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This work presents the first simulation of a large-scale, bio-physically constrained

cerebellum model performed on neuromorphic hardware. A model containing 97,000

neurons and 4.2 million synapses is simulated on the SpiNNaker neuromorphic system.

Results are validated against a baseline simulation of the same model executed with

NEST, a popular spiking neural network simulator using generic computational resources

and double precision floating point arithmetic. Individual cell and network-level spiking

activity is validated in terms of average spike rates, relative lead or lag of spike times,

and membrane potential dynamics of individual neurons, and SpiNNaker is shown to

produce results in agreement with NEST. Once validated, the model is used to investigate

how to accelerate the simulation speed of the network on the SpiNNaker system,

with the future goal of creating a real-time neuromorphic cerebellum. Through detailed

communication profiling, peak network activity is identified as one of the main challenges

for simulation speed-up. Propagation of spiking activity through the network is measured,

and will inform the future development of accelerated execution strategies for cerebellum

models on neuromorphic hardware. The large ratio of granule cells to other cell types in

the model results in high levels of activity converging onto few cells, with those cells

having relatively larger time costs associated with the processing of communication.

Organizing cells on SpiNNaker in accordance with their spatial position is shown to

reduce the peak communication load by 41%. It is hoped that these insights, together

with alternative parallelization strategies, will pave the way for real-time execution of

large-scale, bio-physically constrained cerebellum models on SpiNNaker. This in turn

will enable exploration of cerebellum-inspired controllers for neurorobotic applications,

and execution of extended duration simulations over timescales that would currently be

prohibitive using conventional computational platforms.

Keywords: neuromorphic computing, SpiNNaker, large scale simulation, spiking neural network, communication

profiling, cerebellum model
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1. INTRODUCTION

The cerebellum is an extensively studied brain area heavily
involved in motor learning and coordination (Eccles et al., 1967;
Ito, 2011). It can also be viewed as an area of extremes, containing
both the most numerous neural cell type in the human brain—
granule cell number estimated at 5 × 1010, ∼2.5 times more
numerous than the neural cells in the neocortex (Andersen et al.,
2003; Shepherd, 2004; Walløe et al., 2014)—and the cell type
receiving the highest number of afferent synapses—Purkinje cells
can have a synaptic fan-in estimated on the order of 100,000
parallel fibers (Napper and Harvey, 1988; Tyrrell and Willshaw,
1992; Hoxha et al., 2016). This brain structure receives afferents
mostly from cortex, as well as brainstem and periphery, and
projects back to cortex and subcortical regions (Buckner et al.,
2011; Habas and Manto, 2018).

Computer simulations of individual cell types and circuits
have been designed to further understand cerebellum function.
Two approaches, with two different goals, have been employed
to model the cerebellum: top-down and bottom-up (Medina
and Mauk, 2000; Yamazaki and Tanaka, 2005; Hausknecht et al.,
2017). The top-down approach is concerned with behavior,
so these models relax biological constraints. The bottom-up
approach is more concerned with matching the biological nature
of the underlying neurons and circuits, and has been identified as
the best candidate to better understand the cerebellum (D’Angelo
et al., 2016; Luque et al., 2019). For example, if one needs
to implement a control system for a robotic arm for the task
of sorting recyclable materials from a moving conveyor belt,
then the answer currently will not involve a bottom-up analysis
of cerebellar anatomy and electrophysiology of individual cells
to build a system to achieve this goal. The implementation
would abstract away biological details and rely on simplified
mathematical models. This need not be the case. It is conceivable
to merge the two views to harness the potential of biology,
which satisfies both experimental results as well as higher-level
requirements. One of the requirements for such a scenario is
real-time simulation.

Neuromorphic computing offers the potential to simulate
large-scale spiking neural network models, at speeds much
faster than conventional high-performance computing (HPC)
systems, and on a fraction of the power budget. However, these
systems often achieve these attributes by relaxing numerical
precision in mathematical operations, or by reducing the
available local memory. This work explores the requirements of
a biologically inspired cerebellum model, and whether it can be
simulated on neuromorphic hardware. This investigation will
utilize the SpiNNaker platform, as it is representative of digital
neuromorphic systems in terms of constraints.

1.1. Contributions
High-speed and high-fidelity simulations of neural circuits
hold the key to increased understanding of the circuits while
simultaneously enabling engineering applications based on
current knowledge of brain operation. The work presented here
focuses on the cerebellum model described by Casali et al.
(2019). The ability to perform real-time cerebellum simulations

will benefit both the neuroscience and robotics communities.
Extended duration simulations will offer insights into the long-
term operation and plasticity capabilities of both the cerebellum
and other neural circuits in the future, enabling simulation-
based exploration of the neurophysiology of individual brain
regions. Furthermore, the ability to co-simulate additional brains
regions in real time, such as the cortex (Rhodes et al., 2019),
will also enable research into the interaction between brain
regions, e.g., the cortico-cerebellar loop. Furthermore, real-time
neural simulation opens the door to exploration of brain-inspired
circuits when embodied in robots, both as functional robotic
controllers, and also as a path to study pathologies related to
motor control.

The main contribution of this paper is the first simulation
of a large-scale cerebellum model on neuromorphic hardware
(SpiNNaker), yielding comparable results to a benchmark HPC-
based simulator. Once validated numerically, the impact of
running a data-driven cerebellum model on SpiNNaker is
explored to understand the challenges of mapping and executing
cerebellum circuits on neuromorphic systems. The analysis
performed here will be used in the future to design a bespoke
solution for real-time simulation of the cerebellum model on
the SpiNNaker neuromorphic platform. Finally, a discussion on
simulation capabilities and limitations of neuromorphic systems
when confronted with biophysically constrained cerebellum
models is presented.

2. BACKGROUND

This section presents background on past cerebellar simulations,
mainly performed on generic computing resources. The
biologically representative cerebellum model used in this
work is then presented in detail. Finally, the SpiNNaker
neuromorphic computing platform is introduced, focusing on
those characteristics which make it a suitable candidate to
simulate the proposed cerebellum model.

2.1. Cerebellar Simulations
Several cerebellum models have been able to perform target-
reaching or manipulation tasks (Carrillo et al., 2008; Luque
et al., 2016; Abadia et al., 2019); replicate results of optokinetic
response (Yamazaki and Nagao, 2012; Yamazaki et al., 2019),
or vestibulo-ocular reflex (Naveros et al., 2018) experiments;
or some combination of these (Yamazaki and Igarashi, 2013;
Casellato et al., 2015; Antonietti et al., 2017, 2019). Others
exposed the machine learning capabilities of a cerebellum
model using six different tasks: eyelid conditioning, pendulum
balancing, PID control, robot balancing, pattern recognition, and
MNIST handwritten digit recognition (Hausknecht et al., 2017).
These models are representative of sizes seen in the literature,
ranging in scale from 103 neurons and <106 synapses to a
billion (109) neurons and synapses. The technologies required to
support such a wide range of scales and model also vary in scale
and specialization and can be categorized into conventional and
neuromorphic computing solutions.

High-performance computing resources in the form of many
core or GPU-based systems see wide application in simulating
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spiking neural networks thanks to their generic and flexible
nature. Particularly, they can be used to simulate models
of relatively complex point-neuron or very complex multi-
compartment neuron models (D’Angelo et al., 2015; Florimbi
et al., 2016, 2017, 2019; Torti et al., 2019). The computational
capabilities required to simulate on the order of billions of
neurons and synapses, such as in the case of the study by
Yamazaki et al. (2019), are generally prohibitive in terms of
both building and operational costs of such systems. Further,
to scale up a model to such sizes requires assumptions
and simplifications, which may not hold true in biological
circuits. For example, the MONET simulator (Igarashi et al.,
2019) used to simulate the billion neuron cerebellum model
assumes communication between different cell types in the
cerebellum is mostly local (in space), with little long-range
interaction. Thus, the problem is transformed into one that
requires sufficient parallel computing resources and avoids costly
distant communication.

