unchecked

1909170 52 736 Muscarinic acetylcholine receptor M1

1909171 47 743 Muscarinic acetylcholine receptor M2

1909172 49 739 Muscarinic acetylcholine receptor M3

1909173 50 735 Muscarinic acetylcholine receptor M4

1909174 55 739 Muscarinic acetylcholine receptor M5

1909191 32 757 Progesterone receptor

1909209 55 735 Serotonin 1a (5-HT1a) receptor

1909211 79 705 Serotonin 2a (5-HT2a) receptor

1909085 59 735 Alpha-1a adrenergic receptor

1909086 62 730 Alpha-1b adrenergic receptor

1909087 63 732 Alpha-1d adrenergic receptor

1909088 81 700 Alpha-2a adrenergic receptor

1909089 80 705 Alpha-2b adrenergic receptor

1909090 59 723 Alpha-2c adrenergic receptor

1909094 74 725 Norepinephrine transporter

1909102 50 739 Unchecked

1909104 96 695 Serotonin 2b (5-HT2b) receptor

1909105 85 707 Serotonin 2c (5-HT2c) receptor

1909108 53 741 Serotonin 6 (5-HT6) receptor

1909109 68 718 Serotonin transporter

1909110 59 736 Sigma opioid receptor

1909111 42 748 Unchecked
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changes in accuracy. One of the possible reasons for such

behaviour is early signs of overfitting. Obviously there is

no evidence of this phenomenon spotted during training.

However, it is possible that with increasing of samples

number a model starts to memorize the input. This can be

addressed by a better sampling algorithm. For example,

Butina clustering [13] can be a useful technique to design a

sampling algorithm.

In addition to accuracy, model performance was mea-

sured using Hamming and Levenshtein distances. Both

belong to a family of editing distances and give a different

perspective on the results obtained. They show a similar

trend to accuracy. The Hamming distance decreased from

4.374 � 0.817 to 0.663 � 0.071 for 10% and 50% of

sample cases respectively. The Levenshtein distance

decreased from 4.299 � 0.127 to 0.648 � 0.031 for the

same percentage of samples. Both show slight fluctuation

in editing distance from 60% onwards.

According to the carried out experiment the best result

(accuracy 0.877 � 0.009) was obtained for 50% of

randomly selected samples. This configuration was selec-

ted for building a production variational autoencoder,

which can be later used for training classification and re-

gression models with SMILES input. Training was con-

ducted using 40 epochs, and produced a model with

accuracy 0.872. The editing distances for the production

model were 0.682 and 0.677 for Hamming and Levenshtein

respectively.

5.2 LogD prediction

Two cross validation experiments described in Sect. 4.2

were carried out on ChEMBL and Lipophilicity data sets.

Results of these experiments are presented in Table 7.

As it can be seen from the obtained results the best

performance is achieved for the ChEMBL data set, with an

average coefficient of determination of 0.907 � 0.008. A

scatter plot with an alignment of true and predicted values

is shown in Fig. 15. The training process was carried out

Table 4 Classification

ChEMBL data set statistics

(Part II)

ChEMBL ID Active count Inactive count Target description

1909112 71 724 Unchecked

1909121 59 740 Unchecked

1909130 37 754 Cyclooxygenase-1

1909132 31 760 Cytochrome P450 1A2

1909134 40 752 Cytochrome P450 2C19

1909135 34 751 Cytochrome P450 2C9

1909136 56 726 Cytochrome P450 2D6

1909139 41 751 Dopamine D1 receptor

1909140 45 749 Dopamine D2 receptor

1909141 74 714 Dopamine D3 receptor

1909143 55 743 Dopamine transporter

1909150 36 758 Glucocorticoid receptor

1909156 43 751 Histamine H1 receptor

1909159 50 743 Unchecked

1613896 640 1048 Cytoplasmic zinc-finger protein

1614122 719 954 Zinc finger protein mex-5

1614192 446 1138 Luciferin 4-monooxygenase

2328568 857 160 Sodium channel protein type IX

3215187 415 441 Unchecked

3706045 529 37 Mitogen-activated protein kinase 14

3706373 715 83 5-lipoxygenase activating protein

3705899 681 84 Complement factor D

1614063 33 711 Glyceraldehyde-3-phosphate dehydro.

