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Abstract

Falling in old age contributes to considerable misery for many people. Cur-

rently, there is a lack of practical, low cost and objective methods for identi-

fying those at risk of falls. This thesis aims to address this need.

The majority of the literature related to falls risk and balance impairment

uses force plates to quantify postural sway. The use of such devices in a

clinical setting is rare, mainly due to cost. However, some force-plate-based

commercial products have been created, e.g. the Balance Master. To align the

research in this thesis to both the literature and existing methods of assessing

postural sway, a method is proposed which can generate sway metrics from

the output of a low-cost markerless motion capture device (Kinect V2). Good

agreement was found between the proposed method and the output of the

Balance Master.

A key reason for the lack of research into falls-risk using markerless motion

capture, is the lack of an appropriate dataset. To address this issue, a dataset

of clinical movements, recorded using markerless motion capture, was created.

Named KINECAL, It contains the recordings of 90 participants, labelled by

age and falls-risk. The data provided includes depth images, 3D joint positions,

sway metrics and socioeconomic and health meta data.

Many studies have noted that postural sway increases with age and conflate

age-related changes with falls risk. However, if one examines sub-populations

of older people, such as master athletes, It is clear that this is not necessarily

true. The structure of KINECAL allows for the examination of age-related

factors and falls-risk factors simultaneously. In addition, it includes labels of

falls history, clinical impairment and comprehensive metadata.

KINECAL was used to identify sway metrics most closely associated with

falls risk, as distinct from the ageing process. Using the identified metrics,

a model was developed that can identify those who would be classified as

impaired by a range of clinical tests.

Finally, a model is proposed, which can predict fallers by placing individ-

uals on a scale of physical impairment. An autoencoder was used to model,

healthy adult sit-to-stand movements. Using an anomaly detection approach,

an individuals level of impairment can be plotted relative to this healthy stan-

dard. Using this model, the existence of two older populations (one with a

high falls risk and one with a low falls risk) is demonstrated.
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Chapter 1

Introduction

The effect of ageing on the motor control system means coordination patterns

change with age. Intern, this can lead to a propensity to lose balance, resulting

in a fall. Deaths due to complications after a fall are the most common cause of

death for those aged over 65 [260, 49], with one study suggesting that a further

30% of people die within 12 months after a major fall. [238]. Less significant

falls may result in fractures (the most common being wrist, arm, ankle and

hip) and/or head injuries, both have the possibility to change lives.[168]. Even

trivial falls can lead to a loss of confidence and reduce social mobility, both of

which could well spark the cycle of frailty 1.1

By the age of 65, 1/3 of people fall once a year. By the age of 80, this has

turned into 1/2. [242]. The estimated population of over 65s living in the UK

in 2021 is around 9.7 million. The estimate for over 85s is 1.7 million. [175].

In addition to the personal cost, health providers bear huge monetary cost

[229]. In 2011 the cost to the NHS and the wider economy (due to absence

and reduced productivity) was estimated to be £2 billion every year. [226].

There are many potential causes for falls: slippery floors, poor vision, long

term health conditions like heart disease, Parkinson’s disease and dementia, to

name but a few. However, one of the most tractable factors that can greatly

affect the likelihood of a fall is a deterioration in muscle tone, and balance

[150]. Several studies have shown that with appropriate intervention, such as

balance and strength training, functional movement can be improved, leading

to fewer falls in the future [102, 81, 214, 62]. For most people, this requires the

intervention of a trained specialist. In the UK, the most common way to access

such a specialist is a referral by a GP to a falls clinic, following the report of a

fall. However, even a single fall could be the beginning of the cycle of frailty,
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discussed in section 1.1. Currently, there is no low-cost and easy-to-use device

that could be used to screen those at risk of falls. The main focus of this thesis

is to bring such a device, a step, closer to reality.

1.1 Ageing and Frailty

Ageing produces bodily changes, related to a reduction in the bodies ability to

repair [251]. These changes can be detected at many scales. At a molecular

level: cumulative damage caused by many processes including oxidative stress,

which is a particular issue for brain and nerve tissues [243]. A reduction in the

effectiveness of DNA repair pathways [224], along with a reduction in the size

of telomeres, essential to DNA replication and cell division [6]. At the cell

level the effect of molecular damage produces noticeable changes in cells. For

instance, changes in gene expression can induce cells to secrete inflammatory

cytokines (chemicals associated with inflammation) [31]. At the sub-cellular

level, damage can also be seen in cell organelles, Rygie et al. showed the effect

of damaged mitochondria on ageing [208]. At the level of the body the

effect of these underlying changes give rise to the classic phenotypes of frailty,

degradation of eyesight, loss of proprioception [65], metabolic conditions (e.g.

insulin resistance and diabetes), muscle weakness (Sarcopenia), heart disease,

changes in bone density (osteoporosis), joint issues, slower walking speeds,

and the tendency to fall. Intern, these conditions can induce Behavioural

changes a notable lessening of movement [183] and lessening of social interac-

tion [168, 188]. Over time one issue can exacerbate another. Walston arranged

these phenotypes into a cycle of frailty shown in Figure 1.1. Rockwood [202]

also developed a frailty index using the phenotypic changes shown in Figure

1.2.

Looking at both definitions of frailty, sarcopenia is a key element [150],

and one that has been identified both in the initiation of the cycle of frailty

and a major cause of balance impairment, leading to falls (Figure 1.1. The

outwards signs of sarcopenia are a reduction in muscle mass and associated

contractile strength. The underlying cause is primarily due to the loss of alpha

motor neurons. This results in motor unit pools (MU) receiving a weaker

signal, hence a less powerful contraction in the associated muscle [54]. More

general neurological damage, which presents as dis-coordination, has also been

implicated in the development of frailty and increased falls-risk. Nerve damage
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Figure 1.1: Walston’s cycle of frailty. Recreated from J. Walston, Sci.
Aging Knowl. Environ. 2004, pe4 (2004)

can be exacerbated by inflammation, insulin resistance and inactivity, adding

fuel to the cycle of frailty [252, 117]. This process begins in middle age and

becomes significant by age 70 [203].

These findings correlate well with the tendency for falls to become a prob-

lem in those over the age of 65. Although neurological decline is inevitable

and irreversible, regular exercise can help to maintain or even improve muscle

function, and bodily coordination [99, 179]. This is why master athletes are so

well studied. Master athletes are individuals over the age of 30, but many of

whom are aged over 80, who still take part in athletic competition. In spite of

demanding regimes of training and competition, the risk of an adverse event

during these activities was found to be no higher than it was for younger ath-

letes [72]. While they are seen as functionally fitter, when compared to those,

of a similar age who do not compete in sporting events, the effects of ageing

are still detectable [52, 154]. McPhee et al. [150] suggested that the protective

effects of regular exercise are universal, and not limited to elite athletes.

Therefore, a distinction must be drawn between evidence of ageing and

evidence of functional decline if one seeks to identify those at risk of injury

from everyday activities. Mouel et al. [159] proposed an in-silico model that

4



Figure 1.2: CSHA frailty index. Recreated from K. Rockwood, “A global
clinical measure of fitness and frailty in elderly people,” Can. Med. Assoc. J.,
vol. 173, no. 5, pp. 489–495, Aug. 2005.

suggests that by modulating ankle joint stiffness while standing quietly, older

individuals could compensate for a reduction in neural feedback. This mech-

anism is also seen in younger people when asked to adopt more challenging

stances, such as standing on a narrow support. In the model, an increasing

ankle stiffness only produced an increase in stability when the reaction time is

reduced by 30-40ms (the same range as is seen in age-related changes). Con-

versely, a combination of quick feedback and stiffened ankle joints produced

an increase in sway due to overcompensation.

Many studies have shown that ageing has a delaying effect on the Antici-

patory Postural Adjustments (APAs) and subsequent compensatory postural

adjustments (CPAs) [266, 181, 165], the result is larger CoM displacement,

for older people, compared to young adults [109]. To counter this excessive

displacement, older people can be seen to adopt a hip strategy [20], while also

decoupling the head and hip segments, this allows them to recruit extra de-

grees of freedom in the stabilisation task. Younger people, with less innate

sway, predominantly use an ankle strategy, in which movements of the hips

and head are couples. This results in young peoples sway being more closely
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related to the single inverted pendulum model, which predominates in pos-

turography. However, if the visual input is removed from the elderly subject

(by asking them to close their eyes), the time for APAs and CPAs further

increases, and coupling returns between head and hips, resulting in increased

sway [166].

From the examples above, it is clear that human balance is complex and

constantly evolving. While ageing and balance is well studied, identifying co-

ordination patterns and associated sway metrics that are more associated with

fallers vs the overall process of ageing is an under-researched area. However,

it is one that is key to better identify those at risk of falls in old age.

1.1.1 What is an injurious Fall?

Berg and Cassells [14] define an injurious fall as follows: “A fall is an uninten-

tional event that results in the person coming to rest on the ground or another

lower level.” They also suggest that falls have three phases:

1. The initial event displaces the bodies CoM, outside of its Base

of support (BoS) - This event involves extrinsic factors (e.g. hazards

in the environment) and intrinsic factors (e.g. muscle weakness, worn

joints, slowing of reflexes)

2. The failure of the bodies systems that maintain upright pos-

ture, to detect the displacement of the CoM, in time to correct

it - The main factors here are intrinsic (e.g. loss of proprioception,

slowed reflexes, bad eyes sight injures, muscle weakness, medication,

cognition, health problems)

3. Impact the body comes in contact with the environment, at

speed (usually the ground) - Resulting in the transmission of force

into the bodies tissue and organs. - The main factors are extrinsic, the

potential for injury relates to the magnitude and direction of the force

experienced by the body.

From this short list it is clear that injurious falls are a mixture of extrinsic

and intrinsic factors. NICE [168] suggest a multifactorial approach to falls risk

assessment. looking at the following elements

• cognitive impairment
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• continence problems

• footwear that is unsuitable or missing

• health problems that may increase their risk of falling

• medication

• syncope syndrome

• visual impairment.

• falls history, including causes and consequences (such as injury and fear

of falling)

• postural instability, mobility problems and/or balance problems

It is clear that one maps neatly on to the other, and many factors can

affect the cause and severity of a fall. In the UK, there is a network of falls

clinics which take a multi-functional approach to reducing the likelihood of

future falls, for those who have had one or more falls in the past.

1.2 Identifying Those at Risk of Falls

Given the complexity of injurious falls, it is perhaps surprising that the most

common form of screening for falls risk, and the one recommended by NICE, is

to ask the question “Have you fallen in the last 12 months” or more formally

“Have you had any fall including a slip or trip in which you lost

your balance and landed on the floor or ground or lower level in

the past 12 months?”. This is the standard question used when collecting

falls history [258]. Possible answers are [None, One, Two, Three, Four or

more]

This question assumes that the person has already fallen. As discussed

above, a single fall could have severe and lasting consequences. It is in this

situation where an inexpensive and objective test to preemptively identify

people at risk of falls could make a significant impact at both the personal and

state level.
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1.2.1 Assessment by a Clinician

Clinical assessments are carried out by observing an individual, carrying out

a proscribed set of movements and then rating them, on a predefined scale.

Pre-established cutoffs are used to categorise the level of impairment. While

these cutoffs are well-established, results can vary from assessor to assessor

and location to location [221]. In addition clinical assessments can be time-

consuming and so soak up many hours in a clinicians day.

Many clinical assessments exist, Table 1.1 provides a list of the most com-

monly used for the assessment of the purely physical signs of impairment. How-

ever, as discussed in section 1.1.1. It should be acknowledged that an holistic

approach should be taken to falls-risk assessment. Additional cognitive and

psychological factors can greatly affect the likelihood of a fall. In particularly

frail older people, the inability to walk and talk at the same time can be pre-

dictive of falls [140]. This is an example of dual-tasking, where an individuals

ability to complete a physical task is affected by their brain attending to other

tasks. This example is at the extreme end of this phenomenon. However,

the incorporation of dual-tasking into clinical tests can provide insights for

less impaired populations. Shumway-Cook et al. [220] examined the postural

sway of aged-matched fallers and non-fallers while dual-tasking, in this case,

quite standing while carrying out a sentence completion task. They demon-

strated that both fallers and non-fallers show a significant increase in postural

sway. However, fallers showed a greater increase in sway, the difference being

predictive of falls-risk. Dual-task assessments have become a popular option

when considering the contribution of cognition to balance, Muir-Hunter and

Wittwer [161] provides an excellent review of their application to falls-risk.

The psychological components of falls-risk should also not be overlooked,

key is the fear of falling. The fear of falling can affect both fallers and non-

fallers. Ironically, the fear of falling can initiate behaviours that make falls

more likely, such as the avoidance of physical activity and social isolation.

Vellas et al. [245] suggested that this issue should be specifically addressed in

rehabilitation programs. The Falls Efficacy Scale-International (FES-I) [82] is

a well-validated scale for assessing the fear of falling in older adults and has

become the de facto questioner for this type of assessment.
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Table 1.1: Table of common clinical tests: the table provides a list of
common clinical test and a short description. Relevant references are included

Test Description

Short Physical Performance Battery (SPPB) [85]

SPPB is a well validated test for
impairment. The test is made up of several movements :
Quiet standing, eyes open (EO) and eyes closed (EC)
Semi-tandem stance, Tandem stance, 3m walk
and 5x sit to stand (STS-5).

Five times sit-to-stand (STS-5) [256]
The STS-5 is a well validated test with applications
in falls-risk. It can provide a good indicator of muscle
strength and general coordination.

3m Walk [247]
The 3m walk is the basis of many instrumented and
non-instrumented gait assessments.
It is a simple means of assessing dynamic balance.

Timed Up and Go (TUG) [147, 219]
TUG combines elements of STS-5
and 3m walk into a single test.

Unilateral Stance (ULS) [24]

Standing on one leg is an easy to administer
means of increasing anyone’s postural sway.
Maximum stand time has been used as a
predictor of falls-risk.

1.3 Motivation

In research, the instrumented assessment of balance is well established. Most

commonly, this is achieved through the tracking of the Centre of Pressure

(CoP) and CoM calculated from the ground reaction forces at the surface of a

force plate. The work of Nashner et al. [167] lead to the establishment of the

discipline of Posturography and the creation of the device which has become

synonymous with it, the Balance Master. The Balance Master uses twin force

plates to measure both static (quiet standing) and dynamic (in reaction to

a perturbation) postural sway [204]. As well as outputting raw data, it has

inbuilt software that can provide clinical measures such as the equilibrium

score (ES) and comparisons against the general population. However, its size

and cost are prohibitive for widescale clinical use, which certainly puts it out

of the range of possibilities for a family doctor.

An alternative to using force plates is to use one of the many clinical test

[84, 86, 187, 147, 24, 22]. This is the standard approach during the initial

appointment at a falls clinic. On the whole, these clinical tests relate to the

timing of a set of proscribed physical movements which are then scored against

a predefined scale. While this type of approach is able to identify those with

high levels of impairment, it is prone to variation in scoring, from assessor to

assessor [221].

The most complete description of an individuals balance can be achieved

through motion capture. This technique uses reflective beads and an array of
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infrared cameras to capture the intricacies of human movement. However, it

requires a long period of set up and a dedicated space, i.e. a motion capture

lab. This makes motion capture impractical for regular assessments, especially

for the most vulnerable of people.

In 2011 Microsoft released the first version of their human-action-based

games controller, Kinect. This was superseded by version 2 in 2014 (the ver-

sion used to collect data for this thesis) and version 3 in 2019. Version 3, the

azure Kinect, marks the official transition of Kinect from a games controller

to a device intended to be used for research, development and ultimately in-

corporation into commercial products. From the start, researchers leapt on

the Kinect as a means of tracking human movement without the need for a

lengthy setup. Human action recognition (HAR) has made great strides in

recent years, utilising the plentiful data which has been created using Kinect.

Unfortunately, datasets of clinically relevant movements are not as numerous.

At the time of starting this research, an extensive search revealed only one,

the K3Da dataset, and that lacks the labelling necessary to progress this field.

The knock-on effect of this lack of data is a lack of research into the prac-

tical use of such devices for automated balance assessment and falls-risk. This

is not to say that there has been no research into the instrumented identifica-

tion of fallers. However, the majority of instrumented falls assessment relates

to the use of expensive force plates conducted in lab conditions. Burns et al.

[28] in their paper, ”The direct costs of fatal and non-fatal falls among older

adults” concluded Widely implementing evidence-based interventions for fall

prevention is essential to decrease the incidence and healthcare costs associ-

ated with these injuries. However, currently, there is a lack of practical and

objective methods of screening for fallers in the general population.

1.4 Problem Statement

Falls are a huge problem for older people worldwide. A fall can lead to a multi-

plicity of consequence and may be indicative of deeper issues, including frailty.

These issues can be addressed by targeted rehabilitation. However, access to

this type of treatment is only provided after the report of a fall. Currently,

there is no practical screening for this issue, due to the cost of equipment

or man-power required, for the widescale use of clinical tests. A system that
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utilises low-cost markerless motion capture could provide the answer. Interpre-

tation of such data can provide a range of traditional, well-recognised metrics

along with the ability to provide more advanced methods of assessing the

early signs of impairment. This would allow for early referrals and prophylac-

tic treatment regimes. In addition, such a system could be used to track the

progress of recovery.

1.5 Aim and Objectives

The aim of this research is to create a predictive model for the objective

assessment of falls-risk in old age. To achieve this, the following objectives

were set out:

1. To develop a method to track CoM and calculate traditional postural

sway metrics from the output of a Kinect, then compare the proposed

method to the output of a device used in clinical practice

2. To create a new dataset of movements, widely used in clinical tests, using

markerless motion capture, i.e. a Kinect V2 camera

3. To disambiguate sway metrics associated with age-related changes and

those related to the impairment

4. To develop a method to quantify impairment using deep learning and

the captured data

1.6 Contributions

1. A new process to measure postural sway using a Kinect depth camera

(Chapter 5). The output of the proposed method and the output of the

Balance Master were compared and found to be in good agreement.

2. KINECAL: A dataset of clinically significant movements (KINECAL,

Chapter 6), This dataset addresses a major stumbling block in this area

of research, and which will aid research into the clinical use of depth

cameras for falls-risk and physical impairment.
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3. An investigation of sway metrics associated with falls (Chapter 7). The

question of which sway metrics are the most appropriate to identify

fallers is still an open question. In this chapter, this question is examined.

In addition, a machine model is also discussed, which could be used as

a screen to identify those who would be classed as impaired by clinical

tests.

4. Quantification of physical impairment, based on a representational model

(Chapter 8). An anomaly detection approach was taken to quantifying

impairment. By using an autoencoder to model normal movement, a

scoring system was developed, which uses distance-from-normal as an

indication of impairment.
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1.7 Thesis Organisation

Figure1.3 presents an overview of the thesis organisation. The details of each

chapter are follows:

1. Chapter 1-5: Introductory chapters, set this thesis in context, they pro-

vide background, previous work descriptions of the common methods

used and the motivation of this work. In addition, they detail some pre-

liminary work which became the inspiration for the work in this thesis.

2. Chapters 6-9: Contribution chapters, detail the contributions made in

this thesis.

3. Chapter 10: Conclusion, provides a summary of this thesis and the di-

rection of future work.

Figure 1.3: Thesis Organisation
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Chapter 2

Literature Review

2.1 Introduction

This chapter places this thesis in context. It explains the background to bal-

ance assessment, there importance and application. It also describes the cur-

rent methods for balance assessment, their use and their limitations. It then

goes on to discuss the application of machine learning to the assessment of

balance and human movement. The chapter concludes with a discussion of

common types of machine learning algorithms.

2.2 What is Balance?

Any object has a CoM, seen as the point in the body where the mass of the

object acts. If an object is uniform in density, this point is the geometric centre

of the object. Let us consider a toy see-saw, consisting of a plastic plank and a

rotary bearing, attached to a frame, exactly halfway along the plank’s length.

Assuming one has a perfect see-saw, when in the horizontal position, the force

on both sides is equal, and so one can say the see-saw is balanced. If a force

is applied to one end alone, the see-saw will rotate around its CoM. In this

case, this is true because the bearing is constraining the plastic plank, but it

would also be true if the plank was removed from the bearing and, holing one

end, it was thrown, through the air, using a flicking motion. The plank would

rotate around its CoM. What is true for the toy, is also true for other bodies

that have mass, including human bodies. A gymnast executing a floor routine
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is exploiting this fact to great effect. Whenever they flip or rotate in the air,

they are rotating around their CoM.

Now let us consider a human body that is at rest and balanced, upright

and standing on the ground. The body is balanced because all of the forces

applied to it even out as described by Newton’s third law [172]. Gravity exerts

a downward force, and the ground resists with equal, but opposite force. This

is known as the ground reaction force. The ground reaction force is experienced

by any part of the body touching the ground, for example, the feet (another

example could be one foot and the base of a walking stick). Summing these

forces identifies the CoP. The CoP is distinct from the BoS, which is the area

described by the outside edge of the weight-bearing elements touching the

ground. Figure 2.1 demonstrates the relationship between BoS and CoP.

Figure 2.1: CoP in relation to the BoS. the CoP is marked by a black
dot This figure shows three possible BoS (shaded grey), and the associated
CoP (shown as a black dot). The first two are narrow stances, quiet standing
and semi-tandem, repetitively. The third is a wide version of quiet standing
(feet shoulder width apart).

Gravity acts on the CoM, in a line which can be described as the Line

of Gravity (LoG). If the LoG of an object falls outside the BoS, that object

will tend to rotate until it finds a more stable attitude. Therefore, the wider

the BoS, the more inherently stable the object. Generally, CoM is thought of

as acting directly, and the LoG is ignored. Figure 2.5 shows the relationship

between LoG, CoM and CoP.

Looking at the triangles in Figure 2.2 it is easy to understand the rela-

tionship between BoS, CoM and Balance. You can almost sense the tendency

for the first triangle to rotate to adopt the attitude of the second one. This

is because only a small perturbational force would be required to unbalance

it. However, a significantly higher force would be required to make the second

triangle rotate, because of its larger BoS.
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If one applies this intuition to the vertebrate animals on the right. It is

clear that the dog and the ape, who use four points of contact, have a bigger

BoS than the human using just two. i.e. their CoM is less likely to fall outside

the BoS. Hence humans are more likely to fall, even when standing still.

Figure 2.2: Balance for different objects. This figure shows a simple
triangle and 3 vertebrate bodies, with the CoM shown as a red point, and
the LoG shown as a red line. It is easy to see why the triangle resting on
its long-side is inherently more stable than the one resting on its point. By
applying this intuition to the vertebrate bodies you get an appreciation of how
the upright, human body, on the far right, is less stable than the ape and dog
pictured to the left of it.

Although this model explains the principles, it is slightly disingenuous.

Vertebrate animals are not uniform objects, and are certainly not inanimate.

They are complex entities that move in any number of ways to achieve their

day-to-day goals. Movement is achieved using a skeleton of interconnected

joints, on to which is attached many different types of tissue, muscles, ten-

dons, ligaments and assorted connective tissues. All controlled by conscious

and unconscious control systems which process information from sense organs,

connected through the nervous system. This means that the CoP and CoM

is in constant flux, even when standing still, often called quiet standing. In

order to keep the CoM within the BoS, the system described above, known as

the motor control system, is always adjusting. This is the essence of balance

in animals.

As discussed, due to the upright stance adopted by humans, balance is a

particular issue for us. The human skeleton has more than 100 degrees of free-

dom [68]. This provides incredible flexibility and redundancy. Consequently,

there are many ways to achieve a particular movement. You may have experi-

enced this multiplicity of options when you have sustained a minor muscular
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injury. Your body adapts its coordination patterns to enable you to still move

around, albeit in a sum-what awkward fashion [128]. The inbuilt redundancy

of the human body was first studied by Nikolai Bernstein in his pioneering

work in motor control and motor learning in the 1920’s [16], and gave rise to

the phrase ”Bernstein’s problem”. Bernstein’s answer was the motor control

system is able to dynamically constrain certain degrees of freedom, although

this constraining must be learned. The work of Karl Newell [171], explains

how these constraints can be learned and goes some way to explaining dif-

ferences between those who play sport recreationally and elite athletes. You

might reasonably expect that no two individuals would move in quite the same

way when trying to achieve a particular goal. However, studies have shown

stereotypical patterns of muscle activation, and limb movements for a given

task [103].

2.2.1 Posturography

An alternative to Clinical assessment is the use of posturography. Posturog-

raphy provides an objective measurement of an individual’s postural control.

I.e. a balance assessment, based on the movement of the body’s CoP and

or CoM, measured by using force plates [92]. Posturography has become the

standard for assessing balance impairments and has been widely applied to the

assessment of vestibular problems, Parkinson’s disease, ageing and the relation

of ageing to falls prediction.

Force plates use the ground reaction force, discussed in section 2.2, to locate

and track the CoP. The CoP is either used directly or used to calculate the

position of the CoM. Several methods have been proposed to estimate CoM

from CoP [270, 264, 158, 204]

If the CoM is perturbed, for instance, by standing on a compliant surface

or pivoting platform [265], the CoM can move more easily and so will tend

to move more frequently to the edge of the BoS. To regain balance, the body

moves the CoP ahead of the CoM, which counteracts the perturbation and

brings the CoM back towards the centre of the BoS. This requires the co-

ordination of the CNS and muscles, based on input from many senses. Key

among these are three systems. The visual (information taken in through the

eyes), vestibular (information taken in through the semicircular canals in the

inner ear) and proprioceptive feedback from the joint, muscles, tendons and

17



ligaments, especially from the lower body (hips, knees, ankles and feet). The

amount of correction, required to remain balance can be quantified as postural

sway.

Figure 2.3: SMART Balance Master: The SMART Balance Master, is
one of the few devices used in the clinical assessment of balance. However, it
widescale adoption is restricted by its size and cost.

The device which has become synonymous with posturography, the Balance

Master (shown in Figure 2.4, was developed directly from the work of [167].

It automates the process of identifying which sense is contributing most to an

individuals balance, using the Sensory Organisation Test (SOT) [204]. There

are six components to SOT, pictured in Figure 2.4, are as follows:

1. Eyes open, platform fixed, used as a baseline, visual, vestibular, and

somatosensory inputs are available

2. Eyes closed, to remove visual input

3. Eyes open with moving surround, to create sensory conflict between

visual input and both somatosensory and vestibular inputs

4. Eyes open and moving support, to disrupt somatosensory and proprio-

ceptive feedback from the feet and ankles

5. Eyes closed and with moving support, combining inaccurate somatosen-

sory input combined with no visual input
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6. Eyes open with moving surround and platform, providing inaccurate

visual and somatosensory input

As the test progress, they become steadily more challenging to balance.

Table 2.1 provides an interpretation of SOT results.

Figure 2.4: Elements of the SOT. (1) eyes open, platform fixed (used as a
baseline); (2) eyes closed to remove visual input; (3) eyes open with moving
surround, to create sensory conflict between visual input (simulating a moving
room) and vestibular inputs (a stable room); (4) eyes open and the platform
support rotating freely to disrupt somatosensory and proprioceptive feedback
from the feet and ankles; (5) eyes closed and the platform support rotating
freely; and (6) eyes open with moving surround and the platform support
rotating freely

Balance Master outputs

The balance master provides the following outputs

• Raw

– CoM Anterior-posterior (AP) and Medio-lateral (ML) displacement
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– CoM Path

• Equilibrium Score

– Stability of an individual, in the AP direction, vs a normative score,

expressed as an inverse percentage, 100 indicates perfect stability

• Strategy Score

– contributions of hip and ankle strategies 100 = all ankle 0 = all

hips)

Table 2.1: Interpretation of Balance Master results, and their relation to dif-
ferent balance conditions, reproduced from the Balance Master Clinical Inter-
pretation Guide [204]

Pattern Over reliant (dependent) upon: Problem SOT conditions:
Vestibular Dysfunction Visual and Somatosensory SOT 5, 6
Visual and Vestibular Dysfunction Somatosensory SOT 4, 5, 6
Somatosensory and Vestibular Dysfunction Vision SOT 2, 3, 5, 6
Visual Preference Vision SOT 3, 6
Vestibular Dysfunction and Visual Preference Vision SOT 3, 5, 6
“Across the Board” No sensory system SOT 1, 2, 3, 4, 5, 6

2.2.2 Postural Sway Metrics

Postural sway is a widely used measure of stability [137]. Many papers have

demonstrated the connection between increased postural sway and fall risk, in

both neurological disease [201] and age-related decline [87]. Over the years, re-

searchers have used many measures to assess postural sway. The most straight

forward and intuitive measure of sway is the displacement of the CoM from

the mean position, in the ML and AP direction. Summing these small dis-

placements together gives the CoM path [36, 186, 87]. Both of these measures

are used by the Balance Master.

In addition to these primary measures, secondary measures, such as RMS

of distance, frequency, and elliptical area, can be derived [190, 189, 148, 209].

The calculation of these metrics is covered in Chapter 6.

2.3 Postural Sway, Ageing, and Falls

The majority of studies looking at the change in postural sway with age,

conclude that on the whole, sway increases with age. Since increased sway is
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related to an increase in falls likelihood, as the CoM is less well controlled.

Therefore, it is logical to say that ageing and falls likelihood are so intimately

connected that one is a proxy for the other. Yet as discussed earlier, falls

likelihood can be reduced through appropriate training, and elderly athletes

seem to naturally adapt to the limitations imposed by ageing. Some studies

have pointed to particular sway metrics that are associated with age, e.g.

Prieto et al. [189], suggested that CoM frequency and velocity increase with

age. Hageman et al. [87] suggested an association between path length and

age. Others, e.g. Piirtola and Pertti in their review paper [185] drew the

connection between falls likelihood, elliptical sway area and various measures

of ML sway. In chapter 7, a study of classical sway metrics was undertaken,

cross-referencing age and falls-risk. It was found that, while these factors are

connected, sway area (equation 6.12) and mean CoM distance (equation 6.6),

are more associated with falls-risk.

2.4 Criticism of Sway Measured by Force Plates

The model of postural sway used for force plates is the single, inverted pen-

dulum model. This assumes that the human body is rigid, with a single pivot

at the ankle, shown in Figure 2.5. For quiet standing, this model holds up.

However, for more challenging stances, this model brakes down. Winter, in

his review on human balance [265] noted that the human body pivots about

the ankle (the ankle strategy) in quiet stance and about both hip and ankle in

reaction to a perturbation (the hip strategy), such as standing on a pivoting

platform, or compliant surface.

Cretual et al. [48] suggested the single pendulum model should be used

with caution to estimate CoM during more challenging conditions. Lafond et

al. [118] also found error in this method of calculating CoM for more difficult

poses, and Yeung et al. [269] demonstrated that Kinect performed better

when recording more challenging balance tasks compared with force plates.

Benda et al. [11] demonstrated that the accuracy of CoM estimated from CoP

reduces with increased dynamics.
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Figure 2.5: Single inverted pendulum. This is the standard model of sway
when using a force place. The CoM of the body is modelled as a point mass
m on top of a stick with length l. u, marks the location of the effective ground
reaction force, and x marks the point where the LoG touches the ground.

2.5 Motion Capture

Many of the issues associated with estimates of CoM, by force plate, can be

overcome by the use of Motion Capture. But motion capture can do more

than estimate CoM. It can fully describe the actions of a jointed body through

space and time.