An alternative to generic HPC systems for spiking neural
network simulation is the use of specialized, neuromorphic
systems. These brain-inspired computers are designed to
efficiently simulate circuits of simplified spiking neurons. Since
the late 1980s, there have been a handful of neuromorphic
solutions that have emerged and been assembled into large-
scale systems (Furber, 2016). However, the cerebellum model
used here (described by Casali et al., 2019 and presented
in further detail in the following section) displays two
characteristics that may be difficult or even impossible for
some neuromorphic systems to tackle: large synaptic fan-ins
for single cells and high peak activity arriving simultaneously
at individual cells. Additionally, when explored for its motor
control and learning capabilities using real or simulated
robots, the cerebellum model should be executed in real
time. Neuromorphic systems are optimized for accelerating the
execution of spiking neural networks. In some cases, neurons and
synapses were emulated in silicon on purpose-built hardware.
For various reasons, including technology de-risking, cost of
manufacture or identified use case, neuromorphic hardware
may include a fixed and limited number of afferent synapses
per neuron, thus preventing them from accurately simulating
certain neural cell types in the cerebellum, such as the Purkinje
cells. Individual cases are discussed below for some well-known
neuromorphic systems.

The Reconfigurable On-Line Learning Spiking device
(ROLLS; Qiao et al., 2015) is a real-time, full-custom, mixed-
signal neuromorphic device using low power sub-threshold
circuits (Chicca et al., 2014). It emulates 256 neurons and
128,000 synapses in total, that is, 512 synapses per neuron.
DYNAPs (Moradi et al., 2017) sees more neurons and synapses
per core, but a reduced fan-in per neuron, down to 64 synapses
per neuron. In a similar range, IBM’s TrueNorth neuromorphic
chip (Merolla et al., 2014) of 4,096 fully digital neurosynaptic
cores, each simulate 256 neurons with a fixed fan-in of 256
synapses per neuron (Cassidy et al., 2013). The HiCANN (High-
Count Analogue Neural Network) chip (Schemmel et al., 2010)
is an above-threshold, analogue neuromorphic implementation,
which supports a fan-in of up to 14,000 synapses per neuron,

although its speed-up of 10,000× compared to wall-clock
time makes interfacing with robots challenging. The successor
to the HiCANN chip, HiCANN2 (Schemmel et al., 2017),
increases the maximum synaptic fan-in per neuron to 16,000 and
enables online plasticity while reducing the speed-up to 1,000 ×
compared to wall-clock time. The previously described systems
would not be able to represent the up to 28,000 synapse fan-ins
impinging onto individual Purkinje cells. Intel’s Loihi chip is
a real-time digital neuromorphic system flexible in terms of
number of synapses supported per core up to their memory limit
of 128 kB (Davies et al., 2018). Thus, by sacrificing the precision
of individual weights, Loihi could represent more synapses in its
synaptic memory.

2.2. Cerebellum Model
The cerebellum circuit selected for this work was generated
from a scaffold model able to produce arbitrary volumes of
mouse cerebellum (Casali et al., 2019)—the dimensions of the
volume used here are 400 × 400 × 900µm. Given the density,
the hosting layer, and the soma radius, all Gloms and all cells,
except for PCs, were placed within the volume using a bounded
self-avoiding random walk algorithm, while PCs were placed
in planar scattered arrays. The connectivity rules were based
on anisotropic proximity between the pre- and post-synaptic
neuronal processes and on statistical ratios of convergence and
divergence. The rules used to place each neuron and produce the
connectivity are described in full by Casali et al. (2019).

While the scaffold model could produce circuits of arbitrary
size, this volume was selected as it had previously undergone
detailed analysis in Casali et al. (2019), and is representative of the
challenging spiking activity a real-time system will be required
to process. Future experiments could involve larger circuits to
explore scaling of the system and execution strategies.

The spiking behavior of the circuit was previously validated by
Casali et al. (2019) using two popular high-precision simulators:
NEST (Eppler et al., 2009) and NEURON (Hines et al., 2009).
Spiking activity resulting from these simulators was compared
to each other and to literature-reported values. In addition
to quantitative measurements, the qualitative behavior of the
model was verified to establish whether known emergent
properties of the cerebellar circuit were preserved in simulation:
center-surround organization and oscillation of granular layer
responses, and Purkinje cell population burst-pause activity.

Given the breadth of spatiotemporal firing patterns this
model replicates from experiments, an exciting next step
would be to explore the model’s ability to perform functional
tasks: influencing and responding to environmental changes or,
in other words, closing the action-perception loop. Robotics
seems a natural fit for such experiments. A requirement for
physical robotics experiments to take place is the hard real-time
simulation of the model, meaning that all timesteps are simulated
in the amount defined by the timestep (here, every 0.1 ms of
neural activity should be simulated in or under 0.1 ms).

The scaffold model produces the spiking network used here,
as displayed in Figure 1. It is a circuit generated from a scaffold
model constrained to produce 0.077mm3 of mouse cerebellum.
The glomeruli (Glom) are the inputs of the model, while the
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FIGURE 1 | 3D model architecture of the cerebellum. Reproduced from Casali et al. (2019) with permission.

deep cerebellar nucleus cell (DCNC) layer is the output. The
population of neurons which produce excitatory projections are
the granule cells (GrCs) and the populations of neurons which
produce inhibitory projections are: Golgi cells (GoCs), stellate
cells (SCs), basket cell (BCs), Purkinje cells (PCs), and DCNCs.

Gloms send excitatory connections to GrC (Glom-GrC),
GoC (Glom-GoC), and DCNC (Glom-DCNC). Excitatory
connections originating at the GrC in the form of parallel fibers
(pfs) terminate at GoC (pf-GoC), PC (pf-PC), and the molecular
layer interneurons SC and BC (pf-SC and pf-BC). Additional
projections in the form of ascending axons (aas) connect GrC
to GoC and PC. In terms of inhibitory connections these are as
follows: from GoC to itself (GoC-GoC) and to GrC (GoC-GrC),
PC to DCNC (PC-DCNC), and from the molecular interlayer
neurons to themselves and to PC (SC-SC, BC-BC, and SC-PC,
BC-PC, respectively).

The model contains a total of 96,737 neurons arranged
in the seven groups or populations described previously.
Table 1 summarizes the number of cells and average fan-in
for each neural population in the cerebellar model. The input
to the model (Glom) is composed of 7,073 non-biological
neurons representing an ensemble functionally performing as
a relay producing spikes when instructed to do so. Their
purpose is to input activity received by the cerebellum from
other brain regions. While in reality Gloms are not cells,
rather large synaptic terminals, they are treated as cells for
the purposes of the simulated experiments as they share
attributes such as the ability to spike. The input pattern
imposed onto Gloms emulated a natural sensory stimulation
(Chadderton et al., 2004; Roggeri et al., 2008; Ramakrishnan
et al., 2016), i.e., a 150 Hz–50 ms mossy fiber burst over a
noisy background. In spatial terms, the burst was sent on a
bundle of about 140 mossy fibers, each branching into about
20 Gloms.

TABLE 1 | Number of cells and their average individual fan-ins (incoming

synapses).

Population No. of cells Average fan-in for each neuron

Glom 7,073 N/A

GrC 88,158 6.34

GoC 219 2,060.13

SC 603 1,024.19

BC 603 1,006.47

PC 69 28,665.45

DCNC 12 173.08

The most populous group of neurons is GrC, containing 91%
of all cells in the model. They also represent the main source
of spikes for most other populations in the network. Of the
4.2 million synapses in the present model, 3.6 million of these
originate at GrC (86% of the total synapses). The populationmost
targeted by GrC is PC, with individual neurons there receiving,
on average, 28,000 synapses from GrC. Table 2 contains the
cell parameters used to configure all simulations in this work,
while the connectivity parameters are presented in Table 3.
Additionally, reversal potentials for conductance-based synaptic
inputs are set to 0 mV for excitation and −90 mV for inhibition
for all neural cell types.

