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Abstract 

On-board real time modelling for gas turbine aero-engines has been extensively used for engine 

performance improvement and reliability. This has been achieved by the utilization of on-board model 

for the engine’s control and health management. This paper offers a historical review of on-board 

modelling applied on gas turbine engines and it also establishes its limitations, and consequently the 

challenges, which should be addressed to apply the on-board real time model to new and the next 

generation gas turbine aero-engines. For both applications, i.e. engine control and health management, 

claims and limitations are analysed via numerical simulation and publicly available data. Regarding 

the former, the methods for modelling clean and degraded engines are comprehensively covered. For 

the latter, the techniques for the component performance tracking and sensor/actuator diagnosis are 

critically reviewed. As an outcome of this systematic examination, two remaining research challenges 

have been identified: firstly, the requirement of a high-fidelity on-board modelling over the engine life 

cycle, especially for safety-critical control parameters during rapid transients; secondly, the 

dependability and reliability of on-board model, which is critical for the engine protection in case of 
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on-board model failure. Multiple model-based on-board modelling and runtime assurance are proposed 

as potential solutions for the identified challenges and their potential and effectiveness are discussed 

in detail. 

Keywords: On-board modelling, Gas turbine aero-engines, Control, Health management, 

Degradation, Multiple model based on-board modelling, Runtime assurance, Research challenges  

Nomenclature 

ACARE  Advisory Council for Aviation Research and Innovation in Europe 

ADIA   Advanced Detection, Isolation and Accommodation 

ARREM Adaptive Real-time Reference Engine Model 

ARTERI Analytical Redundancy Technology for Engine Reliability Improvement 

ANFIS  Adaptive Neuro-Fuzzy Inference System 

CGEKF  Constant Gain Extended Kalman Filter 

CLM  Component-Level Model 

E3   Energy Efficient Engine 

EKF  Extended Kalman Filter 

EPDMC  Engine Performance Degradation Mitigation Control 
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EPR  Engine Pressure Ratio 

eSTORM  enhanced Self Tuning On-board Real-time Model 

FADEC  Full Authority Digital Electronic Control 

FICA   Fault Identification and Corrective Action 

FOD  Foreign Object Damage 

GTEs  Gas Turbine Engines 

HEP  Hybrid Electric Propulsion 

HKF  Hybrid Kalman Filter 

KF   Kalman Filter  

IHKF  Improved Hybrid Kalman Filter 

ISA   International Standard Atmosphere 

MBEC  Model-based Engine Control 

MHKF   Multiple model-based Hybrid Kalman Filter 

N1   Low-pressure spool speed 

N2   High-pressure spool speed 

NARMAX Nonlinear Autoregressive Moving Average with eXogenous inputs 

NARX  Nonlinear Autoregressive network with eXogenous input 

NGDF  Novel Generalized Describing Function 

NOBEM Nonlinear On-Board Engine Model 

OTEKF  Optimal Tuner Extended Kalman Filter 

OTKF  Optimal Tuner Kalman Filter 
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 RTA  Runtime Assurance 

PF   Particle Filter 

PLA  Power Lever Angle 

PWL  Piecewise Linear 

SCLM  Simplified Component-Level Model 

SLS   Sea Level Static 

SM   Surge Margin  

SN   Smoke Number 

STF   Strong Tracking Filter 

STORM  Self Tuning On-board Real-time Model 

SVD   Singular Value Decomposition 

TET  Turbine Entry Temperature 

UHBR  Ultra High Bypass Ratio 

   Delta 

   Flow capacity 

    Efficiency 

    Pressure ratio 

Subscript 

C   Compressor 

F   Fan 
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B   Booster 

HPC  High-Pressure Compressor 

HPT  High-Pressure Turbine 

LPT  Low-Pressure Turbine 

1 Introduction 

The mechanisms that cause gas turbine aero-engines degradation over the life cycle inevitably 

lower the safety margin [1, 2], overall efficiency [3], and reliability of the engine [4]. These 

mechanisms include blade surface changes (due to erosion, corrosion, or fouling) that influence blade 

aerodynamics, seal clearances changes that affect parasitic flows, combustion system changes, and 

abrupt fault from foreign object damage [5]. Degradation effects deteriorate the gas path component 

health status, which is still difficult to accurately obtain [6, 7]. As a consequence, a significantly 

conservative safety margin that is usually set to end-of-life engines must be considered under the 

existing industrial engine control system using sensor-based strategies [8-10]. In the meantime, 

advanced condition-based maintenance approach is hard to achieve without having accurate 

component health status information of the monitored engine [3]. Moreover, next generation of aero-

propulsion systems (e.g. Ultra High Bypass Ratio (UHBR) engines and Hybrid Electric Propulsion 

(HEP)) should be designed to deal with challenging targets of ultra-high efficiency and ultra-low 

emissions [11-13]. Advisory Council for Aviation Research and Innovation in Europe (ACARE) 

Flightpath 2050 has established very challenging targets for emissions and noise, including reductions 
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of 75% in CO2, 90% in NOx, and 65% in noise by 2050 that are compared to the capabilities of the 

typical new aircraft in 2000 [14]. These ambitious targets could not be achieved only by means of 

marginal improvement in the engine component design and development. On-board modelling of gas 

turbine aero-engines is a promising solution for the engine performance improvement, maintenance 

decisions optimization, health management, and model-based controllers design as well as future aero-

propulsion requirements [7, 15]. 

On-board modelling of gas turbine aero-engines concentrates on the in-flight and real-time 

simulation for some pre-defined critical parameters, to accommodate the engine-to-engine variations 

[1, 6, 16]. On-board models could provide estimated measurable values (e.g. engine shaft rotational 

speed, and exhaust gas temperature) and unmeasurable performance parameters of interest (e.g. surge 

margin, thrust, and health parameters) with the maximal fidelity and affordable computation burden. 

Therefore, on-board models of gas turbine engines (GTEs) could be applied to advanced model-based 

controllers and health management systems [3, 17-19]. 

Since 1977, when the piecewise linear modelling approach was utilized as the initial application 

of on-board model by Teren for GTEs [20], two different fields have been covered by on-board 

modelling approaches: 

 On-board modelling for GTEs control purposes 

 On-board modelling for GTEs health management purposes 

Different applications of on-board models utilize different modelling features. Control oriented 

on-board models are usually applied in the control loops based on their estimated values. These models 

are capable of giving the estimation for thrust, turbine exit temperature (TET) and surge margin (SM) 
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with high accuracy so that they provide the health awareness of the controlled engine which is totally 

different from current industrial sensor-based control. Therefore, personalized engine control would 

be expected to accommodate gradual degradation, abrupt fault, and even manufacturing tolerance or 

weather conditions [1]. In contrast, on-board models for health management are usually served as 

indicators for maintenance recommendations and control system integrity assurance [5, 6]. Outputs 

from these on-board models are usually not fed back to the control loops. Component performance 

tracking, also known as gas path analysis, is dedicated to the accurate perception of component health 

status. Estimated outputs of component health parameters enable the condition-based maintenance and 

optimize the shop visit scope [15]. Sensor and actuator diagnosis are focusing on the estimation of 

their measurable values that could be regarded as virtual measurements. Only if sensor fault 

reconstruction is achieved, the estimated value would be transmitted back to the control loop in current 

sensor-based control strategies [21]. 

To cover all the above-mentioned aspects, a comprehensive historical review of on-board models 

for gas turbine aero-engines is firstly conducted in section two in which all claims and constraints are 

confirmed with references and simulation results. Subsequently, the existing challenges of GTEs on-

board models are identified and analysed in section three. Moreover, future exploration and 

corresponding potential solutions for the next generation of aero-propulsion systems using on-board 

models are proposed in section four. 
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2 A history of on-board modelling of gas turbine aero-engines 

On-board modelling for gas turbine aero-engines has covered the scope of control purposes and 

health management, as depicted in Fig. 1. In one hand, on-board models for control purposes is mainly 

emphasized on nominal engines (specifically, ideal or new engine performance) and degraded engines 

(under abrupt fault, gradual degradation and a special problem for large turbofan engines). The on-

board model for control purposes, capable of estimating unmeasurable thrust, surge margin and TET, 

could contribute to model-based control strategies, under which the conservatism in current sensor-

based controller would be significantly decreased [10]. A more ultimate control structure based on on-

board model could adapt itself to different weather conditions or fault scenarios, thus intelligent engine 

control with the capability of health state awareness of the controlled engine would be expected [1]. 

