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Abstract: COVID-19 containment policies are not only curbing the spread of COVID-19 but also
changing human behavior. According to the routine activity theory, owing to lockdown, the closure
of entertainment sites (e.g., pubs and bars), an increase in stay-at-home time, and an increase in
police patrols are likely to influence chance of committing a crime. In this study, we aimed to
further examine the spatial association of COVID-19 infection rate and crime rate. Particularly, we
empirically validated the speculation that increase in COVID-19 cases is likely to reduce crime rate. In
the empirical study, we investigated whether and how COVID-19 infection rate is spatially associated
with crime rate in London. As the spatial data used are mainly areal data, we adopted a spatial
regression mode (i.e., the “random effects eigenvector spatial filtering model”) to investigate the
spatial associations after controlling for the socioeconomic factors. More specifically, we investigated
the associations for all the four crime categories in three consequent months (March, April, and
May of 2020). The empirical results indicate that 1) crime rates of the four categories have no
statistically significant associations with COVID-19 infection rate in March; 2) violence-against-the-
person rate has no statistically significant association with COVID-19 infection rate; and 3) robbery
rate, burglary rate, and theft and handling rate have a statistically significant and negative association
with COVID-19 infection rate in both April and May.

Keywords: crime rate; COVID-19 infection rate; bivariate Moran’s I test; containment policies; spatial
regression analysis

1. Introduction

Global crises (e.g., global warming, financial crisis, and pandemic) have been reshap-
ing the world. To draw proper responses and interventions, it is of great significance to
first understand how the environment and society have been fundamentally influenced by
such crises. Compared to global warming or financial crisis, COVID-19 pandemic that has
a short-term but significant impact on environment and society requires faster responses.
Unlike the last global pandemic, the “1918 flu” that occurred one century ago, COVID-19
occurred in a highly globalized modern society in which the interactions between people,
society, and environment have become extremely complex. This leads to a number of
important questions as a result, including whether and how the above interactions have to
be reconsidered accordingly during and after pandemic. From a sociological perspective, it
is of interest to investigate how COVID-19 is changing human behavior and how this may
affect the approaches of urban governance. Particularly, compared with rural areas, urban
areas are worth in-depth investigations, as they are main hotspots of COVID-19 infections,
also with more complex interacting systems and more intensified human activities. After
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the COVID-19 outbreak, a large number of emerging studies focused on the prediction
of COVID-19 spread [1,2] and on identifying influential factors [3,4]. Meanwhile, the
COVID-19 pandemic has greatly influenced urban environments and urban society. The
large lockdown in urban areas has caused a series of chain reactions, such as the reduced
air pollution [5] and the simultaneously increased housing waste [6]. Containment policies
have great impact on people’s lifestyles as well [7]. The closure of public places (e.g.,
pubs, bars, schools) and working from home are dramatically changing people’s daily
routine. Owing to stay-at-home and social distancing measures, public gatherings have
dramatically dropped; meanwhile, police patrols have largely increased. According to the
routine activity theory, the occurrence of crime is expectedly influenced by the change of
daily routine as the result of this pandemic [8–10]. For instance, as people spend more time
at home and less time on streets, it is likely to curb both violent crime (e.g., robbery) and
property crime (e.g., burglary and thief). Moreover, as the impact of daily route activities
on the occurrence of crime is likely to differ by category, the outbreak of the pandemic
might have distinct effects on the occurrence of different crime categories. A number of
countries, regions, or cities have reported a decline in total crimes after the outbreak of
COVID-19 [8–10]. In recent months, a few studies found declines in some crime categories
are associated with COVID-19 policies [8–10]. Surprisingly, in Spain and Portugal, thefts
have decreased by 90.2% from the second half of March 2019 to the same period of 2020 [9].
Containment policies may also impact crime occurrence through changing human behav-
ior. For instance, in the wake of official responses to COVID-19, mass lockdowns, and
stay-at-home orders issued by state governments throughout the U.S., there has been a
decline in crime [10].

Moreover, the effects of COVID-19 containment policies on crime are found to vary
from one category to another [11–13]. For instance, in Los Angeles, there is a significant de-
cline in the incidence of robbery, shoplifting, theft, and battery, whilst there is no significant
decline in the incidence of vehicle theft, burglary, assault with a deadly weapon, intimate
partner assault, and homicide [12]. Similarly, Gerell et al. [13] found that assaults, pick-
pocketing, and burglary in Sweden have decreased significantly, while personal robberies
and narcotics crime remained unchanged during the past spreading period of COVID-
19. Payne et al. [14] found social distancing regulations are temporally correlated with
reductions in certain violent crimes since social distancing is likely to have significantly
limited interpersonal activities, especially in locations where violence is usually prevalent.
Specifically, they found that rates of common, serious, and sexual assaults had declined to
their lowest level in a number of years in Queensland, Australia [14]. Particularly, some
studies investigated the drop in crime cases induced by the pandemic by comparing the
observed real number of crime cases with a newly predicted number from an assumed
non-pandemic normal time model based on historical data [12,14]. They used time-series
models to predict the number of crime cases in the scenario of no COVID-19 prevention
policies [12,14]. Additionally, Felson et al. [15] investigated the impact of containment
policies on burglary incidence by taking land use into account. They found that burglaries
in Detroit increased in urban blocks with mixed land use but not in blocks dominated by
residential land use [15].