2.3. SpiNNaker
SpiNNaker (Furber et al., 2013; Furber and Bogdan, 2020)
is a digital neuromorphic computing platform, combining a
multicore chip within a multicast routing fabric. The SpiNNaker
chip houses 18 cores, together with Network-on-Chip (NoC)
and an external RAM controller (Garside and Plana, 2020).
Each core contains an ARM968 (ARM, 2004), direct memory
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TABLE 2 | Cell and synapse parameters.

Cell type CM IC τm τrefract τsynE τsynI vreset vrest vthresh

GrC 0.003 0.0 2.0 1.5 0.5 10.0 −84.0 −74.0 −42.0

GoC 0.076 0.0368 21.0 2.0 0.5 10.0 −75.0 −65.0 −55.0

SC 0.0146 0.0156 14.6 1.6 0.64 2.0 −78.0 −68.0 −53.0

BC 0.0146 0.0156 14.6 1.6 0.64 2.0 −78.0 −68.0 −53.0

PC 0.62 0.6 88.0 0.8 0.5 1.6 −72.0 −62.0 −47.0

DCNC 0.089 0.0558 57.0 3.7 7.1 13.6 −69.0 −59.0 −48.0

CM, cell membrane capacitance (nF); IC, injected current (nA). The unit for the time

constants (τm, τrefract, τsynE , τsynI ) is ms. The unit for the threshold vthresh, rest vrest, and

reset vreset potentials is mV.

TABLE 3 | Connection parameters.

Connection name Synaptic weight (µS) Delay (ms) No. synapses

Glom-GrC 9.0e-03 4 352,474

Glom-GoC 2.0e-03 4 14,302

Glom-DCNC 0.006e-03 4 1763

aa-GoC 20.0e-03 2 79,072

pf-GoC 0.4e-03 5 350,399

pf-SC 0.2e-03 5 615,177

pf-BC 0.2e-03 5 604,489

aa-PC 75.0e-03 2 17,256

pf-PC 0.02e-03 5 1,957,902

GoC-GrC –5.0e-03 2 206,092

GoC-GoC –8.0e-03 1 7,395

SC-SC –2.0e-03 1 2,411

SC-PC –8.5e-03 2 1,379

BC-BC –2.5e-03 4 2,411

BC-PC –9.0e-03 4 1,379

PC-DCNC –0.03e-03 4 314

Connections are ordered first by their afferent, pre-synaptic population, and then

by their efferent, post-synaptic population. Negative weights correspond to inhibitory

connections.

access (DMA) controller, communications controller, network
interface controller and other peripherals including a timer. Each
core operates at 200 MHz clock speed, and typically runs an
application simulating a group of neurons. Each core has two sets
of tightly coupledmemory (TCM): 32 kB for instructions (ITCM)
and 64 kB for data (DTCM). Application code is compiled into an
ARM968 executable and loaded to ITCM, while DTCM contains
application data including heap, stack, and other read/write and
zero initialized data. Each chip has an additional 128 MB of
shared memory (SDRAM), directly accessible by all cores on the
chip (Rhodes et al., 2018).

Individual SpiNNaker chips are assembled onto printed
circuit boards in a two-dimensional, triangular mesh, with
the most common board assembly consisting of 48 chips.
Multiple boards can then be connected to create a SpiNNaker
“machine” (Plana et al., 2020). Cores operate in a globally
asynchronous locally synchronous (GALS) manner, and
communicate through small messages or packets sent via the

NoC and SpiNNaker router (Navaridas et al., 2015). The router
allows transmission of packets to any subset of the cores on a
chip, and to a subset of the six off-chip links (enabling chip-
to-chip transmission, and hence routing of packets to any core
on the machine). The neural applications presented herein use
multicast packets, designed to be transmitted from a source to
multiple targets simultaneously. A multicast packet, essentially
an event encoded using the address event representation (AER,
Mahowald, 1992), contains an 8-bit control byte used by the
system, and a 32-bit key used to route the packet (Rhodes
et al., 2018). This key is looked up within a table of entries,
each of which indicates which of the matching cores and/or
links packets should be sent to. This multicast behavior allows
a core to send a single message targeting multiple destinations,
without having to send an individual message to each of them
(Rhodes et al., 2018). It also allows fire-and-forget sending
of packets, removing the need for network level interlocking
between source and destination. The resulting source-directed
routing architecture enables highly efficient message distribution
compared to traditional network architectures. A large number
of simultaneous packets arriving at a router can cause it to
“drop” packets, their re-sending being handled in a process
called “reinjection” (Rowley et al., 2019).

Spiking neural networks are defined using the PyNN
description language (Davison et al., 2008) and executed on
SpiNNaker through the sPyNNaker simulator (Rhodes et al.,
2018). SpiNNaker software applications are typically written in C,
and compiled into ARM executable code for maximum execution
speed (Rhodes et al., 2018). When designing applications which
solve systems of equations, consideration must be given to the
impact of precision on results and their numerical stability. The
SpiNNaker ARM968 has no hardware floating-point support,
and software-implemented floating-point operations are costly in
terms of both ITCM and execution time. Fixed point arithmetic
is therefore the preferred data representation when solving
systems of equations governing neural dynamics. While creation
of custom fixed point datatypes is possible, and potentially
achieves optimal performance (Jin et al., 2008), the ISO/IEC
TR 18037:2008 standard (ISO/IEC, 2008) is recommended and
used throughout unless otherwise stated. This provides types
and operators similar to those defining standard floating point
operations, improving ease of reading and code development for
non-specialist ARM968 programmers. Unless otherwise stated,
variables in this work will be defined according to the ISO
standard accum type: a signed 16-integer and 15-fractional bit
fixed- point number, as discussed by Hopkins and Furber (2015).

All populations describing models have to be mapped onto
SpiNNaker processing cores for simulation. Themapping process
involves the partitioning, placing, and routing where populations
of neurons are split into core-manageable sub-populations,
which are then loaded to specific machine locations. The process
through which mapping is done, as well as the effect the number
of neurons placed per core have on the performance of the system
are described in full by Rhodes et al. (2018).

Applications running on SpiNNaker have shown it is capable
of real time simulations, inference, and learning (Bogdan et al.,
2020a,b; Galluppi et al., 2020). Particularly, Rhodes et al.
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(2019) have simulated a large-scale, biologically representative
spiking neural network in real time supported by the use
of a heterogeneous parallelization scheme. The canonical
cortical microcircuit model consisted of 77,000 neurons and
0.3 billion synapses and was run in real time by assigning
different SpiNNaker processing cores to two distinct tasks:
either processing spikes or processing neural updates. The work
presented here explores whether the same organization could be
employed for the cerebellum.

3. MATERIALS AND METHODS

The model1 is defined using the simulator-independent
description language PyNN (Davison et al., 2008) and executed
on NEST (Fardet et al., 2020), and on SpiNNaker hardware using
the sPyNNaker simulator (Rhodes et al., 2018).

This section contains descriptions of the experimental setup:
where, how, and when stimulation is applied in the model to
investigate its behavior, and the analysis methods used to validate
the model behavior when simulating on SpiNNaker and NEST.