On the other hand, the on-board model for health management gives detailed information on engine 

component performance tracking and sensor/actuator diagnosis [3]. Component health status tracking, 

including abrupt fault and gradual degradation, could contribute to the cost-efficient condition-based 

maintenance [5]. Sensor/actuator diagnosis, which historically focused on nominal and degraded 

engines, could potentially assure the control system integrity [6]. The next section focuses on a 

comprehensive critical review on the history of on-board modelling approaches in gas turbine aero-

engines for both control and health management purposes.  
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Fig. 1 Overview of gas turbine aero-engines on-board modelling approaches 

2.1 On-board modelling of gas turbine aero-engines for control purposes 

For control oriented on-board modelling, safety-critical unmeasurable parameters including surge 

margin (SM), turbine exit temperature (TET) and thrust, are highly concerned because these 

parameters must be controlled or limited to ensure the safe operation of GTEs. Different approaches 

have been utilized on the on-board modelling for nominal and degraded GTEs. Nominal engine on-

board modelling approaches for control purposes are mainly piecewise linear models, nonlinear 

identification models, block structure models, and Novel Generalized Describing Function (NGDF). 

Degraded engines on-board modelling techniques for control aims are dominated by estimation 

algorithms using Kalman filter framework (e.g. Linear Kalman filter, Extended Kalman filter, Hybrid 

Kalman filter, et al.). These control-oriented on-board modelling methods are systematically discussed 
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with their advantages, disadvantages, and limitations via analysis and simulation cases in following 

sub-sections. 

2.1.1 Nominal engines on-board modelling 

Several efforts have been spared on the on-board modelling for nominal gas turbine aero-engines. 

The term, nominal engines modelling, aims to describe the ideal/new engine performance without 

accounting for the un-deterministic engine-to-engine variation from degradation effects through the 

engine life cycle [22]. 

Using piecewise linear (PWL) model for on-board applications is dating back to 1977 when Teren 

investigated the minimum acceleration response for F100 turbofan engine [20]. The PWL model 

contains a set of steady-state points and the corresponding linear state-space models along the steady 

operating line of the engine. Thus, the engine transient response could be predicted via the interpolation 

between the steady points and the linear state-space models using a scheduling parameter (e.g. engine 

spool speed). The pseudo-code of PWL modelling approach is presented in Table 1. The simple 

structure of PWL model enables the on-board and real-time simulation capability. Steady-state points 

could be retrieved from nonlinear aero-thermal engine model or engine test data. Linear state-space 

models are usually obtained via partial derivative methods, fitting methods, and identification 

approaches [23, 24]. In 2004, Reberga and Breikin compared different interpolation methods for PWL 

model, including linear interpolation and polynomial interpolation, to avoid the discontinuity of this 

approach [25]. They confirmed that different interpolation approaches have very limited influence on 

the accuracy of PWL model. The next step was the research by Tian on the comparison of different 
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scheduling parameters of PWL model with the application to a two-spool turbofan engine [26]. 

Different scheduling parameters were compared, including low-pressure spool speed (N1), high-

pressure spool speed (N2) and Euclidean norm of N1 and N2. It was demonstrated that Euclidean norm 

of N1 and N2 as the scheduling parameter for PWL model surpasses the other two over the flight 

envelope. However, PWL model only shows acceptable accuracy in mild transients due to its inherent 

piecewise linear nature. 

Table 1 PWL on-board modelling algorithm adapted from [27] 

Algorithm: PWL 

Input  State-space model, static points, initial conditions, scheduling parameter, control inputs, time step, final 

simulation time 

Process

1. repeat 

2. Search current static points using the relationship between static points model and scheduling 

parameter at the current time step 

3. Find current linear model coefficients by the interpolation or polynomial fitting between 

scheduling parameter and state-space model 

4. Calculate the incremental of control input and state variables 

5. Get the derivative for state variables  

6. Generate real value for state variables and output variables at the current time step 

7. until Final simulation time is reached 

Output Parameter outputs from PWL 

From 2001 to 2002, Chiras, Evans, and Rees investigated the nonlinear global identification 

modelling based on Rolls Royce Spey MK202 turbofan engine experiment data [28-30]. Previous 

studies on the local linear model identification clearly confirmed that the engine dynamics varies with 

the engine operating points so that a global nonlinear engine model was motivated [31, 32]. They 

firstly applied NARMAX (Nonlinear autoregressive moving average with exogenous inputs)   
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method to identify the relationship between fuel flow and engine spool speed [28, 29]. NARX 

(Nonlinear autoregressive network with exogenous input), a NARMAX model with the noise terms 

excluded, is taken as an example here. As a time-series modelling approach, NARX relates current 

output ( )y t to past outputs ( )yy t m , past inputs ( )uu t n , and current inputs ( )u t , as Eq.(1),  

( ) ( ( 1), ( 2), , ( ), ( ), ( 1), , ( ))y uy t f y t y t y t m u t u t u t n        (1) 

where y and u denote system outputs and inputs; my and nu are lags for outputs and inputs with 

corresponding model orders; f is an identified nonlinear function; t is the time step. The nonlinear 

function and the model order must be carefully selected to represent the engine response based on a 

set of engine operating data, which is usually excited by a well-defined excitation input to show 

sufficient engine dynamics. Then, they used a feed-forward neural network to identify the same 

relationship [30]. Small signal tests and large signal tests demonstrated that the identified neural 

network model almost eliminates the steady error that exists in the linear transfer function model.  

In 2003, Ruano utilized a multi-objective genetic algorithm (MOGA) to determine the model 

structure for NARX and neural network in Spey turbofan engine identification [33]. It was concluded 

that a quadratic NARX model is appropriate for the relationship between fuel flow and engine spool 

speed. However, only the measurable parameter, shaft speed, was focused by this study. At the same 

time, Maggiore et al. applied neural network to nonlinear identification modelling for XTE46 variable 

cycle engine [34]. Based on the discussion of the minimal sets of estimator inputs and estimation 

feasibility for unmeasurable parameters, they concentrated on the unmeasurable thrust, surge margin 

and turbine entry temperature. Only steady-state identification was carried by this research. The next 

step was the study by Tavakolpour-Saleh et al. who proceeded with NARX model for turbojet engine 
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identification [35]. Parametric identification (known model structure) and non-parametric 

identification (unknown model structure) were compared. It showed the mean square error between 

actual outputs and predicted outputs from non-parametric identification is decreased by at least 50% 

than that of parametric identification. However, it is difficult to find a physical explanation for the non-

parametric identification model. Recently, Jafari et al. combined different identification models for 

different engine parameters (engine spool speed, compressor discharge pressure, and emission values) 

of CFM56-5A turbofan engine [36]. They managed to find the best candidate models for different 

parameters and to develop the most accurate combination for control purposes. A reliable validated 

model for a turbofan engine is firstly developed using Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and nonlinear autoregressive network with exogenous inputs (NARX) techniques 

(Polynomial & Hammerstein-Wiener). The control structure is then designed using the Min-Max 

control strategy which is the most widely used control algorithm for gas turbine aero-engines. 

Another on-board modelling technique for nominal engines is Novel Generalized Describing 

Function (NGDF) proposed by Lichtsinder and Levy in 2006 [37]. The main idea behind NGDF is to 

obtain a high-fidelity on-board model, especially under rapid fuel flow variations. This significant fuel 

flow change is highly concerned in GTEs control system because it could drive the engine closer to 

the safety limits (e.g. surge limit, TET limit, and blown-out limit) during transient states. The accuracy 

of NGDF is guaranteed through an error minimization optimization approach, as shown in Fig. 2.  
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Fig. 2 NGDF schematic for GTEs on-board modelling adapted from [37] 

In 2019, Jafari and Nikolaidis gave a comprehensive review of the block structure models with 

application to GTEs modelling [8]. These models are Wiener model, Hammerstein model, Wiener-

Hammerstein model, and Hammerstein-Wiener model. They contain different cascade connections of 

linear dynamic elements and nonlinear static elements. Their structures are illustrated in Fig. 3. 

Variables of these models could be tuned via engine experimental data or verified aero-thermal engine 

model [38, 39].  

 Hammerstein models are usually regarded as the candidate for systems under which 

nonlinearity is only affected by the direct current gain [27]. The input amplitude does not 

influence the dynamic behaviour of the model. Thus, it seems this model is not appropriate 

for GTEs modelling since GTEs dynamics vary significantly with different input amplitudes. 

 Wiener models represent the nonlinearities for different input amplitudes, conversely [27]. 

This dynamics from Wiener model is consistent with the dynamic characteristic of gas turbine 

engines whose gains and response time vary with input magnitude and operating points [40]. 

It also has fewer parameters to be tuned than Wiener-Hammerstein model and Hammerstein-
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Wiener model. 