3705488 630 106 Serine/threonine-protein kinase B-raf

3705869 511 139 Pyruvate dehydro. kinase isoform 2

3705476 527 135 Acetyl-CoA carboxylase 2

3734213 101 482 6-phosphofructo-2-kinase/fructose-2

3214944 389 189 Histone-lysine N-methyltrans. NSD2
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with LogD values normalized in the interval ½�20;þ20�14
and all training cycles took 20 epochs.

The high prediction accuracy is a very much expected

result, since the majority of LogD data points in ChEMBL

are computed using the ACD/Labs software [1]. In this

scenario the regression model is simply learning to predict

an outcome of another computational algorithm (such as

ACD/Labs). It makes a learning task much more straight-

forward. This assumption is vindicated by results obtained

in other studies. For example experiments with ChEMBL

data set described in [1] also show a high accuracy using a

SVM [19] model.

Much more interesting results are obtained for the

Lipophilicity data set. The average R2 score equals to

0.542 � 0.021, which is noticeably less in comparison to

ChEMBL data. The training process was carried out with

the LogD normalized interval ½�1:5;þ4:5� and all training

cycles took 30 epochs. A longer training cycle reflects the

complexity of building a predictive model on real experi-

mental data. A scatter plot with an alignment of true and

predicted values for the Lipophilicity data set is shown in

Fig. 16.

Eight ML models were investigated on this data. A

comparison chart for all these models is presented in

Fig. 17. The highest score 0.697 is obtained for MPNN,

which uses a generalized model [23]. It is very suitable for

processing graph structured data, which makes it efficient

in predicting properties of chemical compounds (since

chemical compounds can be easily represented as an

undirected graph). MPNN is closely followed by GC model

[31], with R2 score equals to 0.662. GC utilities principles

of circular fingerprints described in [35] representing

molecular structures by atom neighbourhoods. Similar to

GC, Weave [31] (0.636) is another graph-based model

which processes chemical compounds as a undirected

graph using a convolution approach. In contrast to the

previous three models, XGB [14] provides a different

approach for making predictions. It is an ensemble

approach which combines predictions of individual deci-

sion trees. XGB coefficient of determination for

Lipophilicity equals to 0.577 and is closely followed by the

model developed with in this study (0.542 � 0.021).

Directed Acyclic Graph (DAG), Kernel Ridge Regression

(KRR) and Random Forests (RF) are the lowest performing

in this evaluation with R2 scores 0.507, 0.496 and 0.483

respectively.

The key challenge of developing ML models for pre-

dicting the properties of chemical compounds is to encode

molecules into fixed-length strings or vectors representa-

tion [54]. Despite SMILES providing unique representa-

tions of molecules, the majority of ML models are also

relaid on additional information such as electronic or

topological, profiles of chemical compounds. To derive

these features, the models, we are gauging against, applied

different factorizations: Extended Connectivity Finger-

prints (ECFP), Coulomb matrix, Grid features, etc. These

approaches are computationally expensive, and there will

always be a trade-off between speed, accuracy and

expense. Because of this, it is not surprising that some

models provide better performance compared to our

approach. As has been already mentioned, our approach is

purely data-driven and inspired by - et al.[25]. It should

provide alternatives to replace crafted featurization meth-

ods with the learning ability of DNN. In the future devel-

opment, we are planning to improve the encoding method

and directly compare it to existing featurization

approaches.

Open-source research in AI always provides a solid

benchmark for assessing in-house models. However, it

would be interesting to compare the developed model

against a commercial application. The following results

show comparison of predictions made by ChemAxon

software [5] against the developed regression model. This

Table 5 Classification MUV data set statistics

ChEMBL ID Active count Inactive count

466 14,814 78,274

548 14,705 78,383

600 14,698 78,390

644 14,593 78,495

652 14,873 78,215

689 14,572 78,516

692 14,614 78,474

712 14,383 78,705

713 14,807 78,281

733 14,654 78,434

737 14,662 78,426

810 14,615 78,473

832 14,637 78,451

846 14,681 78,407

852 14,622 78,466

858 14,745 78,343

859 14,722 78,366

14 The deviation of predicting LogD values base on the interval

½�20;þ20� may be seen to be high. However, predicting LogD is a

particularly challenging problem since we have to predict lipophilic-

ity (LogP) and the ionization (pKa) of a molecule. The distribution

can range considerably but the hope is that by identifying outliers we

can identify those structural classes that provide unique challenges to

the algorithm. In some cases this will be because the structural class is

not well exemplified within the training set, in other cases, it may be

that very minor structural changes have very profound effects and the

more coarse-grained models don’t give sufficient accuracy.
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work was carried out in collaboration with Cambridge