2.5.1 Origins

Motion capture (MoCap) began in the 1960s with the work of Lee Harrison

[90]. Harrison created a motion capture suit that could be used to interpret

an actor’s movements. The suit used potentiometers at each human joint to

encode the movement. A program called the bone generator interpreted these

signals and produced a stick figure of the movement. The system was called

ANIMAC. Using ANIMAC, Harrison created several short demos, for which he

received an Emmy award in 1972 [35]. At the same time Harrison was picking

up his Emmy, the psychophysicist, Gunnar Johansson was demonstrating that

people can recognise a wide range of human motions, even if only the joints

of an actor are highlighted[105]. Johansson’s insights led directly to the large
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multi-camera, marker-based motion capture systems, now regarded as the gold

standard for mocap.

2.5.2 Marker-based Motion Capture

Marker-based motion capture is provided by several vendors, but the most well

recognised is VICON, who originated the central ideas of this type of MoCap.

The system consists of an array of infrared cameras pointing inwards. This

constitutes the capture volume. Reflective beads are attached to key locations

on the body, typically bone-ends (in a similar way to which Johansson marked

up his subjects). The markers can be tracked in 3D space anywhere inside the

capture volume. Software, included in the system (Nexus) is used to record

the movements. In addition, the software is able to calculate joint angles,

velocities, and accelerations. Figure 2.6 shows a diagram of a typical setup.

Figure 2.6: Typical VICON setup: VICON uses an array of infrared cam-
eras, pointing inwards, to create a capture volume. Reflective markers are
attached to a human body, to mark key anatomical features which are to be
tracked, eg bone ends.

2.5.3 Markerless Motion Capture

Kinect, popularised markerless motion capture, originally designed as a game

controller, the research community was quick to recognise its potential. Shot-

ton et al. [216] took an object recognition approach to segment the human
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body. Essentially converting the pose recognition problem to a per-pixel seg-

mentation problem, using a deep random forest as the classifier. In training,

they generated thousands of synthetic depth images of all types of body shape

to ensure the algorithm is robust in most situations. The output of this model

is a 25-joint-skeleton (for Kinect V2) that is widely regarded as being close to

the output of a marker-based system [178, 42, 268, 71, 164].

Figure 2.7: Kinect V2. Kinect is equipped with both an RGB video camera
and a depth camera. It can output a 25 joint skeleton, without the need for
makers.

Kinect is a hybrid camera, able to record 2D RGB video and 3D depth

videos, both at 30 fps, shown in Figure 2.7. The depth camera is a pixel-wise

range finding device that uses the time of flight (TOF) of an infra-red (IR)

beam to estimate the distance from the camera to objects within its field of

view (512 x 424 px). As well as RGB and depth videos, Kinect V2 outputs

a 25-joint-skeleton, created from the model discussed above [216]. The joints

are named as shown in Figure 2.8

2.6 Issues with Kinect

The downside of using a single camera is the issue of occlusions. Several

studies have addressed this issue by using multiple Kinect cameras [74, 163].

However, this reduces the portability of Kinect-based solutions, as multiple

cameras need to be installed on a semi-permanent basis, and they require

more space than setups that use just one camera. Also, custom software

must be written to synchronise the outputs [44]. Hence, most studies use a

single camera. Although, it should be noted that the latest version of the
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Figure 2.8: Diagram of skeletons generated by Kinect. This figure
details the 25 joints of the Kinect skeleton model

Kinect camera (Azure Kinect) has the ability to create arrays of cameras as

an intrinsic function, so this area of research might see some renewed interest.

The use of a single camera also creates issues with tracking accuracy. Skele-

ton joints that are close to 0◦ from the centre of the depth sensor are very well

tracked. Joints that are away from this axis are tracked less well.

The Kinect estimates joint positions using a random forest model. If a

Kinect camera comes across a pose that is very different from the ones it was

trained on, it can become confused. This is evident in the tracking of crossed

arms during sit to stand.

2.7 Comparison, Between Kinect and Marker-

based Systems

Several studies have compared the tracking of clinical movements between

Kinect and VICON [41, 71, 178, 32]. They conclude that Kinect has potential

use in a clinical setting while pointing to the issues discussed in 2.6. However,

these insights have not translated into practical applications. In addition, the

25



majority of research considers young and older groups, but not populations of

older fallers.

2.8 Kinect and Human Action Recognition

Perhaps the most common use of Kinect in research is in Human Action Recog-

nition (HAR). HAR has been an area of research for many years. Before the

advent of inexpensive depth cameras, HAR relied on RGB images. The pre-

dominant method for tracking human movement was through the analysis of

spatio-temporal volumes [267, 271]. By identifying elements that move rel-

ative to a static background, motion silhouettes can be extracted. However,

these methods are badly affected by changes in light intensity, between frames.

Depth images do not suffer such issues as they are invariant to lighting con-

ditions. Kinect V1 was introduced in 2011, followed by Kinect V2 in 2014

and Kinect V3 in 2020. In short order, after the initial release, many HAR

datasets were recorded and made available. Firman et al. [66] detailed 44 HAR

datasets, recorded using Kinect. NTU RGB+D [211] was listed as the largest,

containing 4 million frames of data, collected from 40 distinct subjects carrying

out 60 different movements. The same group (ROSE lab at the Nanyang Tech-

nological University, Singapore) updated the dataset in 2019 to contain 120

action classes [135]. These datasets have now become the standard for bench-

marking new methods of HAR [113, 254, 212, 227] . Unfortunately, there as

not been a similar proliferation in clinical datasets. That said, Kinect’s use, in

relation to health applications, has been explored. These applications include

gait assessment, detection of falls, rehabilitation, and falls-risk assessment.

The next section of this thesis will explore these one-by-one.

2.9 Gait Assessment

Healthy human gait has a symmetrical, alternating gait pattern of stance and

swing phases, with a phase lag of 0.5. This phase lag means that as one limb

reaches the midpoint of its cycle, the other limb is beginning it own cycle,

shown in Figure 2.9A. One gait cycle is, generally, counted as one heal contact,

to the next heal contact, for a single leg. The distance covered is the person’s

stride length. The stance phase begins when the foot hits the ground, and

the swing phase begins when the foot leaves the ground (toe-off). In normal
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adult-gait, 60% of the time is spent in stance phase and 40% in swing phase.

Stance phase can be further split into double-support phase, (the first and last

10% of the stance phase, when both feet are in contact with the ground) and

single support phase (when the opposing limb is swinging) [206]

Figure 2.9: Gait cycle: A. Step length and stride length characteristics. B
phases of the gait cycle (reproduced from [218])

27



Stance and swing phases can also be labelled as follows: Stance: 1) initial

contact, 2) loading response, 3) mid stance, 4) terminal stance, 5) preswing.

Swing: 1) initial swing, 2) mid swing, 3) terminal swing see Figure 2.10.

Figure 2.10: Sub-phases of gait: this figure show the sup-phases of gait, in
relation to a single stride (reproduced from [231])
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As touched on above, distance and temporal (spatio-temporal) metrics can

be derived from the gait cycle. A selection of common metric is shown below.

However, many more can be derived from the gait cycle and step cycle (Figures

2.9))

• Velocity: defined in its typical form found elsewhere, i.e. distance

moved in a given time (m/s)

• Cadence: number of steps, taken in a given time (steps/min) (step

frequency).

• Step length: the distance covered, between one foot strike to the alter-

nate foot strike (m).

• step width: the distance between the mid line of the left and right heel

(cm)

• Stride length: the distance covered,between one foot strike and the

next, on the same foot (m).

• Step time: the time taken, between one foot strike to the alternate foot

strike (s).

• Stride time: the time taken, between one foot strike and the next, on

the same foot (s).

• Stance time: the time spent in stance phase (s)

• Swing time: the time spent in swing phase (s)

• Double support time: the time spent in double support (s)

• Single support time: the time spent in single support (s)

Kinematic measures can also be considered. Kinematics is the study of the

geometry of motion. When applied to the human body, kinematics considers

the movement of the body’s joints throughout the gait cycle. Figure 2.11

shows how joint angles change over time during normal walking.

The use of spatio-temporal and kinematic metrics to assess abnormal gait,

is discussed below.

Gait variability has, for a long time, been associated with increased falls-

risk [7, 93, 30, 184]. Hausdorff et al. [93] suggested that a stride time variability
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Figure 2.11: Kinematics of gait: this figure show the normal movement
of the foot(ankle), knee, hip and pelvis throughout the gait cycle toe-off is
marked with a solid vertical line (reproduced from [218])

of 106 ± 30ms was indicative of future fallers, vs a stride time variability of

49 ± 4ms for non-fallers. They went on to use logistic regression to predict

fallers, in a cohort of 52 individuals. In their paper stride time and swing

time were calculated from data collected using force-sensitive insoles, on a

level, 6 minute walk, or as long as possible. Callisaya et al. [30] showed a

similar result for step-time variability, in a much larger cohort (n=411). In

addition, they found a relationship between falls risk and variability in the

length of the Double Stance Phase (DSP). The data was collected from a 4.6

m computerised walkway. Follow-up questionnaires were posted out every two

months, to record new falls. Interestingly, they noted that neither of these

measures were associated with the risk of a single fall. This finding is in line

with previous work [170, 138].

Gait metrics can also be derived from recordings made with the Kinect.

Stone et al. [232] used Kinect V1 in a proof-of-concept, to demonstrate that

gait velocity and stride-to-stride variation in velocity could be calculated in
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the lab, using Kinect. A year later, he showed that Kinect could be used to

continuously monitor gait in the home [233].

Dubois et al. [60], found good agreement between spatio-temporal metrics

calculated from Kinect and a smart carpet (a device similar to the smart walk-

way, used in [30]). They used the background extraction method, described in

[59], to estimate the CoM. The method utilises the raw depth data and uses

the running average method [78] to identify the mobile pixels, which move

relative to the static background. The CoM was calculated by averaging all

the points belonging to the mobile object. The paper does not detail how well

the calculated CoM relates to an anatomically correct CoM. However, it did

allow them to create graphs of relative CoM displacement in the vertical and

horizontal directions.

Using the vertical component of the estimated CoM, they were able to

calculate the step length by measuring the distance between the maxima of

the vertical com displacement. Measuring the time taken between steps also

provided the step time. The speed was calculated as the time taken to travel

across the cameras field-of-view, see Figure 2.12. The number of steps recorded

was between 2-5 steps. This was due to the field-of-view of the Kinect camera,

which is a major drawback to using a single Kinect camera for gait analysis.

Figure 2.12: Gait features, extracted from Kinect: By tracking the ver-
tical component of the CoM, estimated form the Kinect depth stream. step
length, step time, and gait speed were calculated (reproduced from [60])

Dolatabadi et al. [55] wrote a case study detailing how they used features

derived from Kinect to unobtrusively monitor recovery from hip replacement,
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Table 2.2: Results from [60]: The results show % difference between gate
metrics derived from the smart carpet and the Kinect, assuming the smart
carpet to be the ground truth

mean % error (SD)
Step Length 4.5 (3.8)
Step Time 6.6 (4.9)

Speed 3.69 (1.81)

in the home. Using the skeletal data from the Kinect (captured while walking

towards the camera) they used the ankle joint to establish when the foot

was in stance or in swing phase. From this data they calculated step length,

stance time, stride length and cadence. Using this data, they were able to

demonstrate a loss of function after surgery which returns and then exceeds

the pre-surgery values within 9 weeks.

Now gaining popularity, for lab-based studies, a whole range of papers were

published comparing kinematic, as well as spatio-temporal metrics, calculated

from Kinect and marker-based systems (usually, though not exclusively VI-

CON). e.g. [152, 64]

Mentiplay et al. [152] compared gait metrics, calculated from Kinect

recordings to gait metrics captured by VICON and processed through 3DMA.

Speed variability, step length, step time, step width, foot swing velocity metrics

were compared. Along with, medial–lateral and vertical pelvis displacement,

ankle flexion, knee flexion, knee adduction and hip flexion angles. The Kinect

camera was placed in front of the participant (frontal-plane-view). The results

are presented in Figure reffig:Mentiplay2015. They considered the relative

agreement between devices and the inter-day reliability of each device. Both

comfortable paced walking and fast-paced walking where considered. They, on

the whole, found the spatio-temporal metrics had excellent relative agreement

(r>0.75) for both walking speeds. Except for fast-paced gait speed variability

(r>0.73) and mediolateral pelvis sway (r>0.45–0.46), which should be consid-

ered modest agreement. They also found similar levels of inter-day reliability

for the spatio-temporal metrics, calculated from both devices. When it came

to the kinematic metrics, poor to week relative agreement was seen (r<0.50).

Their discussion suggests some reason for the disagreement when in the

Kinematic results. They point to the fact that it is difficult to compare systems

that use different marker sets. They also note that the frontal position of
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the Kinect is an optimal choice for collecting spatio-temporal data but may

disadvantage the collection of kinematic data.

Figure 2.13: A comparison spatio-temporal and kinematic variables during the
gait cycle, between the output of a Kinect camera and a 3DMA motion capture
system (reproduced from [152]) Results are shown for conformable and fast
paced walking. The validity column shows agreement between devices. The
reliability columns show the reliability of each device, between days

Eltoukhy et al., [64] compared recordings of healthy individuals walking on

a treadmill at a comfortable pace, captured using Kinect V2 and the SMART-

DX 7000 (BTS Italy) marker-based system. The Kinect camera was placed

perpendicular to the subjects (sagittal-plane-view). This position favours the

capturing of Kinematic data. This set up removed the issue of the small

field-of-view of the Kinect camera but introduced the reliance on a large and

expensive piece of equipment. They compared step length, step width, medio-

lateral and vertical pelvic displacement, step time, stride time, and foot swing
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velocity (spatio-temporal). Hip, knee, and ankle joint angles in the sagittal

plane (kinematic). The results of this paper are shown in Figure 2.14.

Figure 2.14: A comparison kinematic and spatio-temporal variables during the
walking gait cycle, between Kinect and SMART-DX 7000 (BTS Italy) motion
capture system (reproduced from [64]) There is good agreement in Spatio-
temporal measures between the two devices, along with Hip and knee ROM.
However, ankle joints are less well tracked.

The results of this paper showed acceptable agreement for Hip and Knee

ROM. However, Kinect shows difficulty in tracking ankle joints, leaving kine-

matic analysis with Kinect somewhat limited. In addition, the agreement

for the spatio-temporal metrics is adversely affected by the placement of the

Kinect when compared to values obtained from [152].

Although Kinect might not be a suitable alternative to marker-based so-

lutions for classic kinematic gait analysis, the spatio-temporal metrics could

be enough to assess falls risk [7, 93, 30, 184]. However, the assessment of

gait requires significantly more space to assess than other types of assessment,

e.g. quite standing and STS-5. In addition, the limited field-of-view [60] and

depth-of-view [55] means only a hand-full of steps can be assessed. Moreover,
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when the subject is at the extent of the Kinect’s range, joint tracking is less

accurate or may disappear altogether. It is for these reasons that the research

detailed in this thesis did not use gait data in falls-risk analysis.

Rather than focusing on the innate differences between Kinect and other

devices, a more constructive approach is to look at Kinect as a unique device

that can provide a means of assessing movement quality in situations where

other devices struggle. If one allies Kinect’s abilities to machine learning, the

product is a system that can provide new methods of assessing falls risk. The

following section looks at the application of machine learning to gait.

35



The application of machine intelligence to gait assessment

The most fundamental implementation of machine intelligence is the applica-

tion of a heuristic approach. Essentially, getting a machine to apply a set of

pre-defined rules. Bigy et al. [17] applied heuristics to detect Freeze of Gait

(FoG), a problematic symptom of Parkinson’s disease (in addition to falls and

tremors). The rules-based approach is computationally undemanding, which

makes this easily applied in real-time.

Moving away from rules-based solutions, Tupa et al. [273], used a shallow

Artificial Neural Network (ANN) to identify individuals with Parkinson’s dis-

ease from gait characteristics. Using the same dataset, Prochazka et al. [191]

achieved similar results by using a Bayesian Classifier.

Gabel et al. [70], extracted a feature set which expanded on gait analysis to

include arm kinematics and additional body features, namely, COM, Direction

of Progress and Acceleration. A state model was used to partition the gait

cycle, and Multiple Additive Regression Trees (MART) was used to calculate

the features. However, machine learning was not used to produce a predictive

model for gait qualit

2.10 Falls Detection

As discussed, falls are commonplace in elderly populations. The risks asso-

ciated with someone who has fallen are compounded if that person is unable

to get up from the floor [241]. Hence much research time has been spent on

building falls detection systems.

The non-intrusive nature of Kinect, not having to wear a device, such as

an accelerometer, makes it an appealing choice for this application. From the

start, rules-based solutions were present, and soon machine models came in

to use. Mastorakis et al. [146] used a two-stage process for falls detection,

using Kinect depth images. In the first phase, the vertical-velocity between

frames was used to detect a possible fall. However, the alarm was only raised

if this event is followed by a period of inactivity. Stone et al. [234] refine this

process by using an ensemble of binary decision trees to classify the period of

inactivity, so guarding against false positives from events such as sitting down

quickly. Although achieving high accuracy in the lab, this type of system
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has not been extensively trialled in the home, a fundamental limitation being

Kinect’s range (0.4 - 3.5m).

To address this issue, Kalinga et al. [108] attached a Kinect camera to a

service robot that is able to follow the person at risk, room to room. They also

used the skeleton data in preference to the raw depth frames. This enabled

them to develop the classification abilities of their system. Their system is

able to identify three classes of post-fall events, prone, crawl and kneel. Fall

detection systems also bring up an ethical problem. How do you validate your

predictions on those most at risk? The usual solution is to use young, fit

people to pretend to be old. However, this raises a problem of its own, how

similar is the accidental fall of a frail person to the self-initiated fall of a young

person?

On the other hand, it is difficult to justify asking vulnerable people to fall

over in the lab in the hope of helping people just like them at some point in the

future. Alternatively, you could install devices into a care home and wait for

people to fall. Leaving a frail person on the floor to validate a crawl classifier

seems unreasonably cruel. Necessarily, ethical issues like this have limited this

area of research.

2.11 Rehabilitation

In rehabilitation, perhaps the most obvious use of Kinect is as a games con-

troller. Exergames, are games designed to aid the repetition of exercise, which,

while essential for recovery, can quickly become dull, and so compliance is no-

toriously low. This use of Kinect is sometimes referred to as the gamification

of physiotherapy [37, 139, 176, 222, 236, 122]. As well as aiding compliance,

it reduces the strain on physiotherapist staff, which frees them up to do more

demanding work. All the studies reported improvements in both compliance

and the patient’s condition.

Away from gaming, Gonzalez-Ortega et al. [79] built a system that used a

combination o Kinect and an RGB camera to automate the process of taking

measurements needed to perform a cognitive test on patients with a wide range

of brain damage issues.

Lin et al. [133] used a heuristic, template matching system to assess static

Tai Chi poses. The patients pose was extracted from Kinect as a set of joints

and Angles. The pose was then compared to and a template (a teacher with
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the perfect pose), using 0-2 scoring system. If all joints and angles were perfect,

the score would be 0, if both joints and angles exceed a threshold, the score was

2. The paper does not say what threshold they used. However, this approach

reveals a fundamental truth that small changes in body position are a normal

aspect of human pose.

Capecci et al. [32], worked with clinicians and used Kinect to record a

set of exercises routinely used in the rehabilitation from back pain. From the

recordings, they created a set of clinically relevant features based on both joint

angles and joint distances. They validated the Kinect recording with a six-

camera motion capture system and found good agreement between the two

systems. This work was later developed into the KIMORE dataset [34].

2.12 Assessment of Balance and falls-risk

The assessment of falls-risk with Kinect has been considered using different

movement types. Kargar et al. [111], used a combination of traditional gait

metrics (step duration, turning duration, number of steps) and anatomical

metrics (knee angle, leg angle and distance between elbows) as features to

train an SVM which was able to identify those at high risk of falls. Gianaria

el al. [77], found a correlation between scores on a frailty index and several

gait metrics. They also found a correlation between falls-risk and variability

in the torso angle while walking.

Others have chosen to automate pre-existing tests or gain new insights from

commonly used clinical tests. Garcia et al. [73] demonstrated the potential use

of Kinect in place of an instrumented mat for the Choice Stepping Reaction

Time (CSRT). They demonstrated a similarity of results between the two

devices. However, this work used healthy volunteers and was not validated

with potential fallers.

Ejupi et al. [61] used Kinect to record the 5x sit-to-stand of 79 participants.

In the non-instrumented assessment of falls-risk, the Sit-to-stand test gives a

good indication of lower body muscle function, i.e. sarcopenia, a key element in

the cycle of frailty (see Figure 1.1). As such, it has been shown that slow chair

rise is associated with falls-risk [256]. Ejupi et al. found the mean velocity of

the sit-to-stand transitions discriminated well between fallers and non-fallers.

Another common, non-instrumented test is TUG. TUG combines Sit-to-

stand with gait. Various studies have automated both of these tests. [91]
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Considered the TUG test. They segmented the sit-to-stand portions of the

TUG test of young and older participants using an SVM. They then extracted

three features, shoulder path curvature, trunk angle movement duration, as

well as the traditional TUG duration. Using these features, they were able to

show differences between the young and old populations but did not consider

the population of fallers.

In this thesis, the use of STS-5 and postural sway metrics (derived from

Kinect data rather than force plates), are used in the assessment of falls-risk.

These tests were selected because they can be carried out using less space than

gait-related tests.

2.13 Working with Skeletal Data

When considering the application of skeletal data for balance assessment, CoM

is an attractive way to represent upright balance. CoM provides everything

you would wish for in a representation. It is compact and explainable. i.e. it

elegantly reduces the high dimensional data into a low dimensional represen-

tation that is easy to understand and interpret.

In any consideration of representation, there is a tension between hand-

crafted features, automatically extracted features and explainability. This can

be thought of as a scale where, on the extreme right is automatically extracted

features, which can work well but are difficult to explain (the black box of deep

learning) and on the other linear regression of two easily understood metrics,

e.g. weight and Body Mass Index (BMI), which can be represented by a

straight line.

Added to this conundrum is the curse of dimensionality. How much data is

required to explain the difference you are looking for? As discussed in Section

2.2. The jointed structure of the human skeleton means that it has inherent

redundancy. This means the same movement can be achieved in different

ways. So how does one identify the significant dis-coordinations, which are

the physical signs of frailty?

Raptis et al. [197] noted that the joints of the torso have very strong

correlations. By applying Principal Component Analysis (PCA), as a linear

form of dimensionality reduction, they were able to reduce the seven joints of

the torso to a 3-dimensional vector, which they called the torso basis. Using

the torso basis as an origin point, they created a hierarchy of joints, related
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by their spherical coordinates. Joints directly connected to the torso, e.g.

elbow and knee, were called first-level joints and second level joints were those

joints attached to the first level joints, e.g. ankle and wrist. Head, hands

and feet were ignored. This generated 8×2 joint angles. This feature set is

invariant to the orientation of the camera and the individual, as it uses local

angles between joints as descriptors of movements, independent of the global

frame of reference. Miranda[156] refined this feature set to include the torso

inclination. This feature set achieved high recognition accuracy for a set of

well defined and large gestural movements.

In their work, related to the machine-evaluation of a dancer’s performance,

Alexiadis et al. [3] temporally align the movements of amateur dancers with

ground truth provided by professionals. Inspired by this work, Su et al. [235]

developed a system which uses Dynamic Dynamic Time Warping (DTW),

a method previously used in relation to handwriting and audio recognition,

to compare the movements of patients in their everyday life to a standard

set of movements. The aligned sequences were then classified (bad, good,

excellent), using an Adaptive Neuro-Fuzzy Inference System (ANFIS) which

uses a combination of ANN and fuzzy logic.

A drawback with DTW is that it does not perform well for periodic move-

ments, like waving. To address this issue, Wang et al. [253] proposed the

scaling of skeletons to a common standard, e.g. the mean distance between

the neck and spine-base joint of all the skeletons in the dataset. This allows

for the pair-wise distance between joints to be used as a robust and discrim-

inating feature. Following scaling, all the skeletons in a particular sequence

were aligned to the spine mid joint, as you would for any approach that uses

local descriptors. Vox et al. [249], suggest that there is an issue with this type

of normalisation. It tends to reduce the variance in movement for joints, close

to the origin joint. They found that moving the origin to the right-ankle joint

improved action recognition when using relative angles as features.

In spite of its criticism, DTW is still used to great effect. Anton et al.

[5] applied a template approach to exercise recognition, using three different

shoulder rehabilitation exercises, utilising DTW in the process. They scored

the quality of the movement by measuring the distance from the template to

the recognised movement, using dynamic time warping to align the movement

to the template.
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In a similar way, Gholami et al. [76] used DTW in the creation of a dis-

tance measure to quantify the degree of dissimilarity between the gait cycle

of Multiple Sclerosis Patients and healthy patients of a similar age. A dis-

tance approach is useful because it allows for scaling between ideal and severely

impaired. Also, distance metrics provide a useful scale to monitor progress

following during a course of rehabilitation

2.14 Automatic Feature Extraction and Rep-

resentational Models

So far, the use of handcrafted features has been discussed, which, in them-

selves, can act as dimensional reduction. Along with the explicit use of PCA

to reduce the dimension of features with high covariance, i.e. the torso joints.

The following section will discuss representational models as 1) a way of mod-

elling the inherent variance in skeleton features 2) the automatic extraction of

features from skeleton data.

2.14.1 Automatic Feature Selection

Convolutional Neural Networks (CNN)s have become the de facto means of

automatically extracting features, for 2D images, inspired by the brain’s visual

cortex and pioneered by Yann LeCun [121]. In 2012 an implementation of this

technique won the ImageNet competition [116] and sparked the revolution in

deep visual computing.

Du et al. [56], used a CNN to extract salient features from stacked vectors

of skeleton joint positions that represent a whole movement. To allow the

CNN to extract features, the matrix was converted to an image of a set size,

thus enabling movements of different lengths to be accommodated. This type

of feature extraction creates features that naturally capture local dependencies

which are scale-invariant.

1D convolutional networks are also possible. The essentials of convolving a

filter, learned by backpropagation, is the same as for 2D CNNs. However, the

signal and filter have only one dimension. 1D convolutions have found uses

in all kinds of signal processing, and it is by recasting human movement as a

multi-channel times series problem that allows for the use of 1D CNNs in this

context. Chi et al. [39] used data from an array of body-worn accelerometers,
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placed on key positions, to train a 1D CNN to classify a series of static and

dynamic movements.

2.14.2 Representational Models

As discussed above, a templating approach can be useful in creating distance

metrics, which can be used to indicate the severity of a particular condition or

to monitor recovery. The downside of the templates, discussed so far is that

they have a low tolerance for spatio-temporal variation within movements.

Unfortunately, this is a key characteristic of human movement.

To address this issue, one can build models which learn their own internal

representation of the essence of the variation. Once trained, these models can

be used, in inference instead of the input data, so making the over-all system

more robust.

Houmanfar et al. [101] demonstrated the use of a Hidden Markov Model

(HMM) model to calculate a distance score between healthy individuals and

those who had undergone hip or knee surgery. The model was, not only able

to quantify the current status, but it was able to track improvements during

rehabilitation.

Capecci et al. [33] proposed a Hidden Semi-Markov Model (HSMM) to

score the performance of patients during rehabilitation.

In the same year that Du et al. published [56], they also published [57] the

paper suggested that splitting the skeleton into five parts (Torso, left and right

arms, left and right legs). In their paper, they used a hierarchical Recursive

Neural Network (RNN) to model movements at different scales, so combining

local and global features into a cohesive map of human movements.

In the sections above, a distinction has been drawn between feature ex-

traction and representation. However, in reality, CNNs build compact rep-

resentations of inputs, separated by distance or time, depending on how the

network and its input are configured. For instance, Zhu et al. [272] proposed

an automated method for “data mining” joint co-occurrence, using LSTM Li

et al. [132] proposed an alternative system of discovering co-occurrence using

CNNs. In this network, the x,y,z positions of the skeleton joints were treated

as separate channels, as one might, the three channels of an RGB image. The

CNN was able to automatically learn the co-occurrence, between joints.
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CNNs and LSTMs, can also work well together, each with a distinctive

role. Reyes et al. .[198] used a combination of 1D convolutions and Long

Short Term Memory (LSTM) to build a model that can differentiate between

Parkinson’s Patients and healthy individuals.

2.14.3 Autoencoders

The models, discussed above are trained by supervised methods. However,

there is a class of models that are trained in an unsupervised fashion, Autoen-

coders [26]. They learn a more compact representation of the input by, first

encoding the input to a latent vector and then decoding it back to the original

input. Although no separate labels are used, hence unsupervised, the network

still needs an error signal to train properly. The label used for this type of

training is the original input, and it is through the process of backpropaga-

tion that the essential features are discovered. Autoencoders can provide a

non-linear version of PCA. The compact features (latent vectors) can be used

to train separate discriminative models. Alternatively, autoencoders can be

considered a model in their own right and can be used directly in inference.

This type of model is often used for anomaly detection. Autoencoders, can be

constructed from any normal ANN structure, Multilayer Perceptron (MLP),

CNN, RNN or a combination.

Vakanski et al. [1], used an LSTM autoencoder to reduce the dimension-

ality of skeleton data. They then used a mixture density network to produce

a log-likelihood score, which they appropriated as a movement quality score.

Jun et al. [107] compared the performance of features extracted from

two autoencoders, based on RNN structures (LSTM / Gated Recurrent Unit

(GRU)) to raw skeleton data. All three representations were passed to an ex-

isting discriminating model. Both sets of features, extracted using the autoen-

coder, performed better than the raw data. The LSTM autoencoder achieved

the best performance.

Butepage et al. [29] proposed an autoencoder that was extensively trained

on generic mocap data. They suggested that this model could then be fine-

tuned (in the transfer learning sense), to achieve good generalisation with

small quantities of specific data.
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2.15 Clinical Datasets

As discussed in section 2.8, HAR is leading the way when it comes to new

techniques for exploring Kinect data. Jegham et al. [104] provides a good

overview of the state-of-the-art, and Firman’s review [66] provides a good idea

of the types of dataset available.

While HAR datasets are plentiful, datasets containing recognised Clini-

cal assessments are scarce. To address this gap, the KINECAL dataset was

created, detailed in chapter 6. It is hoped that research carried out using the

dataset will lead to a range of objective assessments, for balance and movement

impairment, which can be carried out away from the lab.

2.16 Machine Learning

In this section, a background to machine learning is presented. Both generic

concepts and details of specific techniques are discussed. The application of

many of the techniques in this section have already been covered. This section

provides a background to accompany what has come before.

2.16.1 Types of Machine Learning

Supervised learning

The task of supervised learning is to estimate a function f(x), which can map

an input to an output. During training, this function is learned by comparing

pairs of inputs, typically an array or matrix of values, to a label, typically a

single value. Once trained, the model can then infer labels from unseen inputs.

The labels can be continuous, in the case of regression or discreet, in the case

of classification.

The model learns by minimising the distance between the estimates and

the labels. The distance provides an error signal and guides the model to find

the optimum solution for the training set. The general assumption is that the

training set is a good sub-sample of the general population. If the model fits

the training data and a wide range of unseen data, it can be said that the

model generalises well. Often a regularisation term is added to the optimiser

to help the model to generalise better to unseen data.
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Unsupervised Learning

Unsupervised learning asks the question “can underlying relationships be dis-

covered through examining the data alone, without the direction of labels.”

It essentially is trying to find the probability distribution of p(x). A Classic

example of unsupervised learning is clustering. Common techniques include

K-Means clustering and Expectation-Maximisation (EM). The fundamental

assumption of clustering is that data is not evenly spread across data space.

