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Abstract  

Gully erosion and landsliding are important geomorphic processes that shape the Earth’s 

surface, yet they pose significant hazards. Gully-induced landslides occur due to extreme 

gullying creating favourable conditions (e.g. bare and irregular surfaces) for expansion of 

already existing gullies (landslide-induced gully expansion). These gully-landslide feedbacks 

are facilitated by interactions among ecogeomorphic factors, yet little is known about the 

mechanism of these interactions. The aim of this study is to improve understanding of 

ecogeomorphic processes of gully-landslide interactions using examples from Southeast 

Nigeria. To achieve this aim, multi-method research methods were adopted: analysis of 

remotely sensed data, geotechnical investigations, quantitative and qualitative techniques and 

hydrological modelling. Gullies were mapped using high resolution data (0.61 – 5 m) acquired 

between November 2009 and December 2018 while supervised land-use classification was 

undertaken for both years. Geomorphic variables were acquired from the 30 m SRTM-DEM. 

Geotechnical investigations were conducted by Loraj Consortium, a partner of the Nigeria 

Environment and Watershed Management Project (NEWMAP) and results were made 

available for this research. Multiple regression analyses were used to establish associations 

between gully drivers and changes in gully sizes. Two focus group meetings were held and 192 

copies of a questionnaire were distributed. The Soil and Water Assessment Tool model was 

used to understand effects of land-use changes on catchment hydrology and relate these 

changes with changes in gully sizes.  

Results showed that major land-use changes, especially, reduction in fallow-cover, were 

recorded during the study period and interactions among ecogeomorphic factors were found to 

be significantly associated with changes in gully sizes. The soils in the study area are mainly 

sandy with low cohesion values which predispose them to dispersion by surface runoff and 

high seepage erosion. Modelling results showed there have been increased volumes of surface 

runoff between 2009 and 2018 due to increased non-vegetated surfaces, a view supported by 

focus group meeting attendees. Twenty six gullies covering an area of 0.36 km2 were mapped 

in 2009 but in 2018, 39 gullies occupying 0.62 km2 were mapped. Also, modelling results 

indicated that despite similarities in soils and geomorphology, hydrological responses of gully 

catchments varied, thus pointing to the uniqueness of catchments and possible variations in 

driving processes of individual gullies. Results from focus group meetings indicated there were 

no gullies in the area before the Nigerian civil war that lasted between 1967 and 1970. Military 

activities including digging trenches were said to have led to the initiation of the oldest gully 
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in 1968. Participants at focus group meeting said a lag existed between rainfall events and 

occurrence of gully-induced landslides, suggestive of effects of cumulative rainfall and 

groundwater as  drivers of gullying. At visited gullies, presence of springs was observed 

suggestive of groundwater-driven gullying. Modelling results suggested high sub-surface flow 

in the study area, thus, fieldwork, focus group meetings and hydrological modelling all suggest 

that sub-surface flow is a potential driver of  gullying in the study area. It has been suggested 

that in the design of gully-control, different gully catchments should be treated individually as 

no two catchments are the same. The multi-method research approach adopted in this research 

was helpful to understand gully-landslide interactions considering potential effects of 

ecogeomorphic processes. Adopting this research approach in future studies, especially in data-

scarce regions, will improve understanding of geomorphic process in those regions and thus 

enhance design of management measures. 
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Chapter 1 

Introduction 

1.0 Background to the study  

Gully erosion and landsliding are geomorphic processes that contribute to landscape evolution 

(Goudie, 1990; Temesgen et al. 2001) yet they become hazardous when they interact with 

human activities. A gully is a relatively permanent, steep-sided water course which experiences 

ephemeral flows during a rainstorm (Morgan, 2009) and is formed when runoff accumulates 

and often recurs in narrow channels and, over short periods, erodes the soil from this narrow 

area to considerable depths (Poesen et al. 2003). Landslide is a general term for all varieties of 

mass movement on slopes (Varnes, 1984). The process of landsliding is restricted to hillslopes 

and always delivers loose materials to lower slopes (van Beek et al. 2008). Some landslides 

occur as a result of extreme gullying and they are referred to as gully-induced landslides. 

Landslides create bare and irregular surfaces which encourage concentration of runoff, thus, 

increasing runoff erosivity and subsequent initiation of new gullies, or expansion of existing 

gullies thereby resulting in landslide-induced gullying (Johnson & Warburton, 2015; Gómez-

Gutiérrez et al. 2015). This feedback between gully-induced landslides and landslide-induced 

gullies creates complex gully landforms that pose challenges to gully management in many 

parts of the world (Betts et al. 2003; Osadebe et al. 2014; Igwe, 2015). Driving factors of gully 

erosion and landsliding have been studied and documented. There is a consensus among 

researchers that change in land use, especially, increase in bare and paved surfaces which 

increase flashiness and volume of surface runoff is the primary driver of gully erosion while 

extreme rainfall is often identified as a trigger factor of landsliding (section 2.2). 

Gully erosion has significant effects on the availability of land for cultivation, crop productivity 

and land degradation (Morgan & Rickson, 1995; Zhang et al. 2002; Rickson et al. 2015; Graves 

et al. 2015) while landslides account for significant amounts of property damage (Igwe, 2012). 

Gully erosion and gully-induced landsliding are the dominant environmental problems in the 

southeast region of Nigeria. These associated problems have led to the isolation of villages, 

severance of communication lines such as roads, as well as loss of homes, schools, human and 

material resources worth several millions of dollars (Egboka et al. 1990). The earliest study on 

gully erosion in southeast Nigeria was documented in 1938 (Stamp, 1938) and over successive 

years, numerous researchers have studied the mechanisms of gully evolution. Different 

conceptual models of soil erosion have been developed to understand driving factors and more 



2 
 

importantly, to design control measures to manage gullying (Egboka and Orajaka, 1987; 

Egboka et al. 1990; Gobin et al. 1999; Ezezika & Adetona, 2011). Despite the findings of these 

studies and implementation of various erosion-control measures, gully erosion is still endemic 

with the formation of new gullies and high headward retreat rates of existing ones (up to 60 m 

yr-1 in places, Hudec et al. 2005). This situation signifies the need for further understanding of 

the complex interactions between the different factors and actors influencing erosion at 

different scales (local and regional) and levels (Gobin et al. 1999). A better understanding of 

these interactions would enhance scientific knowledge of processes, aid the design of 

appropriate control measures and reduce associated hazards of gullying.  

The relationship between gully erosion and landsliding has already been established (Bergonse 

and Reis 2016; Osadebe et al. 2014), for example, gully erosion has been identified as a 

preparatory factor for landsliding (Igwe, 2015), and landsliding has been suggested as a driver 

of gully erosion (Betts et al. 2003). Both geomorphic processes respond to land-use changes, 

especially, removal of forest cover as vegetation is thought to influence gullying and 

landsliding (Greenway, 1987; Stokes et al. 2008a; Stokes et al. 2008b). From the forgoing, it 

is evident that human-vegetation interactions (manifest in vegetal cover removal or planting) 

are significant in the study of gully erosion and landslides (Cooke & Reeves, 1976; Ghestem 

et al. 2011; Akpan et al. 2015). Therefore, in the study of the interactions between gully erosion 

and landsliding, it is imperative to adopt an approach that includes human-vegetation linkages 

at different scales (catchment and regional). 

1.1 Ecogeomorphic perspectives  

Ecogeomorphology refers to the discipline that studies the coupled evolution of 

geomorphological and ecosystem structures (Fagherazzi et al. 2004). Relationships between 

ecological and geomorphic processes are known (e.g. Viles, 1988a,b; Fantucci & Sorriso-

Valvo, 1999; Stallins, 2006; Corenblit et al. 2011; Jones, 2012), while some authors adopted 

the term biogeomorphology to refer to the interface between ecology and geomorphology; 

other papers covering such interface do not explicitly discuss that they are 

‘biogeomorphological’ in nature (Naylor et al. 2002). A review of papers on 

biogeomorphology reveals that they focus mainly on non-human elements of an environment 

and their relationship with geomorphic processes (e.g. Imeson, 1976; Voslamber & Veen, 

1985; Corenblit et al. 2011, Viles, 2020). In order not to confuse the reader into thinking that 

the focus of this work is on the roles of non-human actors in influencing geomorphic processes 

and considering that humans as ecosystem engineers have affected gullying over time, 
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ecogeomorphology is adopted over biogeomorphology in this work. For this study, 

ecogeomorphology is defined as the study of interactions between geomorphic and ecological 

(human-vegetation interactions) processes within an environment.  

Human-vegetation interactions form the principal ecological drivers which modify landforms 

and affect gully erosion and landsliding (Guthrie 2002; Castillo et al. 2016). The deforestation 

activities of people expose bare soils to compaction and erosive runoff thereby producing 

gullies as resultant landforms; also, demographic pressure caused by population increase 

predisposes soils to gully erosion. Further gully evolution can result in steepening of slope 

angles, slope undercutting and removal of toe support, thus increasing susceptibility to failure 

(Igwe & Fukuoka, 2010; Igwe. et al. 2014; Maduka et al. 2017). Engineering construction on 

marginally stable slopes, toe undercutting during construction activities, as well as forest 

clearing, and logging can reactivate ancient landslides or predispose slopes to landslides. 

Consequently, bare surfaces created by ‘human-induced’ landslides increase susceptibility to 

gully erosion. Conversely, geomorphic processes affect tree growth, vegetation distribution 

(Parker & Bendix, 1996; Stallins, 2006) and agricultural activities, thus establishing a nexus of 

ecogeomorphic interrelationships which has not been fully studied and necessitating the need 

for improved understanding of dynamic feedbacks between ecological and geomorphic 

processes – this is the justification for adopting an ecogeomorphic investigation in this study.  

Wainwright & Parsons (2010) observed that there is a need to understand the dynamic 

feedbacks and interactions between ecological and geomorphic processes. Fulfilling this need 

will facilitate scientific understanding of interactions between processes that modify 

landforms. With reference to gully-landslide linkages; this improved understanding will 

provide a detailed appreciation of linkages which have far reaching effects on the environment, 

food production, housing as well as safety of affected population. By so doing, improvement 

in understanding of known processes of interactions would be achieved while management and 

mitigation of hazards accruing from these feedbacks will be improved, thus reducing associated 

risks.  

1.2 Aim 

This work therefore aims to study ecogeomorphic processes of gully-landslide interactions 

using examples from Southeast Nigeria. Fulfilling this aim will improve understanding of 

processes and inform management practices to reduce effects of gully-landslide interactions.  
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Chapter 2 presents background context and literature review leading to the development of 

a conceptual model of gully-landslide interactions. Materials and methods are discussed in 

chapter 3. Chapter 4 illustrates the effects of land use and land-use changes on gully 

characteristics while chapter 5 presents results on the influence of land-use changes on 

gully catchment hydrology. In chapter 6, findings on gully-landslide interactions are shown 

and discussed while chapter 7 discusses results on hazards and effects of these interactions. 

A synthesis of results is discussed in chapter 8 while a revised conceptual model which 

presents the key findings of this work is also shown. Conclusions and suggestions for future 

work follow in chapter 9. 
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Chapter 2  

Background context 

2.0 Introduction 

Chapter 2 establishes the research context related to the present study. Mechanisms of gully 

development and landsliding are reviewed in section 2.1 while section 2.2 discusses drivers of 

gullying and landsliding. A conceptual model of gully-landslide interactions based on reviewed 

literature, established gaps and research questions are discussed in section 2.3.  

2.1  Mechanisms of gully development and landsliding 

Gully erosion can result from different mechanisms including subsurface mechanisms (e.g. 

piping and seepage erosion), and surface mechanisms (for instance fluting, incision by rainfall 

and surface runoff, development of rills and landsliding) (Dunne, 1990; Betts et al. 2003; 

Gómez-Gutiérrez et al. 2015; Bernatek-Jakiel & Poesen, 2018). Sub-surface erosion of soil 

particles can occur through seepage erosion (Dunne, 1990), actions of lateral movement of 

water within the soil (Berry, 1970), groundwater driven erosion (Okagbue & Uma, 1987) as 

well as piping (Bernatek-Jakiel & Poesen, 2018). Events that channel surface runoff 

underground, e.g. increase in biogeomorphic activities such as animal burrows will likely 

propagate sub-surface erosion (Swanson et al, 1989; Chappell, 2010).  

Piping refers to subsurface concentrated flow erosion due to bypass flow and it is controlled 

by factors such as soil characteristics at depth, particularly the presence of differential porosity, 

solubility and strength (Vanmaercke et al. 2016). Collapse of pipe-roofs leads to gully 

formation. Piping as a mechanism of gully erosion has been recorded in almost all climatic 

regions of the world (Bernatek-Jakiel & Poesen, 2018). Seepage erosion is the entrainment of 

soil or rock resulting from water flowing through and emerging from a porous medium and 

may involve individual grains or large masses of soil or fractured rock (Dunne, 1990). High 

sand content and high infiltration capacity make soils susceptible to seepage erosion (Okagbue 

& Ezechi, 1988). Two processes of seepage erosion have been identified: (1) through the 

development of a critical body force or drag force that entrains particles in water seeping 

through and out of a porous medium causing either liquefaction or Coulomb failure: and (2) 

through the application of a shear stress to the margins of a macropore which may have 

originated independently of the water flow (Dunne, 1990). While the first mechanism is 

thought to be dominant in loose/non-cohesive materials, the latter is found in consolidated soils 

(Dunne, 1990; Beven & Germann, 2013). 
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Flutes are vertically elongated grooves, generally tapering towards the top that furrow into the 

wall of the gully and result predominantly from the action of flowing water or throughflow 

(Vandekerckhove et al. 2000; Poesen et al. 2002). In the deeply weathered tropical soils of 

southeast Nigeria, incisions by rainfall, gully headcut retreat and lateral expansion due to 

landsliding as well as development of rills are thought to be major mechanisms driving gully 

development (Okagbue & Uma, 1987; Osadebe et al. 2014). Incision driven by rainfall and 

surface runoff can be facilitated by removal of vegetation, road construction and irregularities 

in surface configuration created by landslide scars or tectonic activities and saturation overland 

flow (Egboka et al. 1990; Ayele et al. 2018), whereas development of rills can result from 

improper land uses especially poor agricultural practices (Osuji, 1984).  

Gully expansion by landsliding can occur in two ways:  

i. Landslides can create bare surfaces by removing vegetation while irregular surfaces 

shaped by landslide scars encourage runoff concentration and enhance runoff erosivity 

(Johnson & Warburton, 2015; Gómez-Gutiérrez et al. 2015).  

ii. Landsliding could become the dominant process of gully head formation through 

processes such as slumping due to the removal of toe support by running water or 

human activities (Torri & Poesen 2014).  

Four stages of gully evolution have been identified: formation of rills, development of incipient 

gullies, formation of shallow gullies (< 15 m deep), and development of deep gullies (> 15 m 

deep), (Okagbue & Uma, 1987). During the first three stages of gully development, surface 

erosion and fluvial incision are the primary methods of gully expansion and the role of 

landsliding as a gully-driver is of little significance (except when gully erosion is triggered by 

landslides). However, as a gully passes a critical threshold of sidewall length and/or slope in 

their final stages of evolution, sidewalls begin to fail and landsliding associated with 

groundwater fluxes is thought to become the dominant gully-driver (Okagbue & Uma, 1987; 

Betts et al. 2003). Groundwater control is evidenced in the presence of springs at several 

horizons of the gullies (Okagbue & Uma, 1987). 

Landslides are thought to be of hydrometeorologic as well as seismic origins and are common 

geological hazards in areas where the slope angle of soils and regoliths over bedrock is greater 

than its frictional angle (Akpan et al. 2015). Susceptibility of slopes to landslides is usually 

expressed in terms of factor of safety, F, (Equation 2.1) where 
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Where F < 1 the slope is in a condition for failure, where F > 1 the slope is likely to be stable 

and where the forces promoting stability are exactly equal to the forces promoting instability, 

F = 1 (Selby, 1993). Different classifications of landslides exist in the literature, e.g. Varnes 

(1978) and Hutchinson (1968). Shallow translational slides are common in southeast Nigeria, 

especially, in areas where toe support has been removed by gully erosion or where gully erosion 

increases slope angle by continuous removal of slope materials and thus increasing propensity 

to gully-induced landsliding (Igwe & Fukuoka, 2010; Igwe et al. 2014; Maduka et al. 2017). 

While general driving factors responsible for landsliding are reviewed in this chapter and other 

types of landslides may be mentioned for wider context, this study is focused on gully-induced 

landslides.  

2.2 Drivers of gullying and landsliding  

Several drivers of gully erosion and landsliding have been reported in different environments 

(Table 2.1). Discussions of these factors are presented in turn in the following sub-sections. 

Table 2.1: Example references of factors that affect initiation and development of gullies and landslides. 

Landslides create favourable conditions for gully erosion, while gully erosion enhances landsliding, hence, 

both processes have been included in this table. 

Driving factor Study area Reference  

Climate 

 Rainfall  

 

 

 

 

 

 Soil thawing and 

snowmelt runoff 

 

 

 Temperature 

 

 Drought 

 

Nigeria 

Nigeria 

Nigeria 

Nigeria 

 

 

Saskatchewan, Canada 

Romania 

Romania 

 

Italy 

 

Kenya 

Spain 

 

Ofomata, (1987) 

Obi & Salako, (1995)   

Afegbua et al. (2016) 

Nwajide et al. (1988) 

 

 

Archibold et al. (2003) 

Ionita, (2006) 

Ionita et al. (2015) 

 

Zanchi &  Torri, (1980) 

 

Fleitmann et al. (2007) 

Cerdà, (1997) 

Geology  

 Hydrogeological and 

geotechnical 

 Palaeo and neo-tectonics 

 Underlying geology 

 

 

 Lithology  

 

 

Nigeria 

 

 

Nigeria 

 

 

Italy 

Italy 

Turkey 

 

Egboka and Nwankwor, (1985) 

Egboka et al. (1990) 

Afegbua et al. (2016) 

 

 

Conforti et al. (2011) 

Guzzetti et al. (1996) 

Akgün & Türk, (2011) 

Igwe (2015a) 

𝐹 =  
𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠
 

 

Eq. 2.1 
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 Inter-bedding  

 

 

 Faults, discontinuities and 

lineaments 

 

Nigeria 

India 

Nigeria 

Nigeria 

 

Nigeria 

Italy 

Argentina 

Mishra et al. (2018) 

Igwe et al. (2014) 

Akpan et al. (2015) 

 

Maduka et al. (2017) 

Ietto et al. (2007) 

Sanchez et al. (2010) 

 

Ecological drivers 

 

 Land cover and soil 

management  

 

 

 Deforestation, logging 

and land-use change 

 

 

 

 

 Unsound farming 

practises/reduction in 

conservation techniques 

 

 Engineering construction 

 

 

 

 

 Unplanned settlement 

 

 

 Intensified land use 

 

 

Ethiopia 

DR Congo 

DR Congo 

 

Nigeria 

Nigeria 

    –   

Canada 

Canada  

Australia  

 

 

Nigeria 

EU 

 

 

 

Iran 

Iran 

China 

China 

Turkey 

 

– 
 
 

Ethiopia 

 

 

Nyssen et al. (2010) 

Imwangana, et. al. (2014)  

Moeyersons, et. al. (2015) 

 

Stamp, (1938), Steel, et al. (1951), 

Fanciullacci, (1978) 

Poesen et al. (2003) 

Rood (1984) 

Guthrie (2002) 

Blong and Dunkerley (1976) 

 

Osuji, (1984) 

Panagos et al, (2020) 

 

 

 

Rahmati et al. (2017) 

Zabihi et al. (2018) 

Xie & Qu (2018)  

Wang et al. (2018)  

Demir, (2018) 

 

Guerra et al. (2017) 

 

 

 

Lemma et al. (2019) 

 

Soil characteristics 

 Soil structure  

 

 

 Antecedent soil moisture 

 

 

 Degree of weathering 

 

 

 

 Clay content 

 

 

 

 Soil moisture 

 

Nigeria 

 

Tennessee, United States 

Zimbabwe 

Central Kansas, USA 

 

Nigeria 

Nigeria 

              –   

Hong Kong 

 

Norway 

Japan 

Spain 

Turkey 

 

Uganda 

 

Idowu & Oluwatosin (2008) 

 

Luffman et al. (2015) 

Stocking, (1980) 

Karimov et al. (2015) 

 

Emeh & Igwe 2017 

Igwe (2014) 

Veder (1981) 

So (1976) 

 

Okamoto et al, (2004), Shuzui 

(2001) 

Azañón et al (2010) 

Yalcin, (2007) 

 

Broeckx et al (2019) 
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Topography 

 Topography 

 

 

 

 

 Slope angle  

 
 
 
 
 
 
 

 Slope aspect 

 

 

 

Mediterranean (Italy and Spain) 

Nigeria 

 

Turkey 

South Africa  

Uganda 

 

Guatemala 

Japan 

USA 

South Korea 

 

China 

USA 

Japan 

 

 

Gómez-Gutiérrez et al. (2015). 

Iheme et al. (2016). 

 

Akgün & Türk (2011) 

Le Roux & Sumner (2012) 

Broeckx et al (2019) 

 

Coe et al. (2004) 

Aniya (1985) 

Parise & Jibson (2000) 

Lee and Min, (2001) 

 

Lan et al. (2004) 

Churchill (1982) 

Aniya (1985) 

 

 Landslides  

 

 

 

 

 

 Gully erosion 

 

England 

Nigeria 

 

Mediterranean (Italy and Spain) 

New Zealand  

Nigeria 

Nigeria 

 

Johnson & Warburton, (2015) 

Osadebe et al. (2014), Osadebe & 

Akpokodje (2007) 

Gómez-Gutiérrez et al. (2015) 

 

Betts et al. (2003) 

Igwe et al. (2014) 

Effiong et al. (2015) 

 

 Earthquake  Uganda  

Hong Kong 

Nepal 

China 

Ngecu et al. (2004) 

Zhou et al. (2002) 

Rosser et al. (2021) 

Parker et al. (2011) 

 

 

2.2.1 Climatic factors 

The importance of excessive rainfall, rainfall intensity and rainfall erosivity in gully erosion is 

widely recognised (e.g. Ofomata, 1987; Obi & Salako, 1995; Afegbua et al. 2016; Vanmaercke 

et al. 2016). Precipitation duration and accumulation (including antecedent precipitation 

accumulation) were found to be significant in initiating and propagating erosion in the humid 

subtropical climate of the United States (Luffman et al. 2015). The significance of this study 

by Luffman et al (2015) relates to reduction in soil cohesion by antecedent rain thereby making 

such soil particles more susceptible to entrainment, as well as effect of antecedent rains on soil 

saturation. Saturated soils support surface runoff and surface runoff is a primary driver of gully 

erosion, especially, at the initial stages of gully evolution (Poesen et al. 2003; Betts et al. 2003). 

The observation of Luffman et al (2015) slightly differs from those of Ofomata (1987) who 

identified rainfall intensity as a principal factor in gully initiation in the humid tropics.  
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Air temperature can be a good proxy for rainfall erosivity and runoff production (Zanchi &  

Torri, 1980; Vanmaercke et al. 2016). The point being made here is important for two reasons: 

First, temperature is an important factor in soil weathering (Brady et al. 1999). Deeply 

weathered soils are susceptible to landsliding (Igwe, 2014) because an increase in the depth of 

weathered regolith presents sufficient slope materials available for slope failure. Landslides 

create bare surfaces by removing vegetation, thus increasing susceptibility to gully erosion. 

Secondly, increase in temperature increases rate of evaporation (Barry, 1971) which could 

affect convectional rainstorms. These storms when armed with sufficient kinetic energy can 

erode soils and enhance soil erosion. Therefore, climatic factors (especially rainfall and 

temperature) can influence gully-landslide interactions directly through soil erosion by direct 

raindrop impact and availability of surface runoff, as well as indirectly through interactions 

with soil properties such as degree of weathering by providing both moisture and temperature.  

Prolonged drought leads to desiccation of soils thus increasing susceptibility to erosion (Cerdà, 

1997; Fleitmann et al. 2007). Drought can increase susceptibility to soil erosion in two ways: 

First by reducing infiltration capacity of soils. This reduction is brought about by effective 

sealing of soil surfaces as a result of dryness (Ibbitt et al. 1997). Secondly, prolonged dryness 

reduces vegetation cover within an environment thereby producing bare soils which are 

attacked by runoff and in turn produce gullies as resultant landforms via the mechanism 

described in section 2.1. Soil thawing and snowmelt can cause soil erosion in colder 

environments (Zhang et al. 2007). As soils thaw and packed snow melts, two processes are 

likely to bring about erosion. First, soil thawing which means soil particles are less-

consolidated and cohesive as they once were, thereby making it easier for runoff entrainment; 

less-cohesive and less-consolidated materials are more susceptible to erosion (Kamphuis & 

Hall, 1983; Frankl et al, 2021). Secondly, as snow melts, surface runoff gains more velocity 

due to availability of more water to flow on the surface.  

Regarding landsliding, extreme rainfall can have many effects on slope materials which affect 

hillslope hydrology. First, by enhancing pore-water pressure , secondly, extreme rainfall can 

increase the level of saturation of regolith thereby reducing shear strength of slope materials 

(Larsson 1989). Thirdly, water can cause clay hydration, weight of rainwater can add to 

surcharge, water is an agent of weathering and finally, water can increase seepage pressure 

(Selby, 1993). Pore-water can reduce shear resistance of regolith, as shown in the shear 

equation (Equation 2.2): 



11 
 

 

 

 

where S = shearing resistance per unit area 

 c = cohesion per unit area (kN/m2) 

p = pressure due to the weight of solids and water (kN/m3) 

h = piezometric head 

γw = unit weight of water (kN/m3)    

ϕ = angle of internal friction (ͦ) 

 

Increase in the piezometric head reduces the friction component (p - hγw) tan ϕ as well as 

cohesion, thus resulting in substantial reduction in shear resistance of regolith and subsequent 

susceptibility to sliding (Nwajide et al. 1988). Rainfall, a climatic driver of landsliding, 

interacts with other physical factors e.g. geology (inter-bedding of permeable and non-

permeable slope materials) and physical properties of the soils (clay content) to increase 

susceptibility to slope failure. Where there is inter-bedding of more permeable sandy soils and 

less permeable clay materials, clay hydration could lead to instability within a slope (Igwe, 

2015b). Absorption of water and subsequent expansion of clay minerals may exert upward 

force on overlying sandy materials, subsequent drying, shrinkage and peeling off in large chunk 

of clay materials further creates instability in the sandy materials above. This cycle of swelling 

and shrinkage of clay materials over time can bring about slope failure (Igwe, 2015b). On a 

slope whose stability has been compromised by alternative swelling and shrinkage of clay 

materials, additional stress resultung from increase in self-weight caused by rainfall can ignite 

slope failure (Igwe, 2015b). Rainfall is a primary trigger of landsliding; however, most times 

rainfall only acts as a trigger mechanism of landslides on slopes that are already predisposed 

to failure by geologic, structural and geomorphic factors (Igwe et al. 2016).  

2.2.2 Geology and lithology 

The rate and nature of geomorphological processes are partially dependent on the lithology of 

the underlying materials (Dai et al. 2001). Sedimentary rocks are by far the most common 

lithological group affected by gully erosion, and this is most likely due to their frequently lower 

resistance to erosion (Castillo & Gómez, 2016). Globally, unconsolidated sandstones, 

mudstones and shales are often reported to show a high incidence of gully erosion (Betts et al. 

2003; Sonneveld et al. 2005; Parkner et al. 2006; Ghimire et al. 2006; Nwilo et al. 2011; 

𝑆 = 𝑐 + (𝑝 − ℎγ𝑤)tan ϕ Eq. 2.2 
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Castillo & Gómez, 2016). In Nigeria, gully erosion has scarred the sedimentary basins of the 

southeast region, thus making gully erosion the dominant environment problem of the region 

(Ofomata, 1987; Egboka et al. 1990).  

While sedimentary rocks may be susceptible to gullying, other local and regional factors such 

as hydrogeology and local tectonic events also affect gully erosion. For example, Egboka and 

Nwankwor (1985) suggested that the primary control of gully formation and development of 

the Agulu-Nanka gully complex in southeast Nigeria was the hydrogeological and geotechnical 

properties of complex aquifers of the gullies. Tectonic events can increase susceptibility to 

gully erosion and landsliding by creating favourable landforms such as natural cracks and 

cuestas which can be attacked by erosive agents (Egboka et al. 1990). For instance, southeast 

Nigeria has climatic and land-use characteristics which are very similar to those of southwest 

Nigeria, as well as being underlain by similar Tertiary formations. Despite these similarities, 

gully erosion and landslides are much less common in the latter and this situation has been 

linked to tectonic activities which provided suitable landforms (such as cuestas and cracks) that 

have been attacked by erosive forces in southeast Nigeria (Egboka et al. 1990).  

Highly fractured rock materials are susceptible to gully erosion and landsliding (Akgün & 

Türk, 2011; Igwe, 2015b). Fractures and discontinuities can provide local access to weathering 

agents’ (e.g. water) thereby increasing weathering penetration and depth of weathered materials 

available for landsliding; weathering can increase the rate of soils susceptibility to erosion and 

landslides (Emeh & Igwe, 2017). Natural fractures can be attacked by surface runoff which 

enhances development of gully erosion. Furthermore, fissures can increase rates of infiltration 

thereby increasing porewater pressure, a trigger factor of landsliding (Quinn et al. 2010). 

Lineaments and discontinuities can enhance landsliding (Igwe. et al. 2016), especially where 

they occur at the interface of permeable and impermeable materials.  

Akpan et al. (2015) identified that inter-bedding of permeable units such as marl and 

impermeable units such as shale/clay could lead to slope instabilities, the significance of 

uneven permeability is explained. As rain falls, most downward percolating water would be 

blocked by underlying impermeable materials (Akpan et al. 2015). Thus, as blocked 

groundwater gradually accumulates at the interface of permeable and impermeable rocks, pore-

pressure and uplift forces increase while cohesive forces reduce, leading to instability (Nwajide 

et al. 1988). With further increase in rainfall, the regolith becomes over-saturated thereby 

increasing instability conditions (Nwajide et al. 1988; Akpan et al. 2015). In gully channels 
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where inter-bedded slope materials are exposed, slope failure maybe be facilitated by two 

processes, first, removal of toe support by gully bank undercutting. Evolution of gullies 

accompanied by prolonged wet conditions encourages gully bank undercutting by concentrated 

flow and subsequent occurrences of landslides (Ionita, et al. 2015; Goodwin et al. 2017). 

Secondly, increased pore water pressure resulting from perched aquifers at the exposed 

interface between permeable and non-permeable slope materials facilitates sliding by 

increasing shear stress on slope materials (Nwajide et al. 1988). 

2.2.3 Topography 

Topography is a key factor for the initiation and development of geomorphic processes because 

it influences the erosive power of the flow of surface runoff (Gómez-Gutiérrez et al. 2015; 

Yibeltal et al. 2019a). Thus, while rainfall is significant for gully initiation, topography can be 

considered an enabler of rainfall to bring about gully erosion. Topographic factors include 

slope aspect, slope length, slope angle, curvature, altitude and upslope contributing area. Slope 

aspect is an important factor with regards to microclimate and vegetation cover (Zabihi et al. 

2018). South-facing slopes in the northern hemisphere are more susceptible to gully erosion 

than north-facing slopes (Rahmati et al. 2017) because the more arid conditions experienced 

on south-facing slopes likely support less vegetal protection from surface runoff (Armesto & 

Martίnez, 1978). With regards to landslides, sun-shadow slopes have higher landslide events 

than slopes facing the sun due to the lower ground temperature, higher soil moisture and thicker 

residuum present in the shaded slopes (Lan et al. 2004). 

A direct relationship exists between slope length and gully erosion locations – higher slope 

lengths increase surface runoff and so increase probability of gully erosion occurrence (Renard 

et al. 1997; Conforti et al. 2011; Zabihi et al. 2018). Parkner et al. (2006) identified gully 

erosion within the indigenous, undisturbed forest of the North Island of New Zealand on slopes 

of 40º and above. Conforti et al. (2011) recognised highest gully density on slopes >30º in 

Northern Italy. Zabihi et al (2018) suggested that slope angles >30º had greatest susceptibility 

to gully erosion in the Mazandaran Province, northern Iran.  These studies contrast with those 

of Le Roux & Sumner (2012), Rahmati et al. (2017) and Yibeltal et al. (2019b) who observed 

that slope angles less than 10º and 15º had highest concentrations of gully erosion in the Eastern 

Cape Province of South Africa, the Kashkan-Poldokhtar Watershed of Iran and the Upper Nile 

Basin of Ethiopia respectively. In southeast Nigeria, Iro (2018) found a dominance (57%) of 

gullies on slopes between 10 – 20º. It is plausible that higher slopes were required for the 

formation of gullies in the north Island of New Zealand due to higher vegetation cover which 
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has soil stabilizing effects. It is also possible that other factors such as land-use change played 

important roles in initiating gullies on lower-medium gradient slopes (10 – 20º) within the 

study areas covered by Le Roux & Sumner (2012), Rahmati et al. (2017) and Iro (2018). 

Infiltrated water in the high-slope sections could lead to lateral-flow erosion and gully 

expansion in the gentler-slope portions of the land (Tebebu et al. 2010; Yibeltal et al. 2019b). 

The concentration of surface runoff from cultivated farms in a watershed can enhance gully 

formation on gentler slopes of the watershed and finally, steeper slope angles which encourage 

concentration of runoff promote gully formation on the adjacent gentle-slope areas of the land 

(Sultan et al. 2018; Yibeltal et al. 2019b). These explanations are likely reasons higher gully 

concentrations have been reported on gentle slopes. While the identified studies reported gully 

concentrations and susceptibilities in certain slope classes, effects of interactions between slope 

angle and other gully-drivers such as land-use changes and nearness to rivers on changes in 

gully sizes (e.g. length or area) are not readily available. Ascertaining effects of gully-drivers 

on changes in gully sizes may be significant in the design of gully-management projects. 

Concerning elevation, Iro (2018) studied 14 gullies in southeast Nigeria and found that all 

studied gullies occurred on elevations >10 m above sea level, while Zabihi et al (2018) 

observed an inverse association between gully erosion and elevation with highest Frequency 

Ratio for the elevation class of 1006 – 1220 m followed by 1220 – 1420 m. The area studied 

by Iro (2018) is relatively low-lying (-11 to 516 m) compared to that by Zabihi et al (2018) 

which ranged between 1006 – 1839 m. Curvature indicates the effect of local terrain 

morphometry on overland flow distribution and by extension, gully erosion (Shary et al. 2002: 

Zabihi et al. 2018). Both Zabihi et al (2018) and Iro (2018) observed dominance of gullies on 

concave slopes, thus suggesting that accumulation of runoff and subsequent high velocity could 

lead to gully erosion.  

While it has been established that the size of gully upslope contributing area has a critical 

control on gullying as larger catchments produce higher volumes of runoff (Frankl et al. 2012; 

Dong et al. 2013; Vanmaercke et al. 2016; Yibeltal et al. 2019a), considering the influence of 

changes in land use on gully evolution (section 2.2.4), it is also important to understand how 

these land-use changes in individual gully catchments influence gullying. For example, gully 

evolution in a catchment dominated by forests will likely be driven by a different process than 

in a catchment dominated by non-vegetated surfaces. A better understanding of gully-driving 

processes in individual catchments aids design of appropriate gully-management projects 

(Yibeltal et al. 2019a).  
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Landsliding increases with slope angle attaining a maximum frequency of occurrence, 

normally between 30º and 40º, and having a sharp decline after 40º which has been attributed 

to the absence of debris for failure and to the highly unstable nature of such slopes (Dai & Lee, 

2002; Gomez & Kavzoglu, 2005; Barlow et al. 2009). In southeast Nigeria, a strong positive 

correlation between slope gradient and landslide density was found (r = 0.85), while shallow 

translational slides and debris avalanche have been observed on slopes between 32 – 42º in 

same region (Igwe, 2014; Igwe et al. 2014; Emeh and Igwe, 2017). Gully erosion is known to 

increase slope angles by gradual removal of slope materials, and thus, enhancing gully-induced 

slope failure (Igwe & Fukuoka, 2010). In other parts of the world, landslides have been 

observed on different slope gradients ranging from 10º to 50º while other factors such as rainfall 

were suggested as trigger factors (Temesgen et al. 2001; Iida and Okunishi 1983). Reported 

results in this section imply that while topography is an important driver of geomorphic 

processes (e.g. landsliding and gully erosion), other forcing elements such as extreme rainfall, 

interact and initiate these geomorphic processes on a variety of topographic regimes; 

mechanism of erosion and landsliding vary depending on these interactions.  

2.2.4 Deforestation and land-use changes 

There is a consensus among researchers that human activities such as deforestation, land-use 

changes (especially changes that increase non-vegetated surfaces and reduce vegetal cover) 

and unsound farming practices such as cultivation on gully prone areas, worsen the problems 

of gully erosion (Stamp, 1938; Fanciullacci, 1978; Osuji, 1984;  Osadebe & Akpokodje . 2007; 

Ezezika & Adetona, 2011; Ionita et al. 2015; Nwankwor et al. 2015; Zakerinejad & Maerker, 

2015; Yibeltal et al. 2019b; Frankl  et al. 2019; Panagos et al. 2020). In as much as physical 

factors such as cuesta landforms can increase susceptibility to gully erosion (Ofomata, 1987), 

these studies on deforestation suggest that human activities are the main drivers of gully 

evolution and have acted differently in time and occurs across different countries depending 

on the history of land use and management practices (Castillo et al. 2016). In southeast Nigeria 

for example, results from the earliest documented studies on soil erosion (Stamp, 1938) indicate 

that removal of vegetal cover influenced initiation of soil erosion, and subsequent studies until 

present are in agreement with the suggestions of Stamp (1938) regarding the effects of vegetal 

cover removal and gully evolution in the region (Njoku et al. 2017; Attah et al. 2013; Iro 2018).  

The significance of deforestation in gully erosion studies derives from the fact that natural 

vegetation shields soils from direct impacts of rainfall, creates friction for surface runoff 

thereby retarding erosive power of surface runoff as well as protects the soil from direct 



16 
 

compaction from humans and other grazing animals (Cooke & Reeves, 1976; Yibeltal et al. 

2019). Deforestation has three implications (figure 2.1):  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Exposure of bare soils to erosive runoff and rainfall impact. 

2. Deforestation can lead to increased ‘flashiness’ and erosivity of runoff as a result of 

reduction in surface roughness.  

3. Increased compaction of soils which in turn increases ‘flashiness’ and erosivity of 

runoff. 

Regarding landslides, vegetation influences landsliding in two ways: hydrological and 

mechanical, and these two influences can have negative and positive impacts on landsliding 

(Table 2.2). Hydrological influences include interception and subsequent loss to evaporation 

of intercepted precipitation by vegetation, increase in roughness of ground surface by tree roots, 

thereby increasing infiltration capacity of soils, as well as extraction and loss through 

transpiration of soil moisture by plant roots (Greenway, 1987). However, evapotranspiration 

Figure 2.1: Deforestation, a human-induced driver of gully erosion 
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from trees might have a limited effect under a tropical precipitation regime, where soils are 

often saturated (Schwingshackl  et al. 2017; Broeckx et al. 2019). Mechanical influences 

include transmission of dynamic forces into slopes (Greenway, 1987; Akpan et al 2015), 

increase in surcharge and stress on slopes by weight of vegetation as explained in Equation 2.3 

(Selby, 1993), as well as reinforcement of soils by plant roots (Table 2.3):  

 

 

where T = weight of tree (kPa) 

 β = slope angle (º) and 

 ϕ' = friction angle (º). 

Shear stress can be enhanced on a slope by 𝑇sin𝛽 while normal stress in increased 𝑇cos𝛽. On 

slopes less than 34º, trees increase stability, but when slopes are greater than this angle, effect 

of tress may be disadvantageous to slope stability (Selby, 1993). 

Table 2.2: Effects of vegetation on slope stability (Greenway, 1987). A – Adverse, B – Beneficial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hydrological mechanisms  

 
Influence  

 

Interception of precipitation and initiation of evaporation thus reducing 

available moisture for infiltration  

B  

Increased roughness of ground surface by roots and stems thus increasing 

permeability and infiltration capacity  

 

A 

Extraction of soil moisture by roots and subsequent transpiration thus reducing 

pore-water pressure  

B 

Depletion of soil moisture may accentuate desiccation cracking in the soil 

resulting in higher infiltration capacity  

A 

 

Mechanical mechanisms  

Reinforcement of soils by roots and subsequent increase in shear strength of 

slope materials  
 

B 

Provision of support to upslope soil mantle by tree roots B 

 

Weight of trees may increase surcharge on slopes, increasing normal and 

downhill force components 

A/B 

 

 

Transmission of dynamic forces into slopes by vegetation A 

Roots bind soil particles at the ground surface, reducing their susceptibility to 

erosion  

B 

 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠𝑢𝑟𝑐ℎ𝑎𝑟𝑔𝑒,
𝑇cos𝛽tan𝜙′

𝑇sin𝛽
 Eq. 2.3 
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Table 2.3: Strength added to soil by plant roots (Selby, 1993) 

 

 

 

 

 

 

 

 

Increase in logging activities increases frequency and occurrence of landslides (O’Loughlin, 

1972; Rood, 1984; Guthrie, 2002) which could be attributed to two reasons: First, deforestation 

exposes the soil to direct impacts of raindrops and surface runoff which can encourage gully 

incision. When the walls of the gully channels attain steep slope angles, landsliding can occur. 

Secondly, dead roots can create local channels for infiltration and this situation can contribute 

to infiltration-induced pore pressure which encourages landsliding (Collison & Anderson 

1996). However, it is also possible that deforestation might increase runoff thereby decreasing 

infiltration and pore water pressure, thus reducing landslide occurrence (Blong and Dunkerley 

1976). 

Land-use changes caused by increased demographic pressure influence gully erosion 

(Fanciullacci, 1978; Hishe et al. 2020). Four stages of development (Figure 2.2) can be inferred 

from the influence of higher demographic pressure on gully erosion. First, increase in 

population density. Secondly, high population density led to economic and other demographic 

pressures on the environment, removal of natural vegetation as well as reduction of bush fallow 

period from 15-20 years to as little as one year (Fanciullacci, 1978). Removal of vegetation 

cover exposed soils to direct impacts of rainfall and surface runoff, while reduction of fallow 

period reduced recovery ability of soils. Thirdly, in addition to the already shortened fallow 

period, extensive land-use changes over the years; natural forests were cleared for plantation 

agriculture and farmlands, subsequently, farms were cleared for hard engineering 

constructions, thus, within a short period of time, former forests were converted into paved and 

impermeable surfaces.  

Plant Soil Increase in apparent 

cohesion (kPa) 

Conifers 

(pine, fir) 

Glacial till 0.9 – 4.4 

Alder  Silt loam 2.0 – 12.0 

Birch Silt loam 1.5 – 9.0 

Podocarps  Silty gravel 6.0 – 12.0 

Barley Silty-clay 

loam 

1.0 – 2.5 

Clover Silty-clay 

loam 

0.1 – 2.0 
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Finally, paved surfaces led to an increase in volume of storm water and runoff (Njoku et al. 

2017) and likely increase in the incidence of gully erosion and gully-induced landslides (Attah 

et al. 2013). Apart from the four stages of relationship between higher population and gully 

erosion identified above, increase in population also forces people to cultivate marginally stable 

lands thus facilitating gully erosion (Hagos et al. 1999; Hishe et al. 2020). Growing population 

density increases the problems associated with landsliding (Knapen et al. 2006). Land-use 

changes can: 

1. Reactivate old landslides by removal of toe support,  

2. Initiate new landslides especially, if such slopes are marginally stable,  

3. Result in an increase in the frequency of occurrence of landslides due to slope-support 

undercutting by human activities (Guthrie 2002). 

Excavation of borrow pits and sand mining cause gully erosion and landsliding (Igbokwe et al. 

2008; Nwachukwu & Eburukevwe, 2013). In search of laterite for engineering construction, 

contractors embark on borrow pit excavation, soon after excavation, these pits are left derelict. 

Irregular surfaces and steep slope angles created during sand mining may create favourable 

conditions for concentration of surface runoff, initiation of gully erosion and subsequent 

increase in susceptibility of pit sites to sliding. 

Figure 2.2: Demographic pressure as a factor of gully erosion, proposed by Fanciullacci (1978) 
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2.2.5 Nearness to roads and rivers 

Roads are an example of both land use and change in land use. Road construction, especially, 

asphalt roads, involves removal of vegetal cover (if any) and conversion to an impermeable 

paved surface which induces a concentration and a diversion of concentrated runoff which 

enhances gullying (Nyssen et al. 2002). Apart from asphalt roads, farm roads and footpaths can 

also lead to concentration of runoff thereby initiating new gullies or expanding existing ones 

(Frankl  et al. 2019; Yibeltal et al. 2019a). Distance from roads has an inverse relationship with 

susceptibility to gully erosion (Rahmati et al. 2017; Zabihi et al. 2018) which can be linked 

directly to the environmentally unfriendly behaviours of some road contractors who do not 

channel storm water generated from road runoff appropriately. Due to the kinetic energy of 

road runoff, improper termination of road runoff by careless attitudes of road contractors can 

increase susceptibility to erosion (Nwankwor et al. 2015). Improper termination refers to the 

condition whereby drainage channels designed to collect storm water away from roads are not 

terminated at local base levels. This condition gives room for gradual but steady erosion of 

drainage channels and subsequent initiation of gully.  

Idowu & Oluwatosin (2008) suggested that soils of south-eastern Nigeria have high erodibility 

potential and are classed as structurally unstable, thus making them susceptible to gully erosion. 

This notion of structural erodibility was however opposed by Nwankwor et al. (2015) who 

noted that soils in this region were not easily erodible as is hitherto believed. Nwankwor et al. 

(2015) concluded that most gullies in south-eastern Nigeria can be traced back to improper 

termination and unplanned diversions of road runoff concentration. While studies from 

different parts of the world for example, southern Spain (Collison, 2001), northern Ethiopia 

(Frankl et al. 2012), the Ilam Province of Iran (Rahmati et al. 2017) agree there is higher 

concentration of gullies nearer the roads, there is paucity of reported studies on the relationship 

between nearness to roads and changes in gully sizes. Apart from road construction, other 

engineering projects, when not effectively managed, can enhance gullying. For example, 

formation of gullies in the arid mountainous Andean environment was related to the spill over 

of irrigation water or collapse of open irrigation canals and reservoirs (Vanacker, et al. 2003). 

This collapse supplied large amounts of water to structurally poor soils, which caused further 

incision and extension of existing rill and gully network (Vanacker, et al. 2003). 

In a study of 109 gullies in the Mazandaran Province of Iran, Zabihi et al. (2018) observed a 

higher concentration (63%) of gullies within 50 m of rivers. Rahmati et al (2016) observed that 

distance from rivers was an important driver of gully erosion, their study found that as distance 



21 
 

from rivers increased, occurrence of gullies declined. Other studies (e.g. Conoscenti et al. 2014) 

have identified higher concentration of gullies near rivers, while observing that land use 

changes also influence gullying. However, the interaction between nearness to rivers and land 

use changes and likely effects of this interaction on changes in gully sizes are not clear. 

2.2.6 Soil characteristics  

Influence of soil characteristics such as shear strength, cohesion, degree of weathering, 

drainage potential, infiltration rate, particle size content, as well as thickness on gully erosion 

and landsliding have been studied (Okagbue & Ezechi, 1988; Larsson 1989). The high sand 

content (90% sand content in places), low cohesion (15 kN/m2 at some sites) and high 

infiltration values of soils (up to 3571 mm/h) in southeast Nigeria make the soils susceptible to 

dispersion by erosive forces and seepage erosion (Okagbue & Ezechi, 1988). Due to the loose, 

coarse, and pebbly nature of the sands in this region, there is high internal flow rate of sub-

surface flow (Egboka et al. 1985). Where there is interbedding of permeable sandy soils and 

less permeable clay soils, variation in infiltration could lead to the formation of a perched water 

table at the interface between sand and clay, and thereby facilitating slope instability (Akpan 

et al. 2015).  

Decrease in the shear strength of the soil reduces resistance to landsliding and certain factors 

including increase in the degree of weathering (Veder 1981) and increase in water absorption 

and resulting swelling (Larsson, 1989) can reduce shear strength of soils. Weathering can 

increase as well as reduce susceptibility of soil materials to landsliding. On non-ferruginized 

soils, weathering increases susceptibility to landsliding whereas on ferruginized soils, 

weathering reduces susceptibility to landsliding (Emeh & Igwe 2017). This reduction in 

susceptibility is a result of the production of laterites (formed from iron rich sediments under 

intense weathering) which hardens on exposure to air into nodular concretes or hardpans if 

layered. These hardpans are highly resistant to erosion and landsliding, on the other hand, slope 

materials derived from the non-ferruginized (non-lateritic) soils weather into non-plastic fine 

particles that lack cohesion and are readily dispersed by rainfall (Emeh & Igwe 2017).  

Having reviewed relevant literature, I now integrate findings from these studies into a 

conceptual model of gully-landslide interactions. 

2.3 Conceptual model of gully-landslide interactions 

Separate conceptual models exist for either gully erosion or landsliding (e.g. Cooke & Reeves, 

1976; Ofomata 1987; Egboka & Orajaka, 1987; Gobin et al. 1999; Uzielli et al. 2008). These 
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models were aimed at explaining causative processes, as well as elements at risk of gully 

erosion and landsliding. However, a model that looks specifically at the interactions between 

gully erosion and landsliding considering potential significance of ecogeomorphic processes 

has not yet been developed. Such a model will explain gully-landslide feedbacks and in turn 

contribute to an improved understanding of earth surface processes in the range of systems 

where gully-landslide interactions are likely to be important.  

The conceptual model developed here  is based on reviewed literature and presents the 

conceptual underpinning of this research into gully-landslide interactions. Climatic, geologic, 

soil, geomorphic and ecological drivers, have been included in the conceptual model, these 

identified factors function within an ecogeomorphic system, . The ecogeomorphic system 

comprises climatic, soil and geologic elements that influence feedbacks between geomorphic 

and ecological components of an environment. Climatic elements with special reference to 

temperature and rainfall affect: 

1. Ecological responses for example distribution of vegetation (Stephenson, 1990), 

2. Initiation and development of geomorphic processes such as landsliding and gully 

erosion (Obi & Salako, 1995; Zhou et al. 2002; Afegbua et al. 2016), 

3. Soil conditions for instance weathering (Brady et al. 1999). 

Similarly, ecological drivers, soil characteristics, geologic and geomorphic conditions impact 

geomorphic processes which in turn influence ecological responses directly by influencing 

distribution of vegetation (Parker & Bendix, 1996; Stallins, 2006) and local climate indirectly 

through the effects they have on vegetation, thus forming a continuous loop of interactions 

within the ecogeomorphic system. Increase in rainfall intensity as well as extreme events such 

as flooding will likely lead to considerable surface erosion (Obi & Salako, 1995; Ibbitt et al. 