MedChem Consulting [2]. Data were selected and pre-

processed by industry experts in drug discovery. All

undertaking steps for preparing this experiment are

described in Sect. 4.2.

10-folds cross-validations were performed on selected

data set to compare models.15 The obtained results are

shown in Table 8. Results for the developed regression are

shown in the ‘ARM’ column and for the commercial

software in the ‘ChemAxon’ column accordingly.

An average R2 score for our developed regression

model equals to 0.695 � 0.013, which is nearly twice that

obtained by ChemAxon with R2 of 0.338 � 0.034. It is

hard to comment on the underlining ChemAxon algorithm

for making prediction without available source code.

However, from the description presented on the company

website [5] it possible to assume, that it is a deterministic

algorithm which approximates a chemical compound

structure into a specific property value. Two scatter plots

represented in Figs. 18 and 19 show an alignment of true

and predicted values based on our developed regression

model and ChemAxon respectively16

The experiments clearly demonstrate the validity of our

proposed model to predict the LogD property of chemical

compounds. However a large proportion of tasks required

simple classification, for example whether a compound

binds to the specified target. An evaluation of the classi-

fication model constructed based on variational autoen-

coder is presented in the next Sect. 5.3.

5.3 Binding prediction

Two cross validation experiments described in Sect. 4.3

were carried out on 56 ChEMBL data sets. Results of these

experiments are presented in Table 9.

Considering the large volume of obtained results, they

were split into five groups based on ROC-AUC metric (see

Fig. 20). The first group combines 10.7% of assays with

Table 6 SMILES reconstruction

on different portion of training

data

% of training data Accuracy Hamming distance Levenshtein distance

10 0.247 ± 0.027 4.374 ± 0.817 4.299 ± 0.127

20 0.449 ± 0.012 2.560 ± 0.651 2.523 ± 0.083

30 0.747 ± 0.023 1.110 ± 0.464 1.102 ± 0.093

40 0.857 ± 0.007 0.829 ± 0.263 0.816 ± 0.015

50 0.877 ± 0.009 0.663 ± 0.071 0.648 ± 0.031

60 0.756 ± 0.035 0.962 ± 0.167 0.898 ± 0.236

70 0.816 ± 0.028 0.707 ± 0.082 0.766 ± 0.139

80 0.771 ± 0.014 0.913 ± 0.115 0.901 ± 0.137

90 0.726 ± 0.036 1.076 ± 0.275 0.998 ± 0.181

100 0.805 ± 0.000 0.911 ± 0.000 0.918 ± 0.000

Fig. 13 SMILES reconstruction accuracy for different percentage of

training sample
Fig. 14 SMILES reconstruction editing distances for different

percentages of training samples

15 ChemAxon software was used only to generate predictions for the

evaluation fold. Since it is not required any training, 9-folds allocated

for this purposes were discarded at each iteration.

16 Scatter plots based on one of the folds obtained during cross-

validation.
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least accurate prediction (which ROC-AUC is located in

(0.0, 0.6) interval). It is very closely followed by the next

group of 12.5% assays, which showed result in [0.6, 0.7)

interval. A slightly bigger group of 17.9% of assays

demonstrated ROC-AUC in interval [0.7, 0.8). In many

cases such accuracy of in-silico prediction on HTS data can

be already consider as a very good result. However the

largest group, which combines 50% of assays showed

ROC-AUC scores in interval [0.8, 0.9). Such accuracy can

have a significant impact on planning and execution of

HTS experiments, majority of assays filtered by in-silico

approach. The remaining group combines 8.9% assays with

highest scores located in interval [0.9, 1.0).