 Wiener-Hammerstein models and Hammerstein-Wiener models have relatively complex 

structures so that these models are hard to produce and validate. 

ywNonlinear 
block

Linear block
G1(s)

u

yvLinear block
G2(s)

Nonlinear 
block

u

wvLinear block
G1(s)

Nonlinear 
block

u Linear block
G2(s)

y

vwNonlinear 
block

Linear block
G1(s)

u Nonlinear 
block

y

(a)

(b)

(c)

(d)

Fig. 3 Block structure model (a) Hammerstein (b) Wiener (c) Wiener-Hammerstein (d) Hammerstein-Wiener 

adapted from [8] 

Therefore, in block structure models, Wiener model seems to be the superior choice for GTEs on-

board modelling due to its dynamics and simple structure. 

In order to identify the most high-fidelity on-board model of nominal engines for control purposes, 

PWL model described in [27], NGDF model described in [37], and Wiener model described in [8] are 

tested on a small turbofan engine. The examined engine is a dual-spool, separate exhaust turbofan 

engine with intended application to general aircraft. The specification of the engine at take-off 

condition, i.e. international standard atmosphere (ISA) and sea-level static (SLS), is shown in Table 2. 

All the above-mentioned on-board modelling approaches are compared with the turbofan engine aero-

thermal model that has been validated against experimental data. 
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Table 2 Take-off specification of the examined turbofan engine 

Parameters Value 

Ambient condition ISA SLS 

Intake mass flow (kg/s) 13.68 

Low-pressure spool speed (rpm) 44233 

High-pressure spool speed (rpm) 50990 

Fan pressure ratio 1.20 

High-pressure compressor pressure ratio 4.38 

Fuel flow (kg/s) 0.036 

Maximum thrust (kg) 246.48 

As shown in Fig. 4, the examined PWL, NGDF, and Wiener on-board models were tested with the 

turbofan engine under a series of rapid acceleration and deceleration transients between idle and take-

off thrust at sea level static condition. The engine was represented by its validated aero-thermal model. 

The unmeasurable safety-critical parameters, surge margin (SM) of high-pressure compressor (HPC), 

and thrust were selected to demonstrate the performance of different on-board models. From the 

zooming plot in Fig. 4(a), Wiener model shows the best tracking performance for surge margin in 

acceleration states. However, the PWL model shows an excessive undershot, which will be too 

conservative for engine transient performance, if the estimates from PWL were feedback to the control 

system. Meanwhile, NGDF model is subject to an unfavourable accumulation of steady error. Although 

the transient accuracy from Wiener model for surge margin at the end of deceleration states (e.g. at 60 

s) is not that high, it is still acceptable. This is based on the fact that the engine at deceleration states 

operates far away from its HPC surge line. From Fig. 4(b), it is also concluded that Wiener model is 

the best on-board modelling approach in terms of thrust tracking in both acceleration and deceleration 

transients. 
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(a) Surge margin of HPC

(b) Normalized thrust

Fig. 4 Simulation results of different on-board modelling approaches for nominal turbofan engines

Therefore, Wiener model could be the best candidate on-board model of nominal turbofan engines 

for control purposes, especially when unmeasurable parameters are important. However, due to the 
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normal aging of GTEs from erosion, corrosion and fouling, as well as the unexpected incidents from 

foreign object damage, the engine performance deviates from its nominal state. Nominal engines on-

board model could not provide accurate information for a particular engine. Therefore, on-board 

modelling for GTEs over the full life cycle is reviewed in the following sub-section. 

2.1.2 Degraded engines on-board modelling 

On-board modeling for degraded GTEs has incorporated the scope of abrupt fault and gradual 

degradation since gas turbine aero-engine degradation is usually categorized into gradual degradation 

and abrupt fault [41]. Abrupt fault is usually caused by foreign object damage (FOD, e.g. ice ingestion 

and bird ingestion), thus only limited components (one, at most two) are affected very rapidly at a time 

[42]. However, gradual degradation typically triggered by erosion, corrosion, fouling, wear and tip 

clearance change is a slow aging process with many flights while all components deviate slowly and 

simultaneously from their nominal/new states with usage [6]. A comparison of the physical cause and 

the impact on components of abrupt fault and gradual degradation in GTEs is summarized in Table 3. 

Table 3 Comparison between abrupt fault and gradual degradation in GTEs 

Abrupt fault Gradual degradation 

Typical physical cause 
Foreign object damage (ice, 

bird ingestion) 

Erosion, corrosion, fouling, wear, 

tip clearance change 

Number of affected components at a time Limited (one, at most two) All 

Influence on variation rate (time scale) of 

component performance 

Rapid, usually within several 

seconds 

Slow, usually over several flight 

cycles 

Evidence 

Luppold et al. [43] 

Volponi [44] 

Borguet el al. [42, 45] 

Sallee et al. [46, 47] 

Kobayashi et al. [48] 

Simon et al. [49, 50] 
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The primary concern is how to realistically model the degradation effects in the nonlinear engine 

aero-thermal model. Once the nonlinear engine aero-thermal model is validated against engine test 

data, it could be treated as a baseline model for on-board models validation. Degradation on GTEs 

performance is usually modelled by introducing health parameters (e.g. degradation coefficients for 

flow capacity, isentropic efficiency, and pressure ratio) for compressors and turbines, which represent 

the health status/deviation of major components in the gas path [1, 3]. Therefore, degraded component 

maps could be obtained via the movement of their original maps based on these health parameters. 

This is based on the assumption that the shape of degraded component maps remains almost the same 

as their original maps since component geometries do not hugely change due to the degradation effects 

[51]. The health parameters are defined in Eq.(2)-(3) for compressors and turbines, 

1real clean real

clean clean

  
   

 
(2) 

real clean     (3) 

where real  and clean  are corrected flow capacity for degraded maps and clean maps of compressors 

or turbines, respectively; real  and clean  denote isentropic efficiency for degraded maps and clean 

maps of compressors or turbines;    and    are the health parameters for flow capacity and 

isentropic efficiency, respectively. 

Particularly, for a realistic representation of the degradation effects for the compressors including 

fan, booster and high-pressure compressor, three health parameters for its flow capacity C  , 

pressure ratio C  and isentropic efficiency C  should be introduced [52, 53], rather than only 

two health parameters (flow capacity and isentropic efficiency). This utilization of three health 
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parameters in compressor characteristics adjustment due to degradation effects was also confirmed by 

the experiment on a deteriorated high-pressure compressor of V2500 turbofan engine [54]. The health 

parameter for pressure ratio C   of compressor is usually assumed to be equal to that of flow 

capacity C  since they have same effects on engine performance, and this avoids multiple solutions 

in health parameter estimation, as shown in Eq.(4) [51]. Additionally, turbine degraded maps are 

usually obtained through two health parameters for flow capacity and isentropic efficiency, as shown 

in Eq.(2)-(3) [55].  

C C  (4) 

The difference in modelling approaches between abrupt fault and gradual degradation in GTEs 

lies in the variation rate and numbers of health parameters. For abrupt fault modelling, step changes to 

some health parameters are usually imposed while other health parameters remain to their nominal 

value [55, 56]. However, under gradual degradation, all health parameters deviate slowly from their 

nominal values with increasing flight cycles at the same time [46].  

National Aeronautics and Space Administration (NASA) has quantified the gradual degradation 

trend for JT9D turbofan engine based on in-service data from airliners, airframe manufacturers, and 

engine test results, as shown in Table 4 [46, 47]. It should be noted that only the health parameters of 

flow capacity for HPT and LPT are positive due to the expanded turbine throat area resulted from 

degradation effects. All the other health parameters remain negative over the engine life cycle.  
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Table 4 Gradual degradation trend of JT9D turbofan engine [46, 47]

Flight 

cycle 
F

(%) 

F

(%) 

B

(%) 

B

(%) 

HPC

(%) 

HPC

(%) 

HPT

(%) 

HPT

(%) 

LPT

(%) 

LPT

(%) 

0 0 0 0 0 0 0 0 0 0 0 

3000  -1.50 -2.04 -1.46 -2.08 -2.94 -3.91 -2.63 +1.76 -0.54 +0.25 

6000  -2.85 -3.65 -2.61 -4.00 -9.40 -14.06 -3.81 +2.57 -1.08 +0.42 

For clarification, the generation of degraded component maps based on the above-mentioned 

degradation modelling approach in Eq. (2)-(4) and the gradual degradation trend in Table 4 is presented.  

Fig. 5 illustrates clean compressor map and degraded compressor maps at 3000 and 6000 flight cycles 

using the booster degradation data, B  and B , in Table 4. It can be clearly seen that the degraded 

compressor map deviates to the left-down side (lower flow capacity, pressure ratio, and isentropic 

efficiency) from the clean map due to the variation from health parameters B , B , and B . 

