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A B S T R A C T   

Additive Manufacturing has significantly developed over the years and is widely used in most industrial appli-
cations. Rapid Tooling refers to manufacturing the tools (moulds and dies) using Additive Manufacturing 
techniques. An essential application of Rapid Tooling is the 3D printing of sand moulds for castings. Metal casting 
is an energy-intensive process; and a lot of research has gone into the sustainability assessment of traditional sand 
castings. In this work, a robust decision-making approach is developed and implemented for sand mould 
manufacturing. Sustainability metrics for the mould production are formulated, and the conventional sand 
moulds are compared against the 3D printed sand moulds. A Multi-Criteria decision-making algorithm is 
implemented, and the effect of the batch size in the mould manufacturing is also studied. The discussed approach 
can help decision-makers choose the best mould manufacturing technique for the intended number of moulds to 
be manufactured.   

1. Introduction 

Additive Manufacturing (AM), also popularly known as 3D printing 
as per the NF ISO/ASTM 52900 standard, can be defined as; “the process 
of joining materials to make parts from 3D model data, usually layer upon 
layer, as opposed to subtractive manufacturing and formative manufacturing 
methodologies”. AM technology was invented by Charles Hull in the year 
1986. Hull’s manufacturing method was termed stereolithography (STL) 
(Salonitis (2014)). In the early days, the architects used the technique to 
fabricate prototypes as the manufacturing process was fast and 
economical to use. It reduced the extra costs encountered in the 
manufacturing phase of an item. Lately, the AM methods transformed 
from producing prototypes to a fully functional product. The technology 
has significantly grown over the years and finds its application in 
Aerospace, medical, transportation, consumer products, etc. (Jiang et al. 
(2020)). The advantages of the AM includes: (1) Flexibility with the 
design constraints (Jiang (2020)), (2) Ease in manufacturing of complex 
shapes (Jiang and Ma (2020)), (3) Faster build speed/lower lead times 
(Gill and Kaplas (2009)), (4) Relatively inexpensive (Munish (2011)), 
(5) Accuracy in part production (Umaras and Tsuzuki (2017)), (6) 
Supports a wide variety of materials (Bourell et al. (2017)), (7) Ease in 
repair (Sauerwein et al. (2019)), and (8) Supports sustainable produc-
tion (cleaner and produces less waste) (Chen et al. (2015)). Although AM 

offers several advantages, there are certain limitations associated with 
the process. The process is limited by (1) Surface quality (Delfs et al. 
(2016)), (2) Appropriate material selection (Bourell et al. (2017)), (3) 
High thermal stresses (Mun et al. (2015)), (4) High porosity in the 
parts/low density (Gorji et al. (2020)), (5) Suitability for manufacturing 
smaller parts (Bert Huis in ’t Veld et al. (2015)), (6) Suitability for the 
low production volumes (Prakash et al. (2018)), and (7) Most AM 
techniques need supports (Jiang et al. (2018)). 

Rapid tooling (RT) refers to the fabrication of tools with the help of 
AM techniques. It provides a solid capacity to adapt more efficiently to 
the changing consumer demands, providing a new competitive advan-
tage. RT aims not to produce the final component but only to provide 
tools for the last component manufacture. With the use of RT, mass- 
production of moulds, dies, etc., can be done with many conveniences 
and ease (Karapatis et al. (1998)). Almost sixty AM methods are avail-
able today, manufacturing components in more than seventy different 
materials, including metals (Saxena et al. (2020a)), polymers (Saxena 
et al. (2020b)), and ceramics (Grimm (2006)). RT techniques can be 
classified into Direct and Indirect tooling techniques. When the manu-
factured components can directly be used as patterns for sand casting or 
as consumable patterns for investment casting, depending on the ma-
terial, the process is termed as Direct tooling (Cheah et al. (2005)). 
Secondary methods may be used to transform the pattern (master) into 
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the mould, thereby creating indirect tooling, which can further be used 
in other casting processes (Tromans (2004)). 

Metal casting is characterised as an ‘energy-intensive process’; 
because of the large energy consumption required for manufacturing 
one item (Pagone et al. (2018)). A report from the International Energy 
Agency (IEA) revealed that the industrial sector in 2016 was responsible 
for contributing 36% of the global CO2 emissions (International Energy 
Agency (IEA) (2018)). The European Union (EU) has previously imposed 
stringent legislation related to emissions and climate control (Salonitis 
and Ball (2013)). In 2005, Emission Trading System (ETS) was estab-
lished to focus on bringing down CO2, NOx and other carbon emissions, 
and between 2013 and 2016, a significant drop of 8% in the emissions 
was reported in the EU (Commission (2016)). Establishing such policies 
within the EU further promotes offshoring of manufacturing industries 
to the countries with relaxed norms. Thus, sustainability needs to be 
addressed for an energy-intensive process, and robust manufacturing 
approaches should be identified from a cleaner production perspective. 

For these reasons, the AM capabilities are utilised to produce rapid 
moulds for sand casting (Sivarupan et al. (2021)). In the last two de-
cades, a lot of research has gone into identifying and implementing the 
Binder Jetting (BJ) 3D printing method for producing the sand moulds 
(Upadhyay et al. (2017)). The permeability properties (due to the porous 
nature of the 3D printed mould) impose challenges as the mechanical 
properties of the conventional sand mould on the mechanical charac-
terisation are difficult to produce with high precision. An investigation 
of the 3D printed sand moulds’ mechanical characterisation is discussed 
by Dana and El Mansori (2020). The print orientation, together with the 
amount of binder and curing process parameters, also play a significant 
role in determining the mechanical properties of the 3D printed sand 
moulds (Sivarupan et al. (2020)). Such moulds’ transport properties can 
be predicted using Non-destructive 3D characterisation techniques such 
as micro-X-ray Computed Tomography (Mitra et al. (2020)). 