Despite competent results obtained on vast majority of

tested assays, the authors carried out additional investiga-

tion to rank the developed classifier against other ML

algorithms. Similar to the regression problem, the main

objective here is not a direct comparison of different ML

algorithms, since it requires different experimental setup.

This study projects prediction accuracy observed for the

developed model on results already described by - et al.

[55]. The ROC-AUC characteristics for 17 binding-assays

are presented in Table 10.

An average ROC-AUC of a 10-folds cross-validation

experiment was recorded for each assay. The summary

field represents an average ROC-AUC across all 17

experiments. It was used for ranking the developed clas-

sifier against 6 ML algorithms. A visual representation of

this ranking is shown in Fig. 21.

Similar to the regression problem, GC - a graph based

model, scored 0.775 the best result for binding classifica-

tion.17 It closely followed by BYPASS, representing a

multitask neural network and LOGREG representing

logistic regression model, scoring 0.764 and 0.749

Table 7 Cross-validation results prediction of the LogD property for

ChEMBL and Lipophilicity data sets

Fold ChEMBL Lipophilicity

1 0.911 0.563

2 0.904 0.518

3 0.908 0.574

4 0.917 0.538

5 0.897 0.554

6 0.904 0.569

7 0.916 0.526

8 0.906 0.542

9 0.913 0.512

10 0.889 0.525

Summary 0.907 ± 0.008 0.542 ± 0.021

Fig. 15 Scatter plot of predicted LogD values on ChEMBL data

Fig. 16 Scatter plot of predicted LogD values on Lipophilicity data

Fig. 17 SA comparison chart for ML models of predicting

Lipophilicity

17 It ranked as a second for regression problem, but a gap with the

leader (MPNN) is very close.
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respectively. XBG model showed 0.720 ROC-AUC score

which was closely followed by ARM, with 0.696. Influence

Relevance Voting (IRV) systems and Random Forests (RF)