Instead, it clusters into high data-density areas, which contain innately sim-

ilar things (things belonging to the same class). In between, there are areas

of low data density, which is where the decision boundaries lie. Furthermore,

the transition from high to low-density regions should be smooth. Training a

model on a single class (the normal case) produces a model which can be used

in anomaly detection. Any sample that does not fit into the distribution of

the normal case can be thought of as being anomalous. This is useful when

the event that is to be detected is rare. Moreover, distance metrics can be

constructed that quantify how far away from the normal case the detected

event lies. This approach is common in bank fraud detection, as new methods

of fraud constantly appear.

Principal Component Analysis (PCA) can also be thought of as a form

of clustering and so unsupervised learning. The assumption here is that high

dimensional data can be projected onto a low-dimensional manifold, thereby

capturing the essence of the high-dimensional data while removing redundant

elements. PCA achieves this by first calculating the co-variance matrix be-

tween all of the high dimensional features, then calculating the eigenvectors

(principal components) and associated eigenvalues (magnitude of the eigenvec-

tors) for each dimension. The dimensionality reduction is achieved by keeping

only those principal components that explain the majority of the variance

between the features. i.e. those with the largest eigenvalues. Graphing the

relationship between principal components reveals the clusters.

2.16.2 Machine Learning Algorithms

Bayes’ theorem

Broadly speaking, Machine Learning is the ability of a system to make pre-

dictions. Modern implementations of machine learning rely on powerful com-

puters, but its origin starts back in the 18th-century when Thomas Bayes
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discovered the theory that bears his name, first described in Philosophical

Transactions of the Royal Society of London [10]. Bayes’ theorem extends ba-

sic probability to allow you to change your belief that something will happen

based on past events, described as follows:-

• P(A) is the probability of event A occurring

• P(B) is the probability of event B occurring

• P(A | B) is the probability of A occurring given B occurred

• P(B | A) is the probability of B occurring given A occurred

• P(A,B) is the probability of A and B occurring simultaneously (joint

probability of A and B)

The joint probability of A and B happening together is

P (A,B) = P (A|B) ∗ P (B) = P (B|A) ∗ P (A) (2.1)

Which simplifies to

P (B | A) =
P (A | B)P (B)

P (A)
(2.2)

This is the classic form of Bayes’ Theorem. The power of Bayes’ theorem is

that you can use iteration to refine your estimates, collecting new data as you

go. The posterior probability of one iteration becomes the prior probability for

the next round. As you proceed, your estimate gets better. Eventually, your

estimate will converge to a stable state. An iterative approach is the basis of

most machine learning algorithms

Regression

In 1805 Adrien-Marie Legendre published the least square method for finding

the best-fit line through a graph, that defines a linear relationship [123]. This

was the first form of regression analysis. Linear regression is still used today

but has now been joined by a range of other forms of regression which can take

into account a wide variety of non-linearities. Polynomial Regression: Joseph

Diaz Gergonne, 1815 [230], Logistic regression: David Cox, 1958 [46], Ridge

regression: Hoerl and Kennard, 1970 [98]
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Markov Chains

In 1913 Andrey Markov developed the idea of a Markov chain [145]. A Markov

chain allows you to make future predictions based on the present state and

the likelihood of transitioning to a different state. All of the transitional

probabilities are clearly stated.

Hidden Markov Models

In the mid 1960’s Baum, Leonard developed the idea of hidden Markov models

[9]. In hidden Markov models, the probability of the transition from one state

to the next is not known and is not observable directly. However, you can

observe the emissions from the system. Hidden Markov Models have been

used to model sequence problems like speech recognition and human action

recognition. The hidden layers work in a similar way to the hidden layers

of a multi layer perceptron, discussed later, and are able to model complex

systems.

Perceptrons

Developed by Frank Rosenblatt in 1957 [205]. The perceptron represented a

radical departure in inference. Inspired by the networks of organic neurons,

in the brains of animals, Rosenblatt constructed ANN using valves. Like

modern ANNs, Rosenblatt’s ANNs were able to learn mappings from input to

outputs, using gradient descent to optimise a set of weights between neurons.

He demonstrated how perceptrons could be used as a linear classifier or a linear

predictor.

The expectation for this new type of machine learning was high, but re-

search stalled as the perceptron proved difficult to train, especially for more

complex problems. In 1969 the idea of building artificial neural networks was

all but killed, due to a wilful misinterpretation of Minky and Papert’s book

Perceptrons [155]. The suggestion was that this type of network could only

model linear relationships. Although this is true for single layer perceptrons,

the issue goes away when you construct networks of perceptrons with more

than one layer, i.e. MLP, a fact recognised by Minsky and Papert at the time.

However, the damage was done, and it would be nearly 20 years until the

subject was revisited. This is commonly known as the dark ages of neural

networks.
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2.16.3 Statistical Machine Learning Models

During the years when neural nets were out of favour, statistical forms of ma-

chine learning were developing rapidly, K - Nearest Neighbour - 1967 [143],

Decision Trees - 1975 [195] , K-mean Clustering - 1982 [136], Bayesian Net-

works - 1985 [182] , SVM - 1993 [45], Random Forests - 1995 [240]. These

methods form the backbone of statistics-based machine learning.

Nearest Neighbour

The Nearest Neighbour algorithm, classifies data based on similarity to a pre-

viously classified set of points i.e. clustering. The simple Nearest Neighbour

Search (NNS) [115] algorithm was quickly superseded by the K-Nearest Neigh-

bours (K-NN) approach [67]. The K refers to the number of neighbours taken

into consideration, so a K of one is just the NNS algorithm, a K of 5 would

consider the 5 nearest neighbours. A new data point is classified based on the

majority rule. The K value is usually arrived at either by trial and error or by

using the elbow method [237].

K-mean Clustering

To some extent, K-mean clustering can be seen as an extension of the K-NN

approach. The term was first coined by Mac Queen in 1967 [143]. K-mean

clustering tries to assign new data to an existing partition based on the mean

value or centroid of the existing partitions (to start with, these mean values

are randomly generated). However, each assignment is then followed by an

update step in which the centroids are updated, in light of the new data.

K-mean came to prominence in the 1980s after Stewart Lloyd published the

accepted method for determining k-means clustering in 1982 [136]. Although,

a similar method was published by Forgy in 1965 [69].

Decision Trees

Decision trees were first described by Ross Quinlan in 1975, in the book Ma-

chine Learning, vol. 1, no. 1. [195] The first formal publishing of the ID3

method of constructing Decision Trees was published in 1986 [194]. This

method was then superseded by the C4.5 method [196]. The method essen-

tially recursively applies 2 rules. Given a set of X cases 1) if all cases in X are

labelled with the same class, the leaf node is labelled with that class. 2) If there
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is more than one class, choose an attribute of the data which has 2 or more

variations, i.e. gender (male, female). Partition X into the subsets X1 and

X2. now recursively apply rule 2) to each subset. Decision trees are powerful,

simple and quick to calculate. However, they can suffer from overfitting.

Random Forests

Random Forests were first described by Tin Kam Hoin 1995 [240] in relation to

handwriting recognition. Random Forests are constructed of a large number

of decision trees. However, by deliberately restricting the number of features,

each tree represents the overfitting issues associated with decision trees do not

arise. The features which are included are chosen randomly. Each tree then

represents a subspace of the overall space. By using the assembly of all of the

trees, you get a model that is quick to calculate and reduces the likelihood of

over-fitting.

Support Vector Machines

In 1993 Vladimir Vapnik demonstrated that his Support Vector Machine (SVM)

[45] could out-perform the neural networks that his colleagues, at Bell Labs,

were using for hand writing recognition. He came up with the ideas of SVMs,

30 years earlier while working on his PhD at the Institute of Control Sciences

in Moscow. The technique defines a hyperplane that can separate the two

classes, using the maximum margin to define the line of best fit, as defined by

equation 2.3.

f(x) = wT + b (2.3)

where b is the bias and w is weight vector, that is normal to the line. To

separate two classes with labels -1 and 1 solve the equation so that for class 1,

wT + b = 1 and for class 2, wT + b = −1. Therefore the line with the biggest

margin between the two classes is described by wT + b = 0. The total margin

is computed by maximising
∥∥ 2

~w

∥∥
Initially, SVMs were used as linear classifiers but, soon the use of kernel

tricks were employed, which projected the data to be separated, into higher

dimensional space [25]. This allows for more complex hyperplanes to be de-

scribed. Although, generally thought of as a binary classifier, multi-class clas-

sification systems can be constructed by building several one vs all classifiers,
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Figure 2.15: Linear separation by SVM

i.e. class 1 vs all other classes, class 2 vs all other classes etc. In the classifi-

cation step, all the classifiers are run, and the one that produces the greatest

margin between classes is declared the appropriate class for that particular

sample [228]. Until the recent rise of deep learning, SVMs were seen as the

first best candidate for binary classification problems.

Gaussian Naive Bayes GNB

Gaussian Naive Bayes (GNB) [257] use Bayes theorem to separate samples

using the maximum likelihood that a sample is drawn from a particular distri-

bution. The ’naive’ in the name referrers to the assumption the model makes

that each parameter, used in the estimation, is independent, even and maybe

especially if they are not.

2.16.4 Neural Networks - reborn

During the dark ages, some kept the faith. Chief amongst the proponents of

Neural Networks was Geoff Hinton. However, the lack of an elegant method

of error correction meant neural nets were still not seen as a robust method of

machine learning. This issue was addressed in 1986 when Rumelhart, Hinton

and Williams applied back propagation to the problem [207]. In the same

year, Rina Dechter coined the phrase Deep Learning [51]. Hinton went on

to published a set of landmark papers on various applications of multi layer

architectures and popularised the phrase deep learning, as applied to artificial

neural networks. His efforts were helped by the huge increase in computing

power over the same period. But it was not until Krizhevsky, Sutskever,
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and Hinton published their seminal paper ”ImageNet Classification with Deep

Convolutional Neural Networks” in 2012 [116], that Deep Learning rose to

its current popularity. Key to the success of their approach was the use of

Graphics Processing Units or GPUs, until then the preserve of gamers.

Multi Layer Perceptrons (MLP)

With the difficulties of training, ANNs addressed the promise of Rosenblatt’s

work became a practical reality. MLPs are the classic universal approximater,

i.e. they are able to approximate most functions [100, 127]. A three-layer

MLP is regarded as the simplest practical configuration, consisting of an input

layer, an output layer and a hidden layer sandwiched in between. While to

some extent, the input layer is directed by the input signal and the output

layer is directed by the label, the hidden layer is free to set its weights to

best approximate f(x). These layers can be stacked much deeper and, as will

be discussed shortly, can contain other types of neurons besides perceptrons.

These highly layered or deep networks is where deep learning derives its name.

Modern MLPs use a variety of activation functions, including sigmoid,

tanh and ReLU, the latter being the most common in MLPs. These activa-

tion functions introduce non-linearity between layers and so allow MLPs to

estimate non-linear functions, while allowing the network to smoothly adjust

its weights and biases. Like earlier ANNs modern MLPs use gradient descent

during learning. However, modern networks use the process of back propa-

gation, outlined by Yann Lecun in his 1986 paper [120] to transmit a set of

corrections back through the network. These corrections are guided by an er-

ror signal, calculated as a loss between the output and a known label. As with

activation functions, the modern computer scientist has a large array of loss

functions to choose from, mse, mae, binary cross-entropy, to name but a few.

Through repeated rounds of training and error correction, the f(x; θ) required

to transform x to y is learned, where θ represents the learned parameters.

Deep Networks

In the case of just one hidden layer, one can think of the function being

f(x; θ), as stated above. For networks with more layers, each layer can be

thought of as contributing a function in a chain, which can be represented as

f(x1(f(x2f(x3)); θ) where [1:3] represent layers. Essentially the more layers a
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network has, the wider range of functions it is able to estimate, and so the

better the network is able to generalise [13, 80]. Weighed against this factor

must be the need for more data when training deeper networks and the spectre

of over-training.

Regression via Neural Networks

In regression, the purpose of the network is to estimate a continuous variable,

for example, estimate the asking price of a house, based on an input vector

of features, such as footprint, number of floors, number of bedrooms, etc. In

this case, a good option for the output layer would be a single neuron with a

sigmoid activation function.

Classification via Neural Networks

For a classification task, you would change the single output neuron used for

regression. For n number of neurons were n = the number of classes needed to

be modelled. By applying a softmax activation function, the network converts

the probability of an input lying in a particular class to a hard category.

2.16.5 Recurrent Neural Networks (RNN)

The networks discussed so far are regarded as feed-forward networks as training

takes place in the forward direction and error correction in the backwards

direction. If you take a feed-forward network and loop it back on itself, you

get a Recurrent Neural Network. This looping makes RNNs ideally suited to

learning repeating patterns in time series data. At every step in the time series,

the network sees new information Xt plus the output of the previous step ht.

Figure2.16 shows this loop for a single neuron in a similar way to HMM. This

architecture gives two distinct advantages over feed forward networks. 1) they

can handle inputs of arbitrary lengths 2) they share weights across several

time steps. The shared weights act as a memory of what came before. If

one extends the universal approximation idea, an RNN, with enough hidden

units, it should be able to approximate any sequence-to-sequence mapping [88].

However, the problem of uncontrolled feedback rears up. Hence, the gradients

used in back propagation either explode or vanish all together [106, 12, 96].
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Figure 2.16: RNN: conceptually an RNN is just a feed forward network which
at each time step can take in new information and a memory of the past
outputs, Xt is the input plus ht, the output of the previous step. Reproduced
from [173]

Long Short Term Memory(LSTM)

To address the issue of exploding and vanishing gradients Hochreiter and

Schmidhuber [97] introduced LSTM cells. Replacing simple neurons with

LSTM cells, addresses the gradient problem by, allowing one LSTM cell to

control the flow of data from the previous LSTM one. Figure 2.17 shows the

parts of an LSTM cell in detail. In addition to the output of the previous cell

(ht − 1) Each LSTM cell has a cell state (Ct), that carries information from

one cell to the next. 3 gates, Forget, Input, and Output, (each consisting of a

sigmoid activation and a pointwise multiplication), add or remove information

from the cell state signal based on the input of ht − 1 and xt. Information

flows through the cell in the following manor. 1) the forget gate calculates ft

by looking at ht−1 and xt and outputs a number from 0-1 for each number in

the cell state (1 meaning remove this and 0 meaning keep this and all shades

inbetween, this also applies to the other two gates). 2) i) a tanh activation is

used to create the vector C̃t , by scaling ht− 1 and xt between -1 and 1 ii) the

input gate uses a sigmoid activation to decide what should be input (it), iii) a

candidate vector (it ∗ C̃t ) is generated by the pointwise multiplication of the

two vectors. 3) in this step Ct is created, by multiplying ft and adding it ∗ C̃t.

4) finally the output of the cell (ht) is calculated i) first a tanh is used to scale

the cell state value between -1 and 1 ii) then this output is multiplied by the

output, of the output gate, which is passed out as ht.
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Figure 2.17: LSTM cell: The structure of an LSTM cell, is a MLP in its own
right. Multiple layers of LSTM cells can learn complex time-series relation-
ships, without the issues of exploding or vanishing gradients. Recreated from
commons.wikimedia.org.

Gated Recurrent Units (GRU)

GRU units are a related, but computationally simper than the LSTM cells

[40]. In a GRU unit, the cell state and the hided states are merged, as are the

forget gate and input gate, shown in 2.18. Both kinds are popular, but LSTM

has become the default architecture for RNN applications.

Figure 2.18: GRU: Similar to an LSTM unit but the the cell state and the
hided states are merged, as are the forget gate and input gate. Recreated from
commons.wikimedia.org.
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2.16.6 Autoencoders

Autoencoders are a class of unsupervised neural network which learn a more

compact representation of the input by, encoding and then decoding the input.

This output is then compared to the input and by back propagation the essen-

tial features are discovered. The encoder takes an input of x and produces a

lower dimensional version (z). This process can be generalised to the equation

z = q(x). The decoder then reconstructs the original input, generalised as:

x′ = p(z). The structure of a typical autoencoder is shown in Fig 2.19.

Figure 2.19: Autoencoder: The layers of an autoencoder are arranged to
allow for the encoding and decoding of an input. The original input is used as
an error signal in training.Recreated from commons.wikimedia.org

Autoencoders can use any type of neuron or even gated units (LSTM or

GRU). By applying the same naming convention used with MLPs, any autoen-

coder with more than three layers is called a deep autoencoder. Autoencoders

are often used as a form of dimension reduction. In this mode, you can think

of them as a non-linear version of PCA [95]. The latent representation is then

used as the input to any of the models discussed so far.

However, in truth, they are models in their own right [8]. by learning, in an

unsupervised way, to reconstruct inputs from the latent layer they must have

learned a model of the data [207]. If the autoencoder is trained on “normal

cases” for instance, healthy adult participants carrying out a test for movement

impairment, the autoencoder will build a model of a healthy movement and will

be able to reconstruct that movement with a high degree of faithfulness. If the

trained network tries to reconstruct the recording of someone with impairment,
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the Autoencoder will make errors in the reconstruction because it has never

seen this type of input before. The reconstruction error can be quantified

using any number of metrics (MSE, euclidean distance, cosine distance, etc)

and can serve as a measure of distance from normal.

2.17 Conclusion

The assessment of falls-risk is still principally assessed by clinical tests carried

out by trained staff. As well as the inherent variation in such measures, the

number of people available to undertake such assessments makes preemptive

screening for falls-risk impractical. This means that anyone referred for help

at a falls clinic will have already suffered a potentially life-changing fall.

In research, force plates have become the most widely used tool for balance

assessment. In spite of inherent issues, force plates can still provide powerful

insights. However, their use has never become widely incorporated into clin-

ical practice. The cost and setup requirements still remain a barrier. Some

commercial devices have been developed, but they are more general in nature

and try to identify deficits in the systems of balance rather than looking at

metrics that can be more directly associated with falls-risk.

An alternative to the use of force plates can be found in motion capture.

Motion capture can track each joint, individually, and so provides a more com-

plete picture of balance. However, they are expensive, and their setup-time

can be longer than the time needed to carry out a clinical assessment. Marker-

less motion capture, such as Kinect, provides a practical alternative method of

capturing human movement. When used in conjunction with machine models,

this area of research could provide an alternative approach to the assessment

of physical impairment.

Much effort has been put into the field of HAR, leaving the clinical use

of Kinect a much smaller field of research. This is perhaps surprising as an

ageing worldwide population need cost-effective solutions to identify those at

risk of falls.

Appropriate publicly available data is an issue which the KINECAL dataset

goes some way to address. Recent research into internal data representations

of complex data shows promise in disentangling overlapping classes. Further-

more, the application of appropriate distance functions can provide an objec-
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tive method of quantifying impairment. In addition, this approach provides a

method of monitoring long term changes.
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Chapter 3

Techniques and Methods

3.1 Introduction

In this chapter, the techniques and methods, either used directly in this thesis

or discussed in related work, is discussed. The intention is to provide a tech-

nical background. The equations detailed here are referred to throughout the

subsequent chapters.

3.2 Joints and Skeletons

Whether collected by marker-based of markerless systems, joint positions can

be described as points in 3D space. For the Kinect, the world view is right-

handed, the origin is the centre of the camera, as shown in Figure 3.1

Figure 3.1: Kinect coordinate system: Z axis projects from the depth
camera, with x and y orthogonal to it his image is recreated from here.
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3.2.1 The Human Body

Mapping the x,y,z axis of the connect onto the recognised anatomical directions

maps x to ML, y to Superior-inferior (SI) and z to AP. The three-axis of the

Kinect can be mapped to the recognised anatomical planes of the human body.

These are the sagittal, frontal(also called coronal) and transverse planes, as

shown in Figure 3.2. The sagittal plane maps to the ZY plane of the Kinect.

Similarly, the frontal plane maps to the XY plane, and the transverse plane

maps to the XZ plane.

Figure 3.2: Body planes: The planes of the body, are Sagittal, which bisects
the body left to right; Coronal (Also know as Frontal), which bisects the body,
front to back and Transverse, which bisects the body head to tail. This image
is adapted from an open-sourced figure.

3.3 Working with Kinect skeletons

3.3.1 Filtering

As with any system that digitises real-world data, Kinect’s signal is bound

up with noise. To address this issue, the recordings were filtered using a

Butterworth fourth-order zero-lag filter. The low-pass cut-off frequency was
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established as described by Winter [263]. The frequency used to filter the data

used in this thesis was 8 Hz.

3.3.2 Pose Normalisation

The skeleton output of the Kinect gives the distance from the camera to the

subject, in metres. This data was converted from the camera coordinate sys-

tem to a person-coordinate system, with the spinebase joint at the origin. This

was achieved by subtracting the spinebase coordinates of the first frame from

the joint coordinates of all subsequent frames, using equation 3.1.

pn,i(x, y, z)∗ = Pn,i(x, y, z)− P0,SPINE BASE(x, y, z) (3.1)

where pn,i(x, y, z)∗ represents the normalised position of the x,y,z axis of joint i

in frame n. P0,SPINE BASE(x, y, z) represents the position of the SPINE BASE

joint in first frame of the recording, and Pn,i(x, y, z) represents the positions

of joint i in frame n.

3.3.3 General Method for Calculating CoM

The centre of mass of any regular object can be calculated simply by the plumb

bob method [259]. The centre of mass of an irregular object is somewhat more

tricky. The Total Body Centre of Mass (TBCM), of a human body, can be

calculated by segmenting the body as described by Dempster [263]. The CoM

is calculated for each segment, TBCM is then calculated as a weighted average

of the CoM of all segments, using equation 3.2.

xTBCM =

∑
mixi
M

yTBCM =

∑
miyi
M

(3.2)

where xTBCM,y TBCM are coordinates of TBCM ;xi, yi are coordinates of

the i-th segment; mi is mass of the i-th segment; and M is the total mass of

all of the segment.
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3.3.4 Centre of Mass from Force Plate Data

Several methods of deriving CoM from CoP when using force plates have

been suggested. The Balance master [204] used for comparison in chapter 5

estimates a vertical projection of the Centre of Mass (CoM) from CoP data

using the method described by Morasso et al. [158]. This method assumes

that the body is rigid, and the CoP is mid-way between the two feet with

a single pivot at the ankle. The position of the CoM is assumed to be the

vertical projection of the CoP by 0.5527 of the person’s height and inclined by

−2.3◦ (estimated to be the average anterior lean when standing). See section

5.2.4

3.3.5 Centre of Mass from Kinect Data

To provide a method of calculating CoM, which does not require the weight

of an individual to be known, a method is used that estimates the position of

CoM directly from the skeletal structure of a human body. First described in

[124], it calculates CoM to be the 3D Euclidean mean of 3 joints of the Kinect

skeleton, Hip left, Hip right, Spine mid. as described in equation 3.3.

CoMx =
J1x + J2x + J3x

3

CoMy =
J1y + J2y + J3y

3

CoMy =
J1z + J2z + J3z

3

(3.3)

where J1 = HIP LEFT , J2 = HIP RIGHT , and J3 = SPINE MID. The

x, y, z components were calculated individually and then concatenated to form

a CoM triplet. i.e. [CoMx, CoMy, CoMz]. This essentially defined a 26th joint

in the skeleton graph.

3.4 Conclusion

This chapter provides a background to the common techniques used through-

out this thesis. However, it should be considered a background chapter as

salient details are provided in the methods sections of the experimental chap-

ters.
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Chapter 4

Preliminary Research

4.1 Introduction

As discussed in Chapters 1-3, Kinect is a portable and inexpensive device that

allows for the automatic tracking of anyone placed in front of it. The area of

HAR has seen many datasets created to help in that field. Sadly the same is

not true when it comes to the clinical use of Kinect. When this preliminary

research was undertaken, the largest dataset of clinically relevant movements

was the K3Da dataset [125]. It consists of, 26 young and middle-aged people

(18-48 years, 17 male and 9 female) and 28 older age people (61-81 years, 14

male and 14 female) carrying out the SPPB [85], plus the unilateral stance

[24]. In this study, not all of the movements available in the K3Da dataset

were considered. The movements used and the reason for their inclusion are

detailed in table 4.1

The K3Da dataset contains details of age, height and weight but does not

contain information about falls history. Therefore this work asks the ques-

tion, can one tell the difference between young and older base solely on their

movement?

This research was presented at the IEEE Systems Man and Cybernetics

conference in Banff in 2017.
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Table 4.1: Movements used in this work, along with the rational for inclusion

Movement
Name

Description Reason for inclusion

STS-5 Starting from a seated
position, rise up with legs
fully extended, then sit down
again, arms are held across
the chest. Repeat five times,
as quickly as possible.

This measure is indicative of
leg muscle power, associated
with falls and physical
impairment [239].

Quiet
standing,
eyes open

Standing feet close together,
eyes open and arms extended
parallel to the floor. Test is
terminated after 10 seconds.

This is used to provide an
indication of postural sway in
a quiet stance, two feet on the
floor.

Quiet
standing,

eyes closed

Standing feet close together,
eyes closed and arms extended
parallel to the floor. Test is
terminated after 10 seconds.

Removing the visual cues
make the participant rely on
vestibular and somatosensory
feedback. Both these systems
are effected by age [61].

ULS, eyes
open

Standing on one leg, 6 inches
off the ground, arms extended
horizontally, eyes open. Test
terminated after 10 seconds or
when the second leg touches
the ground.

Balancing on one leg provides
a small base of support,
inducing postural sway.

ULS, eyes
closed

Standing on one leg, 6 inches
off the ground, arms extended
horizontally, eyes closed. Test
terminated after 10 seconds or
when the second leg touches
the ground.

During this exercise, the
individual must use the
vestibular and somatosensory
systems to maintain balance.

4.2 A Method to Distinguishing Young from

Older, in the KD3a Dataset

For this preliminary investigation, a pipeline was constructed, which takes an

exemplar approach to identify key poses which, when put together in time-

order, can represent a whole movement. This chapter demonstrates that these

exemplar motions can be used to separate young from old, using a range of

machine models. The machine models where SVM, random forest (the most

popular statistical approaches for binary classification) and a MLP. This was

done to see if a neural network could out-perform the statistical approaches.

Using, the methods outlined in Figure. 4.1, the process of feature encoding

and then the classification of an individual’s age-class, based upon their mo-

tion alone, was automated. The data processing steps were carried out using
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Matlab. Matlab was also used for classification by statistical machine learning.

Theano was used for classification by neural network. The following section

covers each step in detail.

Figure 4.1: Data processing pipeline: this pipeline was used to extract
features from the K3Da dataset.

4.2.1 Pose Normalisation

From the skeleton data, a series of matrices were constructed, one for each

frame of the movement (30 fps). The skeletons were normalised by aligning

all frames to the SPINE BASE joint of the first frame, using equation 4.1.

This moves the coordinate system from being camera centred to being skeleton

centred, and all measurements become relative to the start of the recording.

pn,i(x, y, z)∗ = Pn,i(x, y, z)− P0,SPINE BASE(x, y, z) (4.1)

where pn,i(x, y, z)∗ represents the normalised position of the x,y,z axis of joint i

in frame n. P0,SPINE BASE(x, y, z) represents the position of the SPINE BASE

joint in first frame of the recording, and Pn,i(x, y, z) represents the positions

of joint i in frame n.

4.2.2 Feature Encoding

In this study, the torso features detailed in [124], and described here, in Table

4.2 where used. Details of how each feature was calculated is shown below. In

addition to the CoM position, this feature set includes the torso’s inclination,

the body’s inclination, the torso joint positions and the x,y coordinates of

skeleton joints in the torso.
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Table 4.2: The features used in this study

Feature Description Vector length
CoM Mean position between Spine mid, Hip left and Hip right 3

Body Lean Angle Angle between Spine Mid and the ground plain 1
Torso Angle Angle between Spine base and Neck 1

Spine Distance Euclidean distance between Spine base and Head 1
Torso positions (ML plane) XY position of the torso joints 10

Body Lean Angle was calculated as the angle between the 3D coor-

dinates of the the SPINE MID joint and the GROUND PLAIN , using

equation 4.2. The GROUND PLAIN , was calculated as the euclidean aver-

age of the FOOT RIGHT and FOOT LEFT joints. Figure 4.2 shows the

relative position of each joint.

Figure 4.2: A diagram of the relationship between, an individual, being
recorded and the Microsoft Kinect camera. The salient joints are shown. The
BodyLeanAngle, is the angle between SPINE MID and NECK joints. The
TorsoAngle, is the angle between SPINE BASE and NECK joints. The
CoM is calculated as the euclidean average of the HIP LEFT , HIP RIGHT
and SPINEMID joints (modified, from [124])

Body Lean Angle = arccos

(
Smid.Gp

‖Smid‖ ‖GP‖

)
(4.2)

where Smid is the SPINE MID (x,y,z) vector andGp is theGROUND PLAIN

(x, y, z) vector.
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Torso Angle was calculated, in a similar fashion as Body Lean Angle,

using equation 4.3.

Torso Angle = arccos

(
Sbase.Nk

‖Sbase‖ ‖Nk‖

)
(4.3)

where Sbase is the SPINE BASE vector (x,y,z) and Nk is the NECK vector

(x, y, z)

Centre of Mass (CoM) of any body, is the mean point that the mass of that

body acts. For a human body standing erect, the centre of mass is located

around the navel. CoM was calculated using equation 4.4. The x, y, z com-

ponents were calculated individually and then concatenated to form a CoM

triplet.

CoMx =
HIP LEFTx +HIP RIGHTx + SPINE MIDx

3

CoMy =
HIP LEFTy +HIP RIGHTy + SPINE MIDy

3

CoMy =
HIP LEFTz +HIP RIGHTz + SPINE MIDz

3

CoM = [CoMx, CoMy, CoMz]

(4.4)

where HIP LEFT , HIP RIGHT , SPINE MID are the joints, indicated

on Figure 4.2

Spine Euclidean Distance was calculated between the 3D coordinate of

the spine base and head joints, using equation 4.5.

distance =
√

(S Bx −Hx)2 + (S By −Hy)2 + (S Bz −Hz)2 (4.5)

where subscript x, y, z represent the x, y, x axis of the SPINE BASE (S B)

and HEAD (H) joints.
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Torso positions in ML plane represents the x,y positions of the torso joints,

calculated using equation 4.6

ML TORSO POS = [S Bx, S Mx, S Sx, Nx, Hx, S By, S My, S Sy, Ny, Hy]

(4.6)

4.2.3 K-mean Clustering

K-mean clustering (covered in section 2.16.3) was used to convert a time-

series of differing lengths (depending on individual recordings), into a set of

representative poses of a known length. The k was determined empirically for

each type of motion, 5 for chair rise and 2 for all other movements.

4.2.4 Motion Representation

The data frames nearest to each centroid were concatenated together, in time-

order to produce a 1D vector that provides an example of the whole motion.

A label was then added, 1 for young and 0 for older.

Simply choosing the centroid would not provide enough examples to train

the models. So more examples were collected using the following method:-

1. Each member of a cluster were ranked using Euclidean distance from the

centroid.

2. The closest 50% were selected. To ensure that each vector represents

the whole motion, only n number of motions were produced from each

time-series. Where n is the number of members in the smallest cluster.

This method produced a family of feature-sets that are representative of a

person’s motions. By providing a family of similar examples, the number of

examples retrieved from a time-series was increased, many times, without the

need to resort to synthesising data. This approach makes the models more

robust as they are trained on a diverse but representative feature-set.
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4.2.5 Model Training

Three classification methods were compared, SVM, Random Forests and Deep

Neural Networks. The SVM and Random Forrest were trained using Mat Lab,

and the Neural network was trained using Keras, with a Theano back end. The

neural network used was an MLP with two hidden layers and a 0.5% dropout

layer. The final class determination was made via two neuron softmax layer.