1997; Abate et al. 2015; Frankl  et al. 2019) and can trigger landslides. Moderate rainfall and 

temperature will encourage vegetation growth which in turn protects the soils from direct 

impacts of raindrops and thus reducing soil susceptibility to gully erosion.  Prolonged dry 

periods will enhance gullying (section 2.2.1) . 

On the relationship between vegetation and landsliding, section 2.2.4 identified the positive 

and negative influences of vegetation on landsliding. Human activities such as removal of 

vegetal cover and increased mining activities are known to increase propensity to gully erosion 

and gully-induced landslides (Fanciullacci, 1978; Igbokwe et al. 2008; Nwachukwu & 

Eburukevwe, 2013). Geologic factors can predispose soils to gullying and landsliding (section 
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2.2.2). Increases in temperature in combination with availability of soil moisture increase the 

rate, intensity and depth of weathering (Brady et al. 1999). Increased depth of weathering 

provides sufficient regolith for failure on a hillslope while increased weathering intensity can 

reduce cohesion and subsequently increase susceptibility of slope materials to failure (Veder, 

1981).  

Gully erosion can elevate slope angles by gradually removing slope materials until a time when 

the angle is steep and unstable, thus, increasing shear stress and subsequent propensity to 

landsliding (Igwe & Fukuoka, 2010) (figure 2.3A). Equally, slope toe support can be eroded 

by gully erosion, thus, activating/reactivating sliding (Igwe. et al. 2014; Maduka et al. 2017) 

(figure 2.3B). On slopes that have no history of landsliding, removal of toe support can increase 

exposure and vulnerability to sliding, on old landslide complexes, removal of toe support can 

reactivate landslides. Landslides can enhance erodibility of soils by creating bare surfaces that 

are attacked by surface runoff, creation of depressions and uneven surface geometries with 

abrupt changes of steepness in the land and favouring concentration of surface runoff (Johnson 

& Warburton, 2015; Gómez-Gutiérrez et al. 2015). Gully erosion begins when runoff 

concentrates into these depressions and channels thus leading to:  

1. Incision or  

2. The development of rills which may later enlarge into deep trenches in the land surface 

over time (Luffman et al. 2015), or a combination of both processes.  

The dashed lines in figure  2.4 show linkages between gully erosion and landsliding as 

explained in Table 2.4. Landsliding can reduce vegetal cover and expose soils to agents of 

erosion. Similarly, landslide scars create uneven geometries and magnify surface runoff on the 

steepest points of these uneven surfaces thus enhancing erodibility of materials and increasing 

susceptibility to gully erosion. Finally, gully erosion undermines slope stability in three ways; 

by removing toe support; by steepening slope angle and by exposing shear surfaces thereby 

increasing instability in the slope. 
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Table 2.4: Interactions between gully erosion and landsliding 

 

 

 

 

 

 

 

 

 

 

 

 

Gully erosion  Landsliding 

Increases slope angle to unstable angles thus 

increasing susceptibility to landsliding  

Enhances erodibility of slope materials by 

removing vegetation cover 

Removal of vegetal cover reduces resistance to 

surface flow  

Removes toe support by gully and slope 

undercutting thereby increasing susceptibility to 

landsliding  

Landslide scars create depressions and uneven 

geometry 

 

Can expose shear surface between permeable and 

non-permeable materials on a hill slope 

Surface runoff erosivity is magnified at steepest 

points in depressions created by landslide scars 

and this encourages gully incision by surface 

runoff 

 

Figure 2.3: Gully-induced landslides. A, Block failure in Obibi-Ochasi gully. Gully erosion leads to steep slope 

angles, thus enhancing block failure, B, Soil fall in Obibi-Ochasi likely caused by removal of toe support.  

A B 
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removes slope materials 

until a time when the 

angle is steep and 

unstable, thus, 

increasing shear stress 

and subsequent 

propensity to 

landsliding 

Failed slope material likely due to steep gully wall 

Freshly failed material due to removal of 

bottom support by surface runoff 

Freshly exposed 

scar 
Hanging wall 

indicating failure 

occurred from the 

bottom to top. Zone 

of instability 

Vertical rills, enlargement of these rills by 

surface flow will further enlarge gullies 

Steep gully wall 
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Figure 2.4: Ecogeomorphology of gully-landslide interactions. Red boxes and dashed lines show feedbacks between gully erosion and landsliding, green box indicates the ecogeomorphic 

system as explained in text. Individual drivers whose interactions with one another initiate gullying or landsliding are coloured with different colours.  
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2.3.1 Established gaps and research questions 

The above reviewed literature has demonstrated mechanisms of gully erosion and landsliding, 

while identifying driving factors. Identified studies have looked at single-process domains (e.g. 

either landsliding or gully erosion) however the present study aims to understand both 

processes together so as to answer questions such as how have interactions among driving 

factors affected gully-landslide interactions? There is a dearth of knowledge on the: 

1. Interactions among the identified gully-driving factors and changes in gully sizes and, 

2. Interactions among gully-driving factors and gully-landslide interactions.  

Attempts to fill the first part of the identified gap (interactions among gully-drivers and changes 

in gully sizes) were undertaken by Conoscenti et al. (2014) and Iro (2018). Both studies adopted 

analysis of remotely sensed data and quantitative techniques (logistic regression and multiple 

regression analyses) to achieve their objectives. While the former study produced a 

susceptibility map of gully erosion as an end product, they did not explore the interactions 

among gully-drivers and changes in gully sizes. Iro (2018) did not include nearness to roads 

and rivers in his analysis, both factors are significant in gully evolution (evidenced from 

literature review). Furthermore, while the study by Iro (2018) identified the individual roles of 

gully drivers such as slope gradient, elevation, curvature and change in land use in controlling 

gully distribution, it was not clear how combined effects of these factors influenced changes in 

gully sizes (e.g. length and area). Whilst previous researchers have observed that gully erosion 

leads to landsliding (Igwe. et al. 2014; Maduka et al. 2017), there is no known documented 

study on the linkages between gully/landslide driving factors and gully-landslide interactions.  

2.3.2 Research objectives  

The following are the objectives of this research: 

1) To establish the influence of land use and land-use changes on gully characteristics.  

2) To ascertain the effects of land-use changes on gully catchment hydrology. Fulfilling 

objectives 1 and 2 will improve understanding of processes driving gully erosion. 

3) To understand the influence of land-use changes on gully-landslide interactions. This 

objective will aid the design of appropriate control measures. 

4) To determine resultant hazards and effects of gully-landslide interactions on affected 

communities. Achieving this objective will inform interested parties of the challenges 

gully-endemic communities face and aid possible compensation strategies on the side 

of the government.  
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To provide answers to these identified gaps and fulfill the research objectives, in the next 

chapter a multi-method approach including geotechnical investigations, qualitative research, 

quantitative techniques, analysis of remotely sensed data and hydrological modelling is used 

to study gully-landslide interactions. Few studies have incorporated quantitative and qualitative 

research techniques (Nyssen et al. 2006; Tebebu et al. 2010; Frankl et al. 2016) while this is 

the first time to the best of my knowledge these research approaches are used together in a 

study of this kind in southeast Nigeria. This work is novel because of three reasons: First, 

combinations of these research techniques in a single study. Secondly, working across process 

domains (gully erosion and landsliding) and finally, taking an ecogeomorphic perspective to 

provide a more holistic overview.  
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Chapter 3  

Materials and methods 

3.0 Introduction  

This chapter describes the study area and sites. It also provides detailed information about 

methods used in this study. Chapter 3 is divided into two main sections; the first section defines 

the study area and sites while the second details methods adopted to achieve set objectives. 

Multi-method research techniques have been used in data-scarce regions in order to improve 

understanding of geomorphic processes (Frankl et al. 2016). Due to insufficient data in the 

study area, combinations of analysis of remotely sensed data, qualitative and quantitative 

techniques, geotechnical investigations, and hydrological modelling were adopted in this work. 

Details of these techniques are provided in section 3.2. 

3.1 Study area and study sites  

In Nigeria, gully erosion and gully-induced landsliding are most pronounced in the south east 

(Figure 3.1), located within latitudes 4° 47' 35'' N and 7° 7' 44'' N, and longitudes 7° 54' 26'' E 

and 8° 27' 10'' E, (Okorafor et al. 2017), where population densities rank among the highest in 

rural Africa (Eboh et al. 1994; Onu, 2006; Okorafor et al. 2017). Population density estimates 

are up to 6030 people per square kilometre in some parts of southeast Nigeria (Table 3.1). 

These high population densities, coupled with high demographic pressures are often implicated 

as possible drivers of gully erosion and gully-induced landslides (Fanciullacci, 1978; Ofomata, 

1987). Farming is the primary employer of labour in rural areas; major food crops include 

cassava (Manihot esculenta), yam (Dioscorea) and maize (Zea mays) while oil palm (Elaeis 

guineensis) is a common cash crop. Subsistence farming is popular in the study area. The 

farming season begins with bush burning just before the outset of rainy season towards the end 

of March. Bush burning leaves the soils without vegetation cover as the rains start in earnest 

and thereby increasing susceptibility to erosion (Igwe et al. 2014).  Cassava is the dominant 

food crop; however mixed farming is also practised. It is common to find a piece of land with 

cassava and maize inter-planted.  

 3.1.1 Geology, soils and rivers 

South east Nigeria lies within the Lower Benue Trough characterised by gently undulating 

topography (Benkhelil, 1989), the Benue Trough is divided into three: The Upper, Middle and 

Lower Troughs. The Lower Benue Trough includes the Abakiliki Anticlinorium and the 

Anambra Basin. The Abakiliki Anticlinorium is thought to have been formed of tightly folded 
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Cretaceous sediments intruded by numerous magmatic rocks and extends from the Niger Delta 

to the Gboko-Ogoja area in a N50º E direction covering a distance of about 250 km (Benkhelil, 

1989). The Anambra basin is a synclinorial structure trending in a N30º E direction and 

comprises a thick undeformed Cretaceous series (Benkhelil, 1989).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 3.1: A, Nigeria showing five south east States, Abia, Anambra, Ebonyi, Enugu, Imo, B, Imo State showing 

5 Local Government Areas (LGAs) of interest. Imo State is one of the southeast states. 
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LGA 2018 estimate of population density (people per 

km2) 

Land area (km2) 

Ideato North 1207 190 

Ideato South 2663 88 

Isu 6030 40 

Njaba  2507 84 

Orlu 1588 132 

 

The general stratigraphy of south east Nigeria is presented in Table 3.2. Four geological 

formations underlay the study sites in Imo State: Imo Shale, Benin, Ogwashi-Asaba and Ameki 

Formations (Usman et al. 2014) (figure 3.2). 

Table 3.1: Local Government Areas under investigation showing landmass and high population density. 2018 

Population was estimated from the 2006 official census figures and projected to 2018 with an annual growth 

rate of 3.25 %.  

 

 

 

 

Table 3.2:  Stratigraphy of Southeast Nigeria, (Source: Maduka, et al. 2017). 

 

 

 

 

 

 

 

 

 

The Imo Shale is dated Palaeocene to lower Eocene and is estimated to be ca. 1000 m thick, it 

contains three sand bodies – Ebenebe Sandstone, Umuna Sandstone and Igbaku Sandstone 

(Ekwenye et al. 2014). The Benin formation (Miocene – recent) contains sand beds with minor 

clays, lignite, and conglomerate intercalations (Amajor, 1991). The Ogwashi-Asaba Formation 

of Oligocene – Miocene age consists of a sequence of coarse-grained sandstone, light coloured 

clay and carbonaceous shale with lignite intercalations (Ogala et al. 2012). The Ameki 

Formation is considered to be either early Eocene or early middle Eocene. It is lithologically 

heterogeneous and has been divided into four lithological units which are, in ascending order: 

silty to calcareous sandstone, grey to dark shale with interbedded siltstone, silty to fine 

Age Stratigraphic unit 

Eocene Ameki Group (including Nanka Sands, Nsugbe Formation) 

Palaeocene Imo Shale 

Maestrichtian Nsukka Formation, Ajali Sandstone, Mamu Formation 

Campanian Nkporo Group (including Nkporo Shale, Oweli Sandstone, Enugu Shale, Afikpo 

Sandstone, Otobi Sandstone) 

Santonian Non-deposition 

Coniacian Awgu Group (including Awgu Shale, Agbani Sandstone) 

Turonian Ezeaku Formation (including Amaseri Sandstone) 

Cenomanian Odukpani Formation 

Albian Asu River Group 

Precambrian Basement Complex 
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argillaceous sandstone and fine to coarse pebbly sandstone (Sonibare et al. 2012). Two major 

rivers, Njaba and Orashi have their sources within the study sites (figure 3.2). While the Njaba 

rises from four communities; Amucha, Eziama, Isu Njaba and Ekwe, the Orashi has its source 

from the Isiekenesi Waterfalls. Other streams such as Okpii and Ezizi (tributaries of Orashi) 

also have their source located within the study sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Orashi 

Ezizi 

Unnamed 

stream 

Njaba 

Figure 3.2: Geology and river map of LGAs of interest draped on shaded relief map. The Njaba and Orashi are the 

two major rivers in the area, other streams such as Ezizi and an unnamed stream also take their courses from the 

study area. 
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Prominent geomorphic features in the landscape of south east Nigeria include the Awka-Orlu 

uplands and Enugu-Awgu-Okigwe escarpment (Egboka et al. 1990; Obi et al. 2001). Soils in 

south east Nigeria are heterogeneous in nature comprising of loose red earth with sands, 

sandstones and clayey-loam with or without ferric properties underlain by shale formations, 

they are acidic with low organic content as a result of leaching from surface runoff (Okoroafor 

et al. 2017). The soils have higher sand contents with low silt/clay composition which decreases 

with depth making the sands cohesionless, very permeable with high infiltration rates of up to 

3571 mm/hr (Obi & Asiegbu, 1980; Chiemelu et al. 2013; Okorafor et al. 2017). 

3.1.2 Climate and vegetation 

The study area has a tropical climate with humidity and rainfall decreasing from the coast 

inland. South east Nigeria is characterised by uniformly high temperature and a seasonal 

distribution of bimodal rainfall (Monanu, 1975: Ezemonye & Emeribe, 2012). Mean minimum 

and maximum temperatures range from 21-30°C in the coast and 29-33°C in the interior, 

rainfall generally is intense and ranges from over 2500 mm annually in the southernmost region 

towards the Atlantic to about 1500 mm around River Benue in the northern borders (Chukwu, 

2007; Ezemonye & Emeribe, 2012; Igwe, 2012).  There is a long wet season from April to July 

with a short, dry season (August break) followed by a short wet season (September to October) 

and finally by a long, dry season (November to March) (Obi & Salako, 1995).  

Rainfall intensities in the range of 100 to 125 mm h-1 are likely to occur more than five times 

a year in south east Nigeria, intensities between 125 and 150 mm h-1 are not uncommon, 

whereas those greater than 150 mm h-1 are rare (Obi & Salako, 1995). Rainfall erosivity indices 

range from very low to very high with periods of very low erosivity coinciding with the dry 

season months while very high erosivity periods correspond with the rainy season peak periods 

(June-September) (Ezemonye & Emeribe, 2012). Figures 3.3A shows 2016 rainfall distribution 

for Nigeria and 3.3B shows average monthly rainfall and rain days for one of the Local 

Government Areas (LGAs) of interest between 2009 and 2018. 

South east Nigeria lies within the rainforest vegetation belt with evergreen trees (Ezemonye & 

Emeribe, 2012). Due to demographic pressures, this natural rainforest has been disturbed over 

the years, a situation which has resulted in derived forests in place of natural forests. 
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Figure 3.3: A, 2016 Rainfall distribution in Nigeria showing reduction in rainfall from south to North, B, Average rainfall and rain days between 2009 and 2018 for Ideato North 

LGA. August and September are the wettest months of the year while July and September have the highest rain days. Source (Nigeria Meteorological Agency, NIMET, rainfall 

data for Ideato North, 2009 to 2018). 
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3.1.3 Study sites 

Imo State (Figure 3.1B) is one of the southeast states where gully erosion is endemic. 

Administratively, the State comprises three senatorial zones: Okigwe, Orlu and Owerri, each 

zone is made up of a number of Local Government Areas (LGAs). The Orlu senatorial zone of 

Imo State with an area of 2,293 km2 was selected for detailed study of gully-landslide 

interactions, this selection is because the Orlu zone has the highest concentration of gully 

erosion in Imo State (Okorafor et al. 2017).  

There are 12 Local Government Areas (LGAs) in Orlu Zone: Ideato South, Ideato North, Isu, 

Njaba, Nwangele, Ohaji-Egbema, Oguta, Orlu, Oru West, Oru East, and Orsu. Severe gully 

erosion and gully-induced landsliding in Orlu Senatorial Zone has been documented in Ideato 

North, Ideato South, Isu, Njaba and Orlu Local Government Areas (Osuji, 1984; Iheme et al. 

2016) and these LGAs with an area of 534 km2 were studied in this research. Fieldwork was 

conducted between April and June 2019; these months were specifically selected for two 

reasons: April falls within the start of rainy and thus to reduce delays caused by intense rainfall 

in the middle of the rainy season. Secondly, both gully erosion and landsliding are affected by 

rainfall, therefore, fieldwork was planned to coincide with a period when the effect of rainfall 

will be visible on gully slopes but not intense to significantly disrupt field visit. 

3.2 Methods   

In this section, methods used to achieve research objectives are explained. 

3.2.1 Objective 1: Influence of land use and land-use changes on gully characteristics 

To achieve objective 1, the following research questions were posed: 

I. Have there been land-use changes in the study area between 2009 and 2018? High 

resolution data covering the entire study area were available for 2009 and 2018, hence 

the start date of 2009. 

II. Have gully characteristics changed between 2009 and 2018? 

III. What other factors interact with land-use changes to influence changes in gully 

characteristics? 

3.2.1.1  Land-use classification  

To answer the question regarding influence of land use and land-use changes on gully 

characteristics, the land uses in the study area had to be classified and it had to be established 

that land-use changes have indeed occurred in the study sites between 2009 and 2018. 

RapidEye Satellite imagery covering the area were available for 2009 and 2018 (Table 3.3) and 
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were used for classifying land use. WorldView2 data captured in 2014 covered some parts of 

the study area and were used for land-use classification in these areas. 

Table 3.3: Satellite imagery used for 2009 and 2018 land use classifications. 

3.2.5. Surface runoff estimation  

 

 

 

 

Supervised classification using the false colour composites of near infrared, red and green 

bands, were used for land-use classification. This colour composite scheme was used to identify 

the signature of different land-use classes (Hishe et al. 2020) and thereby improve land-use 

classification. In this false colour composite, vegetation appeared in different shades of red 

depending on their type and conditions (for example, tree canopies had very bright red colours) 

while bare surfaces appeared in various shades of blue or grey.  Three types of land use classes 

were identified; non-vegetated, open vegetation and fallow/trees. Non-vegetated refers to bare 

surfaces, built environments, gullies and borrow pit sites. Open vegetation refers to grasses and 

farms while trees denote areas under tree-cover and fallow. The LGAs of interest are 

predominantly rural (except the Orlu Township), and land is used either for building or farming 

or is left to fallow, hence, the three land use classes adopted in this study. In line with standard 

practice, and to determine the accuracy of thematic land use maps, accuracy assessments were 

carried out for the maps. 90 validations points were generated on the RapidEye high-resolution 

satellite imagery, each validation point was assigned to a corresponding land use based on 

physical interpretation of the imagery. These validation points were tested on the land use maps 

produced for accuracy and agreement. A stratified confusion matrix was computed to compare 

true classes with mapped classes and summary statistics such as overall, producer and user 

accuracies as well as kappa statistics were computed (Appiah et al. 2018) as shown in Equations 

3.1 – 3.4.  

 

 

 

 

Satellite Source No. of 

bands 

Spatial 

resolution 

(m) 

Cloud 

cover 

(%) 

Date of acquisition  

RapidEye -1 Planet.com 5 5 0 November, 2009 

RapidEye-3 Planet.com 5 5 0 December, 2018 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
 ∗ 100

    

Eq. 3.1 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑖𝑡𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
 ∗ 100

   

Eq. 3.2 
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where: 

𝑘 is Kappa statistics 

i is the class number 

N is the total number of classified values compared to truth values 

mi,i is the number of values belonging to the truth class i that have also been classified as 

class i (i.e., values found along the diagonal of the confusion matrix) 

Ci is the total number of predicted values belonging to class i 

Gi is the total number of truth values belonging to class i 

The overall accuracy is the total number of correctly classified samples (diagonal cells of the 

matrix) divided by the total number of samples and measures the accuracy of the entire image 

without any indication of the accuracy of individual categories (Fung and LeDrew 1988). The 

producer’s accuracy is the number of correctly classified samples of a particular category 

divided by the total number of reference samples for that category. It is a measure of the error 

of omission (Story and Congalton, 1986; Fung and LeDrew 1988). The user's accuracy is an 

alternative measure for individual category accuracy, and it is the number of correctly classified 

samples of a particular category divided by the total number of samples being classified as that 

category. It measures the error of commission (Fung and LeDrew 1988). The kappa coefficient 

of agreement  (𝑘) was developed by Cohen (1960) and is a measure of the actual agreement 

(indicated by the diagonal elements of the matrix) minus chance agreement (indicated by the 

product of row and column marginals). The kappa coefficient uses all cells in the matrix and 

takes into account both the commission and omission errors (Rosenfield and Fitzpatrick-Lins, 

1986; Fung and LeDrew 1988). 

 

𝑈𝑠𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑖𝑐𝑢𝑙𝑎𝑟 𝑐𝑙𝑎𝑠𝑠

𝑅𝑜𝑤 𝑡𝑜𝑡𝑎𝑙
 ∗ 100

  

Eq. 3.3 

  𝑘 =    
𝑁 σ 𝑚𝑖,𝑖−σ (𝐺𝑖  

𝑛
𝑖=1 𝐶𝑖)𝑛

𝑖=1

𝑁2−σ (𝐺𝑖  
𝑛
𝑖=1 𝐶𝑖)

            

     

Eq. 3.4 
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3.2.1.2  Changes in gully characteristics between 2009 and 2018  

To identify changes in gully characteristics between 2009 and 2018 (research question 2, 

section 3.2.1), gully mapping and geomorphological fieldwork were conducted. Gully mapping 

was undertaken using satellite imagery (Table 3.4). Geomorphological fieldwork was used to 

ground-truth mapped gullies. Also, a drone survey was carried out during fieldwork by Loraj 

Consortium (one of the consultants working on the Nigeria Erosion and Watershed 

Management Project, NEWMAP) and finished products (such as orthophoto) from this 

exercise were obtained and used to update the gully map.  

Table 3.4: Satellite imagery used for gully mapping. Apart from the RapidEye data, other satellite data do not 

over the entire study sites, hence, while they were appropriate for gully mapping, they were not suitable for 

land use classification. 

 

 

 

 

 

 

 

 

 

Gully mapping was carried out by digitizing gullies that were observable in the satellite 

imagery, using a UTM 32N projection. Gully attributes (identification numbers, area, length 

and width) were stored in the attribute table. Sand mining from borrow pits/sand pits is an 

economic activity in the study area. In classifying gullies, separating borrow pits from gullies 

could be challenging due to the difficulty of knowing the exact demarcation of pits and onset 

of gully erosion as a result of sand excavation; sand mining increases susceptibility to gully 

erosion and gully-induced landslides (Igbokwe et al. 2008; Nwachukwu & Eburukevwe, 2013). 

Hence, researchers often include borrow pits in their gully inventories thereby inflating the 

number of identified gullies from satellite imagery (Amanbagara, et al. 2015).  Based on this 

observation steps were adopted to avoid classifying borrow pits as gullies. For example, 

identified gullies were elongated narrow features running for several meters in length, whereas 

Satellite Source No. of 

bands 

Spatial 

resolution (m) 

Cloud 

cover (%) 

Date of acquisition  

RapidEye -1 Planet.com 5 5 0 November, 2009 

RapidEye-3 Planet.com 5 5 0 December, 2018 

QuickBird-2 DigitalGlobe 

foundation 

4 (0.61 m and 

2.4 m) 

0.16 December, 2006 

QuickBird-2 DigitalGlobe 

foundation 

4 (0.61 m and 

2.4 m) 

0.16 December, 2007 

WorldView-2 DigitalGlobe 

foundation 

8 2 0 January, 2014 

WorldView-2 DigitalGlobe 

foundation 

8 2 0 December, 2017 
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sand mining pits were round features covering several meters in diameter and thus, a separate 

polygon was used to map borrow pits.    

In order to understand changes in gully characteristics and relate same to changes in land use, 

gully dimensions (length, width and area) were computed after mapping. The longest part of 

the gully, from start to finish was recorded as length (km). To measure gully widths (m), lateral 

measurements perpendicular to a centre line were taken at 1 m intervals and an average derived. 

This derived average is referred to as average gully width. The area of the polygon represented 

gullied area (m2). 

The primary focus of fieldwork was to ground-truth gullies mapped during desk study. A hand-

held GPS (Garmin Oregon 300 model) was used to take gully coordinate points in five visited 

communities, Amucha, Obibi-Ochasi, Isu Njaba, Urualla and Umueshi. These points were 

imported into the geoprocessing software (ArcGIS) used for gully mapping and this step was 

adopted so as to know if coordinates points collected in the field matched the already mapped 

gully polygons in those communities. Hydrogeology of gullies (discharge of ground water at 

gully slopes, return flow, presence of springs), gully properties (length, width) and 

identification of land-use types and cultivation practices were observed and recorded. To 

measure gully length of visited gullies, coordinate points were acquired at the start and end 

points of the gully, these points were imported into the geoprocessing software and the distance 

function was used to measure the length. The same procedure was used to measure gully width.  

As part of their monitoring programme, the Loraj Consortium conducted a drone survey of the 

Urualla area in Ideato North LGA using a DJI Phantom 4 drone flying at an altitude of 242 m 

on 7th May 2019. 1399 images covering an area of 15.8 km2 were captured, 21 Ground Control 

Points (GCP) were acquired using a Trimble R8 AND R7 dGPS and image processing was 

achieved using Agisoft PhotoScan professional (version 1.4.1 build 5925). Finished products 

included orthomosaic, DEM (0.4 m resolution) and PointCloud data. The orthophoto was used 

to update the gully map for the identified gullies. Due to logistical challenges, more drone 

surveys could not be conducted in the study area before the end of the fieldwork. 

To determine changes in gully characteristics, the 2009 values (i.e. length, width and area) were 

subtracted from 2018, and the difference represented change in gully characteristics.  
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3.2.1.3  Other drivers of changes in gully characteristics    

Two approaches, geomorphic and qualitative (local knowledge of gully-causing factors), were 

adopted to answer research question 3 (section 3.2.1), what other factors interact with land-use 

changes to influence changes in gully characteristics? Data on the following factors identified 

in the conceptual model (figure 2.3) were collected and analysed 

a). Geomorphic factors 

Previous studies (e.g. Akpan, et al. 2015; Nwankwor et al. 2015; Rahmati et al. 2016, 2017; 

Zabihi et al. 2018) have identified the importance of other drivers of gully evolution. These 

factors interact with changes in land use to affect gully erosion and they include geomorphic, 

climatic and other elements (such as nearness to rivers and roads). These factors are divided 

into two; physical and human-induced. Physical elements whose interactions with land use 

affect gully characteristics studied in this work are slope angle, elevation, curvature, proximity 

to rivers, soil properties, and human-induced factors include change in land use, farming 

techniques and effects of civil unrest.  

Elevation, slope and curvature values were extracted from the Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (DEM) at 30 m resolution. Different elevation and 

slope statistics (mean, maximum or range) can be adopted for different purposes depending on 

the subject of a research. In this study, relative relief (elevation range) and maximum slope 

values of the gully heads are used to understand changes in gully dimensions. Gullies migrate 

headwards in response to driving factors, hence the use of these geomorphic variables derived 

at the gully heads. Relative relief helps the researcher understand the difference between 

highest and lowest elevation values within a zone of interest, and thus recognize possible routes 

of surface flow. In a similar vein, use of maximum slope values also helps one understand sites 

of steepest decent within a zone where the erosive power of surface runoff would be most 

pronounced. Plan and profile curvatures were classified into three; negative, zero, and positive 

curvatures corresponding to concave, flat, and convex surface, respectively. Gully counts were 

identified for the three classes of curvature, and results were used to further understand gullying 

processes.  

Roads and rivers were digitised from the satellite imagery using a line shape file and attributes 

were stored in an attribute table within the geoprocessing software (ArcGIS). Gully head 

distance from roads and rivers were calculated while a correlation matrix was produced for 

relative relief, maximum slope, gully-head distance from road, gully head distance from river 
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and change in gully characteristics. Principal Component Analysis was adopted to understand 

relative importance of gully-drivers while multiple regression was used to understand the 

relationship between predictive (gully-drivers) and outcome (change in gully sizes) variables. 

Gully endpoint distance from roads and rivers were also calculated, these values were not 

included in the correlation matrix or multiple regression as gullies migrate headwards, and 

factors that drive this headward expansion were of interest in this study.  

Loraj Consortium conducted geotechnical tests (shear strength, cohesion, dry and bulk 

densities) for four out of the five selected communities representing the study sites: Isu Njaba 

(Isu LGA), Urualla (Ideato North LGA), Obibi-Ochasi (Orlu LGA) and Umueshi (Ideato South 

LGA). Soil samples were collected from within the gullies in these communities using a drilling 

rig at various depths (Table 3.5), while the wet sieving method was used for particle-size 

analysis. For Njaba LGA, two undisturbed samples were collected from the scarp of a landslide 

in the Amucha gully (Njaba LGA) for geotechnical test while wet sieving was also used for 

particle-size analysis. These geotechnical parameters were used to understand response of soils 

in the area to erosive forces, such as surface runoff. Results from these tests contributed to 

achieving research aim in the following ways: 

1. Strength test results were compared with other published studies to understand potential 

effects of geotechnical characteristics of soils on gullying,  

2. Particle size distribution results informed hydrological soil groups used for 

hydrological modelling (section 3.2.2) and selection of soil type for infiltration 

measurements using the minidisk infiltrometer, 

3. Particle size distribution results were related to modelling results and field observations 

to explain likely gully-driving processes. 

Table 3.5: Soil samples collected at various depths within gullies; Source: Loraj Consortium, (2019).   

 

 

 

 

 

 

LGA Selected 

community  

Soil test 

  Number of 

samples 

Depth of sampling 

(m) 

Ideato North Urualla 5 31 – 45  

Ideato South Umueshi 3 0 – 2  

Isu Isu Njaba 4 0.1 – 4.7 

Njaba Amucha 2 Collected at landslide 

scarp 

Orlu Obibi-Ochasi 5 4 – 6  
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Apart from the geotechnical parameters of the soils, their infiltration capacities and moisture 

contents were also studied. Infiltration capacities and moisture contents of soils are important 

for a better understanding of hydrological drivers of gully expansion in response to land-use 

changes. Infiltration capacities and particle size analyses informed selection of hydrological 

groups of soils (section 3.2.2). Infiltration tests were carried out on forested, farmed, and bare 

soils representing the three land use classifications. The mini-disk infiltrometer was used to 

undertake infiltration measurements. Hydraulic conductivity, a measure of the rate at which 

water can move through the soil under certain conditions and hydraulic gradients, is the single 

most important hydraulic property that affects water flow (Zhang, 1997a and b).  

The mini-disk infiltrometer allows measurements of infiltration with a constant negative 

pressure head at the soil surface and has been extensively used to measure soil hydraulic 

conductivity (Smetten et al. 1994; Vandervaere et al. 2000; Kargas et al. 2017). The mini-disk 

infiltrometer is a type of tension infiltrometer that ensures accurate and affordable 

measurement of the unsaturated hydraulic conductivity of any soil (Decagon, 2018). It was 

used in this study because calculated values of hydraulic conductivity for various soils have 

excellent agreement with theoretical results (Zhang, 1997b). The instrument has a length of 

32.7 cm, a diameter of 3.1 cm, length of suction regulation tube of 10.2 cm and a suction range 

of 0.5 – 7 cm. Based on the recommendations of Decagon (2018), a suction of -2 cm was 

selected for all readings in this study. The minidisk has two chambers (upper and lower) which 

were filled with water, while the lower chamber contains a volume of water that infiltrates into 

the soil at a rate determined by selected suction, the upper chamber controls the suction. Once 

placed on the soil, infiltration from the lower chamber begins, after every 30 seconds, readings 

of the new water volume in the lower chamber were recorded, and this was done for 300 

seconds. The time span of 300 seconds was chosen based on the suggestion of Decagon (2018), 

and secondly, it was thought this time would allow a minimum of 15 – 20 ml of water to 

infiltrate into the soil during each measurement. This minimum value of infiltrated water is 

required to ensure accurate measurement of hydraulic conductivity (Decagon, 2018). To ensure 

a smooth contact with the soil, the minidisk was placed on a thin layer of sand spread on the 

soil. Excess contact sand outside the rim of the infiltrometer was swept away immediately after 

emplacing the infiltrometer on the thin sand layer so as to avoid any horizontal wicks of sand 

lying across the soil surface. Hydraulic conductivity k was estimated from cumulative 

infiltration measured in the field at a suction of -2 cm according to Eqs. 3.5 (Zhang, 1997a, b), 

                                                                                                               Eq. 3.5 

𝑘 =
𝐶𝑖

𝐴
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where k (mm) = hydraulic conductivity  

C1= is the slope of the curve of the cumulative infiltration versus the square root of time, and 

A = a dimensionless coefficient relating the van Genuchten parameters for a given soil type to 

the suction rate and radius of the Infiltrometer disk. In this study, the value of A = 1.73 for sand 

and 3.91 for sandy loam were chosen to represent the soils in the area (Decagon, 2018). 

Soil moisture was measured to determine the water retention capacities of the soils, which 

could in turn influence infiltration and surface runoff. To measure soil moisture, a Delta-T 

ThetaProbe ML2x Soil Moisture sensor was used to collect soil moisture readings. The Delta-

T ThetaProbe ML2x measures volumetric soil moisture content (θv), by the method of 

responding to changes in the apparent dielectric constant, which is proportional to soil moisture 

content. Volumetric soil moisture content is the ratio between the volume of water present and 

the total volume of the sample. This is a dimensionless parameter, expressed either as a 

percentage (%vol), or a ratio (m3 .m-3) (Holzman et al. 2017; User manual, Delta-T 1999). Soil 

moisture readings were collected having inserted the probe into the soil until the rods were 

fully covered, that is to a depth of 6 cm. To avoid reduction of soil moisture value by air 

pockets, re-insertion of probe into same location (in the case of void reading during initial 

insertion) was avoided. Six readings were planned for both soil moisture and infiltration in 

each of the five visited community at the three identified land use classes, thus making it 18 

readings per community.  

During fieldwork, farming techniques were observed and recorded to relate what was observed 

in the field with changes in gully characteristics.  

b). Local knowledge of gully-causing factors 

While the use of geomorphic techniques to study gully evolution provides answers to 

mechanism of gully expansion, some information may not be readily available through this 

technique. For example, dates of gully initiation, forcing activities that led to gully formation 

as well as local knowledge on gully-landslide interactions. The significance of incorporating 

local knowledge is threefold: First, to eradicate any form of mistrust for science on the part of 

local population. Secondly, incorporating local knowledge provides for comparison of 

scientific understanding, hypotheses, forecasts, and arguments with prevailing local expertise, 

thus, enriching scientific findings. This second significance forms part of the public debate 

model proposed by Callon (1999). Finally, to avoid the adoption of non-native “top-down” 
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approaches which are not effective in many instances in solving local environmental problems 

(van Aalst et al. 2008).  

Focus group meetings were used to understand the dates of gully initiation, their dynamics of 

evolution over these years and efforts made by the community to reduce gully impacts. Two 

focus group meetings were held, each had 10 community leaders comprising men and women. 

Agendas for the meeting were organised into five: hazard identification, hazard mitigation, 

vulnerability and exposure, risk communication and factors constraining risk mitigation. 

Before the start of meetings, the elders were asked to give a history of the gully from when it 

started until the present day and this availed the opportunity to ask follow-up questions about 

forcing factors and mode of evolution. Questions included “what do you think causes 

gullying”? “Tell me what has been done to reduce gullying in your community”. Findings were 

presented using themes representing key results. 

3.2.2 Objective 2: Effects of land-use changes on gully catchment hydrology 

To achieve objective 2, the following research questions were posed: 

1. Have there been changes in the hydrology of gully catchments between 2009 and 

2018 in response to land-use changes?  

2. Are there associations between changes in gully catchment hydrology and gully sizes? 

3.2.2.1  Changes in gully catchment hydrology between 2009 and 2018 in response 

to land-use changes 

The current research aims to understand hydrological responses to land-use changes, as well as 

evaluate how land-use configuration affects hydrological responses. Both surface and sub-

surface flows propagate gullying and land-use changes affect both hydrological processes. 

Surface runoff from the upper segments of a catchment can flow to the lower segments if such 

a catchment is structurally connected, thus, surface runoff from the upper segment can enhance 

gullying farther from the point of runoff generation. Gullying is a continuous process and to 

understand gully responses to hydrological drivers, hydrological responses to land-use changes 

and data on catchment flow responses to catchment connectivity are needed in a continuous 

form. However, these required data are not available in the study area and thus, hydrological 

modelling was undertaken. Although many models exist (Table 3.6), while some do not proffer 

solutions to the data needs enumerated above, others are not suitable for the study area. For 

example, the TOPMODEL represents a simple approach to predicting spatial patterns of 

responses in a catchment and is premised on two basic assumptions; the dynamics of the 
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saturated zone can be approximated by successive steady state representations of the saturated 

zone on an area ‘a’ draining to a point on a hillslope, and that the hydraulic gradient of the 

saturated zone can be approximated by the local surface topographic slope measured with 

respect to plan distance (Beven, 2011). Areas prone to development of perched water tables are 

difficult to model with the TOPMODEL (Beven, 1997; 2011), but landslide events in southeast 

Nigeria have been attributed to the development of perched water tables (Akpan et al, 2015). 

The Soil and Water Assessment Tool (SWAT) model was chosen in this study over other 

models. Although SWAT is usually used for river basin assessments, the following make the 

SWAT model ideal in this study. 

1. It is capable of modelling both surface and sub-surface flow responses to land-use 

changes. 

2. The model can simulate hydrological responses to land-use configuration.  

3. SWAT is a continuous model. 

4. SWAT can model agricultural activities such as tillage (farming is the predominant 

activity in rural Nigeria). 

5. The model has available GIS user-friendly versions. 

The most evident indication of hydrologic change within a catchment is from the trend of 

surface runoff (Anand et al, 2018), assumptions of the runoff method used in SWAT are 

presented in section 3.2.2.1.4. The primary limitation of using this model is the inability to 

estimate rainfall intensity and event-based floods. In section 2.2.1, rainfall intensity was 

identified as a potential driver of gullying in southeast Nigeria, however, unavailability of this 

data is one of the uncertainties of this study. 
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Table 3.6: Examples of hydrological models. The SWAT model was chosen in this study due to the points listed 

above. 

Model Strengths  Suitability for study  Reference 

 

TOPMODEL Can be applied in small 

catchments (<2 km2) in 

the humid tropics. 

Areas prone to 

development of perched 

water tables are difficult 

to model with the 

TOPMODEL 

Campling, et al. (2002).  

Beven, 1997; 2011. 

SWAT Continuous, can reflect 

hydrological responses to 

land-use changes 

Inability to simulate 

event-based processes 

Spruill et al, 2000. 

Arnold et al, 1998 

Chemical, Runoff, and 

Erosion from 

Agricultural 

Management Systems 

(CREAMS) 

Can simulate the impact 

of land management on 

water, 

sediment, nutrients, 

and pesticides leaving the 

edge 

of a field. 

Unable to model 

hydrological responses to 

catchment connectivity  

Knisel, 1980, Crowder et 

al, 1985 

Precipitation Runoff 

Modelling System 

(PRMS) 

Watershed response can 

be simulated at both a 

daily and a storm time 

scale 

Unable to model 

hydrological responses to 

catchment connectivity 

Leavesley & Stannard, 

1995 

MIKE SHE Able to simulate surface 

and sub-surface 

processes 

Requires huge amount of 

data 

Zhang et al, 2008, 

Arnold et al, 1998. 

 

3.2.2.1.1 The SWAT Model 

SWAT is a hydrologic/water quality model developed by United States Department of 

Agriculture - Agricultural Research Service (USDA-ARS) (Arnold et al. 1998). It is a 

physically based model, designed with the objective of predicting the impact of land-

management practices on water, sediment, and agricultural chemical yields in watersheds with 

varying soil, land use, and management conditions (Santhi et al. 2001; Neitsch et al. 2012; Dile 

& Srinivasan, 2014). The SWAT model can simulate hydrological processes with a daily time 

step by disaggregating a catchment first into sub-basins and further dividing sub-basins into 

Hydrological Response Units (HRUs), (Dile & Srinivasan, 2014). A HRU is a lumped land 

area within a sub-basin that consists of homogeneous land use, management, topographical, 
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and soil characteristics. The HRUs are represented as a percentage of the sub-basin area and 

may not be contiguous or spatially identified within a SWAT simulation (Arnold et al. 2012). 

The focus of the present research is on the impacts of land-use changes on hydrological 

responses within gully catchments and by extension, how these impacts affect gullying, thus, 

making SWAT an ideal model in this study.  

Water balance is the primary basis behind SWAT because of its impacts on sediment 

transportation as well as plant growth (Arnold et al. 2012). Simulation of watershed hydrology 

is divided into two: the land (representing the hillslope) and in-stream/routing components. 

First, the land component controls the amount of water and sediment loadings into the main 

channel in each sub-basin. The following hydrologic processes are simulated by SWAT: 

canopy storage, surface runoff, infiltration, evapotranspiration, lateral flow, tile drainage, 

redistribution of water within the soil profile, consumptive use through pumping (if any), return 

flow, and recharge by seepage from surface water bodies, ponds, and tributary channels. 

Secondly, movement of water through the channel network to the watershed outlet is controlled 

by the in-stream/routing component (Arnold et al. 2012). There are different versions of the 

model; the 2012 version is used in this study because it has the ArcGIS interface. The following 

sub-sections detail the working mechanism and required data for the SWAT model. 

3.2.2.1.2 The Weather data and Weather Generator 

Weather data are required to estimate hydrological processes using the SWAT model. Daily 

rainfall, minimum and maximum temperature, solar radiation, mean daily wind speed and 

relative humidity are the needed weather parameters. Where these parameters are available, 

they are read-into the model and used for model runs. Due to the unavailability of these data 

on a daily time scale in the study area, the inbuilt SWAT weather generator was used. The 

SWAT model generates daily values for weather for individual sub-basins based on average 

monthly values summarised over a number of years and there is no spatial correlation of 

generated values between different sub-basins (Neitsch et al. 2011). These monthly weather 

averages were provided by the Climate Forecast System Reanalysis (CFSR) global 

meteorological database for latitudes 5° & 6° N and longitudes 6° and 7° E. Initial exploration 

of other data sources (The Tropical Rainfall Measuring Mission and The European Centre for 

Medium-Range Weather Forecasts-ERA5) was undertaken but downloaded climate data gave 

wrong readings for the study area. CFSR weather data were produced with data-assimilation 

techniques (both conventional meteorological gauge observations and satellite irradiances) as 

well as highly advanced atmospheric surface modelling components at ~ 34 km resolution 
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(Saha et al. 2010; Dile & Srinivasan, 2014). CSFR weather data span between 1979 and July 

2014. Figure 3.4 shows simulated weather stations used to generate weather parameters in the 

study area. 

3.2.2.1.3 Potential and actual evapotranspiration 

Potential evapotranspiration (PET) is the rate at which evapotranspiration would occur from 

an area uniformly covered with growing vegetation that has access to unlimited supply of soil 

water and that was not exposed to advection or heat storage effects (Thornthwaite, 1948) while 

actual evapotranspiration is a collective term that includes all processes by which water at the 

earth’s surface is converted to water vapour (Neitsch et al. 2011). Evapotranspiration is a 

dominant process by which a watershed loses water (Neitsch et al. 2011). To calculate actual 

evapotranspiration, PET, is first simulated. 

The Penman-Monteith method of calculating PET was used in this study, it provides an 

accurate estimate of Potential Evapotranspiration on daily time scales (Allen et al. 2006). This 

method of estimating evapotranspiration requires solar radiation, air temperature, relative 

humidity and wind speed, these weather variables were generated using CSFR weather 

generator for the study area. The full form of the Penman-Monteith evapotranspiration equation 

is given in Equation 3.6, (Neitsch et al. 2011), 

 

 

 

Under neutral atmospheric stability, Equation 3.6 can be written as,  

 

 

 

 

 

 

 

𝜆𝐸 =  
𝛥(𝑅𝑛 − 𝐺) + 𝑃𝑎𝐶𝑃 (𝑒𝑠  −  𝑒𝑎)/𝑟𝑎

ቆ∆ +  𝛾 ቀ1 +  
𝑟𝑠

𝑟𝑎
ቁቇ

 Eq. 3.6 

𝜆𝐸𝑡 =  
𝛥(𝑅𝑛 − 𝐺) +  𝛾. 𝐾1(0.622. 𝜆. 𝑃𝑎/𝑃) (𝑒𝑠  −  𝑒𝑎)/𝑟𝑎

ቆ∆ +  𝛾 ቀ1 +  
𝑟𝑠

𝑟𝑎
ቁቇ

 
  Eq. 3.7 
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Figure 3.4: Climate Forecast System Reanalysis (CSFR) simulated weather stations used for 

generating weather data.Also shown is the shaded relief map of the study area 
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Where λE = latent heat flux density (MJ m-2 d-1), E = depth of evaporation (mm day-1) 𝛥 = 

slope of the saturation vapour pressure versus temperature curve (kPa/°C), 𝑅𝑛= net radiation 

flux density at the surface (MJ/m2/day), G = sensible heat flux density from the surface to the 

soil (positive if the soil is warming) (MJ/m2/day), 𝑃𝑎= air density (kg m-3), 𝐶𝑃 = specific heat 

of moist air at constant pressure of air (MJ kg-1 °C-1), 𝑒𝑠 = saturation vapour pressure at air 

temperature (kPa), 𝑒𝑎 = actual vapour pressure of the air (kPa), 𝑟𝑎 = aerodynamic resistance to 

turbulent heat and/or vapour transfer from the surface to some ‘z’ height above the surface (s 

m-1), 𝛾 = pyschrometric constant (KPa/°C), 𝑟𝑠 = bulk surface resistance that describes resistance 

to flow of water vapour from inside the leaf, vegetation canopy or soil to outside the surface (s 

m-1), 𝜆 = latent heat of vaporization (MJ kg-1), 𝐸𝑡 = maximum transpiration rate (mm d-1), 

𝐾1= dimension coefficient  needed to ensure the two terms in the numerator have same units 

(8.64 * 104 ms-1), P = atmospheric pressure (kPa).  

To calculate actual evapotranspiration, SWAT first evaporates any rainfall intercepted by plant 

canopy, then maximum amount of transpiration and soil evaporation is completed (Neitsch et 

al. 2011).  

Maximum amount of water that can be held in canopy storage varies from day to day as a 

function of the leaf area index (LAI):  

                                                                                                          Eq. 3.8 

 

Where 𝑐𝑎𝑛𝑑𝑎𝑦 = maximum amount of water that can be trapped in the canopy on a given day 

(mm H2O), 𝑐𝑎𝑛𝑚𝑎𝑥  = maximum amount of water that can be trapped when the canopy is fully 

developed (mm H2O), LAI = leaf area index, 𝐿𝐴𝐼𝑚𝑎𝑥 = maximum leaf area index for the plant. 

Maximum leaf area index used in the study area are 4 and 5 m2/m2 for cassava and evergreen 

forests respectively. Influence of plant on rainfall interception is a function of plant density 

cover and morphology of plant species (Neitsch et al. 2011). When using the Penman-Monteith 

method in SWAT, actual transpiration is calculated using Equation 3.7, and Maximum amount 

of soil evaporation on a day is calculated using Equation 2:2.3.7 of Neitsch et al. (2011): 

                                                                                                          Eq. 3.9 

Where 𝐸𝑆 = maximum soil evaporation in a day (mm H2O), 𝐸𝑜
′ = potential evapotranspiration 

adjusted for evaporation of free water in canopy (mm H2O), 𝑐𝑜𝑣𝑠𝑜𝑙 = soil cover index. 

𝐸𝑆 =  𝐸𝑜
′. 𝑐𝑜𝑣𝑠𝑜𝑙  

𝑐𝑜𝑣𝑠𝑜𝑙 = exp(−5.0 ∗  10−5. 𝐶𝑉) 

𝑐𝑎𝑛𝑑𝑎𝑦 =  𝑐𝑎𝑛𝑚𝑎𝑥  .
𝐿𝐴𝐼

𝐿𝐴𝐼𝑚𝑎𝑥
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                                                                                                      Eq. 3.10 

Where CV = aboveground biomass and residue (kg ha-1). 

 

3.2.2.1.4 Runoff generation 

Surface runoff in SWAT is estimated separately for each sub-basin and routed to obtain the 

watershed total runoff value (Dile & Srinivasan, 2014). Two methods are available for 

simulating runoff using the SWAT model: The Curve Number (CN) and Green and Ampt 

infiltration method. While the Green and Ampt method requires sub-daily rainfall data, the CN 

approach uses daily rainfall data, but the SWAT model generates rainfall data on a daily time 

step. Apart from the unavailability of sub-daily rainfall data in the study area, the CN approach 

is adopted in the present study because: 

a) The background to the curve number is purely empirical, that is primarily its strength 

(Beven, 2011).   

b) The CN is responsive to major runoff-producing watershed properties (soil, land 

use/treatment, surface condition and antecedent condition) (Ponce & Hawkins, 1996). 

The CN is an abstraction parameter which varies between 1 and 100, with 1 being full 

abstraction and zero runoff and 100 being no abstraction, which means all rainfall resulted in 

surface runoff. This method of estimating runoff is essentially based on the water balance 

equation (Equation 3.11) and on a fundamental hypothesis which states that the ratio of actual 

retention to potential retention is equal to the ratio of actual runoff to potential runoff as 

represented in Equation 3.12 (Kandissounon et al. 2018), this assumption underscores the 

conceptual basis of the runoff curve number method (Ponce, 1989). 

𝑃𝑖 =  𝐼𝑎 + 𝐹 + 𝑄                                                         Eq. 3.11 

            Eq. 3.12 

 

          Eq. 3.13  

          

 

where 𝑃𝑖 = rainfall (mm), 𝐼𝑎 = initial abstraction (mm), F = cumulative infiltration without 

initial abstraction (mm), Q = runoff (mm), S = maximum potential retention (mm). 