are the poorest performing, with ROC-AUC scores of

Table 8 Cross-validation for predicting LogD using developed

regression model and ChemAxon software

Fold ARM ChemAxon

1 0.695 0.290

2 0.721 0.332

3 0.694 0.346

4 0.690 0.376

5 0.710 0.290

6 0.675 0.331

7 0.660 0.272

8 0.693 0.347

9 0.701 0.260

10 0.698 0.394

Summary 0.693 ± 0.016 0.323 ± 0.042

Fig. 18 Scatter plot of predicted LogD values on in-vivo data using

our model

Fig. 19 Scatter plot of predicted LogD values on in-vivo data using

ChemAxon model

Table 9 ChEMBL binding-assays with testing results

ChEMBL ID ROC-AUC ChEMBL ID ROC-AUC

1794375 0.634 ± 0.003 1909111 0.832 ± 0.025

1614421 0.700 ± 0.007 1909112 0.846 ± 0.063

1614249 0.539 ± 0.043 1909121 0.844 ± 0.047

1614166 0.500 ± 0.000 1909130 0.851 ± 0.043

1614364 0.680 ± 0.011 1909132 0.741 ± 0.107

3214913 0.671 ± 0.013 1909134 0.674 ± 0.073

3215169 0.672 ± 0.025 1909135 0.766 ± 0.034

1909170 0.884 ± 0.035 1909136 0.729 ± 0.039

1909171 0.813 ± 0.014 1909139 0.816 ± 0.115

1909172 0.904 ± 0.030 1909140 0.785 ± 0.074

1909173 0.853 ± 0.039 1909141 0.838 ± 0.018

1909174 0.919 ± 0.008 1909143 0.754 ± 0.030

1909191 0.976 ± 0.006 1909150 0.982 ± 0.002

1909209 0.813 ± 0.036 1909156 0.917 ± 0.039

1909211 0.871 ± 0.043 1909159 0.713 ± 0.046

1909085 0.854 ± 0.056 1613896 0.517 ± 0.003

1909086 0.842 ± 0.040 1614122 0.597 ± 0.021

1909087 0.854 ± 0.008 1614192 0.848 ± 0.013

1909088 0.821 ± 0.051 2328568 0.751 ± 0.035

1909089 0.805 ± 0.071 3215187 0.515 ± 0.014

1909090 0.856 ± 0.010 3706045 0.800 ± 0.086

1909094 0.815 ± 0.026 3706373 0.712 ± 0.023

1909102 0.819 ± 0.012 3705899 0.839 ± 0.005

1909104 0.861 ± 0.017 1614063 0.776 ± 0.012

1909105 0.851 ± 0.019 3705488 0.656 ± 0.053

1909108 0.823 ± 0.055 3705869 0.801 ± 0.029

1909109 0.834 ± 0.024 3705476 0.544 ± 0.067

1909110 0.806 ± 0.061 3734213 0.635 ± 0.011

Fig. 20 Binding prediction results split into five groups based on the

ROC-AUC metric
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0.693 and 0.693 respectively. Despite variations in accu-

racy all techniques showed a very consistent performance.

Considering the hugely unbalanced data sets the measured

metric can be significantly shifted by producing one extra

true positive prediction.

With such variety of different models capable of pro-

ducing equally accurate results for regression and classifi-

cation problems, why another approach? This question is

addressed in the below.

6 Discussion and conclusion

During the last few years deep neural networks de facto

have become an industry standard for creating sophisti-

cated AI models. A significant amount of effort have been

devoted to improve classical ML algorithms. Often XBG

and RF produce even better results than DNNs. Such a

variety of approaches makes it a very difficult task to

choose the right technique. This has also made a huge

impact on scientific publications. Researchers are forced to

show rigorous testing, with comparison of every proposed

technique against the recognized leaders. It expected that

the developed technique must outperform others, which in

practice leads to compromising with experiments design

and cherry-picking phenomenon.

It can be seen from our comparison of published models,

the majority show very similar performance. However, it is

also important to score each model in term of practical

application. For example a model can deliver impressive

accuracy, but when it needs to be deployed in a production

environment, scalability and efficiency diminish all

advantages gained in perfecting the quality of predictions.

This work has been inspired by a research effort of using

variational autoencoder to generate chemical compounds

fingerprints, using these fingerprints for predicting specific

properties of chemical compounds. Considering the high

complexity of chemical compounds to train quality varia-

tional autoencoder requires a large data set of SMILES. A

typical size of HTS assays consists of several hundred,

maybe thousands of chemical compounds. Such volume of

data samples does not deliver a sufficient variety of

chemical compounds structures, which makes it impracti-

cal to train a variational autoencoder based on assay data.

A decision was made to use ChEMBL data to obtain a

large representation of chemical compounds structures. It

worked very well, with the developed variational autoen-

coder model reconstructing nearly 90% of SMILES using

1024 latent vector. Taking into the account Hamming and

Levenshtein editing distances the final model in average

has one misplaced or incorrect atom or bond. Obviously

such error is unforgivable in chemistry, but the primary

objective of variational autoencoder is to produce latent

space where similar structures are crumbled together. Let’s

demonstrate this on simple example.

Assume that the selected target chemical compound is

NC1=NNC(=C1)C1=CC(F)=CC(F)=C1, which struc-

ture is shown Fig. 22.

The search space for similar chemical compounds was

reduced to 10,000 samples (out of 674,040 initially allo-

cated for evaluation, for more detail see Sect. 4.1) to make

computation more efficient. K-nearest neighbour [36]

identified five closest chemical compounds defined in

Table 11, and illustrated in Fig. 23.

The last column in Table 11 represents Tanimoto sim-

ilarity score [9]. It is widely used in the chemistry domain

to assess similarity between two chemical compounds.

Two compounds can be considered similar if Tanimoto

score is greater than 0.85 (for Daylight fingerprints). As it

can be seen from the obtained results in Table 11 three

compounds retrieved using latent space are also similar

Table 10 MUV binding-assays with testing results

MUV ID ROC-AUC MUV ID ROC-AUC

466 0.841 ± 0.005 733 0.648 ± 0.011

548 0.821 ± 0.005 737 0.602 ± 0.073

600 0.603 ± 0.060 810 0.656 ± 0.006

644 0.685 ± 0.002 832 0.604 ± 0.038

652 0.753 ± 0.113 846 0.815 ± 0.002

689 0.622 ± 0.074 852 0.662 ± 0.065

692 0.631 ± 0.012 858 0.651 ± 0.007

712 0.570 ± 0.098 859 0.797 ± 0.011

713 0.870 ± 0.006 Summary 0.696 ± 0.035

Fig. 21 Ranking the developed classifier against six ML models using

binding prediction

Neural Computing and Applications

123



according to Tanimoto metric, where the other two results

are closely followed.