10-fold cross-validation was used to assess the effectiveness of each ap-

proach. This allows the results to be averaged over ten combinations of the

dataset.

4.3 Results

The results, summarised in Table 4.3, demonstrates the proposed method is

able to generate example motions that can be used to separate young from

older people, using a range of well know machine models.

The method identified mean exemplars of a motion and then collected

many similar examples of that motion from the time-series. In this way, enough

examples were generated to allow both statistical and deep learning methods to

discriminate between young and older people, with a high degree of certainty,

STS-5 marginally producing the best overall classification.
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Table 4.3: A comparison of the different machine models: All three
machine models were able to separated the extracted features

Model Acc Prec Recall F1score MCC

ULS,
eyes open

SVM 0.999 1.000 0.998 0.999 0.998
Random
Forest

0.998 0.998 0.998 0.998 0.998

Deep
Learning

0.977 0.977 0.979 0.978 0.976

ULS,
eyes closed

SVM 0.998 1.000 0.996 0.998 0.995
Random
Forest

0.999 0.998 1.000 0.999 0.999

Deep
Learning

0.985 0.983 0.993 0.988 0.986

Quiet Standing,
eyes open

SVM 0.999 1.000 0.998 0.999 0.997
Random
Forest

0.999 1.000 0.998 0.999 0.997

Deep
Learning

0.991 0.994 0.994 0.994 0.985

Quiet Standing,
eyes closed

SVM 0.995 0.994 0.994 0.996 0.992
Random
Forest

0.999 0.998 1.000 0.999 1.000

Deep
Learning

0.998 0.998 0.998 0.998 0.988

STS-5
SVM 1.000 1.000 1.000 1.000 1.000

Random
Forest

1.000 1.000 1.000 1.000 1.000

Deep
Learning

1.000 1.000 1.000 1.000 1.000

4.4 Discussion

There is a pressing need to develop a portable system that can help in the

assessment of falls risk. This need was recognised by Leightly et al. [125], when

they compiled the K3Da dataset. Currently, the most common way physical

impairment is assessed is through assessment against a clinical scale. This can

lead to inconsistency from assessor to assessor, and location to location [221].

K3Da is a dataset of movements used in clinical tests, captured, objectively

by Kinect V2.

This chapter details the first steps in developing a tool that could be used

by clinicians in detecting the changes in motion that advance with age. Its

utility was demonstrated by separating a random sample of young and older

individuals from K3Da.

As discussed in section 1.1 and chapter 7, while falls risk increases with

age, age cannot be the cause of different levels of falls risk between individuals

of similar ages. Unfortunately, K3Da lacks the labels, such as falls history,

essential for research into assessing falls-risk.

Working within the limitations of K3Da, a method was developed which

created feature vectors able to separate young from older, based solely on their

69



movements. Looking at the result section, all of the models produced similar

results, no form of classification was better than another. The research, de-

tailed in this chapter, developed a method of feature extraction, not a method

of binary classification. The method provides feature vectors that clearly show

differences between ages. However, no effort was put into explaining how the

encoding achieved this. Ultimately, this avenue of research was put to one side,

in favour of methods that could separate individuals of similar ages based on

falls risk. Although, future work could revisit this question.

That said, these results were encouraging and demonstrated that data de-

rived from Kinect could identify differences between groups of people based

solely on their movements. More importantly, this research was seminal in

shaping the question which this theses addresses, i.e. “can methods be devel-

oped which can identify those at risk of falls from a population of > 65 years

of age.” As distinct from “can methods be developed which can identify older

people based on their movements.” It also posed the question “what would a

dataset look like, that is well suited to answering the first question.”

4.5 Conclusion

In this work, an exemplar-based method was developed that can identify age-

related changes captured using a Kinect camera, looking at the age profile of

the KD3a dataset, shown in Fig 4.3. It is clear that this dataset is very po-

larised. This makes it ideal for studying gross age differences, but it is difficult

to answer the fundamental question posed by this Thesis, can machine models

be created that can identify physical impairments and relating to increased

falls-risk?

Figure 4.3: The age profile of KD3a: The graph shows the polarised nature
of the kD3a dataset, while this is perfect of looking at age related changes, it
makes identify those at risk of falls difficult
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The proposed method, detailed here, works well for a simple binary split

on age. Chapters 6 and 8 look at methods that focus on identifying physical

changes, which relate to mobility issues, and falls-risk in preference to age.

To enable this research, the KINECAL dataset was established, detailed

in chapter 6
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Chapter 5

A New Process to Measure

Postural Sway, Using a Kinect

Depth Camera

5.1 Introduction

Clinical tests for balance and physical impairment suffer from variation be-

tween assessors [221]. Conversely, posturography provides an objective mea-

surement of a person’s postural sway [92], based on the movement of the body’s

Centre of Mass (CoM), as calculated from quantitative ground reaction forces

as measured using a force plate. The work of Nashner et al. [167], Hasselkus

and Shambes [92] lead to the development of the SOT, which is implemented

in the SMART Balance Master (BM). SOTs involves static and reactive bal-

ance assessments that place emphasis on visual (eyes open/closed), vestibular,

or proprioceptive afferents that govern postural control.

The Balance Master’s SOT was selected because it is regarded as a valid

tool to investigate different aspects of balance [134, 157, 21] including falls-risk

amongst older adults [250, 162, 27], proprioceptive decline [47], the effects of

age and gender on postural control [87], and the effectiveness of balance-based

exergaming [215]. However, high costs and low availability of the specialist

equipment needed for posturography and SOT means they are not practical

for wide-scale screening [150].

The Kinect depth camera offers the potential to accurately and reliably as-

sess many aspects of human movement. However, their use as a posturographic
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device is underexplored. They are affordable, portable and can potentially be

used in a wide range of home or clinical settings. Previous studies [41, 71, 163]

have considered the use of Kinect as a way to replace marker-based systems

(e.g. Vicon, Qualisys). The near-universal conclusion of these studies is that

Kinect can be considered equivalent to the marker-based systems. However,

the use of depth cameras to assess postural sway as an indicator of postural

control is rarely considered. Our proposed approach addresses this gap. It

seeks to measure postural control by tracking CoM in an equivalent fashion to

the way it is measured by the most widely used means of assessing standing

postural control, i.e. force plates. Force plates are used in the assessment and

diagnosis of many conditions, including falls-risk [248, 165], and it is with force

plates that the Balance Master measures sway.

Yeung et al. [269] did consider Kinect’s use in posturography. The authors

outline an approach that uses Kinect to calculate the Total Body Centre of

Mass (TBCM) by segmenting the body, as described by Dempster [263]. In

the current study, a much simpler method of calculating CoM is demonstrated,

first used by Leightley et al. [124]. Leightley’s method takes the euclidean

mean of 3, well-tracked joints (HIP LEFT , HIP RIGHT , SPINE MID

to be a good estimate of the CoM position. Previous studies [269, 255] have

demonstrated that the accuracy of Kinect’s joint tracking is related to the

angle between the Kinect and the joint. This means that ankle and foot joints

are tracked poorly. Joints that have a less steep angle to the Kinect (e.g. the

hip joints) are tracked with high accuracy. Poor tracking of joints can cause

issues when estimating the TBCM, an issue that Leightley’s method avoids.

The human skeleton can be considered as a chain of connected joints meaning

the positions of knee, ankle, and foot joints affect the CoM position without

the need to consider them directly. Thus for an upright stance, the lengthy

calculation of TBCM is not required for our application.

5.2 Methods

5.2.1 Participants

This study was approved by the Manchester Metropolitan University Research

Ethics Committee. All participants provided written informed consent. Fif-

teen injury-free individuals (mean ± SD age: 42.3 ± 20.4 yrs; height: 172 ±
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11cm; weight: 75.1 ± 14.2kg; BMI: 25.3 ± 3.3 kg/m2; male = 11) took part in

346 trials during the completion of the six components of the SOT used by the

SMART Balance Master (NeuroCom International, USA), to assess postural

sway during static and dynamic challenges. A wide age-range was selected to

ensure a wide range of postural sway was recorded. Postural sway is known to

increase with age, as part of the normal ageing process. [2]. The age profile of

the participants was 6 young (20-30 years ), 5 middle age (31-59 years) and 4

older (>60 years). More details are shown in table 5.1

For this study, no individuals with a history of falls were included. Also,

several participants took part in more than one set of trials. This is a valid

choice, as this is a study of agreement between two methods, not an inves-

tigation to identify those with balance impairment. Note: this population is

not included in the KINECAL dataset, detailed in chapter 6, and the data

collected here is not used elsewhere.

Table 5.1: Table of participants: The table provides a breakdown of Age,
Sex, Weight, BMI and Age Class: Young (20-30 years), Middle Age (31-59
years) and Older (>60 years)

ID Age Hight Weight (kg) BMI (kg/m2) Gender Age Class
304 20 1.60 55 21.5 Male Young
303 23 1.79 90 28.1 Male Young
6020 24 1.81 82 25.0 Male Young
7020 24 1.8 75 23.1 Male Young
8020 25 1.73 81 27.1 Female Young
4000 24 1.81 66 20.1 Male Young
401 32 1.81 76 23.2 Male Middle age
5020 36 1.77 105 33.5 Male Middle age
3021 40 1.70 80 27.7 Male Middle age
9020 48 1.70 73 25.3 Male Middle age
10020 59 1.71 70 23.9 Male Middle age
3020 62 1.52 56 24.2 Female Older
4020 68 1.88 93 26.3 Male Older
501 74 1.56 67 27.5 Female Older
601 76 1.6 57 22.3 Female Older

5.2.2 Procedure

The participants were simultaneously recorded using the EquiTest software

that comes bundled with the SMART Balance Master and the Skel recorder.

Skel recorder is custom software, detailed in section 5.2.4. It processes the out-

put of the Kinect depth camera into a 2D CoM path. Participants performed
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the six components of the SOT while standing on the force plates incorpo-

rated into the Balance Master. The Balance Master was controlled, and data

recorded using the EquiTest software. The Kinect was controlled using the

Skel recorder. Participants wore a safety harness throughout all assessments

to prevent falls. All six components of the SOT (outlined below) were carried

out in accordance with the Balance Master operator instructions. The instruc-

tions require participants to stand on two legs approximately shoulder-width

apart with heels aligned to markers on the force plates [204].

The six components of the SOT are as follows: (a) eyes open, platform

fixed; (b) eyes closed to remove visual input; (c) eyes open with moving sur-

round, to create sensory conflict between visual input (simulating a moving

room) and vestibular inputs (a stable room); (d) eyes open and the platform

support rotating freely to disrupt somatosensory and proprioceptive feedback

from the feet and ankles; (e) eyes closed and the platform support rotating

freely; and (f) eyes open with moving surround and the platform support

rotating freely.

Two consistent trials for each condition were included in this study. In-

consistent trials and fails were excluded from further analysis. All assessments

were conducted in the sequence of (a) to (f), as recommended by the operator

instructions. This increases difficulty progressively. Each trial (an instance of

an individual carrying out one aspect of the SOT) was repeated twice, except

if the second trial was inconsistent with the first or was marked as a fail, in

which case the participant was allowed a third attempt. A trial was marked

as a fail if a participant touched the upright supports on the Balance Master

frame or relied on the safety harness to maintain an upright posture for any

reason.

5.2.3 Experimental Setup

Participants stood upright on the force plates of the Balance Master, facing

towards the large surround approximately 1m away. The surround is used to

create visual-vestibular conflict, but obscured the front view of the participant

(Fig. 1). Therefore, the Kinect was positioned to capture the rear-view of

the participant 2.5 m from the participant at a height of 1.2 m from the floor.

The distance was selected after pilot trials to confirm that people of all heights
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could be captured equally well while their feet were placed correctly, along the

foot markers on the force plates (Fig. 5.1).

Figure 5.1: Setup of Balance Master and Kinect V2, Depth Camera.

5.2.4 Recording of CoM path

Recording of CoM, using SMART Balance Master

The Balance Master [204] estimates a vertical projection of the Centre of

Mass (CoM) from Centre of Pressure (CoP) data using the method described

by Morasso et al. [158]. This method assumes that the body is rigid and

the CoP is mid-way between the two feet with a single pivot at the ankle

(Fig. 5.2). The vertical projection of the CoM is estimated to be 0.5527 of

the person’s height (represented by length c in Fig. 5.2). The value for a is

obtained by taking the CoP value from the force plates and inclining it by

−2.3◦, estimated to be the average anterior lean when standing. The force

plates have a sampling rate of 100 Hz.
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The CoM path was recorded using the EquiTest software, bundled with

the SMART Balance Master. The CoM path is plotted in two dimensions,

mediolateral and anterior-posterior.

Figure 5.2: Diagram of sway angle calculation used by the Balance
Master [204].

Recording of CoM path, using Skel recorder

Kinect measures the distance from the participant to the camera in three di-

mensions, using the time-of-flight of an infrared beam, at a rate of 30 Hz. From

this information, Kinect fits a human skeleton to a 25-joint model [216], which

has good agreement with skeletons generated from marker-based systems [269].

The Skel recorder is custom software, written in C# using Visual Studio

and the Kinect SDK 2.0. It takes a series of skeleton frames and derives a

CoM path. The pipeline of the Skel recorder is shown in Fig. 5.3. The steps

of the pipeline are as follows: 1) The ML-axis of the skeletons are reversed,

to take into account the rear position of the Kinect camera; 2) Each skeleton

frame, is aligned to the first frame of the recording, making all subsequent

movements relative to this initial position [246]; 3) The position of CoM is

estimated, as described, in the section “Frame-wise calculation of CoM”; and

4) The ML and AP elements of the CoM path are saved to disk.
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Figure 5.3: The pipeline of the Skel recorder.

Frame-wise calculation of CoM The position of the CoM was calcu-

lated, frame-by-frame by taking the euclidean average of the left-hip, right-hip

and mid-spine joints, as defined by equation 5.1, first used by Leightley et al.

[124]. This method estimates the position of CoM in three dimensions without

needing to rely on the assumptions made by the Balance Master.

CoMML =
HIP LEFTML +HIP RIGHTML + SPINE MIDML

3

CoMSI =
HIP LEFTSI +HIP RIGHTSI + SPINE MIDSI

3

CoMAP =
HIP LEFTAP +HIP RIGHTAP + SPINE MIDAP

3

CoM = [CoMML, CoMSI , CoMAP ]

(5.1)

whereHIP LEFT , HIP RIGHT , SPINE MID are joints, defined by Kinect.

The ML,SI,AP components were calculated individually and then concate-

nated to form a CoM triplet.
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Figure 5.4: Kinect V2 Skeleton, the joints used to estimate CoM and
the CoM position, are labelled.

5.2.5 Creation of CoM Time Series

As noted by Prieto et al. [189], when calculating sway, precise foot placement

is hard to achieve. This makes meaningful comparison between individuals

difficult. The same can be said for the comparison between methods. A

more robust approach is to centre the time series on the mean position of each

recording. In this study, this is achieved using equation 5.3. The mean position

for the raw ML and AP time series (MLraw and APraw), was calculated using

equation 5.2. In both equations, n is the number of time steps, and i represents

the frame index.

¯ML raw =
1

n

n∑
i=i

ML rawi

¯AP raw =
1

n

n∑
i=i

AL rawi

(5.2)

MLi = ML rawi − ¯ML raw

APi = AP rawi − ¯AP raw

(5.3)

The straight-line-distance, in two dimensions, between the current CoM

position, and the Mean CoM value, at each time step, was calculated, using
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equation 5.4, this is also known as the resultant distance.

RDi =
√

(MLi)2 + (APi)2 (5.4)

Concatenating the calculated values, for each time step (i) produces the final

resultant distance time series (RD), one for each method. These time series

were used in subsequent analysis of the two methods.

5.2.6 Calculation of Sway

RMS of sway (Sway RMS) was calculated, for each method using equation

5.5, where RD is the time series calculated in equation 5.4 and n is the number

of time points in the time series [189, 110]. MATLAB 2019a was used to

implement equations 5.2, 5.3, 5.4 and 5.5

Sway RMS =

√∑n
i=1RD

2

n
(5.5)

5.2.7 Data Exclusions

A total of 56 recordings were removed for various reasons, as detailed in Table

5.2. The remaining 288 records were used in the analysis.

Table 5.2: Table of Exclusions

Reason for exclusion Description #

Extra recordings
For each trial, if a participant did not complete
two consistent trials, they were offered a third trial.
Only the two most representative trials were used.

29

The participant fell The participant fell while attempting a trial. 3
Recordings
out-of-sync

The start of the Kinect recording was not coincident
with the start of the balance master recordings.

14

Over-recording
of a previous trial

One trial was recorded over another trial. 6

Malformed
skeletons

Kinect was not able to track all the joints consistently
during the recording.

5

The harness
caused confusion

Kinect mistook the harness for a limb. 1

Total 58

5.2.8 A priori Sample Size Calculation

A priori sample size estimation was carried out to ensure there was enough

power to detect differences between the two methods, using recordings made
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while experimenting with the best position for the Kinect camera. Utilising

the mean and standard deviation of this data, the sample size required for

each trial was calculated, using G*Power. The results are shown in Table 5.3,

along with the actual sample size used for analysis. In each case the sample

size used exceed the number calculated from G*Power.

Table 5.3: A priori power calculations G*Power was used to calculate the
sample size required for 95% power. The data came from an initial study, used
to ensure the placement of the Kinect camera was correct.

Sample size
@0.95 power

Actual
Sample Size

a) Quiet standing
eyes open

12 44

b) Quiet standing
eyes closed

11 48

c) Surround moving
eyes open

29 50

d) Support moving
eyes open

45 50

e) Support moving
eyes closed

5 48

f) Support & surround
moving eyes open

11 48

5.2.9 Statistical Tools

The main analysis used in this study was the Bland-Altman test for agreement

between methods [19]. In addition, several supporting analysis were carried

out. below are details of the tools used for each analysis

• Descriptive statistics and t-tests were carried out using SPSS (v. 21.

IBM, US). Significance was accepted at p<0.05.

• Normality was assessed using the D’Agostino-Pearson [50] method, im-

plemented in the scipy python library [210].

• Bland-Altman plots were created (Fig. 5.6), using all available data for

each method, without averaging over repeated measures. Repeatability

and Bland-Altman tests were carried out using the Analyse-it plugin for

excel (v. 5.40.2).
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5.3 Results

This section explains the test that were used to compare the two methods of

assessing, upright postural sway.

5.3.1 Repeatability

Repeatability, also known as Precision, was calculated for each method, ex-

pressed as standard deviation (SD) and Repeatability Coefficient (CR), pro-

viding the 90% CI of standard deviation, so removing outliers [130]. Both the

proposed pipeline and the Balance Master, show increasing variability with

increasing balance challenge. With eyes open conditions showing the best

agreement (Table. 5.4).

Table 5.4: Repeatability of each method, Balance Master (BM) and
the Proposed Pipeline (PP), has measured by the Standard Deviation
(SD) and Repeatability Coefficient (CR).

Method SD (mm) 95% CR
a) Quiet standing

eyes open
PP 0.85 2.35
BM 0.88 2.45

b) Quiet standing
eyes closed

PP 0.84 2.33
BM 0.72 2.00

c) Surround moving
eyes open

PP 1.19 3.31
BM 1.14 3.16

d) Support moving
eyes open

PP 1.50 4.17
BM 1.49 4.15

e) Support moving
eyes closed

PP 3.40 9.41
BM 2.86 7.93

f) Support & surround
moving eyes open

PP 7.37 20.43
BM 7.94 22.00
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5.3.2 Agreement of Postural Sway Measurement

As presented in many papers, initially, the two methods were compared using a

Pearson correlation coefficient. The values generated from each method show

a high correlation to each other. See Table 5.5 for details.

Table 5.5: Pearson correlation coefficient between the two methods:
The Pearson correlation coefficient demonstrates a high correlation between
the two methods

Parson’s r
(a) Quiet standing - eyes open 0.951

(b) Quiet standing - eyes closed 0.928
(c) Surround moving - eyes open 0.947
(d) Support moving - eyes open 0.929

(e) Support moving - eyes closed 0.930
(f) Support & surround moving - eyes open 0.977

However, correlation does not necessarily mean agreement. To explore

further the relationship between the values generated by both methods, a set

of plots was created which graph the two sets of values, one against the other.

A line of equality was also plotted (solid black). If the two sets were in perfect

agreement, values for each would lineup along this line. These plots are shown

in Figure: 5.5. The dotted line is a trend line that shows the direction of

the agreement. Bias between the two methods can be thought of as the space

between the line of equality and the trend line. Broadly, the bias increases

as the difficulty increase, but is there a way to quantify the bias? This is a

question which Bland and Altman address in their 1986 paper [19]. The paper

suggests a plot of the difference between the methods against their mean may

be a better choice, as it is difficult to know the true value, so the mean of the

two is the best estimate possible. This plot is known as the Bland-Altman

plot.
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(a) Quiet standing - eyes open (b) Quiet standing - eyes closed

(c) Surround moving - eyes open (d) Support moving - eyes open

(e) Support moving - eyes closed (f) Surround and support moving -
eyes open

Figure 5.5: Correlation of postural sway derived from the SMART
Balance Master and Kinect depth camera. The line of equality is
shown (continuous line) as well as the linear regression (dotted line).

For a Bland-Altman plot to work well, the data should be normally dis-

tributed. More particularly, the difference between values for each method

should be normally distributed. Table 5.7, shows that difference values were
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normally distributed. However, Table 5.6 shows that the range of values pro-

duced by each method was not normal, in 3 out of the 6 cases. Bland and

Altman noted that this is often the case when dealing with biological data.

[19]

Table 5.6: The normality of the difference between the two methods
given by D’Agostio-Pearson tests for normality.

Balanced Master
α = 0.05

p
Proposed Pipeline

α = 0.05
p

a) Quiet standing
eyes open

No 0.00 No 0.00

b) Quiet standing
eyes closed

Yes 0.25 Yes 0.08

c) Surround moving
eyes open

Yes 0.24 Yes 0.31

d) Support moving
eyes open

No 0.00 No 0.00

e) Support moving
eyes closed

No 0.00 No 0.01

f) Support surround
moving eyes open

Yes 0.22 Yes 0.11

Table 5.7: The normality of the difference between the two methods
given by D’Agostio-Pearson tests for normality.

The difference between
the two methods

α = 0.05
p

a) Quiet standing
eyes open

Yes 0.83

b) Quiet standing
eyes closed

Yes 0.16

c) Surround moving
eyes open

Yes 0.28

d) Support moving
eyes open

Yes 0.10

e) Support moving
eyes closed

Yes 0.17

f) Support surround
moving eyes open

Yes 0.41

Figure. 5.6) shows the output of the two methods plotted on a Bland-

Altman plot. The bias can be quantified as the difference between 0 (the

perfect agreement) and the mean difference between methods. This provides a

measure of disagreement. The bias is plotted on the figure as a bold horizontal

line. The Bland and Altman paper, suggest that ultimately the acceptable

level of disagreement is up to interpretation and use case. The bias seen in

this comparison is between 0.12mm (0.38) for quiet standing eyes open and

1.69 (1.63) for the most dynamic movement ((f) support and surround moving)

even young, healthy people fall over when attempting it.
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Figure 5.6: Bland-Altman plot of the SMART Balance Master vs the
Proposed Pipeline’s estimates of postural sway. Bold horizontal line
indicates the mean, dashed horizontal lines indicate two standard deviations
from the mean. The shaded areas represent associated confidence intervals.
The figures marked a-f represent the six conditions of the SOT test.
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The most severe interpretation of the Bland-Altman plot is to carry out a

one-sample t-test on the difference between all of the values for each condition,

using a hypothesised difference of 0. When this test is carried out, only the

eyes open conditions (a) and (c) show no significant difference. All of the

results are summarised in table 5.8.

Table 5.8: A summary of the agreement of postural sway derived
from the two methods: Balance Master (BM) and the Proposed
Pipeline (PP). The mean, standard deviation (in brackets) - within each
method, mean standard deviation (in brackets) - between the methods (bias),
the 95% Confidence Interval (CI) and Limits of Agreement (LOA) and the
significance of the t-test are shown. Eyes open conditions show no significant
difference between methods, shaded in grey

BM
mean sway

(mm)

PP
mean sway

(mm)

Mean difference
BM-PP (bias)

(mm)
95% CI for Bias LOA

t-test
(p)

a) Quiet standing
eyes open

2.96 (0.94) 2.84 (1.10) 0.12 (0.38) 0.01 to 0.23 -0.62 to 0.86 0.16

b) Quiet standing
eyes closed

4.45 (1.36) 3.99 (1.45) 0.45 (0.53) 0.30 to 0.61 -0.58 to 1.48 3.39E-07

c) Surround moving
eyes open

4.10 (1.35) 3.99 (1.46) 0.09 (0.50) -0.06 to 0.24 -0.90 to 1.08 0.21

d) Support moving
eyes open

6.12 (2.84) 5.53 (2.68) 0.64 (0.82) 0.41 to 0.88 -0.93 to 2.22 9.10E-07

e) Support moving
eyes closed

17.93 (6.29) 16.29 (6.37) 1.64 (2.18) 1.0 to 2.27 -2.58 to 5.85 3.99E-06

f) Support surround
moving eyes open

16.12 (8.51) 14.43 (7.79) 1.69 (1.63) 1.13 to 2.24 -2.03 to 5.41 1.93E-07

5.3.3 Implications of the Increased Disagreement

The eyes open condition show the most similarity in repeatability. Looking at

the bias between the two samples, conditions where the participant is standing

on a firm surface, with eyes open, agree the best. However, as the balance

challenge increases, either by removing vision or by perturbing balance by

standing on a pivoting platform, the two results increasingly disagree.

The differences seen in these results may be explained by the fundamentally

different approaches each method takes to estimate the CoM position and are

discussed in the following section.

87



5.4 Discussion

In this study, a pipeline is proposed that is able to assess upright human

postural sway. It makes use of an inexpensive and portable depth camera

(Kinect V2), in combination with custom software that calculates CoM directly

from skeleton joints. A pilot study was carried out, that compares the postural

sway calculated from the proposed pipeline and a Balance Master, obtained

during a Sensory Organisation Test (SOT).

The repeatability of each method was assessed (Table. 5.4), i.e. the agree-

ment between repeated measures. The comparison was based on the (SD) and

reliability coefficients (CR), for each method. Both methods show an increase

in variability with task difficulty. The SOT test uses this variability to identify

balance defects. In the SOT, the ratio of sway measured in quiet standing eyes

closed (b) vs quiet standing eyes open (a) is used as a measure of the reliance

on the somatosensory system to balance. This is also known as the Romberg

Ratio. The reliance on the visual system is given by the ratio of support

moving, eyes open (d) vs quiet standing eyes open (a) (the measures with the

greatest similarity in the repeatability test) and the reliance on the vestibular

system is given by support moving eyes closed (e) vs quiet standing eyes open

(a). In all these assessments, quiet standing eyes open (a) is used as a baseline

measure[204]. This matches the intuition that in a given population, the abil-

ity to balance with eyes open is essential and so well-practised. However, the

ability to balance well, when challenged in unfamiliar ways produces a wider

range of scores, seen as increasing variance, for the most challenging tasks.

The agreement between the two methods was examined, using Bland-

Altman plots (Fig. 5.6), and one-sample t-tests, with an hypothesised, mean

difference of zero. The plots show the mean difference between measures (bias)

is smallest for the most every-day tasks (eyes open with the least challenge),

but bias increases with increasing task difficulty. The t-test suggests that the

two methods only agree well for eyes open conditions with a firm surface. To

understand how these disagreements may occur, it is worthwhile considering

two elements. 1) the way the human body reacts to quiet standing vs its reac-

tion to perturbation. Winter, in his paper on human balance [265] noted that

the human body pivots about the ankle (the ankle strategy) in quiet stance

and about both hip and ankle in reaction to a perturbation (the hip strategy),

such as standing on a pivoting platform. The Balance Master uses a pivoting

88



platform to induce perturbation in the tests which generated the biggest dis-

agreement between methods (d to f). The induced perturbation, causing an

increase in postural sway amplitude. Black et al. [18] noted that quite stand-

ing with eyes closed also increases postural sway amplitude, and so a switch

to a hip strategy, for some people. In condition (b) quiet standing with eyes

closed, an increase in bias was seen, compared to condition (a), although the

increase is less than for conditions d-f, where the pivoting platform induces a

greater postural sway. These observations lead to the second point. 2) The

way the two methods estimate CoM is quite different. The Balance Master

uses the most common method of estimating CoM, when using force plates, the

inverted pendulum model, which ignores the hip and knee joints. In order to

estimate the position of the CoM, using this method, an average value for the

static incline of the body and an average offset from the position of the CoP,

proportional to a person’s height, is used to relate the CoP to the CoM [204].

The proposed pipeline calculates CoM from the Kinect data, as described in

equation 5.1; its estimate of CoM relates directly to the skeletal structure.

Although it uses the values of only 3 joints (left hip, right hip and spine mid),

these joints do not exist in isolation. Their movements are influenced directly

by the movements of other anatomical structures such as the ankle, knee and

hip joints, as well as the spine, arms and head. Previous reports questioned

the assumptions used routinely to estimate CoM from CoP data. For exam-

ple, Cretual et al. [48] suggested the single pendulum model should be used

with caution to estimate CoM during more challenging conditions. Lafond et

al. [118] also found error in this method of calculating CoM for more diffi-

cult poses, and Yeung et al. [269] demonstrated that Kinect performed better

when recording more challenging balance tasks compared with force plates.

Benda et al. [11] demonstrated that the accuracy of CoM estimated from CoP

reduces with increased dynamics. As discussed in [19] it is difficult to get at

the ground truth with any form of measurement. Using the theory of large

numbers, the intuition is that a mean value of an event, measured by two

methods, should come closer to that ground truth. However, this assumption

can come in stuck when, as in the current case, the two methods of assessing

a quantity are based on differing assumptions. So which assumption is closer

to the ground truth?

Cretual et al. [48] point out the fact Winters original work [265] concern-

ing the bodies control of CoM, discusses CoP as a way of understanding CoM,
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based on the available technology at the time i.e. force plates. In the interven-

ing time, CoP displacement and CoM are sometimes conflated, often because

CoP is easy to measure directly using force plates. Even when CoM is used,

too often, the single pendulum model is seen as a gold standard, when in fact

is has many limitations. After examining many methods of estimating CoM,

the paper’s recommendation is the use of marker-based motion capture. The

paper then goes on to say how this is not feasible for widespread clinical use

because of cost and set up time.

Yeung et al. [269] carried out a three-way comparison between VICON

(a well established marker-based motion capture system), Kinect V2 and a

force plate (AMTI OR6 series, Advanced Mechanical Technology Inc. USA)

to capture Total Body Centre of Mass (TBCM), under 4 conditions (1) Quite

standing, on a firm support - eyes open, (2) Quite standing, on a firm sup-

port - eyes closed, (3) Quite standing, on a foam pad - eyes open, (4) Quite

standing, on a foam pad - eyes closed. Based on the findings of [48]. There is

strong evidence for saying that the VICON system gets closes to the ground

truth concerning CoM. Yeung’s paper found acceptable agreement between all

three devices when measuring quite standing on a firm surface, but Kinect

out performed the force plate for Quite standing on a foam pad - eyes closed.

The paper concludes that ”Overall, Kinect is a cost-effective alternative to a

motion capture and force plate system for clinical assessment of TBCM sway”.