In the BJ-AM technique, a binder is used to selectively bond the sand 
granules (powder) in a layer by layer manner. The said technique can 
fabricate both the cores and the moulds. However, in most cases, a 
separate core is not required as the core design can be incorporated in 
the mould itself. This is in complete contrast to the conventional sand 
moulds, where to produce a hollow shape using sand casting, a core is 
required. The core is positioned inside the mould cavity allowing it to 
cast an internal feature. A skilled man is responsible for manufacturing 
the cores, and thus precision and accuracy of the part are highly 
dependent on the artisans (Chua et al. (1998)). The moulds utilised for 
the sand casting are expendable, meaning one mould can only be used 
one time for producing a part. Thus for the large production volumes, 
the conventional mould manufacturing process is time-consuming and 
labour intensive. Furthermore, to obtain repeatability in castings, pre-
cision manufacturing of the mould is desirable. 

In their recent paper, Sama et al. (2020) identified and discussed the 
approach for integrating AM in the foundries. The authors presented 
various case studies to validate the potential of 3D printed sand moulds. 
Difficult-to-machine castings are represented with a case of a closed 
vane impeller. The design complexity of the impeller further imposes 
challenges in the mould fabrication through conventional mould 
manufacturing strategy. In another case study (discussed in the same 
work) of a complex bracket with many undercuts and smaller features 
was manufactured using RT, which otherwise are very difficult to 
manufacture using conventional tooling. The authors fabricated multi-
ple brackets by placing them adjacent to each other thereby facilitating 
the production of multiple components in one go. Through the valida-
tions, the authors claim that the AM of sand moulds is a soft tooling 
solution to lower down the shrinkage in the castings, the lead time can 
be reduced to a larger extent, multiple parts can be produced in a single 
AM operation, complex castings can be produced with ease without the 
need of core. The hybrid manufacturing method further has the poten-
tial to transform the future of the foundries. 

Multiple ways of improving the performance of AM sand moulds 

with the hollow structures are discussed by Deng et al. (2018). The effect 
of heat flux was modelled and simulated using COMSOL. The authors 
concluded that better insulation could be achieved by incorporating 
various design alterations in the 3D printed sand moulds. Snelling et al. 
(2015) discussed the manufacturing of lightweight cellular structures 
using 3D printed sand moulds. These structures are known to possess 
good strength, better stiffness, high thermal insulating properties, high 
stiffness, etc. However, in the manufacturing of such components, the 
challenge lies in the joining process. Typically the joints are either 
bolted or welded, thereby producing enormous stress. This limitation is 
overcome by 3D printed sand moulds which, allow pattern-less casting. 
The authors also discussed the FEM model and concluded that such 
structures could absorb larger impact forces than the solid structures 
produced by the same material of the same weight. Almaghariz et al. 
(2016) presented a cost vs complexity function in a comparative study of 
the two tooling techniques. The authors estimated the overall fabrica-
tion costs as a function of the number of cores constrained by the part’s 
geometry. For low production volumes, the AM based tooling technique 
was found to be economical. The inference was based on the two case 
studies discussed in their work but lacked a robust assessment method 
applied to any other case. 

As it is evident from the literature, most of the research in this 
domain is limited to the process optimisation (Papanikolaou and Saxena 
(2021)), design improvements in the 3D printed sand moulds (Deng 
et al. (2018)), and mechanical testing of the sand moulds (Kridli et al. 
(2010)). There exists a research gap deploying a suitable 
decision-making approach to identify the scenarios in which one tooling 
technique is advantageous over the other, especially from a sustain-
ability perspective. In one of the recent works by Pagone et al. (2021), 
the authors, for the first time, introduced the sustainability metrics for 
3D printed sand moulds. The approach in the previous work was limited 
only to establishing the metrics for producing one mould component 
using conventional and AM based tooling techniques. For low produc-
tion volumes, the AM based tooling technique was found to be advan-
tageous over its traditional counterpart. The current paper discusses 
even more complex scenarios. 

A small number of works in the scientific literature examine the 
sustainability of the AM sand moulds, considering the resource-intensive 
nature that characterises metal casting. When discussing sustainability, 
energy efficiency, which is environmental sustainability indicator is 
more prevalent while determining the sustainability of metal castings. 
Carabalí et al. (2018) published an overview of Colombian metal casting 
plants establishing virtuous energy efficiency technological strategies. 
Sa et al. (2015) established the connection between management stra-
tegies and the analysis of energy efficiency in a Swedish foundry In many 
geographical areas, such as Europe (Trianni et al. (2013)), Sweden 
(Rohdin et al. (2007)) and Italy (Cagno et al. (2015)), barriers to energy 
production in foundries have been empirically studied. While these 
findings are helpful, it has been seen in the literature that if considered 
without including other product life phases outside production, the ef-
fect of energy efficiency or sustainability measures may be very minimal 
or misleading. 