This example demonstrates that latent vector based

fingerprints can be used to define similarity between two

chemical compounds. It also clearly shows that selected

chemical compounds are closely located in latent space.

The closest approximation of similar compounds in the

latent space provides potential capability for the developed

model to be applied to generating new chemical com-

pounds and forecasting the desired properties. Such ML

models become a hot topic in pharmaceutical domain,

which can be witnessed by increasing the number of high-

quality research publications in this space [25, 46]. In this

paper, the main focus was on the transfer learning, to use

the trained encoder as a base for classification or regression

networks which can predict properties of chemical com-

pounds. However, the decoder can be potentially used for

generating novel chemical compounds. By introducing a

small modification into the latent representation of a target

chemical compound, it is possible to generate a novel

structure. Despite this simple idea the implementation of

such a model is very complex and outside the scope of this

publication.

The trained variational autoencoder forms a solid base

for creating different classification and regression models.

An interesting pattern was observed during a training

process. The majority of trained models converge to a stale

state (where no longer improvement observed) during 2-3

epochs. However when the same topology of neural net-

work was trained without pretrained variational autoen-

coder, the training process continue up to 100 epochs.

Longer training is not a problem for relatively small data

set, where full learning cycle can be complied in the matter

of hours. However in case of such collection volume as

ChEMBL, training may go on for days. Also, the experi-

ments did not reveal any degradation in accuracy with

shortening the training cycle.

The question is why are classification and regression

models built based on variational autoencoder so efficient

in the training process? To answer this question, let us

come back to the methodology described in Sect. 3. Con-

structed classification and regression models consists from

two parts. The first part is an encoder isolated from a

trained variational autoencoder. The second part is MLP,

which performs actual predictions. Effectively, the MLP is

trained to make predictions based on chemical compound

fingerprints. Since the ‘hard work’ has been already done

by variational autoencoder, only a few cycles are required

to learn differentiation rules (to solve classification or

regression problem).

A further observation which was called ‘latent space

drift’ was also noted. A number of publications using a

similar approach do not clearly reveal their mechanisms of

using an encoder. It can be used with frozen and unfrozen

layers. Using an encoder with frozen layers makes a lot of

Fig. 22 2D Structure of chemical compound

NC1=NNC(=C1)C1=CC(F)=CC(F)=C1

Table 11 Definitions of five closest chemical compounds retrieved for

the specified NC1=NNC(=C1)C1=CC(F)=CC(F)=C1 target

# SMILES Tanimoto

1 NC1=NNC(=C1)C1=CC(Cl)=CC(Cl)=C1 0.94

2 NC1=NN(CC2=C3N=CC=CC3=CC=C2)C=C1 0.54

3 NC1=NNC(=C1)C1=C(Cl)C=CC(Br)=C1 0.87

4 NC1=NN(C=C1)C1=C(Cl)C=CC=N1 0.71

5 NC1=NNC(=C1)C1=CC(Br)=CC(F)=C1 0.97

Fig. 23 Structures of five closest chemical compounds retrieved for

the specified NC1=NNC(=C1)C1=CC(F)=CC(F)=C1 target (the

structure number corresponds to the compound number in Table 11
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sense. If it is already trained to encode SMILES, then the

attached layers can only be trained to utilize the obtained

chemical compounds fingerprints. However, a preliminary

study showed that if an encoder is left unfrozen, the

training result is generally better. An initial investigation

found that fingerprint points in latent space become

adjusted according to the target (predicting) property. This

process is explained in Fig. 24.

All this internal analysis of neural network behaviour

becomes possible due the specialized AUROMIND soft-

ware. It provides a set of tools for ‘debugging’ a training

process. The authors plan to describe some of the core

principles behind developed tools in upcoming

publications.
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