From the literature, there is evidence to say that the disagreement between

methods is due to the limitations of the way the Balance Master measures

CoM. Moreover, the values for CoM measured by the proposed method may be

closer to the real CoM value. Certainly, it suggests values for CoM, provided

by the proposed method, can be used in objective and useful measures of

postural sway. Cost-effectively in locations away from the lab. Ultimately this

is the aim of the work presented in this thesis.

However, future work is warranted to empirically, demonstrate the reasons

for the differences, seen here. This future work should provide a three-way

cross-validation between CoM, measured using the proposed pipeline, a high

quality marker-based system and a high quality force plate. Separately, future

work should examine the potential of the proposed pipeline in the identification

of individuals with balance impairments.

For now, one can say that the proposed pipeline shows no significant dif-

ference to the Balance master when measuring sway for quiet standing, eyes
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open and quiet standing with a moving surround, eyes open.

This study was designed as a proof of concept and shows that assessment

of postural control by depth camera is worth pursuing. Especially for appli-

cations where devices, such as the Balance Master, are too expensive or too

cumbersome to be practical.

5.4.1 Limitations, Considerations and Future Work

(1) Our assessments were completed in laboratory conditions. In more infor-

mal settings, there is the potential for Kinect to confuse non-human elements,

such as table and chair legs for human limbs. (2) The current study only

includes healthy individuals. Future work should extend these initial findings,

to a larger group, including individuals who suffer from recurrent falls. (3) In

this study, the Balance Master was used to automate the SOT. The Balance

Master uses pivoting force plates and a pivoting surround to produce chal-

lenging balance conditions. In order to further the cause of machine-based

balance assessments in informal settings, future work will need to utilise more

portable means of challenging balance. These include compliant foam pads

and visual conflict domes. For instance, the Clinical Test of Sensory Integra-

tion and Balance (CTSIB) [217] uses these items to replicate the SOT test,

without the need for costly equipment. (4) Balance Master’s force plates are

not as accurate as more modern designs. Future work should incorporate the

newer plates, ideally as part of a three-way validation with a marker-based

system.

5.5 Conclusion

In this study, a novel pipeline to assess upright postural sway is proposed.

The pilot study compared the results of the proposed pipeline to results from a

Balance Master, obtained from simultaneously testing 15, healthy individuals (

age: 42.3 ± 20.4 yrs, height: 172 ± 11 cm, weight: 75.1 ± 14.2 kg, male = 11).

Our initial findings suggest that the methods agree well for static assessments

of balance, with eyes open, but the agreement reduces under more challenging

conditions. That said, the pipeline warrants further investigation, with a larger

cohort, including people for whom falling is an ongoing issue.
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In chapter 6, the creation of a large dataset of clinical movements is de-

tailed, captured using the pipeline discussed here. The dataset was recorded

in the lab, community centres and private homes. It contains the recordings

of healthy adults, healthy older and older fallers. Each participant was asked

to carry out a range of movements regularly used in clinical assessment. It

also contains rich medical, demographic and socioeconomic dat
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Chapter 6

KINECAL: A Dataset of

Clinically Significant

Movements

6.1 Introduction

There is a dichotomy at the heart of falls risk assessment. Lab-based research

tends to use expensive equipment (force plates and marker-based motion cap-

ture) to quantify balance impairment. Even here, the costs mean that force

plate data tends to dominate. As discussed in section 1.2.1, in clinical prac-

tice, observational tests are the dominant form of assessment. This means

there is difficulty in translating state of the art research into clinical practice.

In addition, clinical tests which have shown great utility in falls risk assess-

ment, such as the STS-5 and 3m walk, are difficult to instrument, using a force

plate. These tests could be instrumented using marker-based motion capture,

but even if one ignores the cost of such systems, the space required and set

up time makes this option impractical for everyday assessment. Markerless

motion capture could provide a practical solution to bridge the gap between

research and practice. As demonstrated in this thesis, markerless solutions can

provide joint angles, akin to those derived from marker-based solutions, and

sway metrics, akin to those derived from force plates. As discussed in section

2.5.3, these systems are not without issues, but they can provide insight, diffi-

cult to achieve any other way, away from the lab. However, research into their

use as an objective method of assessing balance, frailty and falls risk is under
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researched. As is often the case, there is a chicken and egg situation when it

comes to appropriate data on which to base the development of useful methods

of assessment using these devices. The proposed dataset, named KINECAL

addresses this need.

Kinect, and more generally Red Green Blue + Depth (RGB+D) data, is

used extensively in HAR research [104]. This area of research has made huge

strides in recent years, driven mainly by the availability of a diverse range of

publicly available datasets [66, 211, 135]. On the face of it, it would seem

this type of dataset would be useful in the clinical study of human movement.

However, the focus is quite different. The purpose of HAR, is to identify a small

set of human movements (actions) from a nearly infinite set of possibilities.

The clinical use of motion capture seeks to quantify the quality of a prescribed

set of movements. In addition, anonymised clinically-important, metadata

such as age, height, weight, and meaningful labels of impairment are rarely

included in HAR datasets.

Firman [66] in his review of RGB+D datasets, detailed 45 datasets, 44

of which were recorded using Kinect. Of these datasets, only one, the K3Da

dataset [125] had movements that are useful in the assessment of balance

disorders. This dataset was used in the work detailed in chapter 4. It has

some metadata, but it is limited to age, height and weight.

Since the publication of the Firman paper [66], a few datasets have been

created to address these issues. The Multimodal Dataset [15] contains clin-

ically relevant movements (Timed get-up-and-go (TUG), a single 30 second

chair stand, a 45 second unilateral stance, and 2-minute step test). However,

the dataset comprises just 21 subjects, evenly split between young, and old

and none of the participants had known movement impairment at the time

of testing. The KIMORE Dataset [34], has 78 subjects, 44 healthy mean age

36.7 ± 16.8 years and 32 suffering from motor dysfunction mean age 60.44

± 14.2years. The dataset includes clinical scoring of the movements. How-

ever, the movements do not relate directly to falls likelihood. Table 6.1 pro-

vides a comparison between other datasets, containing clinical movements and

KINECAL.
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Table 6.1: A comparison of datasets: Comparing KINECAL to previ-
ous datasets that contain clinically significant movements, the advantages of
KINICAL can clearly be seen.

Multimodal Dataset K3Da KIMORE KINECAL
[15] [125] [34]

Number of
participants

21 54 78 90

Depth X X X
Skeletons X X X X

Clinical
evaluation

X X

Falls related
labels

X

Postural Sway
Metrics

X

Rich metadata X
Recordings in

informal settings
X

6.2 Clinically Significant Movements

For KINECAL, 90 participants were recorded performing eleven movements

commonly used in the clinical assessment of balance impairment, frailty and

falls-risk. Details of how each movement was carried out are shown in Table

6.2. This list of movements was chosen because they are widely used singularly

or in combination to assess falls-risk. [23, 256, 141] used the STS-5 to assess

falls-risk. [75, 144, 129] found unilateral stance could distinguish between faller

and non-fallers. 3m walk is used in many assessments of gait and falls risk 2.9,

and [153] found an association between slow walking and falls risk. [187, 219]

suggest the use of TUG as in falls risk assessment.

Together Quiet standing, eyes open (EO) and eyes closed (EC), Semi-

tandem stance, Tandem stance, 3m walk and 5x sit to stand (STS-5) consti-

tute the SPPB [83]. Another test that combines, Quiet standing on a firm

surface and quite standing on a foam surface, EO/EC is the mCTSIB [43].

Using KINECAL, Many more combinations can be synthesised from existing

literature or invented anew.

The data from the recordings are made available as depth videos and joint

positions (skeleton data). The RGB videos are not part of this dataset due to

privacy concerns.

Upright stances are the most commonly used stance when assessing balance
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using force plates. From the output of a force plate, a range of sway metrics

can be derived. The KINECAL dataset also includes the most commonly

used sway metrics, calculated for each recording. These are discussed later in

section 6.6.

Table 6.2: A description of each movement in the dataset, and how they were
explained to the participants.

Description

5 times sit to stand (STS-5)
From a seated position, with your arms crossed over
your chest, rise extending your legs fully, then sit
down again. Repeat five times, as quickly as possible.

Quiet standing,
Eyes open, Firm surface

Stand feet close together, eyes open and arms by
your side. The test is terminated after 20 seconds, or if lost balance.

Quiet standing,
Eyes closed, Firm surface

Stand feet close together, eyes closed and arms by
your side. The test is terminated after 20 seconds, or if lost balance.

Quiet standing,
Eyes open, Foam

Same instructions as for standing on a firm surface.

Quiet standing,
Eyes closed, Foam

Same instructions as for standing on a firm surface.

Semi-tandem Stance

Stand with the toe of the back foot against the side of
the heal of the front foot.
Ether foot can be forward, which ever is most comfortable.
The test is terminated after 20 seconds.

Tandem Stance

Stand with the toe of the back foot against the
back of the heal of the front foot.
Ether foot can be forward, which ever is most comfortable
The test is terminated after 20 seconds.

Unilateral stance,
Eyes open

Stand on one leg, whichever is most comfortable, with the other leg
flexed 6 inches off the ground, hands by your side, eyes open.
The test is terminated after 20 seconds or when the
lifted leg touches the ground.

Unilateral stance,
Eyes closed

Stand on one leg, whichever is most comfortable, with the other leg,
flexed 6 inches off the ground, hands by your side, eyes closed.
The test is terminated after 20 seconds or when the
lifted leg touches the ground.

TUG
From a seated position, stand, and walk to a marker
3m away and return to the seat

3m walk
From a standing position, walk to a marker
3m away, and return to the seat
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In designing KINECAL, previous studies relating to ageing and falls-risk

were examined. Some studies have compared extreme populations, e.g. young

(<35 years old) vs older (≥65 years old) populations [189, 114, 63]. This polar-

isation is useful if the question is, “how does postural sway change with age”.

However, using this type of data alone can be problematic when applied to

falls-risk, making it difficult to differentiate between factors relating to age and

factors relating to falls-risk. Other studies [58, 151, 192] exclusively compared

older populations of fallers and non-fallers. However, this approach can make

it just as difficult to separate the two types of changes. The KINECAL dataset

contains recordings from a range of ages, grouped to help aid the separation

of falls-risk from age effects. As with the majority of studies, the proposed

dataset uses self-reporting history of falls as a key label [160, 174, 199, 4].

Inspired by studies, such as [177, 200, 244]. The dataset has also been labelled

using several well-known clinical tests. Falling into the impaired range ≥ 2

these test labelled an individual as being Clinically-Impaired (discussed in

section 6.4.3). As well as labels of impairment, The dataset incorporates rich

metadata, derived from a questionnaire which the over 65’s were asked to fill

in, details of which are provided in section 6.7

6.3 Participants

90 participants were recorded for the KINECAL dataset, carrying out a range

of well recognised clinical tests. The recordings were made using a Kinect

V2 and custom software, written using Visual Studio 2015 and the Kinect

SDK 2.0. Ethical approval was obtained from the University Research Ethics

Committee (ethics approval ref: 020517-ESS-CC(1), and ref: SE161757). All

participants provided written informed consent. Participants were excluded if

they had any of the following:

• Treatment for cancer in the previous 2 years

• Joint replacement in the previous year

• Broken a leg, or hip bone or had a joint replaced, e.g. hip or knee, in

the previous 2 years

• Any lower limb amputation
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• Suffering from neuromuscular conditions (e.g. multiple sclerosis)

• Have been diagnosed with Alzheimer’s or Dementia

• Cannot read and communicate in English, either verbal or written.

6.4 Dataset Labelling

6.4.1 Self-reported Labels

All participants were asked the following question. “Have you had any fall

including a slip or trip in which you lost your balance and landed on

the floor or ground or lower level in the past 12 months?”. This is the

standard question used when collecting falls history [258]. Possible answers

were [None, One, Two, Three, Four or more].

Based on the answer they gave and their age, participants were split into

the following groups:

• Healthy-Adult, members of this group, were all < 65 years old and

gave the answer None

• Non-Faller, members of this group, were all ≥ 65 years old and gave

the answer None

• Self-reported-Faller, members of this group, were all ≥ 65 years old

and gave the answer One, Two, Three, Four or more

Table 6.3 details the numbers in each group, along with their age range

and the gender split.
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Table 6.3: Grouping of Self-reported Labels: This table shows the split
between the different groups, in terms of mean age, total numbers and gender
split. A description of each group is also included.

Description Age (± 95% CI)
Total

Number
Male Female

Healthy-Adult
< 65 years,
no history of falls
in the last 12 months

mean age 46.2 (±22.7) 33 22 11

Non-Faller
≥ 65 years,
no history of falls
in the last 12 months

mean age 73.3 (±11.7) 33 16 17

Self-Reported-Faller
≥ 65 years,
reported ≥ 1 falls
in the last 12 months

mean age 72.6 (±13.6) 24 15 9

6.4.2 Single and Multiple Fallers

Someone who answered one to the falls history question might simply be the

victim of bad luck and not someone with a high likelihood of future falls.

Someone who declared they have fallen multiple times is more likely to suffer

future falls and could be thought of as a “true faller”. The Self-reported-

Faller group can be further split, using this distinction into:

• Self-reported-Faller s, members of this group, were all ≥ 65 years old

and gave the answer One

• Self-reported-Faller m members of this group, were all ≥ 65 years old

and gave the answer Two, Three, Four or more

Table 6.4 details the numbers in each group, along with their age range

and the gender split.

Note: the Self-reported-Faller s and Self-reported-Faller m groups

are made up of members of the Self-Reported-Faller group. Participants

are multipally labelled, which provides flexibility in use. However, it is up to

the individual researcher to decide how to best use these labels
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Table 6.4: Grouped Sub-labelling of Self-reported-Fallers : This table
shows the split between the different single ( s) and multiple fallers ( m), in
terms of mean age, total numbers and gender split. A description of each
group is also included.

Description Age (± 95% CI)
Total

Number
Male Female

Self-reported-Faller s
≥ 65 years,
reported 1 fall,
in the last 12 months

mean age 72.3 (±15) 15 7 8

Self-reported-Faller m
≥ 65 years,
reported >1 fall,
in last 12 months

mean age 73.1 (± 11.7) 9 2 7

6.4.3 Clinical labelling

As discussed in section 6.2 KINECAL consists of recordings of 11 movements,

commonly used in clinical tests. The recordings provided an alternative means

of labelling participants. Moreover, one which relates to clinical tests of phys-

ical impairment, hence clinical labelling.

The clinical labelling was a two-stage process. 1) The recordings, for each

participant were played back and marked against accepted thresholds for phys-

ical impairment and falls risk, for each of the following tests: SPPB [85]; Slow

3m walk [153]; TUG [187, 219] and slow time to complete STS-5 [256]. 2).

Any individual categorised as impaired for a least two of these tests was la-

belled Clinically-Impaired in the dataset. Using this method, six people

were identified as belonging to the Clinically-Impaired group. Details of

this group are shown in Table 6.5. The thresholds of impairment for each test

are discussed below.

Note: the Clinically-Impaired group is made up of members of the Non-

Faller group (2) and Self-Reported-Faller group (4). Participants are mul-

tipally labelled, which provides flexibility in use. However, it is up to the indi-

vidual researcher to decide how to best use these labels

Table 6.5: Details of the Clinically-Impaired group: Details of, mean age,
total numbers and gender split. A description of this group is also included.

Description Age (± 95% CI)
Total

Number
Male Female

Clinically-Impaired
≥ 65 years
identified as impaired
by ≥ 2 clinical tests

mean age 80.3 (± 11.8) 6 1 5
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6.4.3.1 Thresholds of Clinical-Impairment

This section details the thresholds applied to each clinical test.

SPPB

The SPPB test was carried out and scored using the protocol in Appendix A.1.

Based on the SPPB score, the participant was classified using the scheme from

[83] and detailed in Table 6.6. Those who were classified as having Moderate

Limitations or Severe Limitations were marked as impaired, for this test.

Table 6.6: SPPB classification

Score Classification
0-3 Severe Limitations
4-6 Moderate Limitations
7-9 Mild Limitations

10-12 Normal

3m walk

Quach et al. [193] used a 3m walk, alone to assess falls risk in an 18 month

long, longitudinal study of 764 community-dwelling older people, mean age: 78

± 5 years. They concluded that a walking speed of < 0.6 m/s was associated

with an increased risk of falling inside. For a 3 m walk, this is equivalent to

a time of > 5 seconds to complete. Applying this threshold to the 3m walks

in KINECAL, anyone who took >5 seconds to complete the 3m walk, was

marked as impaired, for this test.

STS-5

Another longitudinal study was undertaken by Ward et al. Over 4 years they

studied 755 community-dwelling older people, mean age: 78.1 ± 5.4 years.

The study looked at SPPB as a predictor of injurious falls. The conclusion

was that the STS-5 alone was, enough to assess falls-risk. They suggested that

a time to complete ≥ 16.7 second my be sufficient to identify those at risk of

future falls. Applying this threshold to KINECAL, anyone who took >16.7

seconds to complete the STS-5 test was marked as impaired, for this test.
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TUG

Shumway-Cook et al. [219] found TUG to be a powerful test for fallers. They

used a population of 30 people, split evenly between two groups Non-Fallers,

(no historic falls in last 6 months) mean age: 78 ± 6 years, fallers (≥ 2 falls

in the last 6 months) by history mean age: 86.2 ± 6 years. They suggested

that those who take > 14 seconds to complete the TUG are at elevated risk

of falls. The Mc Kinly Laboratory [149] provides a reference for normative

scores for TUG, synthesised from the Shumway-Cook paper and 3 more [187,

142, 119]. This reference extends the recommendations of Shumway-Cook et

al. [219], as presented in Table 6.7. In spite of the other work, the value

presented in [219] remains the current recommendation to identify those at

elevated risk of falls. Applying this threshold to KINECAL, anyone who

took >14 seconds to complete the STS-5 test was marked as impaired, for this

test.

Table 6.7: TUG classification

Time Classification
30 seconds Problems, cannot go outside alone, requires gait aid
20 seconds Good mobility, can go out alone, mobile without gait aid
14 seconds Elevated risk of falls
10 seconds Normal
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6.5 Methods

This section details the methods used to compile the KINECAL dataset.

6.5.1 Experimental Setup

The Kinect camera was mounted on a tripod, at a height of 1.14m from the

ground plane. Participants were asked to stand 3m from the camera for static

stances, and 4m for TUG and 3m walk (the additional meter was needed to

capture the entire 3m walking section).

6.5.2 Data recording

The participants were recorded using custom software i.e. Skel recorder, Skel

recorder was initially written for the study detailed in chapter 5. Skel recorder

was written using Visual Studio 2015 and the Kinect SDK 2.0. The software

captures RGB, Depth and Skeleton data and stores it to disk. In chapter 5

the x axis was reversed, in recording this dataset the x axis was not reversed,

as the participants were facing the Kinect. Figure 6.1 shows the view from the

Kinect. This image was taken in laboratory conditions but other recording in

KINECAL were made in more informal settings, such as church halls.
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(a) RGB

(b) Depth (c) Skeleton

Figure 6.1: Kinect point-of-view This figure is of a young participant in
quiet stance. (a) is an RGB image, (b) is a depth image, (c) is the 25 joint
skeleton, created by Kinect. Permission was obtained from the person in the
frame for their image to be used.

6.5.3 Signal Processing

Filtering

Filtering was achieved using a Butterworth fourth-order zero-lag filter. The

low-pass cut-off frequency was established as described by Winter [263]. The

frequency used to filter the data, used in this thesis, was 8 Hz.

104



Pose Normalisation

Pose Normalisation, alters the coordinates system, from a camera-centred sys-

tem to a person-centred system. To achieve this, each skeleton frame was

aligned to the first frame of the recording, making the SPINE BASE joint

of the first frame of each recording [0x, 0y, 0z], using equation 6.1. All subse-

quent movements were related to this initial position.

pn,i(x, y, z)∗ = Pn,i(x, y, z)− P0,SPINE BASE(x, y, z) (6.1)

where pn,i(x, y, z)∗ represents the normalised position of the x,y,z axis of joint i

in frame n. P0,SPINE BASE(x, y, z) represents the position of the SPINE BASE

joint in the first frame of the recording, and Pn,i(x, y, z) represents the posi-

tions of joint i in frame n.

6.5.4 Estimation of CoM

The position of the CoM was calculated as the 3D Euclidean mean of 3 joints

of the Kinect skeleton:HIP LEFT, HIP RIGHT, SPINE MID, shown in Figure

6.2, using equation 6.2. The x, y, z components were calculated individually

and then concatenated to form a CoM triplet. Stacking these CoM triplets,

over time, creates the 3D CoM time series.

CoMx =
HIP LEFTx +HIP RIGHTx + SPINE MIDx

3

CoMy =
HIP LEFTy +HIP RIGHTy + SPINE MIDy

3

CoMy =
HIP LEFTz +HIP RIGHTz + SPINE MIDz

3

CoM = [CoMx, CoMy, CoMz]

(6.2)

where HIP LEFT , HIP RIGHT , SPINE MID are Kinect joints, indi-

cated on Figure 6.2. The Figure also shows the resultant position of the CoM

for a single frame.

105



Figure 6.2: Kinect V2 Skeleton, the joints used to estimate CoM and
the CoM position, are labelled.

6.6 Generation of sway metrics

The 3D CoM time series is a useful asset for researchers, as is the full

depth and skeleton data. However, to make the dataset more instantly useful

to those more used to using force plates, a set of common force plate metrics

has been included. In doing this the dataset simulates lab-based metrics, so

in one dataset you have clinical and lab-based tests for, each participant.

Generally, when working with sway metrics derived from force plates, the

CoM position is expressed in only two dimensions, i.e. the anatomical direc-

tions AP and ML. To provide equivalence between the two systems, the z-axis

of Kinect was mapped to movement in the AP direction of the person being

recorded. Similarly, the x-axis was mapped to movement in the ML direction.

For this application, the y axis was ignored.

6.6.1 Sway Metric - Time Series

As discussed in section 5.2.5 it is good practice to centre the time series.

Centring was achieved by subtracting the mean CoM position, for an entire

recording, from the CoM value at each time step. This was done separately

for movement in the AP and ML directions using equations 6.4. The mean

position was calculated using equations 6.3.

The output of equations 6.4 were concatenated to produce the AP and

ML time series. A third time series was calculated, which takes into account

movements in the AP and ML directions in a single value. Known as the
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resultant distance time series (RD), it was calculated as the vector distance

from the mean CoM position to a pair of points in the AP and ML time series,

at each time step. Values for each time step were generated using equation 6.5

and then concatenated to produce RD. Each of the calculated sway metrics

was calculated using all three-time series.

¯ML rawi =
1

n

n∑
i=i

ML rawi

¯AP rawi =
1

n

n∑
i=i

AP rawi

(6.3)

APi = AP rawi − ¯AP raw

MLi = ML rawi − ¯ML raw

(6.4)

RDi =
√

(MLi)2 + (APi)2 (6.5)

If the AP is graphed, against ML, the CoM path, for each recording is

revealed. Figure 6.3 comperes the CoM paths of members of the Healthy-

Adult and Clinically-Impaired groups Standing Quietly with eyes open

(blue line). The 95% confidence ellipse is also shown (red ellipse) (the calcu-

lation of the 95% confidence ellipse is detailed in section 6.6.2.

107



(a) 95% Confidence Ellipse (b) 95% Confidence Ellipse

Figure 6.3: 95% Confidence Ellipse and CoM path: This figure com-
pares CoM paths and associated 95% Confidence Ellipses of a person la-
belled Healthy-Adult (SPPB25) to someone labelled Clinically-Impaired
(SPPB201), Standing Quietly. Column (a) shows a tight view. Column (b)
shows the 95% Confidence Ellipses plotted on the same scale.

6.6.2 Calculation of Sway Metrics

The following section gives details of the equations used to calculate the sway

metrics. In these equations, AP relates to the AP time series (AP ). For the

most part, these equations were also used to calculate the metrics in the ML

and RD directions. The exceptions being MFREQ and the 95% confidence

ellipse.

Mean Distance of CoM

The most straightforward metric to understand, and to calculate, is the mean

distance of the CoM. This is simply the mean, absolute distance moved, from

the mean position of the CoM over the time of each trial. Equation 6.6 was

used to calculate Mean distance of the AP time series (MDIST AP)
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MDIST AP =
1

n

∑
|APi| (6.6)

where AP is the AP time series, i is a single time step and n is the total

number of times steps, in the time series. ML was used in place of AP , to

calculate the Mean distance of the ML time series (MDIST ML). RD was used

in place of AP , to calculate the Mean distance of the RD time series (MDIST).

RMS Distance

The root mean squared process removes the sign and gives more prominence

to values further away from the mean CoM position. Equation 6.7 was used

to calculate RMS distance of the AP time series (RDIST AP).

RDIST AP =

√
1

n

∑
AP 2

i (6.7)

where AP is the AP time series, i is a single time step and n is the total

number of times steps, in the time series. ML was used in place of AP , to

calculate the RMS distance of the ML time series (RDIST ML). RD was used

in place of, AP to calculate the RMS distance of the RD time series (RDIST).

Total excursion (CoM Path Length)

Total excursion, is calculated by summing the distance between successive

time steps. This is also known as the CoM path length. Equation 6.8 was

used to calculate Total excursions of the AP time series (TOTEX AP).

TOTEX AP =
∑
|APi+1 − APi| (6.8)

where AP is the AP time series and i is a single time step. ML was used

in place of AP to calculate the Total excursions of the ML time series (TO-

TEX ML). RD was used, in place of AP , to calculate the Total excursions of

the RD time series (TOTEX).
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Mean Velocity

Mean velocity is the total excursion divided by the time of the sample in

seconds. Equation 6.9 was used to calculate the the Mean velocity of the AP

time series (MVELO AP).

MVELO AP = TOTEX AP/t (6.9)

where AP is the AP time series and t is the time for the trial in seconds. ML

was used in place of AP to calculate theMean velocity of the ML time series

(TOTEX ML). RD was used, in place of, AP to calculate the Mean velocity

of the RD time series (MVELO).

Mean angular frequency AP and ML

Mean frequency of the AP time series (MFREQ AP) is the frequency, in Hz,

of a sinusoidal oscillation with an average value of the mean MDIST AP

and a total path length of TOTEX AP . This was calculated using equation

equation 6.10.

MFREQ AP =
MVELO AP

4
√

2MDIST AP
(6.10)

where MVELO AP is defined by equation 6.9 and MDIST AP is de-

fined by the equation 6.6. MVELO ML was used in place of MVELO AP

and MDIST ML was used in place of MDIST AP to calculate the Mean

frequency of the ML time series (MFREQ ML)

Mean Angular Frequency

Mean frequency of the RD time series (MFREQ) is the mean angular frequency

is the rotational frequency in Hz. This is the number of revolutions per second

of the CoM, if it had travelled the total excursion around a circle with a radius

of the mean distance. It is calculated using values derived from RD, given by

Equation 6.11

MFREQ =
MVELO

2πMDIST
(6.11)

where MVELO is defined by equation 6.9 and MDIST is defined by equation

6.6
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95% confidence elliptical area

The 95% Confidence Area (AREA-CE) is given by the set of equations below

(6.12). The elliptical area is an estimate of the area described by the maximum

and minimum AP and ML values of the time series. To reduce the effect of

rapid changes in direction, this value is scaled to 1.96 standard deviations of

the mean values.

p =
covAP,ML

σAPσML

APr =
√

1− pσAP1.96

MLr =
√

1 + pσML1.96

area = πAPrMLr

(6.12)

where p is the Pearson correlation coefficient, MLr is the ML elliptical radius

scaled to the 95% Confidence Interval (CI) , and APr is the AP elliptical radius

scaled to the 95% CI.

Table 6.8, shows the file format of the metric file, for Quiet standing, eyes

open. Note, due to size the page width of the is document, not all of the

calculated metrics are shown.

Table 6.8: Truncated Table of Sway Metics: This table provides a trun-
cated view of the sway metric data, comparing just two participants over a
selection of metrics, for quite standing, eyes open. Note: Group HA:Healthy-
Adult, FHm: Self-reported-Multiple-Faller, Sex 0:Male, 1:Female, Self-Rep:
Self-Reported-Faller, Clin-imp: Clinically-Impaired.

PART ID GROUP AGE SEX Self-Rep Clin-imp MDIST ML MDIST AP MDIST TOTEX ML TOTEX AP TOTEX AREA CE
SPPB25 HA 25 0 0 0 0.089714 0.110692 0.15911 0.937892 1.088324 1.648861 0.16
SPPB201 FHm 81 1 1 1 0.189479 0.662605 0.724661 2.268462 9.155649 9.627409 2.34
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6.7 Questionnaire

In addition to the falls history question, all participants ≥ 65 years were asked

to complete a wide-ranging questionnaire. The question covered the following

topics: Demographics; Health status (current disease, current medication);

Smoking; Alcohol; Grip strength - anecdotal; Mood; Menopause; Current and

historical physical activity; Bone fractures; Joint Pain; Joint Replacements;

Falls history; Confidence in every-day-tasks and details of any walking aids.

The full details of this questionnaire can be found in Appendix B.1

6.8 Open Source Code

It is our intention that on the release of the KINECAL dataset, the code used

to record the data and calculate the sway metrics will also be released. This

is done to allow for the expansion of the dataset by other researchers.

Skel-Recorder

Skel-Recorder was used to capture Kinect data and save it to disc.

Skel-Metrics Python Library

The skel-metrics Python library allows Kinect skeletons to be converted in

to the range of metrics described in section 6.6. In addition, it also contains

methods to filter and normalise the skeletons.

Summary of the contributions of the KINECAL

dataset

The hope that the dataset will provide a useful resource for fellow researchers

and will lead to solutions for objective balance assessments, which can be

carried out away from the lab.

Here is a list of contributions, made by the KINECAL dataset

• Dataset of 90 participants

• The recordings were made in the lab and in more informal conditions,

such as private homes and a community centre.
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• Labels: self-reporting falls history and clinically assessment.

• Rich metadata, including socio-economic and medical data

• Raw skeletal and depth recordings (RGB images are excluded to protect

the privacy of participants)

• Common sway metrics for each participant

6.9 Conclusion

The assessment of physical impairment is an increasingly important field. With

an ageing worldwide population, the early identification of those at risk of in-

jurious falls is of particular import. Currently, the majority of balance assess-

ments are carried out by trained professionals, using clinical test, which take a

substantial amount of time to complete. This puts additional strain on already

stretched health services. The adoption of automated methods of balance as-

sessment could help to ease that burden. One approach to automation is to

use devices that can achieve markerless motion capture, such as the Kinect

camera, which are portable, easy to set up and can be used outside of the lab.

However, in order to progress such research, there is a need for datasets that

researchers can use to avoid the time-consuming process of collecting their own

data. The KINECAL dataset addresses this need.
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Chapter 7

An Investigation of Sway

Metrics Associated With Falls

7.1 Introduction

In this chapter the sway metrics, included in the KINECAL dataset are inves-

tigated. In KINECAL, sway metrics have been calculated for each of the up-

right stances (quiet standing on a firm surface EO/EC, quiet standing on foam

EO/EC, semi-tandem stance EO, tandem-stance EO, ULS EO/EC). These are

the most commonly used stances to assess balance, in a lab situation, using

force plates.