Thus, the degraded maps could be loaded into the nonlinear aero-thermal engine model to predict the 

overall degradation effects on the engine performance. 
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(a) Flow capacity versus pressure ratio 

(b) Flow capacity versus isentropic efficiency 

Fig. 5 Gradual degradation on compressor maps at 3000/6000 flight cycles vs clean compressor map 

2.1.2.1 Abrupt fault 

On-board engines modelling for abrupt fault was initially proposed by Luppold et al. from Pratt 
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& Whitney in 1989 [43]. Their self-tuning on-board real-time model (STORM) for aircraft turbofan 

engine was based on Kalman filter and piecewise linear (PWL) model to estimate five engine health 

parameters and unmeasurable thrust and flow capacity under foreign object damage, as illustrated in 

Fig. 6. Residuals between real engine data and estimated outputs from PWL are sent to Kalman filter 

that serves as a tuner to estimate engine health status. Then PWL outputs give engine performance 

parameters due to degradation effects. Experiments showed that this model is able to track the abrupt 

change to the five health parameters and could estimate mass flow. However, the thrust estimation 

does not show the undershoot response during the transients when abrupt fault occurs. Followed 

research by Kerr et al. extended STORM to estimate foreign object damage of PW1128 turbofan engine 

[57]. Four health parameters for the engine cold section (fan flow capacity, fan efficiency, compressor 

flow capacity, and compressor efficiency) were selected for ice ingestion as moderate damage and bird 

ingestion as severe damage in the engine compression part. Engine test data for ice and bird ingestion 

showed that this model could estimate thrust and flow capacity change under these two abrupt faults. 

However, the compressor discharge temperature estimation shows an undesirable undershoot opposite 

to that of the actual engine response (a slight overshoot) under the implanted abrupt faults. In 2002, 

Turevskiy and Luppold from Pratt & Whitney built a model-based controller for commercial turbofan 

engines based on STORM [58]. It consisted of estimated values for thrust, compressor surge margin, 

combustor blowout margin, emissions, and temperature margin from STORM. The results showed that 

the model-based controller based on STORM improves the thrust response. 
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Fig. 6 STORM model adapted from [44] 

Between 2000 and 2001, Lietzau and Kreiner from MTU aero engine developed an on-board 

turbofan engine model using a Kalman filter as an observer [18, 59]. Via the estimation of four health 

parameters (efficiency for fan, HPC, HPT and LPT), surge margin, and TET estimation for the nominal 

and degraded engine were obtained. The direct control of estimated surge margin and TET, as shown 

in Fig. 7, demonstrates its superiority over sensor-based control for GTEs with regard to surge margin 

and TET limitation for the degraded engine. However, the tracking time for abrupt fault in HPC 

efficiency exceeds an order of 100 seconds. 
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Fig. 7 Direct control of estimated surge margin and TET by the on-board model [18, 59] 

In 2011, Guo and Lu et al. further developed an improved hybrid Kalman filter (IHKF) based on-

board model [60]. A nonlinear aero-thermal engine model is used to update the health baseline to 

ensure that the nonlinear on-board model works in the vicinity of the degraded engine. And a piecewise 

linear Kalman filter serves to tune the aero-thermal engine model. They also proposed different health 

parameter updating mode for different engine states. Four health parameters, fan efficiency, 

compressor efficiency, HPT flow capacity, and LPT flow capacity, were focused. Static estimation 

accuracy for spool speed and thrust is improved than basic HKF [61]. However, thrust estimation from 

IHKF does not track the abrupt thrust response from FOD in transient states. 

It was in 2017 that Lu et al. extended STORM model with an extreme learning machine (a kind 

of neural network) to form an in-flight adaptive engine model in order to compensate the model-plant 

mismatch [62]. Bias estimation for health parameters is mitigated. And measurable outputs including 

engine spool speed, pressure, and temperature were given over the full flight envelope. However, they 

only focused on measurable outputs estimation. 

Nonlinear filter algorithms for GTEs on-board modelling also attracted much attention due to the 
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increasing computational capacity of microprocessors in modern FADEC (Full Authority Digital 

Electronic Control) system. Between 1996 and 2000, Sugiyama firstly proposed constant gain 

extended Kalman filter (CGEKF) for GTEs on-board modelling, in which a real-time nonlinear aero-

thermal engine model and extended Kalman filter were exploited [63, 64]. A single gain matrix at 

ground maximum thrust was computed for the whole envelope to avoid the extensive computational 

burden from extended Kalman filter (EKF). For abrupt fault in one gas path component, represented 

by the faulty component’s health parameters for flow capacity and efficiency, simulation results 

showed that this CGEKF model could estimate health parameters deviation and the unmeasurable 

parameters (thrust, TET, bypass airflow, and specific fuel consumption) with very little static error. 

However, turbine entry temperature overshoot (up to 1%) due to a 5% abrupt fault of HPT flow 

capacity is not tracked by the CGEKF model in transient states. Subsequently, he successfully applied 

CGEKF to conduct a model-based thrust control experiment for a nominal turbojet engine on altitude 

test facility [65], but the static error for thrust estimation increases with the increasing Mach number 

from 0 to 1.6, in which the maximum steady error is up to 7% approximately at Mach number 1.6. In 

2005, Kobayashi extended CGEKF to turbofan engines on-board modelling for abrupt fault [48]. It 

was found that the sensor set with bypass nozzle pressure indicates better performance for thrust 

estimation since this sensor has a relatively strong coupling with fan health status. However, the thrust 

estimation during abrupt fault shows undesirable oscillation. 

More recently, Zheng et al. applied neural network (NN) for on-board modelling of a dual-spool 

turbofan engine [66]. Based on the simulation data from nonlinear aero-thermal engine model within 

a large envelope and five health parameters variation, unmeasurable thrust, surge margin as well as 
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TET are obtained. However, the training process is very complex and time-consuming due to the 

limited scope of the engine experimental data under different health status. 

In general, on-board modelling approaches for engines under abrupt fault, mainly based on 

Kalman filter framework, could be summarized as follows: 

 Estimate the health parameters of the limited components under abrupt fault by the 

minimization (fulfilled by Kalman filter) between engine measurements and predicted 

measurements from the on-board model;

 Predict the unmeasurable safety-critical parameters by tuning the on-board model based on 

the health parameter estimation. 

2.1.2.2 Gradual degradation 

In 2005, Kobayashi also extended Sugiyama’s research on CGEKF [63] to gradual degradation 

for GTEs on-board modelling [48]. Sensor selection strategy was discussed for sensor sets with and 

without bypass pressure sensor. Simulation cases for gradual degradation showed that with bypass 

pressure sensor, thrust and fan surge margin estimation accuracy are enhanced due to the strong 

relationship between bypass pressure and fan health status. However, no transient estimation 

comparison is shown for unmeasurable control parameters at different engine degradation levels. 

Recently, DeCastro further associated CGEKF with a neural network to form a hybrid on-board model 

[67]. It was designed to compensate for the model-plant mismatch. All health parameters were set to -

4% to simulate a severe degradation condition. Simulation results demonstrated that this hybrid model 

could track real thrust despite a relatively obvious steady error (up to 6%). 
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 Shankar et al. developed a neural network (NN) based adaptive observer for GTEs on-board 

modelling [68]. Taking advantage of radial basis function neural network to handle the nonlinearity, 

they augmented linear Kalman filter with neural network. This model was trained by two training data 

sets, new and full degraded engine data. Thus, unmeasurable control parameters could be directly 

estimated without health parameters estimation. However, the results showed that this model owns a 

disfavored overshoot, over 10%, for thrust tracking during rapid transient states from idle to take-off 

condition. 