𝑄

𝑃𝑖 − 𝐼𝑎
=

𝐹

𝑆
 

𝑄 =
(𝑃𝑖 − 𝐼𝑎)2

𝑃𝑖 −  𝐼𝑎 + 𝑆
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The basic form of the Curve Number is represented in Equation 3.13 which is obtained by 

combining equations 3.11 and 3.12 (Kandissounon et al. 2018). Equation 3.13 is physically 

subject to the restriction that 𝑃𝑖 ≥ 𝐼𝑎 (i.e. the potential runoff minus initial abstraction cannot 

be negative) (Ponce, 1989). Initial abstraction, 𝐼𝑎, is related to potential maximum retention, 

such that, 

                                                                                          Eq. 3.14 

Thus, substituting 3.14 in 3.13, Equation 3.15 is derived. 

                                                                       Eq. 3.15       

 

Equation 3.15 is subject to 𝑃𝑖 ≥ 0.2S.   

The CN is a function of a) hydrologic soil type, b) land use c) antecedent moisture condition 

(Ponce, 1989). Soils are classified into four hydrologic types; A, B, C and D. Hydrologic 

groups A and B have higher infiltration capacities, while C-group have a lower infiltration 

capacity. Soils in group D have high runoff potential. Table 3.7 shows the hydrological groups 

of soils in the study area. Land use classification has been described in Section 3.2.1.1. For 

estimating runoff in SWAT, non-vegetated areas were classified into three categories identified 

by the SWAT model: Urban High Density (URHD), Urban Low Density (URLD) and Urban 

Medium Density (URMD). These classifications were based on visual interpretation of 

cluster/connectedness of built-up areas in the land-use maps, as well as observations during 

fieldwork. Gully catchments with highest connectedness were assigned Urban High Density 

and the least connected catchments were classified as Urban Low Density. Open vegetation 

classification refers to farms and grassed areas. Cassava (Manihot esculenta) is the dominant 

crop (Ande et al. 2008; Ozor et al. 2010), hence, cassava was input in the open vegetation class. 

Evergreen forest was selected to represent tree land-use class. 

 

 

 

 

 

 

𝐼𝑎 =  0.2𝑆  

   𝑄 =    
(𝑃𝑖 − 0.2𝑆)2

 (𝑃𝑖 + 0.8S)
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Table 3.7: Hydrological soil groups for different soils in the study area and corresponding Antecedent Moisture 

Content Curve Numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

Three classes of Antecedent Moisture Condition (AMC) are identified by the CN and they are 

AMC I, AMC II and AMC III. These conditions correspond to dry, average and wet conditions 

respectively. AMC I (dry) is defined as when the cumulative rainfall in the previous five days 

is < 13 mm, and AMC III (wet) is defined as when cumulative rainfall for the previous five 

days is > 28 mm (Liu et al. 2019). When the cumulative rainfall is between 13 and 28 mm, it 

is considered as AMC II (average) (Liu et al. 2019). In HRUs with urban areas, the SWAT 

model adjusts the CN number to reflect the impact of the impervious areas (Neitsch et al. 2002) 

3.2.2.1.5 Flood routing 

The flood-routing model uses a variable storage coefficient technique developed by Williams 

(1969) such that for any given reach segment, storage routing is based on the continuity 

equation: 

                                                                                              Eq. 3.16 

 

Where 𝛥𝑉𝑠𝑡𝑜𝑟𝑒𝑑 = change in volume of storage during the time step (m3 H2O), 𝑉𝑖𝑛 = volume 

of inflow during the time (m3 H2O), 𝑉𝑜𝑢𝑡 = volume of outflow during the time step (m3 H2O). 

Soil Hydrologic 

soil group 

Land use CN 

   AMC 1 AMC 11 AMC 11 

Nd19-1a-

1557 

B URLD 

URBN 

URHD 

CASS 

FRSE 

43.9    

55.5    

66.2  

59.3 

35.3    

63.3    

73.8    

82.4    

77.0    

55.0    

81.0 

88.0 

92.8 

89.9 

74.5    

Nd21-1a-

1560 

B URLD 

URBN 

URHD 

CASS 

FRSE 

43.9    

55.5    

66.2  

59.3 

35.3    

63.3    

73.8    

82.4    

77.0    

55.0    

81.0 

88.0 

92.8 

89.9 

74.5    

Ph17-1a-

6596 

A URHD 

CASS 

FRSE 

54.3 

47.9 

15.1    

72.8 

67.0 

35.0          

87.4 

83.7 

54.2    

 

𝛥𝑉𝑠𝑡𝑜𝑟𝑒𝑑 =  𝑉𝑖𝑛 −  𝑉𝑜𝑢𝑡 
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3.2.2.1.6 Channel characteristics  

Channel length, slope, width, depth, and Manning’s -‘n’- are input required by SWAT. The 

channel length is the distance along the channel from the sub-basin outlet to the most distant 

point in the sub-basin, while channel slope is computed by taking the difference in elevation 

between the sub-basin outlet and the most distant point in the sub-basin and dividing by channel 

length. Both the channel length and slope can be accurately estimated using the DEM (Ames 

et al. 2009; Han et al. 2019). Channel width, depth and Manning’s -‘n’- were manually entered 

into the model. Channel width was computed by developing a new regression equation similar 

to that used by SWAT to calculate channel width (Equation 3.17).  

                                                                                             Eq. 3.17 

 

where 𝑊𝑏𝑛𝑘 𝑓𝑢𝑙𝑙 = bankfull width of main channel (m), A = upstream drainage area (km2).  

To develop a new regression equation, the drone image (section 3.2.1.2) of Urualla gully 

catchment was used. First, the Urualla catchment was delineated and sub-basin area (km2) 

calculated. Then using the drone image, the widths of sub-basin channels were identified and 

measured. A linear regression was calculated for measured channel width (m) and SWAT-

calculated upslope contributing areas of the sub-basins (km2) (figure 3.5). The new regression 

equation was developed as a Power Law function of the upslope contributing area, Equation 

3.18. This new regression equation was used to calculate channel widths for the gully 

catchments. Manning’s -‘n’- of 0.03 was adopted in this study and this value was selected based 

on the recommendations of Chow, (1959). 

                                                                               Eq. 3.18 

where w = channel width (m), A = upslope contributing area (km2). Equation 3.18 (r2 = 0.70, 

adjusted r2 = 0.68, p-value < 0.05) was used to calculate channel width in this study.  

 

 

 

 

 

 

𝑊𝑏𝑛𝑘 𝑓𝑢𝑙𝑙 = 1.29. 𝐴0.6 

𝑤 = 2.56. 𝐴0.78 
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3.2.2.1.7 Data requirement for SWAT 

To run the SWAT model, the following datasets are required. 

I. Topography 

Topographic data used in this study were the Shuttle Radar Topography Mission (SRTM) 

digital elevation model (DEM) at 30 m resolution acquired from the United States Geologic 

Survey (USGS). The DEM was used to delineate gully watersheds in ArcSWAT and create 

stream networks of the catchments. To delineate a gully watershed, a pour point was identified 

at the end of the gully such that the model was able to define the watershed contributing flow 

through the pour point. SWAT uses single flow algorithm to define catchments.  

 

II. Soil 

Soil data were acquired from the Digital Soil Map of the World (DSMW) prepared by the Food 

and Agricultural Organisation using the topographic map series of the American Geographical 

Society of New York as a base at a nominal scale of 1:5 000 000. This map was supported by 
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Figure 3.5: Channel width vs contributing area relationship developed for the study area 
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particle-size analysis (PSA) of soils in the study area (section 3.2.1.3). To support the DSMW 

classification, average particle size results for the different textural components in sampled 

communities were used. Using the soil in Isu Njaba community as an example, four soil 

samples were collected, and PSA results derived for these four samples. The average values 

for sand, gravel and fine materials in this community was input into the soil texture triangle for 

appropriate texture classification. The DSMW classified soils in Isu Njaba as sandy-loam, 

while average particle size results for the four sampled sites also classified the soils as sand-

loam, thus, PSA results were used to authenticate the DSMW which has a coarse resolution. 

The usersoil-database in SWAT holds physical characteristics of different soils, three soil types 

(Table 3.7) were identified for the study area and used to run the SWAT model.  

III. Land-use maps 

Land-use maps for 2009, 2014 and 2018 for the study area were input into the model. While 

2009 and 2018 maps covered the entire study area, the 2014 map covered some gully 

catchments.  

3.2.2.1.8 Model setup 

Multiple HRUs were created in each sub-basin using the soil, topography and land-use maps. 

A zero percent threshold was used in creating the HRU, ensuring that all land use and soil types 

as well as all slope classes were considered in creating the HRUs. No reservoirs were defined 

as there were none in all the gully catchments. Management-practice data are needed to run the 

SWAT model and they include planting, harvesting and killing, tillage, and fertilizer and 

pesticide applications. The planting season starts at the beginning of rainy season, ending of 

March-beginning of April (Onwuka et al. 1997; Nya et al. 2010), hence, March 28 was selected 

as planting start date and December 28 for harvest/kill. Tillage distributes nutrients, pesticide, 

and residue in the soil profile. The hoe is the traditional tilling tool used in the study area. The 

depth of tillage with the hoe is up to 100 mm and a mixing efficiency of 0.3 was selected based 

on the suggestions of Neitsch et al. (2011). Application of chemical fertilizers and pesticides 

is not common among non-commercial farmers. The farmlands under investigation in this 

study are non-commercial, where chemical fertilizers were not applied. Plant growth in SWAT 

can be scheduled by fraction of potential heat units or by day. Plant growth cycle is controlled 

by plant attributes summarised in the plant growth database and by timing operations contained 

in the management-practice (Neitsch et al. 2011). Since the planting season is known for 
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cassava, growth was scheduled by day for cassava. Having set up the model, a warm-up period 

of two years was selected for the model run.  

3.2.2.1.9 Model output used 

Gully erosion is driven by surface and sub-surface processes (section 2.1) hence surface runoff, 

lateral flow, groundwater flow and streamflow were the model outputs of interest. Changes in 

these modelling output over the years were related with changes in gully sizes. Trends and 

changes were identified in two parts: between 2009 – 2014 and 2014 – 2018 for catchments 

covered by the 2014 satellite imagery, and between 2009 – 2018, for gully catchments covered 

by the 2009 and 2018 satellite data. 

3.2.2.1.10 Model application in different settings 

To understand the extent to which land-use changes alone affected changes in catchment 

hydrology, an ‘exploratory sensitivity analysis’ was conducted. The 2009 rainfall was applied 

to land-use maps of 2009 and 2018 in Amucha and Orlu1 catchments. Rainfalls for 2009 and 

2018 were also applied to the land-use maps of 2009 in Amucha and Orlu1 catchments. This 

step was undertaken to ascertain the influence of changes in rainfall on catchment hydrology. 

3.2.2.1.11 Result validation 

Validation is a demonstration that a model within its domain of applicability possesses a 

satisfactory range of accuracy consistent with the intended application of the model (Sargent, 

1984; Curry et al. 1989). This demonstration indicates that the model is acceptable for use, not 

that it embodies any absolute truth (Oreskes et al. 1994; Rykiel, 1996). While it is 

commonplace to validate SWAT models using statistical techniques by testing levels of 

agreement between observed and estimated results (e.g. Fuka et al. 2014; Dile & Srinivasan, 

2014), other methods such as face validity, exist for validating models (Rykiel, 1996). The 

validation process shows that a model meets some specified performance standard under 

specified conditions and embodies three conditions (Rykiel, 1996): 

A. The model is in accord with the facts (data) as we know them at the time, 

B.  What is true or accepted as true in ecology (based on our judgment), 

C. The model is justifiable and appropriate for our purposes. 

There are no observed streamflow data in the area of study and hence modelled results were 

not validated using statistical tests of agreement between observed and estimated values, rather, 

three methods: use of literature review, observations during field work and data obtained from 

respondents during focus group meetings, were used for validation. 
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3.2.2.1.12 Associations between changes in gully catchment hydrology and gully sizes 

Changes in modelling output for the study years were identified. These variations in values 

were related to changes in gully sizes. Identified trends and differences were used to infer likely 

associations between changes in gully catchment hydrology and changes in gully sizes.  

3.2.3 Objective 3: Effects of changes in land use on gully-landslide interactions 

To achieve objective 3, a research question was posed: How will changes in land use and 

catchment hydrology affect gully-landslide interactions? To answer this question, 

identifications of gully-induced landslides and landslide-induced gullying in the field were 

necessary.  

3.2.3.1  Gully-induced landslides  

During fieldwork, old and fresh gully-induced landslide scars were identified and documented. 

Coordinate points of identified landslides were acquired using the hand-held GPS. Other 

landslide attributes (runout distance, depth, slope angle) were also collected. Runout distance 

and slide depths were measured using a tape measure (Surveyor’s 30 m tape) while a clinometer 

(PM-5 SUUNTO model) was used to measure landslide slope angle. Landslide attributes (slope 

and depth) were used for stability and sensitivity analyses of gully walls. Recent landslides 

were identified based on the suggestions of Lee (2005): breaks in the forest canopy, bare soil, 

or other geomorphic characteristics typical of landslide scars, for example, head and side 

scarps, flow tracks, and soil and debris deposits below a scar. Older slides were visible in the 

form of scars. 

3.2.3.2  Slope stability analysis 

 

Slope stability is usually expressed in terms of factor of safety (FoS) which is traditionally 

defined as the ratio of actual soil shear strength to the minimum shear strength required to 

prevent failure (Dawson et al. 1999). Different types of slope failure can be computed using 

different stability models, e.g. Istanbulluoglu et al, (2005) used the Channel-Hillslope 

Integrated Landscape Development (CHILD) model to investigate effects of slab failures on 

the tempo of landscape evolution and resulting landscape morphology. They found that under 

dry conditions, the maximum gully height before slab failures occurred were 1.6 m, 3.2 m and 

6.4 m for the respective soil cohesion values of 5 kPa, 10 kPa and 20 kPa. Thus, low soil 

cohesion resulted in rapid valley widening by small failures and high rates of soil loss 

(Istanbulluoglu et al, 2005).  Shallow translational slides are prevalent in southeast Nigeria 
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(Igwe et al. 2014) and stability analysis for this type of slope failure can be computed using the 

infinite slope model, represented in Equation 3.19 (Selby, 1993). 

 

                                                                                                               Eq. 3.19  

 

where  

  c = cohesion (kN/m2) 

  z = vertical thickness of the material above plane of failure (m) 

  γ = specific weight of the soil (kN/m3) 

  γ𝑤  = specific weight of water (kN/m3) 

  β = slope angle (°) 

  tanφ = friction angle of material (°) 

m = height of the water table above plane of failure; expressed as a fraction of         

the vertical thickness of the material so that m = 1.0 if the water table is at 

ground surface and m = 0 if the water table is at or below the plane of failure.  

In using the infinite slope model, the plane of failure is assumed to be at a constant depth 

beneath the surface along the slope and the slope mantle is assumed to be uniform along the 

slope. Therefore, the stability of a single column of soil, of unit lateral dimensions, should be 

a reasonably accurate indicator of stability of the slope as a whole (Carson and Kirkby, 1972). 

During fieldwork, shallow slides were observed in visited gullies in Amucha and Urualla, while 

block failure was observed in Obibi-Ochasi. While the infinite slope model is adequate to 

understand shallow slides, it may not be appropriate for other types of landsliding e.g. block 

failure, hence, in this project, Equation 3.19 is exclusively used to understand shallow 

landslides observed in Amucha and Urualla only. Susceptibility of the gully wall to the block 

failure observed in Obibi-Ochasi was not modelled using the infinite slope model. Geotechnical 

results of soil samples collected from landslide sites within the Amucha gully complex (Table 

3.5) were used in Equation 3.19 for stability analysis of the gully. Slope angles of identified 

gully-induced slides were measured using clinometers. 

 𝐹 =    
c + (γ –  mγ𝑤) 𝑧𝑐𝑜𝑠2 β tanφ

 γ𝑧sin βcos β
 



59 
 

3.2.3.3  Sensitivity analysis for slope stability 

A sensitivity analysis involves keeping the value of all model parameters constant, reducing 

the value of one parameter, and seeing if the resultant model predictions change and can be 

readily achieved using either real or synthetic data (Zhang et al. 2002). This analysis is relevant 

as it helps a model user understand the strengths and contributions of all the parameters used 

within a model, and thus make informed decisions about practical applications of their model. 

To test sensitivities of parameters in Equation 3.19, slope values from the Urualla drone survey 

(section 3.2.1.2) were used as slope input while other parameters were sourced from the 

geotechnical results of the Amucha soil samples.  

3.2.3.4  Landslide-induced gullying 

Landslide-induced gullying was inferred following observations made during fieldwork and 

analysis of gully-pictures. Presence of landslide scars which could promote rill-formation and 

further enlarge gullies were observed and documented. These data sources were used to make 

inferences about the role of landslide scars as gully-drivers. 

3.2.3.5  Effects of changes in land use and gully catchment hydrology on gully-

landslide interactions 

Observed results from section 3.2.1 and modelled results from section 3.2.2 in addition to 

published studies were used to understand effects of changes in land use and gully catchment 

hydrology on gully-landslide interactions. 

3.2.4 Objective 4: Resultant hazards and effects of gully-landslide interactions in 

affected communities 

To achieve objective 4, two points are important: First, awareness of hazards accruing from 

gully-landslide interactions, secondly, ability to identify likely effects of these hazards. 

Therefore, the following research questions are asked: 

1. What is the perception of local population to gully-landslide hazards? 

2. What are the effects of gully-landslide interactions on affected communities? 

3. What control measures have been adopted by communities to reduce effects gully-

landslide interactions? 

To provide answers to these research questions, qualitative data collection and analysis 

techniques were adopted. This part of the methodology was also used to understand local 

knowledge on gully-landslide interactions and is divided into three: 
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a. Use of structured questionnaire: Two communities, Amucha (Njaba LGA) and Obibi-

Ochasi (Orlu LGA) were selected for questionnaire survey, this selection was guided 

by a published document of Imo State Government (1983) which identified gullies in 

these communities as the biggest and most active in the State. Based on the population 

of the LGAs, 96 copies of questionnaire were distributed to each community 

representing the LGA, this figure was arrived at by using an online version of The 

Survey Software. The survey software calculates sample size using the following 

equations, 

 

                                                                                       Eq. 3.20 

 

where: 

 

ss = sample size 

Z = Z value (e.g. 1.96 for 95% confidence level) 

p = percentage picking a choice, expressed as decimal  

c = confidence interval, expressed as decimal 

 

The sample sizes were calculated by choosing a confidence interval of 10 at 95% 

confidence level for a 2018 population estimate of 210,614 for Njaba and 209,597 for 

Orlu LGAs respectively. Population was estimated from the 2006 census figures of the 

LGAs at an annual growth rate of 3.25%. Questions were organised in four sections; 

“A” was on hazard awareness and had questions for example “do you think landsliding 

can cause harm”? Section “B” focused on hazard impacts with questions such as “how 

many houses/property have been lost in this autonomous community to gully erosion 

in the last 10 years”? Section “C” focused on control measures and contained questions 

for instance “as an individual, what have you done to reduce hazard impacts of 

gullying”? Finally, information on demographics were collected in section “D”. Copies 

of the questionnaire  were given to adults only. 

b. Focus group meetings: this method of data collection has been discussed in section 

3.2.1.3. 

𝑠𝑠 =  
𝑍2(𝑃) ∗ (1 − 𝑃)

𝐶2
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c. Informal interview sessions: These were non-structured and were conducted with the 

local guides and interviewees during site visits and were site-specific. For example, a 

community like Amucha has a non-profit local NGO and volunteers tasked with 

planting trees and guiding researchers around the Amucha Gully. Site specific questions 

included “what year was this NGO formed”? In Urualla where gullying has led to silting 

and complete disappearance of a stream, questions were asked including “what year did 

the stream disappear”? “What do you think caused the disappearance?”  

Responses from this part of the methodology were organised in themes which represented the 

key findings of this section of the research.  

3.3 Chapter summary 

This chapter has presented the methods used in this study as well as justifications for choosing 

these methods. Combinations of community-based knowledge of gully-causing factors, 

analysis of remotely sensed data, quantitative methods, geotechnical survey and hydrological 

modelling improved the results of the present research. Chapter 4 presents findings on analysis 

of remotely sensed data, geotechnical investigation, results of quantitative methods and focus 

group meetings. This part of the methodology provides answers to objective 1. In chapter 5, I 

present results on SWAT modelling and relate changes in catchment hydrology with changes 

in gully sizes thereby solving questions raised by objective 2. Based on results of chapters 4 

and 5, and supported by field observations, answers to objective 3 are achieved and are 

presented in chapter 6. In chapter 7, results of questionnaire survey, focus group meetings and 

interviews are used to answer questions raised by objective 4.  
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Chapter 4   

Influence of land use and land-use changes on gully characteristics 

4.0 Introduction 

This chapter addresses objective 1, which is the Influence of land use and land-use changes on 

gully characteristics. Gully characteristics as used in this chapter refer to gully numbers, length, 

width, and area. In order determine the influence of land-use changes on gully characteristics 

(objective 1), it is necessary to establish the features of land-use changes in the study area and 

secondly, understand other factors that interact with land-use changes to influence gully 

characteristics. Therefore, the following research questions are posed: 

1. What are the land-use classes in the study area? 

2. Have there been land-use changes in the study area between 2009 and 2018?  

3. Have gully characteristics changed between 2009 and 2018? 

4. How have ecogeomorphic interactions (i.e. interactions between land-use changes and 

these other driving factors) affected changes in gully characteristics?  

Section 4.1 presents results of land use classification and land-use changes between 2009 and 

2018, in section 4.2, results of gully characteristics are shown. The influence of land use and 

land-use changes on gully sizes are presented in section 4.3. Section 4.4 describes results of 

other factors (e.g. slope, elevation, gully nearness to road and rivers) whose interactions with 

land-use changes affect gully characteristics. Discussion of the results is provided in section 

4.5. Chapter summary and conclusions are presented in 4.6 and 4.7.   

4.1 Land-use classification and land-use changes between 2009 and 2018 

In the study area, land is either used for building, farming or left to fallow, hence, land use is 

classified into three classes: non-vegetated, open vegetation and fallow/trees using supervised 

classification (section 3.2.1.1). Figure 4.1 shows the land use classes. Non-vegetated refers to 

built-up/settled areas and bare surfaces, while open vegetation denotes grassed-areas and 

farmlands and fallow/trees refer to areas covered by trees and fallow. Cassava is the dominant 

food crop in the study area as was confirmed in some visited farms during the field visit 

covering 100% of land (Figure 4.2A). Mixed farming (e.g. maize, cassava, palm trees and yam 

could be found on same farm) is a common practice in the study area (Figure 4.2B).  In 2009, 

non-vegetated class covered an area of 58.6 km2, this number increased to 144.7 km2 in 2018, 

thus an increase by 146.8%. Also, during this time, open vegetation class increased from 195.1 
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km2 to 332.4 km2, and there was a reduction in fallow from 281.2 km2 in 2009 to 57.8 km2 in 

2018. These values translate to a percentage increase of 70.4 % and reduction of 79.5% for 

open vegetation and fallow classes respectively (Figure 4.3). Table 4.1 shows proportional 

changes among land uses. Of the 58.6 km2 of non-vegetated lands in 2009, 10.9 km2 was 

converted to open vegetation, while 0.18 km2 was transformed to fallow in 2018. 120.2 km2 of 

Open vegetated lands remained the same while 68.22 km2 and 6.7 km2 were converted to non-

vegetated and tree/fallow-cover respectively between 2009 to 2018. 50.9 km2 of fallow/tree-

cover remained the same between 2009 and 2018 while 29 km2 was converted to non-vegetated 

and 201.3 km2 was used for open vegetation in 2018. Thus, highest conversions of land use 

were from tree/fallow class to open-vegetated class.  

Table 4.1: Proportional changes among land uses. Diagonals represent portions of lands that have remained 

the same between 2009 and 2018. 

 
2018 Non-vegetated 

(km2) 

2018 Open-vegetation (km2) 2018 Fallow/tree 

(km2) 

2009 Non-

vegetated (km2) 
47.52 10.95 0.18 

2009 Open-

vegetation (km2) 

68.22 120.2 6.68 

2009 Fallow/tree 

(km2) 

29 201.3 50.91 
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Accuracy assessments 

Tables 4.2 and 4.3 show accuracy assessments for 2009 and 2018 land-use maps, respectively 

(section 3.2.1.1). Overall accuracy was 97% for 2009 and 93% for 2018, while the kappa 

statistics were 0.96 and 0.9 for 2009 and 2018, respectively.   

Table 4.2: 2009 accuracy assessment showing high accuracy results for identified land use classes. 

 

 

Overall accuracy (%): 97 
 

Kappa statistics: 0.96 
 

      

Classified data Non-Veg Open veg Trees Reference total User accuracy 

(%) 

Non-Veg 29 0 0 29 100 

Open veg 1 29 0 30 96.7 

Trees 0 1 30 31 96.8 

Classified total 30 30 30 90 
 

Producer accuracy 

(%) 

96.7 96.7 100 
  

 

Overall accuracy (%): 93 Kappa statistics: 0.9 

Classified data Non-Veg Open veg Trees Refernce 

total 

User accuracy (%) 

Non-Veg 29 0 0 29 100 

Open veg 1 29 4 34 85.3 

Trees 0 1 26 27 96.3 

Classified total 30 30 30 90 
 

Producer accuracy 

(%) 

96.7 96.7 86.7 
  

 

Table 4.3: 2018 accuracy assessment showing high accuracy results for identified land use classes. 
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Figure 4.1: 2009 and 2018 land use classification maps, three classes of vegetation are shown, non-vegetated, open vegetation and fallow/tree-covered areas. There is 

increase in non-vegetated cover and reduction in fallowed areas in 2018.
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Figure 4.2: A) Freshly planted cassava farm covering 100% of farm. Also shown is fallowed area at the edge 

of the farmland B) Mixed-cropped farm of cassava and palm plantation on the same farmland. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Land-use changes between 2009 and 2018. There is an increase in land areas under non-vegetated 

and open vegetation classes, while there was a reduction in fallow/tree covered lands in 2018. NV = Non-

vegetated, OV = Open vegetation, T/F = Tree/Fallow. 
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Kappa statistics of > 80% show strong agreement and good accuracy, 40 – 80% is middle while 

< 40% is poor (Gwet, 2002; Appiah et al. 2018). Tables 4.2 and 4.3 indicate that there is good 

accuracy in the land-use classification for this study. It can be inferred from figures 4.1 and 4.3 

that there have been major changes in land use between the years under review. 

4.1.1 Land-use changes in gully catchments  

In the above section (4.1), a quantification of land-use change across the entire study area has 

been presented, but to use this information to understand changes in gully characteristics, it is 

important to understand how land use has changed in individual gully catchments. Gully 

catchment were defined using the methods described in section 3.2.2.1.7. A total of 22 

catchments were delineated. Some catchments had more than one gully and a possible reason 

for this condition are explained in section 4.3. The 2014 satellite imagery of the study area 

(Table 3.4) covers eight of the 22 catchments and land-use changes in these catchments 

(IdNorthWS, IdSouthWS1, IdeatoSouth_gully1, IdeatoSouth_gully2, IdeatoSouth3, 

Isu_gully1, Isu_gully2, Isu_gully3) were identified in between 2009 and 2014, and 2014 and 

2018. These results provided greater resolution of stepwise changes in land use.  

Table 4.4 shows land-use changes in the gully catchments. In two (IdNorthWS, IdSouthWS1) 

of the eight catchments captured in the 2014 imagery, there was initial rise in non-vegetated 

lands between 2009 and 2014 and subsequent decline in 2018. Apart from the IdSouthWS1 

gully catchment, there was tree/fallow-cover reduction across all catchments between 2009 – 

2018 (Table 4.4), this result is similar to those shown in figure 4.3 for the entire study area. 

With regards to the non-vegetated class, NjabaWS1 and IdSouthWS1 were the only catchments 

that experienced reductions in land area covered by bare surfaces and built-up areas between 

2009 and 2018. In summary, results show that while there could be increase in a land-use class 

across the entire study area, land use is heterogenous in individual gully catchments. This 

variation in land-use potentially affects changes in gully characteristics. 
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Table 4.4: Land-use changes in the 22 gully catchments. Apart from IdSouthWS1, there is tree/fallow-cover reduction across all catchments. 

No. Catchment name 
 

2009 2014 2018 

Catchment 

area (km2) 

Non-

veg (%) 

Open veg 

(%) 

Tree/Fallow 

(%) 

Non-

veg 

(%) 

Open 

veg 

(%) 

Tree/Fallow 

(%) 

Non-veg 

(%) 

Open veg 

(%) 

Tree/Fallow 

(%) 

1 IdNorthWS 0.53 16.84 35.99 47.16 25.71 51.6 22.7 17.02 70.92 12.06 

2 IdSouthWS1  0.08 19.51 71.95 8.54 37.8 34.15 28.05 2.44 60.98 36.59 

3 NjabaWS1  0.13 12.03 66.17 21.8    9.02 89.47 1.5 

4 Amucha 10.23 17.58 39.27 43.15    53.09 46.85 0.06 

5 IdeatoNorth  5.01 17.69 47.69 34.62    32.49 65.28 2.23 

6 IdeatoNorth1 0.35 10.87 39.40 49.73    12.5 71.20 16.3 

7 IdeatoSouth_gully1 0.26 25.46 45.39 29.15 57.93 38.01 4.06 59.04 40.96 0 

8 IdeatoSouth_gully2 0.31 8.21 54.41 37.39 33.43 50.76 15.81 28.88 70.82 0.3 

9 IdeatoSouth3  2.33 18.5 51.38 30.12 48.33 39.59 12.07 49.51 48.62 1.87 

10 Isu_gully1  0.14 13.01 41.78 45.21 23.97 63.7 12.33 36.3 63.7 0 

11 Isu_gully2 0.07 15.07 60.27 24.66 23.29 68.49 8.22 61.64 38.36 0 

12 Isu_gully3 0.06 3.33 40 56.67 8.33 70 21.67 28.33 71.67 0 

13 Njaba2  1.28 15.51 46.75 37.74    24.74 71.79 3.47 

14 Njaba4  2.78 12.44 48.01 39.55    44.38 55.59 0.03 

15 Njaba5  29.31 20.30 38.69 41.00    50.82 48.57 0.61 

16 Orlu1  8.34 26.18 56.46 17.36    63.65 36.32 0.03 

17 Orlu2 1.71 28.95 55.83 15.23    45.89 54.05 0.06 

18 Urualla_gully1 0.85 13.95 59.04 27.01    38.5 59.15 2.34 

19 Urualla_gully2 5.38 16.23 46.47 37.3    29.87 66.81 3.32 

20 Urualla_gully3 0.79 19.98 59.22 20.81    26.4 71.94 1.66 

21 Obibi-Ochasi 0.85 20.04 57.56 22.40    27.32 71.89 0.78 

22 Umueshi 0.31 18.77 33.23 48    36.31 61.23 2.46 
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4.2 Change in gully characteristics between 2009 and 2018 

In 2009, a total of 26 gullies covering an area of 0.36 km2 were identified and mapped (section 

3.2.1.2 describes methods used for mapping). This number increased to 39 gullies occupying 

0.62 km2 of land in 2018, thus, there was an increase of 50% and 75% in gully numbers and 

gullied areas respectively (figure 4.4). Out of all mapped gullies, seven were visited during 

fieldwork. These seven gullies were found in Urualla, Isu Njaba, Obibi-Ochasi, Amucha and 

Umueshi. While one gully in Urualla is currently being managed, the Umueshi gully restoration 

project had been abandoned as at the time of gully visit (May 2019). The drone survey 

described in section 3.2.1.2 captured two gullies (Urualla_gully1 and Urualla_gully2) as shown 

in figure 4.5. 

In addition to an increase in the number of gullies between 2009 and 2018, gully width, area 

and length changed (figures 4.6 – 4.8). In 2009, gully length ranged from 0.05 to 1.4 km with 

a mean of 0.39 and standard deviation of 0.35 (Table 4.5). The total length of all gullies was 

10.22 km in 2009.  

Table 4.5: Summary statistics of changes for gully dimensions of the 39 gullies mapped in 2018. 26 gullies 

were identified in 2009. 

 

 

 

 

 

In 2018 however, total gully length was 16.63 km with range values between 0.05 to 2 km, a 

mean value of 0.43 and standard deviation of 0.39 (Table 4.5). For the 39 gullies identified in 

2018, Table 4.5 indicates a mean increase in gully length of 0.04 km in the 10 years of study 

period or an annual length growth of 4 m yr-1.  

Two different calculations were performed for 2018 gully dimensions:  

a) Twenty-six gullies that were mapped in the 2009 satellite imagery (older gullies)  

b) Thirteen gullies that were identified for the first time in the 2014 or 2018 imagery 

(newer gullies) 

 

 
2009 2018 

 
Mean Max Min SD Mean Max Min SD 

Length 

(km) 

0.39 1.40 0.05 0.35 0.43 2.00 0.05 0.39 

Width 

(m) 

34.53 59.24 15.20 9.89 35.26 72.23 10.40 15.82 

Area 

(m2) 

13774.91 47530.11 1438.69 13158.37 16432.21 57678.78 978.00 16632.58 
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Figure 4.4: Gully map showing gully changes between 2009 and 2018. One identified gully (no. 38) lies on the 

border between Orlu and Orsu LGAs, the community was not captured appropriately in the political map, 

however, during fieldwork, the gully was found to be in Orlu LGA. One gully (no. 17) in Urualla community is 

currently under management while the Umueshi (no. 25) management project had been abandoned at the time 

of site visit. Gully IDs are shown. 
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Figure 4.5: Drone image of two gullies in Urualla community captured on 7th May 2019. Gully A 

(Urualla_gully1) is currently under management, while gully B (Urualla_gully2) is not. Source: Loraj 

Consortium, May 2019. 
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The 26 gullies that were identified in 2009 had the following dimensions in 2018:  mean length 

of 0.5 km, average width of 40.72 m and mean gullied area of 21366.8 m2. Thus, there are  

mean headward, lateral and areal increase of 11, 0.6 m yr-1 and 759.2 m2 yr-1 respectively 

among the older gullies, conversely, the 13 newer gullies had a mean length of 0.28 km, mean 

width of 23.79 m and mean gullied area of 7212 m2. Seven gullies were mapped in the 2014 

satellite data. Of these seven gullies, four were present in 2009 and had  mean headward, lateral 

and areal retreat rates of 6.25 m yr-1 and 2.1 m yr-1, 0.2 and 0.9 m yr-1 and 327.7 m2 yr-1 and 

551.5 m2 yr-1 between 2009 – 2014 and 2014 – 2018 accordingly. Three new gullies were 

recognised in the 2014 satellite data and possessed  mean headward, lateral and areal retreat 

rates of 48.7, 1.7 m yr-1 and 1352.6 m2 yr-1 between 2014 and 2018. 

Mean gully width for the 39 gullies mapped in 2018 increased from 34.53 m to 35.26 m, while 

maximum width increased from 59.24 to 72.23 and a change in standard deviation of the width 

from 9.89 to 15.82 was observed between 2009 and 2018 (Table 4.5). Mean gullied area 

increased from 13775 to 16432 m2 indicating an areal retreat of 266 m2 yr-1. Minimum gullied 

area reduced from 1439 to 978 m2 between 2009 and 2018. The minimum value of 978 m2 

belongs to a newly formed gully which was identified in 2018, Total land area under gully 

occupation in the five LGAs of interest as at 2018 was 0.62 km2. 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40

Gully ID

L
e
n
g
th

 (
k
m

)

2009 2018

A 

0.0

0.5

1.0

1.5

2.0

2009 2018 Old 2018 New

Year

L
e
n
g
th

 (
k
m

)

0.0

0.5

1.0

1.5

2.0

2009 2018

Year

L
e
n
g
th

 (
k
m

)

B C 

Figure 4.6: Gully length A) stacked bar chart showing gully lengths for 2009 and 2018, B) Boxplot representing changes in 

length. 2018 old refers to the 26 gullies mapped in 2009 while 2018 New refers to 13 new gullies identified in 2018, C) Boxplot 

showing change in gully length. Sample size was 26 in 2009 and 39 in 2018. 
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Figure 4.7: Gully width A) Stacked bars show gully widths in 2009 and 2018. B) Boxplot representing changes in width. 

2018 old refers to the 26 gullies mapped in 2009 while 2018 New refers to 13 new gullies identified in 2018. C) Boxplot 

representing change in average gully width. Sample size was 26 in 2009 and 39 in 2018. 
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Figure 4.8: Gullied area. A) Stacked bars represent 2009 and 2018 gullied areas. B) Boxplot representing changes 

in area. 2018 old refers to the 26 gullies mapped in 2009 while 2018 New refers to 13 new gullies identified in 2018, 

C) Boxplot showing change in gullied area between 2009 and 2018. Sample size was 26 in 2009 and 39 in 2018. 
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4.3 Changes in gully characteristics with respect to land use and land-use 

changes 

Gully changes across the 22 delineated catchments are presented in Table 4.6 and Appendices 

4.1 and 4.2. Some catchments, e.g. Orlu1 and Orlu2 have more than one gully. The following 

reasons are provided for the occurrence of more than one gully in a catchment, first, the 

resolutions of satellite imagery and the DEM. Satellite data used for gully mapping had 

resolutions between 0.61 – 5 m while the drone survey data had a resolution of 0.4 m. However, 

a 30 m DEM was used to delineate watersheds. Secondly, closeness of gullies. Gullies were 

found close to each other in all catchments where more than one gully was mapped (gullies 14 

and 15 belong to the Orlu2 catchment and are <10 m apart in some places, figure 4.9). 

Considering the 30 m resolution of the DEM and gully distance of <10 m from one another, 

the DEM may not likely delineate two different catchments for both gullies. Also, extensive 

vegetal cover can make a single gully appear in two different parts, and thus when mapping 

such gullies from satellite imagery, more than one gully is identified, whereas, the gully was a 

single continuous gully which had been separated into different units by vegetation. Finally, 

tributary gullies (referred to by the local communities as gully-fingers); a gully might flow 

directly into another gully and during mapping, more than one gully is identified but the same 

catchment feeds both gullies (examples were found in Orlu 1 catchment where smaller gullies 

emptied into the central gully with a length of 2 km) (figure 4.9). Albeit, while single 

catchments were defined for close and tributary gullies, individual sub-basins were delineated 

for different gullies within same catchment. 

Land can be used in a variety of ways which can affect gully erosion (e.g. gully rehabilitation, 

changes in land use from tree/fallowed lands to non-vegetated surfaces, and road construction). 

Regarding gully rehabilitation, the Urualla_gully1 (Table 4.6 and figure 4.5) was under 

management during site visit. As part of the management, excavators and other heavy 

equipment have been used to compact the soils around the gully so trucks can deliver laterite 

(needed for infilling) to the gully without sinking. This increased compaction may possibly 

reduce infiltration, thereby increasing surface runoff (Yibeltal et al. 2019) which eventually 

ends up in the gullies. In relation to land-use changes, there was an increase in non-vegetated 

areas at the Urualla_gully1 Catchment for the study period (Table 4.4) while the gully 

experienced a 0.2 m increase in width (Table 4.6). Although a 0.2 m lateral growth was 

recorded at for this gully, interview with the contractors during fieldwork suggests that the 

width of this gully had reduced due to in-filling with laterite, thus, it is possible width expansion 



77 
 

is more than the 0.2 m documented.  Although there is a 100 m increase in gully length between 

2009 and 2018 (Table 4.6), considering gully in-filling, it is possible actual gully length growth 

is >100 m for Urualla_gully1. 
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Figure 4.9: A, Orlu1 catchment showing main gully (ID, 12) which is 2 km long and tributary gullies (13, 29). While a 

single catchment was defined for main and tributary gullies, individual sub-basins were delineated for different 

tributary gullies. B, Orlu2 gully watershed (ID, 14 and 15) showing closeness of both gullies which is < 10 m in some 

points. 



78 
 

Two catchments (IdSouthWS1 and Njaba WS1) experienced reductions in non-vegetated 

areas. While there was an increase in the gully length in IdSouthWS1 between 2009 and 2018, 

no longitudinal gully extension was observed in NjabaWS1 between 2009 and 2018 

(Appendices 4.1 and 4.2). The gully width in NjabaWS1 increased by 6.1 m between 2009 and 

2018 whereas there is a sustained reduction in mean gully width in the IdSouthWS1 catchment 

from 35.67 m in 2009 to 32.14 m in 2014 and to 30.53 m in 2018 (Table 4.6). Table 4.4 shows 

a rise in tree/fallow cover in IdSouthWS1 for same period, thus it is possible the increased 

fallow masked the actual width of the gully. It is also possible that the gully in IdSouthWS1 

catchment is beginning to stabilise due to higher vegetal cover which could trap and retain 

transported sediments (Dong et al. 2013; Rey et al. 2019) and thereby increasing the possibility 

of lateral gully-infilling from deposited materials. Although there was a reduction in non-

vegetated areas in NjabaWS1, fallow/tree-cover reduced while there was increase in open-

vegetated areas (Table 4.4) which corresponded to increase in gully width. Thus, no clear 

pattern is established between reductions in non-vegetated areas and changes in gully features 

(e.g. length or width) in these two catchments. This finding points to the uniqueness of 

individual catchments and gully responses to other drivers of gully expansion other than land-

use changes. 

Isu_gully1, IdeatoNorth1 and Orlu2 experienced gully-width reductions while there was an 

apparent 100 m reduction in gully length in Njaba2 between 2009 and 2018 (Appendices 4.1 

and 4.2). Table 4.4 shows reductions in fallow cover in these catchments, yet reductions in 

gully dimensions were observed. It is possible that while the entire catchment experienced 

reduced fallow cover, the areas surrounding the gullies were vegetated at the time of satellite 

data capture, as observed in Njaba2. Hence, the higher vegetated cover around the gullies 

possibly hid the actual gully dimensions. It also possible that gullies in these catchments are 

beginning to stabilise and fill-up (Rey et al. 2019). 

The gully in IdeatoSouth_gully1 catchment was mapped in 2009 but seemed to have been filled 

in 2014 as the gully surface was covered in the 2014 satellite data. In 2014, a new gully 

(IdeatoSouth_gully2) was identified and by 2018, the new gully had grown to 0.56 km. The 

IdeatoSouth_gully1 reappeared in 2018 and had attained a length of 0.6 km. Gully width and 

area also increased for these two gullies. These changes in gully dimensions corresponded to 

sustained reduction in fallow-cover and higher non-vegetated areas in both catchments (Table 

4.4). All other catchments, e.g. Amucha, Orlu1, Orlu2 experienced increases in gully sizes 
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(Appendix 4.2) corresponding to reductions in fallow/tree cover and increase in non-vegetated 

surfaces (Table 4.4). 
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Table 4.6: Changes in gully characteristics between 2019 and 2018. Gullies not covered by the 2014 satellite imagery have empty cells. 

number Catchment id Gully length 

2009 (km) 

Average width 

2009 (m) 

Area 2009 

(m2) 

Gully 

length 

2014 

(km) 

Average 

width 

2014 (m) 

Area 2014 

(m2) 

Gully length 

2018 (km) 

Average 

width 2018 

(m) 

Area 2018 

(m2) 

1 IdNorthWS 0.10 34.09 3556.51 0.10 38.07 3954.04 0.11 44.17 4901.54 

2 IdSouthWS1  0.16 35.67 5879.47 0.20 32.14 6935.23 0.20 30.53 6588.71 

3 NjabaWS1  0.50 30.31 15166.21 - - - 0.50 36.42 19370.75 

4 Amucha 0.70 43.63 32507.58 - - - 0.90 56.68 52462.40 

5 IdeatoNorth  1.20 31.00 39182.56 - - - 1.20 44.84 53182.36 

6 IdeatoNorth1 0.46 30.85 11269.59 - - - 0.50 29.11 16928.81 

7 IdeatoSouth_gully1 0.3 27.81 8125.21 0 0 0 0.6 31.07 19892.18 

8 IdeatoSouth_gully2 0 0 0 0.36 12.3 5060.38 0.56 23.4 13532.57 

9 IdeatoSouth3 0.00 0.00 0.00 0.1 10.90 1101.59 0.19 14.51 2849.90 

10 Isu_gully1 
0.22 

49.00 10622.14 
0.32 45.00 

14835.26 
0.33 

57.3 21497.26 

11 Isu_gully2 0.19 42.30 8203.21 0.2 50.14 10402.20 0.22 55.0 14170.15 

12 Isu_gully3 0.06 31.4 1723.3 0.06 31.4 1723.3 0.23 50 11661.1 

13 Njaba2  
0.50 31.80 

18027.20 - - - 
0.40 

44.89 18803.96 

14 Njaba4  0.30 15.23 4864.72 - - - 0.50 23.29 11286.57 

15 Njaba5  0.00 0.00 0.00 - - - 0.50 18.37 10008.44 

16 Orlu1  1.40 19.76 29442.05 - - - 2.00 31.46 57678.78 

17 Orlu2 0.45 39.22 22488.93 - - - 0.53 38.25 24480.47 

17 Orlu2 0.29 40.00 9556.86 - - - 0.65 60.00 34104.62 

18 Urualla_gully1 0.8 38.66 38163.6 - - - 0.9 38.86 52081.21 

19 Urualla_gully2 0.36 25.37 9235.18 - - - 0.70 27.87 16236.45 

20 Urualla_gully3 0.93 59.24 47530.11 - - - 0.98 72.23 52235.44 

21 Orlu3 0.00 0.00 0.00 - - - 0.50 50.69 23192.34 

22 Umueshi 0.33 51.1 17030.52 - - - 0.37 57.6 20059.74 
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To quantify the association between changes in land use and responses from gully dimensions, 

multiple regression analyses were performed on two sets of data, first, gullies captured in the 

2009 to 2018 imagery and secondly, on gullies captured in the 2014 satellite data. There is a 

positive correlation between changes in non-vegetated and open vegetation classes (r2 = 0.35, 

p = 0.03), whereas, a negative association exists for non-vegetated classes and tree/fallow (r2 

= 0.94, p < 0.05), and open vegetation and tree/fallow class (r2= 0.6, p < 0.05). Based on these 

initial analyses, two land-use classes, non-vegetated and tree/fallow were selected as predictive 

variables while gully length, width, and area were the outcome variables, detailed results are 

shown in Appendices 4.3 – 4.11. For the 2009 – 2018 datasets, only the associations between 

gully length, non-vegetated and tree/fallow class were significant at 95% confidence level (p-

value = 0.04, adjusted r2 = 0.33). For the years 2009 – 2014 and 2014 – 2018, no significant 

associations were found between predictive and outcome variables at 95% confidence level 

(Appendices 4.6 – 4.11). The reason for the insignificant associations between gully 

dimensions and changes in land use between 2009 and 2014 and 2014 and 2018 could be due 

to the shorter-term nature of these study periods in comparison with the 10 years of land use 

changes between 2009 and 2018. 

Lands are used for road construction which often involves tarmac surfaces. These tarmac 

surfaces discourage infiltration and produce surface runoff which could in turn facilitate gully 

erosion. Figure 4.10A shows compacted surface at the Urualla gully site while figure 4.10B 

shows a tarmac road network map of the study area. One example of land-use change is road 

construction, which often involves entire conversion of lands from forest or farms to asphalt 

surfaces. Figure 4.11 shows gully endpoint and gully head proximity to roads respectively. 

These results suggest that gully endpoints are farther from the roads than gully-heads (figure 

4.11). Average gully endpoint distance from road is 382.24 m while average gully-head 

distance from road is 142.74 m. There are inverse associations (see figure 4.17 in section 4.4.1) 

between gully-head distance from road and changes in gully dimensions. 

These results on gully head and end point distance from roads show potential driving 

mechanism of gully-head expansion. The effect of concentrated surface runoff flowing out of 

main roads will be felt more at gully heads closer to roads, thus, these gullies will have higher 

growth/expansion rates than gullies farther from main roads, and this mechanism of reduced 

erosive power of surface runoff with increased distance from main roads explains the negative 

association between gully-head distance from roads and changes in gully characteristics see 

(figure 4.17 in section 4.4.1). Another factor worthy of consideration is the termination of water 
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drains at nearby bushes/lands instead of at a local base level. This condition which leads to 

accelerated erosion due to the concentrated nature of runoff flowing in a drainage channel is 

often found next to main roads in the study area. Finally, abandonment of road construction or 

gully rehabilitation projects also facilitates gully expansion. Some examples were found in 

Umueshi and Obibi-Ochasi Communities where due to abandoned engineering projects, 

constructed drainage channels which were supposed to carry surface runoff to local base levels 

were left midway. Thus, concentrated volume of runoff from these abandoned projects is likely 

to have ended up in the gullies, thereby increasing gully expansion. Figures 4.12 show 

proximity of gully heads to main roads. 
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Figure 4.10: Compacted surface close to the gully at Urualla Community, B, Road network map of study area. These roads have tarmac surfaces. 
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4.11: A. Gully endpoint distance from road, B) Gully-head distance from road. Gully-heads are closer to the 

roads while endpoints are farther from roads. Mean gully endpoint distance from road is 382.24 m while  mean 

gully-head distance from road is 142.74 m.  
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Figure 4.12: Proximity of gully heads to main roads. A, shows a moving truck close to a gully in Okwudor, Njaba LGA. In the first month of fieldwork (April 2019), gully A was 

not visible on the road, but in June when the picture was taken, it had grown to where it was on the picture. B) shows drainage structure which empties into a newly formed 

gully in Obibi-Ochasi, Orlu LGA. Road construction was abandoned at this site and according to focus group meeting respondents, B started in 2017 and had grown by 492 m 

during field visit in 2019. C) shows gully head advancement following abandoned gully restoration project in Umueshi Community. The gully now destroyed the local road 

connecting two communities. Also visible in C are destroyed drainage channel which delivers runoff directly into the gully and concrete structure designed to control gully 

erosion. 
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From the foregoing, it has been shown that between 2009 and 2018, there were changes in land 

use across the entire study area as shown in figure 4.3 as well as within the delineated gully 

catchments (Table 4.4). In same period, there was an increase in not just gully numbers, but 

also other gully dimensions (figures 4.6 – 4.8). Fieldwork observations showed that gully 

management practices could alter gully dimensions, thus, reducing actual growth of gullies as 

visible from satellite imageries. Also, where gully rehabilitation projects are abandoned, there 

could be accelerated gully expansion (Figure 4.12). Actual gully sizes might be covered by 

vegetation growing inside and around the edges of a gully (figure 4.13) thereby apparently 

reducing sizes of mapped gullies. While it is important to understand the influence of land use 

and land-use changes on gully characteristics, the conceptual model presented in Chapter 2 

indicates there are other factors whose interactions with land use affect gullying and these 

factors are discussed in section 4.4. 

 

 

 

 

 

 

 

Figure 4.13: Vegetal cover (which could conceal actual gully dimensions) growing inside and around gully edges. 
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4.4 What other factors drive changes in gully characteristics? 