While a range of stances and metrics are included, in KINECAL, not every-

one could complete all of the upright stances. These included people labelling

themselves as Non-Fallers who could not complete the single leg stand or the

tandem stance. One very impaired individual could not complete the quiet

standing with eyes closed for 10 seconds. When using a scoring paradigm such

as the SPPB score, counting a fail as 0, has a purpose, but when considering

sway metrics, it is difficult to extract meaning from a failed trial. The ulti-

mate goal is to develop an objective machine model to help in the diagnosis of

falls-risk and frailty. Therefore, this study opted to examine the one upright

stance that was completed universally and so has the most data, i.e. quiet

standing EO. Even quiet standing on foam EO requires the orchestration of

the whole musculoskeletal system as discussed in section 1.1, and so provides

insights into the physical indications of impairment and falls-risk

Age and frailty are associated, as signs of frailty tend only to become an
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issue over the age of 65. However, increasing age does not necessarily mean

increasing frailty. This chapter considers if a distinction can be made between

sway metrics related to normal ageing vs those related to falls-risk. In addition,

using a series of machine models, the KINECAL Clinical labelling schema is

validated, and the use of a machine model, which could be used to identify

those with a high falls-risk, is explored.
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7.2 Sway Metrics Identification

7.2.1 Sway Metrics

All of the upright stance of the KINECAL dataset have common, precalculated

sway metrics for each trial, (although, many more types of metric can be

created from the raw data). In this investigation, quiet standing EO was used.

Table 7.1 shows the abbreviations used for each metric, alongside a de-

scription of each metric. The abbreviations follow the form laid out in Prieto

et al. [189]

Table 7.1: Table of sway metrics: This table details the sway metrics from
the KINECAL dataset. RD refers to the Resultant Distance, AP Anterior-
posterior and ML Medio-lateral directions, details of how these metrics were
calculated can be found in section 6.6

Description

MDIST Mean distance of the RD time series
RDIST RMS distance of the RD time series

MVELO Mean velocity of the RD time series
TOTEX Total excursions of the RD time series
MFREQ Mean frequency of the RD time series

MDIST AP Mean distance of the AP time series
RDIST AP RMS distance of the AP time series

MVELO AP Mean velocity of the AP time series
TOTEX AP Total excursions of the AP time series
MFREQ AP Mean frequency of the AP time series

MDIST ML Mean distance of the ML time series
RDIST ML RMS distance of the ML time series

MVELO ML Mean velocity of the ML time series
TOTEX ML Total excursions of the ML time series
MFREQ ML Mean frequency of the ML time series

AREA CE 95% Confidence Area
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7.2.2 Participant groups

Participants of the KINECAL dataset are grouped age-wise, i.e. below and

above 65 years. Those ≥ 65 years are further split by falls-risk, i.e. Non-

Fallers, by history, Fallers by history and those at risk of falls by clinical test.

Table 7.2 details the the criteria for inclusion into these groups.

Table 7.2: Participant groups used in this investigation: The groups
shown here are the standard groups of participants from the KINECAL
dataset, along with a description of the criteria for inclusion.

Description

Healthy-Adult
< 65 years,
no history of falls
in the last 12 months

Non-Faller
≥ 65 years,
no history of falls
in the last 12 months

Self-reported-Faller
≥ 65 years,
reported ≥ 1 fall
in the last 12 months

Clinically-Impaired
≥ 65 years
identified as impaired
by ≥ 2 clinical tests

7.2.3 Outlier Detection

In this investigation, the Healthy-Adult and Non-faller groups were used

as a baseline in this analysis. To ensure the sample was representative, those

whose sway lay outside the normal range, for these groups, were excluded. The

chosen method of outlier detection was Median Absolute Deviation (MAD),

with a threshold level of 3.5. MAD was used in preference to 1.96 SD from

the Mean value because the Median is less affected by sample size [131].

7.2.4 Assessment of Significant Difference,

Between Participant Groups

To identify sway metrics that could be useful in identifying fallers, a set of

pairwise comparisons was made. This was done in two parts. 1) the first

comparison identified metrics that are significantly different with age. This

was achieved by comparing groups of healthy individuals of different ages
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(Healthy-Adult and Non-Faller groups). 2) the second comparison identi-

fied metrics which show significant difference between groups of fallers (Self-

reported-Fallers, Clinically-Impaired) and non-fallers (Healthy-Adult ,

Non-Fallers). By carrying out the investigation in this fashion, metrics that

are associated with both age and falls-risk could be discounted, for inclusion

in the machine model detailed in section 7.3. This is only achievable because

of the structure of the KINECAL dataset.

To assess the difference between groups, a two-step process was used, on a

per metric basis. 1) The normality of the distribution of the metric in the two

groups being considered, was assessed using the D’Agostino-Pearson method,

implemented in the scypy python library (scipy.stats.normaltest). 2) Based

on the result of step 1), if the distributions were normal, a t-test was used.

Otherwise a Mann Whitney U test was performed. Both of these tests were

carried out using the appropriate method from the scipy.stats python library.

Significance was accepted at a level of p < 0.05. However, candidate met-

rics, those deemed useful for the assessment of falls-risk by a machine model,

were only accepted at the p < 0.01 level, although some metrics showed a

significant difference at the p < 0.001 level.
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7.2.5 Age-related Sway Metrics

7.2.5.1 Grouping of Participants

For this comparison, a new group Healthy-Young, was created. This group

was made up of members of the Healthy-Adult group who were < 35 years

old. The Healthy-Young group is not a permanent feature of the dataset

but was created to relate the results shown here to the literature.

These two groups were then compared to the Non-Faller group. The

makeup of these groups is shown in Table 7.3, after outliers have been removed.

In this investigation, members of the Healthy-Young group also belong to

the Healthy-Adult group. However, no members of the Non-Faller group

belong to either of the other two groups.

Table 7.3: Participant groups used: The groups described here were used
in the identification of metrics useful in falls-risk assessment. The numbers
shown here were after outliers had been removed. Each participant belonged
to only one group.

Description Age (± 95% CI)
Total

Number
Male Female

Healthy-Young
< 35 years,
no history of falls
in the last 12 months

mean age 28.2 (±8.4) 6 4 2

Healthy-Adult
< 65 years,
no history of falls
in the last 12 months

mean age 46.0 (±22.7) 30 20 10

Non-Faller
≥ 65 years,
no history of falls
in the last 12 months

mean age 72.6 (±10.1) 29 15 14
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7.2.5.2 Results

Healthy-Young vs Non-Fallers

The results, detailed in this section, are summarised in Table 7.4. The first

step was to compare young vs older, in a similar way to other studies [189, 87],

that consider age-related changes of healthy individuals.

To achieve this, the Healthy-Young group, was compared to the Healthy-

Adult group. Column 1 of Table 7.4, shows the results for this polarised case.

MFREQ AP, TOTEX, MEVLO, TOTEX AP and MEVLO AP were found to

be significantly different, between these groups. These findings are in line with

those found in the literature [189, 87].

Healthy-Adult vs Non-Fallers

The group in the KINECAL dataset, regarded as being a healthy norm, is the

Healthy-Adult group (non-fallers < 65). This group has a mean age of 46

(± 22.7 years), the oldest member being 64 years old.

When comparing the Healthy-Adult group to the Non-Faller group

(who have a mean age of 72.6 ±10.1 years), the significant difference in TO-

TEX AP and MEVLO AP was lost, and the significance level of MFREQ AP

was reduced. However, MFREQ AP, TOTEX, MEVLO remain significantly

different between the healthy populations, either side of 65 years of age.
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Table 7.4: Results of analysis of the difference in sway metrics, be-
tween different groupings:. The shading of the background signifies the
degree of significance (light grey = p < 0.05, dark grey = p < 0.001).

Healthy-Young ∗
vs Non-fallers ‡

Healthy-Adult †
vs Non-fallers ‡

MFREQ AP 0.00085 0.01085
TOTEX 0.02058 0.02408
MVELO 0.02058 0.02408

MVELO AP 0.02091 >0.05
TOTEX AP 0.02091 >0.05

MFREQ ML >0.05 >0.05
MVELO ML >0.05 >0.05
TOTEX ML >0.05 >0.05

AREA CE >0.05 >0.05
RDIST AP >0.05 >0.05

RDIST >0.05 >0.05
MDIST >0.05 >0.05

MDIST AP >0.05 >0.05
MDIST ML >0.05 >0.05
RDIST ML >0.05 >0.05

MFREQ >0.05 >0.05

footnote:

∗ Healthy-Young < 35 years old, no history of falls in the last 12 months

† Healthy-Adult < 65 years old, no history of falls in the last 12 months

‡ Non-Fallers ≥ 65 years old, no history of falls

7.2.6 Falls-Risk related Sway Metrics

This section considers if there are sway metrics that align better with im-

pairment and falls-risk rather than age. To achieve this, two healthy groups

(Healthy-Adult and Non-Fallers) were independently compared to the two

impaired groups (Self-reported-Fallers and Clinically-Impaired). The

results detailed in this section are summarised in TABLE 7.6. For the sake

of brevity, the metrics identified above as most likely to increase with age

(MFREQ AP, TOTEX, MEVLO, TOTEX AP and MEVLO AP) shall, from

now on, be referred to as age-biased metrics

7.2.6.1 Grouping of Participants

For this investigation the participant groups Healthy-Adult, Non-Faller,

Self-reported-Faller and Clinically-Impaired were used. Table 7.5 shows

the makeup of each group, after outliers have been removed. In this investi-

gation, group membership was exclusive, and no participant appears in more

than one group.
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Table 7.5: Participant groups used: The groups described here were used
in the identification of metrics useful in falls-risk assessment. The numbers
shown here were after outliers had been removed. Each participant belonged
to only one group. In this investigation, group membership was exclusive, and
one participant does not appear in more than one group.

Description Age (± 95% CI)
Total

Number
Male Female

Healthy-Adult
< 65 years,
no history of falls
in the last 12 months

mean age 46.0 (±22.7) 30 20 10

Non-Faller
≥ 65 years,
no history of falls
in the last 12 months

mean age 72.6 (±10.1) 29 15 14

Self-reported-Faller
≥ 65 years,
reported ≥ 1 fall
in the last 12 months

mean age 71.6 (±13.8) 20 9 11

Clinically-Impaired
≥ 65 years
identified as impaired
by ≥ 2 clinical tests

mean age 80.3 (± 11.8) 6 1 5

Table 7.6: Results of analysis of the difference in sway metrics be-
tween levels of impairment: The shading of the background signifies the
degree of significance (light to dark grey p < 0.05, p < 0.01, p < 0.001). The
final column gives a grouping for the metrics.

Healthy-Adult †
vs Clinically Impaired �

Healthy-Adult †
vs Self-reported-Fallers ?

Non-fallers ‡
vs Clinically Impaired �

Non-fallers ‡
vs Self-reported-Faller ?

MFREQ AP 0.00748 0.00038 > 0.05 0.04787
Differences
related to age
and impairment

TOTEX 0.00067 0.00725 0.02359 0.02223
MVELO 0.00067 0.00725 0.02359 0.02223

MVELO AP 0.00067 0.00605 0.01246 0.01393
TOTEX AP 0.00067 0.00605 0.01246 0.01393

MFREQ ML 0.00404 > 0.05 > 0.05 > 0.05
No difference between
≥65 year old groups

MVELO ML 0.00878 0.04726 > 0.05 > 0.05
TOTEX ML 0.00878 0.04726 > 0.05 > 0.05

AREA CE 0.00278 0.00345 0.00842 0.00822 Target
RDIST AP 0.00430 0.03910 0.00165 0.01986

RDIST 0.00509 0.04650 0.00636 > 0.05
MDIST 0.00602 0.00724 0.00878 0.00800 Target

MDIST AP 0.00790 > 0.05 0.00112 0.01638
MDIST ML > 0.05 > 0.05 > 0.05 > 0.05
RDIST ML > 0.05 > 0.05 > 0.05 > 0.05

MFREQ > 0.05 > 0.05 > 0.05 > 0.05

footnote:

† Healthy-Adult < 65 years old, no history of falls in the last 12 months

‡ Non-Fallers ≥ 65 years old, no history of falls in the last 12 months

? Self-reported-Fallers ≥ 65 years old, reported ≥ 1 falls in last 12 months

� Clinically-Impaired ≥ 65 years old, identified as being impaired by ≥2 clinical tests

Healthy Groups vs High Falls-risk Groups

Looking across all of the comparisons in 7.6, differences in the age-biased met-

rics, seen in the first set of comparisons, can be seen to be not entirely related

to age alone. Differences related to impairment and falls-risk can also be

seen. However, the smallest difference in significance, is seen when comparing
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groups, whose ages are closest together. I.e. either of the groups contain-

ing individuals, with high falls-risk. The age difference between Clinically-

Impaired) vs None-Faller is 7.7 years (column 3). for Self-reported-

Fallers and None-Faller it is -1 year (column 4) Now consider, the age differ-

ence between Clinically-Impaired and Healthy-Adult, 34.3 years (column

1), and between Self-reported-Fallers and Healthy-Adults, 25.6 years

(column 2).

Hence, changes in these metrics seem to be affected by both age and im-

pairment. However, there is a bias towards age. As discussed in 1.1, age-

related changes, ultimately lead to frailty. However, some people are better at

adapting to those changes. Future work may examine this in a cross-discipline

fashion to understand the processes which underpin this, but this is beyond

the current lime of enquiry.

Piirtola et al. [185] points to an increase in ML sway being related to

impairment, and looking at column 1 and 2, it would seem that MFREQ ML,

MVELO ML and TOTEX ML could be good candidates for metrics relating

to impairment. However, column 3 and 4 show no significant difference in

these metrics, between Non-Fallers and either of the groups showing high

falls-risk (Self-reported-Fallers or Clinically-Impaired).

The only metrics that showed significant difference at the p < 0.01 level,

when comparing Healthy individuals of any age to Self-reported-Fallers or

Clinically-Impaired were AREA CE and MDIST.

In summary, MFREQ AP, TOTEX, MEVLO, TOTEX AP and MEVLO AP

showed significant difference associated with age and falls-risk. AREA CE and

MDIST showed the highest significant difference associated with falls-risk.

From now on, AREA CE and MDIST will be referred to as falls-risk-biased

metrics. In the next section, the identified sway metrics are used to assess the

effectiveness of the labelling scheme, by training machine models to identify

those who would be classified as having a high falls risk, based on self-reporting

and clinical-labelling 6.4.3.

123



7.3 Machine Learning Methods

7.3.1 Sliding Window

When posturographic metrics are used for human interpretation, the values

are averaged over the entire length of the trial, such that each provides a

single, easy to understand value, per person, per metric. Machine learning

models require many more examples in training. To generate a range of similar,

but not identical values for each trial, a sliding window method was used to

generate 10 values, per metric, for each participant. The size of the window

was 300 frames (out of a total of 600 frames for each recording), with an

overlap of 10 frames.

7.3.2 Monte Carlo Cross-Validation and Rebalancing

While the KINECAL dataset is the largest of its type, it is still small compared

to the total population of fallers. A semi-synthetic bootstrap approach was

used to model values one might expect to see in a larger population.

That is to say, bootstrapping [53] was used, to produce a family of sam-

ples which, using the law of large numbers, will tend towards the values you

might expect in a larger sample. This method is also known as Monte Carlo

Cross-Validation (MCCV) [213]. This technique was used in combination with

SMOTE-ENN. In common with many medical datasets, KINECAL is unbal-

anced, i.e. there are many more examples of unimpaired, when compared

to impaired. Unfortunately, Most machine models, used for classification, do

not train well with unbalanced data. In order to rebalance the training data,

SMOTE-ENN was used. SMOTE-ENN combines the SMOTE algorithm [38]

with Wilson’s Edited Nearest Neighbour (ENN) [262], to remove outliers from

the synthetic data, effectively increasing the boundary between classes. Note,

SMOTE-ENN was used to aid training alone, the test subset was unprocessed

and so reflects the distribution of the KINECAL dataset. The overall method is

outlined in Figure 7.1, the caption provides step-by-step details of the process.
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Figure 7.1: A flowchart of the bootstrap process. 1) The dataset was
split into unimpaired and impaired groups; 2) Outliers in the unimpaired group
were removed (using the same outlier detection method as used to identify can-
didate metrics); 3) Train and Test subsets were created, split on Participant
ID (PART ID) and records assigned to each subset randomly, such that in
every iteration a new set is drawn, without replacement. However, no partici-
pant was present in both Train and Test subsets; 4) Random re-sampling with
replacement was used to create bootstraps of the original data and normalised
(using the normalize method of sci-kit learn [225] ; 5) The bootstraps were
rebalanced using SMOTE-ENN [126]; 6) The model was trained; 7) The test
set was used to obtain result metrics, for that iteration and these results where
stored; 8) This process continued for 10,000 iterations; and 9) At the end of
10,000 iterations, mean values for all results and 95% confidence intervals were
displayed.
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7.3.3 Experiments

In the first part of this investigation, two falls-risk-biased metrics were iden-

tified (MDIST and AREA CE). There was significant different in the values

of the falls-risk-biased metrics, between the two healthy groups (Healthy-

Adult and Non-Faller) and the two groups which contain individuals with

a high falls-risk (Self-reported-Faller and Clinically-Impaired). In the

second part of this investigation, two subsequent experiments were performed

to 1) compare the effectiveness of clinical labels vs self-reporting in identifying

fallers, and 2) estimate the diagnostic accuracy of the best model, against a

larger population.

To achieve this, a bootstrapping method, outlined in Figure 7.1, was used

to find a suitable discriminator. The ability of several classification models

(Logistic regression, Random Forest, Multilayer Perceptron (MLP) neural net,

KNN classifier, SVM, and Gaussian Naive Bayes (GNB)) to identify fallers

were assessed. The GNB, Logistic regression and MLP models gave equally

good results. The results of the GNB model are shown below. Four models

were trained covering the two labelling schemes (Self-reported-Faller and

Clinically-Impaired) and the two fit groups (Healthy-Adult and Self-

reported-Faller)

7.4 Results

Considering the confusion matrices in Figure 7.2 and the model results in Table

7.7, models trained with the Clinically impaired labels provided better Recall

(the measure of how many impaired cases are correctly identified), also known

as Sensitivity, and Specificity (the measure of how many unimpaired cases are

correctly identified), when compared to models trained with the Self-reported-

Fallers labels. Also, those trained using Healthy-Adult achieve better scores

than those trained with Non-Faller.

Table 7.7: The mean results after rounds of 10,000 bootstrapping:.
The results show the mean value and the 95% CI

Self-reported-Fallers
vs Non-Fallers

Clinically Impaired
vs Non-Fallers

Self-reported-Fallers
vs Healthy-Adult

Clinically Impaired
vs Healthy-Adult

Mean Accuracy 0.54 ±0.18 0.70 ±0.21 0.64 ±0.17 0.76 ±0.18
Mean Specificity 0.56 ±0.34 0.70 ±0.30 0.71 ±0.24 0.78 ±0.23

Mean Recall 0.52 ±0.32 0.68 ±0.45 0.57 ±0.30 0.72 ±0.46
Mean ROC AUC 0.58 ±0.23 0.74 ±0.34 0.70 ±0.20 0.81 ±0.30
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Figure 7.2: Confusion matrices produced from training a Gaussian
Naive Bayes Model: The best separation is seen when using clinical labels.
Confusion is seen in the models when using falls history as a label

As illustrated by the ROC curves, in Figure 7.3, it is clear that the clinical

labels 6.4.3 (used to identify those in the Clinically-Impaired group) provide

a better indication of true impairment, compared to self-reporting labels, used

to identify members of the Self-Reported-Faller group). i.e. The models,

trained using the clinical labels, outperformed those trained using the self-

reporting labels. Using the scale outlined in [223], the model that compares

Healthy-Adults to Clinically-Impaired (far right), would be regarded as

having very good diagnostic accuracy when used to identify those at most risk

of falls, i.e. those labelled here as Clinically-Impaired.

7.5 Discussion

This chapter examined the most universal of balance assessment stances, that

of quiet standing, eyes open. Future studies may examine the predictive power
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(a) Self-reported-Fallers
vs Non-Fallers

AUC:0.58 (95% CI ± 0.2)

(b) Clinically-Impaired
vs Non-Fallers

AUC:0.74 (95% CI ± 0.3)

(c) Self-reported-Fallers
vs Healthy-Adults

AUC:0.70 (95% CI ± 0.2)

(d) Clinically-Impaired
vs Healthy-Adults

AUC:0.81 (95% CI ± 0.3)

Figure 7.3: ROC curves for models. The AUC increases from top left to
bottom right, the greatest overlap, seen between the those labelled clinically
impaired vs Healthy-Adults

of other stances and movements, either alone or in combination.

Using the pre-calculated metrics of the KINECAL dataset, Frequency (MFREQ AP),

Velocity (MEVLO, MEVLO AP), and Total excursion, also known as path

length, (TOTEX, TOTEX AP), were found to be biased towards age-related

differences, summered in table 7.4. This is in line with previous studies. Pri-

eto1996 et al. [189] point to age-related changes in frequency and velocity

measures, and Hageman et al. [87] points to an association between increased

path length and age.

Table 7.6 demonstrates that changes in these metrics could also be asso-

ciated with impairment, but to a lesser degree. Piirtola and Pertti, in their
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review paper [185] drew the connection between falls-risk and increased ML

sway and sway area. The comparison of the Healthy-Adult group to the

groups containing individuals with high falls-risk (the Self-reported-Faller

and Clinically-Impaired groups) seemed to validate their findings. How-

ever, when the Non-Faller group was compared to the high falls-risk groups,

a significant difference was not found for any of the ML metrics. Of the other

metrics, only AREA CE and MDIST show significant difference at the p <

0.01 level across all of the combinations shown in TABLE 7.6. These two

metrics became the features used in the second part of this investigation.

To examine the effect that labelling has on predictive power, four Gaussian

Naive Bayes models were built to classify those at risk of falls. Looking at

the confusion matrices Figure 7.2 it is clear there is confusion in the model

when trying to separate Self-reported-Fallers from Non-Fallers. This is a

common issue with using self-report as an indication of impairment. This was

the inspiration for providing labels of Clinical impairment in the KINECAL

dataset. KINECAL uses the standard question used when labelling fallers, by

falls history. However, this approach is prone to interpretation and could lead

to an over or underestimation of the significance of a fall. i.e. mistaking a trip,

or minor accident for a fall that relates to physical impairment. Or brushing

off a fall that is related to impairment as ”just an accident”. This confusion

is also present when considering Self-reported-Fallers vs Healthy-Adults,

which may be an indication of the general overestimation of the significance

of a single fall. Using clinical labels improves the separation between groups

and so improves the models’ ability to identify potential fallers. This finding

points to AREA CE and MDIST as having a bias towards being an indicator

of impairment. However, these metrics must also change, to some extent, with

age, seen as better Specificity and Recall, seen for models trained using the

Healthy-Adult group. This points to the idea that while the identified metrics

are good indicators of impairment, factors other than impairment, such as

physical changes related to age, might be having an impact on these metrics.

Hence, models trained using examples of Non-Fallers do not perform as well

as those trained using examples of Healthy-Adults.

This investigation used a combination of statistics and machine models to

examine both traditional sway metrics and the importance of labelling when

considering falls-risk. The machine learning model, trained with the best com-

bination of metrics (AREA CE and MDIST) and labels (Clinically impaired
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vs Healthy Adult), could potentially be developed into a primary screening

tool for those who would be regarded as being having an elevated falls-risk,

based on clinical test see section 6.4.3) for basis.

7.6 Conclusion

In this chapter, the question “are certain metrics more associated with impair-

ment than with the process of ageing”, is considered. Two metrics, AREA CE

and MDIST, were identified as having a bias towards impairment. Using

these metrics a machine model was developed, which could be used as a pri-

mary screen for impairment. In addition, the use of the clinical labels in the

KINECAL was explored.

In this chapter, a binary classification model was used. This model at-

tempts to find a threshold, under which someone could be regarded as im-

paired. Unless there is a clear margin between groups, it is very difficult for

this type of model to achieve anything close to 100% accuracy. The results

demonstrate that such a margin does not exist, when using traditional sway

metrics. In fact, the opposite is true, there is a large area of overlap between

older groups which are at normal and elevated risk of falls. This is not sur-

prising as most physical impairments are on a continuum, and are not wholly

correlated to postural sway. As such, one person may be able to compensate

for a high level of sway and still be able to maintain balance in day-to-day

activities while others with less sway may be prone to falls.

In the next chapter, A different approach is taken, that of using a distance

metric to develop a scoring system, which can be used to assess falls-risk. This

approach better fits the problem of impairment and frailty. Instead of postural

sway, joint dis-coordination is considered, as a measure of impairment.
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Chapter 8

Quantification of Falls-Risk,

Based on a Representational

Model

8.1 Introduction

As discussed in section 1.1, frailty is a common problem in people over the age

of 65. Frailty has been defined separately by Walston [251], and Rockwood

[202] but both point to Sarcopenia being a key factor, leading to reduced

muscle power and coordination issues and the propensity to fall.

STS-5 test, is a well-established test for falls recurrence and frailty [23, 256,

141]. The sit to stand movement is an essential movement in many activities

of daily living [112]. It also requires the coordination of many elements of

the musculoskeletal system. In addition, by asking the participant to com-

plete it as quickly as possible, the STS-5 test also provides an indication of

muscle power. Therefore, a simple and easy to administer test provides the

information necessary to assess falls-risk.

The time to complete the STS-5 provides a test for gross impairment. How-

ever, more informative data can be obtained by considering the coordination

of joints needed to achieve this movement. Markerless motion capture provides

a means of collecting this type of information away from the lab.

In this chapter, the STS-5 recording from the KINECAL dataset, was used

to train an autoencoder neural network to model healthy patterns of coordi-

nation. Once trained, this model was used to identify pathological patterns,

131



which characterise those at risk of falling.

Using the raw skeletal data from the KINECAL, a multi-channel-time-

series was created, which represents the planar angles (sagittal, frontal, trans-

verse) of 5 key joints (knee, hip, spine mid, spine shoulder, neck). Examples

of Healthy-Adults carrying out this movement were used to train the au-

toencoder. During the training process, the autoencoder learned to encode

and then decode the healthy movements. In doing so, it built an internal rep-

resentation of a healthy STS-5. Once trained, the autoencoder could recreate

healthy movements with little error. However, the more the movement devi-

ated from healthy, the more it struggled to recreate the input. By combining

the reconstruction error with the variance between repetitions (reps), a scoring

system was derived, which can quantify impairment.
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8.2 Participants

In this chapter the Healthy-Adult, Non-Faller Clinically-Impaired Self-

reported-Faller s and Self-reported-Faller m groups were used. Table

8.1 shows the makeup of each group. Some recordings of the STS-5 had to

be removed as they were errors in recording, picked up in the segmentation

process 8.3.3. The groups were filtered to ensure no participant appears in

more than one group. When assigning participants to groups, groups further

down the table took precedence over ones higher up.

Further groupings were made to aid the understanding of the results.

These groupings were unique to this chapter. Those ≥ 65 years old where

separated into Impaired and Unimpaired groups. i.e. The Self-reported-

Fallers m and the Clinically-Impaired where grouped together and marked

as Impaired. Similarly the Non-Fallers and Self-reported-Fallers s where

grouped together and marked as Unimpaired.

The assumption used here is the same as that used to separate Self-

reported, into Self-reported-Faller s and Self-reported-Faller m but it

extends this idea to segregate all of the ≥ 65-year-olds into two groups. i.e.

that a single fall could be bad luck, whereas multiple falls are an indication of

underlying issues

Table 8.1: Participant Groups: This table shows the split between the
different groups used in this trial. The groups are exclusive and no participant
belongs to more than one group

Description Age (± 95% CI)
Total

Number
Male Female

Healthy-Adult
< 65 years,
no history of falls
in the last 12 months

mean age 45.1 (±23.8) 28 19 9

Non-Faller
≥ 65 years,
no history of falls
in the last 12 months

mean age 72.6 (±9.9) 30 15 16

Self-reported-Faller s
≥ 65 years,
reported 1 fall,
in the last 12 months

mean age 73.7(±15.4) 10 5 5

Self-reported-Faller m
≥ 65 years,
reported >1 fall,
in last 12 months

mean age 70.2 (± 9.6) 6 2 4

Clinically-Impaired
≥ 65 years
identified as impaired
by ≥ 2 clinical tests

mean age 78.0 (± 4.2) 5 0 5
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8.3 Methods

8.3.1 Skeletal Preprocessing

Before the angles were calculated, the raw skeletal recordings were filtered and

normalised, as discussed below.

Filtering

Filtering was achieved using a Butterworth fourth-order zero-lag filter. The

low-pass cut-off frequency was established as described by Winter [263]. The

frequency used to filter the data, used in this thesis, was 8 Hz.

Pose Normalisation

Pose Normalisation alters the coordinates system from a camera-centred sys-

tem to a person-centred system. To achieve this, each skeleton frame was

aligned to the first frame of the recording, making the SPINE BASE joint

of the first frame of each recording [0x, 0y, 0z], using equation 8.1. All subse-

quent movements were related to this initial position.

pn,i(x, y, z)∗ = Pn,i(x, y, z)− P0,SPINE BASE(x, y, z) (8.1)

where pn,i(x, y, z)∗ represents the normalised position of the x,y,z axis of joint i

in frame n. P0,SPINE BASE(x, y, z) represents the position of the SPINE BASE

joint in the first frame of the recording, and Pn,i(x, y, z) represents the posi-

tions of joint i in frame n.

8.3.2 Calculation of Joint Angles

Joint angles were calculated, in each of the anatomical planes (sagittal, frontal

and transverse), using equation 8.2. This provides 3 values for each joint.

Figure 8.1 shows an example for the knee angle in the Sagittal plane.

Joint angles were estimated, by calculating the angle between two vectors

which represent the limbs which meet at the joint, using the equation 8.2

Θ = arccos

(
a.b

‖a‖ ‖b‖

)
(8.2)
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Figure 8.1: Knee Angle:Example of knee angle in the Sagittal plane. The
angles in the other two planes are calculate in the same way.

8.3.3 Segmentation of Repetitions

A multi-step segmentation process was used to extract single repetitions for

each recording of STS-5. The process was as follows: 1) Identify all of the

valleys, using the argrelextrema method of the scipy.signal python library [210]

; 2) Walk the valleys clipping out proposed single reps, the end position of one

valley, marks the end of that rep and the start of the next; 3) Compare the

start and end values for the proposed reps, if the start and end are different

by more than 30 degrees exclude that rep, (this captures odd start and end

chunks where the recording captures movements other that the STS-5); and

4) A final visual inspection of each rep, to ensure it starts and ends correctly,

and so captures a representative rep.

8.3.4 Resampling and Padding

The time to complete one rep of the STS-5 movement varied between individu-

als. Hence, so did the number of frames per rep. The smallest number of frames

per rep was 54, and the largest 150 frames. The average for a member of the

Healthy-Adult was 80 frames. To provide a standard basis for comparison,

each rep was resampled to 80 frames. The resampling was achieved by Fourier

transform resampling [94], implemented via the signal.resample method of the

scipy python library [210]. This process also centred the movement.

Once centred, the repetition was padded with a 2 seconds buffer (60 frames)

on either side of the main movement shown in Figure 8.2. The padding helps

the autoencoder to learn by providing a lead-in before the movement.
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Figure 8.2: Joint angle for a single rep: Illustration of the changes in joint
angles over a single rep for Healthy-Adult (left) and Clinical-Impaired
(right).

Normalisation

Before training, the samples where normalised, using the normalization func-

tion from scikit-learn [225], to aid training.

8.3.5 Autoencoder

Autoencoders discussed in section 2.16.6 are trained in an unsupervised fash-

ion. That is to say that, unlike the models used for classification, e.g. GNB

models used in 7, training is achieved without labels. (see section 2.16.1 for

more details on different types of learning).