Furthermore, some of those studies used routine activity theory to explain the impact
of COVID-19 policies on crime trends. For example, commercial burglary increased during
the COVID-19 lockdown because businesses were forced to close, and owners and employ-
ees were no longer present to act as capable guardians [16]. Assault may decline as there
are fewer opportunities for motivated offenders and suitable targets to converge in certain
locations, such as alcohol outlets (bars, pubs, etc.) or schools (fights) [16]. Similarly, Boman
and Gallupe [10] offer an explanation on the contribution of COVID-19 policies to crime
prevention across the United State. Since about half of crime in the U.S. is committed by
young offenders, the fundamental reason why crime is down across the U.S. is probably
because government-mandated lockdowns have temporarily removed the peer group as a
viable means of providing available offenders [10].
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Most relevant studies focused on the temporal variations in crime incidence in relation
to COVID-19 incidence [8,10,11]. Those studies took no account of other socioeconomic
factors affecting occurrence of crime. Although a recent study focused on spatial variations
in crime trend, the influential factors fail to account for the extent of COVID-19 infection [17].
To abridge the research gaps, we investigated the spatial association of COVID-19 infection
rate and crime rates after controlling for socioeconomic factors. In this study, we used
the crime data and the COVID-19 data covering 3 months (March, April, and May of
2020) across the districts of London (i.e., 32 districts). Particularly, this study aimed to
examine whether increase in COVID-19 cases is associated with decreased crime incidence.
We speculate that increase in COVID-19 cases is likely to reduce crime rate because: (1)
increasing COVID-19 cases enhance the fear of COVID-19, which could facilitate the
implementation of COVID-19 containing policies according to the protection motivation
theory (PMT) [18]; (2) areas with a higher infection rate are likely to be allocated with more
police forces, which could curb crime incidence as well [19]. Therefore, we conducted
a study to empirically validate this speculation. As a large number of previous studies
uncovered that crime is spatially associated with socioeconomic factors such as poverty,
unemployment, education level, and so forth [20–25], we need to examine the association
of COVID-19 infection rate and crime rate over space after controlling the socioeconomic
factors. Moreover, as the data we used are the areal data, spatial regression models (e.g.,
random effects eigenvector spatial filtering models) were deployed to investigate the spatial
association between COVID-19 infection rate and crime rate. Compared with conventional
spatial regression models (e.g., spatial lag model, spatial error model, and spatial Durbin
model), random effects eigenvector spatial filtering models can effectively reduce model
misspecification errors and increase model accuracy. Random effects eigenvector spatial
filtering models have been reported to outperform all among spatial regression models in
empirical studies [26,27].

2. Data and Research Methods

In this section, data on crime, COVID-19 cases, and socioeconomic factors are firstly
introduced. This is then followed by how to explore the spatial association between two
variables (COVID-19 infection rate and crime rate) without controlling for socioeconomic
factors. Finally, this section presents how to explore their spatial association after consider-
ing socioeconomic factors. More specifically, the variables to be considered in our models
and the spatial regression model devoted to the model estimation are briefly presented.

2.1. Case Study and Data

Monthly number of crime cases in London is available from the Metropolitan Police
(https://www.met.police.uk/sd/stats-and-data/met/crime-data-dashboard/). We com-
pared the monthly number of crime cases between 2020 and two previous years. Table 1
shows the monthly number of crime cases between March to August (i.e., 6 months) in
2018, 2019, and 2020. In each month, the number of crime cases decreased from 2019 to
2020 (see Table 1). Monthly number of crime cases in 2020 was smaller than that in 2018
as well. We conducted a paired t-test to compare the half year average monthly number
of crime cases between the half year of 2018, 2019, and 2020. In Table 1, as the p-value of
t-test was below 0.01, the half year average monthly number of crime cases in 2020 was
statistically significantly lower than those in 2018 and 2019. In this study, we focused on
the association of the variables of COVID-19 infection rate and crime rate across Greater
London. Specifically, we took account of crimes from March to May 2020 since those three
months had the smallest number of crimes in our dataset (see Figure 1). The outbreak of
COVID-19 pandemic in the UK started from the end of March 2020, and the first wave of
the pandemic in London was from March as well. In the meantime, the crime counts in
those three months were also lower than the following months (see Figure 1). Particularly
in London, April saw the smallest number of crimes with the largest number of COVID-19
cases (see Figure 1). Crime cases occurred from March to May of 2020 experienced a sub-

https://www.met.police.uk/sd/stats-and-data/met/crime-data-dashboard/
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stantial drop in comparison with those occurred in the same period of 2019. This indicates
that the decrease in city-level crime cases is likely to be associated with the increase of
COVID-19 infections.

Table 1. Paired t-test of COVID-19 infection rate and crime rate for three months.