Previous studies identified the roles played by certain factors as agents of gully evolution and 

they include physical factors such as slope angle, topography, curvature, proximity to rivers, 

soil properties, and human elements, for example effects of civil unrest (Ofomata, 1987; Obi 

& Salako, 1995; Nwilo et al. 2011; Gómez-Gutiérrez et al. 2015; Rahmati et al. 2017; Poesen, 

2018). Results on these factors will be provided in the following sections. 

4.4.1 Physical factors 

 

4.4.1.1  Topographic elements 

Influence the erosive power of the flow of surface runoff and surface runoff is the primary 

driver of gully erosion (Zevenbergen & Thorne 1987; Poesen et al. 2003; Knapen & Poesen, 

2010; Gómez-Gutiérrez et al. 2015). Elevation values in the study area range between 16 and 

339 m above sea level thus indicating that the study area is relatively low lying, while the slope 

varies between 0 – 70% (Figure 4.14). Relative relief and maximum slope values of the 39 

gully heads are presented in figures 4.15 and 4.16 with ranges of 6 – 46 m for relative relief, 

and 12 and 58.2 % rise in slope. Results from these two geomorphic variables indicate that 

gully heads with the highest relative relief and maximum slope values do not necessarily have 

the highest rate on change in gully characteristics (figures 4.15 and 4.16) and thus, the effects 

of these geomorphic variables (as a stand-alone) measured at the gully heads on gully 

dimensions are not very clear in this study area. Figure 4.17 presents a correlation matrix of 

gully dimensions and driving factors. 

To explore the relative importance of driving factors on changes in gully sizes, Principal 

Component Analysis was performed. Eigen vectors for the variables of interest show that along 

the first component, geomorphic factors have the same contribution while gully head distance 

from river and gully head distance from roads contribute towards the second component (Table 

4.7). 46% of variance in the data is explained by principal component 1 while both principal 

components 1 and 2 explain 82% of variance (Table 4.8). Having identified the importance of 

the variables of interest, one geomorphic factor (relative relief), gully head distance from road 

and gully head distance from rivers were chosen as input for multiple regression (Tables 4.9 – 

4.11). Of the three gully driving factors considered in the multiple regression, only gully head 

distance from rivers had a significant positive effect on change in gullied area (Table 4.9).  
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A B 

Figure 4.14: A, Elevation map of study area. Also shown are the rivers in the area. These rivers occupy the lowest elevation but surrounding lands 

have the highest gully concentration. B) Slope map. Land areas around the rivers have higher slope rises (10 – 58.2% rise in slope within distances less 

than 500 m from the river). 
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Figure 4.15: A) Relative relief values of 39 gully heads, B) change in gully length, C) change in gully width, 

D) change in gullied area from 2009 to 2018. 
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Figure 4.16: A) Maximum slope of gully heads, B) change in gully length, C) change in gully width, D) change 

in gullied area from 2009 to 2018. 
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Figure 4.17: Correlation matrix for gully drivers. Effects of maximum slope and relative relief of gully head 

on changes in gully dimensions are small.  GHDri = Gully head distance from rivers, GHDrd = Gully head 

distance from roads, Corr = Correlation legend. 

 

Table 4.7: Eigen vectors/loadings of variables of interest. GHDri = Gully head distance from rivers, GHDrd = 

Gully head distance from roads 
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Table 4.8: Importance of components 

 

 

 

 

 

Table 4.9: Multiple regression results for gullied area, P-value = 0.03, r2 = 0.3, adjusted r2 = 0.21 

 

 

 

 

 

Table 4.10: Multiple regression results for gully length, P-value = 0.1, r2 = 0.46, adjusted r2 = 0.22 

 

 

 

 

 

Table 4.11: Multiple regression results for gully width, P-value = 0.49, r2 = 0.3, adjusted r2 = 0.1 

 

 

 

 

 

Plan and profile curvatures indicate the effect of the local terrain on overland flow distribution 

and by extension, gully erosion (Shary et al. 2002: Zabihi et al. 2018). Three classes of both 

 

Variable Component 1 Component 2 

Standard deviation 

 

1.35 1.20 

Proportion of Variance  0.46 

  

0.36 

Cumulative Proportion 0.46 

 

0.82 

 

 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 1597.97 5689.57 0.28 0.78 

Relative_relief 128.20 141.81 0.90 0.37 

GHDri 8.33 3.42 2.44 0.02 

GHDrd -6.40 10.76 -0.59 0.56 

 

 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 0.10 0.16 0.64 0.53 

Relative_relief 0.00 0.00 0.42 0.68 

GHDri 0.00 0.00 1.61 0.12 

GHDrd 0.00 0.00 -1.02 0.32 

 

 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 1.96 11.58 0.17 0.87 

Relative_relief 0.39 0.29 1.35 0.19 

GHDri 0.00 0.01 0.19 0.85 

GHDrd -0.01 0.02 -0.38 0.70 
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plan and profile curvature were identified; negative, zero, and positive curvatures 

corresponding to concave, flat, and convex surfaces, respectively. Concave surfaces encourage 

accumulation of surface flow while convex surfaces support acceleration of flow. There is 

higher concentration of gullies on convex curvature (Table 4.12), thus, there are higher gully 

counts on the portions of the slopes where flow acceleration is observed in contrast to where 

flow accumulation dominates. 

Table 4.12: Curvature and gullied area showing high gully count on convex curvatures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

4.4.1.2  Nearness to rivers 

The study area is relatively low-lying (16 – 339 m above sea level), the rivers occupy the lowest 

portions of the lands (figure 4.14A), yet, the surrounding lands around these rivers have higher 

slopes and highest gully concentrations. Slopes around the rivers rise from 10 to more than 

50% over distances less than 500 m from the rivers (Figure 4.14B), and this situation will lead 

to surface flow acceleration, especially, as these surface flows drain into the rivers. In addition 

to the influence of local slope of adjoining lands around the rivers on surface runoff 

acceleration and subsequently, on gullies, deposited materials in rivers will be transported away 

(as was observed during fieldwork), thus, creating the space for more deposition from upstream 

of a gully. This condition leads to a positive feedback between the gully and the river. If these 

eroded materials were not transported out of the gully channel, they could form protective 

shields against further erosion, especially, at the gully wall bottoms.  

To have a better appreciation of the influence of rivers on changes of gully characteristics, 

distance measurements were made from the gully endpoint (gully-mouth) to the river, and from 
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the gully head to the river. Gully endpoints are closer to the rivers than gully heads as the 

average gully endpoint distance from river is 142.4 m while average gully head distance from 

river is 607.36 m (Figure 4.18). As the slope of the land rises from the river upwards around 

the surrounding lands, the effect of surface runoff on the gully-head likely increases, thus, there 

is headward migration upslope and away from the river, this mechanism is the reason for the 

positive correlation of 0.41 between gully-head distance from river and change in gully length 

and area (figure 4.17) as well as the significant positive effect of gully-head distance from river 

and change in gullied area (Table 4.9). 
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Figure 4.18: A) Gully endpoint distance from river, B) Gully-head distance from river. The endpoints are 

closer to the river, while the gully-heads are farther from the rivers. Gully-heads are closer to roads while 

endpoints are farther from roads (figure 4.10). 
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4.4.1.3  Soil properties   

Soil texture, density and strength (cohesion, shear strength, angle of internal friction) 

infiltration capacities and moisture contents (section 3.2.1.3). Soil texture is important, 

especially, as it relates to infiltration capacities of soils (which are significant with regards to 

production of surface or sub-surface flow) and dispersal. For example, sandy soils are known 

to have higher infiltration capacities and are said to be more prone to dispersal than soils that 

are rich in clay and silt (Brown, 1962; Okagbue & Ezechi, 1988). Therefore, mechanism 

driving gully erosion and gully widening could be different in areas with sandy soils from areas 

covered by clay soils. Dry density of soils is an important parameter as it influences their 

reactions to stress while cohesion is the force that binds particles together. Shear strength is an 

indication of the magnitude of shear stress a soil can withstand while angle of internal friction 

measures the ability of a soil unit to withstand shearing stress. Infiltration capacities of soils 

are important for a better understanding of hydrological drivers of gully expansion in response 

to land-use changes. For example, in a gully catchment covered by trees/fallow, if the soils 

have high infiltration capacity, production of runoff may be minimal, thus, sub-surface flow 

could become the primary driver of gullying. If the infiltration capacities of the soils are low, 

and the land use is predominantly bare, then surface runoff could be the driver of gullying in 

the catchment.  

Soil particle size distribution is shown in Table 4.13. The soils have a higher sand content than 

silt and clay for all test sites, this condition can predispose the soils to easy dispersal by erosive 

forces (Okagbue & Ezechi, 1988). Strength test results are presented in Table 4.14, the soils 

have low cohesion values and this factor may well be due to the higher sand contents of the 

soils (figure 4.19). The density results (Table 4.14) of the soils are above average for all the 

sites. Yu et al. (1993) suggested that  mean dry density value for sandy soils is 1.52 mg/m3. 

The angle of internal friction and shear strengths of the soils are reasonable for sandy soils, 

however, due to the lower cohesion values and higher loose nature of the soils, effects of the 

angle of internal friction and shear strengths in resisting shearing forces possibly will be 

subdued. 

Results of infiltration and soil moisture tests are shown in Table 4.15. Boxplots of infiltration 

rates for different land-use types are presented in figure 4.20.  Mean infiltration rates for Isu 

Njaba are smallest in the study area (20.34 mm/hr for open vegetation and 7.71 mm/hr for 

fallow), on the other hand, the  mean soil moisture content for same site was highest (12% for 

open vegetation and 19% for fallow). It is possible that due to this higher soil moisture content, 
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there is reduction in infiltration rates at the study sites in Isu Njaba. The lower infiltration rate 

at the fallow land-use class suggests that with regards to surface runoff, this land-use class will 

likely produce runoff (infiltration and saturation excess) faster than areas with higher 

infiltration rates and lower soil moisture content. Bare soils (examples of non-vegetated land 

use class) at Amucha had the highest infiltration rates for the entire study region with a mean 

rate of 352 mm/hr and a soil moisture  mean of 9.7%. Table 4.13 indicates that Isu Njaba has 

higher silt/clay contents than Amucha, again, this factor may possibly be contributing to the 

higher infiltration rates in non-vegetated land-use class in Amucha compared to Isu Njaba.  

 

Table 4.13: Particle size distribution analysis showing higher sand content at all sites, source, Loraj 

Consortium (2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location Particle size distribution 

 % sand % gravel % fines (silt/clay) 

Amucha 

 

88 

85 

4 

4 

8 

11 

Isu Njaba 75.9 

69.8 

78.2 

73.8 

0.3 

1.2 

5.3 

1 

23.8 

29.0 

16.5 

25.2 

Obibi-Ochasi 71.8 

72.1 

73.8 

74.2 

67.8 

1 

0.7 

1 

0.3 

1.2 

27.2 

27.2 

25.2 

25.5 

31 

Umueshi 95.59 

96.9 

94.06 

1.4 

1.5 

1.62 

4.41 

1.6 

4.32 

Urualla 95 

69.3 

76.5 

69.3 

68.5 

3.3 

5 

6.7 

5 

5.2 

1.7 

25.7 

16.8 

25.7 

26.3 
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Figure 4.19: Sample sites within the gullies where soil samples were collected for tests. Section 3.2.1.3 gives a 

detailed approach adopted for soil sample collection and testing 
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Table 4.14: Density and strength tests. Apart from the cohesion results, other strength parameters have sensible 

results at all sites, source, Loraj Consortium (2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location Maximum dry 

density 

(mg/m3) 

Cohesion 

(KN/m2) 

Angle of internal 

friction (°)  

Shear strength 

(KN/m2)  

     

Amucha 

 

1.94 

1.94 

2 

2 

27 

26 

92.6 

88.7 

Isu Njaba 1.68 

1.68 

1.65 

1.61 

1.68 

2.6 

5.8 

11.5 

7.8 

10.7 

20.2 

21.9 

22.3 

21.4 

20.1 

84.9 

71.8 

87.9 

79.5 

93.6 

Obibi-Ochasi 1.76 

1.78 

1.79 

1.78 

1.82 

5.2 

7.2 

4.1 

9.2 

0.8 

26 

26.80 

24.01 

25.26 

31.2 

98.8 

97.8 

95.8 

97.8 

100.2 

Umueshi 1.92 

1.83 

1.93 

-   

- 

- 

37.6 

36.8 

36.5 

- 

- 

- 

Urualla   

1.80 

1.80 

1.90 

1.90 

2.00 

 

1 

5 

5 

7 

6 

 

33 

30 

25 

25 

25 

 

116.46 

107.0 

87.9 

89.91 

88.91 
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Table 4.15: Infiltration rates of different land-use classes in the study area. Non-vegetated soils in Amucha 

have the highest infiltration rates in the study area. Amucha study site has the highest sand content across all 

study sites. Section 3.2.1.3 details methods used for infiltration tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Open vegetation Fallow/trees Non-vegetated 

Amucha Infiltration 

(mm hr-1) 

Soil 

moisture 

(%) 

Infiltration 

(mm hr-1) 

Soil moisture 

(%) 

Infiltration 

(mm hr-1) 

Soil moisture 

(%) 

 
12.81 3 37.69 9.2 57.2 

 

 
10.49 3.6 56.62 3.7 257.4 

 

 
246 13.6 258.7 10.5 264.24 8.6 

 
419.68 14.5 225.97 15.7 661.69 12.3 

 
48.63 10.2 237.04 11.4 455.21 11.4 

 
67.51 14.7 152.6 12.1 416.37 6.3 

       

Isu Njaba 12.32 10.6 2.42 18.3 
  

 
17.16 6.1 5.82 19.9 

  

 
17.77 11.6 7.78 23.3 

  

 
15.05 13.4 4.62 20.2 

  

 
39.44 18.3 14.8 9.9 

  

   
10.85 20.7 

  

       

Obibi-ochasi 77.9 8 
  

49.51 9.3 
 

142.2 9 
  

48.59 9.1 
 

84.88 11.1 
  

47.22 10.3 
 

78.39 8 
  

115.65 8.7 
 

130.85 8.4 
  

105.72 8.4 
 

117.54 9.4 
    

       

Umueshi 5.12 5.6 
    

 
23.12 4.5 

    

 
45.98 7.3 

    

 
91.67 7.8 
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Figure 4.20: Boxplots of infiltration capacities for the three land-use classes. Mean infiltration rate for non-

vegetated soils in Amucha was highest (352 mm/hr) across all land use types. 
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4.4.2 Human-induced elements and community perceptions 

Results from focus group meetings (section 3.2.1.3) showed that civil unrest is a driver of 

gullying. Group meeting participants maintained there were no gullies in the study area before 

the Nigeria-Biafra civil war which lasted from 1967 – 1970. Based on focus group meetings 

and interviews, the oldest gullies in the area are found in Amucha, Obibi-Ochasi, Urualla, 

Umueshi and Isu Njaba (Figure 4.21), these communities are found in Njaba, Orlu, Ideato 

North, Ideato South and Isu LGAs accordingly. Focus group discussants said that the Amucha 

and Obibi-Ochasi gullies started in 1969 and 1968 respectively. Information from interviews 

with community members indicated that the Urualla, Umueshi and Isu Njaba gullies were 

thought to have been initiated during same time (1968 – 1970). Participants at focus group 

meetings attributed gully initiation under the civil war era to the following factors: 

I. Sudden increase in population density: The Orlu area, provided shelters for displaced 

war refugees from other parts of southeast Nigeria as the war did not get to the Orlu 

region of the country. This situation was the reason the Orlu area played host to the 

headquarters of the Organisation of African Unity (OAU) that ran humanitarian relief 

agencies during the civil war. The Nigerian headquarters of the British Cheshire Home 

was also located in Orlu and hence, there was sudden increase in human population in 

these safe havens. As the population density suddenly increased, original forests were 

disturbed by refugees due to search for food and shelter. Focus group participants in 

Amucha attributed this forest disturbance coupled with the natural topography of the 

land which channelled surface runoff from other communities in the Njaba River 

upstream such as Eziama, Eziachi, Umudike and Umuowa to the Njaba River through 

Amucha (the Njaba River rises from four communities; Amucha, Eziama, Isu Njaba 

and Ekwe) to the outset of gully erosion in their community.  

II. Military activities: Two gullies were found in Obibi-Ochasi and results from the focus 

group meeting in the community suggest the older gully started at the Okpii stream in 

1968 due to a number of factors including military activities during the war. During this 

time, the Biafran Rangers (a group of Biafran soldiers) used the Okpii waterfall as a 

shooting range for training their soldiers. Numerous bunkers were dug as well, all aimed 

at training the soldiers, thus, the Orlu area did not only serve as home for humanitarian 

agencies and refugees, it was also used as training grounds for soldiers. One elder from 

the focus group meeting asserted “in 1968, there was a heavy rainfall”. These bunkers 

which were never covered after the war could have likely created the first artificial 
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channels for runoff, thus, setting the stage for possible gully initiation. Based on these 

replies, it was possible that military infrastructure including bunkers and shooting 

ranges, coupled with the heavy rainfall of 1968 marked initiation of the older gully in 

Obibi-Ochasi community. The younger gully was said to be less than two years old at 

the time of fieldwork. 

III. There is also the story of the desecration of the stream and killing of sacred pythons by 

Biafran soldiers during the war. Within the study area, some animals are not hunted or 

killed out of respect for the customs and traditions of the people, one of such animals 

being the sacred python. Also, fishing is forbidden in some sacred streams as animals 

in such streams belong to the local deity. However, due to scarcity of food, or non-

familiarity with the customs of the people, or other war time conditions which led to 

disregard of the laws of the land, sacred pythons were killed by the soldiers who also 

fished in the sacred river. These two activities of desecration are believed by some in 

Obibi-Ochasi to be the reason for the onset and growth of the older gully. It is assumed 

that the current gully problems are signs of anger by the gods of the land who have 

showed their wrath to the community for disrespecting them and killing the holy 

animals. 
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Figure 4.21: Gullies that started as a result of the Nigeria-Biafra civil war. The Amucha gully started in 1969 

while the Obibi-Ochasi gully has an initiation date of 1968. The other gullies are said to have started round 

about same time. 
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4.5 Discussion 

4.5.1 Land-use changes 

Three land-use classes were identified in this study: non-vegetated, open-vegetation and 

fallow/tree cover and to improve confidence in the land use maps produced, accuracy 

assessments were undertaken. The accuracy assessment results reported here (Tables 4.2 and 

4.3) are higher than some results published in the literature, for example, Appiah et al. (2018) 

reported an overall accuracy of 72% and kappa statistics of 0.59 (59%) for land cover 

classification in the Bosomtwe Range Forest Reserve, Ghana. Also, Yan et al (2015) reported 

an overall accuracy of 83% and kappa statistics of 0.79 in their classification of vegetation 

cover types in Northeast China. Although, the number of land use classes identified by these 

authors vary from those classified in this study, my classifications are suitable for land use 

types found in the study area, and for the aim of the study.  

Previous authors have documented sustained land-use changes, especially, changes from 

vegetated to paved surfaces in parts of southeast Nigeria (Enaruvbe & Ige-Olumide, 2015; AC-

Chukwuocha, 2015; Enaruvbe & Atedhor, 2015; Njoku et al. 2017), and results presented in 

this study support these claims. Of the 22 delineated gully catchments, reduction in fallow-

cover was observed in all but IdSouthWS1 gully catchment. Regarding increase in non-

vegetated surfaces, NjabaWS1 and IdSouthWS1 catchmnets experienced reductions in bare 

surfaces while the remaining catchments experienced increases in land areas under non-

vegetated class. Thus, while entire study areas could experience changes from one land use 

class to another, changes in individual catchments differ, which might potentially affect 

gullying.  

4.5.2 Changes in gully characteristics 

Poesen et al. (2003) identified three stages of gully evolution according to their age since 

initiation: short (< 5 years), medium (5–50 years) and long term (> 50 years). According to 

focus group discussants, the oldest gullies in the study area started during the Nigeria civil war 

between 1967 and 1970. Apart from these five gullies (figure 4.21) which can be regarded as 

long term, the others are short to medium term gullies. The gully head retreat rate between 

2009 and 2018 reported for the 39 gullies under investigation in this study (4 m yr-1) is low 

compared to other studies in southeast Nigeria where gully retreat rates of between 30 – 60 m 

are known and documented (Egboka et al. 1985; Hudec et al. 2005). However, the number of 

gullies or years of study for these reported results are not known. In other parts of the world, 

different retreat rates have been documented e.g. Frankl et al. (2012), documented retreat rates 
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of 0.34 m yr-1 for gullies less than 5 years in the Ethiopian northern highlands; Hu et al. 2007, 

measured retreat rates of 0.35 – 7.7 m yr-1 in northeast China for young gullies; Liu et al. 2019, 

reported retreat rates of 0.46 and 1.10 m yr−1 for two gullies in southern China. Gully length 

retreat rate of 182.7 m yr-1 was recorded for a short-term period in the Akusity watershed, 

Upper Nile Basin of Ethiopia (Yibeltal et al. 2019). This rate of change in gully length was 

attributed to the topography and non-availability of soil and water conservation techniques in 

the Akusity watershed. In the medium-term scale, Li et al. (2012) documented retreat rates of 

0.36 to 0.44 m yr−1 in the loess region of China while an annual rate of 115 m yr−1 was reported 

in the long-term scale in north-east Hungary (Gábris et al. 2003). Differences in rainfall 

regimes, ecogeomorphic interactions, number of sample size and age of gullies account for the 

variations in retreat rates between those reported in this research and cited references. 

Regarding variability in headward retreat rates over time (2009 – 2014 and 2014 – 2018) among 

the seven gullies identified in 2014, gully retreat rates varied according to ages. There is a lower 

headward retreat rate in the four gullies identified in 2009 satellite imagery (6.25 m yr-1  and 

2.1 m yr-1 between 2009 – 2014 and 2014 – 2018, respectively) than the three new gullies 

mapped in 2014 (48.7 m yr-1 between 2014 and 2018). These three “younger” gullies are longer 

than the four older gullies (figure 4.22).  

 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.2

0.4

0.6

2009 2014 old 2014 New 2018 Old 2018 New

Year

L
e
n
g
th

 (
k
m

)

Figure 4.22: Boxplot representing changes in gully length for the seven gullies captured in the 2014 satellite 

imagery. 2014 old and 2018 old represent the four gullies that were identified in the 2009 satellite data while 

2014 New and 2018 New are the three new gullies which were first mapped in 2014. 
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It is possible the four older gullies are beginning to attain a level of stability (as suggested in 

section 4.3 for IdSouthWS1, one of the affected gullies with reduced headward retreat rate), 

hence, the reduction in headward retreat with time. This potential gully stability with time is 

explained in terms of the differences between retreat rates of 6.25 m yr-1 (2009 – 2014) and 2.1 

m yr-1 (2014 – 2018) for same gullies. Another potential reason for the higher headward retreat 

rates of the three new gullies is related to land use. Vanmaercke et al. (2016) opined that land 

uses that promote runoff may also increase gully headcut retreat rates. All three new gullies are 

closer to tarmac roads than the four older gullies (examples are shown in figures 4.23 and 4.24). 

The effects of concentrated runoff will be higher on the gullies closer to the roads than those 

farther from the roads, and hence the faster headward extension of the newer gullies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: 2017 satellite data showing IdeatoSouth_gully2. The gully was first identified in the 2014 satellite 

data but in 2017, it had destroyed one of the tarmac roads as shown in the satellite data. 
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Having answered the first three research questions posed in section 4.0, the last question is 

posed, how have ecogeomorphic interactions affected changes in gully characteristics? To 

answer this question, gully-driving factors are grouped into preparatory and trigger factors.  
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Figure 4.24: 2017 satellite data showing the Isu_gully1. The gully was mapped in the 2009 satellite image but 

was 150 m from a tarmac road in 2017. 
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4.5.3 Preparatory factors of gully erosion 

In section 4.4.1, results on slope angle, elevation, curvature, proximity to rivers and soil 

properties were presented. These factors affect gullying through the following processes: 

i. Accelerated surface runoff: increased slope (especially around the rivers) will favour 

accelerated flow of surface runoff. Flow acceleration in contrast to accumulation can 

be a potential driver of gully erosion in the study area. 

ii. Seepage erosion: Considering the high sand contents of the soil (Table 4.13), and 

consequent high infiltration capacities, increased seepage erosion could be a gully 

expansion process (Okagbue & Ezechi, 1988). These higher flow rates of sub-surface 

flow are enhanced by the loose coarse and pebbly sands in the study area (Egboka et al, 

1985). Table 4.14 shows that the cohesion values of the soils are low perhaps due to the 

high sand contents. Therefore, when these soils with low cohesion values are exposed 

to a sudden rise in slope within a short distance, coupled with the high amount of rainfall 

(section 3.1.2), there may well be increased susceptibility to initiation of gully, and 

where gullies already exist due to other factors such as civil war, expansion of those 

gullies can be facilitated from both surface and sub-surface flows.  

iii. Finally, deposited materials, especially at the foot of gully walls, might serve as 

protective shields, thereby preventing further scouring of gully walls. However, where 

these deposits are carried away by ephemeral flows and deposited in the rivers due to 

the nearness of the gully endpoints to the rivers (Figure 4.18) (Conoscenti et al. 2014), 

a positive mechanism of constant removal of soil from gully upslope will likely be 

initiated. Thus, as more materials are removed by the river, even more deposits are 

supplied by the gully. 

These three identified processes are the likely reasons gully head distance from rivers has a 

positive effect on changes in gullied areas (Table 4.9). 

4.5.4 Trigger factors of gully erosion 

Trigger factors considered include land-use changes, incorrect termination of drainage 

channels and abandoned projects. Land-use change, particularly, change from vegetated 

surfaces to non-vegetated surfaces, increase flow of runoff (Njoku et al. 2017) and likely 

increase in the incidence of gully erosion (Attah et al. 2013). The effect of land-use change on 

surface runoff will be most felt on areas with higher slope rises, for example, communities 
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close to the rivers and where drainage channels are terminated wrongly by contractors, or where 

construction projects are completely abandoned.  

In some gully catchments close to the river, e.g. Amucha, there have been changes in land use 

from vegetated to non-vegetated (Table 4.4). This observation was supported during the focus 

group meetings where respondents agreed and pointed that increased paved surfaces have led 

to higher volume of surface runoff over the years (section 7.11). A similar report was given by 

respondents in Obibi-Ochasi. Bearing in mind the configuration of the land and rise in slope 

from rivers (figure 4.14), increased volume of surface runoff from these surrounding 

communities can attain higher erosive power as it approaches the river (Gómez-Gutiérrez et al. 

2015). This increased surface flow (caused by both change in land use and higher slope rise) 

passing through gully channels on its way to the river, can enhance gully expansion.  

With regards to incorrect termination of drainage channels and their effects on gully erosion, 

Nwankwor et al. (2015) noted that soils in southeast Nigeria were not easily erodible as is 

hitherto believed. They concluded that most gullies in the region can be traced back to improper 

termination and unplanned diversions of road runoff concentration. Other authors (Collison, 

2001; Frankl et al. 2012) have documented the associations between gullies and nearness to 

roads. Figure 4.12 shows pictures of gullies that were observed during fieldwork; depicted 

gullies have eroded into the asphalt roads next to them. Figure 4.12A is a gully in Okwudor 

community, Njaba LGA and judging from interview with locals, it was gathered that the gully 

was reactivated due to new construction activities on the Orlu – Owerri highway. Figure 4.12B 

is a new gully located in Obibi-Ochasi Community of Orlu LGA and based on eyewitness 

account and information gathered during focus group meetings, the gully started in 2017. Field 

measurement puts the gully length at 492 m and 55 m wide at its widest area, as at May 2019, 

during fieldwork when the pictures were captured (figure 4.12B). This gully started as a result 

of abandonment of road construction linking two adjacent communities, Asa-Ubirielem in Orsu 

LGA and Obibi-Ochasi in Orlu LGA. Different types of gully-induced landslides were 

observed at this gully (section 6.12). During field work, residents of Umueshi community 

attributed the destruction of their local road (figure 4.12C) to the high volume of surface runoff 

that flows into the gully following abandonment of gully restoration project. 

4.6 Chapter summary 

The aim of this chapter was to understand the influence of land use and land-use changes on 

gully characteristics, and to achieve this aim, four research questions were raised. It has been 
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shown that within the period under investigation, land use has changed, and gully 

characteristics have also changed. Figure 4.25 provides an interpretative overview for this 

chapter. The infiltration tests and soil particle results of the study area suggest there is high 

infiltration which suggests the likely influence of seepage erosion as a mechanism of gully 

expansion. Preparatory factors of gully erosion such as high slope angle can increase volume 

of runoff, while high sand content may enhance infiltration. Both surface runoff and infiltration 

are parts of the hydrologic cycle of the gully catchment. Trigger factors such as increased bare 

surfaces due to changes in land use will also affect the gully catchment hydrology by 

influencing an increase in the volume of surface runoff occurring within the gully catchment. 

As observed earlier, many gullies are close to the rivers and serve as channels through which 

surface flow leaves the catchment. Therefore, an increase in surface runoff volume due to land 

use change means more water will flow through the gully, which may then lead to gully 

expansion. 

It was observed from focus group meetings that the Nigeria-Biafra civil war was the principal 

trigger of gully erosion in the study area, and this is the first time the role of civil war is 

examined as a gully driver in the study area. While military activities such as digging trenches 

could have set in motion the process of gully erosion, heavy rainfall was required to drive the 

mechanism of subsequent gully expansion.  

4.7 Conclusions 

The following conclusions are made: 

i. While acknowledging there have been major land-use changes, especially, from 

vegetated to non-vegetated surfaces in the study area, gully catchments are 

heterogenous. Increase in vegetal cover was observed in some catchments. 

These variations in land uses likely affect gullying. 

ii. Interactions among ecogeomorphic factors (physical and human-induced) 

influence changes in gully sizes (figure 4.25). While factors such as soil 

characteristics and slope gradient predispose the soils to erosion, forcing factors 

such as war-time activities trigger gullying. 

iii. There were no gullies in the study area before Nigeria-Biafra civil war, thus, the 

war can be regarded as the principal trigger of gully erosion in the area. 
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Having observed from the foregoing that gully catchment hydrology is an important factor in 

gully erosion studies, the next question is, how have land-use changes affected gully catchment 

hydrology? Answers to this question will be provided in the next chapter.
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Figure 4.25: Representation of the connections and interactions between preparatory and trigger factors of the influence of land-use change on gully characteristics. 

Preparatory factors include geomorphic and soil factors, while rainfall and land use changes are examples of trigger factors. 
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Chapter 5  

Influence of land-use changes on gully catchment hydrology 

5.0 Introduction  

In Chapter 4, it was established there have been land-use changes in the gully catchments 

between 2009 and 2018. It was also implied that land-use changes and other gully-driving 

factors influenced gully expansion by affecting the hydrology of the gully catchment, and thus, 

the gully catchment hydrology served as an agent through whom gully drivers influenced gully 

sizes. Chapter 5 provides answers to research questions raised by objective 2: to determine the 

influence of land-use changes on gully catchment hydrology. The following research questions 

are posed: 

1. Have there been changes in the hydrology of gully catchments between 2009 and 

2018 in response to land-use changes?  

2. Are there associations between changes in gully catchment hydrology resulting from 

land-use change and gully sizes? 

Section 5.1 summarizes changes in the hydrology of the gully catchments between 2009 and 

2018 in response to land-use changes. Result validation is described in 5.2, section 5.3 

describes the associations between changes in hydrology and gully sizes while discussions are 

presented in section 5.4. Chapter summary and conclusions follow in sections 5.5 and 5.6. 

5.1 Changes in the hydrology of the gully catchments between 2009 and 2018 in 

response to land-use changes 

A total of 22 catchments (figure 5.1) covering 23 gullies (one catchment, Orlu2, has two gullies 

as shown in Table 5.1) were modelled using the SWAT model. Thirty-nine gullies were 

identified in the study area (section 4.2), however, upslope contributing areas were not captured 

for some gullies due to reasons described in section 4.3. The inability of the flow algorithm in 

the SWAT model to delineate upslope areas for some gullies could also be due to inherent 

errors such as point or pixel density, the accuracy of the derived data sets and the interpolation 

techniques which can create erroneous areas in a DEM (Papaioannou, et al, 2019). The upslope 

contributing areas for the 23 gullies ranged between 0.06 to 29.31 km2 (Table 5.1). Results of 

five hydrological processes: changes in streamflow, surface runoff, percolation, lateral flow 

and evapotranspiration are presented. Surface runoff, groundwater and lateral flow all 

contribute to channel streamflow. The influence of surface runoff on gully erosion was 

identified in sections 2.1 and 4.5.4. Groundwater and lateral flows are both sub-surface flow 
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processes, and previous research has demonstrated that soils in the study area could be 

susceptible to sub-surface erosion due to their high infiltration capacities and texture (Egboka 

et al. 1985; Okagbue & Ezechi, 1988).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: 22 gully catchments draped on shaded relief map of study area. Also shown are the gully IDs. Gully 

IDs are same shown in figure 4.4 and Table 5.1. 
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Table 5.1: Gully catchment characteristics. Orlu2 has 2 gullies which are <10 m apart in some places. Some 

catchments have more than one soil class as classified by SWAT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1 Model application in different settings 

Results of an ‘exploratory sensitivity analysis’ undertaken to understand the individual 

influence of land-use changes and rainfall dynamics on changes in catchment hydrology 

(section 3.2.2.1.10) are presented in this section. The Amucha and Orlu1 catchments (figures 

5.2 and 5.4) experienced significant land-use changes from vegetated to non-vegetated (Table 

4.4), while the Orlu1 catchment had the highest variability in rainfall for 2009 and 2018, hence, 

both catchments were suitable for the exploratory sensitivity analysis. Land-use maps and 

modelled hydrological processes under different settings are presented in figures 5.2 – 5.7.  

Figures 5.3 and 5.5 show results from same rainfall and different land uses, while figures 5.6 

– 5.7 illustrate results for same land use and different rainfall totals. 

 

id Catchment no. Gully ID Size (km2) USDA soil type SWAT soil class 

IdNorthWS 1 23 0.53 Sandy loam Nd19-1a-1557 

IdSouthWS1  2 22 0.08 Sandy loam Nd21-1a-1560 

NjabaWS1  3 4 0.13 Sandy loam Nd21-1a-1560 

Amucha 4 5 10.23 Sand Ph17-1a-6596 

IdeatoNorth  5 20 5.01 Sandy loam Nd21-1a-1560 

IdeatoNorth1 6 21 0.35 Sandy loam Nd21-1a-1560 

IdeatoSouth_gully1 7 26 0.26 Sandy loam Nd21-1a-1560 

IdeatoSouth_gully2 8 36 0.31 Sandy loam Nd21-1a-1560 

IdeatoSouth3 9 32 2.33 

 

Sandy loam 

 

Nd19-1a-1557 

Nd21-1a-1560             

Isu_gully1 10 8 0.14 Sandy loam Nd21-1a-1560             

Isu_gully2 11 9 0.07 Sandy loam Nd21-1a-1560             

Isu_gully3 12 6 0.06 Sandy loam Nd21-1a-1560             

Njaba2  13 3 1.28 Sandy loam Nd21-1a-1560             

Njaba4  14 2 2.78 Sandy loam Nd21-1a-1560             

Njaba5  15 33 29.31 Sandy loam Nd21-1a-1560             

Orlu1  16 12 8.34 Sandy loam Nd21-1a-1560             

Orlu2 17 14,15 1.71 Sandy loam Nd21-1a-1560             

Nd19-1a-1557 

Urualla_gully1 18 17 0.85 Sandy loam Nd21-1a-1560             

Urualla_gully2 19 18 5.38 Sandy loam Nd21-1a-1560             

Urualla_gully3 20 19 0.79 Sandy loam Nd21-1a-1560             

Obibi-Ochasi 21 39 0.85 Sandy loam Nd19-1a-1557 

Umueshi 22 25 0.31 Sandy loam Nd21-1a-1560             
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Figure 5.2: A, Amucha catchment showing sub-basins, Gully ID, 5. B, Amucha showing land-use maps. In 2009, 

Non-vegetated = 17.4%, Open vegetation = 39.2, Tree/fallow = 43.4%. In 2018, Non vegetated = 52.8%, Open 

vegetation = 47.2, Tree/fallow = 0.1%. 
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Figure 5.3: Amucha watershed. 
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Figure 5.3 cntd: Amucha watershed, same rainfall and different land uses. A, estimated streamflow.  2018 land 

use had a higher estimate of streamflow (see text for full description). B, surface runoff contribution to 

streamflow was higher in 2018 than in 2009. C, lateral flow contribution to streamflow is highest in sub-basin 

30, same sub-basin covers most parts of the gully. Higher lateral flow volumes were modelled in 2009 than 2018. 

D, percolation estimates. 2018 percolation estimates were lesser than 2009. E, evapotranspiration. 2009 had 

higher modelled evapotranspiration volume than 2018.  Rainfall for Amucha for both years = 2447 mm. SR = 

Surface runoff, LF = Lateral flow, Perc = Percolation, ET = Evapotranspiration. 
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Figure 5.4: A, Orlu1 gully watershed showing sub-basins. Gully ID, 12. B, Orlu1 land-use maps. In 2009, Non-vegetated 

= 26.18%, Open vegetation = 56.46%, Tree/fallow = 17.36%. In 2018, Non-vegetated = 63.65%, Open vegetation = 36.32, 

Tree/fallow = 0.03%. Orlu1 is the most urbanised catchment in the study area. 
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Figure 5.5: Orlu1 watershed 
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Figure 5.5 cntd: Orlu1 watershed 
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Figure 5.5 cntd: Orlu1 watershed same rainfall and different land uses. A, modelled streamflow. 2009 had 

higher streamflow volume. B, surface runoff contribution to streamflow increased with increase in non-

vegetated class between 2009 and 2018 where higher volumes were modelled in 2018. C, lateral flow 

contribution to streamflow was higher in 2009. D, percolation estimates. There was a reduction in modelled 

volumes in 2018. E, evapotranspiration. Modelled evapotranspiration losses were higher in 2018. Rainfall for 

Orlu1 for both years = 2362 mm. 
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Figure 5.6: Amucha watershed 
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Figure 5.6 cntd: Amucha watershed, same land use and different rainfall totals.  A, modelled streamflow. 2018 

rainfall produced higher streamflow volume. B, surface runoff contribution to streamflow slightly reduced 

between 2009 and 2018. C, lateral flow contribution to streamflow. Minimum volumes of lateral flow remained 

the same for both years. D, percolation estimates. 2018 experienced slightly higher percolation volumes. E, 

evapotranspiration, maximum loss was higher in 2009. Total rainfall volumes for 2009 and 2018 were 2447 

and 2443 mm. 
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Figure 5.7: Orlu1 watershed 
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Figure 5.7 cntd: Orlu1 watershed 
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5.1.1.1  Same rainfall, different land use 

Model application in different environmental settings indicate that increase in non-vegetated 

class results in increased surface flow contribution to streamflow. Modelled surface runoff 

increased with increase in non-vegetated class between 2009 and 2018 in the Amucha area 

(figure 5.3). For example, minimum runoff volumes were 90 mm and 201 mm while maximum 

runoff estimates were 308 mm and 765 mm accordingly for 2009 and 2018. There was increase 

in total streamflow out of the catchment from 176 m3/s to 177 m3/s for 2009 and 2018 land 

uses respectively. Lateral flow estimates are highest in sub-basin 30, same sub-basin covers 

most parts of the gully. There was a reduction in minimum and maximum values of lateral flow 

from 158 to 115 mm and 667 to 617 mm for 2009 and 2018 land-use maps respectively. There 
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Figure 5.7 cntd: Orlu1 watershed, same land use and different rainfall totals. A, modelled streamflow. 2009 

rainfall had the highest modelled streamflow volume. B, surface runoff contribution to streamflow reduced 

between 2009 and 2018. C, lateral flow contribution to streamflow. Minimum volumes of lateral flow remained 

at 99 mm for both years. D, percolation estimates. Maximum percolation values slightly reduced from between 

2009 and 2018. E, evapotranspiration. Maximum loss dropped from 913 to 909 mm for 2009 and 2018 

respectively. Total rainfall volumes for 2009 and 2018 were 2362 and 2351 mm respectively. 
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was a reduction in estimated minimum and maximum percolation values from 696 to 555 mm 

and 1254 to 1080 mm for 2009 and 2018 correspondingly. Minimum evapotranspiration loss 

reduced from 886 to 850 mm while maximum loss dropped from 907 to 904 mm for 2009 and 

2018 respectively (figure 5.3). In the Orlu1 watershed, there was a reduction in total streamflow 

out of the catchment from 137 m3/s to 136 m3/s for 2009 and 2018 land uses, respectively 

(figure 5.5). Surface runoff contribution to streamflow increased with increase in non-vegetated 

class between 2009 and 2018, for example, minimum estimated runoff volumes were 166 mm 

and 533 mm while maximum volumes totalled 390 mm and 797 mm for 2009 and 2018 

accordingly. There was a reduction in minimum and maximum values of lateral flow from 99 

to 71 mm and 390 to 275 mm for 2009 and 2018 respectively. Minimum and maximum 

percolation values reduced from 769 to 481 mm and 1146 to 792 mm for 2009 and 2018 

correspondingly. Minimum evapotranspiration loss increased from 897 to 903 mm while 

maximum loss rose from 913 to 921 mm for 2009 and 2018 respectively (figure 5.5).  

5.1.1.2  Same land use, different rainfall totals 

Regarding changes in rainfall under the same land use, although 2009 was a wetter year by 4 

mm in the Amucha catchment (figure 5.6), there was a rise in total streamflow out of the 

catchment from 176 m3/s to 177 m3/s for 2009 and 2018 rainfalls, respectively. Surface runoff 

contribution to streamflow slightly reduced between 2009 and 2018. Minimum estimated 

runoff totals were 90 mm and 89 mm and maximum totals were 308 mm and 307 mm for 2009 

and 2018 accordingly. Minimum volumes of lateral flow remained at 158 mm for both years 

while maximum values increased from 667 to 669 mm for 2009 and 2018 respectively. There 

was an increase in estimated minimum and maximum percolation values from 696 to 701 mm 

and 1254 to 1258 mm for 2009 and 2018 correspondingly. Minimum evapotranspiration loss 

increased from 886 to 877 mm while maximum loss dropped from 907 to 900 mm for 2009 

and 2018 respectively (figure 5.6). In the Orlu1 watershed (figure 5.7), minimum streamflow 

remained the same at 9 m3/s for both years, while there was a reduction in maximum flow value 

from 137 m3/s to 136 m3/s for 2009 and 2018 rainfall totals, respectively. Surface runoff 

contribution to streamflow reduced between 2009 and 2018. Minimum estimated runoff 

volumes totalled 166 mm and 158 mm and maximum volumes equalled 390 mm and 381 mm 

for 2009 and 2018 accordingly. Minimum volumes of lateral flow remained at 99 mm for both 

years while maximum values increased from 336 to 338 mm for 2009 and 2018 respectively. 

There was an increase in estimated minimum percolation values from 769 to 771 while 

maximum percolation values reduced from 1146 to 1145 mm in 2009 and 2018 
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correspondingly. Minimum evapotranspiration loss reduced from 897 to 891 mm while 

maximum loss dropped from 913 to 909 mm for 2009 and 2018 respectively.  

5.1.1.3  Summary of exploratory sensitivity analysis – influence of local drivers  

Increased surface flow due to higher non-vegetated surfaces does not necessarily imply higher 

streamflow discharge from a catchment as observed in the Orlu1 watershed (figure 5.5) where 

there was reduction in streamflow in 2018 despite increase in non-vegetated surfaces. There 

was higher contribution of lateral flow to streamflow in the Amucha catchment than in the 

Orlu1 catchment, (figures 5.5 and 5.6). Although the Amucha area had a higher volume of 

rainfall, the area also has higher sand contents than the Orlu catchment (section 4.4.1), a 

characteristic that will likely increase infiltration. Moreover, local slope angle was higher in 

Amucha than the Orlu1 area, a factor that influences lateral flow. More water was lost to deep-

aquifer recharge due to lower slope angles in the Orlu1 watershed. Therefore, contribution of 

sub-surface flow which varied between the two catchments is the likely reason both catchments 

behaved differently when same amount of rainfall was used for the two years of analysis (2447 

and 2362 mm for Amucha and Orlu1 respectively) in different land-use classes.  

Spatial configuration of land use in individual sub-basins influence volume of surface runoff 

into and out of channel reaches. For example, in sub-basins with higher non-vegetated surfaces, 

greater runoff volumes into channel reaches were modelled, while sub-basins with higher tree-

cover recorded lower contributions. Hence, if the upstream sub-basins have higher non-

vegetated surfaces, there is higher surface runoff contribution to streamflow in these upstream 

sub-basins, however, when this surface runoff flows into downstream channels with dense 

vegetal cover, there is increased infiltration of surface flow in the downstream sub-basins. 

Modelling results indicate that these land-use dynamics reduce streamflow which likely affects 

gully erosion.  
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5.1.2 Sample results of hydrological processes from modelled catchments 

In the following paragraphs, modelled results are presented for five catchments (IdNorthWS, 

IdeatoSouth_gully1, IdeatoSouth_gully2, IdNorthWS1, Njaba2) to illustrate effects of changes 

in land use on gully catchment hydrology. These catchments were chosen for two reasons: first, 

apart from Njaba2, the other catchments were captured in the 2014 satellite data (section 4.1.1) 

and thus were useful to understand response of catchment hydrology to stepwise changes in 

land use between 2009 and 2014, and 2014 – 2018. These changes in hydrology likely affect 

gully responses. Secondly, these catchments captured the variability in response of gullies to 

different hydrological processes (section 5.3). For example, gully expansion was recorded 

alongside higher: sub-surface flow, surface flows and surface and sub-surface flows in these 

five watersheds. 

 

1. IdNorthWS 

The gully in this catchment was found in sub-basins 8, 9, 10, 11 (Figure 5.8), sub-basin sizes 

are 0.03 km2, 0.02 km2, 0.04 km2, and 0.15 km2 accordingly. There was sustained reduction in 

tree/fallow-cover from 2009 to 2018 (Table 5.2 and figure 5.9), similarly, estimated 

hydrological processes responded to these changes in land use (figure 5.10).  2009 was the 

wettest year with rainfall of 2447 mm, followed by 2018 with 2443 mm and 2014 with 2412 

mm of rain. Average temperature values for 2009 and 2018 were 27°C and 28°C in 2014. Total 

estimated streamflow out of sub-basin 11 was 9 m3/s in 2009, this value remained the same in 

2014 (despite reduced rainfall), and increased to 18 m3/s in 2018, yet 2009 was wetter than 

2018.  

Table 5.2: IdNorthWS land-use changes 

 
2009 2014 2018 

Non-vegetated (%) 16.8 25.7 17 

Open vegetation (%) 36 51.6 70.9 

Tree/fallow (%) 47.2 22.7 12.1 
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Figure 5.8: IdNorthWS gully watershed.  Gully ID, 23. Gully is found in sub-basins 8, 9, 10 and 11. Modelled 

sub-basins are labelled. 
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Figure 5.9: IdNorthWS land-use changes, showing sustained reductions in tree/fallow cover from 2009 to 2018. 

2009, Non-vegetated = 16.8%, open vegetation = 36%, tree/fallow = 47.2%. 2014 Non-vegetated = 25.7%, open 

vegetation = 51.6%, tree/fallow = 22.7%. 2018 Non-vegetated = 17%, open vegetation = 70.9%, tree/fallow = 

12.1%. Non-vegetated areas remained at low density from 2009 to 2018. There is higher fallow-cover near the 

gully in 2018. Changes in gully sizes are also visible. 
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Figure 5.10: IdNorthWS hydrology. 
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Figure 5.10 cntd: IdNorthWS hydrology. 
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Estimated annual volume of surface runoff increased between 2009 and 2014 in all but one 

sub-basin (sub-basin 1). Sub-basin 1 experienced a reduction in open vegetation class between 

2009 and 2014 (Table 5.3) while tree/fallow-cover remained the same. This situation led to the 

reduction in estimated volume of runoff. Open vegetation class (parameterised as cassava) has 

higher Curve Number than non-vegetated urban low-density class (Table 3.7). All other sub-

basins had reductions in tree/fallow cover between 2009 and 2014 (Table 5.3). Increase in 

surface runoff was modelled in seven sub-basins between 2014 and 2018, while reductions 

were modelled in four sub-basins (7, 8, 9, 10). These changes in surface runoff are driven by 

changes in land use. With regards to lateral flow, estimated volumes of lateral flow were 

highest in sub-basins 9 and 10, both sub-basins cover and deliver flow into the gully directly. 

Also, sub-basins 9 and 10 have larger land areas under 10 – 40% slope class (Table 5.3). 
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7.109 E 7.112 E 7.114 E

900

910

920

930

940

2009 ET (mm) 2014 ET (mm) 2018 ET (mm)

E 

Figure 5.10 cntd: IdNorthWS hydrology, A, estimated streamflow. Total flow out of the catchment remained the 

same at 9 m3/s  for 2009 and 2014, and increased to 18 m3/s in 2018. B, surface runoff contribution to streamflow. 

There was sustained increase in maximum surface runoff estimate from 226 mm in 2009 to 262 and 334 mm in 

2014 and 2018 respectively. These increased values were in response to reductions in tree/fallow-cover. C, lateral 

flow contribution to streamflow. Maximum lateral flow estimates were observed in sub-basins 9 and 10, part of 

the gully in this catchment lies in both sub-basins. Maximum lateral flow was recorded in 2018 (763 mm) 

perhaps due to higher infiltration caused by higher fallow-cover, followed by 2009 (753 mm) and 2014 (699 

mm). D, percolation estimates. Maximum percolation was recorded in 2009 (1211 mm), followed by 2014 (1130 

mm) and 2018 (1112 mm). E, evapotranspiration. Maximum evapotranspiration loss was observed in 2014 (944 

mm), followed by 2009 (922 mm) and 2018 (907 mm). Total annual rainfall for 2009 was 2447 mm, 2412 mm 

for 2014 and 2443 mm in 2018. 
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Therefore, while local slope is often associated with increase in volume of surface runoff 

(Gómez-Gutiérrez et al. 2015), lateral flow is also influenced by local slope configuration. 

There were sustained reductions in lateral flow across all sub-basins between 2009 and 2014. 

Estimated lateral flow was higher in 2014 in sub-basins 1, 2, 5, and 9 than in 2018, while the 

remaining seven sub-basins had higher lateral flow volumes in 2018 compared to 2014. 