This difference is the key to understanding how Autoencoders work and

their application. In supervised learning, the model learns to map an input

to a label, this type of model can address the question, given an input ”which

of the learned classes, is it most likely for the input to belong to?”. This

approach can work well when wide decision boundaries can be found between

classes. However, this is not the case for falls-risk. Instead, falls-risk lies on a

continuum. An alternative is to cast the problem of falls-risk as an anomaly

detection problem. To implement this approach, the autoencoder was trained

on a single class Healthy-Adult, in an unsupervised manner. Although no

class labels were used, the back-propagation process still needs an error signal

to allow for corrections during the backward pass through the network. When

training in this way, the input is essentially used as the label. In this work,

the error signal was provided by calculating the Mean Square Error (MSE),

between the input and the output of the network.

As mentioned above, the job of an autoencoder is to recreate the input

at the output layer. This might seem like a trivial task. However, the struc-
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ture of autoencoders prevents the network from mapping an identity function.

Figure 8.3 shows the structure of the autoencoder used in this work. Like all

autoencoders, it contains two halves, the Encoder and the Decoder. The role

of the Encoder is to compress the input into fewer and fewer neurons, or LSTM

units, as used here. In the network used here, the last layer of the Encoder

is just 4 units. The job of the Decoder is to take this compress version and

reconstruct the input over successive layers, reversing the encoding process.

Through successive rounds of training, the autoencoder learns to recreate

the training data. In doing so, it is learning the distribution of the training

data, and it will be able to recreate inputs drawn from the same distribution

with ease. However, if challenged with an input from a different distribution,

the autoencoder will struggle to recreate that input, as it has never “seen an

input quite like this before”. The input is anomalous to the training data,

and so the network will make errors in reconstruction. The degree to which

the output differs from the input can be quantified by various means, e.g.

by calculating the euclidean distance. The size of the error can be seen as a

measure of how anomalous the input is. Hence the autoencoder can be used

as an anomaly detector, and the degree of anomaly can be quantified and

used as a measure of impairment. i.e. how far an input lies from the normal

distribution. The details of the distance measure used in this work is discussed

in section 8.3.6, below.

The autoencoder used in this work was constructed using the Keras frame-

work. Its structure is shown in Figure 8.3. The numbers, shown in each

layer referrer to LSTM units. LSTM networks are well suited to extracting

features from time series data, such as that presented in this chapter. The

input and reconstructed output was a time series of 200 frames by 16 chan-

nels. The channels represent the following angles SPINE MID, sagittal and

frontal; SPINE SHOULDER, sagittal and frontal; NECK sagittal and frontal;

HIP LEFT sagittal, frontal and transverse; HIP RIGHT sagittal, frontal and

transverse; KNEE LEFT, sagittal and frontal; KNEE RIGHT, sagittal and

frontal.

8.3.6 Distance Metrics and Scoring

As discussed above, the degree of anomaly can be quantified using many met-

rics. In this work euclidean distance was used, as detailed in equation 8.4.
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Figure 8.3: Autoencoder: representation of autoencoder architecture. It
consists of a three layer encoding and a 3-layer decoder. The latent represen-
tation is 4 LSTM units. The input time series was 200 frames by 16 channels,
this was also the demotions of the reconstructed output

Once trained, the network was able to recreate movements similar to those

found in the training data with a high degree of faithfulness. This was demon-

strated by low euclidean distance. In other words, the movement lies close

to the distribution learned in training. Physically impaired individuals have

different patterns of activation and muscle contractions. Hence they produce

different types of trace. Impaired movements lie further away from the training

distribution. Hence, they have a higher euclidean distance.

Figure 8.4, show the input and the reconstructed time series for (a) an

unseen Healthy-Adult movement, from the validation set (b) a Clinically-

Impaired movement, from the test set (b). The reconstruction error for (b)

is 5.5 times that of (a)

The distance metric alone was not consistent enough to separate the healthy

from impaired individuals. Some repetitions of impaired individuals can be

close to normal, while others lie far away. To refine the distance measure, a

scoring schema is proposed, detailed in equation 8.3.
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(a) Reconstruction of a member of the Healthy-Adult group

(b) Reconstruction of a member of the Clinically-Impaired group

Figure 8.4: Reconstruction of STS-5 movement: This figure shows the re-
construction of STS-5 movements carried out by (a) a member of the Healthy-
Adult group and (b) a member of the Clinically-Impaired group. Move-
ment (a) was part of the validation set, movement (b) was part of the test
set. The Autoencoder is able to recreate movement (a) with high faithful-
ness, and so the reconstruction error, (expressed as Euclidean Distance) is
low. The autoencoder struggles to recreate movement (b) because it comes
from a different distribution, the reconstruction error is 5.5 times larger for
this movement, indicating it lies far away from the training distribution. The
time series, shown here have been normalised to aid recognition. Note, the
first 30 and last 30 frames, of the reconstructed time series, are clipped before
the distance is calculated, these early frames often contain encoding errors and
so do not truly reflect the reconstruction.

The score multiplies the distance value by the variance, between distance

values, calculated from the 5 reps of the STS-5 movement. Including the

variance, reflects the fact that healthy individuals are more able to consistently

carry out the movement. Subtracting this term from 1 makes 1 the maximum

score achievable and impairment on a scale of < 1. Finally the per-rep scores

for each individual are averaged to give a final score. Using these scores,

in place of the distance value, individuals can be more easily separated, and

placed on a scale of impairment.
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This scale must have a natural top and bottom, and future work will seek

to expand the dataset to discover this scale. In the current work, the scale is

arbitrary. The more negative the score, the further away an individual is from

the Healthy-Adult group. When graphed, this score enables the placement

of individuals relative to Healthy-Adult group, as seen in Figures 8.7 and

8.9. Furthermore, by calculating a threshold value, a one-class, classification

system can be implemented, allowing for the calculation of metrics such as

accuracy, specificity and sensitivity.

Score =
∑

(1− (ED ∗ ED var))/n (8.3)

where ED is the Euclidean Distance measured in a pixel by pixel fashion, given

by equation 8.4, and calculated using the spatial.distance.euclidean method of

the scipy.signal python library [210]. ED var is the unbiased variance be-

tween ED values, given by 8.5 and calculated using the pandas.DataFrame.var

method of the pandas python library [180], n is the number of repetitions of

the sit-to-stand movement.

ED =
√

(i1 − r1)2 + (i2 − r1)2 + ...+ (ii − ri)2 (8.4)

where ED is the Euclidean distance, i is the linearised input, and r is the

linearised reconstruction.

ED var =

∑n
i=1(EDi − ĒD)2

n− 1
(8.5)

where ED var is the variance between euclidean distance values (ED) for

the reconstructed repetitions of a sit-to-stand movement, ĒD is the mean of

the euclidean distance values for all reconstructed repetitions of a sit-to-stand

movement.

140



8.3.7 Training and Cross-validation

The cross-validation process is shown in diagram form in Figure 8.6, the details

of training are as follows:

The autoencoder was trained on a single class (Healthy-Adults) and then

tested using all of the other classes [Non-Faller, Self-reported-Faller s,

Self-reported-Faller m and Clinically-Impaired]. A K-fold (5-fold) cross-

validation schema was used to quantify the bias within the training set. That

is to say that 5 folds of the training set where prepared and separate models

trained for each fold. In the test phase of the cross-validation, the same set

of test data was used. In this way, the degree to which variations in the

training data affect the ability to train an appropriate model was examined.

The KFold method, from the sklearn python library[225], was used to prepare

the folds. The splits were done at the level of individual participants, i.e.

KFold returned an array of participant ids, which were used to select all the

reps for a particular participant. Therefore reps from one participant were not

allowed to leak between train and validation sets.

The model was trained using The Mean Square Error (MSE). the MSE

loss of the validation set was used as a signal to an early stopping callback,

which stopped training if the validation loss remained constant, or rose for

50 consecutive epochs. Together, these two measures helped to prevent over-

fitting and provided a train-time indication of the model’s overall performance.

Figure 8.5 demonstrates that the loss of the train and validation sets was very

close throughout training.

Figure 8.5: Graph of Train vs Validation loss: these graphs show how
the validation set loss (to the right) matches the train set loss (to the left) in
terms of MSE, very well throughout the training process. This demonstrates
the similarity between the two set of healthy individuals.
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All of the test set was processed through the trained model, and the recon-

structions scored, as described in section 8.3.6. Using a threshold (described

in section 8.3.6), the test set was classified, and metrics of accuracy, specificity

and sensitivity calculated and stored. After all 5 folds had been processed, the

scores where averaged and displayed.

Figure 8.6: A flowchart of the cross validation process. 1) The dataset
was split into Train and Test sets. The train being a single class Healthy-
Adults; 2) 5 folds were created to for cross validation, each fold contained a
train and validation set; 3) A model was trained, using the ith fold (nom-
inally 1000 epocs); 4) Early sopping was used to prevent overfitting; 5) The
trained model was used to reconstruct the movement from the Test set ; 6)
Each member of the test set was scored; 7) The best threshold to identify
impairment was calculated; 8) The metrics were calculated and stored; 9) the
process continues for 5 iterations; 10) The mean metrics were calculated and
scored; 11) The graph, showing separation were displayed
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8.3.8 Calculation of Metrics

Accuracy, Specificity and Sensitivity scores were calculated for each fold, and

then averaged to give an overall score.

All of these scores where based on the assumption of a binary split. While

the method described here produces a distance measure, a threshold of impair-

ment can be assumed. The calculation of the threshold is discussed in section

8.3.9.

Each participant was classified as being either Impaired falling below the

threshold or Unimpaired, falling above the threshold. Each participant now

had a true class (from the database) and a predicted class from the thresholding

process. All of the values for the test set were collected together into an array

and then passed to the Accuracy, Specificity and Sensitivity methods of the

sklearn python library [225] to calculate the metrics.

8.3.9 Calculation of Threshold

The threshold, used to classify impairment was calculated using a Receiver

Operating Characteristic (ROC) curve. The threshold provided the optimal

binary split between labelled as Unimpaired and those labelled as Impaired.

This threshold can be thought of as a threshold of normal.

The threshold was found by splitting the range of scores into 1000 segments

and sweeping over this range to find the value which gave the best trade-off

between a high true-positive rate and a low false-positive rate.

the true-positive rate and false-positive rate were calculated using the con-

fusion matrix method of the sklearn python library [225]
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8.4 Results

Using the scoring system, the participants were separated from least to most

impaired, shown graphically in Figure 8.7. The blue line indicates the thresh-

old of normal.

Figure 8.7: Separation of individuals by impairment: this graph rep-
resents the score derived from the autoencoder, One marker denotes a single
participant. The most impaired are shown furthest away from the normal
threshold. The normal threshold is indicated by the blue line. Key NF: Non-
Fallers, FHs: Self-reported-Fallers s, FHm: Self-reported-Fallers m, Clin-
Imp: Clinically-Impaired

The threshold was calculated using a Receiver Operating Characteristic

(ROC) curve, shown in Figure 8.8. This ROC curve is the average result of 5

fold cross-validation. The best threshold was 0.991. This gave a Specificity of

0.88 with 95% CI (± 0.22) and a Sensitivity of 0.68 with 95 % CI (± 0.21).

The metrics for each fold and the mean metrics are shown in Table 8.2
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Figure 8.8: ROC curve for the proposed model: the ROC curve shows
the trade of between different cut off levels for the threshold of normal. a score
of 0.991 was found to give the best separation, with a Specificity of 0.88 95%
CI (±0.22) and a Sensitivity of 0.68 95% CI (±0.21).

Table 8.2: Table of metrics: summation of 5-fold cross validation the mean
values are shown with standard deviation in brackets and 95% confidence
interval below.

Accuracy Specificity Sensitivity
1 0.88 0.92 0.73
2 0.94 0.95 0.87
3 0.85 0.95 0.63
4 0.83 0.92 0.60
5 0.71 0.65 0.59

mean
0.84 (0.08)

95%CI -/+0.15
0.88 (0.11)

95%CI -/+0.22
0.68 (0.11)

95%CI -/+0.21

Figure 8.9 shows a graph of scores vs age, stratified by impairment group.

The pale-blue line shows close grouping of the Unimpaired group, across the

whole range of ages, above the normal threshold line (mid-blue). The orange

line shows the trend of increasing impairment with age for the Impaired

group. The shaded orange area shows the 95% CI, with some appearing above

the line, which places them alongside members of the Unimpaired group and

others placed considerably below the line, making them very impaired.
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Figure 8.9: Regression of age vs impairment: this graph shows two dis-
tinct populations, Unimpaired (blue) and impaired (orange), One marker de-
notes a single participant. The Unimpaired group have scores that are similar
to those found in the Healthy-Adult group, over a wide range of ages. The
scores for the Impaired group decline with age. As the score goes down the
falls-risk increases.

8.5 Discussion

In this chapter, quantifying impairment was recast as an anomaly detection

problem. A deep autoencoder was trained to reconstruct graphs of joint angles

as they change over time. Joint angles derived from Healthy-Adults carry-

ing out the STS-5 test were used as input. During training, the autoencoder

built an internal model of a Healthy-Adults carrying out 1 rep of the STS-5

test. A scoring system was developed, which can express the level of func-

tional impairment relative to Healthy-Adults reps. Figure 8.7 demonstrates

how more impaired individuals are placed further away from Healthy-Adults

using this scoring system.

The trained autoencoder was able to reconstruct inputs from unseen Healthy-

Adults with little error, demonstrated in Figure 8.4 a. During training, unseen

Healthy-Adults were used as a validation set and a callback signal to prevent
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overfitting. The autoencoder was trained using mean square error (MSE) as

the back-propagation error signal. Euclidean Distance was used to quantify

the reconstruction error, as this produced a greater range of normal values

than MSE. This, in turn, aided the scoring of impaired individuals. Using

Euclidean distance alone did not provide a strong enough signal to quantify

impairment. Combining the distance measure with a measure of variability

between reps, i.e. variance, gave a score that is able to quantify the level of

impairment experienced by an individual. The intuition behind using variance

is that healthy individuals are able to repeat movements many times, which

are similar, while impaired individuals struggle to achieve consistency due to

poor control of their musculoskeletal system. Figure 8.2 compares a single

rep of the STS-5 movement, performed by a Healthy-Adult and a Clinically

impaired individual. The graph on the left (Healthy-Adult) demonstrates

smooth transitions in all joints, with the hip (red lines) and knee (blue lines)

joints, viewed from each plane, following similar arcs. For the healthy adult,

the joint angles are constrained by the bodies own systems and never reach

their physical limits. The graph on the right (Clinically-Impaired), is much

less well organised. There is not as much synchronicity in the hip and knee

joints, and the joints experience a greater range of movement. The knee joint

can be seen reaching their physical limits and then recoiling to recapture some

needed degrees of freedom. This figure demonstrates dis-coordination and

lack of control over movements for the impaired individual. As discussed in

the introduction dis-coordination and a reduction in muscular control are a

precursor to the development of frailty.

The STS-5 is an integral component of SPPB, it is included in the KINECAL

dataset, and it is often used alone to identify those at risk of falling [23, 256,

141]. Ward et al. undertook a 4 year long, longitudinal study (N = 755, mean

age 78.1 ± 5.4 ) that looked at SPPB as a predictor of injurious falls. They

concluded that the STS-5 alone was all that is required to assess falls-risk.

They suggested that a time to complete ≥ 16.7 seconds may be sufficient to

identify those at risk of future falls. [239] also found that time taken to com-

plete STS-5 was an excellent predictor of falls. They found that even a single

sit-to-stand could provide a useful indication of falls-risk. Ejup et al., [61]

used a Kinect camera to record community-dwelling older adults carrying out

the 5x sit-to-stand test. They found that sit-to-stand velocity was a better

discriminator of falls-risk than the time taken to complete the test. They note
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that the sit-to-stand velocity provides a good estimate of muscle power, a key

element of sarcopenia

Using Ward’s recommendation of 16.7 seconds to complete STS-5 [256]

to identify members of the KINECAL dataset at risk of falls, it identified

all of the Clinically-Impaired group, along with 6 Self-reported-Faller s;

1 Self-reported-Faller m, 11 Non-fallers and 2 Healthy-Adult. While

this test did capture all of the Clinically-Impaired individuals, it failed to

identify all of the Self-reported-Faller m and categorised a lot of Non-

Fallers as fallers. This points to the gross nature of this test. However, as

shown in Figure 8.2, a Kinect camera can be used to extract biomechanical

information, which can provide details of what is happening, bodily, during

the movement. In the study published by Equip et al. [61], they used a Kinect

camera but chose to track only a single joint (the head joint). They used the

joint path to segment both the sit-to-stand and stand-to-sit phases of the trial

and to estimate the velocity of each segment. This approach provides a single

summative metric, much like tracking the Centre of Mass to assess postural

sway. In this study, the dis-coordination of several joints is regarded as the

hallmark of movement impairment, and ultimately frailty. The Kinect camera

provides convenient way to track many joints at once.

A visual inspection of Figure 8.2 shows clear differences between the two

individuals. Given enough time and lots of cross-checking, one could create a

set of rules that relate the change in angle through the motion to impairment.

This research seeks to automate that process and provide a useful measure of

impairment.

By training the autoencoder to recreate the motions of a healthy adult it,

necessarily, builds an internal spatio-temporal model of a healthy movement

[207, 8]. When the autoencoder is asked to reconstruct the recording of some-

one with impairment, it will make errors in the reconstruction, some elements

will resemble the healthy movement, and some will be very different. There-

fore, the reconstruction error (euclidean distance in this study) can provide

a measure of how different the movement is from a healthy exemplar. The

reconstruction error was combined with the variance between reps, to produce

a score of impairment.

A threshold was calculated below which individuals show signs of impair-

ment. Although this should not be seen as a cliff-edge, and some individuals

might be able to accommodate impairment better than others. This point up
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the fact that systems, such as the one detailed here, should be an aid to a

health professional and not a replacement for clinical judgement.

The majority of Self-reported-Faller s are seen above the threshold line,

mixed with the none-fallers. This is in line with other studies that suggest that

Self-reported-Faller m should be treated as true fallers, and a single fall

could be due to bad luck [89]. The majority of those, categorised as impaired

(Self-reported-Faller m and Clinically impaired), can be seen ranged be-

low the threshold line, ordered by the degree of impairment. Figure 8.9 show

two distinct populations Impaired and Unimpaired. The Unimpaired

group showing consistently low levels of impairment with age, The Impaired

group showing increasing impairment with age. It should be noted that the

proposed method is not truly a classification method and the decisions bound-

ary used here is linear. Primarily this method provides a distance measure of

how impaired an individual might be. Different applications of this approach

might opt for different thresholds. Alternatively, the inclusion of a margin

might prove useful in practical applications. The advantage of this approach,

over a pure categorisation approach, is that it gives a score on a continuous

scale which can not only be used to identify impaired individuals it also is

useful in the tracking of improvements following interventions.

The use of a scoring system, which relates to an ideal form, has been used

by several other studies. [5] used a distance measure derived from dynamic

time warping (DTW) to assess if a particular exercise had been carried out

to the required quality during rehabilitation. In a similar way, Gholami et al.

[76] used DTW in the creation of a distance measure to quantify the degree of

dissimilarity between the gait cycle of Multiple Sclerosis Patients and healthy

patients of a similar age.

Houmanfar et al. [101] used a Hidden Markov Model (HMM) to model nor-

mal movement. The advantage of using a model approach is that the model can

learn the essence of a movement through the training process. This achieves

the dual-task of dimensionality reduction and defining a discriminative model.

In [101], a distance metric was used to determine the relative quality of move-

ments of people recovering from hip or knee replacements, with reference to

healthy individuals. [33] demonstrated that a model-based approach outper-

formed DTW for monitoring rehabilitation.

Previous works have used LSTM autoencoders as a form of non-linear

dimensionality reduction before using the latent representation with another
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model. Vakanski et al. [1], used a mixture density network, Jun et al. [107]

used a discriminative RNN, and Williams et al.[261] used a Gaussian Mixture

Model (GNN) as the second model, trained on the output of the autoencoder.

In the current study, a unique scoring system was developed, which alone

is enough to provide early warning of changes that could lead to frailty. In this

way, the Autoencoder is used in a similar fashion as the HMM in [101], with

the added advantage that an autoencoder is better able to model non-linear

relationships.

Future developments of the pipeline outlined in this study, consisting of a

portable depth camera, a machine model and scoring system could be used to

create a device, which could sit in a doctors office and make the assessment of

frailty as commonplace as taking someone’s blood pressure. Potentially, the

proposed method could provide an indication of physical impairment, giving

the option of a referral on, to a falls clinic as a preventative measure.

8.6 Conclusion and Future Work

This study demonstrates the use of an autoencoder as an anomaly detector.

When used together with the proposed scoring system, it can identify those

at risk of future falls. This research opens the door to future devices which

could provide a practical form of screening for those at risk of a fall currently

absent in the UK.

Our proposed method provides not only a way of screening for future fallers,

it also can be used in the rehabilitation process to demonstrate how interven-

tions are moving the patient closer to normal. As well as being a useful aid

to health professionals, this type of feedback can be a real spare to ensuring

the recommended exercises are carried out on a regular basis, if people can see

progress, they are more likely to continue.

This study demonstrates that an anomaly approach to falls-risk can work

well. The data was gathered from willing volunteers in the local community.

Inevitably, these people do not represent the most impaired of individuals. The

model demonstrated that even in this groups, difference could be discovered.

Future work will seek to validate this model on a wider range of participants.

Although the Kinect camera used in this research is no longer manufactured,

Microsoft has released its successor. Future work should consider this device.
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Chapter 9

Conclusion

9.1 Introduction

An inexpensive method of providing objective measures of impairment could

have a large impact on the lives of everyone at retirement age and older. Falls

are a major risk for people over 65, and proven help is available to prevent

future falls. However, access to this help is usually only granted after a fall

has been reported. This is not done out of malice, rather the lack of a device

that can provide evidence of future falls. This thesis looks at ways to move

that option closer to reality.

However, we are not there yet, not even close. But this thesis has started

the ball rolling, and sometimes that’s the biggest sticking point. It would be

a lie to say that there is a clear line from here to a practical product. This

work needs to have collective effort applied to it. To open up the field to other

researchers, this thesis has built the first dataset, designed to aid research into

fall-risk assessment by markerless motion capture, KINECAL. KINECAL is

designed to bridge the gap between lab-based test, which assess balance and

motion, measured by a force plate or motion capture system and clinical test,

which have a human observer score the movement base on a predefined scale.

The dataset achieves this by having all three types of data per participant.

The participants are also multipally labelled to allow many different questions

to be addressed, relating to falls risk, ageing frailty, and balance. The use of

these labels and the different modes of data were explored in chapters 7, and

8 which both demonstrated models able to identify those with high falls risk.
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9.2 Summary or work

Table 9.1: Table of objectives and outputs

Objective Output

1

To develop a method to track CoM
and calculate traditional postural
sway metrics from the output of a
Kinect and compare the proposed
method and device used in clinical
practice.

A new method of obtaining
traditional sway metrics from a Kinect
camera was developed.

This method was then
validated against The Balance Master

2
To create a new dataset of movements,
widely used in clinical tests,
using the proposed method.

The KINECAL dataset was created,
designed to address the lack of data in
this field of research

3
Disambiguate sway metrics associated
with ageing vs those related to
impairment.

We present an investigation into which
of the traditional sway metric are more
closely related to impairment vs ageing

4
To develop a method to quantify
impairment using deep learning
and the captured data.

By reframing the problem of identifying
those at risk of falls as an anomaly
detection problem, rather than
one of classification.

We were able to create a scale of
impairment, based on a deep learning
model.

Following the preliminary work, it became clear that distinguishing be-

tween young and older adults is an achievable task, using low-cost markerless

motion capture. However, this approach was not able to identify those who

are frail or at risk of falling. What follows details the journey, from having

no appropriate data to a deep learning model which can achieve this goal,

objective by objective as detailed in Table, 9.1

The first objective was to prove that the output of a Kinect camera can

produce traditional sway metrics that are equivalent to those produced by a

force plate. This objective was selected because the vast majority of literature

relating to instrumented balance assessment relates to metrics that are easily

calculated from force plates. Chapter 5 details a method, that can achieve

this. When these metrics were compared to those created from the Balance

Master, good agreement was seen, as detailed in section 5.3. In addition, the

combination of a low-cost depth camera and the proposed method can be used

to collect sway metrics in situations impractical for the Balance Master, at a

fraction of the cost.

Objective 2, was to create a dataset of movements widely used in clinical
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tests. Clinical test being the de facto method of assessing falls-risk in practice.

The output was the creation of the KINECAL dataset, detailed in chapter

6. Ultimately, the line of research detailed in this thesis aims to replace this

type of test. Using the method from objective 1, 90 individuals were recorded,

carrying out eleven movements which are used in a range of clinical tests. The

participants were scored using four well recognised clinical scales. Those that

were found to be clinically impaired on two out of the four scales were labelled

as Clinically Impaired. This provided an alternative set of labels to falls

history. This dataset is a unique resource that will be made available to fellow

researchers.

Objective 3, was to disambiguate sway metrics associated with ageing vs

those related to falls-risk. The underlying processes of ageing happens to

everyone, and yet some people suffer falls, while others don’t. In Chapter

7 an investigation was carried out to see if metrics could be identified, that

are or related to falls-risk, rather than ageing. Velocity, total excursion and

AP frequency where found to be more closely related to ageing while mean

distance and area were more closely related to increased falls-risk. However,

the distinction was not clear cut, and increased velocity is also indicative of

impairment, to a lesser extent.

To investigate if area and distance metrics could be used to identify fall-

ers and to explore the different labels in the KINECAL dataset, several GNB

machine models were constructed. Examining the performance of the models

provided evidence that the labels of clinical impairment are a useful addi-

tion and overcome the issues associated with falls history labelling. The best

performing model achieved an AUC of 0.81, and could potentially be devel-

oped into a screening test for those who would be classified as impaired, using

clinical tests.

Objective 4, was to develop a method to quantify impairment using deep

learning and the captured data. From the study in chapter 7 sway metrics

were examined, which provide a measure of balance. In chapter 8 features of

human movement, which can give a better measure of a loss of coordination as-

sociated with falls-risk and frailty, were considered. The five times sit to stand

test (5STS) is a well-validated test for falls-risk and balance impairment. As

such, it is ideal for demonstrating how an alliance of low-cost motion capture

and machine learning could lead to a useful alternative to both clinical test

and existing equipment commonly used in clinical assessment. Through the
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application of a representative model and the development of a unique scoring

system, individuals can be placed on a continuum of impairment, which could

find uses in rehabilitation as well as detection of falls-risk.

9.3 Limitations

While KINECAL is designed well and is the largest of its type, it still has

relatively few participants. This raises the spectre of generalisation. The

models detailed in this Thesis work for the KINECAL data, but it is unclear

whether these models will generalise well to the larger population. To address

this question, future work should seek to collaborate with clinicians to validate

the models. This issue of generalisation can also be addressed by collecting

more data and also encourage other researchers to help out with this task.

The work detailed in this thesis are retrospective studies, in which the

fallers have been identified before the models have been developed. Future

work should look at a prospective approach, where participants are recruited

before they develop falls issues, then tracked over several years to see if the

model can identify future fallers before their first fall.

There are lots more unexplored data in KINECAL. For example, the 3m

walk and TUG movements from a gait point of view. As section 2.9 explains,

variation in gait is a key indicator of falls-risk, and one that NICE [169] sug-

gests warrants more investigation. However, Kinect V2 struggles to track ankle

joints, Kinect V3 may be better suited to this task, and future work should ex-

plore this new device, along with competing devices. A new feature of Kinect

V3 is the ability to use multiple cameras. This could address a big issue with

using a single camera, that of occlusion. Although a single camera is the most

simple to set up and the most compact, small arrays might provide a com-

promise between improved tracking and size constraints of doctors offices and

care homes.

9.4 Future Work

The models developed in chapters 7 and 8 should be validated with unseen

individuals, who are at both high and low falls-risk.

The KINECAL dataset provides a starting point for data that can be used

in research towards a device that could be used to automatically assess balance
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issues and frailty, but this is not the end. Our intention is to build a community

to enable more research into this vital area. In addition, it is hoped that the

community can help with the capturing of new data. In this way, a large

dataset could be quickly created. The collection of new data has been severely

hampered by the current pandemic. Through collaboration, new innovative

and safe ways to collect new data may be found. To this end, the software used

to record the raw Kinect data and then process it into the KINECAL dataset

will be made available, open-source. The device used to record the dataset is

no longer on sale. However, its successor, the Azure Kinect, is now available

in the UK. Efforts will be made to update the code to support the new camera

and provide options to port the existing data over to the new format.

Follow up. The labels of falls in the current dataset are historical. Fu-

ture recordings should include follow up questionnaires to see if any of the

participants have become fallers or suffered more falls, after the date of the

recording.

In this thesis, much use was made of the skeletal data. However, the depth

videos remain largely unexplored. There were some promising experiments us-

ing a CNN network to do some preliminary classification of young and old using

this data. However, the computers available did not have enough memory on

the GPU cards to fully explore this option. Future work should endeavour to

reexamine depth data with more appropriate hardware.

In chapter 8 The human interpretation of time-series data is, briefly dis-

cussed. In this chapter, an automated approach is demonstrated. However,

the time series traces alone or in combination with Electromyography (EMG)

might aid physiologists to understand the underlying mechanisms driving im-

pairment and frailty. One could also imagine a machine approach which once

trained with both types of data, could estimate the EMG signal from the

output of markerless motion capture.

This cross-training approach could also be an interesting line of investiga-

tion when it comes to the comparison between markerless motion capture and

force plates data. In chapter 5 the best agreement was found for quiet stand-

ing eyes open. As the stance difficulty increased, the agreement lessened. To

explain this, the fundamental difference between the way in which the Balance

master estimates the position of CoM (from normative data and the inverted

pendulum model) and the more direct means of estimated CoM, used by the

proposed method was discussed. In the conclusion, of this chapter, future work
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was suggested that should include a three-way comparison of metrics calcu-

lated using our proposed method, marker-based motion capture and a force

plate, for both healthy and impaired individuals. Fundamentally force plates

measure CoP. It would be interesting to see if a model can be built, which

could better interpret the true CoM from, force-plate derived, CoP data.

9.5 Closing Comments

The work presented in this thesis, opens the door to the use of low-cost forms of

markerless motion capture in the objective assessment of impairment, falls-risk

and frailty. A much under research field, in caparison to other instrumented

approaches, such as force plates. This thesis draws comparisons between ap-

proaches that use force plates and a proposed method of deriving the same

metrics. It also demonstrates some issues with using a single point (CoM)

to quantify the complexity of balance. Finally, it demonstrates how a com-

bination of the more complete information, that can be obtained from depth

cameras and machine learning, can provide a fresh approach to the quantifi-

cation of impairment and falls-risk.

There is still much to do, but it is not hard to imagine a situation were a 70-

year-old-man visits his GP, and she does not ask if “have you fallen recently?”.

Instead, she asks “would you like to have your falls-risk assessed?”.

He says “Yes, why not!” and she pulls out a small portable depth camera

plugged into a laptop from over on one side of the office, next to the height

chart and the weighing scales.