Crime
Cases March April May June July August Mean

2018 67,232 66,953 71,461 70,653 74,819 69,332 70,075

2019 78,906 74,947 77,354 76,721 81,740 76,618 77,714.3

2020 65,819 48,570 57,083 62,112 70,377 71,156 62,519.5

t-test 2018 vs. 2020 0.031 *

p-value 2019 vs. 2020 0.002 **
Note: Significance codes: ‘**’ 0.01; ‘*’ 0.05.

Figure 1. Monthly crime counts in London from January 2018 to October 2020 (source: Metropolitan Police).

The historical crime data were downloaded from the official Datastore (https://data.
london.gov.uk/dataset/recorded_crime_summary). The original crime data are available
from the data.police.uk (https://data.police.uk/data/archive/). Although the original
crime data are at the street level, our analysis was performed at district level. This is
because the occurrence of zero crime case in some finer grained units (e.g., streets or
census areas) is likely to produce biased results of analysis. Figure 2 maps district-level
crime rate (per 1000 persons) across London in April 2020. It is noted that one district
(City of London) is excluded in this study as it has a relatively small number of residents.
The most up-to-date demographic data, including population, income, and employment
data, were downloaded from the Office for National Statistics (https://www.ons.gov.uk/
peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/
populationestimatesforukenglandandwalesscotlandandnorthernireland), the Tower Ham-
lets (https://www.towerhamlets.gov.uk/Documents/Borough_statistics/Income_poverty_
and_welfare/income_2019_l.pdf), and the London Datastore (https://data.london.gov.uk/
dataset/model-based-unemployment-estimates) respectively. COVID-19 data was down-
loaded from the London Datastore (https://data.london.gov.uk/dataset/coronavirus-
-covid-19--cases). Figure 3 maps district-level COVID-19 infection rate (cases per 1000 per-
sons) across London in April 2020.

https://data.london.gov.uk/dataset/recorded_crime_summary
https://data.london.gov.uk/dataset/recorded_crime_summary
https://data.police.uk/data/archive/
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.towerhamlets.gov.uk/Documents/Borough_statistics/Income_poverty_and_welfare/income_2019_l.pdf
https://www.towerhamlets.gov.uk/Documents/Borough_statistics/Income_poverty_and_welfare/income_2019_l.pdf
https://data.london.gov.uk/dataset/model-based-unemployment-estimates
https://data.london.gov.uk/dataset/model-based-unemployment-estimates
https://data.london.gov.uk/dataset/coronavirus--covid-19--cases
https://data.london.gov.uk/dataset/coronavirus--covid-19--cases
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Figure 2. District-level crime rates (cases per 1000 persons) across London in April 2020. (a) Violence-against-the-person
rate (values grouped into quantiles); (b)Theft and handling rate (values grouped into quantiles)
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Figure 3. District-level COVID-19 infection rates (cases per 1000 persons) across London in April
2020 (Note: values grouped into quantiles).

2.2. Spatial Clustering of Crime Rate

To explore the spatial clustering of crime rate over months, we applied univariate
Moran’s I test, which is known as a measure of spatial autocorrelation. A positive Moran’s
I test value means a positive spatial autocorrelation, thereby high (low) values are likely to
be surrounded by high (low) values as well. A p-value is produced to indicate the statistical
significance of the spatial autocorrelation.

2.3. Spatial Association of Crime Rate and COVID-19 Infection Rate

In this study, we first explored spatial association of crime rate and COVID-19 infection
rate without controlling for socioeconomic factors. Specifically, we can use bivariate
Moran’s I test to explore spatial association of crime rate and COVID-19 infection rate. The
observed Moran’s I value is used to quantify the spatial association between two variables.
Specifically, a positive association (a positive Moran’s I value) indicates high (low) values
of one variable is surrounded by high (low) values of the other variable, whilst a negative
association (a negative Moran’s I value) indicates high (low) values of one variable is
surrounded by low (high) values of the other variable.

2.4. Modeling of Crime Rate

To further examine the association of COVID-19 infection rate and crime rate, we
applied regression analysis controlling for socioeconomic factors.

2.4.1. Model Variables

In this study, we selected four crime categories as typical crime categories: violence-
against-the-person, robbery, burglary, and theft and handling. They are distinct and
representative types among all crime categories. Violence-against-the-person and robbery
are violence-related types, whilst burglary and theft and handling are property-related
types. Violence-against-the-person, robbery, and theft and handling are the most popular
crime types in London. Besides, robbery is a typical violent crime which usually occurs on
streets. Although some studies suggested replacing population-standardized measure with
area-standardized measure due to the possible presence of ecological fallacy or modifiable
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areal unit problems [28], this study selected population-standardized crime rate because
most of the explanatory variables are population-standardized measures (see Table 2a).
The rate of new COVID-19 cases (the number of new COVID-19 cases per population)
was used to represent COVID-19 infection rate. In addition to COVID-19 infection rate,
socioeconomic factors were considered as the explanatory variables to be controlled (see
Table 2b). The socioeconomic factors were used as confounding factors in this study.
Moreover, as the observations of crime rate (i.e., VAP_R, ROB_R, BUG_R, and TH_R)
are unlikely to follow a normal distribution according to Shapiro–Wilk normality test,
we conducted a logarithmic transformation of those observations to reduce skewness.
Therefore, we replaced crime rates (i.e., VAP_R, ROB_R, BUG_R, and TH_R) with natural
logarithm of crime rates (i.e., Ln_VAP_R, Ln_ROB_R, Ln_BUG_R, and Ln_TH_R) as the
explanatory variables eventually in this study (see Table 2a). In this study, each regression
model was set up based on 32 observations (32 districts).