3.1. Experimental Setup
The model described in section 2.2 is simulated for 1 s. Initial
baseline activity is driven by Gloms emitting Poisson-distributed
spikes at a rate of 1 Hz. At 300 ms, stimulus is provided to
a selected volume of Gloms that produce Poisson-distributed
spikes at a rate of 150 Hz lasting for 50 ms. The active Gloms
are selected by filtering only those cells falling within a sphere of
radius 140 µm centered in the middle of the population (Casali
et al., 2019). The selected volume of glomeruli corresponds to
2915 active elements, 41.21% of the total. For the final 650ms, the
input returns to the initial level with all Gloms emitting Poisson-
distributed spikes at a rate of 1 Hz. These three periods of interest
are defined as pre-stimulation, stimulation and post-stimulation;
the same experimental conditions were used by Casali et al.
(2019). This organization of the stimulus shows the firing rate
of each neuron type at rest and under stimulation, and that the
firing rate returns to the same level after stimulation is removed.
The Poisson-based stimulus encoding method described above is
a departure from the method used by Casali et al. (2019) during
the stimulation period, where, during stimulation, the selected
Gloms emitted synchronized spikes separated by a constant time
period to achieve the prescribed firing rate. This causes large
numbers of spikes to be emitted within the same timestep, which
is challenging to model using SpiNNaker, and is unlikely to
represent stimulation experienced by this brain region in biology
(see section 4.3 for further details). Therefore, in this work,
input stimulus is provided in the form of Poisson-distributed
spikes matching the rates of stimulation in the original model
(Casali et al., 2019), i.e., Gloms fire at 1 Hz throughout the
simulation except for those selected cells firing at 150 Hz during
the stimulation period.

1“Supporting data for a study towards a bio-inspired real-time neuromorphic

cerebellum”. Available online at: https://search.kg.ebrains.eu/instances/Dataset/

069e4718-2b4a-4056-9c8f-e646a841b2dd

In addition to validating the behavior of the complete
cerebellum model, single cell experiments are set up to establish
themodeling accuracy of each individual cell type. The first single
cell experiment validates the effect of single spikes weighted
by each connection type’s parameters (Table 3); the delay of
connections is ignored here. The second experiment validates
the effect of “low” and “high” activity levels, exploring slow
and fast changes in membrane potentials of each cell type;
this experimental setup was employed before by Albada et al.
(2018). The activity used in the latter experiment is shown to
be representative of that seen in the large-scale experiment. Both
single cell experiments—using single spikes and spike trains as
input—model 10 s of biological time.

3.2. Neural Modeling
All neurons within the cerebellum model of section 2.2 are
simulated via a conductance-based leaky integrate-and-fire (LIF)
formulation, with sub-threshold dynamics evolving according to
Equation (1).

τm
dv

dt
= vrest − v+ gexc(Eexc − v)+ ginh(Einh − v) (1)

dg

dt
= −

g

τsyn
+

∑
gsynsi(t − di) (2)

Here, v is the membrane potential, τm the membrane leak
time constant, vrest the membrane resting potential, and g and
E synaptic conductances and reversal potentials, respectively.
When the membrane potential exceeds a threshold value vthr ,
a spike is emitted, and the membrane potential set to a reset
potential vreset for the duration of a refractory period τrefract .
Synapses are either excitatory or inhibitory, both evolving over
time (t) according to Equation (2). The second term on the right-
hand side represents the incoming spikes, with si =

∑
k δ(t − ti

k
)

representing an incoming spike train from pre-synaptic neuron i
at time t subject to delay di. On receiving a spike, a contribution
of gsyn is added to the cumulative synaptic conductance g, before
decaying with time constant τsyn.

These equations are solved in software on SpiNNaker using
exact integration (Rotter and Diesmann, 1999), assuming
the synaptic input remains constant over a particular
timestep (Rhodes et al., 2018). This enables a sequential
update of the models capturing first the synapse, and
subsequently the membrane dynamics (for more details see
Supplementary Material, section 1). To ensure accuracy within
this solution process, a timestep of 1t = 0.1ms is used for
all state updates; a larger timestep would produce less accurate
results under quickly varying input conditions and it has been
shown that using a 0.1 ms timestep is sufficient to capture the
neural dynamics, as evidenced in Figure 2. As checks are made
during this update process to determine whether neuronal
membrane potential has exceeded threshold, the granularity at
which spikes can be emitted in time is also resolved to the same
0.1ms timestep.

The LIF neuron model was chosen by Casali et al. (2019) to
focus on the two main construction operations of the scaffold,
cell placement, and connectivity, and on the role of these latter
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in determining network properties while this work aimed to
validate the same model with minimal differences running on
neuromorphic hardware.

The cerebellum model described in section 2.2 places
additional demands on the numerical solution of equations
governing neuronal dynamics relative to previous studies
performed on SpiNNaker. For example, while modeling has
previously been validated for point neurons within cortical
microcircuits (Albada et al., 2018), the conductance-based
formulation together with the neuronal properties in Table 2

requires additional steps to ensure accurate modeling. The
conductance-based formulation challenges the assumption that
input current remains constant over a single timestep, as the
synaptic input current is a function of membrane potential.
Therefore, significant changes in membrane potential lead to
significant changes in current, which in turn can lead to
instability when updated sequentially. A sub-cycling update
scheme is therefore employed to ensure numerical stability,
with input current and membrane potential sequentially updated
multiple times within a single timestep 1t. While spikes are
still emitted with 1t resolution, the sub-cycling approach
improves accuracy by iteratively updating neuronal state Nsc

times within a timestep, each evolving in time by 1t
Nsc

(see
Supplementary Material, section 1 for further details). This
sub-cycling enables rapid changes in membrane potential to be
captured accurately, while using the previously tested integration
mechanisms for ODE solution on fixed-point hardware (Rhodes
et al., 2018).

A challenge introduced by this sub-cycling, however, is the
effective reduction in 1t for each sub-cycle. When calculating
membrane potential updates, care must be taken to ensure
operations fit within the precision of fixed point arithmetic
(section 2.3). As the simulation timestep 1t is formulated
into a decay factor (see Supplementary Material, section 1),
reducing the effective simulation timestep through sub-cycling
typically causes this decay factor to tend toward 1, which can be
problematic when combined with the absolute precision available
in fixed point arithmetic. Synaptic input modeling is particularly
susceptible to this issue, as the relatively small quantities involved
with modeling synaptic weights are susceptible to quantization
during decay operations. To overcome this challenge, synaptic
inputs are normalized by a conductance equal to Cm

τm
. This

scales synaptic weights and direct current input prior to
this decay process to avoid quantization, and has the added
benefit of removing multiplication operations from within the
neuron state update (see Supplementary Material, section 1 for
further details).

Themagnitudes of synaptic weights in the cerebellum network
(shown in Table S1 of the Supplementary Material) cannot all
be accurately represented using 16 bits when considering the
need to also represent the peak synaptic input in any one
timestep (also explored by Albada et al. (2018)). Section S2

of the Supplementary Material describes how the weights are
represented on the machine to take into account both the
minimum representable weight and the peak activity, with
Table S2 revealing that all weights are representable within 5%
of the prescribed weight, with the exception of pf-PC weights.

These weights end up being represented by a single bit due
to the relatively large peak conductance to be represented in a
single timestep. Thus, pf-PC weights are rounded to the nearest
representable value using a single bit, ending up at least 37%
larger. Synaptic delays are typically constrained to 16 timesteps
on SpiNNaker, as a buffered approach is employed for delay
management (Rhodes et al., 2018). With a timestep resolution
of 0.1 ms, 16 time slots provide a maximum of 1.6 ms of delay.
However, the network incorporates delays of at most 5 ms, thus
the limit was increased to 64 time slots, i.e., delays of at most
6.4 ms. This change is at the cost of core-local memory as
previously reported by Rhodes et al. (2019).

3.3. Analysis Methodology
Qualitative analysis is performed for the large-scale model by
presenting spike raster plots and peristimulus time histogram
(PSTH) to ensure the desired model behavior is preserved when
simulating on SpiNNaker. For single cell experiments, neural and
synaptic traces are compared, while also reporting the lead or
lag of the 100th spike. Thus, a single experiment validates both
the transient behavior of cells when receiving spiking input, as
well as the accuracy of the injected current integration of each
cell type.

Quantitative analysis is performed based on firing rates
before, during, and after stimulation. The reported firing rates
are for a subset of the neurons, not an average of entire
populations. This is consistent with the analysis performed
by Casali et al. (2019) where values are reported for a
selected subset of excited or inhibited neurons. An excited
neuron is classified as one whose firing rate at least doubles
during stimulation relative to pre-stimulation activity levels.
Conversely, an inhibited neuron is one that exhibits a firing
rate during stimulation of less than half the pre-stimulation
activity level.