The work presented in this paper focuses on establishing a robust 
decision-making framework for the tooling process selection for casting. 
The conventional tool manufacturing method is compared to rapid tool 
manufacturing. Integration of the AM for 3D printing of sand moulds is 
relatively economical and less time-consuming. A novel method for 
carrying out this form of research with a simple and comprehensive 
process for measuring the indicators’ values is proposed. Besides, such a 
framework instantly generates a high-resolution map of decision- 
making space with objective weighting dependent on the ordinal, 
combinatorial ranking of the parameters. This function eliminates sig-
nificant deficiencies in sustainable Multi-Criteria Decision Analysis 
(MCDA) manufacturing: the considerable amount of feedback needed by 
experts or DMs, the possible inconsistencies that could exist between 
them, and the limited reach of pre-determined, arbitrary samples of the 
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decision-making space. The discussed approach is applied for the 
manufacturing of sand moulds in four different batch sizes. The pre-
sented approach does not involve any specific assumptions in the mould 
fabrication for metal casting, and thus, it can be applied to assess the 
sustainability of any production method. 

2. Multi-criteria decision-making for sustainability in castings 

Haraldsson and Johansson (2018) explored energy efficiency pros-
pects in aluminium-based metal manufacturing-related processes 
ranging from pre-production to recycling. The authors found that certain 
production processes are less energy-intensive than electrolysis of raw 
materials. Energy savings can also be accomplished by creating new 
materials and integrating manufacturing processes that minimise de-
mand during the product period of use (instead of production), as seen 
by the combination of casting and forging processes by Krüger et al. 
(2019). An LCA is discussed by Salonitis et al. (2019) when introducing a 
new casting method designed to improve energy efficiency and consis-
tency. Mittal et al. (2020) recently presented a neural network-based 
approach when discussing the decision-making algorithms for suitable 
process selection to optimise energy conversion efficiency from raw 
materials such as coal. 

MCDA techniques such as Analytic Hierarchy Process (AHP) has 
previously been applied in the literature for decision-making in the 
manufacturing processes. Multi-Objective Decision Analysis (MODA), a 
type of MCDA where discrete possibilities are replaced by continuous 
variables representing process parameters, was used in a complete 
factorial analysis to optimise Electro-Discharge Machining (EDM) 
practices, taking into account five DM and their sensitivities (Dewangan 
et al. (2015)). However, in this analysis, no LCA factors are assessed, 
leaving a research gap (Filipič et al., 2015). For the early stages of 
product design, Favi et al. (2016) merged a MODA technique with 
MCDA to choose the best alternatives based on the five defining attri-
butes (i.e. assembly, cost, materials, time and production method) and 
explained the approach with a case study. With a discrete rating scale, 
the authors used the MCDA Technique for Order of Preference by Sim-
ilarity to Ideal Solution (TOPSIS) to point out that a sensitivity analysis is 
essential to enable the subjectivity of values and weights taken into 
account. This typical shortcoming is discussed in an original way by the 
ordinary combinatorial rating of parameters provided in this article. In 
the scientific literature, findings on MCDA related to metal casting 
(without explicitly addressing sustainability issues) are minimal. 

Neto et al. (2008) proposed a framework for determining the critical 
causes of emissions during the process phase of the aluminium die 
casting plant manufacturing car parts. Their method merged LCA, 
environmental management systems and an MCDA algorithm with four 
distinct weighting distributions. Although the chosen weight distribu-
tions provided some information, such an approach failed to provide a 
holistic image of the decision-making region, extracting some randomly 
placed, isolated samples. 

Based on the five parameters (cost, tardiness, cooperation, flexibility 
and quality), Chakraborty et al. (2005) applied AHP to decrease the 
number of die casting vendors in a regional location in India. In another 
work, Singh et al. (2006) merged the lean methods (Value Stream 
Mapping), fuzzy logic and MCDA to define waste (according to the lean 
thought principle) using a Multi-Attribute Utility Function (MAUF) and 
to consider several DMs for a die casting factory (pressure and gravity 
die casting processes). Pal and Ravi (2007) combined Quality Method 
Implementation (QFD) with Analytic Network Process (ANP) techniques 
to pick the best process for manufacturing sand and investment casting 
patterns, based on the casting engineer’s criteria and a database, among 
twenty alternatives. The combination of the QFD-ANP approach is uti-
lised to measure the tooling attributes’ weights by pair-wise compari-
sons. This is a very daunting and time-consuming task. For a few MCDA 
strategies (such as AHP and ANP), which are indeed very time-taking, 
the proposed automated mapping solution can be applied with ease. 

The latest MCDA frameworks, primarily built for sustainable pro-
duction, answer the lack of quantitative studies in the sustainability 
literature (Stoycheva et al. (2018)). The approach suggested by the 
authors centred on the broad range of sustainability in the automobile 
industry and demonstrated the preference of five alternate materials and 
15 parameters based on the three pillars of sustainability (Saxena et al. 
(2020c)) by using the Weighted Sum Method (WSM) and the Sensitivity 
Analysis. Pagone et al. (2020) introduced a novel, objective MCDA 
methodology able to describe the decision-making space in detail using 
an automatic, ordinal combinatorial weighting technique with metrics 
categorisation. The methodology is illustrated with a case study on the 
material selection for High-Pressure Die-Cast (HPDC) automotive parts 
using TOPSIS and including product LCA considerations (Pagone et al. 
(2020)). The same methodology has also been applied to the MCDA of 
Wire Arc Additive Manufacturing (WAAM) competitiveness against 
conventional processes of three different materials typical of aerospace 
and infrastructural products (Priarone et al. (2020)). 

From the discussed state of the art, it is evident that there is minimal 
work that is focused on the integration of sustainable metal casting by 
utilising MCDA techniques. No previous work is carried out which fo-
cuses on the manufacturing process selection for mould fabrication in 
metal casting simultaneously, including LCA considerations. The MCDA 
approach applied in this work is based on the techniques discussed by 
the authors in their recent work (Pagone et al. (2020)). 