Table 2. Introduction and descriptive statistics of variables considered in this study. (a) Response
variables; (b) Explanatory variables.

(a)

Variables Full Names
March 2020 April 2020 May 2020

Mean SD Mean SD Mean SD

VAP_R Violence-against-the-person
rate (cases per 1000 persons) 1.96 0.4 1.71 0.29 1.98 0.36

ROB_R Robbery rate (cases per
1000 persons) 0.3 0.18 0.12 0.06 0.15 0.06

BUG_R Burglary rate (cases per
1000 persons) 0.6 0.17 0.41 0.13 0.43 0.13

TH_R Theft and handling rate
(cases per 1000 persons) 1.71 1.44 0.82 0.25 1.01 0.3

(b)

Variables Full Names Time Mean SD

A_P Asian percent 2018 17.82 12.39

B_P Black percent 2018 11.35 6.18

YP_P Young people percent 2019 10.93 1.05

INC_M Median household income (1000£) 2019 31.38 4.98

UNE_R Unemployment rate (1000 persons/hectare) 2019 4.57 0.75

NCC_R
Rate of new COVID-19 cases (cases per

1000 persons)

March 2020 1.12 0.3

April 2020 1.98 0.47

May 2020 0.49 0.18

2.4.2. Model Estimation

In this study, spatial regression models were estimated to analyze crime rate based
on areal data. We used the random effects eigenvector spatial filtering (RE-ESF) model
to investigate the association of variables. Moran’s eigenvector-based spatial regression
approach is called eigenvector spatial filtering (ESF) [29] in regional science, and ESF with
a small number of eigenvectors (e.g., small L) can greatly reduce model misspecification
errors and increase model accuracy [30,31]. Furthermore, a specification called random
effects ESF (RE-ESF) had been recently developed to enhance model estimation because
of its usefulness for spatial dependence analysis considering spatial confounding [26,32].
As a new type of spatial regression models, RE-ESF model has been recently applied to
geospatial analysis [29,30].
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3. Empirical Results and Discussion

We report the results of our empirical study in this section with some further discus-
sions. Firstly, we exhibit results on exploratory spatial data analysis. Subsequently, the
model estimation results and the contributions of explanatory variables are discussed. The
estimates of all the models used in this study were all implemented in R. Specifically, an R
package named “spmoran” was developed to implement estimates of eigenvector spatial
filtering (ESF) models (https://cran.r-project.org/web/packages/spmoran/index.html).
Besides, the implementations of univariate and bivariate Moran’s I tests can be performed
in the open software GeoDa (https://spatial.uchicago.edu/geoda).

3.1. Spatial Clustering of Crime Rate

We calculated the univariate Moran’s I tests of rates of the four crime categories from
March 2020 to May 2020. Table 3 shows the univariate Moran’s I testing results for the three
months separately in which the computed Moran’s I values can be found. We implemented
an inference with 999 permutations in each Moran’s I test, thereby yielding a pseudo
p-value to indicate the statistical significance. As Table 3 shows, for all the three months,
the spatial autocorrelation of crime rate in London was statistically significant and positive
for the two crime categories (i.e., burglary and theft and handling). This indicates that
spatial clustering of burglary and theft and handling cases existed during all the three
months across London.

Table 3. Univariate Moran’s I test of crime rate for three months. (a) March 2020 (N = 32); (b) April
2020 (N = 32); (c) May 2020 (N = 32).

(a)

Moran’s I VAP_R ROB_R BUG_R TH_R

Value 0.012 0.120 . 0.180 * 0.301 **

(b)

Moran’s I VAP_R ROB_R BUG_R TH_R

Value −0.063 −0.055 0.306 ** 0.288 *

(c)

Moran’s I VAP_R ROB_R BUG_R TH_R

Value 0.001 −0.177 0.313 ** 0.358 **
Note: Significance codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1.

3.2. Spatial Association of Crime Rate and COVID-19 Infection Rate

Firstly, we explored the spatial association between COVID-19 infection rate and
crime rate by performing bivariate Moran’s I tests. Specifically, we performed the bivariate
Moran’s I tests of COVID-19 infection rate and rates of the four crime categories for the
three months separately. Table 4 shows bivariate Moran’s I testing results for three months
separately in which the bivariate Moran’s I values can be seen. Similarly, we implemented
an inference with 999 permutations in each Moran’s I test, thereby yielding a pseudo
p-value to indicate the statistical significance. As Table 4 shows, the infection-crime spatial
association is statistically significant and negative for both the crime categories of burglary
and theft and handling and for the two months of April and May.

https://cran.r-project.org/web/packages/spmoran/index.html
https://spatial.uchicago.edu/geoda
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Table 4. Bivariate Moran’s I test of COVID-19 infection rate and crime rate for three months. (a)
March 2020 (N = 32); (b) April 2020 (N = 32); (c) May 2020 (N = 32).