Furthermore, the exact limits of the stimulation intervals (pre-
stimulation, stimulation, and post-stimulation) changes for each
population to account for spike propagation delays from the
input. Thus, the during stimulation interval start and end points
are shifted by 4 ms for GrC and GoC, by 6 ms for PC, and by 9 ms
for SC and BC. The DCNC is unique with the interval shifted
by 10 ms to account for both excitatory and inhibitory afferent
streams reaching cells in this population.

Firing rates of excited cells from each population are
analyzed to extract: coefficient of variation (CV), inter-spike
interval (ISI), and correlation coefficient distributions. These
results are presented in the form of boxplots, highlighting
the median, skewness, and outliers of each distribution to
validate the behavior of the network simulated on SpiNNaker.
These are computed using the electrophysiology analysis toolkit
(Elephant)2.

Independently of neural modeling accuracy validation, this
work analyzes the communication involved in the cerebellum
model. The neural and synaptic update execution times have
previously been documented (Rhodes et al., 2018), revealing
the need to balance the number of neurons per core (here,

2https://elephant.readthedocs.io
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64 neurons per core are used for all populations, except PCs
which use 1 neuron per core due to the large received peaks
of activity) and number of afferents for each of these neurons.
Analyzing the peak number of received multicast packets per
timestep for each core is a main focus of this work as it has
been shown to be the critical component when targeting real-
time execution (Rhodes et al., 2019). For this, input activity
is varied over multiple trials and the maximum number of
received packets per core is recorded. The maximum number
of packets per timestep for each core is then averaged for each
population. This allows us to identify the populations, which
require more resources to achieve real-time execution in the
entire system. Mean number and the standard deviation for two
types of stimulus are reported: Poisson-distributed spike trains
and periodic, highly synchronized spikes as those originally used
in simulation by Casali et al. (2019).

Finally, the mapping of cerebellum populations onto
SpiNNaker is presented alongside routing information. These
plots display the flow of spike packets through the network on the
machine, highlighting critical paths that may become overloaded.

4. RESULTS

The results presented here consist of two parts: neural
spiking activity validation and analysis of communication
requirements. The former involves small- and large-scale
experiments simulated on SpiNNaker and NEST, with the
activity produced by NEST treated as a baseline for comparison.
The latter focuses on quantifying the peak number of packets
produced by the validated model and the subsequent impact
on individual processing cores and routers on SpiNNaker.
These elements will form the basis for future optimizations to
allow the hard real-time simulation of large-scale, biophysically
constrained cerebellar circuits on neuromorphic systems.

4.1. Single Cell Validation
Before simulating the large-scale cerebellum model, behavior
of individual cells in isolation is first validated. This approach
offers insights into which cell types require most effort to ensure
accurate dynamics, and increases confidence that the large-scale
simulation will produce comparable results to the HPC baseline
simulated with NEST (Eppler et al., 2009). The validation covers
the two extremes experienced by the neural solvers in terms
of the sub-threshold membrane potential rate of change. The
membrane potential can either evolve “slowly,” when the input
activity is “low,” or it can evolve “rapidly,” when the input activity
is “high” (Albada et al., 2018). Cell types in the cerebellar model
differ both in terms of their parameters and the number of
afferents they receive, and are thus individually tested.

4.1.1. Single Spike Stimulation
Validation of the effect of a single spike on all cell types in the
model is performed. A source population produces a spike that
arrives at the target cell at t = 10 ms. Target populations are
created with cell parameters as defined in section 2.2 and their
number is equal to the number of projections in the large-scale
network. The reason for this choice is to validate the effects of

FIGURE 2 | Side-by-side membrane potential traces under two experimental

conditions. The experiment tests each cell type under the influence of a single

spike from each possible afferent projection, a subset of which is presented

here. The effect of the single spike is also scaled by the empirically recorded

maximum contribution of each individual projection to single post-synaptic

neurons (labeled here as “max. spiking input”).

single spikes weighted by each projection. The transient response
to the incoming spike of the sub-threshold membrane potential
of individual cells is presented in Figure 2, while the correct
integration of the cell’s injected current is captured by reporting
the lead or lag of the 100th spike between SpiNNaker and the
baseline simulation in NEST.

Figure 2 shows the effect of a single spike using the prescribed
weight of the connection (left) and a scaled weight equivalent to
the expected peak activity in the large-scale model (right). From
the 16 total projections in the model, 5 are shown here including
those targeting GrCs, as correct simulation of GrCs is observed
to be crucial for that of the other neural populations as they are
the most numerous and project widely throughout the model.
GoCs heavily influence the activity of GrCs, so those connections
which most impact (highest relative weight) GoCs are also
presented (Glom-GoC and aa-GoC). Finally, the connection with
the highest associated weight (aa-PC) is also included here to
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validate its correct behavior. The sub-threshold voltage traces
match the baseline for each of the cell types presented. The tested
cells produce their first spike within the same timestep as the
baseline solution.

In addition to investigating the sub-threshold behavior of
neurons, the relative lead or lag of the 100th spike is computed.
All cells can produce spikes that are within 0.1 ms of the
baseline with the exception of all tests for GrC and GoC, which
do not produce 100 spikes in this experiment. In the single
spike experiment, the SpiNNaker solution produces a leading
spike compared to baseline for PC-DCNC by 0.1 ms, with
all other cases here producing the same spike times (0 ms of
lead/lag). In the maximum spiking input experiment, SpiNNaker
matches baseline for all projections. Thus, SpiNNaker is shown to
model accurately the neuronal response to individual spikes and
injected currents.

4.1.2. Representative Spike Stimulation
This test aims to validate the behavior of individual cell types
using representative stimulation, with realistic input spike rates
and synaptic configurations. A single cell for each type is
reconstructed using the peak fan-in values from each of its
afferent connections. These cells are then driven with Poisson-
distributed spike trains firing at prescribed rates, as detailed in
Table 5. The simplest example of this setup is GrC: a single GrC
is created along with 2 afferent spike sources, Glom and GoC.
GrCs receive up to 4 afferent synapses fromGlom-GrC and GoC-
GrC, thus both spike sources consist of 4 non-biological neurons
each. All neurons in the Glom source fire at 144.38 Hz, while all
neurons in the GoC source fire at 135.13 Hz. The most extreme
example of this setup is PC, which receives 20 synapses from
SC-PC, 20 from BC-PC, 278 from aa-PC, and 29,196 from pf-
PC. These numbers are adjusted in all cases (not just for PC) so
that any test with more than 100 source neurons is reduced to
a tenth and has its firing rate increased by 10 times, i.e., pf-PC
source has 2,919 GrCs firing at 895.9 Hz. Table 4 contains the
full firing rates used for the two experimental scenarios: the “low”
and “high” firing rate scenarios corresponding to the population
rates before and during stimulation. All weights and delays used
in experiments are as defined in Table 3.

For the low activity case, SpiNNaker produces comparable
firing rates to the baseline, matching precisely for GrC, SC,
BC, and PC. The other cell types produce more spikes when
simulating on SpiNNaker, differing by 0.1 Hz for DCNC and by
0.3Hz for GoC. For the high activity case, SpiNNakermatches the
baseline results precisely in the case of DCNC, SC, and BC, and
being within 0.2 Hz for GrC and GoC. PC firing is 1.2 Hz higher.