Generally, on-board modelling methods for degraded engines, covering abrupt fault and gradual 

degradation, with control purposes evolve from the linear to nonlinear approaches. STORM and its 

extension, inflight adaptive model, both rely on the linear Kalman filter framework. Nonlinear on-

board models, including IHKF, CGEKF, neural network observer, and neural network model aim at 

enhancing the estimation accuracy for unmeasurable safety-critical parameters especially during rapid 

transient states. However, every modelling technique subjects to advantages and limitations, as 

summarized in Table 5. 
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Table 5 Comparison of on-board modelling methods for degraded engines focusing control purposes 

Model Advantages Disadvantages 

STORM [43] Pioneer work of on-board modelling for 

degraded engines with abrupt fault 

Limited scope for abrupt fault on some 

components/health parameters 

IHKF [60] Proposed different updating modes of health 

parameters for different engine operating 

states 

Unable to track the rapid thrust response 

under abrupt fault 

Inflight adaptive 

model [62] 

Combination of extreme learning machine to 

basic STORM for model-plant mismatch 

Only focus on the measurable parameters for 

control purposes (spool speed and pressure) 

CGEKF  

[48, 63-65] 

Single gain matrix in EKF for whole envelop 

to mitigate computation burden 

Obvious steady error (up to 6%) for thrust 

tracking  

NN model [66] Exploitation of the strong nonlinear mapping 

capacity from neural network for some pre-

defined engine degraded levels 

Subject to the expanded scope of the training 

data 

NN observer [68] No need for health parameter estimation Disfavored transient overshoot (over 10%) 

for thrust tracking during rapid transients 

Given that STORM (based on Kalman filter) was proposed by Pratt & Whitney as the most 

successful on-board modelling approach for degraded GTEs, it is taken as a test case for evaluation. 

Simulation results on different levels of abrupt fault on the compressor efficiency of the same dual-

spool turbofan engine (as described in Table 2) are illustrated in Fig. 8. The engine was initially run at 

a nominal condition at its take-off thrust at sea level static condition. At 1 second, compressor 

efficiency health parameter was suddenly reduced by -1% to simulate an abrupt fault. During the 

simulation period, fuel flow to the combustor was maintained constant. It could be clearly seen that 

the STORM performance is quite favourable for -1% abrupt fault on compressor efficiency, regarding 

the compressor efficiency health parameter and surge margin of HPC. However, when the health 

parameter for compressor efficiency was decreased by -3% and -5% to simulate a severe abrupt fault, 

the steady estimation errors of the health parameter and surge margin increase. The steady estimation 
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error can be attributed to the linear limitation from Kalman filter. When -1% abrupt fault for 

compressor efficiency occurred, it could be concluded that the engine still works in the vicinity of its 

nominal operating point thus the Kalman filter could work to an acceptable level. However, when the 

abrupt fault level became more severe, Kalman filter is not capable of estimating to a high fidelity. 

Although the largest steady estimation error for surge margin under -5% compressor efficiency fault 

is just over 0.01, the gap between the estimation value and true surge margin, namely a potential design 

space for engine performance improvement, should still be minimized. 
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(a) Health parameter of HPC efficiency 

(b) Surge margin of HPC 

Fig. 8 STORM simulations for different abrupt fault levels on HPC efficiency 

2.1.2.3 A Special problem for large turbofan engines 

The special problem behind control-oriented on-board modelling for large turbofan engines under 
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degradation effects is the underdetermined estimation. Unmeasurable parameters for control purposes 

(surge margin, turbine entry temperature, and thrust) have strong coupling effects with the engine 

health status [69]. However, one existing industrial practice for in-service civil large turbofan engines 

is that the available on-board sensors are usually less than the to-be-estimated health parameters. For 

two-spool large turbofan engines with five gas path components (fan, booster, HPC, HPT and LPT), 

there are 10 health parameters in total. It is assumed that every gas path component has two health 

parameters (flow capacity and isentropic efficiency), whereas pressure ratio health parameters that 

equal to flow capacity health parameters for fan, booster and HPC are implicitly embedded, as 

presented in Eq.(4) [51]. However, available on-board sensors in the gas path are usually six to seven 

[70, 71]. This inevitably results in an underdetermined problem.  

Several efforts have been spared on this special problem. Luppold et al. firstly proposed a subset 

approach for GTEs on-board modelling [43]. This study selected a subset of all health parameters that 

influence the overall engine performance mostly. It is not a systematic approach since it is only 

achieved by trial and error and highly relies on the experience from the designer.  

In 2008, Litt et al. further developed a singular value decomposition (SVD) approach for large 

turbofans on-board modelling [69]. They applied singular value approach to get a low-dimensional 

health parameter subset appropriate for Kalman filter. The results showed that the relative error for 

booster surge margin between estimation and actual value based on SVD approach decreases by over 

30% than that of the above-mentioned subset method. They further applied SVD on-board modelling 

to engine performance degradation mitigation control (EPDMC) to reduce thrust response variation 

under current sensor-based control strategies due to degradation effects [72-74]. In this new control 
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architecture, as shown in Fig. 9, SVD-based on-boarding model served as an on-board thrust estimator. 

Thrust estimation concerning degradation effects was calculated by the SVD on-board model. Then 

the fan speed reference command (N1) was compensated with a delta quantity (△N1) by the estimated 

thrust. The results showed that this EPDMC significantly reduces thrust variation from cold-section 

degradation, hot-section degradation, and various gradual degradation levels in both steady and 

transient states. 
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Fig. 9 EPDMC configuration with an SVD-based on-board model adapted from [74] 

Between 2009 and 2012, Simon et al. proposed a systematic on-board modelling approach, 

optimal tuner Kalman filter (OTKF), for large turbofan to decrease the mean square estimation error 

from SVD approach [49, 75, 76]. Systematic selection for all health parameters was applied to get a 

low-dimensional health parameter subset so that the estimation variance is minimum. Simulation 

results of OTKF showed that it outperforms subset and SVD approach for health parameter estimation 

and unmeasurable thrust, surge margin, and TET estimation on both linear and nonlinear engine models. 

In 2016, Csank and Collony extended OTKF to OTEKF (Optimal Tuner Extended Kalman Filter) to 
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improve the estimation accuracy for unmeasurable control parameters during rapid transients [77]. 

OTKF and OTEKF were subsequently applied to form a model-based engine control (MBEC) 

architecture, as highlighted in Fig. 10 [10, 78, 79]. In MBEC, estimated thrust, surge margin and TET 

from the on-board model were directly close-loop controlled, as a replacement for engine spool speed 

loop, acceleration schedule and exhaust gas temperature limit loop in existing sensor-based GTEs 

control system. Results showed that MBEC outperforms existing sensor-based control for GTEs in 

view of increasing thrust response and effective TET/surge margin limitation for various degradation 

levels. However, there is still a noticeable relative estimation error for surge margin, up to 20%, for 

middle-aged and end-of-life engine in OTKF and OTEKF. 

Fig. 10 MBEC with OTKF/OTEKF on-board model, adapted from [10, 78, 79] 

The above-mentioned on-board modelling approaches for large turbofan engines focusing on the 

underdetermined problem are summarized with their pros and cons in Table 6. The evolution from 
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subset, SVD to OTKF/OTEKF technique witnesses the transition from engineering experience-based 

method to the more systematic approaches. However, there is still noticeable estimation error for surge 

margin during rapid transient states even for OTKF/OTEKF method. 

Table 6 Comparison of on-board modelling for large turbofan with underdetermined problem 

Methods Advantages Disadvantages 

Subset [43] Easy for practical implementation Non-systematic approach, strong dependence 

on designer’s experience 

SVD  

[69, 72-74] 

Systematic approach for health parameter 

selection 

Large estimation variance 

OTKF/OTEKF 

[10, 49, 75-79] 

More systematic approach for health parameter 

selection 

Noticeable estimation error for HPC surge 

margin, up to 20%, during rapid transients  

2.2 On-board modelling of gas turbine aero-engines for health management 

On-board modelling of GTEs for health management centres on the component performance 

tracking in conjunction with sensor/actuator fault diagnosis. Component performance tracking, 

capable of accurately estimating component health status including abrupt fault (e.g. ice and bird 

damage) and gradual degradation (e.g. erosion, corrosion, fouling, etc.), enables engine performance 

monitoring and condition-based maintenance decision making [5]. Sensors and actuators diagnosis 

using on-board models mainly consist of fault detection and reconstruction, which contributes to 

control system integrity assurance [6].  

2.2.1 Component performance tracking 

As stated in Section 2.1.2, GTEs component performance in gas path deviates from its nominal 
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state with the usage or foreign object damage [46, 47, 80]. Component performance deviation is usually 

represented by the health parameters for compressors and turbines[81], as defined in Eq.(2)-(4). 

Accurate estimation for these health parameters, known as component performance tracking, has 

attracted tremendous efforts in the gas turbine community [3, 6, 7]. Reliable component performance 

tracking could contribute to dependable gas turbine monitoring and prognostics [5, 82]. 