After spending a minute to set-up the camera, a few meters from a chair,

she asks him to “stand up and down 5 times, when she says go”. On go, he

begins to stand, and she captures the movement. A second or two later, she

has an estimate of his falls likelihood and based on the result. She can make

an appropriate referral or tell him “everything is fine”.
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Short Physical Performance Battery Protocol 
and Score Sheet 

  

 

Guralnik, Ferrucci, Simonsick, Salive, & Wallace (1994)  Page 1 of 8 

 
 
Participant 
Name:  Date:  
 
 
All of the tests should be performed in the same order as they are presented in this protocol. 
Instructions to the participants are shown in bold italic and should be given exactly as they are written in 
this script. 

1. BALANCE TESTS 

The participant must be able to stand unassisted without the use of a cane or walker. You may 
help the participant to get up. 
 
Now let’s begin the evaluation. I would now like you to try to move your body in different 
movements. I will first describe and show each movement to you. Then I’d like you to try 
to  do it. If y                  
do it, tell me and we’ll move on to the next one. Let me emphasize that I do not want you 
to try to do any exercise that you feel might be unsafe. 
 
Do you have any questions before we begin? 

 
A. Side-by-Side Stand 

1. Now I will show you the first movement.  

2. (Demonstrate) I want you to try to stand with your feet together, side-by-side, for about 
10 seconds.  

3. You may use your arms, bend your knees, or move your body to maintain your 
balance, but try not to move your feet. Try to hold this position until I tell you to stop.  

4. Stand next to the participant to help him/her into the side-by-side position.  

5. Supply just enough support to the participant’s arm to prevent loss of balance.  

6. When the participant has his/her feet together, ask “Are you ready?”  

7. Then let go and begin timing as you say, “Ready, begin.”  

8. Stop the stopwatch and say “Stop” after 10 seconds or when the participant steps out of 
position or grabs your arm.  

9. If participant is unable to hold the position for 10 seconds, record result and go to the gait 
speed test.  
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B. Semi-Tandem Stand 

1. Now I will show you the second movement.  

2. (Demonstrate) Now I want you to try to stand with the side of the heel of one foot touching 
the big toe of the other foot for about 10 seconds. You may put either foot in front, 
whichever is more comfortable for you.  

3. You may use your arms, bend your knees, or move your body to maintain your balance, 
but try not to move your feet. Try to hold this position until I tell you to stop.  

4. Stand next to the participant to help him/her into the semi-tandem position  

5. Supply just enough support to the participant’s arm to prevent loss of balance.  

6. When the participant has his/her feet together, ask “Are you ready?”  

7. Then let go and begin timing as you say “Ready, begin.”  

8. Stop the stopwatch and say “Stop” after 10 seconds or when the participant steps out of 
position or grabs your arm.  

9. If participant is unable to hold the position for 10 seconds, record result and go to the gait speed 
test.  

C. Tandem Stand 

1. Now I will show you the third movement.  

2. (Demonstrate) Now I want you to try to stand with the heel of one foot in front of and 
touching the toes of the other foot for about 10 seconds. You may put either foot in front, 
whichever is more comfortable for you.  

3. You may use your arms, bend your knees, or move your body to maintain your balance, 
but try not to move your feet. Try to hold this position until I tell you to stop.  

4. Stand next to the participant to help him/her into the tandem position.  

5. Supply just enough support to the participant’s arm to prevent loss of balance.  

6. When the participant has his/her feet together, ask “Are you ready?”  

7. Then let go and begin timing as you say, “Ready, begin.”  

8. Stop the stopwatch and say “Stop” after 10 seconds or when the participant steps out of 
position or grabs your arm.  
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SCORING: 

A. Side-by-Side stand 
Held for 10 sec ❒ 1 point  

Not held for 10 sec  ❒ 0 points  

Not attempted  ❒ 0 points  

If 0 points, end Balance Tests 

Number of seconds held if less than 10 sec:  

____.___ Sec 

 
 
If participant did not attempt test or failed, circle why: 
Tried but unable  1  
Participant could not hold position unassisted  2  
Not attempted, you felt unsafe  3  
Not attempted, participant felt unsafe  4  
Participant unable to understand instructions  5  
Other (specify)  6  
Participant refused  7 
 

B. Semi-Tandem Stand 
Held for 10 sec ❒ 1 point  

Not held for 10 sec  ❒ 0 points  

Not attempted  ❒ 0 points   

(circle reason to the right) 

If 0 points, end Balance Tests 

Number of seconds held if less than 10 sec:  

____.___ Sec 

 
 
If participant did not attempt test or failed, circle why: 
Tried but unable  1  
Participant could not hold position unassisted  2  
Not attempted, you felt unsafe  3  
Not attempted, participant felt unsafe  4  
Participant unable to understand instructions  5  
Other (specify)  6  
Participant refused  7 

 

C. Tandem Stand 
Held for 10 sec   ❒ 2 point   

Held for 3 to 9.99 sec  ❒ 1 points 

Held for < than 3 sec  ❒ 0 points   

Not attempted ❒ 0 points  

(circle reason above) 

Number of seconds held if less than 10 sec:  

____.___Sec 

 

 
 
If participant did not attempt test or failed, circle why: 
Tried but unable  1  
Participant could not hold position unassisted  2  
Not attempted, you felt unsafe  3  
Not attempted, participant felt unsafe  4  
Participant unable to understand instructions  5  
Other (specify)  6  
Participant refused  7 

 

D. Total Balance Tests score __________  (sum points) 
  
Comments:  
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2. GAIT SPEED TEST 

Now I am going to observe how you normally walk. If you use a cane or other walking aid and 
you feel you need it to walk a short distance, then you may use it. 

A. First Gait Speed Test 

1. This is our walking course. I want you to walk to the other end of the course at your 
usual speed, just as if you were walking down the street to go to the store.  

2. Demonstrate the walk for the participant.  

3. Walk all the way past the other end of the tape before you stop. I will walk with you. Do 
you feel  this w ould be safe?  

4. Have the participant stand with both feet touching the starting line.  

5. When I want you to start, I will say: “Ready, begin.” When the participant acknowledges this 
 instruction say: “Ready, begin.”  

6. Press the start/stop button to start the stopwatch as the participant begins walking.  

7. Walk behind and to the side of the participant.  

8. Stop timing when one of the participant’s feet is completely across the end line.  

 

B. Second Gait Speed Test 

1. Now I want you to repeat the walk. Remember to walk at your usual pace, and go all the 
way past the other end of the course.  

2. Have the participant stand with both feet touching the starting line.  

3. When I want you to start, I will say: “Ready, begin.” When the participant acknowledges this 
 instruction say: “R eady, begin.”  

4. Press the start/stop button to start the stopwatch as the participant begins walking.  

5. Walk behind and to the side of the participant.  

6. Stop timing when one of the participant’s feet is completely across the end line.  
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GAIT SPEED TEST SCORING: 

Length of walk test course:  Four meters ❒  Three meters ❒ 

A. Time for First Gait Speed Test (sec) 
1. Time for 3 or 4 meters ____.___ sec  

2. If participant did not attempt test or failed, circle why:   
Tried but unable  1 
Participant could not walk unassisted  2  
Not attempted, you felt unsafe  3  
Not attempted, participant felt unsafe  4  
Participant unable to understand instructions  5  
Other (Specify)  6  
Participant refused  7  
Complete score sheet and go to chair stand test  

3. Aids for first walk............... None ❒      Cane ❒      Other ❒  

Comments:  

  

   

 
B. Time for Second Gait Speed Test (sec) 

1. Time for 3 or 4 meters ____.___ sec  

2. If participant did not attempt test or failed, circle why:  
Tried but unable  1  
Participant could not walk unassisted  2  
Not attempted, you felt unsafe  3  
Not attempted, participant felt unsafe  4  
Participant unable to understand instructions  5  
Other (Specify)  6   
Participant refused  7 

3. Aids for second walk............ None ❒      Cane ❒     Other ❒ 

What is the time for the faster of the two walks?  

Record the shorter of the two times ____.___ sec  

[If only 1 walk done, record that time] ____.___ sec  

If the participant was unable to do the walk:  ❒ 0 points 
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For 4-Meter Walk: 

If time is more than 8.70 sec: 
If time is 6.21 to 8.70 sec: 
If time is 4.82 to 6.20 sec: 
If time is less than 4.82 sec: 

❒ 1 point
❒ 2 points
❒ 3 points
❒ 4 points

For 3-Meter Walk: 

If time is more than 6.52 sec: 
If time is 4.66 to 6.52 sec:  
If time is 3.62 to 4.65 sec:  
If time is less than 3.62 sec: 

❒ 1 point
❒ 2 points
❒ 3 points
❒ 4 points

3. CHAIR STAND TEST

Single Chair Stand

1. Let’s do the last movement test. Do you think it would be safe for you to try to stand up from
a  chair w ithout using your arm s?  

2. The next test measures the strength in your legs.
3. (Demonstrate and explain the procedure.) First, fold your arms across your chest and sit so

that your feet are on the floor; then stand up keeping your arms folded across your chest.
4. Please stand up keeping your arms folded across your chest. (Record result).

5. If participant cannot rise without using arms, say “Okay, try to stand up using your arms.” This is
the end of their test. Record result and go to the scoring page.

Repeated Chair Stands 

1. Do you think it would be safe for you to try to stand up from a chair five times without using
your arms?

2. (Demonstrate and explain the procedure): Please stand up straight as QUICKLY as you can five
times, without stopping in between. After standing up each time, sit down and then stand up
again. Keep your arms folded across your chest. I’ll be timing you with a stopwatch.

3. When the participant is properly seated, say: “Ready? Stand” and begin timing.

4. Count out loud as the participant arises each time, up to five times.

5. Stop if participant becomes tired or short of breath during repeated chair stands.

6. Stop the stopwatch when he/she has straightened up completely for the fifth time.

7. Also stop:

• If participant uses his/her arms

• After 1 minute, if participant has not completed rises

• At your discretion, if concerned for participant’s safety

8. If the participant stops and appears to be fatigued before completing the five stands, confirm this by
asking “Can you continue?”

9. If participant says “Yes,” continue timing. If participant says “No,” stop and reset the stopwatch.
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SCORING   

Single Chair Stand Test 
 Yes No 

A. Safe to stand without help  ❒ ❒ 

B. Results:   
Participant stood without using arms  ❒ → Go to Repeated Chair Stand Test 

Participant used arms to stand ❒ → End test; score as 0 points 

Test not completed  ❒ → End test; score as 0 points 
C. If participant did not attempt test or failed, circle why:  

Tried but unable 1  
Participant could not stand unassisted 2  
Not attempted, you felt unsafe 3  
Not attempted, participant felt unsafe 4  
Participant unable to understand instructions 5  
Other (Specify) 6 
Participant refused 7 

 

Repeated Chair Stand Test 
 Yes No 

A. Safe to stand five times  ❒ ❒ 
B. If five stands done successfully, record time in seconds.    

Time to complete five stands ____.___ sec 
C. If participant did not attempt test or failed, circle why:  

Tried but unable 1  
Participant could not stand unassisted 2  
Not attempted, you felt unsafe 3  
Not attempted, participant felt unsafe 4  
Participant unable to understand instructions 5  
Other (Specify) 6 
Participant refused 7 

 

Scoring the Repeated Chair Test 
Participant unable to complete 5 chair stands or completes stands in >60 sec:  

If chair stand time is 16.70 sec or more: 

If chair stand time is 13.70 to 16.69 sec or more: 

If chair stand time is 11.20 to 13.69 sec: 

If chair stand time is 11.19 sec or less: 

 
❒ 0 points 

❒ 1 points 

❒ 2 points 

❒ 3 points 

❒ 4 points 
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Participant ID:  Date:  Tester Initials:  
 
 
 
Scoring for Complete Short Physical Performance Battery 

Test Scores 

Total Balance Test score  _______ points 

Gait Speed Test score  _______ points 

Chair Stand Test score  _______ points 

Total Score  _______ points (sum of points above) 
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Motor Unit study questionnaire: MMU  

(Version 2: 17/05/2017) 

 

Please complete this questionnaire as thoroughly and as accurately as you can to 
help us with our research. All your answers will be treated as strictly confidential 
and will only be seen by the research team. 

If you require this questionnaire in large print or have any difficulties with the 
questions, please contact the research team: 

Email: j.s.mcphee@mmu.ac.uk , sean.maudsley-barton@mmu.ac.uk 

 

Telephone: 0161 247 5675 

 

 

 

 

 

Please first complete: 

Your name:  

Your date of birth:  

Today’s date:  

 

Study ID (office use only): MU  

 

 

 

 

        

        

Please use black pen and make sure you tick inside the boxes, 

not next to them. Thank you! 



 

2 
Version 2: 18/05/2017 

 

 

Please tick one box for the following questions 
 

1.1 What is your current marital status? 

Single and never been married  

Married and living with husband/wife  

Married & separated from husband/wife  

Divorced 

Widowed 

Registered partnership 

Co-habiting 

   

 
1.2 What was your maximum educational level attained by 26 years of age? 
 

 CSE 

 GCSE 

 GCSE O level 

 A/S level 

 GCE A level (or S Level) 

 Scottish School Certificate 

Higher School Certificate or 
Scottish School Qualification 

 
 Diploma of Higher Education 

 First degree (e.g. BA, BSc) 

 Other degree level qualification 
 Such as graduate membership of professional institute  
 
 Higher degree (e.g. PhD, MSc) 

 Nursing or other para-medical qualification 

 PGCE- Post-graduate Certificate of Education 

Your personal information 
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 Other teaching qualification 

 None of these 

 
1.3 What is the full title of your main occupation during your working life? (Please 

use precise terms, for example ‘primary school teacher’ rather than ‘teacher’. For 

government or civil service, please provide grade. For armed forces, please provide 

rank.) 
 
     
    
 
1.4 If you have ever been a married woman, what is/was your husband’s main 

occupation? (Please leave blank if not applicable) 
 
 
    
 
 

1.5 What is your height? 

   Metres OR 

          Feet and  inches 

  

1.6 How much do you currently weigh?  

                 Kilograms OR 

  Stone and                          pounds 
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2.1 How would you describe your current health status? 

 

 

2.2 Do you have or have you ever had any of the following diseases? 

Disease Yes No If yes, please specify which 
disease or type 

A. Chronic non-specific lung 
disease (asthma, chronic 
bronchitis or pulmonary 
emphysema) 

   

B. Cardio-vascular diseases    

C. Peripheral arterial disease    

D. Diabetes mellitus    

E. Stroke    

F. Cancer    

G. Osteoporosis    

H. Arthritis (Rheumatoid/Osteo)    

I.Chronic liver or kidney disease    

J. Anorexia nervosa     

K. Overactive 
thyroid/parathyroid gland 

   

L. Coeliac disease or 
Malabsorption 

   

M. Parkinson’s disease    

N. Poor vision not corrected by 
glasses.  

   

Very good Good Fair Poor Very Poor 

Your health status 
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2.3 Are you currently on any medication? 

 

 

 2.3.1 If yes, please provide details: 

 Name of medication  
(Please copy name in full 

from container) 

Strength of 
dosage and how 

often  
(please copy from 

container) 

Reason for taking 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

11    

12    

 

Yes No 
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2.4 Are you a current smoker? 

2.4.1 If yes, how many cigarettes do you smoke in a normal day? (If you smoke 

roll-ups, cigars or pipes, please give the equivalent number of cigarettes) 

2.4.2 What age were you when you started smoking? 

2.5 Have you ever smoked cigarettes regularly (by which we mean at least one 

cigarette a day for 12 months or more) 

2.5.1 If yes, how long ago did you give up smoking? (fill in number of weeks or 

months or years below and circle as appropriate ) 

 (weeks / months / years) 

Yes No 

1-5 >2010-205-10

Yes No 

<16 16-25 26-35 36-45 46-55 >55
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2.6 Have you drunk alcohol in the last year? 

 

2.7.1 If yes, In the last 7 days have you had any of the following drinks? (Do 

not count non-alcoholic drinks) 

A. Spirits or liqueurs (e.g. whisky, gin, brandy) 

No 

Yes   measures   

 

B. Wine, sherry, martini, or port 

No 

Yes   Glasses  

 

C. Beer, larger, cider, or stout 

 

   Pints 

     ½ pints 

2.7 In the last year, have you noticed loss of strength or weakness in your hands? 

 Not at all or rarely 

 A little or some of the time 

 A moderate amount of time 

 Most of the time 

 

2.8 In the last year, have you lost more than 10 pounds in weight unintentionally? 

 Yes No 

Yes No 

No 

Yes 
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2.9 How often in the last week did the following apply? 

“I felt that everything I did was an effort” or “I could not get going” 

Rarely or none of the time (<1 day)  
 
Some or a little of the time (1-2 days)  
 
A moderate amount of time (3-4 days)  
 
Most of the time (>4 days) 

 

2.10 The following statements are about feelings and thoughts. Please circle one 
number per line that best describes your experience of each statement over the last 
2 weeks. 
 

 please circle one number per line 

Statements None of 
the time Rarely 

Some 
of the 
time 

Often 
All of 
the 
time 

I’ve been feeling optimistic 
about the future 1 2 3 4 5 

I’ve been feeling useful 
 1 2 3 4 5 

I’ve been feeling relaxed 
 1 2 3 4 5 

I’ve been feeling interested 
in other people 1 2 3 4 5 

I’ve had energy to spare 
 1 2 3 4 5 

I’ve been dealing with 
problems well 
 

1 2 3 4 5 

I’ve been thinking clearly 
 1 2 3 4 5 

I’ve been feeling good 
about myself 
 

1 2 3 4 5 

I’ve been feeling close to 
other people 
 

1 2 3 4 5 

I’ve been feeling confident 
 1 2 3 4 5 

I’ve been able to make up 
my own mind about things 1 2 3 4 5 
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I’ve been feeling loved 
 1 2 3 4 5 

I’ve been interested in new 
things 
 

1 2 3 4 5 

I’ve been feeling cheerful 
 1 2 3 4 5 

 

 
3.1. Have you noticed that you've been getting tired in the past month  
 
 
 
 
 
 
 3.1.1 If yes, on how many days have you felt tired in the past seven days?  
 
 
 
      
 
 
3.1.2 Have you felt so tired that you've had to push yourself to get things done in the 
past 7 days?  
 
 
 
 
 
 3.1.3 Have you felt tired when doing things you enjoy in the past seven days?  
 
 
 
 
 
 

Yes No 

1-3 4+ 

Yes No 

Yes No 

I haven’t done anything 

enjoyable in the past week 
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3.1.4 What do you think is the main reason for feeling tired? 
 
 
 
 
 
 
 
 
 
If other, please specify ………………………………………………………………….. 
 
 
 
3.1.5 How long have you been feeling tired like this?  
 
 
 
 
 
 
 
 
  
  

 

 

 

 

  

Stress of 

worry 

Tablets or 

medication 
 

Physical illness My age  Working 

too hard 

Problems 

with sleep 

 Physical 

exercise 

1-2 years 6 months – 1 year 2 weeks - 6 months 2+ years Less than 

2 weeks 
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4.1 Have you passed the menopause? 

 

Yes              No             Current                   Don’t know       

 

6.1.1 If yes, at what age did your periods stop (approx)?   

 

 6.1.2 Did your periods stop   naturally 

      because of an operation 

 

4.2 Except for pregnancy, or the onset of menopause, have your periods ever 

stopped for more than 6 months?                 

 
 
 
4.3 Have you had a hysterectomy?   

 

 

5.3.1 If yes, how old were you?      

 

5.3.2 Were both ovaries removed? 

 

 

4.4 Have you ever used Hormone Replacement Therapy (HRT)? (this includes 

patches, tablets, implant)  

   

 

 

 

Yes No 

Yes No 

Both One Neither Don’t know 

Yes No 

For Female Participants only 
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5.1 Do you make regular journeys every day or most days either walking or cycling? 

 
 

 
           

 

5.2 How many times during a typical day do you walk up a flight of stairs (1 flight of 
stairs = 10 steps)? 
  

 

     

 

5.3 Which of the following best describes your walking speed? 

 

 

 

 

 

 

 

 

 

 

 

 

 

No I walk I cycle Both 

None 0-2 

times 

 2-4 

times 

5-10 times More than 10 

times 

Your current physical activity 

 

Unable to 

walk 
Very slow Stroll at an 

easy pace 

Normal 

speed 

Fairly 

brisk 

Fast 
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5.4 Over the past 7 days, have you taken part in any physical activities? 

 

5.4.1 If yes, please tick one box for each activity that you have participated in during 
the last 7 days. 

 0-1 hours  1-2 hours  2-4 hours  More than 4 
hours  

Aerobics     

Aqua aerobics     

Badminton     

Bowls     

Cycling     

Dancing     

Football/hockey     

Gardening, light (e.g. 
pruning, watering)  

    

Gardening, heavy 
(e.g. digging, 
mowing) 

    

Golf     

Gym     

Hiking     

Housework     

Jogging/running     

Snow skiing     

Squash     

Swimming     

Tennis     

Tai Chi/ Yoga/ Pilates     

Walking     

Water sports (e.g. 
windsurfing) 

    

Other physical 
activity (please state) 
 

    

 

Yes No 



 

14 
Version 2: 18/05/2017 

5.4.2 You have just been asked about your physical activities in the past 7 days, 
were these 7 days normal as compared to the rest of the past year? 

 

Yes  

 

No, I did more                       because of: 

 

    The weather     Holiday                  

 

Other………………………………… 

 

No, I did less                           because of: 

 

    The weather      Holiday                   llness               

 

Other……………………….. 
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6.1 How often did/do you take part in sports and leisure time exercise involving 
weight bearing activity, e.g. running, racquet sports, football, rugby, hockey, dancing 
and running,  not including walking, cycling or swimming? (Please tick your best 

approximation for each age category) 

 

 

6.2 Considering 20 minutes of brisk walking is about 1 mile, how many miles did/do 
you usually walk each day? (Please tick appropriate answer for each age category) 

 

 

 

  

 None  Occasionall
y (once a 
month)  

Frequently 
(once a 
week) 

Very 
frequently 
(more than 
once a week)  

a) Up to age 18     

b) When you were aged 18-
30 

    

c) When you were aged 30-
50 

    

d) Since you have been 50     

 Under 1 
mile  

1 to 2 miles  3 to 5 miles  
 

Over 5 miles  

a)  Up to age 18     

b)  When you were aged 18-
30 

    

c)  When you were aged 30-
50 

    

d)  Since you have been 50     

Your past physical activity 
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7.1 Has a doctor told you that you have broken, fractured or chipped any bones 
since the age of 45?  

                            

                 

7.1.1 If yes, please mark on the drawing below the location of the broken bone(s) 

     

 

 

 

 

 

 

 

 

 

 

7.1.2 Please provide details of the broken bone(s) 

Name of bone Age when 
fracture 
occurred 

How did the fracture occur? 

   

   

   

   

   

Your joints and bones 

 

Yes No 
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7.2 Have you had any fall including a slip or trip in which you lost your balance and 
landed on the floor or ground or lower level in the past 12 months? 

 

      

 

 7.2.1 Did you seek medical attention for any of these falls?   

 

   

 

7.2.2 Are you worried about falling again? 

 

 

7.2.2.1 If yes, do you limit or stop going out because of this? 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Yes No 

None One Two

wo 

 No 

Three

wo 

 No 

Four or more

wo 
 No 

Not applicable 

Yes No 

Yes No 
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7.3 On a scale of 1 to 10, with 10 being very confident and 1 being not confident 
at all, how confident are you  that you can do the following activities without falling? 
(Please tick the relevant box to indicate your confidence for each activity) 

 
Activity 

 
 
1  
Not 
confident 
 

 
 
2 

 
 
3 

 
 
4 

 
 
5 

 
 
6 

 
 
7 

 
 
8 

 
 
9 

 
 
10 
Very 
confident 

Take a bath or shower           

Reach into cabinets or 
closets 

          

Walk around the house           

Prepare meals not 
requiring carrying heavy 
or hot objects 

          

Get in and out of bed           

Answer the door or 
telephone 

          

Getting in and out of a 
chair 

          

Getting dressed and 
undressed 

          

Personal grooming (i.e. 
washing your face) 

          

Getting on and off the 
toilet 

          

Total score (office use)            

  

7.4 Do you regularly use any of the following to help you get around? (Please tick as 

many that apply) 

                                                                                           

   

                                                                                                                                                                                                                 

If other, please state 
…………………………………………………………………………….                                

7.5 Do you have a noticeable limp? 

  

 

  Not applicable Walking stick        Zimmer frame        Trolley/frame         Mobility scooter Wheelchair 

No Yes 
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7.6 Have you had a joint replacement? 

                

 

7.7 If yes, please tick the appropriate box(s) indicating which joint was replaced and 
how long ago. 

Joint 
replaced 

Time since replacement 

 Less than 6 
months  

6-12 months  1-2 years  More than 2 years 
ago  

a) Hip (right)     

b) Hip (left)     

c) Knee (right)     

d) Knee (left)     

 

7.8 Is your ability to walk restricted due to pain?  

 

   

7.9 If yes, please tick the appropriate box(s) indicating where the pain occurs and the 
time walked before you have to stop as a result of the pain. 

Joint where 
pain occurs 

Time walked before being interrupted by pain 

 Less than 1 
minute             

1-5 minutes  
                      

5-10 minutes  

                                   
10-20 minutes 
                                 

More than 
20 minutes         

a)Hip (right)      

b)Hip (left)      

c)Knee (right)      

d)Knee (left)      

e) Ankle 
(right) 

     

f) Ankle (left)      

g) Back      

 
 

No Yes 

Yes No 
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8.1. How frequently do you exercise? 

 

      

 

 

 

8.2. If you exercise as frequently as once or more times a week, how hard do 
you push yourself? 

 

     

 

 

 

 

 

8.3.  How long does each session last? 

 

      

 

 

 

 

 

 

Thank you for taking the time to complete this 

questionnaire. 

Never Less than 

once a week 

Once a 

week

wo 

2-3 times a 

week

wo 

Almost every 

day 

I take it easy 

without 

breaking a 

sweat or 

losing my 

breath 

 

I push myself 

so hard that I 

lose my 

breath and 

break into 

sweat 

 

I push 

myself 

near 

exhaustion 

Less than 

15 

minutes 

 

15–29 

minutes 

 

30 minutes 

to 1 hour 

wo 

More than 

1 hour 

wo 

Physical Endurance 
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[139] Laura Luna-Oliva, Rosa Maŕıa Ortiz-Gutiérrez, Roberto Cano-de la

Cuerda, Rosa Mart́ınez Piédrola, Isabel M. Alguacil-Diego, Carlos
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Using Näıve-Bayes-Nearest-Neighbor. In Workshops on IEEE Conf. on

Comput. Vis. and Pattern Recog, 2012.

[268] Yang Yang, Fang Pu, Yan Li, Shuyu Li, Yubo Fan, and Deyu Li. Re-

liability and Validity of Kinect RGB - D Sensor for Assessing Standing

Balance. IEEE SENSORS JOURNAL, 14(5):1633–1638, 5 2014.

[269] L. F. Yeung, Kenneth C. Cheng, C. H. Fong, Winson C.C. Lee, and

Kai Yu Tong. Evaluation of the Microsoft Kinect as a clinical assessment

tool of body sway. Gait and Posture, 40(4):532–538, 2014.

[270] Vladimir M. Zatsiorsky and Deborah L. King. An algorithm for deter-

mining gravity line location from posturographic recordings. Journal of

Biomechanics, 31(2):161–164, 5 1997.

[271] Yu Zhong and Mark Stevens. Action recognition in spatiotemporal vol-

ume. In 2010 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition - Workshops, pages 25–30. IEEE, 6 2010.

217



[272] Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li,

Li Shen, and Xiaohui Xie. Co-occurrence Feature Learning for Skele-

ton based Action Recognition using Regularized Deep LSTM Networks.

In 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pages

3697–3703, 3 2016.
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feature estimation for recognising Parkinson’s disease using MS Kinect.

Biomedical engineering online, 14(1):97, 2015.

218


	List of Abbreviations
	Introduction
	Ageing and Frailty
	What is an injurious Fall?

	Identifying Those at Risk of Falls
	Assessment by a Clinician

	Motivation
	Problem Statement
	Aim and Objectives
	Contributions
	Thesis Organisation

	Literature Review
	Introduction
	What is Balance?
	Posturography
	Postural Sway Metrics

	Postural Sway, Ageing, and Falls
	Criticism of Sway Measured by Force Plates
	Motion Capture
	Origins
	Marker-based Motion Capture
	Markerless Motion Capture

	Issues with Kinect
	Comparison, Between Kinect and Marker-based Systems
	Kinect and Human Action Recognition
	Gait Assessment
	Falls Detection
	Rehabilitation
	Assessment of Balance and falls-risk
	Working with Skeletal Data
	Automatic Feature Extraction and Representational Models
	Automatic Feature Selection
	Representational Models
	Autoencoders

	Clinical Datasets
	Machine Learning
	Types of Machine Learning
	Machine Learning Algorithms
	Statistical Machine Learning Models
	Neural Networks - reborn
	Recurrent Neural Networks (RNN)
	Autoencoders

	Conclusion

	Techniques and Methods
	Introduction
	Joints and Skeletons
	The Human Body 

	Working with Kinect skeletons
	Filtering 
	Pose Normalisation
	General Method for Calculating CoM
	Centre of Mass from Force Plate Data
	Centre of Mass from Kinect Data

	Conclusion

	Preliminary Research
	Introduction
	A Method to Distinguishing Young from Older, in the KD3a Dataset
	Pose Normalisation
	Feature Encoding
	K-mean Clustering
	Motion Representation
	Model Training

	Results
	Discussion
	Conclusion

	A New Process to Measure Postural Sway, Using a Kinect Depth Camera
	Introduction
	Methods
	Participants
	Procedure
	Experimental Setup
	Recording of CoM path
	Creation of CoM Time Series
	Calculation of Sway
	Data Exclusions
	A priori Sample Size Calculation
	Statistical Tools

	Results
	Repeatability
	Agreement of Postural Sway Measurement
	Implications of the Increased Disagreement

	Discussion
	Limitations, Considerations and Future Work

	Conclusion

	KINECAL: A Dataset of Clinically Significant Movements
	Introduction
	Clinically Significant Movements
	Participants
	Dataset Labelling
	Self-reported Labels
	Single and Multiple Fallers
	Clinical labelling
	Thresholds of Clinical-Impairment


	Methods
	Experimental Setup
	Data recording
	Signal Processing
	Estimation of CoM

	Generation of sway metrics
	Sway Metric - Time Series
	Calculation of Sway Metrics

	Questionnaire
	Open Source Code
	Conclusion

	An Investigation of Sway Metrics Associated With Falls
	Introduction
	Sway Metrics Identification
	Sway Metrics
	Participant groups
	Outlier Detection
	Assessment of Significant Difference,  Between Participant Groups
	Age-related Sway Metrics
	Grouping of Participants
	Results

	Falls-Risk related Sway Metrics
	Grouping of Participants


	Machine Learning Methods
	Sliding Window
	Monte Carlo Cross-Validation and Rebalancing
	Experiments

	Results
	Discussion
	Conclusion

	Quantification of Falls-Risk, Based on a Representational Model
	Introduction
	Participants
	Methods
	Skeletal Preprocessing
	Calculation of Joint Angles
	Segmentation of Repetitions
	Resampling and Padding
	Autoencoder
	Distance Metrics and Scoring
	Training and Cross-validation
	Calculation of Metrics
	Calculation of Threshold

	Results
	Discussion
	Conclusion and Future Work

	Conclusion
	Introduction
	Summary or work
	Limitations
	Future Work
	Closing Comments

	Appendices
	
	SPPB Scoring Sheet

	
	Motor Unit Study Questionnaire: MMU

	Bibliography