3. Tooling for sand casting 

3.1. The sand casting process 

Shape casting is a manufacturing process suitable for producing 
complex geometries in metal and alloy with high melting points without 
limitation on their size. In a conventional shape casting process, a mould 
is first fabricated. The process makes use of expendable moulds, which 
are only used once and destroyed after. Thus, the process imposes spe-
cific challenges on the mass production of parts. In this process, a hollow 
sand mould is fabricated so that the mould’s internal geometry is a 
replica of the final casting desired to be manufactured. The molten metal 
is poured inside the mould cavity and left to cool down. The molten part 
solidifies at room temperature, and the shape of the mould is mirrored 
onto the solidified metal. The part thus obtained is referred to as Casting. 
The process finds its use in fabricating near-net-shape geometries. In 
sand casting, the mould is prepared using foundry sand. Due to the 
insulating properties of the sand mould, the molten metal usually ex-
periences a lower cooling rate, and thus the process is particularly ad-
vantageous for manufacturing complex geometries from hard-to- 
machine materials (DeGarmo et al. (2003)). 

In an application such as engine blocks, where an intricate internal 
shape is desirable, a secondary element called core is used inside the 
sand mould. The cores are prepared using silica sand mixed with a 
binder and cured afterwards. Sometimes, the core is also further coated 
and baked before use. The molten metal accumulates between the 
spacing formulated by the core and the internal boundary of the sand 
mould. This allows both internal and external features of the casting to 
be conveniently fabricated. After the molten metal is solidified, the 
mould is broken, and the casting is removed. Sometimes, an additional 
heat treatment step is carried out on the casting to improve the material 
properties. 

The disposal of sand casting waste is one of the primary environ-
mental concern for the foundries. The used moulding sand is disposed of 
as landfill in the environment. These sands produce dust containing the 
binder remains. Typically, for every two tons of casting, one ton of sand 
is disposed to landfills, which creates a negative environmental impact. 
With the integration of AM in the conventional mould making process, 
around 60% of the resources (sand) can be saved, thereby reducing the 
environmental impact (Sivarupan et al. (2021)). The AM process con-
sumes only a small percentage of the energy spent on manufacturing the 
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final product. Ignoring the CO2 emissions involved in the production of 
the 3D printers, one can safely argue that the mould printing process, 
when coupled with the renewable energy sources for operating the 3D 
printers, can lead to a cleaner environment. 

The subsequent sections will focus on a comparative assessment for 
establishing sustainability metrics for sand mould manufacturing. 

3.2. Conventional tooling 

To manufacture a conventional sand mould, a ‘pattern’ is needed. 
The pattern is a negative replica of the final product and is made in 
either metal, wood or plastic. The pattern is made slightly larger in di-
mensions than the desired product to account for the ‘contraction 
allowance’. To accommodate single or multiple cores at a later stage, 
‘core prints’ are embedded within the pattern. A runner, sprue and gate 
arrangement is made on the pattern to facilitate the molten metal flow. 
Another key component is the casting flask, divided into two halves 
known as cope and drag. The pattern is then made to fit inside the 
casting flask. The sand is squeezed and rammed around the pattern to fill 
in the spaces between the pattern and the casting flask. Additional 
components such as chills are sometimes added to promote directional 
solidification. 

Conventional tooling involves the manufacturing of sand moulds 
using green sand. The green sand is a mixture of Silica sand, Zircon sand, 
Chromite sand, bentonite, water, inert sludge and anthracite in varying 
proportions. The type of sand depends on the pouring temperature of the 
molten metal. There are several methods of packing the sand around the 
pattern. In this work, it is considered that the sand is pneumatically 
packed. A hydraulic powered system is used to compact the sand in the 
flask. From the energy perspective, the energy consumed in compacting 
the sand is used. 

The energy consumption in mould and core manufacturing can be 
quantified in terms of Specific Energy Consumption (SECm - mould) and 
(SECc - core), respectively. The values of SECm and SECc in a conven-
tional sand casting process are reported to be 0.16 MJ/kg and 0.51 MJ/ 
kg respectively (EduPack (2016)). The total energy consumption (Ec), 
(in MJ) can thus be calculated from equation (1). 

Ec =(SECm * wm) + (SECc * wc) (1)  

where wm and wc are the weight of the sand used for manufacturing the 
mould and core respectively. Utilising the values of Ec obtained from 
equation (1), carbon emissions CO2,c in kgCO2 can further be evaluated 
from equation (2). The carbon intensity for generating the power using 
grid electricity is assumed to be 325 g CO2/kWh. The real-time data for 
carbon intensity can be obtained from ICAX, and can be substituted in 
the numerator of equation (2). 

CO2,c =

(
325

3, 600

)

*Ec (2) 

These equations can be used to estimate the environmental sustain-
ability (in terms of energy consumption and carbon footprint) for con-
ventional sand mould manufacturing. 

3.3. Rapid tooling 

As discussed in the earlier sections, AM techniques can be utilised for 
producing direct tooling, indirect tooling, and patterns (or moulds) for 
sand castings (shown in Fig. 1). The term rapid tooling stands for the use 
of AM techniques for producing tools or moulds. Based on the physics of 
the process, seven classes of AM techniques can be identified, namely, 
(1) Material extrusion, (2) Powder Bed Fusion, (3) Material Jetting, (4) 
Binder Jetting, (5) Directed Energy deposition, (6) Sheet lamination 
and, (7) VAT photopolymerisation. The AM technique for producing 
sand moulds is Binder Jetting (BJ). 