(a)

Moran’s I VAP_R ROB_R BUG_R TH_R

NCC_R 0.043 0.025 −0.008 −0.029

(b)

Moran’s I VAP_R ROB_R BUG_R TH_R

NCC_R 0.002 −0.101 −0.174 * −0.278 **

(c)

Moran’s I VAP_R ROB_R BUG_R TH_R

NCC_R −0.058 0.003 −0.245 * −0.301 **
Note: Significance codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1.

3.3. Modelling of Crime Rate: Regression Model Estimation

We further examined the infection–crime correlation over space, controlling for so-
cioeconomic factors. As one district (City of London) was excluded in this study due
to a relatively small number of residents, 32 observations (32 districts) were used in the
model estimation. In our regression models, the response variables are natural loga-
rithm of violence-against-the-person rate (Ln_VAP_R), natural logarithm of robbery rate
(Ln_ROB_R), natural logarithm of burglary rate (Ln_BUG_R), and natural logarithm of
theft and handling rate (Ln_TH_R) respectively. The explanatory variables are Asian
percent (A_P), Black percent (B_P), young people percent (YP_P), median household in-
come (INC_M), unemployment rate (UNE_R), and rate of new COVID-19 cases (NCC_R).
Specifically, we estimated models for all the four crime categories and the three months
(4 categories × 3 months = 12 models).

Table 5 shows estimation results for the spatial regression models (i.e., RE-ESF models).
R-squared and Akaike information criterion (AIC) were used to measure model perfor-
mance. In addition, variance inflation factor (VIF) values for all the explanatory variables
were below five, which indicated that no serious multicollinearity existed in the models
estimated. Specifically, the RE-ESF models estimated show that (1) crime rates of the four
categories had no statistically significant associations with COVID-19 infection rate in
March; (2) violence-against-the-person rate had no statistically significant association with
COVID-19 infection rate; and (3) robbery rate, burglary rate, and theft and handling rate
were all reported to have a statistically significant and negative association with COVID-19
infection rate in both April and May. Particularly, COVID-19 infection rate was negatively
associated with burglary rate and theft nad handling rate after controlling for socioeco-
nomic factors in April and May. This is consistent with the above finding without taking
account of socioeconomic factors; spatial association of COVID-19 infection rate and crime
rate was statistically significant and negative for all the three crime categories (robbery,
burglary, and theft and handling) and the two months (April and May) (see Section 3.1).

In addition, we found that socio-demographic factors play different roles in explaining
different crime categories. Specifically, the percent of Black population exhibited a statisti-
cally significant and positive association with all the four crime categories in March and
April. Median household income was found to have a statistically significant and positive
association with burglary rate and theft and handling rate in March. Unemployment rate
had a statistically significant and positive association with burglary rate in March.
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Table 5. Estimation results for the regression models. (a) Dependent variable: Ln_VAP_R; (b) Depen-
dent variable: Ln_ROB_R; (c) Dependent variable: Ln_BUG_R; (d) Dependent variable: Ln_TH_R.

(a)

Independent Variables
Coefficient

March April May

Intercept −0.036 0.595 0.127
A_P 0.003 0.002 0.001
B_P 0.016 0.012 * 0.012

YP_P 0.001 −0.015 0.015
INC_M 0.006 −0.009 −0.002
UNE_R 0.098 . 0.077 . 0.076
NCC_R −0.159 −0.074 −0.167

Adjusted R-squared 0.356 0.564 0.499
AIC 31.925 15.024 20.925

(b)

Independent Variables
Coefficient

March April May

Intercept −3.981 . 0.696 −3.023 .
A_P 0.015 . 0.014 . 0.006
B_P 0.054 * 0.052 * 0.027

YP_P −0.016 −0.155 0.095
INC_M 0.055 . −0.024 0.012
UNE_R 0.112 −0.025 −0.037
NCC_R −0.257 −0.640 ** −1.328 **

Adjusted R-squared 0.604 0.637 0.456
AIC 75.273 77.159 65.081

(c)

Independent Variables
Coefficient

March April May

Intercept −3.800 *** −0.756 0.193
A_P −0.001 0.003 0.001
B_P 0.017 * 0.027 * 0.006

YP_P 0.050 −0.057 −0.053
INC_M 0.057 *** 0.017 0.000
UNE_R 0.177 ** 0.044 0.004
NCC_R −0.040 −0.351 ** −1.217 ***

Adjusted R-squared 0.672 0.538 0.837
AIC 23.120 47.928 26.563

(d)