2.2.1.1 Abrupt fault 

Between 2003 and 2008, Brotherton and Volponi et al. from Pratt & Whitney proposed a hybrid 

on-board model, enhanced Self-Tuning On-board Real-time Model (eSTORM), as further 

development for STORM [83-86]. eSTORM was mainly designed to deal with the model-plant 

mismatch. The term, model-plant mismatch, is to describe the phenomenon resulting from the engine 

hardware modification or engine-to-engine variation. Piecewise linear (PWL) model in STORM 

cannot solely reflect this mismatch. Thus, a misleading health parameter estimation would probably 

be generated. eSTORM forms a hybrid model, synthesizing STORM with an empirical model (neural 

network) to compensate the model-plant mismatch, as shown in Fig. 11. The empirical model was 

trained to generate the initially estimated residuals due to the model-plant mismatch. Engine parameter 

residuals were therefore generated through a combination of engine measured outputs, piecewise linear 

model outputs, and the estimated initial residual from the empirical model. The estimator then 

calculated a tuner based on engine parameter residuals and fed the tuner back to the PWL model. 

Therefore, the tuner from the estimator represents component health status as long as the estimated 

outputs from the hybrid model are closer to the measured engine parameters. Simulations and tests on 
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PW6000 turbofan engine showed that eSTORM could track the efficiency change in fan, LPC, HPC 

and HPT to avoid model-plant mismatch issues. However, the training process for the empirical model 

is much complicated. 
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Fig. 11 eSTORM block schematics adapted from [44] 

In 2018, Daroogheh et al. proposed a dual estimator architecture based on particle filter (PF) for 

abrupt fault in a single-spool turbojet engine [87]. The dual particle filter strategy was designed for the 

estimation of both engine states and health parameters, respectively. Simulation results confirmed that 

this dual PF approach has an average estimation accuracy of 0.3% for compressor fault and 0.5% for 

turbine fault. However, this dual PF on-board model subjects the extensive computational burden due 

to the inherent nature behind the particle filter (huge number of particles). 
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2.2.1.2 Gradual degradation 

There are also efforts on gradual degradation tracking with the aid of the prior knowledge on GTEs 

degradation. Our prior knowledge is that engine health status always degrades, as shown in Table 4, 

except engine maintenance or overhaul. Simon et al. firstly introduced hard constraints in Kalman filter 

(KF) for gradual degradation estimation for turbofan engines in 2005 [88]. They augmented quadratic 

programming as health constraints with standard Kalman filter. It was shown that this Kalman filter 

with hard constraints has a smaller error variance for health estimation for turbofan than that of 

unconstrained Kalman filter. Subsequently, Simon further compared unconstrained Kalman filter and 

Kalman filter with soft/hard constraints for turbofan engine health estimation [89]. Soft constraints 

were approximated satisfaction of the constraints to smooth the estimation. They found that Kalman 

filter with hard constraints is superior to soft-constrained KF and unconstrained KF at the cost of 

increasing computational efforts. The next step was the research by Simon that proposed a constraint 

switching strategy of KF for component performance tracking of turbofan engines [90]. It was assumed 

that constrained KF may violate the optimal estimation for standard KF. Therefore, constraint 

switching logic was applied to find whether the confidence in constrained or unconstrained filters was 

high.  

A more practical consideration in component performance tracking issues is that abrupt fault (e.g. 

foreign object damage) takes place at a time when the engine is undergoing gradual degradation. 

Kalman filter shows relatively acceptable accuracy for gradual degradation tracking, but its 

performance deteriorates for abrupt fault in view of long estimation delay [45]. Besides, there are 
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smearing effects which means that Kalman filter could probably spread health parameter deviation to 

other non-degraded components [91]. Therefore, adaptive on-board modelling for abrupt fault is a 

strong motivation. In 2008, Borguet et al. initially introduced an adaptive extended Kalman filter (EKF) 

for abrupt fault in turbofan engines [45]. They utilized covariance matching methodology into EKF to 

address the above-mentioned problem, under which the health parameter variation rate was adaptively 

released when abrupt fault occurred. It showed that this method takes shorter time for abrupt fault 

estimation than that of standard EKF. The next footprint was also by Borguet et al. who compared 

covariance matching method with generalized likelihood ratio in EKF to track abrupt fault plus gradual 

degradation [42]. They concluded that generalized likelihood ratio is more promising due to its detailed 

explanation of time and amplitude estimation for abrupt fault. Pu et al. proposed another adaptive on-

board model, strong tracking filter (STF), for GTEs abrupt fault [92]. They combined an adaptive 

fading factor with EKF so that this fading factor automatically increased when abrupt fault occurred 

to increase the weight of new measurements. During gradual degradation, this fading factor decreased, 

thus a standard EKF was formed. Results showed that this STF-based on-boarding model could track 

both gradual degradation and abrupt fault with an particular capability for fast estimation of abrupt 

fault. However, an evident overshoot for health parameter estimation of turbine flow capacity (two 

times of the magnitude of implanted abrupt fault) is observed. 

In general, the above-mentioned on-board modelling methods in component performance tracking 

cover the scope of abrupt fault and gradual degradation. eSTORM and dual PF model aim at high-

fidelity estimation for abrupt fault. Constrained Kalman filter is based on our prior knowledge to 

improve the estimation accuracy for gradual degradation. Additionally, adaptive EKF and STF models 
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are the efforts to shorten the tracking time for abrupt fault that occurs along with gradual degradation. 

The advantages and limitations of each modelling approaches are summarized in Table 7. 

Table 7 Comparison of on-board modelling approach for component performance tracking 

Models Advantages Disadvantages 

eSTORM [83-

86] 

Pioneer research on the compensation for 

model-plant mismatch 

Limited scope to abrupt fault on efficiency 

health parameters in fan, HPC, HPT, and LPT 

Dual PF [87] Separate particle filter for engine state and 

health parameter estimation 

Extensive computational burden due to the 

huge number of particles 

Constrained 

Kalman filter 

[88-90] 

Using the prior knowledge on health 

degradation for GTEs to form constraints 

Potential violation on the optimal estimation 

from basic Kalman filter 

Adaptive EKF 

[42, 45, 91] 

Shorter estimation time for abrupt fault 

compared than standard Kalman filter 

Long estimation time, with a time scale of 

hundreds of seconds 

STF [92] Combination of a fading factor with EKF for 

fast estimation for abrupt fault 

Large estimation overshoot, i.e. two times of 

the magnitude of implanted abrupt fault 

2.2.2 Sensor/actuator diagnosis 

Sensor and actuator may encounter malfunction due to the harsh working environment in GTEs. 

The diagnosis for sensor and actuator including the detection, isolation, and reconstruction witnesses 

the transition from nominal engines to degraded engines to enhance the diagnosis effectiveness. 

2.2.2.1 Nominal engines  

In the 1980s, urgent needs for on-board sensor diagnosis in gas turbine aero-engine also motivated 

the development of on-board model. Different on-board models for online sensor diagnosis focusing 

nominal engines were firstly proposed, including parameter synthesis, simplified component-level 

model and piecewise linear model. 

Parameter synthesis (PS) based on-board model was proposed under PW2037 turbofan engine [93] 
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and digital electronic engine control (DEEC) sensor diagnosis program [94]. The estimation for one 

measurable output was calculated by an algebraic function from other un-fault sensors. Under DEEC 

project, if inlet static pressure sensor was failed, its estimation was obtained by the synthesis from 

burner pressure, high-pressure spool speed, and inlet total temperature. Although this approach is very 

simple and straightforward, it does not capture the dynamics between these parameters. 

Simplified component-level model (SCLM) was developed under the program of fault 

identification and corrective action (FICA) for F404 turbofan engine [95] and Energy-Efficient Engine 

(E3) on-board sensor diagnosis [96]. It is a simplified aero-thermal engine model by reducing the 

intensive computation in the full aero-thermal engine model in the following two parts. One aspect is 

the substitution for component characteristic maps, a polynomial fitting format with no more than 3rd

order. The other side is its permission for single pass in every iteration for mass flow continuity 

computation, thus no iteration exists in the aero-thermal model to mitigate computational burden. 

Experiments on F404 engine showed that the steady error of measurable parameters (engine spool 

speed, pressure and temperature) between SCLM and experiments within the whole envelope is less 

than 3% despite a transient error within 5%. 

Piecewise linear (PWL) model was another on-board model for sensor diagnosis in advanced 

detection, isolation, and accommodation (ADIA) for sensor diagnosis program [21, 97]. Its detailed 

principle was described in Section 2.1.1. The shortcoming of PWL model is its poor accuracy in rapid 

transients.  

Overall, the above-mentioned on-board model for sensor diagnosis did not consider component 

fault and gradual degradation effects, detection threshold has to be set to a very conservative level to 
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balance the mis-alarm and un-alarm, which may decrease the confidence for sensor diagnosis. 