BJ, also commonly referred to as Three Dimensional Printing (3DP) 
process, was invented at the Massachusetts Institute of Technology 
(MIT). There are several types of binders commercially available that 
can be used for 3D printing of sand moulds. The most popular are the 
Furan binders which are furfuryl alcohol-based binders and chemically 
cured. Any remaining moisture can be removed at a later stage with or 
without additional heat treatment methods. Other binders include CHP 
binders which are alkaline phenolic resole (ester-cured), HHP binders 
(phenolic resole, acid cured) and water-based inorganic binders. All the 
other binders except the furan binders require post-curing (heat treat-
ment) at higher temperatures. The sand that can be used in the AM 
process is Silica sand (SiO2). This is the most economical and readily 
available material. The sand moulds fabricated from the silica sand 
possess low thermal conductivity. Another material alternative is a 
combination of Zirconia, Olivine, Chromite, Zircon and Chamotte. This 
combination is known to improve the thermal conductivity of the sand 
moulds and are comparatively more expensive. 

The material processing is done in the following steps. At first, a CAD 
model of the part is prepared using standard CAD software. The CAD 
data is then fed into the BJ setup (3D printer). The first layer of sand is 
spread on the build platform using a re-coater. The binder droplets are 
then sprayed using an inkjet print head which can move in the x-y plane. 
The build platform is then lowered along the z-axis, and the process is 
repeated to form the next layer. The process is repeated till the desired 
part is produced. Once the process is finished, the part is removed, and 
the unbound sand is cleaned using pressurised air and a brush. 

Fig. 1. Classification of rapid tooling.  
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3.3.1. Energy consumption 
The quantification of energy consumed in producing rapid sand 

moulds is dependent on the type of 3D printer used. There are many 
commercial 3D printers available from 5,000 W to 10,300 W power 
consumption. In this work, the VX500 Voxeljet 3D printer is considered. 
The method can be adapted and applied to a different printer type. The 
maximum printer speed is 3*10− 6m3/s with machine power equal to 
10,300 W. The reason for such a printer’s choice is to evaluate the 
maximum energy consumed for producing rapid sand moulds. If the 
density of the parts to be produced are 1,738 kg/m3, then the Specific 
Energy Consumption (SECm,c for printing mould and core with VX500 
Voxeljet 3D printer is 1.08 MJ/kg (Sivarupan et al. (2019)). If the rapid 
sand moulds are utilised for energy-efficient sand casting operations, 
such as Constrained Rapid Induction Melting Single Shot Up-Casting 
(CRIMSON), this can bring down the overall energy consumption 
costs, thereby making the complete sand casting process even more 
sustainable (Papanikolaou et al. (2020)). The overall energy consump-
tion (E3D) - in MJ, can thus be evaluated from equation (3). 

E3D = SECm,c*(wm +wc) (3) 

Similar to the equation (2), carbon emissions for 3D printed moulds 
(CO2,3D) - in kgCO2 can be evaluated from equation (4). 

CO2,3D =

(
325

3, 600

)

*E3D (4)  

4. Metrics for tooling process selection 

In this section, the effect of environmental sustainability, quality, 
cost and time in formulating a decision-making strategy for optimal 
manufacturing process selection is discussed. For each quantity, the 
positive or negative effect on the method of mould making is estab-
lished. These metrics are shown in the Table 1. The choice of metrics is 
based on the suitability and ease of availability of the literature’s data. 
The current analysis is also focused on understanding the variation in 
the metrics with the number of parts. This is important because the 
manufacturing cost of rapid tooling increases with an increase in the 
number of parts produced. The number of parts (henceforth referred to 
as batch sizes) are varied from a single mould (B1), five moulds (B5), ten 
moulds (B10), and fifty moulds (B50) 

4.1. Environmental sustainability 

Sand casting is one of the many production processes that involve 
high energy consumption. The total energy consumption in 
manufacturing a sand mould can be identified from equation (1) and 
equation (3). The high energy consumption generates significant CO2 
emissions which can be determined from equation (2) and equation (4). 
Hawaldar and Zhang (2018) manufactured a mould for fabricating a 
pump bowl. The material data from their work is utilised for calculations 

in this section. Both the core and the mould were printed using the 
VX500 3D printer. The total sand weight (wm) in the conventional and 
3D printing processes was reported to be 301 kg and 90 kg, respectively. 
Weight of sand utilised for manufacturing core (wc) 7.7 kg (conven-
tional) and 3.3 kg (3D printed). The overall weight of the two moulds 
(wcast) produced from conventional and 3D printing were 34 kg and 23 
kg, respectively. 

From equations (1) and (3), the specific energy consumption for 
producing one mould is calculated as Ec = 52.08 MJ and E3D = 110.36 
MJ. Similarly from equation (2) and equation (4) the CO2 consumption 
is evaluated as CO2,c = 4.70 kgCO2 and CO2,3D = 9.96 kgCO2. 

For the manufacturing of multiple identical moulds, the weight of the 
sand utilised for manufacturing the core and the mould would be in 
proportion to the number of moulds produced. Thus, equations (1) and 
(3) can be modified into equations (5) and (6), where n is the number of 
moulds desired to be produced by the two manufacturing processes. The 
computed values are summarised in Table 2 

Ec(n)= (SECm * wm * n) + (SECc * wc * n) (5)  

E3D(n)= SECm,c*(wm * n+wc * n) (6)  

4.2. Cost 

The cost is yet another significant decision-making factor. Cost 
involved in manufacturing moulds can be referred to as ‘Tooling cost’. 
Tooling cost is a summation of material cost, labour cost, equipment 
cost, energy cost and manufacturing costs. Moulds produced by 3D 
printing can potentially save up to 75% of the tooling costs (Voxeljet 
(2019)). The costs are dependent on the number of parts required to be 
produced and the lead time of parts (tlead) (Hawaldar and Zhang (2018)). 
The tooling costs for the conventional tooling and the rapid tooling are 
shown in the Table 3. The tooling time and tooling cost data are pro-
vided by the manufacturer of the 3D printer Voxeljet (2019). 