Independent Variables
Coefficient

March April May

Intercept −1.110 −0.617 0.467
A_P 0.011 0.007 0.0004
B_P 0.039 . 0.024 * 0.005

YP_P −0.083 −0.025 −0.018
INC_M 0.067 * 0.019 0.002
UNE_R 0.049 0.066 0.011
NCC_R −0.518 −0.334 *** −1.011 ***

Adjusted R-squared 0.434 0.551 0.739
AIC 77.905 43.516 31.165

Significance codes: ‘***’ 0.001; ‘**’ 0.01; ‘*’ 0.05; ‘.’ 0.1.
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3.4. Discussions

In this study, empirical results indicate in April and May increasing COVID-19 infec-
tion rate associated with a decline in robbery rate, burglary rate, and theft and handling
rate across London. Previous studies found a decline in the incidence of crime after the
implementation of COVID-19 containment policies, which is consistent with results of
this study. However, this study derived some different findings with previous studies in
certain specific crime categories. For instance, a study found that, in Los Angeles, there
was a significant decline in the incidence of robbery, shoplifting, theft, and battery, whilst
there was no significant decline in the incidence of vehicle theft, burglary, assault with a
deadly weapon, intimate partner assault, and homicide [12]. However, in this study, the
increase of the number of COVID-19 cases was found to be associated with the decline in
the incidence of burglary. Another study found that, in Sweden, assaults, pickpocketing,
and burglary decreased significantly, while personal robberies and narcotics crime were
unchanged [13]. Although one of the findings of Gerell et al. [13]—the decline in the inci-
dence of burglary—is consistent with results of this study, its other finding that personal
robberies were unchanged is inconsistent with our findings.

According to routine activity theory, there are several reasons behind the discussions
of COVID-19 infection rate and crime rate. First, the incidence of residential crime (e.g.,
burglary and theft) decreases because people have spent much more time staying at home.
Second, as Boman and Gallupe [10] explained, public crime is likely to decrease because
the young people who are thought be to main offenders lose the opportunity to constitute
peer groups after alcohol outlets (bars, pubs, etc) and schools (fights) have been closed due
to the large lockdown. Third, owning to increasing police patrols in support of COVID-19
social distancing measures, people are less likely to commit crime on streets (e.g., robbery,
commercial burglary, or commercial theft). In London, stricter lockdown measures are
likely applied to the districts with a higher COVID-19 infection rate, leading to an increase
in stay-at-home time periods and police patrols. The longer the residents stay at home
or the more the police patrols there are, the less people are likely to commit a crime (e.g.,
burglary, robbery, or theft). In addition, since COVID-19 began to outbreak in London since
the second half of March in 2020, a lot of people failed to adapt themselves to COVID-19
containment policies (e.g., social distancing measures). Meanwhile, police patrols have not
dramatically increased in the most districts of London. Therefore, COVID-19 infection rate
and crime rate are found not to be associated in March across London.

4. Conclusions and Future Work

In this paper, we examined the spatial association between the two variables of COVID-
19 infection rate and crime rate across Greater London. The results empirically validated
the speculation that the increase in COVID-19 cases is likely to reduce local crime rate.
Although the bivariate Moran’s I test results indicate that the COVID-19 infection rate
appears to be positively associated with the crime rates of all the four crime categories, we
found that these associations differ from one crime category to another after controlling
for socioeconomic factors. Specifically, the empirical results indicate that (1) the crime
rates of the four categories have no statistically significant associations with the COVID-19
infection rate in March; (2) one crime group, the violence-against-the-person rate, has no
statistically significant association with the COVID-19 infection rate; and (3) the other
three crime groups, to be explicit, robbery, burglary, and theft and handling rates, have a
statistically significant and negative association with COVID-19 infection rate in both April
and May.

There are some limitations in this study. First, this study focused mainly on exploring
spatial association rather than spatiotemporal association, since local socioeconomic data
are not updated on a monthly basis. Second, as the data used are aggregate data, there
might exist some ecological fallacies. More specifically, the issue of modifiable areal
unit (MAUP) often exists in geographical research. Results might change if areal units are
changed. Third, the proposed theoretical explanations on research results and such reported
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associations lack a validation by realistic human mobility and behavior changes that are
supposed to be induced by COVID-19 containment policies. However, this validation
cannot be added at present due to the lack of necessary data on real-time human activities.
Fourth, our empirical study has only worked on one city, London. Repeating similar studies
in more cities across the UK and Europe will enhance the understanding of association
between COVID-19 and crime in urban areas. Fifth, exiting studies lack explorations on
smaller cities and cities in developing countries, as their situations may be different from
the megacity London.

In the future, some further aspects could be considered. First, we would examine
the association over space and time simultaneously if monthly updated socioeconomic
data could be available in the near future. Second, we would attempt to investigate how
COVID-19 containment policies affect human mobility and behavior, which might become
measurable by using some emerging new data sources such as cell phone location data
or social media data. Third, we would further attempt to examine the impact of human
mobility and behavior changes on criminal behavior after the implementation of COVID-19
containment policies. Fourth, we would attempt to extend the study to more cities in
the UK or Europe in support of comparative studies. Fifth, since the vast majority of
developing countries do not release their spatially fine-grained crime and COVID-19 data,
repeating this study and its research methods in developing countries may still be difficult
at present. We would attempt to include more cases in developing countries once relevant
data become available in the future.