Figure 3 compares traces of membrane potential, and
excitatory and inhibitory synaptic conductance for a tested GrC
with a GrC embedded in the large-scale model. The side-by-side
comparison reveals that the test conditions are representative
for the range of inputs encountered in the large-scale model.
On the left, the two simulations match well, as evidenced by
Table 5. On the right, the mismatch between the simulations is
accentuated because, in the large-scale model, small deviations
from a reference point are propagated to other populations,
which will amplify differences. Thus, the figure highlights the

error introduced by the GrC-GoC loop influencing the selected
GrC through the inhibitory conductance trace. Slight variations
in the input spikes are visible in the full model, as seen in
the inhibitory synaptic conductance (bottom right) panel of
Figure 3. This depicts inputs to a granule cell from the Golgi
population, with variations in Golgi activity introduced relative
to NEST due to the combination of SpiNNaker’s fixed point
arithmetic, and the multiple input connections made to and
within the Golgi population.

In summary, this experiment demonstrates that SpiNNaker
produces comparable results to those produced by NEST when
confronted with representative “low” and “high” activity. The
firing rates produced by the simulators are within 1.2 Hz of
each other in the worst-case scenario. The synaptic contribution
for GrCs is accurately captured by SpiNNaker, however errors
caused by the choice of arithmetic can still be seen in the
computation of sub-threshold membrane potential, over time
leading to divergent behavior.

4.2. Large-Scale Model Validation
The cerebellum model was simulated on SpiNNaker and NEST
using the same model description in PyNN, and same Poisson-
distributed spiking activity as input. The spiking activity of all
cells in the model is presented in Figure 4, in the form of
raster plots, as well as a peristimulus time histogram binning
the activity in each timestep (0.1 ms). Figure 4, provides a side-
by-side comparison of the spiking network activity produced by
each of the two simulators. Both simulations show the large input
burst, lasting from 300 to 350 ms originating at Glom, giving
rise to a peak in firing rate in all other populations with the
exception of DCNC. The initial increase in firing rate is followed
by a sharp decrease following GoC activation, further succeeded
by a rebound in activity. DCNCs are fully silenced throughout
stimulation, while post-stimulation there is a pause in the activity
of GoC, SC, BC, and PC.

The neural population responses before, during, and after
stimulation for the individual simulations shown in Figure 4

are summarized in Table 5. As described in section 3.3, the
values reported in the table are firing rate averages of either
excited or inhibited cells. Table 5, also includes the absolute
number of excited (ESpiNNaker and ENEST) or inhibited (ISpiNNaker
and INEST) cells, as well as their relative proportion of the
entire population.

• Glom had a mean firing rate of 0.92 Hz before, 0.99 Hz
after stimulation, and 140 Hz during burst stimulation, closely
aligned to the values reported by Casali et al. (2019). The
small difference to the values reported there are because a
different set of spikes are generated for the work presented
here. Both the SpiNNaker and NEST simulations are driven
using identical spike trains.

• GrCs spiked at an average of 2 Hz at rest and 89 Hz
during stimulation. Both the SpiNNaker and NEST simulation
produced over 18% of excited GrCs. The two simulations differ
by 144 cells being classified as excited (0.16% of all GrCs).

• GoCs spiked at an average of 18 Hz at rest and 138 Hz
during stimulation on SpiNNaker. The SpiNNaker and NEST
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TABLE 4 | Single cell, realistic spikes, and connectivity test parameters and output firing rates.

Cell type Afferent Input rates (Hz per neuron) Low output rates (Hz) High output rates (Hz)

Conn. name No. of synapses Conn. type Low High SpiNNaker NEST SpiNNaker NEST

GrC
Glom–GrC 4 E 0.92 144.38

1.2 1.2 1.0 0.8
GoC–GrC 4 I 18.63 135.13

GoC

Glom–GoC 11 E 9.20 1443.80

153.4 153.1 475.7 475.5
aa–GoC 40 E 20.50 895.90

pf–GoC 160 E 20.50 895.90

GoC–GoC 50 I 18.63 135.13

SC
pf–SC 137 E 20.50 895.90

0.2 0.2 47.3 47.3
SC–SC 11 I 31.68 220.75

BC
pf–BC 134 E 20.50 895.90

0.1 0.1 27.2 27.1
BC–BC 12 I 27.93 193.04

PC

aa–PC 27 E 20.50 895.90

113.3 113.3 951.6 949.4
pf–PC 2919 E 20.50 895.90

SC–PC 20 I 31.68 220.75

BC–PC 20 I 27.93 193.04

DCNC
Glom–DCNC 14 E 0.92 144.38

15.8 15.7 0.0 0.0
PC–DCNC 30 I 47.68 381.82

Cell types are tested with representative stimulation under two experimental conditions: “low” and “high” input activity. In each experiment, the input conditions are described, as well

as the output firing rates produces by SpiNNaker and NEST (baseline).

simulations differ here by 3 Hz and 4 excited cells (1.8% of all
GoCs).

• SCs spiked at an average of 32 Hz at rest and 223 Hz during
stimulation. The SpiNNaker and NEST simulations differ here
by 3.1 Hz and 2 excited cells (0.3% of all SCs).

• BCs spiked at an average of 28 Hz at rest and 193 Hz
during stimulation. SpiNNaker sees an increase of just 0.4 Hz
compared to NEST and 2 excited cells (0.3% of all BCs).

• PCs spiked at an average of 49 Hz at rest and 388 Hz during
stimulation on SpiNNaker, but 381 Hz on average on NEST.
This is a difference of 7 Hz with 1 more excited cell for
SpiNNaker (1.5% of all PCs).

• DCNCs spiked at an average of 17 Hz at rest and 0 Hz during
stimulation. Both SpiNNaker and NEST produce the same
number of inhibited cells here, with 100% of DCNCs silent
during stimulation.

Spiking activity of the large-scale model simulations on the
two platforms is further validated by comparing distributions
of firing rates, inter-spike intervals, coefficients of variation,
and correlation coefficients of individual neurons (Figure 5).
An ideal correlation coefficient would have a value of 1 for
each neuron pair. The correlation coefficients show all cell
types except SC and BC have a median over 0.8, suggesting
SpiNNaker and NEST produce comparable spike trains, in
agreement with the ISI and CV comparisons. The spike trains
produced by the two simulations are unlikely to match precisely
due to differences between the simulation platforms such as
the choice of arithmetic precision and solver. The differences
in sub-threshold membrane potential computation identified in
section 4.1.2 are amplified here due to the interactions between
different cell types. SpiNNaker generally produces higher firing

rates compared to NEST due to a combination of arithmetic and
algorithmic error, e.g., error arising from the choice of fixed-point
arithmetic and from the solver implementation.

4.3. Maximum Spike Packets Received per
Timestep
Computing neuron updates on SpiNNaker constitutes a fixed
overhead in the simulation (Rhodes et al., 2019). However, the
CPU time spent processing synaptic events depends on the
number of spikes arriving at a core in a particular timestep. To
meet real-time processing requirements, the worst case scenario
for individual timesteps must be understood. The maximum
number of packets received in a timestep per core and per cell
type throughout the simulation is thus investigated.

This section examines the effect of varying the amount of
stimulation by controlling two parameters: the firing rate of
selected glomeruli (fpeak), and the stimulation radius, which
controls the number of selected glomeruli. When one of the
parameters is varied, the other is fixed at the default value as
defined in section 2.2 (by default, fpeak =150 Hz and stimulation
radius = 140 µm; see section 4.2).

The first parameter to be varied is fpeak, moving from
30 to 200 Hz in increments of 20 Hz. Figures 6A,B reveal
an approximately linear relationship between fpeak and the
maximum number of multicast packets received by cores in
a timestep. No change is seen in this peak activity when
periodically stimulating the model, due to the synchronized
activity of all stimulated cells (see section 3.1). This is expected
and demonstrates that the resultant peak number of spikes is
a direct consequence of the encoding of the stimulus and not
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FIGURE 3 | Single GrC behavior in “low” and “high” input conditions for SpiNNaker (solid) and NEST (dotted) simulations. (Left) Traces extracted from the single cell

experiment. (Right) Traces extracted from a single GrC embedded in the large-scale model where the pre-stimulation period corresponds to the “low” activity case,

and the stimulation period corresponds to the “high” activity case.

an artifact of the model construction such as resonance or
constructive interference.