4.3. Quality and mechanical properties 

The quality metric is analysed in terms of the part quality fabricated 
from the conventional mould and the 3D printed mould. The material 
properties defining the quality of parts is adapted from Snelling et al. 
(2013). The strength of the mould is the most significant factor when 
considering the quality. The sand used for manufacturing a 3D printed 
part is the commercially available printing sand ViriCastTM, procured 
from Viridis 3D. Strength is determined using tensile tests. Five speci-
mens were 3D printed in a dog bone structure and cured at 204.4◦C for 5 
h. The strength is compared with the specimens manufactured using 
conventional no-bake foundry sand mould. The 3D sand mould permits 
the production of castings up to a maximum of 1,454.4◦C. The mean 
tensile strength (σt) from the tests was evaluated to be 0.16 MPa (3D 
printed) and 0.56 MPa (conventional). 

Another quality criterion is the average surface roughness (Ra) of the 
mould. The Ra values were reported to be 13.62 μm (3D printed) and 
12.17 μm (conventional). No change in the part density was reported. 
Both processes produce the parts with the same density, so density is 
excluded from the current analysis. 

Compared with those produced from no-bake moulds, castings 

Table 1 
Metrics for process selection.  

Quantity Impact Category 

Total sand used in mould manufacturing Negative Environmental 
sustainability 

Total sand used in core manufacturing Negative  
Weight of the casting Negative  
CO2 emissions  Negative  
Total energy consumption Negative  
Hardness of casting Positive Quality 
Surface roughness of casting Negative  
Compressive strength of casting Positive  
Porosity of casting Negative  
Tensile strength of the mould Positive  
Cost Negative Cost 
Mould manufacturing time Negative Time  

Table 2 
Environmental sustainability metrics for sand mould manufacturing.  

Batch size Total energy consumption (MJ) Carbon Intensity (kgCO2)  

Ec  E3D  CO2,c  CO2,3D  

B1 52.08 110.36 4.70 9.96 
B5 260.43 551.81 23.51 49.81 
B10 520.87 1103.63 47.02 99.63 
B50 2604.35 5518.19 235.11 498.17  
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manufactured from AM were more porous. In AM moulds and no-bake 
moulds, the average porosity was found to be 1.13% and 0.65%, 
respectively (Snelling et al. (2013)). The Vickers Hardness of the AM 
moulds was reported to be 92.7 HV, and for the no-bake mould, the 
hardness value was 82.1 HV. Compressive strength was also tested on 
the metal cylinders, and the observed values were 170.8 MPa (3D 
printed) and 165 MPa (no-bake mould). Since the quality metric is in-
dependent of the number of moulds produced. Metric values for all the 
batch sizes remain the same. 

4.4. Time 

Total time spent in manufacturing a sand mould is equal to the 
summation of the mould making time, core manufacturing time and 
fettling time. The 3D printing process is a pattern-less process; thus, for 
comparison, pattern manufacturing time is excluded from the conven-
tional mould making process. The time spent dismantling the mould and 
removing the feeder head, and riser is referred to as the fettling time. 
Time spent on manufacturing one mould part is taken from Hawaldar 
and Zhang (2018). The time spent is directly proportional to the number 
of parts produced both from the conventional tooling and the rapid 
tooling. However, it is possible to fabricate multiple parts together in the 
rapid tooling but for the current analysis, the time spent is calculated by 
numerically multiplying the batch size with the time spent for 
manufacturing one single mould. The computed values are shown in the 
Table 4. 

4.5. Multiple criteria decision analysis high resolution mapping 
methodology 

To develop a robust decision-making strategy, the TOPSIS-MCDA 
algorithm is implemented. The algorithm is based on identifying the 
best solution from the available alternatives. Such a solution is closest to 
the positive ideal solution (A+) and farthest from the negative ideal 
solution (A− ). Fig. 2 shows the sequence of steps of the implemented 
TOPSIS algorithm. 

For ‘m’ number of alternatives and ‘n’ decision criteria values, a 
decision matrix X can be represented as: 

X =

⎡

⎢
⎢
⎣

x1,1 x1,2 …. x1,n
x2,1 x2,2 …. x2,n
: : …. :

xm,1 xm,2 …. xm,n

⎤

⎥
⎥
⎦ (7) 

Each of the decision-criterion in the matrix X is then normalised 
using equation 8 

ri,j =
xij

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑m
k=1x2

k,j

√ ∀i, j ∈ N : i ∈ [1,m], j ∈ [1, n] (8) 

For every criterion within the matrix, its importance can be defined 
using a vector ‘n’ with weights ‘w’, such as 

∑n
j=1wj = 1. The normalised 

weighted matrix V can then be written as (equation (9)) 

vi,j = ri,jWj ∀i, j ∈ N : i ∈ [1,m], j ∈ [1, n] (9) 

The positive ideal solution (A+) and the negative ideal solution (A− )

are then computed using the maximum and the minimum values of 
equation (9). For each criteria, one of the following two conditions are 
computed:  

• If the criteria has an overall positive impact then, Max(A+) and 
Min(A− ) are evaluated.  

• If the criteria has an overall negative impact then, Min(A+) and 
Max(A− ) are evaluated. 