Author Contributions: Conceptualization, Yeran Sun, Ying Huang, Ke Yuan and Yu Wang; Formal
analysis, Yeran Sun and Ying Huang; Funding acquisition, Yu Wang; Investigation, Ying Huang;
Methodology, Yeran Sun and Yu Wang; Resources, Ying Huang and Yu Wang; Validation, Yeran Sun
and Ting On Chan; Visualization, Yeran Sun and Ting On Chan; Writing—original draft, Yeran Sun,
Ying Huang and Ke Yuan; Writing—review & editing, Yeran Sun and Ting On Chan. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Independent Innovation Fund of Tianjin University (Grant
No.2020XRY-0010), China.

Acknowledgments: We are thankful to the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Sun, F.; Jit, M.; Munday, J.D.; et al. Early

dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558.
[CrossRef]

2. Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic
and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860. [CrossRef] [PubMed]

3. Zhang, C.H.; Schwartz, G.G. Spatial disparities in coronavirus incidence and mortality in the United States: An ecological analysis
as of May 2020. J. Rural Health 2020, 36, 433–445. [CrossRef] [PubMed]

4. Hu, T.; Yue, H.; Wang, C.; She, B.; Ye, X.; Liu, R.; Zhu, X.; Guan, W.W.; Bao, S. Racial Segregation, Testing Site Access, and
COVID-19 Incidence Rate in Massachusetts, USA. Int. J. Environ. Res. Public Health 2020, 17, 9528. [CrossRef]

5. Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total
Environ. 2020, 728, 138820. [CrossRef]

6. Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total
Environ. 2020, 728, 138813. [CrossRef]

7. Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield,
S.B. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity living in Verona, Italy: A longitudinal study.
Obesity 2020, 28, 1382–1385. [CrossRef]

8. Ashby, M.P. Initial evidence on the relationship between the coronavirus pandemic and crime in the United States. Crime Sci.
2020, 9, 1–16. [CrossRef]

9. Redondo, S.; Gonçalves, R.A.; Nistal, J.; Soler, C.; Moreira, J.S.; Andrade, J.; Andrés-Pueyo, A. Corrections and Crime in Spain and
Portugal during the Covid-19 Pandemic: Impact, Prevention and Lessons for the Future. Vict. Offenders 2020, 1–30. [CrossRef]

10. Boman, J.H.; Gallupe, O. Has COVID-19 changed crime? Crime rates in the United States during the pandemic. Am. J. Crim.
Justice 2020, 45, 537–545. [CrossRef]

http://doi.org/10.1016/S1473-3099(20)30144-4
http://doi.org/10.1038/s41591-020-0883-7
http://www.ncbi.nlm.nih.gov/pubmed/32322102
http://doi.org/10.1111/jrh.12476
http://www.ncbi.nlm.nih.gov/pubmed/32543763
http://doi.org/10.3390/ijerph17249528
http://doi.org/10.1016/j.scitotenv.2020.138820
http://doi.org/10.1016/j.scitotenv.2020.138813
http://doi.org/10.1002/oby.22861
http://doi.org/10.1186/s40163-020-00117-6
http://doi.org/10.1080/15564886.2020.1827108
http://doi.org/10.1007/s12103-020-09551-3


ISPRS Int. J. Geo-Inf. 2021, 10, 53 13 of 13

11. Mohler, G.; Bertozzi, A.L.; Carter, J.; Short, M.B.; Sledge, D.; Tita, G.E.; Uchida, C.D.; Brantingham, P.J. Impact of social distancing
during COVID-19 pandemic on crime in Los Angeles and Indianapolis. J. Crim. Justice 2020, 68, 101692. [CrossRef] [PubMed]

12. Campedelli, G.M.; Aziani, A.; Favarin, S. Exploring the Immediate Effects of COVID-19 Containment Policies on Crime: An
Empirical Analysis of the Short-Term Aftermath in Los Angeles. Am. J. Crim. Justice 2020, 1–24. [CrossRef] [PubMed]

13. Gerell, M.; Kardell, J.; Kindgren, J. Minor covid-19 association with crime in Sweden. Crime Sci. 2020, 9, 1–9. [CrossRef] [PubMed]
14. Payne, J.; Morgan, A.; Piquero, A.R. COVID19 and Social Distancing Measures in Queensland Australia are Associated with

Short-Term Decreases in Recorded Violent Crime. J. Exp. Criminol. 2020, 1–25. [CrossRef]
15. Felson, M.; Jiang, S.; Xu, Y. Routine activity effects of the Covid-19 pandemic on burglary in Detroit, March, 2020. Crime Sci. 2020,

9, 10. [CrossRef]
16. Hodgkinson, T.; Andresen, M.A. Show me a man or a woman alone and I’ll show you a saint: Changes in the frequency of

criminal incidents during the COVID-19 pandemic. J. Crim. Justice 2020, 69, 101706. [CrossRef]
17. Campedelli, G.M.; Favarin, S.; Aziani, A.; Piquero, A.R. Disentangling community-level changes in crime trends during the