Reductions in fallow cover in sub-basins 1, 2 and 5 led to reductions in infiltration, while 

increase in open-vegetated areas in sub-basin 9 between 2014 and 2018 increased runoff. These 

changes in land use are likely reasons lateral flow was higher in 2014 than 2018 for these sub-

basins. In the remaining seven sub-basins where lateral flow was higher in 2018, several 

reasons are provided: First, higher rainfall: the year 2018 was wetter than 2014 as already 

mentioned and thus there is more water to infiltrate and flow laterally (where the land cover is 

favourable). Secondly, land-use configurations: as noted, there was higher fallow-cover in 

some sub-basins (e.g. sub-basin 10) in 2018 than 2014 (figure 5.9). Thirdly, sub-basin sizes: a 

smaller percentage cover (e.g. 10%) of a particular land use in a bigger sub-basin (e.g. 0.15 

km2) has larger landmass than the higher percentage (e.g. 35%) cover in a smaller sub-basin 

(e.g. 0.04 km2). Finally, the local slope configuration, which influences lateral flow in a sub-

basin is important. Sustained reductions in percolation were observed from 2009 to 2018 and 

2014 had the highest estimates of evapotranspiration losses due to higher temperature values.  
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Table 5.3: IdNorthWS sub-basins’ changes in land-use, Non-veg = Non-vegetated, Open-veg = open vegetation, T/F = Tree/Fallow, SR = Surface runoff, LF = Lateral 

flow, Perc = Percolation. Sub-basins with higher slope angles have higher modelled lateral flow volumes. 

 
Size 

(km2) 

2009 2014 2018 Slope (%) 

   
Land use SR 

(mm) 

LF 

(mm) 

Perc 

(mm) 

Land 

use 

(%) 

SR 

(mm) 

LF 

(mm) 

Perc 

(mm) 

Land 

use 

(%) 

SR 

(mm) 

LF 

(mm) 

Perc 

(mm) 

  

Sub-

basin1 

0.04 Non-

veg 

(%) 

20.5 205.07 262.18 1060.60 27.30 185.70 252.41 1030.61 27.30 302.52 239.43 995.11 0-10 93.2 

  
Open-

veg 

(%) 

38.6 
   

31.80 
   

65.90 
   

11-20 6.8 

  
T/F 

(%) 

40.9 
   

40.90 
   

6.80 
   

21-30 
 

               
31-40 

 

                 

Sub-

basin2 

0.03 Non-

veg 

(%) 

25.8 225.11 307.41 996.85 35.50 247.51 295.14 929.99 19.40 320.17 288.64 931.78 0-10 80.7 

  
Open-

veg 

(%) 

41.9 
   

48.40 
   

77.40 
   

11-20 19.4 

  
T/F 

(%) 

32.3 
   

16.10 
   

3.20 
   

21-30 
 

               
31-40 

 

                 

Sub-

basin3 

0.07 Non-

veg 

(%) 

13.2 189.56 213.64 1124.22 26.30 230.98 212.38 1027.17 13.20 333.68 213.02 994.73 0-10 94.7 

  
Open-

veg 

(%) 

38.2 
   

48.70 
   

85.50 
   

11-20 5.3 

  
T/F 

(%) 

48.7 
   

25.00 
   

1.30 
   

21-30 
 

               
31-40 
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Sub-

basin4 

0.02 Non-

veg 

(%) 

13 178.45 180.02 1168.03 30.40 261.93 134.70 1073.26 13.00 313.60 153.18 1071.75 0-10 100 

  
Open-

veg 

(%) 

34.8 
   

56.50 
   

78.30 
   

11-20 
 

  
T/F 

(%) 

52.2 
   

13.00 
   

8.70 
   

21-30 
 

               
31-40 

 

                 

Sub-

basin5 

0.05 Non-

veg 

(%) 

25.9 201.29 112.34 1210.87 33.30 233.85 104.06 1129.64 27.80 320.30 103.24 1112.05 0-10 100 

  
Open-

veg 

(%) 

33.3 
   

44.40 
   

70.40 
   

11-20 
 

  
T/F 

(%) 

40.7 
   

22.20 
   

1.90 
   

21-30 
 

               
31-40 

 

                 

Sub-

basin6 

0.04 Non-

veg 

(%) 

25.6 226.36 215.91 1085.37 39.50 244.07 203.75 1021.18 25.60 296.83 228.73 1010.91 0-10 100 

  
Open-

veg 

(%) 

41.9 
   

44.20 
   

65.10 
   

11-20 
 

  
T/F 

(%) 

32.6 
   

16.30 
   

9.30 
   

21-30 
 

               
31-40 

 

                 

Sub-

basin7 

0.04 Non-

veg 

(%) 

2.6 164.29 364.45 1002.42 18.00 233.40 334.25 908.67 7.70 293.90 344.28 904.84 0-10 71.8 

  
Open-

veg 

(%) 

38.5 
   

56.40 
   

76.90 
   

11-20 25.6 

  
T/F 

(%) 

59 
   

25.60 
   

15.40 
   

21-30 2.6 

               
31-40 
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Sub-

basin 8 

0.03 Non-

veg 

(%) 

0 156.04 369.12 1007.84 11.80 235.63 342.93 900.82 14.70 253.16 368.84 918.40 0-10 88.2 

  
Open-

veg 

(%) 

38.2 
   

61.80 
   

58.80 
   

11-20 5.9 

  
T/F 

(%) 

61.8 
   

26.50 
   

26.50 
   

21-30 2.9 

               
31-40 2.9 

                 

Sub-

basin 9 

0.02 
  

130.46 535.54 869.75 
 

226.41 493.06 764.19 
 

262.25 493.05 794.01 
  

  
Non-

veg 

(%) 

8.7 
   

21.70 
   

4.40 
   

0-10 47.8 

  
Open-

veg 

(%) 

26.1 
   

52.20 
   

69.60 
   

11-20 39.1 

  
T/F 

(%) 

65.2 
   

26.10 
   

26.10 
   

21-30 8.7 

               
31-40 4.4 

                 

Sub-

basin 

10 

0.04 
  

187.76 752.75 602.82 
 

243.08 698.82 550.14 
 

207.49 762.88 582.23 
  

  
Non-

veg 

(%) 

18.4 
   

26.30 
   

2.60 
   

0-10 34.2 

  
Open-

veg 

(%) 

42.1 
   

57.90 
   

57.90 
   

11-20 52.6 

  
T/F 

(%) 

39.5 
   

15.80 
   

39.50 
   

21-30 13.2 

               
31-40 0 

                 

Sub-

basin 

11 

0.15 Non-

veg 

(%) 

18.9 178.03 299.94 1049.84 21.40 245.52 291.82 938.23 18.20 292.28 294.32 953.22 0-10 83 
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Open-

veg 

(%) 

31.5 
   

57.90 
   

69.20 
   

11-20 14.5 

  
T/F 

(%) 

49.7 
   

20.80 
   

12.60 
   

21-30 1.3 

               
31-40 1.3 
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2. IdeatoSouth_gully1 

Two gullies, 1 and 2, were found in adjacent catchments, IdeatoSouth_gully1 and 

IdeatoSouth_gully2 (figure 5.11).  Gully1 was visible in the 2009 satellite data but appeared to 

have been sand-filled sometime after 2009 as the 2014 image captured a flat surface of red-

earth on the same site where gully1 was identified in 2009. However, in 2018, gully1 could be 

seen again. Gully2 on the other hand was not visible in the 2009 imagery and seemed to have 

formed post-2009 satellite data acquisition, the gully was first captured in the 2014 imagery. 

Sustained reduction in tree/fallow cover was observed across the IdeatoSouth_gully1 

catchment from 2009 (29%) to 2018 (0%), in the same period, non-vegetated areas rose from 

25% to 59% respectively (figure 5.12). Estimated total streamflow out of gully catchment was 

4.4 m3/s in 2009, and slightly dropped to 4.3 m3/s in 2014 and rose again to 4.4 m3/s in 2018 

(figure 5.13). Total rainfall was 2447, 2412 and 2443 mm in 2009, 2014 and 2018 respectively.  

In response to reductions in fallow, surface runoff estimates were higher across all sub-basins 

in 2014 compared to 2009, lateral flow and percolation volumes reduced during same period 

due likely to reduction in infiltration brought about by reduced fallow-cover. Modelled 

Evapotranspiration was highest in 2014 due to higher temperature for 2014. Total surface 

runoff estimates were higher in 2018 than in 2014 (figure 5.13), due to the complete 

disappearance of fallow and increase in non-vegetated surfaces.  Lateral flow was higher in 

2018 than 2014, perhaps due to higher rainfall in 2018, however, total volume of estimated 

percolation in 2014 was greater than the 2018 estimate. Thus, while more water was available 

for infiltration in 2018, shallow and deep aquifer recharge were higher in 2014 than 2018. This 

result is significant regarding gully-driving processes, for example, where gully expansion is 

dominated by groundwater-driven mass movement (Okagbue & Uma, 1987), higher 

groundwater flow will possibly increase gully retreat. In areas where lateral flow influences 

gully erosion (Berry, 1970), higher lateral volume will potentially enhance gully retreat. 

Detailed discussions are provided in sections 5.3 and 5.4.   
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Figure 5.11: IdeatoSouth_gully1 watershed. Gully ID, 26. B, IdeatoSouth_gully2 watershed. Gully ID, 36. 

Modelled sub-basins are labelled. 
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Figure 5.12: IdeatoSouth_gully1 land-use changes. 2009 non-vegetated area = 25.5%, open vegetation = 45.4%, tree/fallow = 

29.2%. 2014 non-vegetated area = 57.9%, open vegetation = 38%, tree/fallow = 4.1%. 2018 non-vegetated area = 59%, open 

vegetation = 41%, tree/fallow = 0%. Non-vegetated class changed from low to medium density between 2009 and 2014 and 

remained at medium density in 2018. No gully was found in 2014 as explained in text.  
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Figure 5.13: IdeatoSouth_gully1 hydrology. 
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Figure 5.13 cntd:  IdeatoSouth_gully1 hydrology, A, estimated streamflow. Total flow out of the catchment was 

4.4, 4.3 and 4.4 m3/s in 2009, 2014 and 2018 respectively. B, surface runoff contribution to streamflow. There 

was sustained increase in maximum surface runoff estimate from 170 mm in 2009 to 262 and 376 mm in 2014 

and 2018 respectively. These increased values were in response to reductions in tree/fallow-cover and increased 

non-vegetated surfaces. C, lateral flow contribution to streamflow. Maximum lateral flow was recorded in 2009 

(612 mm) followed by 2018 (553 mm) and 2014 (523 mm). D, percolation estimates. Maximum percolation was 

recorded in 2009 (1061 mm) due to higher vegetal cover and higher generated rainfall in same year. E, 

evapotranspiration. 2014 has the highest evapotranspiration value (936 mm) due to higher temperature. Total 

annual rainfall for 2009 was 2447 mm, 2412 mm for 2014 and 2443 mm in 2018. 
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3. IdeatoSouth_gully2 

IdeatoSouth_gully2 covers a land area of 0.31 km2. The non-vegetated class increased from 

8.2% in 2009 to 33.4% in 2014 and dropped to 28.9% in 2018. There was change in non-

vegetated class from low-density in 2009 to medium density in 2014 and 2018. Open vegetation 

covered 54.4% of land area in 2009 and dropped to 50.8% in 2014 but increased to 70.8% in 

2018. Sustained reduction in tree/fallow was observed from 37.4% of land in 2009 to 15.8% 

and 0.3% in 2014 and 2018 accordingly (figure 5.14).  

 

 

 

 

 

 

 

 

 

 

Total annual streamflow was 5.3 m3/s in 2009, but slightly reduced to 5.2 m3/s in 2014 and 

increased to 5.4 m3/s in 2018 (figure 5.15). With regards to daily rainfall and streamflow events, 

among the three years, 2014 had the highest single daily rainfall (65.7 mm) which occurred on 

the 274th day of the year. The same day produced the highest single daily streamflow out of 

the catchment (0.15 m3/s, figure 5.15). Maximum surface runoff volume increased from 352 

mm in 2009 to 606 and 637 mm in 2014 and 2018 respectively (figure 5.15). Maximum lateral 

flow contribution to streamflow dropped from 497 mm in 2009 to 399 mm in 2014 and 

increased to 493 mm in 2018. Maximum percolation value was highest in 2009 (1161 mm). 

Increase in lateral flow and percolation estimates between 2014 and 2018 is likely due to 

availability of more rainfall in 2018 as well as reduction in non-vegetated surfaces in 2018. 

Evapotranspiration losses were highest in 2014 with a maximum estimate of 940 mm, followed 

by 2009 (918 mm) and 2018 (916 mm). Maximum temperature was recorded in 2014. 

Figure 5.14: IdeatoSouth_gully2 land-use changes. 2009 non vegetated area = 8.2%, open vegetation = 54.4%, tree/fallow = 37.4%. 

2014 non vegetated area = 33.4%, open vegetation = 50.8%, tree/fallow = 15.8%. 2018 non vegetated area = 28.9%, open vegetation 

= 70.8%, tree/fallow = 0.3%. Non-vegetated changed from low to medium density between 2009 and 2014 and remained same in 2018. 

No gully was found in 2009. Change in gully sizes also visible. 
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Figure 5.15: IdeatoSouth_gully2 hydrology. 
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Figure 5.15 cntd: IdeatoSouth_gully2 hydrology, A, daily streamflow. 2014 had the highest single daily modelled 

streamflow. B, annual streamflow. Total flow out of the catchment was 5.3, 5.2, and 5.4 m3/s in 2009, 2014 and 

2018 respectively. C, yearly surface runoff contribution to streamflow. There was sustained increase in maximum 

surface runoff estimate from 352 mm in 2009 to 606 and 637 mm in 2014 and 2018 respectively. These increased 

values were in response to changes in land use. D, annual lateral flow contribution to streamflow. Maximum 

lateral flow was recorded in 2009 (497 mm) followed by 2018 (493 mm) and 2014 (399 mm). E, yearly percolation 

estimates. Maximum percolation was recorded in 2009 (1161 mm) due to higher vegetal cover and higher rainfall 

in same year and followed by 2018 (988 mm) and 2014 (967 mm).  F, annual evapotranspiration. The year 2014 

has the highest evapotranspiration value (940 mm) due to higher temperature. Annual rainfall for 2009 was 2447 

mm, 2412 mm for 2014 and 2443 mm in 2018. 
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4. IdSouth WS1 

The IdSouthWS1 catchment (figure 5.16) covers 0.08 km2 (Table 5.1). Continuous increase in 

tree/fallow was recorded in the IdSouthWS1 catchment from 8.5% in 2009 to 28.1% and 36.6% 

in 2014 and 2018 accordingly. Non-vegetated surfaces covered 19.5%, 37.8% and 2.4% in 

2009, 2014 and 2018 respectively. Open vegetation cover was 72% of land area in 2009 but 

reduced to 37.8% in 2014 and increased to 61% in 2018 (figure 5.16).  
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Figure 5.16: A, IdSouthWS1 gully watershed. Gully ID, 22. B, Land-use changes. There is sustained increase in 

tree/fallow from 2009 to 2018. Non-vegetated surfaces remained at low-density between 2009 and 2018. 
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Highest daily streamflow was recorded in 2011 (figure 5.17A). Total annual streamflow was 

1.4, 1.3 and 1.4 m3/s in 2009, 2014 and 2018 respectively (figure 5.17B). Total surface runoff 

volume was lower in 2014 compared to 2009 but was higher in 2018 in six of the eight sub-

basins 2018 (1, 3, 4, 6, 7, 8). Sub-basins 2 and 5 recorded reductions in surface runoff in 2018 

relative to 2014. Five sub-basins (2, 5, 6, 7, 8) recorded reductions in lateral flow while an 

increase was observed in the other three sub-basins (1, 3, 4) in 2014 compared to 2009. 

Between 2018 and 2014, there were reductions in lateral flow in four sub-basins (3, 4, 6, 8) and 

increase in the other four sub-basins (1, 2, 5, 7). Maximum value of percolation was highest in 

2014 (928 mm) followed by 2018 (860 mm) and 2009 (854 mm) (figure 5.17). Concerning 

evapotranspiration, 2014 had the highest estimated value (946 mm) due to higher temperature 

while 2018 recorded least maximum evapotranspiration loss (903 mm). These changes in 

modelled hydrological processes can be related to changes in land use across sub-basins, for 

example, there was increase in tree/forest cover in the two sub-basins (2, 5) that experienced 

reductions in surface runoff in 2018 comparative to 2014 (Table 5.4). In sub-basin 2, 

tree/fallow cover increased from 35.3% to 58.8% and in sub-basin 5, tree-covered areas grew 

from 22.2% to 40.7%. 

Modelling results presented so far have been for the years 2009, 2014 and 2018, very high-

resolution satellite imageries were available for these years and aided gully delineation. As 

gully evolution is a continuous process, influence of hydrological processes during 

intermediate years on gullying is recognised (figure 5.17A). Modelling results show that 2011 

had the highest rainfall event (125 mm) and subsequently produced highest daily streamflow 

while 2016 produced the least daily streamflow due to lowest rainfall event. A continuous 

increase in fallowed areas was observed in this catchment between 2009 and 2018, section 

5.1.1 shows that higher fallow-cover reduces surface flow. Although high-resolution satellite 

data (similar to those used in this study) are not available for intermediate years, judging from 

section 5.1.1 and figure 5.16, it is suggestive that surface runoff will reduce following higher 

fallow-cover, however, figure 5.17 shows higher surface flow for 2011, 2012 and 2018 relative 

to 2014. Two reasons are provided for this observation: First, 2011, 2012 and 2018 have higher 

rainfalls than 2014. Secondly, while higher fallow-cover was observed for the entire catchment, 

sub-basin 8 whose data are presented in figure 5.17B had increased open-vegetated surfaces 

between 2014 and 2018, while fallow-cover remained the same (Table 5.4). 
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Figure 5.17: IdSouthWS1 hydrology, A, daily modelled streamflow from 2009 to 2018. Highest single 

daily streamflow was identified in 2011. B. Subasin8 Daily runoff. 
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Figure 5.17 cntd.  
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Figure 5.17 cntd: IdSouthWS1 hydrology, A, daily modelled streamflow from 2009 to 2018. Highest single daily 

streamflow was identified in 2011. B. Subasin8 Daily runoff. C. Total streamflow for 2009, 2014 and 2018. Total 

streamflow out of the catchment was 1.4, 1.3 and 1.4 m3/s in 2009, 2014 and 2018. D, annual surface. Surface 

runoff reduced in 2014 in all sub-basins but increased in six of the eight sub-basins between in 2018 in response 

to land-use changes.  E, yearly lateral flow contribution to streamflow. There was increase in lateral flow in three 

sub-basins (1, 3, 4) in 2014. F, yearly percolation estimates. Maximum value of percolation was highest in 2014 

(928 mm).  G, annual evapotranspiration. 2014 had the highest estimated value (946 mm). Total annual rainfall 

for 2009 was 2447 mm, 2412 mm for 2014 and 2443 mm in 2018.  
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Table 5.4: IdSouthWS1 sub-basins’ changes in land-use, Non-veg = Non-vegetated, Open veg = open vegetation, T/F = Tree/Fallow. SR = Surface runoff, LF = Lateral 

flow, Perc = Percolation. Sub-basins with higher slopes have higher estimates of lateral flow. 

 
Size 

(km2) 

2009 2014 2018 Slope (%) 

 
  

Land use (%) SR 

(mm) 

LR 

(mm) 

Perc 

(mm) 

Land 

use 

(%) 

SR 

(mm) 

LR 

(mm)  

Perc (mm) Land use 

(%) 

SR 

(mm) 

LR 

(mm) 

Perc 

(mm) 

  

Sub-

basin1 

0.01 Non-veg 

(%) 

17.70 294.6

9 

709.47 543.11 29.40 176.91 734.81 571.27 0.00 211.25 751.39 586.14 0-10 35.3 

  
Open-

veg (%) 

76.50 
   

29.40 
   

58.80 
   

11-20 64.7 

  
T/F (%) 5.90 

   
41.20 

   
41.20 

   
21-30 

 

               
31-40 

 

                 

Sub-

basin2 

0.01 Non-veg 

(%) 

11.80 319.3

5 

690.95 538.96 17.70 203.85 661.82 619.07 0.00 160.99 766.33 617.96 0-10 41.2 

  
Open-

veg (%) 

88.20 
   

47.10 
   

41.20 
   

11-20 58.8 

  
T/F (%) 0.00 

   
35.30 

   
58.80 

   
21-30 

 

               
31-40 

 

                 

Sub-

basin3 

0.003 Non-veg 

(%) 

0.00 349.2

3 

337.85 854.61 66.70 174.34 363.43 927.52 0.00 349.88 338.07 860.01 0-10 100 

  
Open-

veg (%) 

100.00 
   

0.00 
   

100.00 
   

11-20 
 

  
T/F (%) 0.00 

   
33.30 

   
0.00 

   
21-30 

 

               
31-40 
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Sub-

basin4 

0.003 Non-veg 

(%) 

33.30 314.8

4 

391.10 829.83 66.70 174.20 408.69 883.49 33.30 316.15 390.27 833.76 0-10 66.7 

  
Open-

veg (%) 

66.70 
   

0.00 
   

66.70 
   

11-20 33.3 

  
T/F (%) 0.00 

   
33.30 

   
0.00 

   
21-30 

 

               
31-40 

 

                 

Sub-

basin5 

0.03 Non-veg 

(%) 

22.20 257.6

3 

678.47 606.47 33.30 228.90 620.91 632.85 3.70 218.17 622.23 704.57 0-10 33.3 

  
Open-

veg (%) 

59.30 
   

44.40 
   

55.60 
   

11-20 66.7 

  
T/F (%) 18.50 

   
22.20 

   
40.70 

   
21-30 

 

               
31-40 

 

                 

Sub-

basin6 

0.03 Non-veg 

(%) 

66.70 279.0

8 

441.38 808.29 100.00 238.93 432.37 795.73 0.00 347.67 418.36 783.30 0-10 33.3 

  
Open-

veg (%) 

33.30 
   

0.00 
   

100.00 
   

11-20 66.7 

  
T/F (%) 0.00 

   
0.00 

   
0.00 

   
21-30 

 

               
31-40 

 

                 

Sub-

basin7 

0.003 Non-veg 

(%) 

0.00 314.8

1 

932.40 313.27 66.70 253.27 809.21 426.37 0.00 315.04 934.36 314.21 0-10 
 

  
Open-

veg (%) 

100.00 
   

33.30 
   

100.00 
   

11-20 100 

  
T/F (%) 0.00 

       
0.00 

   
21-30 

 

               
31-40 
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Sub-

basin 8 

0.009 Non-veg 

(%) 

22.20 232.3

5 

1155.70 181.19 55.60 180.35 1121.60 207.60 0.00 215.26 1102.84 254.12 0-10 
 

  
Open-

veg (%) 

66.70 
   

22.20 
   

77.80 
   

11-20 44.4 

  
T/F (%) 11.10 
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5. Njaba2 

The Njaba2 catchment (figure 5.18) has an area of 1.28 km2 (Table 5.1). Reductions in 

tree/fallow cover were observed from 37.7% in 2009 to 3.5% in 2018 across the entire 

catchment, however, there was increase in fallow-cover in sub-basin 20 (sub-basin 20 covers 

most parts of the gully). Non-vegetated surfaces increased from 15.5% to 24.7% between 2009 

and 2018, also, open vegetated areas increased from 46.8% to 71.8% within same period (figure 

5.18). 
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Figure 5.18: A, Njaba2 gully watershed. Gully ID, 3. Sub-basins are labelled. B, Land-use changes. There is 

sustained reduction in tree/fallow from 2009 to 2018 across the entire catchment, although in sub-basin 20, increase 

in fallow is observed. Non-vegetated surfaces remained at low-density between 2009 and 2018. 
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Total estimated streamflow was the same for 2009 and 2018 (21 m3/s). Total surface runoff 

contribution to streamflow increased in all but three sub-basins (11, 17, 20) between 2009 and 

2018 (figure 5.19). Maximum lateral flow increased in four sub-basins (10, 11, 13, 20) and 

reduced in the other 16. Three sub-basins (9, 17, 20) had higher percolation estimates in 2018 

than in 2009 while three sub-basins (4, 7, 11) had higher maximum evapotranspiration values 

was in 2018 than 2009. These changes in hydrological processes are related to changes in land 

use within the sub-basins, e.g. increased fallow-cover in 2018 led to reductions in modelled 

surface runoff and increase in estimated lateral flow and percolation totals in sub-basin 20. 

Total rainfall was 2362 mm and 2351 mm for 2009 and 2018 respectively.  
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Figure 5.19: Njaba2 hydrology, A, Streamflow, B, surface runoff. 
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Figure 5.19 cntd: Njaba2 hydrology. 
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In all the five sample catchments, spatial connectivity of land use influenced streamflow into 

and out of individual sub-basin reaches. For example, in Njaba 2, upstream sub-basins had 

higher surface runoff contributions to streamflow due to reductions in fallow cover in 2018 

(figure 5.19B), however, due to the higher vegetated nature of sub-basin 20, lesser runoff flow 

was modelled in sub-basin 20. It is also likely that surface flow from upstream sub-basins 

would infiltrate in sub-basin 20 thereby reducing total streamflow out of catchment, vegetated 

channels reduce peak flow (Frankl et al 2019) by increasing friction, reducing velocity and 

increasing transmission losses. With regards to gully management, proper management of 

upper catchments reduces runoff response (Nyssen et al. 2010), and while higher non-vegetated 

areas in upper catchment area may not affect the general streamflow out of a catchment (as 

observed in Njaba5), higher surface runoff volumes from upstream sub-basins will likely get 

to the gully head. This higher runoff volume may enhance gully head migration, especially, if 

there is scanty vegetal cover at the gully head. Higher vegetal cover at the gully head will 

possibly enhance infiltration of surface runoff. Infiltrated water either flows laterally, or joins 

groundwater flow. Both types of sub-surface flow facilitate gully evolution (Okagbue & Uma, 

1987; Dunne, 1990).  

 

 

 

 

 

 

 

 

Figure 5.19 cntd:  Njaba2 hydrology, A, estimated streamflow. Total flow out of the catchment remained at 21 m3/s 

in 2009 and 2018. B, surface runoff contribution to streamflow. Surface runoff increased in all but three sub-

basins (11, 17, 20) between 2009 and 2018 in response to land-use changes. C, lateral flow contribution to 

streamflow. Maximum lateral flow increased in four sub-basins (10, 11, 13, 20) and reduced in the other 16. D, 

percolation estimates. Three sub-basins (9, 17, 20) had higher percolation estimates in 2018 than in 2009 while 

reductions were observed in the remaining 17. E, evapotranspiration. 2018 has the highest evapotranspiration. 

Total annual rainfall was 2362 mm and 2351 mm for 2009 and 2018 respectively. 
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5.2 Result validation 

It is standard procedure to undertake validation of modelled results to ensure they reflect what 

is observed in the field. In the absence of observed streamflow data, results available from 

literature review, focus group meeting and fieldwork (section 3.2.2.1.11) were used to improve 

confidence in the modelled result.  

Surface runoff: changes in land use, especially, increased paved surfaces, leads to increased 

surface runoff (section 5.1). Studies by Njoku et al. (2010), Efiong, (2011), Enaruvbe & Ige-

Olumide, (2015), AC-Chukwuocha, (2015), Enaruvbe & Atedhor, (2015) and Njoku et al. 

(2017) from different parts of southeast Nigeria observed there have been changes in land use 

from vegetated surfaces to paved surfaces over the years. These authors suggested these 

increased paved surfaces have led to higher incidences of surface runoff. Results from the two 

focus group meetings (section 4.4.2) held in Amucha and Obibi-Ochasi confirmed increase in 

paved surfaces in both communities in the last 10 years. The respondents suggested there have 

been higher surface runoff volumes in their communities following increase in paved surfaces 

in the last 10 years (2009 – 2018), “more houses have been built while the grasses and forests 

have been cleared, these changes have increased surface runoff”. They also blamed higher 

volume of surface runoff on the type of roofing sheet employed in recent times, “the use of 

aluminium/iron roofing sheets in building construction has increased surface runoff because 

many years ago, thatch roofs were used, and they produced lesser runoff”. Modelled surface 

runoff estimates were greater in 2018 than 2009 for both watersheds (Amucha and Obibi-

Ochasi).  

During fieldwork, one gully under active management (Urualla_gully1 catchment) and one 

where gully rehabilitation works were abandoned (Umueshi catchment) were visited. At both 

sites, vegetation cover had been cleared while earth-moving equipment were used to work 

surrounding areas of the gully and thereby likely increasing compaction which may possibly 

reduce infiltration. At both sites, rills of different sizes were observed which indicate signs of 

surface flow (figures 4.10A and 5.20). Surface runoff estimates were higher in 2018 than 2009 

for both catchments, and thus reflecting observations made in the field. Observed results from 

two visited watersheds (Urualla_gully1 and Umueshi) and focus group discussions from two 

catchments (Amucha and Obibi-Ochasi) support the higher estimates of 2018 surface runoff.  

Sub-surface flow: during fieldwork, presence of springs and return flow were observed at two 

visited gully sites; Amucha and Obibi-Ochasi gully sites. Although modelled results indicate 
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reductions in lateral flow and percolation at these catchments (Appendices 5.2 and 5.16), 

generous amounts of both hydrological parameters were estimated at both catchments. A video 

(attached as a separate document, screenshots shown in figure 5.21) of sub-surface return flow 

at Obibi-Ochasi catchment is evidence of high sub-surface flow in the study area as indicated 

in Appendices 5.2 and 5.16. Although there are no measured daily values for surface runoff or 

baseflow in the study area, literature review, responses from focus group meetings and field 

observations confirm that estimated results presented in this study are reasonable.  
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Figure 5.20: Runoff rill formed on compacted surface at the Umueshi abandoned gully rehabilitation site. Rills found 

close to gullies had depth ranges between 0.4 – 0.7 m, widths varied between 0.25 & 2.2 m while lengths ranged from 10 

– 60 m.  
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5.3 Changes in gully sizes in response to changes in the hydrology of gully 

catchments  

Modelled results of changes in catchment hydrology presented so far have been used to 

illustrate influence of changes in land use on the hydrology of catchments. It has been shown 

in section 5.1.2 that while there could be general change in land use in a catchment in one 

direction (e.g. reduction in fallow), one or two sub-basins within such catchments could 

experience land-use changes in the opposite direction (e.g. increase in fallow). Also, it has been 

noted in section 5.1.2 that spatial configuration of land use within a sub-basin influences 

Figure 5.21: Screenshots of sub-surface return flow at the older gully in Obibi-Ochasi. Video attached as a separate 

document. 
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volume of streamflow into and out of sub-basins. These variations in land-use changes within 

sub-basins affect hydrological processes and potentially, gully expansion. In this section,  

investigations to the extent to which changes in gully dimensions have been driven by changes 

in hydrology between 2009 and 2018 are presented. First,  detailed assessments of changes in 

the five ‘sample catchments’ are given while summary changes are provided for the remaining 

gully catchments. Tables 5.5, 5.6 and 5.7 illustrate changes in gully characteristics from 2009 

to 2018 across the 22 gully catchments.  

In IdNorthWS (figure 5.9), gully lengths were 0.1, 0.1 and 0.11 km, the average widths were 

34.09, 38.07 and 44.17 m while gullied areas were 3557, 3954 and 4902 m2 for 2009, 2014 and 

2018 respectively (Table 5.5). Figure 5.17 shows that during intervening years, variations in 

rainfall leads to variations in both surface runoff and general streamflow. In the IdNorthWS 

catchment for example, maximum surface runoff values were 261 and 224 mm while total 

streamflow volumes were 9.1 and 8.9 ms-3 and rainfall totalled 2489 and 2403 in 2011 and 

2012 respectively (Table 5.8). 2010 and 2013 were drier than 2014 (figure 5.17). Despite the 

increase in runoff contribution to streamflow between 2009 and 2014 and reduction in lateral 

flow across the IdNorthWS catchment, but especially, in sub-basins adjacent to the gully 

(figure 5.10, Table 5.8), no change was recognised in gully length for this period (Table 5.6). 

However, a 10 m growth of gully length was observed between 2014 and 2018 (Table 5.6) 

corresponding to increase in lateral flows (Table 5.8) and percolation particularly in the sub-

basins bordering the gully and higher estimates of surface runoff from upstream sub-basins 

(figure 5.10). Gully width widening occurred during both time periods. Thus, it is possible that 

surface runoff facilitated the lateral growth of the gully between 2009 and 2014, while surface 

and sub-surface flows influenced longitudinal and lateral gully expansions between 2014 and 

2018.  
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Table 5.5: Changes in gully characteristics between 2019 and 2018. Gullies not covered by the 2014 satellite imagery have no cell-values. 

number Catchment id Gully length 

2009 (km) 

Average 

width 

2009 (m) 

Area 2009 

(m2) 

Gully 

length 2014 

(km) 

Average 

width 

2014 (m) 

Area 

2014 

(m2) 

Gully 

length 

2018 

(km) 

Average 

width 2018 

(m) 

Area 2018 (m2) 

1 IdNorthWS 0.1 34.09 3557 0.1 38.07 3954 0.11 44.17 4902 

2 IdSouthWS1  0.16 35.67 5879 0.2 32.14 6935 0.2 30.53 6589 

3 NjabaWS1  0.5 30.31 15166 - - - 0.5 36.42 19371 

4 Amucha 0.7 43.63 32508 - - - 0.9 56.68 52462 

5 IdeatoNorth  1.2 31 39183 - - - 1.2 44.84 53182 

6 IdeatoNorth1 0.46 30.85 11270 - - - 0.5 29.11 16929 

7 IdeatoSouth_gully1 0.3 27.81 8125 0 0 0 0.6 31.07 19892 

8 IdeatoSouth_gully2 0 0 0 0.36 12.3 5060 0.56 23.4 13533 

9 IdeatoSouth3  0 0 0 0.1 10.9 1102 0.19 14.51 2850 

10 Isu_gully1 0.22 49 10622 0.32 45 14835 0.33 57.3 21497 

11 Isu_gully2 0.19 42.3 8203 0.2 50.14 10402 0.22 55 14170 

12 Isu_gully3 0.06 31.4 1723 0.06 31.4 1723 0.23 50 11661 

13 Njaba2  0.5 31.8 18027 - - - 0.4 44.89 18804 

14 Njaba4  0.3 15.23 4865 - - - 0.5 23.29 11287 

15 Njaba5  0 0 0 - - - 0.5 18.37 10008 

16 Orlu1  1.4 19.76 29442 - - - 2 31.46 57679 

17 Orlu2 0.45 39.22 22489 - - - 0.53 38.25 24480 

17 Orlu2 0.29 40 9557 - - - 0.65 60 34105 

18 Urualla_gully1 0.8 38.66 38164 - - - 0.9 38.86 52081 

19 Urualla_gully2 0.36 25.37 9235 - - - 0.7 27.87 16236 
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20 Urualla_gully3 0.93 59.24 47530 - - - 0.98 72.23 52235 

21 Orlu3 0 0 0 - - - 0.5 50.69 23192 

22 Umueshi 0.33 51.1 17031 - - - 0.37 57.6 20060 

 

Table 5.6: Summary changes in gully sizes for catchments captured in the 2009, 2014 and 2018 satellite data. 

Catchment  Change in 

length 2009 – 

2014 (m) 

Change in 

width 2009 – 

2014 (m) 

Change in 

area 2009 – 

2014 (m2) 

Change in gully 

length 2014 – 

2018 (m) 

Change in gully width 

2014 – 2018 (m) 

Change in gullied area 

2014 – 2018 (m2) 

IdNorthWS 0 3.98 398 10 6.1 948 

IdSouthWS1 40 -3.53 1056 0 -1.61 -347 

Ideatosouth_gully1 - - - 600 31.07 19892 

Ideatosouth_gully2  360 12.3 5060 200 11.1 8472 

Ideatosouth3 100 10.9 1102 90 3.61 1748 

Isu_gully1 104 -4 4213 12 12.3 4213 

Isu_gully2 6 7.84 2199 20 4.86 3768 

Isu_gully3 0 0 0 170 18.6 9938 

 

Table 5.7: Summary changes in gully sizes for catchments captured in the 2009 and 2018 satellite data. 

Catchment  Change in gully 

length 2009 – 2018 

(m) 

Change in gully 

width 2009 – 2018 

(m) 

Change in gullied area 2009 – 

2018 (m2) 

NjabaWS1 0 6.11 4205 

Amucha 200 13.05 19955 

IdeatoNorth 0 13.84 14000 
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IdeatoNorth1 40 -1.73 5659 

Njaba2 -100 13.09 777 

Njaba4 200 8.06 6422 

Njaba5 500 18.37 10008 

Orlu1 600 11.7 28237 

Orlu2 80 -0.97 1992 

Orlu2 360 20 24548 

Urualla_gully1 100 0.2 13918 

Urualla_gully2 340 2.5 7001 

Urualla_gully3 50 13 14000 

Orlu3 500 50.69 23192 

Umueshi 40 6.5 3029 
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Table 5.8: IdNorthWS variation in modelled hydrological processes for intermediate years. 

 Year Maximum 

runoff 

(mm) 

Lateral flow (mm) Streamflow 

(m3/s) 

Rainfall 

(mm) 

Gully 

adjacent 

sub-basins 

  8 9 10   

 2009 226 369.12 535.54 752.75 9.1 2447 

 2011 261 360.88 525.58 739.58 9.1 2489 

 2012 225 350.98 508.94 713.14 8.9 2403 

 2014 262 342.93 493.06 698.82 8.9 2411 

 2017 308 356.24 475.25 730.88 8.9 2411 

 2018 334 368.84 493.05 762.88 18 2443 

 

 

In the IdSouthWS1 gully catchment, there was an increase in gully length by 40 m between 

2009 and 2014 (Table 5.6). No further increase was observed in the headward extension for 

the years 2014 and 2018 and there was continuous reduction in gully width from 2009 to 2018. 

Increase in gully length/headward extension corresponded to higher surface runoff contribution 

to streamflow in 2011 and 2012 (figure 5.17B) and higher lateral flow and percolation in sub-

basins 3 and 4 in 2014 compared to 2009 (figure 5.17). Sub-basins 3 and 4 are adjacent to the 

gully. Sustained reduction in gully width is likely due to vegetal colonisation evidenced in the 

increase in tree/fallow-cover in the IdSouthWS1 catchment (figure 5.16) which is capable of 

concealing the actual width of the gully.  

In Njaba2 catchment (figure 5.18), gully lengths were 0.5 and 0.4 km, widths measured 31.80 

and 44.89 m while gullied areas were 18027 and 18804 m2 for 2009 and 2018 accordingly 

(Table 5.5). Thus, while gully length apparently reduced by 100 m, there were lateral and areal 

expansions of 13.09 m and 777 m2 between 2009 and 2018 (Table 5.7). Higher width and area 

values corresponded to higher surface runoff in all but three sub-basins that witnessed reduced 

estimates of surface runoff (11, 17, 20), increased lateral flows and percolation especially in 

sub-basins 17 and 20 which cover the gully (figure 5.19). Apparent reductions in gully 

dimensions between 2009 and 2018 possibly resulted from increased vegetal cover (there was 
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increase in fallow-cover in sub-basin 20, figure 5.18) which may have covered the real 

dimensions of the gully length.  In these three gully catchments, IdNorthWS, IdSouthWS1 and 

Njaba2, growth of gully sizes (length, width or area) corresponded with higher volumes of sub-

surface flows (lateral flow and percolation estimates) especially in gully-adjacent sub-basins. 

The gully in IdeatoSouth_gully1 catchment, is thought to have been managed/sand-filled 

sometime between 2009 and 2014 as the gully was not visible in the 2014 satellite data. This 

gully reappeared in the 2018 satellite data, and modelled surface runoff increased between 2014 

and 2018 in all but two sub-basins (7 and 9). These two sub-basins deliver water into the gully 

from the sides as the gully head is located in sub-basin 5 (figure 5.11). Reductions in lateral 

flow was simulated in sub-basins 1 and 2 while the other sub-basins had higher estimates of 

lateral flow. Therefore, it is likely that gully expansion post-2014 was driven by increase in 

both surface and lateral flows at this catchment. With regards to IdeatoSouth_gully2 catchment, 

no gully was identified in the 2009 imagery and increase in gully dimensions post the 2014 

satellite data corresponded with higher surface flow and reduced lateral flow estimates between 

2014 and 2018 across all sub-basins.  In NjabaWS1 (Appendix 5.1), longitudinal extension of 

the gully was not observed between 2009 and 2018 (Table 5.7) despite a higher surface runoff 

estimate across all sub-basins in 2018 compared to 2009. Lateral and areal gully expansions 

were observed which corresponded to an increase in lateral flow in sub-basin 2 and higher 

percolation in sub-basin 5. Both sub-basins deliver flow directly into the gully. 

Higher surface runoff, lower lateral flow and percolation values were modelled for the Amucha 

catchment (Appendix 5.2) between 2009 and 2018 and these modelled results corresponded to 

200 m, 13.1 m and 19955 m2 increase in gully length, width and area, accordingly (Table 5.7). 

The IdeatoNorth gully catchment experienced increase in estimated surface runoff and 

reductions in lateral flow and percolation between 2009 and 2018 (Appendix 5.3), and in the 

same period, no headward retreat was observed while lateral and areal retreats of 13.8 m and 

14000 m2 were recorded (Table 5.7). In the IdeatoNorth1 watershed (Appendix 5.4), higher 

estimates of surface runoff, lower lateral flow and percolation corresponded with a 40 m 

headward extension of the gully between 2009 and 2018. Although, there was reduction in 

gully width within same period, areal expansion of 5659 m2 was recorded (Table 5.7). No gully 

was found in the 2009 satellite data of the IdeatoSouth3 catchment however, a gully was 

identified in the 2014 imagery. There was increase in estimated surface runoff in all the sub-

basins in the Ideatosouth3 catchment (Appendix 5.5), between 2014 and 2018. 10 sub-basins, 

including sub-basin 12 (the gully in this catchment is found in sub-basin 12) experienced 
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increase in lateral flow. There was increased estimate of percolation in sub-basin 12 as well. 

These estimated changes in modelled hydrological processes related to gully head retreat of 90 

m, lateral and areal expansions of 3.61 m and 1748 m2 between 2014 and 2018 (Table 5.6).  

There was increase in surface runoff in all but two sub-basins (2 and 4) in the Isu_gully1 

catchment. Equally, there were increases in modelled lateral flow and percolation in sub-basins 

2, 5 and 6 between 2009 and 2014 (Appendix 5.6). During the same period, gully length 

increased by 100 m. Reductions in surface runoff estimate were recognised in sub-basins 2 and 

5 while higher lateral flow was identified across the sub-basins (except sub-basin 7) between 

2014 and 2018. Gully length, width and area increased by 12 and 12.30 m and 4213 m2 

respectively between 2014 and 2018 (Table 5.6). In Isu_gully2 catchment (Appendix 5.7), 

increase in surface runoff was estimated in all but three sub-basins (2, 7, 8) between 2009 and 

2014. During same period, there were reductions in lateral flow across all sub-basins and these 

changes in modelled estimates corresponded with gully areal retreat of 2199 m2. Between 2014 

and 2018, increase in lateral flow across all sub-basins was estimated, and these higher lateral 

flow values related to 20 and 4.9 m headward and lateral expansions of the gully respectively 

(Table 5.6).  The Isu_gully3 catchment (Appendix 5.8) experienced increase in estimated 

surface runoff in all but two sub-basins (1 and 6) while lateral flow and percolation estimates 

reduced between 2009 and 2014. No change was identified in the gully sizes during this period 

(Table 5.6). There was increased surface runoff between 2014 and 2018 in all sub-basins except 

2,5,7, also, higher percolation was modelled for sub-basin 2 and 7. During the same period 

(2014 – 2018), gully length and width retreats of 170 m and 18.6 m were recorded (Table 5.6). 

In the Njaba4 catchment (Appendix 5.9), increased estimates of surface runoff and subsequent 

reductions in lateral flow and percolation corresponded with 200 m increase in gully length 

and 6422 m2 areal expansion between 2009 and 2018 (Table 5.7). Modelled surface runoff 

estimates in the Njaba5 catchment (Appendix 5.10) were higher in 2018 than 2009 across all 

sub-basins. Also, both lateral flow and percolation values of 2009 were greater than those of 

2018 and a gully headward extension of 500 m was recognised during same period (Table 5.7). 

The Orlu1 and Orlu2 watersheds are urbanised watersheds in the study area (Appendices 5.11 

and 5.12). There were increased estimates of surface runoff, reduced lateral flow and 

percolation volumes between 2009 and 2018. Gully sizes increased with an increase in surface 

runoff (Table 5.7). 
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Estimated surface runoff was higher in all but four sub-basins (3, 8, 9, 12) in the Urualla_gully1 

catchment (Appendix 5.13). The gully in this catchment was under management as at the time 

of field visit. Gully length increase (100 m between 2009 and 2018) was recorded in this 

catchment as well (Table 5.7). The Urualla_gully2 catchment (Appendix 5.14) experienced 

increased estimates of surface runoff, reduced percolation and lateral flow volume between 

2009 and 2018. During the same period, gully areal expansion of 7001 m2 was recorded (Table 

5.7). There was increase in estimated surface runoff in all sub-basins of the Urualla_gully3 

catchment (Appendix 5.15). Lateral flow estimates of 2009 were higher than those of 2018 in 

all but one sub-basin (sub-basin 2), equally, there was reduction in modelled percolation in all 

sub-basins between 2009 and 2018. Gully length and width increased by 50 and 13 m between 

2009 and 2018 (Table 5.7). 

Results from focus group meetings suggest that the gully in the Obibi-Ochasi catchment 

(Appendix 5.16) is one of the oldest gullies in the state (formed in 1968). However, due to thick 

vegetal cover (figure 5.22), the gully was not visible in the 2009 satellite imagery. The gully 

was mapped using the 2018 imagery at a length of 500 m. There was increase in estimated 

surface runoff across all sub-basins. Also, estimated lateral flow in 2009 was higher for all sub-

basins than in 2018 except in sub-basin 3 which is at the head of the gully. In the Umueshi 

catchment (Appendix 5.17), increased surface runoff and reductions in lateral flow and 

percolation volumes were estimated between 2009 and 2018. During the same period, gully 

length increase of 40 m and areal expansion of 3029 m2 were recorded (Table 5.7).  

Despite similarities in soil type and climate, modelled results varied from catchment to 

catchment based on variations in land use and other local factors such as slope angles of sub-

basins. Gully changes also varied from one catchment to another. While gully length, width 

and areal expansions related to increases in surface flow in some catchments, gully growth 

corresponded to sub-surface flow changes in others (Table 5.9). Yet in some watersheds, as 

increased surface and sub-surface flows were modelled across different sub-basins, changes in 

gully dimensions occurred. In summary, modelled results point to the uniqueness of individual 

gully catchments and gully responses to this uniqueness is important for gully management. 

These results also suggest there is a continuum in the actions of both sub-surface and surface 

flows as gully drivers in the study area. Finally, results presented in this section have shown 

that gullies in the study area responded to changes in catchment hydrology (reduction or 

increase in surface and sub-surface flows) and thereby providing answers to the second 

research question.  
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Table 5.9: Summary changes in gully dimensions in response to changes in catchment hydrology. N = no, Y = 

yes, SR = surface runoff. 

Increase in 

length 

alongside 

increase in 

SR 

 

Increase in 

width 

alongside 

increase in 

SR 

 

Increase in 

area 

alongside 

increase in 

SR 

 

Increase in 

length 

alongside 

increase in 
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5.4 Discussion 

5.4.1 Changes in catchment hydrology in response to land-use changes: implications for 

surface runoff-driven erosion  

Conversion of land from vegetated to paved surfaces increases surface runoff contribution to 

streamflow (figures 5.3. and 5.5). Conversely, higher vegetal cover reduces surface runoff 

contribution to streamflow while enhancing infiltration to deep aquifer-recharge. Water is lost 

through a catchment by deep aquifer recharge, thus, reducing volume of streamflow (figure 

5.17C). Despite having a uniform amount of rainfall (2362 mm) for both 2009 and 2018, there 

was an increase in surface runoff contribution to streamflow in the Orlu1 catchment from a 

minimum estimated value of 166 mm in 2009 to 390 mm in 2018, and a similar increase in 

maximum runoff estimate from 533 mm in 2009 to 797 mm in 2018 (figure 5.5B). During the 

same period, non-vegetated surfaces increased from 26.2% to 63.7%. Streamflow estimates 

were either the same in 2009 and 2018 or greater in 2018 across the five catchments whose 

results were presented, yet 2009 was the wettest year. These increased streamflow estimates 

Figure 5.22: Vegetal cover growing inside and around gully edges at the older Obibi-Ochasi gully. This gully started 

in 1968 but was not captured in the 2009 satellite data due to vegetal cover. 
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are due to higher volumes of surface runoff and lesser deep aquifer recharge. Njoku et al. (2017) 

made a similar observation in Owerri the Imo State capital. They concluded that increased 

paved surfaces caused by higher urbanisation of the state capital from 1986 to 2016 had 

increased incidences of surface runoff and flooding in the city. Significant increase in discharge 

was observed in the Gumara catchment, Ethiopia between 1986 and 2015, yet no significant 

change was identified in rainfall regime during same period (Birhanu et al. 2019). Higher 

streamflow discharge was attributed to increase in: urban and bare surfaces, cultivated lands 

and reductions in grazing and forested lands (Birhanu et al. 2019). Higher surface runoff 

increases incidence of gully erosion through surficial removal of soil particles along rills and 

gullies (Attah et al. 2013; Okagbue & Uma, 1987).  

Two types of changes were observed in the non-vegetated class in some of the modelled 

catchments (e.g. IdeatoSouth_gully2), one was increase in land area under non-vegetated class 

and the other was increase in connectivity of non-vegetated surfaces. Thus, in some 

catchments, non-vegetated class changed from low-density to medium (IdeatoSouth_gully1, 

IdeatoSouth_gully2) and in others, they remained at low-density (IdNorthWS1, IdSouthWS1 

and Njaba2). Curve Numbers for these land-cover classes are different (Table 3.6) and have 

implications on modelled runoff and streamflow. For example, change from low to medium 

density means higher estimates of surface runoff and increased runoff contribution to 

streamflow into and out of a channel reach. Based on the configuration of land use in a 

catchment, there could be higher surface runoff contribution to flow in the upper section of a 

catchment, but reduced streamflow out of the downstream reaches.  This variation potentially 

affects gully-driving processes. For example, higher surface runoff flowing into the gully head 

will likely increase headcut retreat rates especially, when the gully head is sparsely vegetated. 

However, higher vegetal cover in the lower section of same gully will potentially increase 

infiltration and reduce the process of surface runoff erosion. If the gully head is vegetated, 

higher surface runoff flowing from upstream areas may infiltrate and enhance sub-surface 

erosion at the gully head. Therefore, it is possible that different hydrological processes will be 

at work in different sections of a gully based on land use configuration of not just the entire 

catchment, but also of the sub-basin where the gully is found. 