The distance (di) of each given alternative from A+ and A− can be 
evaluated from equation (10) and equation (11) respectively. 

d+
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v+j

)2

√
√
√
√ ∀i, j∈N : i∈ [1,m], j ∈ [1, n] (10)  

d−
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v−j

)2

√
√
√
√ ∀i, j∈N : i∈ [1,m], j ∈ [1, n] (11) 

The last step is to compute the relative closeness to the negative ideal 
solution using equation 12 

s−i =
d−

i

d+
i + d−

i
∀i ∈ N ∩ [1,m] (12) 

This further ranks all the alternatives and the highest s−i gives the 
best solution. 

4.5.1. The automated weight distribution 
In the present analysis, four weighting distributions are used to 

describe the decision-making space exhaustively. Namely, the four 
weight distributions have been called “uniform”, “halving”, “quadratic” 
and “first two” (Fig. 3), and they are expected to cover the vast majority 
of possible DMs’ point of view. Such an approach has been introduced in 
authors’ previous work (Pagone et al. (2020)). For the uniform weight 
distribution, each criterion is assigned equal weight; i.e. every criterion 
is treated as of equal importance. For all the other weight distribution, 
the weight w is decreased by a factor fw(j) at each successive j-th place in 
the ranking as seen from the equation (13). 

w(j)=
1

fw(j)
∀j ∈ N ∩ [1, n] (13) 

For halving weight distribution, fw(j) is computed using equation 14 

fw(1)= 1fw(j)= 2fw(j − 1) ∀j∈N ∩ [2, n] (14) 

For quadratic weight distribution, fw(j) is computed using equation 
15 

fw(j)= 2j2 ∀j ∈ N ∩ [2, n] (15) 

For first two weight distribution, fw(j) is computed using equation 16 

fw(1)= fw(2) = 1fw(j) = j2 ∀j ∈ N ∩ [3, n] (16) 

In addition, an extra weighting dependent on the entropy of infor-
mation contained in the values of parameters is added. The importance 
of using entropic weights is that it is another objective method of setting 
weights without the decision maker’s intervention. The value of pa-
rameters for a greater degree of divergence is intensified and thus more 

Table 3 
Tooling cost for conventional and 3D printed parts (Voxeljet (2019)).  

Batch size Conventional tooling Rapid tooling 

tlead = 4–6 weeks  tlead = 5 days  tlead = 21 days  

B1 3,600 898 410 
B5 3,684 3,080 1,428 
B10 3,789 5,490 2,525 
B50 4,628 22,275 10,300  

Table 4 
Time metric for conventional and 3D printed mould parts (Hawaldar and Zhang 
(2018)).  

Batch 
size 

Mould manufacturing time - in 
min 

Mould manufacturing time - in 
min 

(Conventional tooling) (Rapid tooling) 

B1 300 45 
B5 1,500 225 
B10 3,000 450 
B50 15,000 2,250  
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Fig. 2. Flow chart showing the implemented MCDA approach. Based on the authors’ previous publication (Pagone et al. (2020)).  

Fig. 3. Weight distribution laws used in the present analysis. Image adapted from Pagone et al. (2020).  

Fig. 4. Final multi-criteria score s− of alternatives (i.e. conventional and additive manufacturing) with equal importance of categories (called “uniform” weight 
distribution) and 5% (top) and 10% (bottom) uncertainty. 
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specifically differentiated. The estimation of entropy E for n-criteria of 
the decision matrix R is done from equation 17 

Ei = −
1

ln(n)
∑n

i=1
rijln

(
rij
)
∀i, j ∈ N : i ∈ [1,m], j ∈ [1, n] (17) 

The entropic weighting (wi) is calculated by combining the weights 
calculated by the four distributions (wd) discussed above, using equa-
tions (18) and (19) 

ws,i =
|1 − Ei|

∑n
i=1|1 − Ei|

∀i ∈ N ∩ [1, n] (18)  

wi =
ws,iwd,i

∑n
i=1ws,iwd,i

∀i ∈ N ∩ [1, n] (19)  

5. Results and discussion 

When the four categories considered are equally important for the 
decision-maker, a 5% and 10% uncertainty in the values of criteria is 
considered for different batch sizes (Fig. 4). It is apparent from these 
results that, although the AM of moulds is overall preferable to the 
conventional, with the increase of the batch sizes, such advantage 

reduces. However, even with the maximum size of 50 parts per batch, 
the additive process is still more beneficial, notwithstanding a higher 
uncertainty (i.e. 10%) in the criteria or entropy weighting or both the 
effects combined. 

Furthermore, when different category weight distributions are 
considered (as presented in Section 4.5), only a 5% uncertainty range 
will be represented because (as illustrated in Fig. 4) it does not affect the 
conclusions significantly, and it reduces the readability of the maps. 
Parts of the map background have the same colour as the best alterna-
tive. As a general statement, simple considerations cannot be made 
because the decision making space is rather complex. 

For single-part production, it appears that AM is generally the best 
option regardless of specific weight distribution laws (Fig. 5). The only 
exceptions occur when quality is very important, i.e. in cases starting 
with “q” with the “quadratic” law or in one of the first two positions in 
the “first two” map. Such exceptions can be subdivided into cases when.  

• conventional manufacturing is clearly better, i.e. when time and cost 
are not important (“qetc” and “qect” “quadratic” law cases); 

• there is substantial uncertainty, i.e. when environmental sustain-
ability has some level of importance in combination with the 
mentioned strong relevance of quality (“qtec”, “qtce”, “qcet” and 

Fig. 5. Decision making maps showing the final score s− of alternatives for single piece batch size (B1) of the “halving” (top), “quadratic” (middle) and “first two” 
(bottom) weight distribution laws and 5% uncertainty of criteria values. The background colour indicates that the alternative with the corresponding data points is 
better, whereas no colour means uncertainty. 
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“qcte” with “quadratic” law and the “symmetric” conditions with 
“first two” “eqtc”, “eqct” and “qetc”, “qect”). 