COVID-19 pandemic in Chicago. Crime Sci. 2020, 9, 21. [CrossRef]
18. Adunlin, G.; Adedoyin, A.C.A.; Adedoyin, O.O.; Njoku, A.; Bolade-Ogunfodun, Y.; Bolaji, B. Using the protection motivation

theory to examine the effects of fear arousal on the practice of social distancing during the COVID-19 outbreak in rural areas. J.
Hum. Behav. Soc. Environ. 2020, 1–5. [CrossRef]

19. Klick, J.; Tabarrok, A. Using terror alert levels to estimate the effect of police on crime. J. Law Econ. 2020, 48, 267–279. [CrossRef]
20. Loukaitou-Sideris, A. Hot spots of bus stop crime: The importance of environmental attributes. J. Am. Plan. Assoc. 1999, 65,

395–411. [CrossRef]
21. Sherman, L.; Gartin, P.; Burger, M. Hot spots of predatory crime: Routine activities and the criminology of place. Criminology

1989, 27, 27–55. [CrossRef]
22. Weisburd, D.; Bushway, S.; Lum, C.; Yang, S.M. Trajectories of crime at places: A longitudinal study of street segments in the city

of Seattle. Criminology 2004, 42, 283–321. [CrossRef]
23. Uittenbogaard, A.C.; Ceccato, V. Space–time clusters of crime in Stockholm, Sweden. Rev. Eur. Stud. 2012, 4, 148–156. [CrossRef]
24. Helbich, M.; Arsanjani, J.J. Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr.

Geogr. Inf. Sci. 2014, 42, 134–148. [CrossRef]
25. Pope, M.; Song, W. Spatial Relationship and Colocation of Crimes in Jefferson County, Kentucky. Appl. Geogr. 2015, 1, 243–250.

[CrossRef]
26. Murakami, D.; Griffith, D.A. Random effects specifications in eigenvector spatial filtering: A simulation study. J. Geogr. Syst. 2015,

17, 311–331. [CrossRef]
27. Sun, Y.; Hu, X.; Huang, Y.; On Chan, T. Spatial Patterns of Childhood Obesity Prevalence in Relation to Socioeconomic Factors

across England. ISPRS Int. J. Geoinf. 2020, 9, 599.
28. Sohn, D. Residential crimes and neighbourhood built environment: Assessing the effectiveness of crime prevention through

environmental design (CPTED). Cities 2016, 52, 86–93. [CrossRef]
29. Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 2003.
30. Tiefelsdorf, M.; Griffith, D.A. Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environ. Plan. A 2007,

39, 1193–1221. [CrossRef]
31. Murakami, D.; Griffith, D.A. Eigenvector spatial filtering for large data sets: Fixed and random effects approaches. Geogr. Anal.

2019, 51, 23–49. [CrossRef]
32. Chun, Y.; Griffith, D.A.; Lee, M.; Sinha, P. Eigenvector Selection with Stepwise Regression Techniques to Construct Eigenvector

Spatial Filters. J. Geogr. Syst. 2016, 18, 67–85. [CrossRef]

http://doi.org/10.1016/j.jcrimjus.2020.101692
http://www.ncbi.nlm.nih.gov/pubmed/32501302
http://doi.org/10.1007/s12103-020-09578-6
http://www.ncbi.nlm.nih.gov/pubmed/33100804
http://doi.org/10.1186/s40163-020-00128-3
http://www.ncbi.nlm.nih.gov/pubmed/33072489
http://doi.org/10.1007/s11292-020-09441-y
http://doi.org/10.1186/s40163-020-00120-x
http://doi.org/10.1016/j.jcrimjus.2020.101706
http://doi.org/10.1186/s40163-020-00131-8
http://doi.org/10.1080/10911359.2020.1783419
http://doi.org/10.1086/426877
http://doi.org/10.1080/01944369908976070
http://doi.org/10.1111/j.1745-9125.1989.tb00862.x
http://doi.org/10.1111/j.1745-9125.2004.tb00521.x
http://doi.org/10.5539/res.v4n5p148
http://doi.org/10.1080/15230406.2014.893839
http://doi.org/10.1080/23754931.2015.1014275
http://doi.org/10.1007/s10109-015-0213-7
http://doi.org/10.1016/j.cities.2015.11.023
http://doi.org/10.1068/a37378
http://doi.org/10.1111/gean.12156
http://doi.org/10.1007/s10109-015-0225-3

	Introduction 
	Data and Research Methods 
	Case Study and Data 
	Spatial Clustering of Crime Rate 
	Spatial Association of Crime Rate and COVID-19 Infection Rate 
	Modeling of Crime Rate 
	Model Variables 
	Model Estimation 


	Empirical Results and Discussion 
	Spatial Clustering of Crime Rate 
	Spatial Association of Crime Rate and COVID-19 Infection Rate 
	Modelling of Crime Rate: Regression Model Estimation 
	Discussions 

	Conclusions and Future Work 
	References