2.2.2.2 Degraded engines 

Simplified component-level model (SCLM), combined with a tracking filter was also used in 

diagnosis purposes for degraded engines. Analytical Redundancy Technology for Engine Reliability 

Improvement (ARTERI) program pioneered the application of SCLM to sensor and actuator failures 

in degraded GTEs [98]. To adapt SCLM to the specific engine due to gradual degradation and engine-

to-engine variation, a tracking filter was used to update the health parameters for SCLM. The real-time 

computational ability of SCLM was achieved by the single pass for the iteration loop in aero-thermal 

equations during each time step. Application to GE23A turbofan engine showed this SCLM updated 

by the tracking filter could effectively diagnose fan speed sensor fault, fuel flow actuator fault and 

exhaust nozzle actuator fault. In 2008, Kumar from General Electric (GE) further enhanced SCLM 

with extended Kalman filter (SCLM+EKF) as an on-board model for engine fault tolerant control [99]. 

SCLM in their study was achieved by using one Jacobian matrix and single pass technique for the 

iteration loop in aero-thermal equations. Results showed that their model is helpful for fault detection 

and accommodation. Kumar also developed an on-board engine model for sensor/actuator/component 

fault detection and accommodation using real-time SCLM and EKF [100]. They deliberately designed 

this on-board model to a fixed health baseline, for a half-degraded level within all engine fleet. This 

setting resulted in a non-zero residual due to the un-match between the on-board models with the 

engine to be monitored. Therefore, much effort had to be spared on tuning this on-board model to 

ensure it less sensitive to the engine-model un-match but sensitive to faults. 
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In 2005, Kobayashi and Simon proposed a hybrid estimator for GTEs component and sensor 

diagnosis to account for sensor bias in health estimation [101]. The hybrid estimator comprised genetic 

algorithm and neural network (GA+NN). Neural network is utilized for health parameter estimation, 

which genetic algorithm is served for sensor detection. However, a bias data set must be designed for 

sensor bias matching, which highly relies on prior knowledge and requires many efforts. And this study 

limited its scope to steady engine trending. 

From 2003 to 2008, Kobayashi et al. developed a unique Kalman filter, hybrid Kalman filter 

(HKF), for GTEs on-board modelling focusing on sensor, actuator and component fault diagnosis in 

conjunction with component gradual degradation [102-105]. This was motivated by the practice that 

traditional diagnosis system may lose its effectiveness due to the gradual degradation effects since 

traditional diagnosis system was designed at a fixed baseline for engine health, usually for nominal 

engines. However, with the usage of GTEs, the health baseline should be updated to the engine to be 

monitored, so that the diagnosis system could work in the vicinity of the updated health baseline to 

maintain diagnosis capability. This unique structure consisted of a nonlinear on-board engine model 

(NOBEM) and a piecewise linear Kalman filter (PWLK). NOBEM was updated to the monitored 

engine via the estimated health parameters from an off-line trend monitoring system. Simulations on 

a turbofan engine showed that HKF improves the diagnosis accuracy for sensor, actuator and 

component fault with the existence of gradual degradation. However, the off-line trending system is 

extremely hard to implement due to its complexity. Kobayashi subsequently applied HKF to sensor, 

component and anomaly diagnosis of turbofan engines using dual-channel redundant measurements 

[106]. This configuration enhances the sensor fault and anomaly detection rate than that of the baseline 
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system. The next step on HKF was the study that proposed a multiple model-based HKF (MHKF) on-

board model for sensor diagnosis with component degradation in a turbojet engine [107]. They 

designed a special multiple level detection filters as MHKF. Simulations demonstrated that this MHKF 

outperforms linear Kalman filter, unscented Kalman filter and extended Kalman filter in view of sensor 

fault detection time and computational time. 

In 2011, Zhang et al. proposed an adaptive real-time reference engine model (ARREM) for sensor, 

actuator, and component fault diagnosis under gradual degradation [108]. This model consisted of a 

nominal engine model and neural network element to adapt the engine model to the specific engine 

due to gradual degradation and engine-to-engine variations. The nominal engine model was updated 

post-flight by the neural network that was trained on-line with the monitored engine. A unified 

diagnosis framework based on this model shows its superiority in view of less false alarm and early 

detection time. 

In general, the above-mentioned on-board modelling methods for sensor and actuator diagnosis 

make the leap from nominal engines (PS, SCLM, and PWL model) to degraded engines (SCLM+EKF, 

GA+NN, HKF, and ARREM) in order to avoid the false alarm and mis-alarm due to the degradation 

effects. The pros and cons of each model are summarized in detail in Table 8. 
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Table 8 Comparison of on-board models for sensor and actuator diagnosis 

Models Advantages Disadvantages 

PS [93, 94] Only algebraic computation, very easy for 

implementation 

No dynamic relationship 

SCLM [95, 96] Simplified aero-thermal engine model by map 

modification and no iteration 

5% error for measurable spool speed, pressure, 

and temperature in rapid transients 

PWL [21, 97] Only the need for interpolation and integration Poor accuracy in rapid transients 

SCLM+EKF  

[99, 100] 

Nonlinear estimation capacity from EKF Much efforts required in on-board model 

tuning due to its fixed health baseline 

GA+NN [101] Integration from genetic algorithm for health 

estimation and neural network for sensor 

diagnosis 

Only steady engine trending focused, no 

consideration for engine transients 

HKF [102, 103, 

105-107, 109] 

Health baseline update of the on-board model 

to the monitored engine 

Complicated health baseline update from off-

line trending system 

ARREM [108] Neural network for model-plant mismatch 

compensation 

Nominal engine model update highly relies on 

the degradation trending from neural network 

3 The research challenges for on-board modelling of gas turbine aero-

engines 

Based on the historical review of on-board modelling in GTEs for control and health management 

purposes, on-board modelling techniques in both applications have evolved from nominal engine to 

degraded engine, including abrupt fault and gradual degradation, in order to provide the health 

awareness of the monitored engine. Although there is significant progress in on-board modelling 

methods for degraded engines with application to control and health management that mainly utilize 

Kalman filter and its variants, the remaining research questions still need to be addressed to enable 

this promising approach to be adopted by GTEs designers and manufacturers. So, by systematic 

examination of the critical areas in the above-discussed sections, the two remaining research 
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challenges are identified. 

3.1 High-fidelity on-board modelling of safety-critical parameters during rapid 

transients over GTEs life cycle 

High fidelity on-board modelling for control-oriented safety-critical parameters in gas turbine 

aero-engines, especially the unmeasurable thrust, surge margin (SM) and turbine entry temperature 

(TET), during rapid transient states at different degraded levels is still highly challenging. Recent 

advancement regarding this issue, OTKF on-board modelling for GTEs from NASA, still showed a 

relatively undesirable accuracy of surge margin of the high-pressure compressor and TET estimation 

(up to 20% estimation errors) during idle to take-off rapid transients for new, middle-aged and end-of-

life engines [10, 78]. This difficulties in this problem exist in two parts:  

 One aspect is that GTEs in rapid transients show strong nonlinearity and large deviation of 

operating points from the steady operating line;

 The other point is that both the engine steady and transient operating lines vary from their 

nominal situation when different degradation levels take place.  

However, high fidelity on-board modelling for control purposes is very promising for active safety 

considerations and fuel consumption improvement. One benefit is that it has been demonstrated that 

using on-board models in the feedback control loops in GTEs could significantly eliminate the thrust 

response variation for engines undergoing different degraded levels, compared to the thrust response 

under current industrial sensor-based control strategies [78]. The other aspect is that model-based 

engine control (MBEC) using on-board models is capable of controlling the surge margin and TET 
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directly. So, engines could be designed to avoid excessive safety margin. Experiments adopted by 

NASA on a high-fidelity aero-thermal model of a large turbofan engine with 178 kN ( 40,000 pounds) 

thrust, Commercial Modular Aero-Propulsion System Simulation (C-MAPSS40k), showed that a 13% 

reduction in surge margin threshold contributes to the benefit of a 1% reduction in fuel consumption 

[79]. This is accomplished by re-designing the engine with a lower surge margin limit so that the 

compressor operating line runs within a much higher efficiency zone. The only cost behind this benefit 

is the development of a high-fidelity on-board model, whereas no highly challenging marginal 

improvement in component design is required.  

3.2 Dependability and reliability for on-board models of gas turbine aero-

engines 

Another challenge from on-board modelling of GTEs is its dependability and reliability. 

Specifically, on-board models generating unmeasurable safety-critical parameters including thrust, 

surge margin, and TET serve in the control loops. Despite the accuracy of the on-board model could 

be validated off-line with experiments or the aero-thermal engine model, the on-board model with 

intelligent and non-deterministic feature is still subject to the difficulty for online application. If 

estimation values from on-board models went wrong, the whole control system would probably drive 

the engine to the unpredicted, even unsafe operating region. Moreover, especially for civil aero-engines, 

the application of on-board models has to pass the strict certification regulations (e.g. Federal Aviation 

Regulations Part-33 (FAR-33) from Federal Aviation Administration (FAA) and Certification 

Specifications - Engines (CS-E) from European Union Aviation Safety Agency (EASA)) to guarantee 
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the safety operation of the engine even if a failure from the on-board model takes place [110, 111]. 