The second parameter to be varied is the selection volume for
Gloms while maintaining an input firing rate of 150 Hz. The
stimulus radius is varied from 20 to 180 µm in increments of
20 µm. This sweep has the effect of experimenting with as few as
14 selected glomeruli (0.2% of total Gloms) and as many as 4,718
(66.7% of total Gloms).When the input is encoded using periodic
spikes, varying the stimulation radius increases the peak number
of packets received by cores (c.f. Figures 6B,D) with the 95th
percentile for GoC seeing over 40,000 packets in a single timestep.
Under Poisson stimulation, GoC is still the most affected, with
the 95th percentile now peaking at around 1,750 packets in a
single timestep (Figure 6C).

There is a clear correlation between populations receiving
afferent projections from GrC and very high numbers of packets
received per timestep. DCNC and GrC achieve similar peaks
when stimulated using Poisson-distributed spike trains (an
average peak of 36 packets is recorded for GrC and 70 recorded

for DCNC), but the difference increases when stimulated using
periodic input, with GrC trailing DCNC by a significant margin
(758 c.f. 2918 packets).

There is an increase of approximately 30× in the peak packet
count received in a timestep for this model when going from
Poisson to periodic stimulus for most populations: GoC, SC, BC,
and PC; DCNC see a 40× increase, while the least affected are
the GrC at 12×. Simultaneously, the peak conductance that PCs
receive in a single timestep jumps to∼20 µS c.f. 1.7 µS in default
conditions with Poisson stimulation. If the smallest weight a
PC neuron would have to process is 2e-5 µS (the conductance
transferred to the neuron by a single spike arriving on a pf-
PC connection) and this conductance would be represented as
a single bit, therefore to represent the peak conductance under
periodic stimulation 19.93 bits of precision would be required.

The number of packets received per core is significantly
affected by how neurons are organized on cores. Organizing
neurons on cores according to their spatial location reduces
the peak number of packets to be processed by each core
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FIGURE 4 | Spike raster and peristimulus time histogram (PSTH) comparison. (Left) SpiNNaker. (Right) NEST. The bin width used for the PSTH is 0.1 ms. The

highlighted area corresponds to the stimulation period for each cell type. NID, neuron ID.

by 41% compared to a random placement (averaging over all
populations in the model). This result is consistent with previous
modeling efforts that organized neurons in tiles according

to neuron position and connectivity (Igarashi et al., 2019).
Further details of the structure and positions of cells and their
connections in 3D space, and the impact of this organization
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TABLE 5 | Filtered firing rates for each population in a single experimental trial.

Population No. of cells No. of excited (or inhibited) cells Pre-stimulus (Hz) ±σ Stimulus (Hz) ±σ Post-stimulus (Hz) ±σ

Glom 7,073 ESpiNNaker: 3,107 (43.93%) 0.92 ± 1.8 144.38 ± 62.7 0.99 ± 1.2

ENEST : 3,107 (43.93%) 0.92 ± 1.8 144.38 ± 62.7 0.99 ± 1.2

GrC 88,158 ESpiNNaker: 16,086 (18.25%) 2.06 ± 2.7 89.59 ± 68.4 2.27 ± 2.0

ENEST : 16,230 (18.41%) 2.05 ± 2.8 89.59 ± 68.2 2.21 ± 2.0

GoC 219 ESpiNNaker: 115 (52.51%) 18.71 ± 10.3 138.09 ± 92.1 18.83 ± 9.6

ENEST : 119 (54.34%) 18.63 ± 10.1 135.13 ± 92.4 18.56 ± 9.6

SC 603 ESpiNNaker: 426 (70.65%) 31.94 ± 15.5 223.80 ± 82.1 31.62 ± 15.4

ENEST : 424 (70.32%) 31.68 ± 15.0 220.75 ± 80.3 31.25 ± 15.3

BC 603 ESpiNNaker: 413 (68.49%) 28.43 ± 14.1 193.46 ± 70.7 29.48 ± 14.8

ENEST : 411 (68.16%) 27.93 ± 14.0 193.04 ± 68.8 28.87 ± 14.6

PC 69 ESpiNNaker: 45 (65.22%) 49.60 ± 11.2 388.89 ± 149.9 51.31 ± 6.7

ENEST : 44 (63.77%) 47.68 ± 9.2 381.82 ± 142.6 50.32 ± 7.3

DCNC 12 ISpiNNaker : 12 (100.00%) 17.47 ± 1.6 0.00 ± 0.0 16.28 ± 1.0

INEST : 12 (100.00%) 17.74 ± 1.6 0.00 ± 0.0 16.54 ± 0.8

All populations except deep cerebellar nucleus cell (DCNC) report the firing rate for those neurons classified as excited for each of the simulators; DCNC only reports the firing rate for

those neurons classified as inhibited.

FIGURE 5 | (A) Firing rate, (B) inter-spike interval (ISI), (C) coefficient of variation (CV), and (D) correlation coefficient of the spike trains for each population’s neurons

simulated on SpiNNaker (boxplots on the left) and NEST (boxplots on the right). The correlation coefficient is computed over the stimulation period on binned spike

times with a bin width of 5 ms. Deep cerebellar nucleus cell (DCNC) is not included in the (A) excited firing rates and (D) correlation coefficient plots as it does not

produce any spikes during the stimulation period, which those plots cover. The (B) ISI and (C) CV cover the entire simulation.
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FIGURE 6 | Relationship between input firing rate and maximum number of packets received by each core in a timestep. Input activity is controlled in two ways: a

fixed set of Glomeruli is activated at a variety of firing rates (fpeak )—(A,B)—or a variable set of glomeruli (controlled by the size of the stimulus selection radius) is

activated at a fixed rate (C,D). Two input stimulus encodings are used: Poisson input (left) and periodic input (right). The first row compares the maximum number of

spikes received in a timestep for all other population in the model when varying the input firing for a fixed subset of Gloms, while the second row compares the same

metric when the a fixed firing rate is maintained for a variable subset of Gloms.

on the simulations performed on SpiNNaker are available in
Supplementary Material (section 3).

Rhodes et al. (2019) saw empirically that using a paradigm
where neuron and synapse processing is segregated onto different
cores would allow the synapse cores to process ∼20 packets in a
timestep to maintain the real time requirement. Assuming that
a similar technique could be employed here, populations such
as GoC would require 50 synapse cores for each neuron core
(currently containing 64 neurons) to process the 95th percentile
peak number of packets, while PCwould require 40 synapse cores
attached to each neuron core (currently containing 1 neuron).

Since SpiNNaker has a maximum of 18 cores per chip, this
scaling approach will not be sufficient for GoC and PC. An
extension will have to be implemented for this paradigm to
function over multiple chips to allow for the activity levels seen
in the cerebellum model.

Simply looking at the number of packets arriving at
each core might not be sufficient to design an efficient
software organization for cerebellar circuits. To extract optimal
performance out of the on-chip DMA engines, cores which
spend most of their time processing spiking activity will benefit
from being placed on different chips from each other so as to
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prevent DMA contention (Rhodes et al., 2018). The following
section highlights the current placement of populations and their
peak DMA use, as well as the effect of placement on routing
and communication.

4.4. Mapping the Cerebellum Onto
SpiNNaker
All models have to be mapped onto SpiNNaker for simulation.
Here, “mapping” is short-hand for the processes of partitioning,
placing, and routing where populations are split into
core-manageable sub-populations, which are then loaded
to specific machine locations (section 2.1). These sub-
populations communicate with each other as defined by
the connectivity of the model, thus routers are set up to
facilitate this communication. Designing a mapping from a 3D
reconstruction of the cerebellum to the 2D surface of SpiNNaker
is a challenge. Four approaches to perform this mapping are
explored in Supplementary Material (section 3). The approach
taking into account the position of cells in the volume both
decreases the peak number of packets to be processed by
individual cores while simultaneously increasing the efficiency
of DMA transfers.