While human-induced land-use changes are recognised in this work, natural occurrences (such 

as prolonged period of dry season) that enhance reduction in vegetal cover will also increase 

surface runoff and likely facilitate surficial erosion of gully walls. With regard to seasonal 

variation in vegetal cover, at the beginning of rainy season (March – April) when vegetation 
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cover is at its minimum, the role of surface runoff as an agent of gully expansion is likely to be 

more pronounced (figure 5.23). This condition is enhanced by the reduced vegetal cover of the 

land and likely compaction of bare soils by both human and animals, both activities encourage 

surface runoff flow (Yibeltal et al. 2019). The dry season is not the only reason for reduction 

in vegetal cover at the outset of the rainy season. Bush burning (figure 5.24), an agricultural 

practise which is observed at the beginning of farming season (March/April) also plays a role 

in the removal of vegetal cover.  

 

 

 

 

 

 

 

 

 

 

Bush burning leaves the soils without vegetation cover as the rains start in earnest and thereby 

increasing susceptibility to erosion (Igwe et al. 2014).  Thus, combinations of 4/5 months of 

dry season (November – March) and bush burning an agricultural activity ensure soils are bare 

before the outset of rainy season. The work of surface runoff as a gully driver which manifests 

in gradual removal of soil particles (Okagbue & Uma, 1987) is likely to be more evident as 

long as favourable conditions exist (e.g. sparse vegetal cover) until a time when vegetation 

growth increases in response to availability of moisture. At this stage there is increased 

infiltration due to higher green-cover, and subsequent increase in sub-surface flow. Also, runoff 

may occur from saturation overland flow when there is higher vegetal cover and while 

saturation overland flow may not cause as much surface erosion because of the protection from 

vegetation cover, it might lead to gully expansion from subsurface erosion.  
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Figure 5.23: IdeatoSouth_Gully2 daily rainfall/runoff. Influence of runoff as a gully-driver will likely be dominant in the 

beginning of rainy season March/April (90th – 120th day of the year). 
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Figure 5.24: Bush burning so as to prepare the land for cultivation, this farming technique which happens just 

before the outset of rainy season leaves the soils bare and without vegetal cover. 

5.4.2 Sub-surface driven erosion 

During fieldwork, soil pipes were  not observed but considering the non-cohesive nature of 

soils under investigation in this study (section 4.4.1), Coloumb failure (section 2.1) as a process 

of seepage erosion is likely dominant in the study area. Poesen, (2018) remarked that 

significant feedback mechanisms between erosion and hydrological processes are not yet fully 

understood. In this study, modelling results suggest that slope gradient strongly influences the 

volume of lateral flow. Sub-basins with steep slopes produced higher volumes of estimated 

lateral flow (e.g. sub-basins 9 and 10 of Table 5.3 and figure 5.10) perhaps capable of eroding 

gully walls, conversely, higher percolation values were estimated in sub-basins with gentler 

slopes (e.g. sub-basin 5 of Table 5.3 and figure 5.10). This observation helps improve our 

knowledge on hillslope hydrology and erosional processes, thus, broadening our view from the 

correlation of higher slope angles with increased surface runoff (Gómez-Gutiérrez et al. 2015), 

to a new idea where we appreciate the relationship between higher slope gradients and lateral 

flow as a potential gully erosion driver.  In relation to changes in gully dimensions, it is likely 

both surface and sub-surface processes influence gully evolution such that higher surface 

runoff flowing into the gully head from upstream sub-basins could be driving headward 
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extension, while sub-surface flow, especially from gully-surrounding sub-basins, is responsible 

for lateral widening or vice versa. An example where gully expansion responded to increases 

in both surface and sub-surface flows is found in the IdNorthWS catchment (figure 5.10). 

Groundwater flow-driven gullying involves different processes of landsliding thus while 

surface runoff gradually removes soil particles, groundwater actions involve removal of earth 

materials in larger volumes (Okagbue & Uma, 1987). Considering the depths of visited gullies 

(> 15 m, figure 5.25), presence of springs (figure 5.21) and landslide scars, it is possible gullies 

under investigation in this study are at the fourth stage of evolution proposed by Okagbue and 

Uma (1987) (section 2.1). Published studies have indicated that active gullies are located 

mostly at the discharge areas of groundwater systems as well as in areas where the water tables 

are above the gully bottom (Egboka & Okpoko, 1984; Egboka & Nwankwor, 1985; Tebebu et 

al 2010). Elevated groundwater appears to enhance gully destabilization by facilitating 

slumping which results in gully widening and expansion. Slumping occurs because the pore 

water pressure above the gully bottom pushes the soil out when soils are saturated, and the pore 

water pressure is greater than the soil strength (Tebebu et al 2010). Thus, the elevated water 

table causes the rapid upslope migration of the gully head. When the water table is below the 

gully bottom, the soil is unsaturated and maintains some degree of cohesive strength. 

Therefore, gully widening in unsaturated soils is caused by surface runoff entering the gully, 

but this gully expansion occurs at much lower rates than when the soil is saturated (Tebebu et 

al 2010). This explanation could be the mechanism driving gully expansion in the IdNorthWS 

gully catchment where despite increase in estimated surface runoff, no changes were observed 

in gully length, yet width-widening was recorded between 2009 and 2014 in response to higher 

surface runoff (Table 5.6).  

Groundwater discharge at the surface as well as slumping were observed at visited gullies thus 

suggesting groundwater control on gully evolution in the study area.  It is important to note as 

well that groundwater could return to the surface as return flow thereby contributing to general 

surface runoff discharge (figure 5.21) and deepening existing gullies (Bernatek-Jakiel & 

Poesen, 2018). Return flow results from the downslope decrease in the capacity of the soil to 

transmit sub-surface flow (Dunne, 1990). 

Piping refers to the formation of linear voids (pipes) by concentrated flowing water in soils or 

in unconsolidated or poorly consolidated sediments (Jones, 2004). Swanson et al (1989) 

remarked that dispersive soils, low in clay content are susceptible to sub-surface erosion. They 
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recorded subsurface tunnel networks that drained into large, open gullies through tunnel outlets 

elevated on gully walls. According to Swanson et al (1989), this last condition suggests that 

the lowered base levels produced by large gullies may be a prerequisite for extensive piping 

upslope by providing increased hydraulic gradients to drive the subsurface erosion. Other 

authors have identified the occurrence of steep hydraulic gradient as a favourable condition for 

piping (Farifteh & Soeters, 1999; Díaz et al. 2007). Thus, in a positive feedback mechanism, 

sub-surface flow can increase susceptibility to gully erosion, while once gullies are formed, 

they can enhance vulnerability of soils to sub-surface flows by increasing hydraulic gradients 

(Frankl et al. 2016). Swanson et al (1989) also observed that presence of springs in a gully is 

evidence of sub-surface flow. Uprooted trees and bushes may increase sub-surface erosion 

because the holes left behind by decayed roots can cause soil cracking and accelerate downward 

water movement (Jones 1968).  

In this study area, particle size distribution results show that the soils are low in clay content 

(section 4.4.1). Fieldwork revealed that animal burrows are common in the area under 

investigation. Even though extensive tunnel networks that drain into gullies were not observed, 

it is possible the sheer sizes of visited gullies (figure 5.25) could provide hydraulic gradients 

capable of driving sub-surface erosion on adjacent hillslopes. Springs were observed and 

documented at visited gullies, especially, in Obibi-Ochasi and Amucha. Finally, bush burning 

is a common agricultural practise in the study area as already mentioned. It is possible that the 

roots of shrubs and fallow left behind after bush burning can enhance transmission of surface 

water underground, and thus facilitate sub-surface erosion. These factors strongly suggest that 

sub-surface erosion occurs in the study area as supported by increase in gully sizes with higher 

estimates of sub-surface flows, especially, in gully-adjacent sub-basins (e.g. Njaba 2 and 

IdSouthWS1). 
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Figure 5.25: Section of the older gully in Obibi-Ochasi community showing gully depth. Pictured man is used 

for scale. 
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5.5  Chapter summary  

The objectives of this chapter were to understand how variations in land use affect gully 

catchment hydrology and in turn, influence changes in gully characteristics and to achieve these 

objectives, two research questions were posed. A total of 22 gully catchments (figure 5.1) were 

studied in this chapter. There have been changes in gully catchment hydrology in response to 

land-use changes. While changes in land use in one direction across a catchment is possible 

(e.g. increase in non-vegetated surfaces), changes in the opposite direction in individual sub-

basins (e.g. reduction in non-vegetated surfaces) were observed, and these variations had 

implications for modelled catchment hydrology and in turn, gully evolution.  

While detailed results for 2009, 2014 and 2018 have been presented in this chapter, modelled 

hydrological processes for intermediate years were also presented (section 5.1.2). Inference 

from modelling results suggest that some catchments experienced increases in gully sizes in 

response to higher surface flow estimates (e.g. Amucha, Orlu1 and Orlu2), others had gully 

growth with higher estimates of sub-surface flow (e.g. IdNorthWS), and in some, gully 

expansions were observed in areas where both surface and sub-surface flows increased (e.g. 

IdSouthWS1, Njaba2). Modelling results suggest that in some catchments (e.g. IdNorthWS), 

lateral expansion in the first years of analysis (2009 – 2014) was driven by higher surface 

runoff, while in the later years of the analysis (2014 – 2018), both surface and sub-surface 

flows dominated as gully-expansion drivers. Despite the relatively small size of the study area 

(534 km2), similarities in soil, topography and climate, it is difficult to say explicitly that a 

single process was responsible for gully evolution across the entire study site thus 

acknowledging uniqueness of various catchments. It is safer to say there is a continuum in both 

surface and sub-surface flow processes as agents of gully expansion, such that higher surface 

flow from sub-basins in the upstream section of the gully possibly enhance gully head retreat, 

while higher lateral or groundwater flow from surrounding sub-basins influences gully lateral 

expansion.   

While it was not possible to validate the estimates of surface and sub-surface flows with 

observed data due to the unavailability of these data, result validation in this chapter has been 

conducted using three methods: literature review, observations from fieldwork and responses 

from focus group meetings.  
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5.6  Conclusions  

The following conclusions are made: 

1. Catchments that experienced increased non-vegetated surfaces and change in non-

vegetated class (e.g. from low density to medium or high density) had higher modelled 

surface runoff contribution to streamflow. In these catchments, reductions in sub-

surface flow were modelled. 

2. In contrast to the above point (1), higher sub-surface flow volumes were modelled in 

areas/sub-basins that had increased tree/fallow-cover. In these areas, reductions in 

surface flow were estimated. 

3. Inference from modelling results and analysis of gully sizes during the study period 

suggest that combinations of surface runoff and sub-surface flows enhance gully 

erosion in the study area.  

4. Despite the relatively small size of the study area, it is difficult to attribute gullying to 

one process, thus implying that uniqueness of gully catchments is important in 

understanding individual gully evolutions. 

5. Results from literature review, focus group meetings and field visit support the notion 

of increased surface runoff during the study period. 

6. Observations from fieldwork support the concept of sub-surface flow control as a gully 

driver.
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Chapter 6  

Gully-landslide interactions 

6.0 Introduction 

Chapter 6 provides answers to questions raised by objective 3, to understand the influence of 

land-use changes on gully-landslide interactions. The following research question is posed: 

how will changes in land use and catchment hydrology affect gully-landslide interactions? 

Chapter 6 is presented in the following sections: results of identified landslides and a 

conceptual model of gully expansion by landsliding are shown in section 6.1. Section 6.2 

summarises effects of land-use changes on gully landslide interactions while discussion 

follows in 6.3. Chapter summary and conclusions are presented in 6.4 and 6.5 accordingly. 

6.1 Identified gully-induced landslides and sensitivity analysis of slope stability 

Gully-induced slides were observed at all the five communities visited during field work 

(Amucha, Obibi-Ochasi, Isu Njaba, Umueshi and Urualla, figure 4.21). For example, the entire 

stretch of the Amucha gully (figure 6.1) showed old and fresh landslide scars. Table 6.1 and 

Figure 6.2 show multiple failures at one of the landslide sites in the Amucha gully and they 

range from complex failures to shallow debris slides. At slide 1 for example, four fresh scars 

were identified (three are pictured in figure 6.2), and their slope angles varied between 25° and 

38° while runoff distances ranged between 7.7 to 15 m. These slides were also shallow with 

depth ranges of 1.4 – 1.5 m and widths of 2.2 – 3 m. The entire length of the gully top was 

vegetated; however, figure 6.2 was sparsely vegetated. Due to the active nature of the slides, 

establishment of vegetation colonies could prove challenging, hence, the scanty vegetal cover 

on landslide scars.  

Soils in the Amucha gully sites are sandy and have low cohesion values (Section 4.4.1) and 

thus may have little resistance to erosive forces (Okagbue & Ezechi, 1988). Observation during 

fieldwork showed that the entire gully floor turns into a flowing stream after rains, thereby 

possibly removing toe support which potentially leads to further destabilisation of the gully 

(Igwe. et al. 2014). Both these processes occurring simultaneously can increase susceptibility 

of these landslide sites to further gully-induced sliding. Two gullies were visited in the Obibi-

Ochasi Community; one began in 1968 and the other was said to be less than two years old as 

at the time of visit. Shallow debris slides were observed in the older gully while soil fall, and 

block failure were the dominant sliding activities in the younger gully (section 6.12). The Isu 

Njaba gullies exhibited signs of block failure while the Urualla gully was under management 



182 
 

which involved reworking gully slopes (observed in the field). Although landslide 

measurements were not conducted in the other gullies, signs of stream flow at gully floors were 

observed while gully surrounding lands on gully top were vegetated except at the Urualla site 

which is under management. Stream flow through these gully floors will likely enhance gully 

wall destabilisation by removing toe support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slide 1 

Slide 2 

Slide 3 

Slide 4 

Slide 5 

Njaba River 

Gully head 

Figure 6.1: Amucha gully draped on the 2017 satellite imagery showing five fresh landslide sites described in 

Table 6.1.  The Njaba River is also shown. 
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6.1.1 Sensitivity analysis and slope stability results 

Sensitivity analysis was undertaken to understand the strengths and contributions of the 

individual parameters (e.g. slope angle) defined by the slope stability equation (section 3.2.3.3) 

and thereby make informed decisions about management practices. Landslides in the gullies 

were more sensitive to changes in slope angles (β) and depth of material (z). All other variables 

held constant, slope failure within the gullies is likely to occur as the slope angle and depth of 

material approach 32° and 2.5 m respectively (figure 6.3). 

Table 6.1: Identified gully-induced landslides in the Amucha gully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modelled FoS is greater than 1 at all the visited slides in the Amucha gully (figure 6.4), and 

hence, the slopes are not expected to fail again. Considering these slopes have already failed 

prior to fieldwork may be a possible reason for greater than 1 FoS. If the vertical thickness of 

materials (depth) is 2.5 m, and at a slope angle of 32°, failure is likely to occur (figure 6.3), 

Slide name Coordinates Slope angle (°) Description  

Slide 1 

 

 

 

 

 

 

 

 

 

 

 

First slide  

 

Second slide 

 

Third  

05.73569N 
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Complex slide – This 

landslide is complex 

having three 

simultaneous 

failures. All slides 

were shallow debris 

slides with short 

runout distances 

between 7.7 – 15 m.  

 

Slide 2 05.73509N 

007.03920E 

32 Presence of slumping 

mass. Presence of 

multiple failures.  

Slide 3 05.73484N 

007.03885E 

25  

 

 

Shallow debris slides 

Slide 4 05.73418N 

007.03877E 

34 Shallow debris slide 

Slide 5 05.73384N 

007.03878E 

22 Shallow debris slide 
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thus, another possible reason for higher than 1 value of FoS is because the vertical thickness of 

materials was perhaps less than 2.5 m at these visited slides. Sustained reduction in the FoS as 

the slope angle of the gully walls increased was identified (Figure 6.4), and this information is 

similar to that shown in figure 6.3A; as gully walls attain steeper slope angles, susceptibility to 

gully-induced slides increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Older scarp 

Fresher scarp 

Figure 6.2: Gully-induced slide showing multiple failures within the Amucha gully (slide 1 of Table 6.2), location: 

05.73569N, 007.03989E. 
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Figure 6.4: Stability analysis for landslides at the Amucha gully showing greater than 1 FoS values. The slopes 

had already failed prior to site visit, this condition could explain why the FoS values are greater than 1. 

Figure 6.3: Sensitivity analysis showing relationships between: A) FoS vs slope angle, and B) FoS vs depth of material. 

Blue dashed lines show threshold FoS value beyond which landslides are likely to occur. Slope values in A, are from 

two gullies captured during drone survey in Urualla. Gully-induced slides will probably happen when the slope angle 

and vertical thickness advance towards 32° and 2.5 m respectively, if all other variables are held constant. 
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6.1.2 Conceptual model of gully expansion by landsliding 

Observations from fieldwork suggest that three processes of gully expansion by landsliding 

occur in the area: soil fall, block failure and shallow debris slides. Shallow debris slides were 

seen in Amucha and the older gully in Obibi-Ochasi, block failures were observed in Isu Njaba 

and the younger Obibi-Ochasi gully. Although sliding was noticed in the Urualla and Umueshi 

gullies, both sites have experienced engineering interventions. The three landsliding processes 

observed in the study area can lead to lateral expansion of gullies and are discussed using a 

conceptual model. 

Soil fall: Some sections of the younger gully in Obibi-Ochasi exhibited this type of failure. As 

seen in the field, this process involves a bottom–top mechanism of failure and three stages can 

be distinguished. First, in a gully whose walls are near vertical and the gully top (surface 

surrounding the top of the gully) is either vegetated or non-vegetated, surface runoff flows into 

the gully from upstream areas; surface runoff flowing through the gully floor gradually but 

steadily erodes the gully bottom walls. This stage is detachment-limited and eroded materials 

are transported so the walls at the base have no protection (Figures 6.5 A, B). This process 

continues until a time when the hanging unconsolidated soil material fails due to gravity or 

increase in self-weight due to addition of moisture. Initially, there is transport-limitation due to 

the volume of failed slope materials, so that at this stage, the freshly failed materials provide 

toe-shield to the wall of the gully floor, and thus, surface runoff does not immediately erode 

the gully wall (Figures 6.5C and 6.6 A,B).  With subsequent rains in the wet season, the 

deposited material will be carried downstream, thereby the process of wall erosion at the base 

starts again. After the initial failure, the hanging wall directly above the freshly failed material 

begins to show signs of instability (in forms of tension cracks) due to removal of basal support, 

(Figures 6.5C, figure 6.6A). These tension cracks sometimes run from the gully top to the 

bottom. They can also transport surface runoff from the top of the gully to the bottom in a 

vertical direction or enhance infiltration into the gully wall. Both processes can facilitate 

instability either through erosion by surface runoff flowing vertically to the gully floor or 

through increase in weight of slope materials due to addition of moisture or increase in pore 

pressure due to infiltration (Akpan, et al. 2015). After some time, again due to gravity, or 

increased self-weight due to addition of moisture, or transmission of kinetic energy from trees 

on gully top, or tree weight (Greenway, 1987), this last hanging wall fails, thereby expanding 

the gully width. 
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Block failure: A process of gully expansion observed in the Isu gully is block failure. Some 

sections of the younger Obibi-Ochasi gully also showed signs of this process of sliding. 

Fieldwork observations show that this method occurs by the detachment of blocks of soil by 

combined actions of tension cracks and sustained erosion by water flowing through such 

cracks. As tension cracks form, they convey water to gully floors from the top. As this process 

of conveying water continues, there is continuous erosion and expansion of the tension cracks 

(figure 6.8A, B), until such a time when a part of the soil block is substantially detached from 

the rest of the gully wall. At this point, the soil block falls off in the form of block failure (figure 

6.8C). The difference between soil fall and block failure as observed in the field is that soil fall 

starts from the gully floor and erodes upwards in a bottom-top formula, and failure occurs in 

the form of debris/soil fall. On the other hand, gully block failure starts from the top and failure 

occurs as a topple or block failure. While there is a remaining block of material (hanging wall) 

above the failed scar in soil fall, there is none left after block failure. 

Shallow debris slide: this type of landsliding was identified in Amucha (figure 6.2) and in the 

older gully in Obibi-Ochasi. Unlike the other two processes described above which were found 

in near-vertical gully walls, shallow debris sides were observed in less steep-wall sections of 

the Amucha and the older Obibi-Ochasi gully. Both gullies were the oldest in the study area. 

There was scanty vegetal cover at slide sites in both cases. The following processes likely 

enhance debris slides. Scanty or non-vegetal cover can possibly enhance rill incision by surface 

runoff as observed at Amucha landslide site 2 (picture not shown), when the rill walls pass a 

critical slope angle, slope failure can occur (Betts et al. 2003) thereby encouraging landslide-

enhanced gully expansion. Also, the vegetated nature of the gully tops (surrounding areas 

around both gullies were vegetated) may possibly lead to higher infiltration of water into the 

gully slopes thereby increasing the effect of pore water pressure as a driver of slope failure. 

Increased weight of rainwater and trees on gully top can also reduce slope stability (Greenway, 

1987). 
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C A B 

Tree cover on 

gully top 

Figure 6.5:  A) Near vertical gully wall. Also shown is gully floor, pathway of runoff, B) As runoff flows through the floor, there is gradual but steady erosion of gully wall 

at the base. Black dotted lines show the original width of the gully floor, new width of gully at the base is also shown. The hatched red box represents a zone of instability 

caused by the erosion of gully wall at the base by runoff. Tension cracks develop due to instability. Eroded material is transported immediately by runoff, thus, there is no 

gully toe shield due to this detachment-limited process. C) Momentary transport-limitation due to the volume of failed material, and therefore, the base of the gully wall is 

briefly protected from further surface runoff erosion. The hanging wall above the failed scar becomes another part of the gully experiencing instability due to removal of 

basal support. 
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Gully floor, pathway for 
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bottom support by surface runoff 
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scar 

Non-vegetated gully top. Surface 

runoff can also find its way into the 

gully from here 

Hanging wall 

indicating failure 

occurred from the 

bottom to top. Zone 
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Vegetated gully top 
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surface runoff 
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failure occurred 
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A 
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Figure 6.6:  Gully expansion caused by soil fall, a bottom–top process of gully-induced landsliding. The hanging wall is a zone of instability due to removal of toe-support. For a moment, freshly 

failed materials will protect gully base from further erosion by surface runoff. Location: Younger gully in Obibi-Ochasi, Orlu LGA. 
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C 
A B 

Figure 6.7: A) Development of vertical/diagonal cracks on the gully wall, B, overtime, cracks expand as a result of erosion by surface runoff flowing into 

cracks from gully top. C, Blocks subsequently detach completely from main gully wall and fall like topples/block falls. This type of failure starts from the 

top. 
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Freshly failed material due 

to block failure or toppling 
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B 

Figure 6.8: A) Block detachment in progress as evident in the size of tension cracks. B) Gully expansion caused by block failure, a top–

bottom process of gully-induced landsliding. Location: Younger gully in Obibi-Ochasi, Orlu LGA. 
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6.2 Land-use changes and gully-landslide interactions 

Results in section 5.1.2 suggest that gully catchment hydrology responds to ecogeomorphic 

activities, especially those driven by changes in land use. For example, in the Amucha gully 

where debris slides were noticed, sustained reductions in vegetated surfaces were observed in 

the catchment and increased surface flow was modelled between 2009 and 2018. Also, high 

volume of lateral flow was modelled in the gully-sub-basins (Appendix 5.2) while average 

gully width increased by 13 m (Table 5.7). Although the upstream sub-basins experienced 

reductions in fallow, the areas surrounded the gully top were vegetated which might enhance 

infiltration into the gully slopes. Increase in weight of gully slope materials likely facilitate 

debris slide. Deposited materials from debris slides will be transported away from gully bottom 

by ephemeral flows observed during fieldwork. Higher surface runoff from upstream reaches 

of the catchment increase the volume of ephemeral flows, and thereby enhancing faster 

removal of toe support.  

In Isu Njaba where block failure was observed (Isu_gully1, Table 5.6), a 4 m reduction in 

average gully width was observed between 2009 and 2014 while increase in average width of 

12 m was recorded between 2014 and 2018. Continuous reduction in fallow and increased 

surface runoff values were modelled in this catchment. Higher lateral flow values were 

modelled in gully-adjacent sub-basins (Appendix 5.6). Increase in widths were observed in the 

Urualla and Umueshi gullies corresponding to reduction in fallow, however, these gullies have 

received engineering interventions. Based on field observations and modelled results, effects 

of land-use changes on gully-landslide interactions could be explained under two headings: 

1) Increased surface runoff due to higher non-vegetated cover and reduction in tree/fallow-

cover 

2) Higher sub-surface flow as a result of increase in tree/fallow-cover 

Increased surface runoff: Section 6.12 presented a conceptual model for gully expansion by 

landsliding. Higher runoff volumes caused by increased non-vegetated surfaces will influence 

gully-landslide interactions in the following ways: 

a. With regards to soil fall, higher volume of runoff flowing through a gully will increase 

the rate of gully wall erosion at the gully base and likely increase in failure frequency 

of material above the zone of instability (as identified in figures 6.5 and 6.6). 
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b. There will be faster removal of failed material (from block, soil and debris failures) 

which provides toe support at gully base and this process exposes gully walls to a fresh 

cycle of erosion by surface runoff.  

c. There will be an increase in volume of runoff flowing through vertical cracks with the 

potential to widen the vertical cracks and increase detachment of soil blocks from main 

gully walls. 

d. Bare and rough surfaces created by debris slides (for example, figure 6.9) could lead to 

formation of rills and channels for surface flow thereby enhancing landslide-induced 

gully expansion through these rills. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Gully site showing presence of bare and rough surfaces which can serve as surface runoff 

channels. Location: Umueshi, Ideato South LGA, Imo State (photo captured in April 2016). 

 

Higher sub-surface flow: enhanced infiltration due to higher vegetal cover can lead to higher 

occurrence of gully-induced landslides in the following ways: 

a. With regards to soil fall, the response time for hanging wall collapse will likely be 

reduced. The conceptual model of gully-induced landslides described above suggests 

that higher vegetal cover on the top of the gully will increase the self-weight of slope 

materials through enhanced infiltration or extra weight from trees. Thus, increased 

Bare and rough 

surfaces 
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vegetal cover will possibly reduce lapse time for hanging wall collapse due to extra 

weight of slope materials caused by higher moisture content. 

b. Elevated pore water pressure may enhance slope failure (section 2.2.1). 

c. Increased susceptibility to sliding due to sub-surface flow. Presence of springs 

(indicative of sub-surface erosional activities) were observed at both the Obibi-Ochasi 

and Amucha gullies. Modelled results for both gully catchments shows substantial 

groundwater and lateral flows respectively for 2009 and 2018 (figure 6.10).  
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Figure 6.10: Substantial volumes of sub-surface flows modelled at A) Obibi-Ochasi, B) Amucha gully-sub-

basins. GW =  Groundwater, LF = Lateral flow. 
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6.3 Discussion 

6.3.1 Gully-induced landslides 

The factor of safety results shown in figure 6.4 indicate that the slopes of visited gully sites are 

not likely to fail as they were above 1 in all cases. Maduka et al (2017) obtained an FoS of 1.45 

for the Nsukka area of southeast Nigeria, their study area had a higher sand content similar to 

the Orlu area under investigation in this study (particle-size distribution results of study area is 

shown in Table 4.13). They suggested that FoS of 1.45 indicated that the slope is moderately 

stable but not at a safe level required. They went further to propose that an FoS of 1.5 is the 

value for satisfactory stability. Judging from figure 6.4, the lowest FoS is 1.5, and one could 

cautiously say, that due to the already failed state of the slopes, the gully walls at the visited 

sites are satisfactorily stable, all other conditions being equal.  

With regards to gully-induced landslides observed during fieldwork, soil and block falls were 

found in near vertical “U”- shaped gully walls (e.g. younger gully in Obibi-Ochasi) shown in 

figures 6.6 while debris slides occur in “V”- shaped less steep walled gullies (e.g. Amucha 

gully, figure 6.2). Focus group meetings showed that the Amucha gully started in 1969, while 

the younger gully in Obibi-Ochasi (figure 6.6) started less than two years from the date of 

fieldwork (May 2019). A comparison of both gullies based on likely processes of lateral 

expansion and substituting space for time, it seems likely that gully expansion by soil fall will 

probably continue as long as streamflow through the gully has enough energy to erode the 

bottom walls of the gully. As the gully expands and required erosive energy of surface runoff 

diminishes, block fall will potentially become the dominant method of gully-induced slides. 

Block falls accompanied by reductions in erosive power of surface runoff will possibly lead to 

a transport-limited condition, thus, the gully will recline into a “V”- shape, thereby, debris slide 

will take over as the dominant process of gully-induced landsliding. When the gully attains a 

near-permanent transport-limited stage, vegetation colonisation could occur, thus, gradual 

stabilization will likely set in. It is this gradual stabilisation that will give the gully a “V”- shape 

with less steep slopes. Younger gullies (figures 6.6 and 6.8) therefore will be more likely to 

experience gully expansion by soil and block failure while older gullies (figure 6.2) will more 

likely experience width expansion by debris slides. 

6.3.2 Sub-surface flow as an agent of gully-induced sliding 

Groundwater, a component of sub-surface flow, has been identified as a driver of gully-induced 

landslides which involve removal of earth materials in larger volumes (Okagbue & Uma, 

1987). Groundwater can enhance gully expansion through slumping (Tebebu et al.0ol 2010), 
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slumping was observed at one of the slide sites in the Amucha gully. Results from focus group 

meeting and interviews suggest that gully-induced landslides in the area do not occur during 

rainfall events. In the words of respondents, “despite the intensity of rainfall, you will not find 

sliding occurring, but after a day or two, you see the soil falling”. Groundwater estimates for 

15-days rainfall events in 2009 in the Amucha catchment between the 126th to 140th days of 

the year show the effect of cumulative rainfall on groundwater flow. For example, 57.2 mm of 

rain fell on the 126th day, whereas same day had the least estimate of groundwater flow (0.3 

mm). Highest groundwater flow was estimated on the 140th day of the year, yet no rainfall 

occurred on that day or the previous day (figure 6.11). The point being made here is that the 

cumulative effect of rainfall is very important as a driver gully-induced sliding and not just the 

wettest rainfall events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The observation from focus group meetings and interviews regarding the lag between rainfall 

and landsliding points to the possible control of sub-surface flow as a gully-induced landslide-

driver in the visited communities and similar reports have been documented in other parts of 

southeast Nigeria (e.g. Eze, 2007; Igwe, et al. 2013; Emeh and Igwe 2017). Evidence of 
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Figure 6.11: 15 days rainfall/groundwater flow estimates for 2009 in the Amucha catchment. There is a lag 

between highest rainfall and highest groundwater flow and thus points to the effect of cumulative rainfall on 

groundwater. 
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groundwater-driven landsliding include presence of springs at landslide sites. During 

fieldwork, springs were observed in some of the visited gullies (older gully in Obibi-Ochasi 

and Amucha), suggestive of groundwater-driven gully-induced sliding.  

Another component of sub-surface erosion which can enhance gully-induced landsliding is 

seepage erosion. Regarding gully-induced landslides, seepage erosion can affect slope stability 

in three ways (Egboka & Nwankwor, 1985; Okagbue & Uma, 1987; Dunne, 1990; Fox & 

Wilson, 2010): 

a. Increase in pore-water pressure especially during the peak recharge times of the rainy 

season can reduce the effective strength of the unconsolidated materials along the 

seepage faces. In soils with less permeable clay layers, the clay materials are also 

lubricated and saturated with groundwater. The clays subsequently expand and lose 

their shear strength due to the excess pore-water pressure thus resulting in slope failure. 

Pore-water pressure can also be increased during the collapse of tunnel/pipe roofs due 

to obstruction and subsequent build-up of sub-surface flow through the tunnel. 

b. Slope undercutting when seepage exfiltrates from the bank and liquefies the soil at the 

exfiltration point (seepage erosion by particle mobilization). 

c. Increasing the hydraulic gradient forces at various levels of seepage on the gully walls 

thus producing piping and internal erosion that undermine the bases and partial bases 

of the gullies. 

Slope angle influences lateral flow (section 5.1). Therefore, ecogeomophic activities in the 

form of tree-planting within catchments with high slope angles will enhance lateral flow and 

likely facilitate the role of seepage erosion in destabilizing gully slopes. Despite higher 

vegetation cover at gully tops, landslides found on gully walls were sparsely vegetated as 

vegetation was likely removed during sliding (e.g. Amucha, figure 6.2 and Umueshi, figure 

6.9). With regards to surface runoff, there is little or no resistance to surface runoff due to the 

sparse vegetal cover on landslide sites, and this condition can likely lead to incision and rills, 

thereby encouraging landslide-induced gully expansion. Fieldwork showed that local drainage 

channels (figure 6.12) in some communities were routed into the gullies hence, the entire gully 

floor turns into a fast-flowing stream after rains, thereby removing toe support of failed 

materials. Figure 6.13 shows evidence of streamflow on the gully floor in some visited gullies. 

All these conditions occurring simultaneously on a gully site can increase susceptibility to 

gully-induced sliding.  
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6.3.3 Land-use changes and gully-landslide interactions 

Changes in land use, especially, increase in tree/fallow cover can have mechanical and 

hydrological effects on gully slopes and by extension, gully-induced landsliding. 

Mechanically, trees can transmit kinetic energy from wind into slopes and this energy has the 

capacity to reduce shear strength of gully slopes, thereby increasing their susceptibility to 

gully-induced landsliding (Greenway, 1987). Tree roots can provide anchorage for slope 

materials (Stokes et al. 2008) thereby increasing cohesion. Tree-weight can add to the self-

weight of soil materials and thereby increasing susceptibility to gully-induced landsliding 

(Greenway, 1987, Akpan et al. 2015). Hydrological effects of trees on gully slopes include 

moisture extraction from soil by tree roots. Modelling results presented in section 5.1.2 suggest 

that substantial amount of water is lost to evapotranspiration from all catchments. 

Evapotranspiration reduces ground water level which is an agent of gully-induced landsliding 

(Okagbue & Uma, 1987). However, evapotranspiration from trees might have a limited effect 

under a tropical precipitation regime, where soils are often saturated (Broeckx et al. 2019). 

Leaves can intercept precipitation and initiate evaporation reducing available water for 

infiltration (Greenway, 1987). Surrounding areas on the top of gullies were vegetated at visited 

gullies except in Urualla and the younger gully in Obibi-Ochasi. Effects of enhanced 

infiltration, tree weight and transmission of kinetic energy on slope stability will be higher in 

the vegetated gullies than the Urualla gully. 

Two types of land-use changes were observed in section 5.2, increased tree/fallow cover which 

led to higher sub-surface flow and increased non-vegetated areas which resulted in higher 

estimates of surface runoff. In catchments/sub-basins that have experienced higher tree/fallow 

cover during the study period, there was estimated increase in sub-surface flow (figure 5.17). 

Therefore, gully-landslide interactions are affected by these land use and hydrological changes 

in the following ways: 

a. Higher possibility of sub-surface flow-driven gully-induced landslides. 

b. Increased transmission of kinetic energy from trees into gully slopes, a situation that 

will lead to reduced shear strength of gully slopes and higher susceptibility to gully-

induced landslides. 

c. Increased weight of soil due to higher infiltration and weight of trees which will likely 

enhance sliding. 

d. Increased cohesion of soil particles on gully slopes due to binding effect of tree roots 

and a subsequent reduction in susceptibility to gully-induced slope failure. This 
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condition will be effective only where the tree roots are deeper than the shear surface 

(Okagbue & Uma, 1987).  

e. Reduced groundwater levels due to evapotranspiration from gully walls thereby 

reducing susceptibility of gully slopes to groundwater-driven slope failure. 

f. Rain interception by tree leaves and subsequent evaporation thus reducing available 

water for infiltration. 

In catchments where increases in non-vegetated surfaces were observed and higher surface 

runoff volumes modelled, gully-landslide interactions are affected in the following ways: 

a. Increased erosion of gully walls at the gully floor. This situation increases frequency of 

failure of hanging wall and gully expansion by soil fall. 

b. Higher rate of removal of toe support; thus, reducing the relaxation time between toe-

protection and another cycle of toe erosion and eventually leading to higher gully 

widening rate. 

c. Increased rill expansion rate on landslide scars which in turn facilitates landslide-

induced gully widening. This condition is enhanced by the bare nature of landslide 

scars. 
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Figure 6.12: Human-made structure and natural rills deliver surface runoff directly into gullies. A) Obibi-Ochasi 

Gully2. B) Umueshi Gully. Concentrated runoff flowing on gully floors can remove toe support at landslide sites, 

hence, enhancing slope failure. Natural rills found close to gullies had depth ranges between 0.4 – 0.7 m, widths varied 

between 0.25 & 2.2 m while lengths ranged from 10 – 60 m.  
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Figure 6.13: Evidence of streamflow on gully floors at the younger Obibi-Ochasi gully. Also shown is a destroyed 

drainage structure designed to transport runoff to a local base level. 
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6.4 Chapter summary 

The aim of this chapter was to understand effects of changes in land use and gully catchment 

hydrology on gully-landslide interactions. Gully-induced slides observed in the study area can 

take three forms: soil and block failure and debris slide. Field work results shown in section 

6.2 supported by previous studies (documented in section 6.3) indicate that all three 

mechanisms of gully-induced landsliding observed in the field can be affected by changes in 

land use and hydrology of the gully catchments. So far, it has been suggested that there could 

be beneficial and detrimental effects on gullies following land use and hydrological changes. 

For instance, increased tree-cover could reduce erosion of gully walls by surface runoff but 

increase self-weight of sliding materials. Gully erosion can lead to gully-induced slides while 

uneven surfaces created by landslide scars could promote formation of rills which might 

enhance gully expansion by landslide-induced erosion. The phenomenon of gully-induced 

landslides and landslide-induced gullies can lead to the formation of complex gully systems 

which pose challenges to gully management. 

6.5 Conclusions 

The following conclusions are made: 

I. Gully-induced landslides is a mechanism of gully expansion identified in the study area. 

At all visited gullies, at least one of debris slide, soil fall or block failure, was observed. 

Occurrence of these landslide processes may be driven by gully age. 

II. Block failure and soil falls were observed in “U-shaped” sections of gullies while debris 

slides were seen in “V-shaped” segments of gullies. Based on field observations, it is 

thought that younger gullies (U-shaped) would experience block and soil falls, while 

debris slides will occur in older gullies. 

III. Despite the vegetated lands on the top of gullies, one form landsliding was observed at 

all visited gullies. This point suggests that tree-planting alone may not control gullying. 

It is also likely that enhanced infiltration (due to vegetated gully tops) facilitates 

destabilization of these gullies. 

IV. Modelling results and fieldwork suggest that ecogeomorphic activities, especially, 

land-use changes can affect gully-landslide interactions. 
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Chapter 7  

Resultant hazards of gully-landslide interactions 

7.0 Introduction 

Chapter 7 provides answers to research questions raised by objective 4 (to determine resultant 

hazards posed by gully-landslide interactions). The following research questions are posed: 

1. What is the perception of local population to gully-landslide hazards? 

2. What are the effects of gully-landslide interactions on affected communities? 

3. What control measures have been adopted by communities to reduce effects gully-

landslide interactions? 

To answer the research questions, results from the three qualitative research approaches 

adopted in this study: use of structured questionnaire, focus group meetings and oral interviews 

(section 3.2.4) are presented.  A total of 192 copies of questionnaire were distributed to Amucha 

and Obibi-Ochasi communities, that is, 96 copies per community (section 3.2.4). There were 

100% and 73% questionnaire return rates in Amucha and Obibi-Ochasi communities 

respectively. Four and two copies of questionnaire were not properly filled in Amucha and 

Obibi-Ochasi respectively, thus, responses from 92 (52 male and 40 female respondents) and 

68 (42 male and 26 female respondents) correctly filled questionnaire retrieved from Amucha 

and Obibi-Ochasi communities, respectively, were used in this study (Table 7.1). In Amucha, 

10 responses were received from the older population (≥ 60 years old) while six people from 

this age-group returned their completed questionnaire in Obibi-Ochasi (Table 7.1). Regarding 

the younger population (18 – 49 years of age), 68 copies of questionnaire were returned in the 

Amucha community, while 52 respondents in this age-group completed and retuned their 

questionnaire in Obibi-Ochasi.  

A public document published in 1981 by the Imo State Government (Imo State Government, 

1981) stated that gullies in Amucha and Obibi-Ochasi communities gained prominence in the 

early 1970s, and hence, it was expected that elders (≥ 60 years old) may have been exposed to 

the gradual change in gully sizes over these years, but especially, in the last 10 years of interest 

in this study. Based on this document, focus group participants included 9 elders (≥ 60 years 

old) and one younger person (40 – 50 years old) from both communities. Interviewees were 

between 35 – 65 years of age. 
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Section 7.1 shows results on community perception of hazards of gully-landslide interactions 

and causes of both gully erosion and gully-induced landslides. Section 7.2 presents results on 

identified effects of these interactions on affected communities. Control measures put in place 

(either by community effort or external aid) to alleviate problems of gully-landslide 

interactions are presented in section 7.3. Chapter summary and conclusions are presented in 

7.4 and 7.5. 

Table 7.1: Breakdown of age-groups and gender of questionnaire respondents. 

 
Amucha Obibi-Ochasi 

Age Sex Sex 
 

Male respondents Male respondents 

18-28 6 15 

29-39 13 5 

40-49 18 9 

50-59 8 8 

≥60 7 5 

Total 52 42 
 

Female respondents Female respondents 

18-28 8 12 

29-39 8 4 

40-49 15 7 

50-59 6 2 

≥60 3 1 

Total 40 26 

 

7.1  Community perception of hazards of gully-landslide interactions 

Section A of the questionnaire (Appendix 7.1) was used to understand perception of 

respondents to hazards posed by gully-landslide interactions. Questions 1 and 4 asked 

respondents if they knew what gully erosion and landslides were respectively, 43 respondents 

(21 males and 22 females) in Amucha agreed they knew what gully erosion was and 4 

respondents have heard about gully erosion but do not know what it is (Table 7.2). In Obibi-

Ochasi, all 68 respondents knew what gully erosion was. One female respondent in the age-

group of 40 – 49 years chose two options, A (Yes I know what gully erosion is) and C (No, I 

do not know what gully erosion is) for question 1, hence the total of 69 responses, whereas 

there were 68 respondents in Obibi-Ochasi (Table 7.2). Three choices were provided for 

question 4: A) Yes, it is same with gully erosion, B) Yes, I have heard about it but I do not 

know what it is, C) No idea what landslide is. In Amucha, 84 respondents chose ‘A’, 8 ticked 
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‘B’, and 2 selected ‘C’. In Obibi-Ochasi, 47 people ticked ‘A’, 20 selected ‘B’ and one 

respondent chose option C (Table 7.3). 

Table 7.2: Responses to question 1: Do you know what gully erosion is? A: Yes I know what gully erosion is. 

B: Yes, I have heard of gully erosion but I do not know what it is. C. No, I do not know what gully erosion is. 

D. I have never heard of gully erosion before. 

 
Amucha Obibi-Ochasi 

Age (years) Sex 
 

Sex  
  

 
Male 

respondents 

A B Total Male 

respondents 

A C Total 

18-28 6 3 1 4 15 15 
 

15 

29-39 13 9 1 10 5 5 
 

5 

40-49 18 6 1 7 9 9 
 

9 

50-59 8 2 
 

2 8 8 
 

8 

≥ 60 7 1 
 

1 5 5 
 

5 

Total 52 21 3 24 42 42 
 

42 
 

Female 

respondents 

   
Female 

respondents 

   

18-28 8 7 1 
 

12 12 
 

12 

29-39 8 6 
  

4 4 
 

4 

40-49 15 4 
  

7 7 1 8 

50-59 6 3 
  

2 2 
 

2 

≥ 60 3 2 
  

1 1 
 

1 

Total 40 22 1 23 26 26 1 27 

 

 

Table 7.3: Responses to question 4: Do you know what landslide is? A: Yes, it is the same as gully erosion. B: 

Yes, I have heard it but I do not know what it is. C. No idea what landslide is. 

  
Amucha 

  
Obibi-Ochasi 

 

Age 

(years) 

Sex 
  

Sex 
  

 
Male 

respondents 

A B C Total Male 

respondents 

A B C Total 

18-28 6 6 
  

6 15 5 10 
 

15 

29-39 13 8 3 2 13 5 4 1 
 

5 

40-49 18 17 1 
 

18 9 9 
  

9 

50-59 8 8 
  

8 8 7 1 
 

8 

≥ 60 7 7 
  

7 5 5 
  

5 

Total 52 46 4 2 52 42 30 12 
 

42 
 

Female 

respondents 

 
   

Female 

respondents 

    

18-28 8 7 2 
 

9 12 3 8 
 

11 

29-39 8 8 
  

8 4 4 
  

4 

40-49 15 15 1 
 

16 7 7 
 

1 8 
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50-59 6 5 1 
 

6 2 2 
  

2 

≥ 60 3 3 
  

3 1 1 
  

1 

Total 40 38 4 
 

42 26 17 8 1 26 

 

Five options were provided to the respondents when asked if they believe that gully erosion 

and landslide can cause harm (questions 3 and 6 respectively), A) Yes, I strongly believe 

gullying/landsliding can cause harm, B) Yes, I believe gullying/landsliding can cause harm, C) 

I do not know, D) No, I strongly believe gullying/landsliding cannot cause harm, E) No, I 

believe gullying/landsliding cannot cause harm. In Amucha, 75 people chose ‘A’, 26 selected 

‘B’ while one respondent each selected options C and D to question 3, and in Obibi-Ochasi, 45 

respondents ticked option A, while 24 and 4 people selected options B and C (Table 7.4). With 

respect to question 6, 80 respondents in Amucha selected option A, 16 selected option B and 

one chose ‘C’, in Obibi-Ochasi, 47 respondents selected option A, 22 chose ‘B’ while two 

selected ‘C’ (Table 7.5).  

Results shown in Tables 7.2 and 7.3 indicate that a higher proportion of respondents know what 

gully erosion and landslides are, although landslides were thought to be the same as gully 

erosion by 88% and 95% of male and female respondents in Amucha. Similar results were 

found in Obibi-Ochasi where 71% and 65% of male and female respondents believe landslides 

and gully erosion are the same. All respondents in both communities have heard about gully 

erosion while one male respondent in Obibi-Ochasi selected both options A and C for question 

1. The high level of awareness of gully erosion and landslides is reflected in the perception of 

the respondents to likely hazards of both processes, for example, 83% and 80% of male and 

female respondents in Amucha strongly believed that gully erosion can cause harm. One male 

respondent in Amucha does not know if gullying can cause harm and another male respondent 

strongly believes no harm can be caused by gullying (Table 7.4). In Obibi-Ochasi, 67% and 

65% of male and female respondents strongly believed gullying can cause harm while two 

male (5%) and two female (8%) respondents do not know if gullying leads to harm (Table 7.4). 

Regarding landslide hazard-awareness, 85% and 90% of male and female respondents in 

Amucha strongly believe landslides can cause harm and 67% and 73% of male and female 

respondents in Obibi-Ochasi strongly believed that landslides lead to harm (Table 7.5). A 

further breakdown of Tables 7.4 and 7.5 indicate there is strong awareness across the entire 

age-groups of the potential of gully erosion and landslides to cause harm. Therefore, in both 

communities, perceptions of inhabitants based on responses from questionnaire survey indicate 
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there is a high level of understanding of hazards posed by gully erosion and landslides 

regardless of age.  

Table 7.4: Responses to question 3: Do you think gullying can cause harm? A) Yes, I strongly believe gullying 

can cause harm, B) Yes, I believe gullying can cause harm, C) I do not know, D) No, I strongly believe gullying 

cannot cause harm, E) No, I believe gullying cannot cause harm. 

  
Amucha Obibi-Ochasi 

Age 

(years) 

Sex 
     

 
Male 

respondents 

A B C D Total Male 

respondents 

A B C Total 

18-28 6 6 
   

6 15 5 10 
 

15 

29-39 13 9 3 1 1 14 5 4 
 

1 5 

40-49 18 15 4 
  

19 9 8 1 1 10 

50-59 8 8 2 
  

10 8 7 1 
 

8 

≥ 60 7 5 4 
  

9 5 4 1 
 

5 

Total 52 43 13 1 1 58 42 28 13 2 43 
 

Female 

respondents 

 
    

Female 

respondents 

    

18-28 8 5 4 
  

9 12 3 9 
 

12 

29-39 8 7 2 
  

9 4 5 
  

5 

40-49 15 13 3 
  

16 7 7 1 2 10 

50-59 6 4 4 
  

8 2 2 
  

2 

≥ 60 3 3 
   

3 1 
 

1 
 

1 

Total 40 32 13 
  

45 26 17 11 2 30 

 

Table 7.5: Responses to question 6: Do you think landsliding can cause harm? A) Yes, I strongly believe 

landsliding can cause harm, B) Yes, I believe landsliding can cause harm, C) I do not know, D) No, I strongly 

believe landsliding cannot cause harm, E) No, I believe landsliding cannot cause harm. 

  
Amucha 

  
Obibi-Ochasi 

Age (years) Sex 
     

 
Male 

respondents 

A B C Total Male 

respondents 

A B C Total 

18-28 6 6 
  

6 15 6 9 
 

15 

29-39 13 9 4 1 14 5 4 1 
 

5 

40-49 18 14 4 
 

18 9 9 1 
 

10 

50-59 8 8 1 
 

9 8 6 1 1 8 

≥ 60 7 7 1 
 

8 5 3 1 1 5 

Total 52 44 10 1 55 42 28 13 2 43 
 

Female 

respondents 

 

 

   
Female 

respondents 

    

18-28 8 8 
  

8 12 3 9 
 

12 

29-39 8 7 1 
 

8 4 5 
  

5 

40-49 15 14 2 
 

16 7 8 
  

8 

50-59 6 4 3 
 

7 2 2 
  

2 
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≥ 60 3 3 
  

3 1 1 
  

1 

Total 40 36 6 
 

42 26 19 9 
 

28 

 

7.1.1  Local knowledge on causes of gully erosion and gully-induced landslides 

Questionnaire respondents were asked what they felt caused gully erosion and four options, a) 

act of the gods, b) farming techniques, c) sand excavation and d) others, were provided. In the 

Amucha community, one person ticked option ‘A’, four respondents selected ‘B’, 43 chose ‘C’ 

while 38 respondents wrote down surface runoff as the cause of gully erosion respectively 

(Table 7.6). In Obibi-Ochasi, option ‘A’ was selected by 15 respondents, one person chose ‘B’, 

44 ticked ‘C’ while 10 respondents wrote down surface runoff as the causes of gully erosion 

accordingly (Table 7.6). With regards to landsliding, four options were also presented as causes 

of landsliding, a) gully erosion, b) farming techniques, c) sand excavation, d) others. Responses 

from 73 participants in Amucha identified gully erosion as the cause of landsliding while 29 

participants chose sand excavation as the cause of landsliding (Table 7.7). In Obibi-Ochasi, 46 

respondents underlined gully erosion while 21 people wrote down soil factor as the causes of 

landsliding (Table 7.7). 