Therefore, ensuring the dependability and reliability of the on-board models is the prerequisite for its 

real usage in GTEs. 

4 Exploring the future of on-board modelling in gas turbine aero-

engines application 

For the future exploration of on-board modelling in GTEs application especially for control 

purposes, the potential solutions with regard to the identified research challenges as well as future 

aero-propulsion requirements are proposed. 

4.1 Multiple model based high-fidelity on-board modelling 

As the research challenges identified in Section 3.1, almost all the on-board modelling techniques 

are under one same model framework. Although on-board models under Kalman filter theory, as the 

most common practice, shows favourable accuracy for some parameters, estimations of other safety-

critical parameters including surge margin and TET are not acceptable. Therefore, high fidelity on-

board modelling of safety-critical parameters for all degraded levels are still highly challenging. 

Moreover, government and organizations have set ambitious targets for emissions and noise reduction. 

In ACARE Flightpath 2050 plan, the challenging goals are reductions of 75% in CO2, 90% in NOx, 

and 65% in noise that are compared to the capabilities of the typical new aircraft in 2000 [14]. This 

could not be achieved only by component performance improvement. If the emission and noise 

reduction related parameters could be covered in the on-board models, the advanced control system 
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may help to step forward the challenging goals. 

One potential approach for dealing with the high-fidelity on-board modelling is multiple model 

based on-board modelling (MMOBM). Under this modelling framework, different parameters could 

be modelled by different modelling techniques to get the maximum accuracy for the whole system. 

This is based on the fact that different modelling approaches own their advantages and shortcomings. 

If the best candidate model for each parameter of interest could be found, including safety-critical 

parameters (thrust, surge margin, and TET) and emission-related values, an integrated on-board model 

could be obtained in the view of overall optimization. An MMOBM for advanced control system 

focusing emission reduction for future aero-propulsion system is proposed as Fig. 12 for civil turbofan 

engines [36]. Within this MMOBM, different on-board models are systematically selected from a 

family of candidate models by means of minimum Normalized Root Mean Square Error (NRMSE). 

Parameters of interest, including low-pressure spool speed (N1), high-pressure spool speed (N2) and 

compressor discharge pressure (Ps3) are modelled by polynomial NARX. Meanwhile, emission-

related values including CO, NOx, and smoke number (SN) are modelled by ANFIS, NARX and 

Hammerstein-Wiener models. The training data for different models was generated by a well-defined 

excitation input signal, Amplitude Modulated Pseudo Random Signal (APRBS), to excite the full 

engine dynamics. Simulation results on a verified CFM56-5A turbofan engine aero-thermal model 

demonstrated that all the best models for different parameters, which are underlined in Table 9, are 

successfully obtained by the criterion of minimum normalized root mean square error. Moreover, an 

advanced control system based on this MMOBM demonstrates its effectiveness and superiority in view 

of overall high-fidelity on-board modelling. 
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Fig. 12 Multiple model-based high-fidelity on-board modelling for GTEs emission reduction adapted from [36] 

Table 9 MMOBM comparisons by the criterion of normalized root mean square error [36] 

N1 N2 P3 NOx CO SN 

NARX 0.00014 0.000112 0.000147 0.000153 0.0434 0.0071 

Polynomial NARX 0.00002 0.000011 0.000062 N/A N/A N/A 

Hammerstein-Wiener 0.00026 0.000691 0.000311 0.000302 0.0147 0.000197 

ANFIS 0.00017 0.0000129 0.000128 0.000196 0.0005 0.000255 

N/A: Not applicable 

4.2 Runtime assurance for on-board model dependability and reliability 

As stated in Sec 3.2, on-board modelling of GTEs is facing the problem of dependability and 

reliability. This is a practical obstacle for its application in gas turbine aero-engines. Additionally, 

future aero-propulsion systems (e.g. Ultra High Bypass Ratio (UHBR) engines, Geared Turbofans 

(GTF), and Hybrid Electric Propulsion), has regarded model based control that highly relies on on-
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board modelling as a potential candidate solution for challenging goals of emission, noise, and fuel 

consumption reduction [15]. Therefore, a continuous monitoring system for the on-board model of 

civil aero-engines is required for practical point of view and to pass the strict certification regulations.  

One potential solution regarding the challenge of on-board model dependability and reliability is 

runtime assurance (RTA) monitoring system. RTA monitoring system consists of monitor/switch logic 

and backup controller in conjunction with the advanced controller using on-board modelling, as shown 

in Fig. 13. This monitoring system continuously monitors the outputs of the on-board model to ensure 

that the engine operates within its safety boundaries (e.g. over-speed, over-temperature, and over-

pressure). When outputs from on-board model went untrusted beyond a pre-defined threshold that 

could be defined as the residual of outputs between the advanced controller and the backup controller, 

then the switch logic would activate the backup controller (usually trusted and certified N1/EPR 

controller) to limit the engine in a more conservative operating area. Therefore, the dependability and 

reliability of on-board model in GTEs could be fulfilled.  

Advanced contorller
(with on-board model)

Backup contorller
(N1/EPR controller)

RTA Monitor & 
Swtich Logic

Engine

PLA 
Command

Untrusted 
output

Trusted 
output

Fig. 13 Runtime assurance for on-board modelling in GTEs, adapted from [112] 

RTA was originally applied in general software to observe the execution of a running system [113]. 
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Then, it is extended to auto-landing flight control system that comprises adaptive and other advanced 

controllers [114]. National Aeronautics and Space Administration (NASA) shows great interest in RTA 

for the dependability and reliability of advanced propulsion control system using on-board models 

[112, 115]. However, only very simple switch logic between the advanced controller and backup 

controller was designed. Therefore, RTA for advanced control systems with on-board models for future 

propulsion needs is still an area of ongoing investigation. 

It could be concluded that multiple model based on-board modelling and runtime assurance could 

be applied as the potential solutions for future research challenges of on-board modelling in gas turbine 

aero-engines. Table 10 summarizes the research challenges and potential solutions in detail. 

Table 10 Future challenges of on-board modelling for GTEs with proposed potential solutions 

Future challenges Caused by Potential solution Evidence 

High-fidelity on-board modelling 

of safety-critical parameters 

during rapid transients over GTEs 

life cycle 

Limitations of each specific modelling 

approach 

Challenging emission target by 

government and organization (e.g. 

ACARE Flightpath 2050) 

Multiple model based 

on board modelling 

Fig. ,  

Table ,

[36] 

Dependability and reliability of the 

on-board model 

Certification requirement for future 

propulsion (e.g. UHBR, GTF, and HEP) 

using on-board modelling in advanced 

control system 

Runtime assurance 

monitoring system 

Fig. , 

[112, 

113, 115] 

5 Conclusions 

Gas turbine aero-engines real time on-board modelling for both areas, control and health 

management, was comprehensively reviewed for the past four decades. Since the first on-board 
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modelling application to GTEs in 1977, on-board modelling techniques in both areas were 

systematically examined with their pros and cons via analysis and simulation results. The on-board 

modelling methods in both applications have witnessed the transition from nominal engines to 

degraded engines (under abrupt fault and gradual degradation) to provide the health status perception 

of the particular monitored engine. Although there is significant progress in on-board modelling for 

degraded engines, the remaining research challenges are still successfully identified. These research 

challenges include: 

 High-fidelity on-board modelling of safety-critical parameters during rapid transient states 

over GTEs life cycle;

 Dependability and reliability for on-board models of GTEs. 

If these research challenges could be overcome, advanced personalized control strategy with self- 

adaptation capability to the particular monitored engine would be expected to enhance the engine 

performance as well as meet the challenging emission and fuel consumption targets for future aero-

propulsion systems. The potential solutions to the identified challenges in view of future challenging 

aero-propulsion requirements are therefore proposed: 

 To use multiple model-based on-board modelling approach to obtain a high-fidelity on-board 

model;

 To use runtime assurance monitoring system to ensure the dependability and reliability of the 

on-board model in case that a failure from the on-board model takes place. 

The effectiveness of the proposed solutions is confirmed by simulation cases and analysis. This 

allows researchers, engine designers, and manufacturers to understand how the on-board modelling 
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approach is significantly promising to the GTEs performance improvement and future aero-propulsion 

requirements.  
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