This section investigates (1) how neuronal populations are
represented on the SpiNNaker machine and (2) how the spike
traffic flows within the communication network. Figure 7 is
divided into two halves: with the left, showing results for
experiments driven with Poisson-distributed spikes, and the
right, containing results for experiments driven with periodic
stimuli (see section 3.1, for stimulus description).

Results from simulating the cerebellum model with identical
placements are presented with Poisson (Figure 7A) and
periodic (Figure 7B) stimulus. SpiNNaker routers are
capable of processing all of the packets produced by the
model driven with Poisson-distributed spikes, but dropped
over 1,500 packets in some cases due to the synchronized
arrival of packets (Figures 7C,D)—all dropped packets were
subsequently reinjected into the network, however with no
guarantee they will arrive within the same timestep. Neuronal
populations simulated on chips whose routers drop packets are
Glom and GrC.

SpiNNaker Routers process packets differently based on their
source. Packets produced by a core on the current chip are
defined as “local” from the perspective of that chip’s router,
while packets produced by a core on a different chip to the
router are defined as “external,” regardless of the destination of
the packet. Thus, it is possible to identify cores that produce
many spikes, as well as routers which have to handle large
numbers of packets produced elsewhere. The Poisson-driven
model has a smaller peak of external packets (Figures 7E,F),
however the relative ratio is similar between the two experimental
scenarios. The increase in the upper bound of total external
packets can be explained by (1) the increased activity of GrC
producingmore spikes—the increase in spikes produced is visible
when looking at the total local packet count (Figures 7G,H)—
and (2) the reinjected packets are counted once again as their
respective type. Taking Figures 7A,E,G together reinforces the

view that populations downstream of GrC, namely GoC, SC,
BC, PC, are the main consumers of packets in the network
and will require independent consideration to maximize model
execution speed.

In addition to router-related statistics and peak numbers
of packets received in a timestep, it is important to identify
where and how information is transferred on each chip. Synaptic
information is stored in chip-local, large and slow memory
(SDRAM), and is transferred into core-local, small, and fast
memory (DTCM) for processing. This transfer is performed
throughDMAs to enable the processor to continue working while
data are transferred. The peak number of DMAs in a timestep
in each scenario is presented in Figures 7I,J, and is consistent
with the cores receiving the most packets in a timestep (not
shown in the figure). The most affected cores here are those
responsible for simulating SC, BC, and PC. This can lead to
contention at a chips SDRAM controller, if chips have many
cores issuing DMAs simultaneously (Rhodes et al., 2018). A
future implementationmay therefore benefit from preventing co-
placement of neural populations that will issue large numbers of
DMAs on the same chip.

The amortized cost of processing a batch of synaptic events
is lower than processing them individually (Rhodes et al., 2018).
It is therefore desirable to minimize the number of individual
DMAs, and increase the amount of synaptic data transferred,
thus favoring batch processing (Figures 7K,L). To this end, spike
processing should be modified to prioritize neuron processing,
followed by a period of synaptic processing, as opposed to
the interleaved approach employed here enforcing a form of
interrupt coalescing. Further optimization will seek to increase
the length of synaptic rows, as this has been shown to increase the
efficiency of individual DMAs. Practically, this would be achieved
by increasing the number of neurons per core and ensuring
neurons on a core share as many common afferents as possible.

5. DISCUSSION

This work demonstrates the feasibility for large-scale, biologically
plausible cerebellum simulations on neuromorphic hardware.
The 3 components presented in section 2.1—programmable
processing cores, routers exchanging information usingmulticast
packets, and large shared memory—are the elements that make
SpiNNaker neuromorphic platform ideally suited for simulating
the cerebellum model presented in section 2.2. The cerebellum’s
large number of afferent synapses per neuron can be handled
by the SDRAM present on every chip, a capability shared with
few other neuromorphic platforms; its activity can efficiently
be routed to the many target cells required to receive it; and
the effect of the model’s spiking activity on individual neurons
can be modeled using efficient fixed point arithmetic on the
programmable processing cores.

Numerical modeling was performed using fixed-point
arithmetic representative of typical neuromorphic systems.
However, to ensure accuracy when integrating neuronal
dynamics, a sub-cycling technique was employed, together with
synaptic weight normalization to avoid quantization errors.
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FIGURE 7 | Population placement and statistics on three-board machines. The Cerebellum model requires ∼1,583 cores for the current number of neurons per core

(101 chips spread over three boards). For identical partitioning and placements with Poisson (A) and periodic (B) stimuli (red outline delimits the full extent of chips on

the three-board system), the figure shows number of packets the routers dropped (C,D), total number of external packets (E,F), total number of local packets (G,H),

the maximum number of direct memory accesses (DMAs) in a timestep (I,J), and the maximum number of processing pipeline restarts (K,L). White squares within the

3-machine system used here correspond either to cores not active during the current simulation or cores that are permanently deactivated due to manufacture defects.

Additionally, it was found that representing model weights
required at least 16 bits of precision when using fixed point
arithmetic to produce comparable results to a baseline executed
on the NEST simulator. Single cell experiments showed that
SpiNNaker matches NEST in terms of sub-threshold voltage,
precise spike times of neurons, and firing rates. Simulating
experiments involving single cells with single and model-
representative spiking input offered insights into modeling
accuracy for individual cell types, which would be difficult to
analyze in the large-scale model. The large-scale model was
then translated from pyNEST into PyNN and simulated using
sPyNNaker and NEST. Simulations show close agreement
in terms of average firings rates before, during, and after
stimulation, demonstrating that neuromorphic hardware is
capable of simulating cerebellar neuronal dynamics and a neural
circuit incorporating fan-ins of 28,000 synapses per Purkinje cell.

Future implementations of a large-scale cerebellum model
may use more detailed models of point or compartimentalized
neurons for increased biological plausibility (Masoli and
D’Angelo, 2017; Teeter et al., 2018; Geminiani et al., 2019).
Special consideration should be taken for such models,
particularly with regard to the accuracy and speed of solving
of more complex equations (Hopkins and Furber, 2015). While
existing neuromorphic platforms may be able to cope with
added complexity, they have been designed to accelerate mainly

simplified neurons and synapses, and thusmay not be the optimal
platforms for more complex simulations. The next generations of
neuromorphic devices, such as SpiNNaker2 (Mayr et al., 2019;
Clark et al., 2020), may be better suited for the simulation of
complex neuron models through the presence of floating point
and transcendental function hardware acceleration.

Following model validation, the effect of stimulus encoding
and magnitude was explored to extract requirements for future
performance optimizations of model execution on SpiNNaker.
This exploration revealed that the appropriate mapping of cells
onto processing cores according to their spatial organization
could reduce the peak number of packets received per core
by 41% when averaged over all the populations in the model.
Such reductions in peak communication is noteworthy as the
combination of the large number of granule cells and realistic
numbers of afferents per cell resulted in communication peaks
20–50× larger than previously established empirical real-time
computational ability of SpiNNaker. Thus, analyzing the number
of packets received by each processing core revealed the need
for a different simulation paradigm with many processing cores
spanning multiple chips dedicated solely to processing spiking
activity. The time taken to simulate the model scales with its
activity, rather than its size.

Future work will target the design and implementation of a
software solution to allow simulation of the cerebellar circuit
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in real time based on the requirements gathered here. The
ability to perform real-time cerebellum simulations will benefit
both the neuroscience and robotics communities. Extended
duration simulations will offer insights into the long-term
operation of both the cerebellum and other neural circuits,
in the future enabling simulation-based exploration of the
neurophysiology of individual brain regions. The ability to co-
simulate additional brains regions in real time, such as the
cortex (Rhodes et al., 2019), will also enable research into the
interaction between brain regions, e.g., the cortico-cerebellar
loop. Furthermore, real-time neural simulation able to learn in
an online fashion opens the door to exploration of brain-inspired
circuits when embodied in robots, both as functional robotic
controllers, and also as a path to study pathologies related to
motor control.
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