Table 7.6: Responses to question 2: what do you think causes gully erosion? A) Act of the gods B) Farming 

techniques C) Sand excavation D) Others. 

  
Amucha 

  
Obibi-Ochasi 

 

 

Age Sex 
  

Sex 
  

 
Male 

respondents 

A B C D  Total Male 

respondents 

A B C D  Total 

18-28 6 
 

1 5 
 

6 15 
  

15 
 

15 

29-39 13 
 

1 3 6 10 5 
  

5 
 

5 

40-49 18 
 

1 8 8 17 9 2 
 

6 1 9 

50-59 8 
  

2 4 6 8 3 1 1 3 8 

≥ 60 7 
  

1 5 6 5 2 
  

3 5 

Total 52 
 

3 19 23 45 42 7 1 27 7 42 
 

Female 

respondents 

 

 

    
Female 

respondents 

     

18-28 8 1 1 6 1 9 12 2 
 

9 
 

11 

29-39 8 
  

2 6 8 4 2 
 

2 1 5 

40-49 15 
  

13 3 16 7 2 
 

6 1 9 

50-59 6 
  

1 3 4 2 1 
  

1 2 

≥ 60 3 
  

2 2 4 1 1 
   

1 

Total 40 1 1 24 15 41 26 8 
 

17 3 28 
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Table 7.7: Responses to question 5: what do you think causes landsliding? A) Gully erosion B) Farming 

techniques C) Sand excavation D) Others. 

 
Amucha 

 
Obibi-Ochasi 

 

Age Sex 
  

Sex 
  

 
Male 

respondents 

A B C D  Total Male 

respondents 

A B C D  Total 

18-28 6 3 1 4 
 

8 15 5 
  

10 15 

29-39 13 9 1 2 1 13 5 4 
  

1 5 

40-49 18 14 1 6 
 

21 9 7 
 

2 1 10 

50-59 8 7 
 

2 1 10 8 8 1 1 
 

10 

≥ 60 7 7 
   

7 5 5 
   

5 

Total 52 40 3 14 2 59 42 29 1 3 12 45 
 

Female 

respondents 

 

 

    
Female 

respondents 

 

 

    

18-28 8 4 1 4 
 

9 12 3 
  

9 12 

29-39 8 8 
   

8 4 4 
 

1 
 

5 

40-49 15 14 
 

10 
 

24 7 7 1 2 
 

10 

50-59 6 4 
 

1 1 6 2 2 
   

2 

≥ 60 3 3 
   

3 1 1 
 

1 
 

2 

Total 40 33 1 15 1 50 26 17 1 4 9 31 

 

During focus group meetings (Appendix 7.2), participants were asked to identify causes of 

gully erosion and landsliding. In Amucha, four factors were mentioned as causes of gully 

erosion; topography, increase in volume of surface runoff, increase in population density 

during the Nigerian civil war (1966 – 1970) and “weak nature of our soil”. Focus group 

members continued “we live in an undulating environment, surface runoff from Eziama, 

Eziachi, Umuowa all run down to our community, and this condition predisposes us to 

gullying”. Increase in volume of surface runoff was also attributed to land-use changes, 

especially, changes from vegetated to non-vegetated surfaces. Regarding roofing materials, 

participants suggested “the use of aluminium/iron roofing sheets in building construction has 

increased surface runoff because many years ago, thatch roofs were used, and they produced 

less runoff”.  

In Obibi-Ochasi, surface runoff, the civil war, non-implementation of building regulations, 

sand mining and act of the gods were the points raised as causes of gully erosion. Group 

meeting attendees suggested that “surface runoff from surrounding communities, e.g. Ogberuru 

and Ihitte Owerri all flow down to our community before flowing into the gully and thus further 

destabilizing the gully”. War time activities including digging trenches were also recognised.  

One attendee said “During the war, the military desecrated our stream by fishing in the stream. 
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They also killed the holy python, hence, the gully is a way the gods have shown their anger for 

the desecration of our holy place”. With regards to building regulations, participants cited an 

example of what was applicable in a nearby state where retention pits are mandatory in every 

compound. They said “these pits would retain surface runoff produced from individual 

compounds thereby reducing volume of surface runoff that will find its way to the gully”.  

Regarding gully-induced landslides, focus group participants noted slides occurred after heavy 

rains but never during the rainfall. In the words of the participants “despite the intensity of 

rainfall, you will not find sliding occurring, but after a day or two, you see the soil falling”. I 

asked focus group participants in Amucha to differentiate between gully erosion and landslides 

and they said, “landslides increase gully widths”. At the Isu Njaba community, an interviewee 

mentioned the appearance of cracks (shear surfaces) in the ground prior to any incidence of 

sliding. Once these cracks are observed, the inhabitants know sliding is imminent. According 

to the interviewee, appearance of cracks was observed after heavy rainfalls. 

Information from Table 7.6 are slightly different in both communities, e.g. while option ‘A’ 

got one response in Amucha, 15 respondents in Obibi-Ochasi identified ‘A’ as possible cause 

of gullying. This observation does not come as a surprise judging from the response of focus 

group attendees in Obibi-Ochasi regarding the show of anger by the local deity to the 

desecration of the village stream by military officers during the war. Act of the gods was not 

identified during the Amucha group meeting and questionnaire survey suggests this option is 

not popular among the villagers. Higher number of respondents (43 in Amucha and 44 in Obibi-

Ochasi) identified sand mining as the likely cause of gully erosion, while gully erosion had the 

highest number of responses as the cause of landsliding (73 in Amucha and 46 in Obibi-

Ochasi). Within the study area, laterite, locally known as “aja red” (red sand) and marine 

sandstone (white sand) are among the earth materials mined from the borrow pits and sand 

vendors sell both types of earth materials side by side. These earth materials are sought after 

by road construction contractors and other private individuals. The sand mining industry is a 

big employer of labour due to the high demand for the commodities they offer; however, this 

economic activity increases susceptibility to gully erosion and gully-induced landslides 

(Igbokwe et al. 2008; Nwachukwu & Eburukevwe, 2013).  

Surface runoff, topography and “weak nature of the soil” were identified as drivers of gully 

erosion. Combined actions of topography and surface runoff as gully drivers are well known 

(Zevenbergen & Thorne 1987; Poesen et al. 2003; Knapen  & Poesen, 2010; Gómez-Gutiérrez 
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et al. 2015) and the susceptibility of soils of southeast Nigeria to dispersion by erosive forces 

due to their composition has been suggested (Okagbue & Ezechi, 1988; Egboka & Nwankwor 

1985; Idowu & Oluwatosin 2008). Incorporating local knowledge in a research provides for 

comparison of scientific understanding, hypotheses, forecasts and arguments with prevailing 

local expertise, thus, enriching scientific findings and these issues form part of the public 

debate model proposed by Callon (1999). Results from both questionnaire and focus group 

meetings on gully drivers are in agreement with studies by researchers from different parts of 

the world. With regards to gully-induced landslides, 46 and 73 respondents in Obibi-Ochasi 

and Amucha, respectively believe gully erosion is the cause of sliding (Table 7.7). Interview 

and focus group meetings respondents informed me that landslides only occur a day or two 

after rainfalls. This result points to the likely effect of groundwater as a driver of landsliding 

because landsliding may become active up to several days after a large rainfall event due to the 

time it takes for rainwater to reach the groundwater store (Betts et al. 2003). Modelling results 

(figure 6.11) suggest there is a lag between highest rainfall and highest groundwater flow while 

focus group attendees attested to the lag between rainfall and gully-induced landslides. These 

observations support the notion of groundwater effect as a potential landslide-driver in the 

study area.  

7.2 Effects of gully-landslide interactions on affected communities 

Several themes emerged from the data, which are addressed in turn.  First, destruction of roads 

was one of the most common effect of gullying identified in the study area. In Umeshi for 

example, a community road linking Umueshi and other neighbouring communities had been 

destroyed as at the time of site visit (figures 4.12C). An interviewee reported that he drove past 

this road in January 2019 but on May 18 2019 when we visited for fieldwork, it was impossible 

to connect neighbouring communities using this road. We (I and two field assistants) had to 

seek alternative routes which were longer. Longer routes are more time consuming and require 

more fuel supply, thus, there are financial and environmental outcomes of using longer routes 

due to road destruction by gully-landslide interactions. One new gully found in Obibi-Ochasi 

had severed the road linking Asaa & Obibi-Ochasi communities (figure 7.1). Focus group 

respondents traced the source of the gully to a “minor fault” in the drainage channel constructed 

next to the road. They said they had notified the road contractors of the fault in the drainage 

channel but got no response. “Subsequently, concentrated runoff flowing in the drainage 

channel spilt on to the surrounding lands and initiated the gully” they concluded. Since this 
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connecting road in Obibi-Ochasi was destroyed, commuters resorted to using nearby farmlands 

as footpaths and roads for motorcyclists, as observed during the field visit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondly, loss of habitat was identified. An interview with a community member in Urualla 

revealed the loss of one their community streams to deposits from gully erosion. He recalled 

that as a child in the middle of 1970s, he and his peers would go down to the then small 

depression (now Urualla_gully1, Table 5.5) and cross it on their way to the stream. There were 

two streams, Agwura Ukwu and Agwura Nta, in the community at the time. According to the 

interviewee, between 1975/76, Agwura Ukwu “dried up”. Today, Agwura Nta is also 

“endangered due to siltation from the gully”. He continued “the villagers did not understand 

why their stream dried up; it is only becoming clear to them now that siltation from gully 

deposits could have been a potent reason for the drying up of Agwura Ukwu”.  He concluded 

“the sacred fish in the streams were not fished, but as the river dried up, the fish died”. Based 

on this interview, there has been loss of habitat due to the complete disappearance of the 

Agwura Ukwu stream. 

Figure 7.1: Destroyed connecting road linking Asaa & Obibi-Ochasi communities. 
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Thirdly, loss of houses and forced relocation. Respondents provided answers on forced 

relocation (Table 7.8), loss of houses/property to gullying (Table 7.9) and identified how they 

have been affected by gullying (Table 7.10). In Amucha, 55 respondents agreed they have been 

forced to relocate because of gully erosion (Table 7.8) while 43 respondents suggested that 

between 1 and 10 houses/property have been lost to gullying in their community in the last 10 

years (2009 – 2018) (Table 7.9). A total of 45 people in Amucha community chose “C”, 44 

selected “E”, 35 respondents ticked “A” while 30 respondents identified “D” as gully effects 

on them respectively. In Obibi-Ochasi, 60 respondents ticked “E” and 36 identified option “A” 

as gully effects on them (Table 7.10). 

 

Table 7.8: Responses to question 9: In the last 10 years, have you been forced to relocate because of gully 

erosion? A) Yes, I have relocated due to gully erosion B) I would have relocated if I had a safe place to go to 

C) No, I have not relocated due to gully erosion D) No, but if the gullies continue expanding, I will have to 

relocate. 

  
Amucha 

 
Obibi-Ochasi 

 

Age 

(years) 

Sex 
  

Sex 
  

 
Male 

respondents 

A B C D Total Male 

respondents 

A B C D Total 

18-28 6 5 
  

1 6 15 
 

4 10 2 16 

29-39 13 2 3 6 2 13 5 
  

1 4 5 

40-49 18 10 4 2 2 18 9 2 4 
 

6 12 

50-59 8 7 1 
  

8 8 2 1 
 

5 8 

≥ 60 7 4 2 
 

1 7 5 
 

2 
 

3 5 

Total 52 28 10 8 6 52 42 4 11 11 20 46 
 

Female 

respondents 

 

 

    
Female 

respondents 

     

18-28 8 9 
   

9 12 
 

5 7 1 13 

29-39 8 2 2 2 1 7 4 1 1 
 

3 5 

40-49 15 11 3 
 

2 16 7 1 2 
 

5 8 

50-59 6 2 4 
  

6 2 
   

2 2 

≥ 60 3 3 
   

3 1 1 
   

1 

Total 40 27 9 2 3 41 26 3 8 7 11 29 
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Table 7.9: Responses to question 11: How many houses/property have been lost in this autonomous community 

to gully erosion in the last 10 years? A) I am not aware of any B) 1 – 10 C) 10 – 11 D) 11 – 20 E) > 20. 

 
 

Amucha 
 

Obibi-Ochasi 

Age 

(years) 

Sex 
  

Sex 
  

 Male 

respondents 

A B C D E Total Male 

respondents 

A B E Total 

18-28 6 1 5 
   

6 15 
  

15 15 

29-39 13 5 5 1 2 
 

13 5 
  

5 5 

40-49 18 1 6 3 3 4 17 9 1 
 

8 9 

50-59 8 
 

2 2 2 2 8 8 
  

8 8 

≥ 60 7 
  

3 3 1 7 5 
  

5 5 

Total 52 7 18 9 10 7 51 42 1 0 41 42 

 Female 

respondents 

     
Female respondents 

   

18-28 8 
 

7 
 

1 1 9 12 
  

12 12 

29-39 8 3 2 3 
  

8 4 
 

1 4 5 

40-49 15 
 

12 3 
 

1 16 7 
 

1 7 8 

50-59 6 
 

3 2 2 
 

7 2 
  

2 2 

≥ 60 3 
 

1 1 1 
 

3 1 
  

1 1 

Total 40 3 25 9 4 2 43 26 0 2 26 28 

 

Table 7.10: Responses to question 12: How does gully erosion affect you? A) Inaccessibility to farm B) 

Severance of communication links C) Collapse of houses D) Threat to my property E)Reduction in farmland 

F) Death of a loved one G) Others. 

  
Amucha 

  
Obibi-Ochasi  

 

Age 

(years) 

Sex 
     

 
Male 

respondents 

A B C D E F Total Male 

respondents 

A B C D E Total 

18-28 6 3 
 

2 4 3 1 13 15 4 
   

14 18 

29-39 13 2 4 8 
 

1 
 

15 5 4 
   

5 9 

40-49 18 7 2 11 9 6 
 

35 9 4 
  

2 8 14 

50-59 8 2 
 

3 1 4 
 

10 8 6 
  

1 7 14 

≥ 60 7 4 
 

1 1 3 
 

9 5 4 
   

3 7 

Total 52 18 6 25 15 17 1 82 42 22 0 0 3 37 62 
 

Female 

respondents 

 

 

      
Female 

respondents 

 

 

     

18-28 8 3 1 3 1 13 2 23 12 2 
   

11 13 

29-39 8 
 

1 4 1 2 
 

8 4 5 
   

4 9 

40-49 15 10 
 

10 11 9 
 

40 7 5 1 1 1 5 13 

50-59 6 3 1 2 
 

2 
 

8 2 1 
   

2 3 

≥ 60 3 1 
 

1 2 1 
 

5 1 1 
   

1 2 

Total 40 17 3 20 15 27 2 84 26 14 1 1 1 23 40 
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Participants at focus group meetings were asked to tell me how they have been affected by 

gully erosion. In Obibi-Ochasi, one of the community elders said “my house is next in line to 

be destroyed by the gully erosion and I have exhausted all avenues since 1981 to get the issue 

of gully erosion solved but to no avail hence, I have now resorted to prayers”. He went further 

“God has stopped the gully from growing for the last 4 years”. During fieldwork, it was 

observed that this gully is heavily vegetated, and could be a potential reason for reduced gully 

expansion, as suggested by the meeting participant. In the words of other participants “our 

lands and farms are gone, our Okpii Stream is no longer accessible and there is severance of 

roads”. They concluded by stating that “all money coming from community levies go into 

erosion-control”.  In Amucha, focus group participants identified inaccessibility to farms as a 

significant effect of gully erosion. Other effects of gullying mentioned during Amucha group 

meeting include hindrance to new developmental projects such as building new houses, need 

to buy lands to build houses due to destruction of ancestral lands, permanent forced migration 

out of the community into surrounding communities (victims could be referred to as 

“environmental refugees”), loss of building materials, forced internal displacement within the 

community and loss of agricultural yield.  

Fourthly, abandonment of farmlands/reduction in food production. Respondents were asked if 

they have abandoned a piece of farmland due to gully erosion in question 10. Commercial 

farming was not observed in the communities visited; hence, household farms are of interest in 

this research. Farm-produce from these household farms are consumed by farm owners or sold 

at the community markets. 52 respondents from Amucha agreed they had abandoned a piece 

of farm due to gullying while 29 people identified they would have abandoned their farms if 

they had another place to cultivate the land (Table 7.11). During fieldwork, some farmlands 

where found less than 1 m from gully edges in Amucha, while some farmers cultivated the soil 

inside the gully complex itself. These observations suggest that maybe these farmers have 

nowhere else to farm, hence, they take the risk of farming so close to the gully edges. In Obibi-

Ochasi, 41 respondents identified they had abandoned their farms due to gullying.  

Finally, death has resulted due to gullying. Focus group discussants noted that three deaths 

were recorded when commuters drove straight into one of the gullies in Obibi-Ochasi without 

knowing the road had been damaged. This condition made the road contractors to block the 

road (figure 7.2) to prevent further occurrences.  
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Table 7.11: Responses to question 10: In the last 10 years, have you abandoned a piece of farmland due to 

gully erosion? A) Yes, I left my farm due to gully erosion B) I would have abandoned my farm if I had another 

C) No, I have not abandoned my farm due to gully erosion D) No, but if the gullies continue expanding, I will 

have to abandon my farm. 

  
Amucha 

 
Obibi-Ochasi 

 

Age 

(years) 

Sex 
   

 
 

 
Male 

respondents 

A B C D Total Male 

respondents 

A B C D Total 

18-28 6 5 
  

1 6 15 11 2 1 2 16 

29-39 13 4 5 3 1 13 5 1 
  

4 5 

40-49 18 11 5 
 

2 18 9 6 1 
 

4 11 

50-59 8 4 4 
  

8 8 3 1 
 

4 8 

≥ 60 7 4 3 
  

7 5 3 
  

2 5 

Total 52 28 17 3 4 52 42 24 4 1 16 45 
 

Female 

respondents 

 

 

    
female 

respondents 

     

18-28 8 8 
   

8 12 8 4 
  

12 

29-39 8 1 5 1 1 8 4 2 
  

3 5 

40-49 15 10 4 
 

2 16 7 4 
  

4 8 

50-59 6 4 2 
  

6 2 2 
   

2 

≥ 60 3 1 1 
 

1 3 1 1 
   

1 

Total 40 24 12 1 4 41 26 17 4 
 

7 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



217 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of gully-landslide interactions can be grouped into two: direct and indirect effects. 

Direct effects include reduction of farmland, inaccessibility to farmland, loss of land and 

property, severance of communication lines, loss of habitat, economic losses and death. 

Indirect effects include effects on the environment, time wastage, increase in price of available 

food products, hunger and malnutrition and loss of seedling for next growing season. 

Results presented in this section indicate that both focus group participants and questionnaire 

respondents recognised direct effects of gully erosion on food production. These effects could 

be in the form of inaccessibility to farmlands, reduction in farmland (Table 7.10) or through 

desiccation of crops close to the gully edges (Frankl et al, 2016). Inaccessibility to farmlands 

has the following implications: First, inability to cultivate the land. When the land is not 

cultivated, not only is there pressure on cultivated lands, but there is also reduction in available 

food production. Secondly, when there is reduction in available yields, there is the possibility 

all produced food crops would be consumed which means there may not be sufficient crops for 

planting in the next growing season. Furthermore, insufficient seedlings, an indirect effect of 

Figure 7.2: Barricades aimed at halting further movement of commuters along the road. 
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gullying means fewer crops will be planted which then means less food would be produced and 

this cycle could lead to a continuous chain of events where there is lesser food available every 

year despite increase in population and population density. Increase in population density 

further emphasises why some farmers are cultivating lands on marginally stable lands despite 

risks to their safety and possible reduction in yield due to desiccation. Moreover, inaccessibility 

to farmlands will lead to decomposition of un-harvested farm-produce which translates into 

reduction in available food and lower food products to be sold in the market as well as 

economic loses. The available food products in the market will likely be sold at higher prices 

(an indirect effect of gullying) which will reduce purchasing power of some people. Reduced 

purchasing power will possibly lead to hunger and malnutrition among some segments of the 

society.  

When communication lines such as roads are destroyed, commuters seek alternative routes to 

get to their destinations. In some cases, these alternative routes involve longer distances which 

translate into time wastage and prolonged emission of carbon dioxide (thus increasing supply 

of greenhouse gases) and various chemicals and pollutants into the atmosphere. In other cases, 

when roads are destroyed, nearby farmlands can be used as alternatives. This situation was 

observed in Obibi-Ochasi. Converting a farmland into a road for both pedestrians and 

motorcyclists has some implications; it can increase compaction of soils in the farms (Bakker 

and Davis, 1995) and thereby reducing infiltration and increasing surface runoff (Posthumus 

et al. 2011). Judging from the proximity of the converted farmlands in Obibi-Ochasi to the 

gully edges, higher runoff volumes will flow into the gullies and thereby further destabilizing 

the gully wall and possibly facilitate gully expansion into the farmland. Furthermore, 

compacted soils may hinder appropriate root development of crops, impede crop development, 

reduce crop yield and therefore render the soils unsuitable for agricultural production 

(Posthumus et al. 2011; Rickson et al. 2015). Soil erosion and soil compaction are examples of 

land degradation (Rickson et al. 2015) but in the study area, soil compaction can be a product 

of soil erosion which creates favourable conditions (increased surface runoff) for gully 

expansion. This positive feedback between gullying and soil compaction can further enhance 

the effects of land degradation. Continuous use of farms for commuting will reduce available 

farming space which may lead to reduction in farmers’ yield and possible income. Additionally, 

when pedestrians and cyclists use the same tiny footpaths (observed in Obibi-Ochasi), there 

could be a higher risk of accidents. This factor is made worse by reduced visibility due to crops 

planted in the farm. Finally, commuters can accidentally damage planted crops thereby 
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reducing farmers’ yield and income. Therefore, there are implications for food production and 

security, as well as for safety of commuters due to the conversion of farms into “make-shift 

roads” due by gully-landslide interactions. 

As gullies expand, neighbouring farmlands are lost, hence, farmers are forced to farm closer to 

the edges of the gully, as observed in Amucha and Isu Njaba, where yam and cassava farms 

were less than 1 m from the edge of the gully. Cultivated soil was also found inside the gully 

complex in Amucha. These farming activities have implications for safety, food production 

and gully expansion. For example, gully depths in Amucha and Isu Njaba are up to 35 m in 

places, an accidental fall into the gully during farming will cause harm to a victim. Desiccation 

of crops close to gully edges is known and documented (Frankl et al. 2016), hence, it is 

possible, cultivated crops will have poor yields which could negatively affect the economic 

power of the farmer, as well as food security of the community. Constant farming close to the 

gully edge might channel surface runoff into the gully, especially, where farmers cultivate the 

land along slope and not across slope (Panagos et al. 2015; Chalise 2019). A case in point was 

observed in Isu Njaba where cassava was planted in mounds made along the slope, thereby 

making pathways for surface runoff to flow directly from the farm into the gully. Further, 

cultivating the soil inside the gully complex may discourage natural vegetation colonization 

which could enhance gully stabilization. Since bush burning is a common agricultural practise, 

farm clearing at the outset of rainy season would leave the gully bare and may increase 

susceptibility to gully expansion due to increased volume of surface runoff. 

With reference to loss of houses, the questionnaire survey (Table 7.9) and focus group 

discussion results from both Amucha and Obibi-Ochasi showed that gully-landslide 

interactions pose a threat to property and houses. During fieldwork, I observed parts of 

destroyed houses which have been deposited within the Amucha gully. Some people have been 

forced to become “environmental refugees” in their ancestral homes as identified during focus 

group meetings. One of the women we met during fieldwork to Obibi-Ochasi said to us “please 

tell them to come and help us as my house will soon be destroyed and I have nowhere to go”. 

In the study area, the ancestral home holds a special place in the lives of citizens, and loss of 

ancestral homes and means of livelihood due to gullying could affect victims economically, 

socially and psychologically.  
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7.3 Control measures of gully-landslide interactions 

Section C of the questionnaire focused on control measures adopted in the face of gully-

landslide interactions. Results on section 7.3 are presented in the following themes: Firstly, 

individual and community efforts. Respondents were asked which soil-conservation techniques 

they employ to reduce gully-landslide interactions. A total of 66 respondents in Amucha wrote 

down tree-planting as a measure they adopt to reduce gullying (Table 7.12). In Obibi-Ochasi, 

16 respondents identified tree-planting while five people recognised pits and flood diversion 

as soil-conservation methods they adopt. Focus group discussants in Amucha identified tree-

planting around the gully edges as a gully control, popular plants are bamboo (Bambusoideae) 

and cashew (Anacardium occidentale). In Obibi-Ochasi, focus group participants observed that 

as a community effort, they dug pits in different parts of the community to retain surface runoff. 

Digging of pits as a gully control measure began in 1991.  These pits which measured 3 m deep 

and 6.7 m wide are cleaned yearly by community effort just before the outset of heavy rainfall. 

There were mounds around the pits which were designed to hold water from spilling out. Focus 

group discussants informed me there are about 25 of such pits dug at various points in the 

community. Drainage channels are dug and channelled into these pits. According to focus 

group participants, earth pits are effective in reducing gully expansion.  

Interviews with respondents revealed that sand mining has been banned in Amucha and 

Umueshi communities while focus group participants in Obibi-Ochasi said they have asked the 

communities downstream to stop mining sand, but this request was not respected. In their 

words, “The speed of sand excavation is same speed of erosion in our community”. A yet-to-

be implemented gully-control technique suggested during group meeting in Obibi-Ochasi was 

the use of retention pits in every compound. In their words, “if the use of retention pits for 

every compound is implemented in our community, it could reduce gullying”. Meeting 

participants acknowledged the use of retention pits in the neighbouring State.  

Table 7.12: Responses to question 21: Which other soil-conservation methods do you employ? 

  
Amucha Obib-Ochasi 

Age 

(years) 

Sex 
 

Sex 
  

 
Male 

respondent

s 

tree 

planting 

  
Male 

respondents 

tree 

planting 

pits for flood 

diversion 

18-28 6 5 
  

15 8 
 

29-39 13 5 
  

5 1 1 

40-49 18 11 
  

9 
  

50-59 8 7 
  

8 
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≥ 60 7 6 
  

5 
 

3 

Total 52 34 
  

42 9 4 
 

Female 

respondent

s 

 
  

Female 

respondents 

  

18-28 8 4 
  

12 7 
 

29-39 8 7 
  

4 
  

40-49 15 14 contour 

terrace 

Sand-

filling 

7 
  

50-59 6 4 
 

Sand-bags 2 
 

1 

≥ 60 3 3 
  

1 
  

Total 40 32 
  

26 7 1 

Respondents were asked if they insured their houses and property against gullying. 68 

respondents in Amucha remarked they would like insurance but cannot afford it while 44 

people noted they do not have insurance cover for their houses. In Obibi-Ochasi, 65 

respondents noted they do not have insurance cover for their homes. I spoke with two insurance 

companies operating in the state about offering insurance against gullying, and both were not 

sure what I meant by insurance against gullying. One of the companies said their policies 

covered flooding, lightning, and thunderstorms, but with reference to gullying, they said “no 

insurance policy was in place and this is because the area is endemic to gullying”. They 

continued “however, a special arrangement could be made to insure the house, this will be more 

expensive than the usual insurance cover available for flooding or lightning and will involve 

visit by experts to ascertain proximity of the said buildings to an existing gully”. 

The second control measure identified was in the form of external aid. External aid was 

received from the government, Non-Government Organizations (NGOs) and International 

Non-Government Organizations (INGOs). Focus group meetings and interview with 

respondents in Amucha identified previous interventions of the Local Empowerment and 

Environment Management Projects (LEEMP), a World Bank-assisted project, as an external 

intervention. I was informed that LEEMP constructed drainage channels to control surface 

runoff, with the aim of reducing gully expansions. A local NGO, The Amucha Ohonya Erosion 

and Ecosystem Foundation, was formed with the aim of monitoring, raising awareness and 

soliciting for aids for the controls of the Amucha gully. This NGO has volunteers who guide 

visitors and researchers visiting the Amucha Gully complex. The NGO is also involved in tree-

planting around the gully edges with the aim of stabilising the gully. In Amucha, the Federal 

Government constructed drainage channels between 1983/84 to direct surface runoff into the 

Njaba River as a gully-control measure. Focus group respondents believed this drainage 

channel helped deter gully expansion momentarily, however, some parts of this channel were 
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under threat of collapse during fieldwork (figure 7.3). This condition has the people worried 

about the future of the drainage channel in controlling surface runoff and by extension, erosion. 

In Obibi-Ochasi, the Niger Delta Development Commission (NDDC), the Nigeria Erosion and 

Watershed Management Project (NEWMAP) and the World Bank were external bodies who 

had been involved in gully-control in the past, according to focus group meeting attendees. 

Focus group participants in Obibi-Ochasi informed me that 362 seeds of gmelina (Gmelina 

arborea) were planted in the 1980s around the gully edges by the government and the 

community believes these trees reduced the speed of gully growth.  During an interview with 

the chairman of the gully-control committee in Obibi-Ochasi, he showed me seven letters 

which the community had written (between 1994 and 2011) to successive governments asking 

for assistance to control gullying but he received no response. Focus group and interview 

participants in both communities believe gully-control measures adopted so far though not in 

vain have not been sufficient to stop gully expansion. 

During fieldwork, it was observed that the Nigeria Erosion and Watershed Management Project 

(NEWMAP), a World Bank-assisted project aimed at controlling gully erosion in gully-prone 

states, was carrying out gully-control measures in Urualla community. Participants at focus 

group meetings in Amucha said “NEWMAP would not intervene in the Amucha gully due to 

the vegetated nature of the gully”. They went further to say that NEWMAP informed them that 

“the vegetal cover around the gully shows the gully is stabilizing and therefore no intervention 

was required”. In Obibi-Ochasi, focus group meeting participants said that NEWMAP had 

visited the community and conducted feasibility studies “but nothing else was heard from 

them”. In Umueshi, NEWMAP started gully control works but the project was abandoned mid-

way. In Urualla, gully rehabilitation works were observed during fieldwork. Increase in gully 

sizes were identified in Amucha, Umueshi and Urualla communities. 
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This section has enumerated individual and community efforts aimed at reducing gully 

expansion. One central theme that emerged from interviews, focus group meetings, 

questionnaire survey and field observation is the use of tree-planting around the gully, as a 

gully-control measure. Two types of plant species are often planted, the bamboo and cashew. 

These species have the following features which may have been deemed sufficient for gully 

stabilization: 

1. Bamboo can grow rapidly (they are among the fastest growing plants) and colonise a 

territory (Ben-Zhi et al, 2005) hence they may have been considered adequate to reduce 

surface runoff and increase infiltration.  

Figure 7.3: Drainage channel constructed by the Federal Government in Amucha in 1983/84 as a gully-

control. Some parts of the structure are under threat of collapse as shown in this image and this condition  

has residents of the community worried. 
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2. Bamboo has a fibrous root system (0 – 30 cm) of tightly woven mat and rhizomes 

which are thought to hold soil particles together at the surface.  

3. Bamboo is a cash crop that is harvested and used for several activities from supporting 

yam sampling to building construction (figure 7.4). Bamboo produces new culms from 

underground rhizomes which allows harvesting without disturbing the soil (Ben-Zhi et 

al, 2005).   

4. Bamboo grows well on steep hillslopes (Ben-Zhi et al, 2005). 

5. Cashew trees are fast growing, tropical and can live up to 50 years.  

6. Cashews have long fibrous roots (growing laterally up to 7 m) and deep tap root (up to 

5 m) (Tsakiris & Northwood, 1967; Dendena & Corsi, 2014). 

7. Cashew is a cash crop and hence, the communities will protect the plant, while they 

help to stabilise the soils. 

Regarding farming techniques, farmers in Amucha made mounds of cassava across slope to 

reduce volume and speed of surface runoff (figure 7.5). This farming technique is a learned 

behaviour which these farmers have adopted. In contrast, cassava mounds in Isu Njaba were 

cultivated along the direction of the slope, such that the grooves between mounds could serve 

as a channel for surface runoff to flow into the gully. Both farms were adjacent to gully walls. 

In Umueshi community, the NEWMAP had paid farmers whose farms were adjoining the gully 

so they would not till the soil and allow gully rehabilitation projects to proceed unhindered. If 

farmers in other gully-prone communities whose farms were bordering gullies were paid so 

they would not till the soils and allow natural vegetation to colonise such lands, then effect of 

surface runoff as a gully driver around these lands might be reduced. However, vegetal 

colonization could increase susceptibility of gully walls to erosional activities by sub-surface 

flow.  

A community effort aimed at retaining surface flow which was observed only in Obibi-Ochasi 

was the digging and cleaning of pits. If other communities affected by gullying adopted this 

technique, volume of runoff flowing into gullies would be reduced. These pits could pose few 

challenges, for example, drainage channels are dug to direct surface flow into them. These 

drainage channels which are not cemented could be widened due to erosion by surface runoff, 

and thereby leading to expansion and possible gully initiation. Secondly, digging of pits while 

serving as a gully-control measure leads to loss of land for farming or other activities. Lands 

used for retention pits may not be suitable for any other activities in the future, and hence, could 

be a reason use of this community technique is not popular in other communities. 
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Figure 7.4: Bamboo sticks used for building construction. One of the numerous uses of the bamboo which is 

a cash-crop.  

Figure 7.5: Freshly cultivated cassava farm adjacent to the Amucha gully. Mounds are made across slope to 

encourage infiltration and reduce volume of surface runoff flowing out of the farm. 
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Community efforts to reduce gullying adopted in other communities include a ban on sand 

mining. For example, in Umueshi, sand mining was banned in 2017. Face to face interview 

with local guides in Amucha revealed that the community is losing revenue due to their 

inability to mine earth materials in the gully. For instance, despite the abundance of marine 

sandstone (white sand) and chalk within some sections of the gully, these resources are not 

mined for two reasons; inaccessibility due to gullying and secondly, so as not to expedite 

landsliding and gully expansion. While the ban on sand mining could be regarded as a control 

measure aimed at reducing gully expansion, it also means sand vendors have to relocate to 

other communities to trade and thus, there is loss of employment opportunities and income. 

Further, the cost of transporting these materials (chalk and marine sandstone) from 

neighbouring communities to Amucha may be more expensive than if they were able to mine 

from their community.   

Regarding external aid, results from this section show that since the 1980s, the study area has 

attracted the attention of external support to curtail gully expansion. However, it is the belief 

of interviewees and respondents that the aid they have received are not sufficient. While some 

visited gullies were vegetated, they showed signs of activity, for example, fresh landslide scars 

(Amucha gully) or spring discharge (Obibi-Ochasi gully). These conditions suggest that the 

use of surface runoff-control measures as attested to by respondents as a gully-control may not 

be the only solution to curtail gully-expansion in the study area. The idea that presence of 

vegetal cover around or within sections of a gully mean the gully is stabilizing (as suggested 

by the interaction between the community and NEWMAP) may not be true in all cases as 

vegetation cover can increase susceptibility to landsliding (Greenway, 1987). Therefore, 

different actions are needed to stop existing gullies from expanding compared to measures to 

stop new gullies from forming. For example, while control of surface runoff may deter 

development of new gullies, it may not prevent old gullies from expanding. 

7.4 Summary  

In this chapter, results of hazards and effects of gully-landslide interactions have been 

presented and discussed. Respondents identified effects of gullying on their farms and houses 

as the key problems they face (section 7.2). These responses are reasonable as it is easier to 

relate with the present than it is with the future. Food and shelter are important needs of 

humans; however, gully-landslide interactions can rob people of their abilities to provide both 

needs. Some indirect effects of gullying were also identified in this chapter such as higher 

release of carbon dioxide due to longer distances required to travel. This effect could add to 
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greenhouse gases and further exacerbate the problem of climate change. Community and 

individual efforts have been adopted to reduce effects of gullying; these efforts according 

respondents have been effective in slowing the pace of gully expansion in the last 10 years. 

Despite initial successes recorded in combating gully erosion, affected communities feel more 

external aid is required to slow gully expansion. 

7.5 Conclusions 

The following are the conclusions of this chapter: 

1. Regardless of age, there is a high level of awareness among inhabitants of the study 

area on the hazards of gully-landslide interactions. Despite cultural similarities, 

indigenous knowledge regarding causes of gully erosion slightly differs between the 

two communities where focus group meetings were conducted.  

2. Results shown above indicate that the effects of gully-landslide interactions can be 

direct (e.g. reduction in arable lands) or indirect (higher prices of available food 

products). While it is easier to relate with direct effects (as identified from 

questionnaire, interview and focus group meetings), indirect consequences of gullying 

identified in this study can be profound. 

3. There are community and individual efforts involved in reducing impacts of gully-

landslide interactions. Tree planting is a well-known gully-control technique and has 

been adopted for a long time, however, this technique has not been effective in deterring 

gully growth. 

4. Since the 1980s, there have been external aids to combat gullying in the study area 

although not in vain, these efforts have not stopped old gullies from expanding or the 

formation of new ones. 
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Chapter 8  

Discussion 

This chapter is a synthesis of the result chapters (4 – 7). Discussions centre on the conceptual 

model (presented in section 2.3) which formed the foundation for posing research questions in 

this study. Section 8.1 presents an evaluation of the old conceptual model centred on literature 

review only, while section 8.2 discusses a modified conceptual model based on the results 

presented in chapters 4 – 7 and literature review. This modified model is informed by the 

findings of this research. Gully-management recommendations are discussed in section 8.3 

while summary and conclusions follow in section 8.4. 

8.1 Evaluation of old conceptual model of gully landslide interaction 

The conceptual model developed in section 2.3 identified the relationships among climate, 

geology, soil, geomorphology and human activities which influence gully-landslide 

interactions, (figure 2.4). In chapter 4, the influence of land use and land-use changes as gully-

drivers were identified. While section 2.3 acknowledged human activities including removal 

of vegetation as gully drivers, the likely role played by civil war (increased demographic 

pressure, digging bunkers) as a gully-driver was not captured. Combined actions of land-use 

changes, relative relief and nearness to rivers and roads influence changes in gully sizes in the 

study area (section 4.5.1) but was not identified in section 2.3. Removal of vegetal cover and 

increase in non-vegetated surfaces are known to enhance gullying (Ionita et al. 2015) as shown 

in figure 2.4, however, section 4.3 suggests that gullies in different catchments react differently 

to similar land-use changes. This result points to the uniqueness of individual catchments and 

gully responses to other drivers of gully expansion other than land-use changes – a factor not 

recognized in section 2.3.  

It is known that surface runoff is the primary driver of gully erosion, especially, at the early 

stages of a gully (Okagbue & Uma, 1987; Betts et al. 2003; Poesen et al. 2003; Frankl et al. 

2021) as identified in section 2.3. However, modelling results in section 5.1.2 suggest that in 

addition to surface runoff, sub-surface flow-driven erosion is a potential process of gullying in 

the study area. Fieldwork revealed the presence of springs and landslide scars in some visited 

gullies, some of which were vegetated (e.g. Amucha gully) while modelling results indicated 

high volumes of lateral flow in some gully-adjacent sub-basins (figure 5.17). Focus group 

meeting attendees informed me that landsliding only occurred a day or two after rainfall 

(section 7.11), suggestive of the potential effect of groundwater as a landslide-driver. Whilst 
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section 2.3 identified porewater pressure as a trigger of landsliding, sub-surface flow as an 

erosional agent did not receive adequate attention in the conceptual model. Thus, there are 

important mechanisms not included in the conceptual model (figure 2.4) that are clearly 

essential to produce a more complete conceptual model of gully-landslide interactions. 

8.2 Modified conceptual model of gully-landslide interactions 

8.2.1 Human-vegetation interactions 

Figure 2.4 identified that land-use changes, especially the removal of vegetal cover, will 

facilitate susceptibility of soils to gully erosion. Across the entire study area, land use changes 

were recorded for the study period, non-vegetated surfaces occupied 58.6 km2 in 2009 but 

increased to 144.7 km2 in 2018, an increase by 146.8%, conversely, there was a reduction in 

tree/fallowed lands from 281.2 km2 in 2009 to 57.8 km2 in 2018, a reduction of 79.5% (section 

4.1). During same study period, gully numbers rose from 26 in 2009 to 39 in 2018 while gullied 

area grew from 0.36 km2 to 0.62 km2 thus, there was an increase of 50% and 75% in gully 

numbers and gullied areas respectively (section 4.2). These results are consistent with the 

observations of Ionita et al. (2015) and Castillo et al. (2016) who suggested that gully evolution 

is linked to major land-use changes, especially, reduction in forested lands. An example of 

land-use change is road construction which often involves conversion of land from vegetated 

to paved surfaces. Results from the study area regarding gully evolution and nearness to roads 

(section 4.4) are similar to those reported in other parts of the world, e.g. southern Spain 

(Collison, 2001), northern Ethiopia (Frankl et al. 2012), southeast Nigeria (Nwankwor et al. 

2015), the Ilam, Lorestan and Mazandaran Provinces of Iran (Rahmati et al. 2017; Zabihi et al. 

2018).  

Vegetation communities affect soil erosion through their impact upon hydrology and soil 

structure (Wainwright & Parsons, 2010). In this study, effects of vegetation on soil structure 

were not studied, however, results in section 5.1 suggest that reductions in tree/fallow cover 

results in higher flow of surface runoff and surface runoff is recognised as a primary driver of 

gully erosion (Poesen et al. 2003). Across some catchments (e.g. Amucha, Orlu1, 

IdeatoSouth2, IdeatoNorth1), higher surface runoff estimates due to changes in land use 

corresponded with increase in gully dimensions (section 5.3). Hence one can cautiously say 

that factors that increase surface runoff (e.g. increase in non-vegetated surfaces) will potentially 

increase gully sizes and numbers. Research findings presented in sections 4.1, 4.2, 4.4 and 5.3 

support the section of figure 2.4 that proposes higher susceptibility of soils to gully erosion due 

to conversion of lands from vegetated to non-vegetated surfaces (figure 8.1). 
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Apart from removal of vegetation and increase in non-vegetated surfaces, another factor of 

human origin that was identified through focus group meetings as a gully-driver is civil war. 

Figure 2.4 does not capture civil war as a factor of interest in gully-landslide interactions. Bomb 

explosion is a process of soil erosion in the Anthropocene (Poesen, 2018). Focus group 

discussions (section 4.4.2) detail changes to the pristine nature of the environment during the 

civil war, these changes including sudden increase in population density and military activities 

of the defunct Biafran soldiers, were said to have led to the initiations of the oldest gullies in 

the study area (1968 in Obibi-Ochasi and 1969 in Amucha). Although increase in demographic 

pressure has been suggested as a gully driver (Fanciullacci, 1978) and is captured in figure 2.4, 

the role of civil war first as a catalyst of increased demographic pressure and secondly, as a 

driver of gully erosion in the study area has not been documented and is included in the 

modified conceptual model (figure 8.1). 

8.2.2 Sub-surface-driven gullying  

Sub-surface erosion which can occur through seepage erosion (Dunne, 1990), actions of lateral 

movement of water within the soil (Berry, 1970), groundwater driven erosion (Okagbue & 

Uma, 1987) as well as piping (Bernatek-Jakiel & Poesen, 2018). Modelling results showed that 

while some gully catchments witnessed increased non-vegetated surfaces and subsequent rise 

in surface flow, two catchments (IdSouthWS1 and Njaba WS1) experienced reductions in non-

vegetated areas (Table 4.4). In IdSouthWS1 for example, a continuous increase in fallow/tree 

cover was noticed between 2009 and 2018. Whereas there could be changes in land use in one 

direction (e.g. reductions in fallow/tree cover) in parts of a catchment, land use changes in the 

opposite direction (e.g.  increased fallow/tree cover) in other parts of same catchment were 

possible (e.g. in Njaba2 catchment, figure 5.18, there was reduced fallow cover across the 

catchment, yet sub-basin 20 saw higher fallow cover from 2009 to 2018). These variations in 

land use have implications for surface runoff or sub-surface flow as potential gully drivers.  

Presented results from Njaba2 and IdSouthWS1 catchments (section 5.1.2) suggest that in 

addition to surface runoff, sub-surface flow is also a possible gully driver in the study area but 

was not included in figure 2.4. Higher lateral flow volumes were modelled for sub-basins with 

higher slope angles (section 5.4) and thus, while topography directly controls erosivity of 

surface runoff (Knapen & Poesen 2010), modelled results indicate topography also affects 

volume of lateral flow, which might likely influence erosivity of lateral flow, a view supported 

by Micallef et al. (2021).  
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Regarding landslides, higher pore pressure enhances susceptibility to slope failure (Akpan et 

al. 2015; Igwe. et al. 2016; Maduka et al. 2017) and thus, actions that increase infiltration or 

agents that create preferential pathways for waterflow such as plant roots (Wainwright, 2009) 

will likely increase pore pressure and subsequently reduce resistance to sliding. Further, 

increased weight of soil due to higher infiltration and weight of trees may potentially enhance 

sliding, and finally, transmission of kinetic energy from trees into gully slopes will lead to 

reduced shear strength of gully slopes and higher susceptibility to gully-induced landslides 

(Greenway, 1987). Different processes of landsliding which involve removal of earth materials 

in large volumes can be driven by groundwater and can bring about gully expansion (Okagbue 

& Uma, 1987). Landsliding may become active up to several days after a large rainfall event 

due to the time it takes for rainwater to reach the groundwater store (Betts et al. 2003). A focus 

group meeting at Obibi-Ochasi (section 7.11) revealed that sliding occurred not during rainfall, 

but a day or two after rainfall, thus pointing to the potential role of groundwater as an agent of 

gully-induced slides.  

During site visits, fresh and old landslide scars were observed in visited gullies (e.g. Amucha, 

Obibi-Ochasi and Isu Njaba) despite the vegetated nature of the lands surrounding the top of 

the gully. It is possible higher infiltration due to the vegetal cover of gully tops, or increased 

weight of slope materials or transmission of kinetic energy from tree canopies into the 

hillslopes, or removal of toe support due to surface runoff flowing through the gully floor, or 

combinations of all four factors are responsible for slope failures within these gullies. Figure 

2.4 illustrates that transmission of kinetic energy from vegetal cover can increase susceptibility 

to landsliding and field observation indicates gullies in the study area whose tops were 

vegetated experience slope failures. Favourable conditions such as irregular and bare surfaces 

created by gully-induced landslide scars will increase propensity to gully widening (Johnson 

& Warburton, 2015; Gómez-Gutiérrez et al. 2015). 

8.2.3 Climatic influence on gully-landslide interactions 

Increase in temperature increases evapotranspiration losses as identified from modelling results 

across catchments covered in the 2014 satellite data (e.g. IdNorthWS, figure 5.10). This 

situation can decrease or increase susceptibilities to gully erosion and landsliding. Reduction 

in susceptibilities to both processes’ manifests in the loss of sub-surface flow through 

transpiration from plants, and thus, less lateral and groundwater flows are available to 

destabilise gully slopes (Greenway, 1987). The adverse effect of rapid evaporation due to 

higher temperature relates to condensation of evaporated water. In favourable conditions (e.g. 
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availability of condensation nuclei) water vapour could condense and return to the surface as 

rainfall (Entekhabi et al. 1992), and hence, rapid evapotranspiration can facilitate higher 

condensation which may in turn lead to more convectional rainfall. These convectional rains 

when armed with sufficient kinetic energy can erode soils especially, when they fall on bare 

surfaces caused by removal of vegetal cover by either human activities or landslide scars.  

Climatic elements interact with other gully-drivers, e.g. land-use changes, to influence gully-

landslide linkages. For example, modelling results show that 2009 was the wettest year, yet 

streamflow in some catchments were higher in either 2014 or 2018 (e.g. IdNorthWS, figure 

5.10) due to land-use configurations. Based on modelled results, in areas of higher vegetal 

cover, the following happens to rainfall: 

1. Higher infiltration occurs.  

2. Depending on local slope configuration, infiltrated water either percolates and joins 

groundwater contribution to streamflow or flows laterally. 

3. Areas with higher slope angles have higher lateral flow contribution to streamflow. 

4. Catchments with lower slope angles have higher percolation, higher groundwater flow 

contribution to streamflow and higher loss to deep aquifer. 

If the land use is dominated by connected non-vegetated surfaces: 

1. Less infiltration occurs. 

2. There is higher surface runoff contribution to streamflow. 

3. There is less percolation and lesser loss of water to deep aquifer. 

4. In summary, there is higher streamflow even though total rainfall could be smaller (e.g. 

IdNorthWS, figure 5.10). 

8.2.4 Geomorphic drivers of gully-landslide interactions 

In section 4.4.1, results on relative relief, maximum slope and curvature were presented. 

Principal Component Analysis indicated that along the first principal component, both relative 

relief and maximum slope had same effect (Table 4.7), also, multiple regression results indicate 

that relative relief alongside nearness to roads and rivers correlate with changes in gullied area 

(P-value = 0.03, r2 = 0.3, adjusted r2 = 0.21, Table 4.9). With respect to curvature (curvature as 

a geomorphic variable was not included in figure 2.4), higher concentration of gullies was 

identified on convex curvature (Table 4.12) and suggests there are higher gully counts on the 

portions of the slopes where flow acceleration is observed in contrast to where flow 

accumulation dominates. Section 4.4.1 shows there is higher gully concentration around rivers 
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while a sharp rise in slope from 0 – 58.2% within a distance less than 500 m from the river was 

observed. Therefore, accelerated surface flow draining into the rivers likely increase gully sizes 

and gully concentration around rivers. Also, deposited materials which ordinary should protect 

gully-foots from further erosion are carried away by ephemeral flows and deposited in the 

rivers (observed in the field) due to nearness of gully endpoints to rivers (figure 4.18). This 

situation creates a positive feedback mechanism such that as more materials are carried away 

by rivers, more deposits are eroded from gullies. 

There is reduction in factor of safety with increasing slope angle (Figure 6.3). Landsliding is 

of relatively minor importance in the early stages of gully development (except where gullies 

are triggered as a result of landsliding) when surface erosion and fluvial incision dominate but 

becomes increasingly important as gully development passes a critical threshold of sidewall 

length and/or slope, and sidewalls then begin to fail (Betts et al. 2003). This observation is 

supported by Okagbue & Uma, (1987) who proposed four stages of gully evolution. During 

the first three stages, surficial removal of soil particles by rainfall and surface runoff along rills 

and gullies are the main erosional activities while landsliding is dominant at the final phase 

(Okagbue & Uma, 1987). In figure 2.4, I proposed that higher slope angles caused by gully 

erosion facilitate landsliding, and section 6.12 details three processes of gully-induced 

landsliding observed in the field, which lead to gully expansion. Figure 6.9 shows bare and 

rough surfaces (formed from gully-induced slides) which present favourable conditions for 

gully sidewall erosion, a process of gully widening (Wishart & Warburton, 2001; Castillo & 

Gómez, 2016). Thus, field observations, regression analysis results and modelled factor of 

safety results support the section of figure 2.4 that associates slope angles with increased 

susceptibilities to gully erosion, gully-induced landsliding and in turn, landslide-induced gully 

expansion (figure 8.1). 