Analysing further the uncertain cases, it can be seen that the 
“quadratic” distribution law shows rank reversals determined by the 
introduction of entropy weighting (Convs and AMs points on the maps). 

If larger batch sizes are considered, while many fundamental trends 
stand, conventional mould making appears the preferred process more 
and more often. With batches of five pieces, the map corresponding to 
the “halving” weight distribution law shows again a strong dominance of 
the AM over conventional manufacturing (Fig. 6). There is only one 
exception for the “qect” case, where there is substantial uncertainty not 
entirely resolved by the superimposition of entropy weighting. Also, the 
“quadratic” and “first two” maps are quite similar to their homologous 
for single piece batches, with the only notable exception that cases 
“qcet” and “qcte” for the “quadratic” law are not any more uncertain but 
clearly favour traditional mould making. Furthermore, focusing on the 
uncertain cases and considering the effect of entropy weighting, it can be 
observed that no rank reversals are introduced but, in the “quadratic” 
map, two cases that are in favour of conventional mould making become 
uncertain when entropy weighting is added. 

Increasing further the size of batches to ten (Fig. 7), the most notable 

difference is the appearance of additional uncertain cases. Namely.  

• in the “halving” weight distribution map, the case “qcet”;  
• in the “first two” weight distribution map the symmetric cases “cqet” 

and “qcet”. 

The “quadratic” law map shows again (like for the batches of five) 
two cases that become uncertain when entropy weighting is considered, 
although no rank reversals appear. 

The most complex scenario is depicted by cases of the largest batch 
size considered in this study, i.e., fifty moulds per batch (Fig. 8). In 
particular, the “halving” weight distribution shows the highest and most 
intricate variety of results because the contribution of each category is 
never completely negligible (see Fig. 3) and, then, several uncertain 
cases emerge that are not simply attributable to one or two categories. 
The superimposition of entropy weighting does not help in making close 
results more clear and, on the contrary, a pair of significant rank re-
versals can be observed in the “cteq”, “ctqe” and “qcte” cases. Although 
AM mould-making still appears the best alternative more frequently, 
conventional processes appear a better choice if cost and quality are very 
important. This principle is visible also in the “quadratic” map results 
where conventional mould-making appears preferable for about half of 

Fig. 6. Decision making maps showing the final score s− of alternatives for batch sizes of five parts (B5) of the “halving” (top), “quadratic” (middle) and “first two” 
(bottom) weight distribution laws and 5% uncertainty of criteria values. The background colour indicates that the alternative with the corresponding data points is 
better, whereas no colour means uncertainty. 
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the 24 cases. The uncertainty of cases “qtec” and “qtce” already observed 
for smaller batch sizes, is confirmed and, also in this case. Also the “first 
two” map repeats the four uncertain cases already seen for smaller 
batches (namely, “eqtc”, “eqct”, “qetc” and “qect”) whereas the uncer-
tain B10 “cqet” and “qcet” are for B50 clearly in favour of the conven-
tional process. The results are found to be in accordance with the 
theories proposed by Almaghariz et al. (2016) on the economics of the 
AM based tooling techniques. 

6. Conclusions 

Metal casting is an energy-intensive manufacturing process for pro-
ducing near-net-shape geometries. Capabilities of the traditional sand 
castings are often limited by the complexity of the intended shape to be 
produced. Additive manufacturing-based tooling, also known as rapid 
tooling, is a fast, economical and sustainable alternative for sand mould 
manufacturing. Binder Jetting is used for the 3D printing of sand 
moulds. This paper applies a robust decision-making framework to 
select the optimal process selection for sand mould production repre-
senting its decision-making maps. A multi-criteria decision-making al-
gorithm named the Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS) is linked to an automatic combinatorial method 

to produce high-resolution maps. Twelve indicators are categorised into 
four areas, environmental sustainability, quality, cost and time are 
established. Their impact on the overall mould manufacturing by con-
ventional tooling and rapid tooling is computed, showing a complex 
decision-making space. The effect of the batch sizes, ranging from a 
single mould to a batch size of 5, 10 and 50 moulds, are examined. A 5% 
and 10% uncertainty in the values of criteria is considered for different 
batch sizes. Results indicate that for single mould production, the AM is 
the best option regardless of the specific weight distribution laws. 
However, on the contrary, conventional mould-making is more 
appealing to the decision-maker for larger batch sizes. Thus, the 
approach discussed in this work can be utilised to select an optimal 
mould manufacturing process based on the intended batch sizes to be 
produced. 

7. Future work 

The present approach can be expanded, and more deterministic 
criteria can be added to strengthen the discussed algorithm further. 
Hybrid manufacturing remains a challenge for the foundries. This work 
can be aligned with the concepts of Industry 4.0 and can be utilised to 
establish smart foundries. Furthermore, a real-life case study can be 

Fig. 7. Decision making maps showing the final score s− of alternatives for batch sizes of ten parts (B10) of the “halving” (top), “quadratic” (middle) and “first two” 
(bottom) weight distribution laws and 5% uncertainty of criteria values. The background colour indicates that the alternative with the corresponding data points is 
better, whereas no colour means uncertainty. 
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implemented, taking support from the discussed MCDM algorithm to 
develop advanced energy-efficient casting operations. 
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