8.2.5 Nearness to rivers 

There is a positive association between gully head distance from rivers and change in gullied 

area (0.5) and change in gully length (0.41, figure 4.17). Zabihi et al (2018) also found higher 

gully concentration in lands closer to rivers. Combinations of factors enumerated in section 

4.5.1 likely facilitate concentration of gullies in river-adjacent lands. 

8.2.6 Soil attributes and gully-landslide interactions 

In section 4.4.1, results on different soil attributes were presented. The soils in the study area 

have higher sand content and infiltration results (Tables 4.13 and 4.15). Higher sand content 
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can lead to lesser resistance of soils to dispersal by rainwater, high infiltration rates (up to 3571 

mm/hr) and in turn, increased seepage erosion (Obi & Asiegbu, 1980; Okagbue & Ezechi, 

1988). Hence, there is tendency that sub-surface erosion will be dominant in vegetated areas, 

while in non-vegetated catchments, surface runoff erosion might be a significant gully-driver. 

There is the possibility of a continuum where both processes control gullying at different 

periods (section 5.3) or during different seasons of a year such that at the beginning of the rainy 

season, surface flow is a dominant gully-driver, while in the middle of rainy season, sub-surface 

flow dominates (section 5.4). As the gully walls attain steep slopes due to intense gullying, 

mass movement sets in thereby creating irregular surfaces conducive to enhance gully width 

expansion, and thus the cycle gully-landslide interaction continues. Infiltration rates of soils, 

soil texture and the derived effect of seepage pressure due to high sand content which are 

important in gully-landslide studies were not illustrated in figure 2.4. As a result of the above 

discussion and identification of gaps, I have developed a revised conceptual model of gully-

landslide interactions (Figure 8.1).  

While it has been stated previously in various chapters of this thesis that landslides can lead to 

gully formation, it is important to reaffirm here that the landslides studied in this project are 

gully induced. Based on evidence presented in chapter 6 (observed landslides were likely 

triggered by steep slope angles caused by gullying, or removal of slope toe support by erosion 

or combinations of both processes) it is clear that gully formation through other ecogeomorphic 

interactions precedes gully-induced landsliding which is a product of extreme gullying. Thus, 

slope failure would not have occurred if gully erosion did not take place initially.  
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Figure 8.1: Modified conceptual model of the ecogeomorphology of gully-landslide interactions. Grey boxes and dashed lines show feedbacks between gully erosion and landsliding, green 

box indicates the ecogeomorphic system, orange boxes indicate factors not studied but derived from literature, gold box shows factors previously not studied in the region, white boxes 

were identified from literature and supported by research findings. 
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8.3 Management  

Section 7.3 identified soil conservation and erosion-control measures adopted in the study area. 

In Amucha and Obibi-Ochasi communities, 66 and 16 respondents respectively, named tree 

planting as a method they adopt to reduce gullying. Popular gully-control plants are bamboo 

(Bambusoideae) and cashew (Anacardium occidentale), section 7.3 details likely reasons these 

plants are used for gully-control and soil conservation. Tree planting around gully edges 

(identified by focus group respondents), as an erosion-control technique may be inefficient if 

mass movement is the dominant driver of gully erosion (Betts et al. 2003; Valentin et al. 2005). 

Since 1935, different erosion-control methods including tree planting and engineering 

constructions designed to reduce erosive power of surface flow have been adopted to curtail 

gullying in southeast Nigeria (Egboka & Nwankwor, 1985). Tree planting and regulation of 

surface runoff are effective in controlling only shallow (< 15 m deep) gullies that have not cut 

through a saturated zone. These measures tend to fail when used for deep gullies that are greatly 

affected by groundwater especially when such gully floors are located in non-cohesive and 

very permeable sands (Okagbue & Uma, 1987). This observation by Okagbue & Uma (1987) 

is the possible reason some erosion-control projects have failed over the years.  

Fieldwork identified gully rehabilitation projects undertaken by the Nigeria Erosion and 

Watershed Management Project (NEWMAP) at two visited gullies. While the project at the 

Umueshi community had been abandoned, work (in the form of gully reshaping which involes 

partial filling up and reshaping gully banks into stable slopes) was ongoing at the Urualla gully 

site. Interview with residents of Amucha community confirmed that NEWMAP officials had 

visited the Amucha gully but suggested there was no need for any intervention due to the 

vegetated nature of the gully. While it is possible that vegetation colonization on gully floor 

will reduce surface flow and gully-toe erosion by surface runoff, it has been suggested in 

section 8.2.3 that higher vegetal cover will likely increase infiltration which may enhance 

actions of sub-surface flow as gully-drivers. Higher vegetal cover on gully tops or walls can 

enhance higher sub-surface flow. Sub-surface flow leads to different types of gully-induced 

landslides which enlarge gully sizes (Okagbue & Uma, 1987). Transmission of kinetic energy 

from trees found on gully roofs or walls will enhance slope instability (Greenway, 1987). 

During fieldwork, multiple old and recent landslide scars where identified within the Amucha 

gully in spite of the vegetated condition of sections of the gully. Therefore, higher vegetal cover 

of the gully wall or roof does not necessarily translate into gully stabilization as was implied 

by the NEWMAP officials. 



237 
 

Modelling results and gully mapping have shown that while some gully sizes grew alongside 

increased surface runoff in their catchments, changes in gully sizes in other watersheds 

corresponded to increased sub-surface flow, and in some, gully changes in response to 

increased surface and sub-surface flows were observed. These results are important when 

designing gully-management methods. For example, controlling surface flow may work as a 

gully-control measure in a catchment whose gully responded to increased surface runoff, and 

where the gully depth is less than 15 m (Okagbue & Uma, 1987). However, the same gully-

control method may be inefficient in a different catchment where gully changes are driven by 

sub-surface erosion. For gully management to be successful therefore, an understanding of 

ecogeomorphic interactions acting as gully-drivers within the gully watershed is vital. To this 

end, the following gully-management recommendations are offered based on findings of this 

research.  These recommendations can broadly be divided into two phases: desk study and 

geomorphic delineation of gully catchment into sub-basins, and recommended management 

(figure 8.2). 

1. Gully growth in response to surface runoff: by the time it has been established through 

initial desk study that gully growth corresponds to higher estimates of surface runoff 

over the years, the slope angles of individual sub-basins in the catchment should be 

identified. If the sub-basins are dominated by low-angle slopes, then lateral flow 

contribution to streamflow will be expected to be low while groundwater contribution 

to flow would be high (e.g. IdeatoSouth_gully2, Orlu1, Urualla_gully1). Hence, efforts 

should be geared towards controlling both surface runoff and groundwater flow into the 

gully. Concrete drainage channels aimed at carrying surface runoff (flowing from 

upstream sub-basins in a catchment) away from gullies and into local base levels such 

as rivers and retention dams will possibly reduce surface runoff erosion. Reducing 

groundwater flow into gullies from upstream and gully-adjacent sub-basins will 

possibly control groundwater-driven erosion. 

2. If gully growth corresponds to higher surface runoff and sub-basins, especially gully-

adjacent sub-basins are dominated by high slope angles, lateral flow contribution to 

streamflow will be expectedly high (e.g. Amucha gully, NjabaWS1, IdeatoNorth1, 

Isu_gully1, Isu_gully2, Isu_gully3, Njaba4, Orlu2, Urualla_gully1, Urualla_gully2, 

Urualla_gully3). Therefore, while increase in connectivity of non-vegetated surfaces 

will mostly likely increase surface runoff, gully control methods should also involve 

controlling lateral flow, especially, on gully-adjacent sub-basins. Engineering 
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structures designed to carry surface flow away from gullies, as well we use of tree-

planting which would initiate transpiration may help stabilise the gullies. 

3. Gully growth in spite of increased vegetal cover in the catchment: sustained gully 

growth notwithstanding increased tree-cover within a catchment but especially on 

gully-adjacent sub-basins indicates possibility of sub-surface erosion and groundwater-

driven landsliding. In such gully catchments, if the sub-basins are dominated by lower 

slope angles, then lesser lateral flow and higher groundwater contribution to streamflow 

will be expected. Gully management involving controlling surface flow only maybe of 

little significance. Reducing the groundwater level may possibly enhance gully stability 

(Egboka & Nwankwor, 1985). Tree weight especially where the plant is found at the 

boundary between gentle and steep slope and transmission of kinetic energy from trees 

into gully slopes increase propensity to landsliding (Gao et al. 2020). Also, tree roots 

create local channels for enhanced infiltration which potentially increases pore pressure 

and thereby increasing slope susceptibility to failure.  

Complete removal of vegetal cover, to reduce adverse effects of trees may facilitate 

surface runoff erosion and therefore exacerbate the gullying problem. Therefore, 

replacing trees with grasses whose root systems are deep, fibrous, and made up of dense 

network e.g. vetiver (Chrysopogon zizanioides) and lemongrass (Cymbopogon citratus) 

are favoured as gully-control on gully-adjacent sub-basins. Grasses potentially reduce 

erosive runoff flow into gullies (Stokes et al. 2008) thereby controlling surficial erosion 

of gully walls, they are not as heavy as trees thus, less vegetal weight is added to the 

slope (Wang et al. 2016; Gao et al. 2020), and finally, transmission of destructive 

kinetic energy into gully slopes by grasses may not be significant in destabilizing gully 

slopes. Selecting native plants will increase the success of planting program aimed at 

controlling gullying (Norris et al. 2008; Frankl et al. 2021). 

4. Where there is gully growth despite increased vegetal cover and sub-basins are 

dominated by higher slope angles, especially, in gully-adjacent sub-basins, then lateral 

flow into gullies will be expectedly high (e.g. IdSouthWS1, NjabaWS1). Reducing 

lateral flow into gullies should be a priority. Use of sub-surface dams which involved 

insertion of geomembranes to depths between 0.3 – 2.3 m below the surface have been 

adopted for gully stabilisation in Northern Ethiopia (Frankl et al. 2016). Although part 

of the aim of the sub-surface dam was to block bypass flow in soil pipes near the check 

dam (gabion check dams were constructed to stabilise the gully heads), adopting a 
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similar technique with some modifications such that lateral flows into gullies are 

collected in sub-surface dams and pumped out, will potentially reduce gully expansion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main challenge with the enumerated points is that gullies in the study area behave 

differently from one another based on uniqueness of individual gully catchments. Secondly, 

depending on the stage of evolution of a gully (Betts et al. 2003; Okagbue & Uma, 1987), one 

recommended method may be insufficient, rather, combinations of different approaches. For 

example, there may be increase in non-vegetated areas over the years which translates to higher 

surface flow into a gully, however, same gully might have attained an advanced stage, such 

that controlling surface flow alone may not be sufficient because of influence of groundwater-

driven mass movement. In conclusion therefore, effective gully control must acknowledge the 

significance of gully catchment uniqueness as what works in one catchment is not guaranteed 

Desk study and geomorphic delineation of gully 

catchment into sub-basins 

Recommended 

management  

 

Figure 8.2: Decision tree of recommended gully-management. Two main phases are identified, initial desk study 

and geomorphic definition of sub-basins, and recommended gully-management. 
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to work in another, despite similarities in physical factors such as elevation and soil. Similarly, 

a successful control measure for one gully may not be successful for another gully depending 

on the stage of evolution of the gully. 

For gully management, two routes can be adopted to replicate this research and adopt the best 

management practice in a catchment: Firstly by conducting simple hydrological modelling. 

The data (e.g. DEM and satellite data) and hydrological model (SWAT) used in this work are 

open source and freely available. While ArcGIS is not free, there is a version of the SWAT 

model available on open source platforms such as QGIS and R-Studio. Secondly, with the 

availability of a DEM, a catchment can be delineated into sub-basins while analysis of vegetal 

cover changes is carried out. Inferences on hydrological dynamics can be drawn from this 

second approach and inform the best management approach to adopt for a gully of interest. 

8.4 Summary and Conclusions 

The conceptual model presented in figure 2.3 formed the basis for formulating research 

questions in this study. While the factors considered in figure 2.3 were important, new factors 

of interest in gully-landslide studies have been found to be significant in the study area (figure 

8.1). Research results have also shown that gully-landslide interactions are driven by multiple 

ecogeomorphic factors whose interactions with one another are ever dynamic. Hence, in 

providing solutions to environmental problems, the pursuit of multiple driving factors is 

favoured over the search for a single driving factor. Interactions among ecogeomorphic drivers 

of gully-landslide linkages enhance the difficulty of applying a single gully-management 

project across an entire area, notwithstanding similarities in land use, topography, and climate. 

It has been recommended that any successful gully-control project must acknowledge the 

uniqueness of different gully watersheds and treat gullies as individual entities and 

management methods should not be generalised across all gullies. 
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Chapter 9  

Conclusions 

9.0 Introduction  

This chapter concludes the thesis. References are made to the aim of the thesis, to improve 

understanding of ecogeomorphic processes that influence the interactions between gully 

erosion and landslides in the Orlu region of southeast Nigeria. Key findings of this research 

and wider implications of these findings are presented and recommendations for future research 

are suggested. 

9.1 Key findings of the study and wider implications  

To achieve the aim of this research, four objectives were set in chapter 1 while multi-method 

research techniques which involved combinations of analysis of remotely sensed data, 

quantitative and qualitative research methods, geotechnical survey and hydrological modelling 

were adopted. In a data-scarce region, such as southeast Nigeria, multi-method research 

approach as adopted in this research provided answers to previously unreported findings. For 

example, the dates of gully initiation in the Orlu area, and the role of civil war as the primary 

driver of gullying. Combinations of both quantitative and qualitative methods are not common 

(Nyssen et al. 2006; Frankl et al. 2016) and this is the first time combination of these research 

methods is used in a single research project related to gully erosion and landsliding in southeast 

Nigeria. Research findings are summarised into the following:  

9.1.1 Civil war as a gully-driver in southeast Nigeria 

The Nigeria-Biafra civil war (1967-1970) was the beginning for gully initiation in the Orlu 

region of southeast Nigeria. While military activities such as digging trenches, which facilitated 

gullying in the late 1960s no longer exist today, increase in demographic pressure which led to 

removal of natural vegetation cover is very much present and is likely the current driver of 

gullying in the study area. This study is the first study to recognise The Nigerian civil war as a 

gully-driver in southeast Nigeria. 

9.1.2 Uniqueness of gully catchments and implications for gully management 

Results obtained from chapters 4 and 5 suggest the importance of treating individual gully 

catchments as separate entities despite similarities in factors such as topography, climate, and 

soil. It was shown in chapter 4 that at the regional scale, while reduction in fallow-cover over 

a certain period is possible, at the catchment level, increase in fallow-cover within some gully 

catchments is feasible. Results in chapter 5 indicate that at the catchment scale, variations in 
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vegetal-cover distribution are also possible, for example, while the upstream sections of a 

catchment may experience increased forest-cover, the gully head and gully-adjacent lands may 

be covered by non-vegetated surfaces or vice versa. These regional and catchment-scale 

changes in land cover have implications for driving processes of gullying and gully-

management practices, and therefore reaffirms the need for catchment-specific control for 

gullies due to uniqueness of gully watersheds. 

9.1.3 Surface and sub-surface flows as agents of gully-landslide interactions 

The high sandy nature of soils in the study area predisposes them to dispersal by rainwater and 

surface runoff, high infiltration, and seepage erosion (Obi & Asiegbu, 1980; Okagbue & 

Ezechi, 1988). Increased non-vegetated surfaces due to land-use changes lead to higher 

volumes of surface runoff which enhances rill incision and surficial erosion. When the slopes 

of rills cross critical thresholds, gully-induced slides occur and thus enlarging the sizes of the 

gullies. On gully sections where slides occur, there is reduction in vegetal cover which further 

propagates the role of surface runoff as an agent of landslide-induced gully expansion. 

Increased vegetal cover enhances high infiltration and facilitates effects of groundwater as an 

agent of landsliding which leads to gully expansion.   

9.1.4 Surface and sub-surface flows as agents of gully-landslide interactions: 

implications for gully-control techniques 

This study has shown that in gully control, both surface and sub-surface processes should be 

considered in the design of appropriate mitigating technique. Reliance on techniques designed 

to control surface flow alone will not be efficient in controlling sub-surface flow. As noted by 

focus-group attendees, gully-induced landslides occur after rainfall and suggests the role of 

groundwater as a landslide-initiator.  Modelling results supported this observation by the 

villagers. Controlling sub-surface flow alone may also not be efficient considering increases in 

non-vegetated surfaces and volume of surface runoff across the region. Finally, in the design 

of gully-control methods, a good knowledge of the ecogeomorphic interactions in a gully 

catchment is important in choosing management practices. The novelty of the multi-method 

approach adopted in this research has led to these conclusions and therefore highlights the 

significance of adopting combinations of research methods in geomorphological studies. 
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9.1.5 Direct and indirect effects of gullying 

Participants at focus group meetings, questionnaire survey respondents and interviewees 

identified effects of gullying on their lives and livelihood. While it was easier to relate with 

direct effects (e.g. loss of farmland, loss of houses/property), this study recognised indirect 

results of gullying which could have implications in the future (e.g. prolonged emission of 

greenhouse gases and unavailability of seedlings for planting). Increase in population and 

population density and reduction of arable lands for farming have forced villagers to cultivate 

marginally stable lands despite associated hazards. 

9.2 Suggestions for future research  

The adoption of combinations of hydrological modelling, qualitative and quantitative research 

techniques, geotechnical survey and analysis of remotely sensed data in a data-scarce region 

such as southeast Nigeria has proved very useful. Results from chapter 7 showed the perception 

to gully-landslide hazards, community knowledge of driving forces and local methods of 

controlling gullying. Incorporating these local ideas to scientific knowledge will boost 

understanding of processes, lead to a comparison of local knowledge and scientific findings 

and inform design of control processes (Callon, 1999). It will be helpful to see future studies 

adopt combinations of these research techniques to further improve knowledge on gullying in 

other gully-prone areas. 

Often, the goal of research is to improve lives and livelihood. This goal is achieved when a 

good knowledge of forcing factors of the research problem are identified. The primary aim of 

the present research was to understand processes of gully-landslide interactions. Based on 

research findings, some gully-control methods were advocated but have not been tested. It 

would be useful to know the efficiencies of these suggested management-methods in gully 

catchments that satisfy the conditions. Physical modelling or field experiments with the aim of 

understanding gully response to suggested management-techniques will lead to adoption or 

modification of these techniques. Physical modelling can be achieved in a laboratory setting 

where gully driving processes and gully-control recommendations are simulated. Field 

experiments can be achieved in an un-managed gully that satisfies the conditions of the 

research recommendations. 

Use of hydrological modelling to recognize hydrological response of gully catchments to 

environmental changes is beneficial in understanding likely processes that drive gully erosion. 

In a data-scarce region like southeast Nigeria where data on surface and sub-surface flows are 
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not readily available, hydrological models help improve understanding of surface and sub-

surface flows. Modelling results suggested hydrological variations in gully catchments and 

these variations might be likely reasons a single gully-management technique may not be 

efficient across the entire region, a view held by previous studies (e.g. Okagbue & Uma, 1987). 

For future research, it would be useful to use a model that simulates gully erosion and different 

gully control measures. Adopting such models will improve understanding of driving processes 

of gullying with the ultimate goal of improving gully-control and reducing associated hazards 

and risks. 
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Appendices 

 
Appendix 4.1: Summary changes in gully sizes for catchments captured in the 2009, 2014 and 2018 satellite 

data. 

Catchment  Change 

in 

length 

2009 – 

2014 

(m) 

Change 

in 

width 

2009 – 

2014 

(m) 

Change 

in area 

2009 – 

2014 

(m2) 

Change in 

gully 

length 2014 

– 2018 (m) 

Change in 

gully 

width 

2014 – 

2018 (m) 

Change in 

gullied area 

2014 – 

2018 (m2) 

IdNorthWS 

 

0 

 

3.98 

 

397.53 

 

10 

 

6.10 

 

947.50 

 

IdSouthWS1 40 -3.53 1055.76 0 -1.61 -346.52 

Ideatosouth_gull

y 1 

NA NA NA 600 31.07 19892.18 

Ideatosouth_gull

y2  

360 12.3 5060.38 200 11.10 8472.19 

Ideatosouth3 100 10.9 1101.59 90 3.61 1748.31 

Isu_gully1 104 -4.00 4213.13 12 12.30 4213.13 

Isu_gully2 6 7.84 2198.99 20 4.86 3767.95 

Isu_gully3 0 0 0 170 18.6 9937.78 

 

Appendix 4.2: Summary changes in gully sizes for catchments captured in the 2009 and 2018 satellite data. 

Catchment  Change in gully 

length 2009 – 2018 

(m) 

Change in gully width 

2009 – 2018 (m) 

Change in gullied 

area 2009 – 2018 

(m2) 

NjabaWS1 0 6.11 4204.54 

Amucha 200 13.05 19954.82 

IdeatoNorth 0.00 13.84 13999.81 

IdeatoNorth1 40 -1.73 5659.22 

Njaba2 -100 13.09 776.76 

Njaba4 200 8.06 6421.85 

Njaba5 500 18.37 10008.44 
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Orlu1 600 11.70 28236.74 

Orlu2 

 

80 -0.97 1991.54 

360 20.00 24547.77 

Urualla_gully1 100 0.2 13917.61 

Urualla_gully2 340 2.5 7001.27 

Urualla_gully3 50 13 13999.8 

Obibi-Ochasi 500 50.69 23192.34 

Umueshi 40 6.5 3029.22 

 

 
Appendix 4.3: Multiple regression result for gully length, p-value = 0.04, r2 = 0.43, adjusted r2 = 0.33, n = 14, 

Years of study = 2009 – 2018. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 141.28 55.80 2.53 0.03 

Non-veg 180.06 82.09 2.19 0.05 

Tree 106.96 64.52 1.66 0.13 

 

 

Appendix 4.4: Multiple regression result for gully width, p-value = 0.94, r2 = 0.01, adjusted r2 = -0.17, n = 14, 

Years of study = 2009 – 2018. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 11.80 4.22 2.79 0.02 

Non-veg 0.49 6.21 0.07 0.93 

tree -0.04 4.88 -0.00 0.99 

 

Appendix 4.5: Multiple regression result for gullied area, p-value = 0.09, r2 = 0.34, adjusted r2 = 0.23, n = 14, 

Years of study = 2009 – 2018. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 11917.26 2354.58 5.06 0.00 

Non-veg 8312.933 3463.38 2.40 0.03 

tree 6252.079 2722.18 2.29 0.04 

 



263 
 

Appendix 4.6: Multiple regression result for gully length, p-value = 0.94, r2 = 0.03, adjusted r2 = -0.46, n = 7, 

Years of study = 2009 – 2014. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 88.86 79.66 1.11 0.32 

Non-veg 268.83 971.72 0.27 0.79 

tree 357.29 1643.99 0.21 0.83 

 

 

Appendix 4.7: Multiple regression result for gully width, p-value = 0.51, r2 = 0.29, adjusted r2 = -0.07, n = 7, 

Years of study = 2009 – 2014. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 1.65 3.55 0.46 0.66 

Non-veg 1.12 43.35 0.02 0.98 

Tree -21.95 73.35 -0.29 0.77 

 

 

Appendix 4.8: Multiple regression result for gully area, p-value = 0.93, r2 = 0.04, adjusted r2 = -0.44, n = 7, 

Years of study = 2009 – 2014. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 2299.44 1198.68 1.91 0.12 

Non-veg 2073.57 14620.53 0.14 0.89 

Tree 5661.31 24735.45 0.22 0.83 

 

Appendix 4.9: Multiple regression result for gully length, p-value = 0.86, r2 = 0.06, adjusted r2 = -0.32, n = 8, 

Years of study = 2014 – 2018. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 163.45 96.78 1.68 0.15 

Non-veg 1245.44 3394.08 0.36 0.72 

Tree 558.81 1123.61 0.49 0.64 
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Appendix 4.10: Multiple regression result for gully width, p-value = 0.58, r2 = 0.2, adjusted r2 = -0.12, n = 8, 

Years of study = 2014 – 2018. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 13.16 4.53 2.90 0.03 

Non-veg 118.91 158.96 0.74 0.48 

Tree 52.35 52.62 0.99 0.36 

 

Appendix 4.11: Multiple regression result for gully width, p-value = 0.56, r2 = 0.2, adjusted r2 = -0.11, n = 8, 

Years of study = 2014 – 2018. 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 7665.72 2905.52 2.63 0.04 

Non-veg 79162.13 101893.9 0.77 0.47 

Tree 34477.93 33732.07 1.02 0.35 
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Appendix 5.1 cntd: A, NjabaWS1 gully watershed. Gully ID, 4. B, Land use change between 2009 and 2018 

showing reduction fallow area. Non-vegetated area remained at low-density between 2009 and 2018. C, 

streamflow estimates. Maximum streamflow remained the same at 2 m3/s.  D, surface runoff contribution to 

streamflow showing increased runoff with higher open-vegetation and reduction in fallow. E, lateral flow showing 

reduction in all but sub-basin 6 between 2009 and 2018. F, Percolation. Increase in percolation was estimated for 

sub-basins 4 and 5 in 2018, the other sub-basins experience reduced values for percolation. G, evapotranspiration. 

2009 had higher estimates than 2018. 
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Appendix 5.2 cntd: A, Amucha gully watershed. Gully ID, 5. B, Land use change between 2009 and 2018 showing 

reduction in fallow and increase non-vegetated area. Non-vegetated area changed from medium density to high 

density between 2009 and 2018. C, streamflow estimates. Maximum streamflow was 178 and 176 m3/s in 2018 and 

2009 accordingly.  D, surface runoff contribution to streamflow showing increased runoff with higher non-

vegetated surfaces and reduction in fallow. E, lateral flow showing reduction in all sub-basins between 2009 and 

2018. F, Percolation. Reduction in percolation is observed across the sub-basins. G, evapotranspiration. 2009 had 

higher estimates than 2018. 2009 rainfall = 2447 mm and 2443 mm for 2018. 
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Appendix 5.3 cntd: A, IdeatoNorth gully watershed. Gully ID, 20. B, Land use change between 2009 and 2018 

showing increased non-vegetated area. Non-vegetated area changed from low density to high density between 2009 

and 2018. C, streamflow estimates. Maximum streamflow was 10 m3/s in 2009 and 2018.  D, surface runoff 

contribution to streamflow showing increased runoff. E, lateral flow showing reduction in all sub-basins between 

2009 and 2018. F, Percolation. Reduction in percolation is observed across the sub-basins. G, evapotranspiration. 

2009 had higher estimates than 2018. 2009 rainfall = 2450 mm and 2446 mm for 2018. 

 



275 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

3
4

6

5

7°8'10"E7°8'0"E7°7'50"E7°7'40"E

5°53'50"N

5°53'40"N

5°53'30"N

10

0 0.450.225 Km

Catchment outlet

Reach

Watershed

Gully

Catchment outlet

Gully

Non vegetated

Open vegetation

Tree/fallow

0 0.60.3 km

.
2009 2018 

5.892 N

5.898 N

7.13 E 7.135 E

2

4

6

2009 Streamflow (cms) 2018 Streamflow (cms)

A 

B 

C 

Appendix 5.4: IdeatoNorth1 gully watershed. 



276 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.892 N

5.898 N

7.13 E 7.135 E

100

150

200

250

300

2009 SR (mm) 2018 SR (mm)

5.892 N

5.898 N

7.13 E 7.135 E

700

800

900

1000

1100

2009 LF (mm) 2018 LF (mm)

5.892 N

5.898 N

7.13 E 7.135 E

400

450

500

550

2009 Perc (mm) 2018 Perc (mm)

D 

E 

F 

Appendix 5.4 cntd: IdeatoNorth1 gully watershed. 



277 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.892 N

5.898 N

7.13 E 7.135 E

880

890

900

2009 ET (mm) 2018 ET (mm)

G 

Appendix 5.4 cntd: A, IdeatoNorth1 gully watershed. Gully ID, 21. B, Land use change between 2009 and 2018 

showing reduced fallow. Non-vegetated area remained at low density between 2009 and 2018. C, streamflow 

estimates. Maximum streamflow was 6 m3/s in 2009 and 2018.  D, surface runoff contribution to streamflow 

showing increased runoff. E, lateral flow showing reduction in all sub-basins between 2009 and 2018. F, 

Percolation. Reduction in percolation is observed across the sub-basins. G, evapotranspiration. 2009 had higher 

estimates than 2018. 2009 rainfall = 2447 mm and 2443 mm for 2018. 
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Appendix 5.5 cntd: IdeatoSouth3 gully watershed. 
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Appendix 5.5 cntd: A, IdeatoSouth3 gully watershed. Gully ID, 32. B, Land use change between 2009 and 2018 

showing increased non-vegetated area. Non-vegetated area changed from low density to medium between 2009 and 

204. C, streamflow estimates. Maximum streamflow was 1.5 m3/s for all years.  D, surface runoff contribution to 

streamflow showing increased runoff. E, lateral flow showing increased flow between 2014 and 2018 in 10 sub-

basins including sub-basin 12 between 2014 and 2018. F, Percolation. There was higher percolation in sub-basin 

12. G, evapotranspiration. 2014 had higher estimates. 2009 rainfall = 2447 mm, 2412 mm in 2014 and 2443 mm 

for 2018. 
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Appendix 5.6: Isu_gully1 gully watershed. 
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Appendix 5.6 cntd: Isu_gully1 gully watershed. 
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Appendix 5.6 cntd: A, Isu_gully1 watershed. Gully ID, 8. B, Land use change between 2009 and 2018 showing 

reduced fallow. Non-vegetated area remained at low density between 2009 and 2018. C, streamflow estimates. 

Highest maximum streamflow was 2.3 m3/s in 2018 while 2009 and 2014 were 2.2 m3/s.  D, surface runoff 

contribution to streamflow showing increased runoff in all but two sub-basins (2 and 4) between 2009 and 2014. 

E, lateral flow showing increased in modelled lateral flow in sub-basins 2, 5 and 6 between 2009 and 2014. F, 

Percolation. There was higher percolation in sub-basins 2, 5 and 6 between 2009 and 2014. G, evapotranspiration. 

2014 had higher estimates. 2009 rainfall = 2447 mm, 2412 mm in 2014 and 2443 mm for 2018. 
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Appendix 5.7: Isu_gully2 gully watershed. 
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Appendix 5.7 cntd: A, Isu_gully2 watershed. Gully ID, 9. B, Land use change between 2009 and 2018 showing 

reduced fallow. Non-vegetated area remained at low density between 2009 and 2018. C, streamflow estimates. 

Maximum streamflow was 0.4 m3/s  for all years.  D, surface runoff contribution to streamflow showing increased 

runoff in all but three sub-basins (2, 7, 8) between 2009 and 2014. E, lateral flow showing reduced flow in all sub-

basins between 2009 and 2014. F, Percolation. Maximum percolation was recorded in 2009. G, 

evapotranspiration. 2014 had higher estimates of evapotranspiration. 2009 rainfall = 2447 mm, 2412 mm in 2014 

and 2443 mm for 2018. 
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Appendix 5.8: Isu_gully3 gully watershed. 



289 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.724 N

5.726 N

7.061 E 7.062 E 7.0635 E

0.25

0.50

0.75

2009 Streamflow (cms) 2014 Streamflow (cms) 2018 Streamflow (cms)

5.724 N

5.726 N

7.061 E 7.062 E 7.0635 E

0.25

0.50

0.75

2009 Streamflow (cms) 2014 Streamflow (cms) 2018 Streamflow (cms)

5.724 N

5.726 N

7.061 E 7.062 E 7.0635 E

100

200

300

2009 SR (mm) 2014 SR (mm) 2018 SR (mm)

5.724 N

5.726 N

7.061 E 7.062 E 7.0635 E

600

800

1000

1200

2009 LF (mm) 2014 LF (mm) 2018 LF (mm)

5.724 N

5.726 N

7.061 E 7.062 E 7.0635 E

200

400

600

800

2009 Perc (mm) 2014 Perc (mm) 2018 Perc (mm)

C 

D 

E 

F 

Appendix 5.8 cntd: Isu_gully3 gully watershed. 
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Appendix 5.8 cntd: A, Isu_gully3 watershed. Gully ID, 9. B, Land use change between 2009 and 2018 showing 

reduced fallow. Non-vegetated area remained at low density between 2009 and 2018. C, streamflow estimates. 

Maximum streamflow was 1 m3/s for all years.  D, surface runoff contribution to streamflow showing increased 

runoff. E, lateral flow showing reduced flow in all sub-basins between 2009 and 2014. F, Percolation. Maximum 

percolation was recorded in 2009. G, evapotranspiration. 2014 had higher estimates of evapotranspiration. 2009 

rainfall = 2447 mm, 2412 mm in 2014 and 2443 mm for 2018. 
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Appendix 5.9: Njaba4 gully watershed. 
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Appendix 5.9 cntd: Njaba4 gully watershed. 
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Appendix 5.9 cntd: A, Njaba4 gully watershed. Gully ID, 2. B, Land use change between 2009 and 2018 showing 

increased non-vegetated surfaces. Non-vegetated area changed from low to medium density between 2009 and 

2018. C, streamflow estimates. Maximum streamflow was 3 m3/s  for both years.  D, surface runoff contribution 

to streamflow showing increased runoff. E, lateral flow showing reduced flow in all sub-basins. F, Percolation. 

Maximum percolation was recorded in 2009. G, evapotranspiration. 2009 had higher estimates of 

evapotranspiration. 2009 rainfall = 2362 mm and 2351 mm for 2018. 
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Appendix 5.10: Njaba5 gully watershed. 



295 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.7 N

5.78 N

7 E 7.04 E 7 E 7.04 E

100

200

300

400

2009 Streamflow (cms) 2018 Streamflow (cms)

5.7 N

5.78 N

7 E 7.04 E 7 E 7.04 E

200

400

600

800

2009 SR (mm) 2018 SR (mm)

C 

D 

Appendix 5.10 cntd: Njaba5 gully watershed. 
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Appendix 5.10 cntd: Njaba5 gully watershed. 
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Appendix 5.10 cntd: A, Njaba5 gully watershed. Gully ID, 33. B, Land use change between 2009 and 2018 showing 

increased non-vegetated surfaces. Non-vegetated area changed from low to high density between 2009 and 2018. 

C, streamflow estimates. Maximum streamflow changed from 482 to 487 m3/s between 2009 and 2018.  D, surface 

runoff contribution to streamflow showing increased runoff. E, lateral flow showing reduced flow in all sub-

basins. F, Percolation. Maximum percolation was recorded in 2009. G, evapotranspiration. 2009 had higher 

estimates of evapotranspiration. 2009 rainfall = 2362 mm and 2351 mm for 2018. 

 



298 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

2

3

8

16

6

4

14

12
15

5

7

13

1

11
10

7°3'20"E7°2'30"E7°1'40"E7°0'50"E7°0'0"E

5°50'0"N

5°49'10"N

5°48'20"N

5°47'30"N

10

0 2.51.25 Km

Catchment outlet

Gully

Reach

Watershed

2009 2018 

A 

B 

Appendix 5.11: Orlu1 gully watershed. 
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Appendix 5.11 cntd: Orlu1 gully watershed. 
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Appendix 5.11 cntd: Orlu1 gully watershed. 



301 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8 N

5.83 N

7.015 E 7.03 E

900

905

910

2009 ET (mm) 2018 ET (mm)

G 

Appendix 5.11 cntd:  A, Orlu1 gully watershed. Gully ID, 12. B, Land use change between 2009 and 2018 showing 

increased non-vegetated surfaces. Non-vegetated area changed from medium to high density between 2009 and 

2018. The Orlu1 catchment is the most urbanised catchment in the study area. C, streamflow estimates. Maximum 

streamflow dropped from 137 to 136 m3/s between 2009 and 2018.  D, surface runoff contribution to streamflow 

showing increased runoff. E, lateral flow showing reduced flow in all sub-basins. F, Percolation. Maximum 

percolation was recorded in 2009. G, evapotranspiration. 2009 had higher estimates of evapotranspiration. 2009 

rainfall = 2362 mm and 2351 mm for 2018. 
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Appendix 5.12 cntd: Orlu2 gully watershed. 
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Appendix 5.12 cntd: Orlu2 gully watershed. 
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Appendix 5.12 cntd: A, Orlu2 gully watershed. Gully ID, 12. B, Land use change between 2009 and 2018 showing 

increased non-vegetated surfaces. Non-vegetated area changed from medium to high density between 2009 and 2018. 

C, streamflow estimates. Maximum streamflow was 28 m3/s for both years.  D, surface runoff contribution to 

streamflow showing increased runoff. E, lateral flow showing reduced flow in all sub-basins. F, Percolation. Maximum 

percolation was recorded in 2009. G, evapotranspiration. 2009 had higher estimates of evapotranspiration. 2009 

rainfall = 2369 mm and 2363 mm for 2018. 
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Appendix 5.13: Urualla_gully1 gully watershed. 
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Appendix 5.13 cntd: Urualla_gully1 gully watershed. 
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Appendix 5.13 cntd: Urualla_gully1 gully watershed. 
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Appendix 5.13 cntd: A, Urualla_gully1 gully watershed. Gully ID, 17. B, Land use change between 2009 and 2018 

showing increased non-vegetated surfaces. Non-vegetated area remained at low density between 2009 and 2018. 

C, streamflow estimates. Total streamflow was 14 and 15 m3/s for both 2009 and 2018 respectively.  D, surface 

runoff contribution to streamflow showing increased runoff in all but four sub-basins (3, 8, 9, 12). E, lateral flow. 

Maximum lateral flow was recorded in 2018. F, Percolation. Maximum percolation was recorded in 2009. G, 

evapotranspiration. 2009 had higher estimates of evapotranspiration. 2009 rainfall = 2447 mm and 2443 mm for 

2018. 
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Appendix 5.14: Urualla_gully2 gully watershed. 
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Appendix 5.14 cntd: Urualla_gully2 gully watershed. 
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Appendix 5.14 cntd: Urualla_gully2 gully watershed. 
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Appendix 5.14 cntd: A, Urualla_gully2 gully watershed. Gully ID, 18. B, Land use change between 2009 and 2018 showing 

increased non-vegetated surfaces. Non-vegetated area changed from low density to medium between 2009 and 2018. C, 

streamflow estimates. Total streamflow was 32 m3/s  for both years.  D, surface runoff contribution to streamflow showing 

increased runoff. E, lateral flow. Maximum lateral flow was recorded in 2009. F, Percolation. Maximum percolation was 

recorded in 2009. G, evapotranspiration. 2009 had higher estimates of evapotranspiration. 2009 rainfall = 2447 mm and 

2443 mm for 2018. 
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Appendix 5.15: Urualla_gully3 gully watershed. 
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Appendix 5.15 cntd: Urualla_gully3 gully watershed. 
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Appendix 5.15 cntd: A, Urualla_gully3 gully watershed. Gully ID, 19. B, Land use change between 2009 and 2018 

showing reduced fallow. Non-vegetated area remained at low density between 2009 and 2018. C, streamflow 

estimates. Total streamflow was 14 m3/s for both years.  D, surface runoff contribution to streamflow showing 

increased runoff. E, lateral flow. Maximum lateral flow was recorded in 2009. F, Percolation. Maximum 

percolation was recorded in 2009. G, evapotranspiration. 2009 had higher estimates of evapotranspiration. 2009 

rainfall = 2447 mm and 2443 mm for 2018. 
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Appendix 5.16: Obibi-Ochasi gully watershed. 
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Appendix 5.16 cntd: Obibi-Ochasi gully watershed. 
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Appendix 5.16 cntd: A, Obibi-Ochasi gully watershed. Gully ID, 39. B, Land use change between 2009 and 2018 

showing reduced fallow. Non-vegetated area remained at low density between 2009 and 2018. C, streamflow 

estimates. Total streamflow was 3.4 m3/s  for both years.  D, surface runoff contribution to streamflow showing 

increased runoff. E, lateral flow. Maximum lateral flow was recorded in 2009 except in sub-basin 3. F, 

Percolation. Maximum percolation was recorded in 2009. G, evapotranspiration. 2009 had higher estimates of 

evapotranspiration. 2009 rainfall = 2364 mm and 2353 mm for 2018. 
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Appendix 5.17: Umueshi gully watershed. 
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Figure 23. Umueshi watershed. Gully ID, 25 
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Appendix 5.17 cntd: A, Umueshi gully watershed. Gully ID, 25. B, Land use change between 2009 and 2018 

showing reduced fallow in 2018. Non-vegetated area remained at low density between 2009 and 2018. C, 

streamflow estimates. Total streamflow was 1 m3/s for both years. D, surface runoff contribution to streamflow 

showing increased runoff in 2018. E, lateral flow. Maximum lateral flow was recorded in 2009. F, Percolation. 

Maximum percolation was recorded in 2009. G, evapotranspiration. 2009 had higher estimates of 

evapotranspiration. 2009 rainfall = 2447 mm and 2443 mm was generated for 2018. 
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Appendix 7.1: Invitation to take part in questionnaire survey 

Dear Sir/Madam, 

I am a PhD student from Durham University researching different types of soil erosion in Orlu 

Senatorial Zone. I would like to invite you to participate in a survey which will give you an 

opportunity to discuss the hazards and risks of soil erosion in your autonomous community. 

The aim of this work is to reduce impacts of these hazards and I will share results of my project 

with you and the community at the end of my fieldwork. Your comments will be used solely 

for research purposes and it will take approximately 30 minutes to complete this questionnaire. 

Your identity will be anonymized, supplied information will remain confidential and collected 

data will be secured under lock and key or on a computer database accessible by password only 

for a maximum period of 5 years. You have the right to withdraw your consent at any time 

during this research. 

Thank you, 

 

Ikenna Osumgborogwu 

Research student 
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Questionnaire, please tick as appropriate 

Section A: Hazard awareness 

1. Do you know what gully erosion is? (If yes, please continue with question 2, if no, 

please proceed to question 4). 

a) Yes, I know what gully erosion is 

b) Yes, I have heard of gully erosion but I do not know what it is 

c) No, I do not know what gully erosion is 

d) I have never heard of gully erosion before 

2. What do you think causes gullying? (please tick all applicable answers) 

a) Act of the gods 

b) Farming techniques 

c) Sand excavation  

d) Others_________________________ 

3. Do you think gullying can cause harm? 

a) Yes, I strongly believe gullying can cause harm 

b) Yes, I believe gullying can cause harm 

c) I do not know 

d) No, I strongly believe gullying cannot cause harm 

e) No, I believe gullying cannot cause harm 

4. Do you know what landslide is? (If yes, please continue with question 5, if no, please 

proceed to section B) 

a) Yes, it is same with gully erosion 

b) Yes, I have heard about it but I do not know what it is 

c) No idea what landslide is 

5. What do you think causes landsliding? (please tick all applicable answers) 

a) Gully erosion 

b) Farming techniques 

c) Sand excavation  

d) Others_________________________ 

6. Do you think landsliding can cause harm? 

a) Yes, I strongly believe landsliding can cause harm 

b) Yes, I believe landsliding can cause harm 

c) I do not know 

d) No, I strongly believe landsliding cannot cause harm 

e) No, I believe landsliding cannot cause harm 
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7. Do you think gullying and landsliding are connected? 

a) Yes, I strongly believe gullying and landsliding are connected 

b) Yes, I believe gullying and landsliding are connected 

c) I do not know 

d) No, I strongly believe gullying and landsliding are not connected 

e) No, I believe gullying and landsliding are not connected 

Section B: Hazard impacts  

8. In the last 10 years (2009 – 2018), are gullies increasing or reducing in this autonomous 

community? 

a) Gullies are reducing 

b) Gullies are increasing 

c) They are about the same size 

d) I am not sure if they are reducing or increasing 

9. In the last 10 years, have you been forced to relocate because of gully erosion? 

a) Yes, I have relocated due to gully erosion  

b) I would have relocated if I had a safe place to go to 

c) No, I have not relocated due to gully erosion  

d) No, but if the gullies continue expanding, I will have to relocate 

10. In the last 10 years, have you abandoned a piece of farmland due to gully erosion? 

a) Yes, I left my farm due to gully erosion  

b) I would have abandoned my farm if I had another  

c) No, I have not abandoned my farm due to gully erosion  

d) No, but if the gullies continue expanding, I will have to abandon my farm  

11. How many houses/property have been lost in this autonomous community to gully 

erosion in the last 10 years? 

a) I am not aware of any 

b) 1 – 10 

c) 10 – 11 

d) 11 – 20  

e) > 20   

12. How does gully erosion affect you?  

a) Inaccessibility to farm 

b) Severance of communication links  

c) Collapse of houses  

d) Threat to my property 

e) Reduction in farmland 

f) Death of a loved one 

g) Others__________________ 

13. How has gully erosion affected food production in this autonomous community? 

a) The soil is harder to till 



325 
 

b) There is reduction in yield due to reduction in available land 

c) I am scared of going to the farm during periods of heavy rains  

d) Others_____________________ 

14. As an individual, has the problem of gully erosion hindered any developmental project 

you intended to carry out? 

a) Yes, I was forced to abandon a housing project due to gully erosion 

b) Yes, I had to stop building a commercial property/farm house due gully erosion 

c) No, gullies have not affected any developmental projects of mine 

d) I try to avoid areas I feel are prone to gullying 

e) Others________________ 

15. Do you think gully erosion can deter you from embarking on developmental projects in 

the future? 

a) With the rate of gully growth, I will not be able to embark on new developmental 

projects 

b) Gully erosion cannot stop me from building new projects  

c) I am not sure 

d) Others_______________ 

Section C: Control measures 

Farming techniques 

16. Do you farm the land? 

a) Yes, I do 

b) No, I do not 

If yes, please respond to questions 16 – 20, if no, please proceed to question 21 

17. How many plots do you have? 

Please write__________________ 

 

18. What is the ownership status of your farm? 

a) Rented  

b) Owner 

c) Other_______________ 

19. Has your farm been affected by gully erosion? 

a) Yes, I have lost some portions of my farm to gullying 

b) No, my farm has not been affected 

c) My farm is close to a gully, and soon, probably, it will be affected 

d) Others_________________ 

20. How many years do you leave your land to fallow? 

Please write_________________ 

21. Which other soil-conservation methods do you employ? 
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Please write________________ 

Individual effort 

22. As an individual, what have you done to reduce hazard impacts of gullying? Please tick 

all that apply 

a) I do not go to farm during periods of heavy rains 

b) Moved to other farmland 

c) Changed occupation 

d) Tree/grass planting 

e) Hard-engineering projects 

f) Intensified farming on another piece of land 

g) Intensified farming on piece of land affected by gullying 

h) I avoid areas that look unstable 

i) I sand-fill encroaching gullies near my house 

j) I have embarked on hard engineering projects to reduce advancement of gullies 

k) I have not done anything to reduce gullying 

l) Others___________________ 

23. If you have used hard engineering as a means to reduce gully expansion, how much did 

it cost you to do this? 

Please write_________________ 

24. If you have used non-hard engineering as a means to reduce gully expansion, how much 

did it cost you to do this? 

Please write_________________ 

25. Is your house insured against gully erosion? 

a) Yes, my house is insured  

b) No, my house is not insured 

c) I will like insurance but cannot afford it 

d) Others_______________________ 

 

Community effort 

26. As a community affected by gully erosion, what have you done to reduce hazard 

impacts? Please tick all that apply 

a) Tree planting 

b) We embark on community sand-filling of some gullies 

c) We write to the authorities for help 

d) We use sandbags to reduce gully expansion 

e) We rely on individual effort 

f) There is no community-effort aimed at reducing gully expansion 

g) Others________________ 

Government, NGOs and INGOs 
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27. Are there any externally funded project going on in your autonomous community to 

reduce impacts of gullying? (If no, please go to question 29) 

a) Yes,  

b) No 

If yes, what are they____________________________________ 

28. If there are externally funded projects, what are they doing? 

a) Sand-filling gully site 

b) Use of concrete to stabilise gullies 

c) Tree-planting 

d) Others_________________ 

29. Does the government compensate you for lost farms or property? 

a) Yes, the government pays compensation during big events 

b) No, there is no compensation from the government 

c) They make promises but never deliver 

d) Others__________________ 

Section D: Demographics 

30. Gender  [   ] Male [   ] Female [   ] Prefer not to say 

31. Age range 

a) 18 – 28 

b) 29 – 39 

c) 40 – 49 

d) 50 – 59 

e) ≥ 60   

 

32. Occupation  

a) Farmer 

b) Civil servant 

c) Private sector employee 

d) Self-employed 

e) Student  

f) Unemployed 

g) Others______________________ 

33. Household monthly income 

a) Less than N30,000.00 

b) 30 – 60,000.00 

c) 60 – 100,000.00 

d) > 100,000.00 

e) Prefer not to say 
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Appendix 7.2: Invitation to take part in focus group meeting 

 

Dear Sir/Madam, 

I am a PhD student from Durham University researching different types of soil erosion in Orlu 

Senatorial Zone. I would like to invite you to participate in a focus group meeting which will 

give you an opportunity to discuss the hazards and risks of soil erosion in your autonomous 

community. The aim of this work is to reduce impacts of these hazards and I will share results 

of my project with you and the community at the end of my fieldwork. Your comments will be 

used solely for research purposes and the meeting will last approximately 60 minutes. Your 

identity will be anonymized, supplied information will remain confidential and collected data 

will be secured under lock and key or on a computer database accessible by password only for 

a maximum period of 5 years. You have the right to withdraw your consent at any time during 

this research. 

Thank you, 

 

Ikenna Osumgborogwu 

Research student 
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Focus group meetings  

 Hazard identification 

 Please tell me how long gully erosion has occurred in this community 

 What causes gully erosion in your community? 

 Can you please tell me how big these gullies were 10 years ago? 

 Please tell me the difference between landslides and gullies 

 Please tell me about loss of life or injury in this community due to gully erosion 

 Can you please sketch out gully-landslide interactions for me? 

 Hazard mitigation 

a) Please tell me what you have done to reduce gully hazards 

b) Please tell me about the effectiveness of these measures you have identified in 

reducing hazards 

c) How important is community participation in reducing these hazards? (As a 

follow on: Do you believe the problem of gullying is beyond your control as a 

community?) 

 Vulnerability and exposure 

a. Please tell me ways in which you are affected by gully erosion.  

b. Can you tell me about the history of the growth of this gully? 

c. Can you please tell me about fallow period in this autonomous community? 

 Risk communication  

a. In what ways are risks of gully erosion communicated to the people? 

b. Are there local committees tasked with looking at cases of gully erosion? If so, 

how are they formed? What do they do? 

c. Have external agencies carried out any programmes on how to reduce gully 

risks in this autonomous community? 

d. How did you relate with them during the programme? 

 Factors constraining appropriate risk mitigation 

a. What do you think increases gully hazards in your autonomous community? 

b. What are the limiting factors to adequate management of gully hazards in your 

community? 

c. Please tell me what you think can be done to further reduce risks of gully 

erosion. 

d. What would you do differently to reduce these risks? 


