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Abstract
This paper presents the design of a multi-agent framework that aids engineers in the adaptation of modular production
systems. The framework includes general implementations of agents and other software components for self-learning
and adaptation, sensor data analysis, system modelling and simulation, as well as human-computer interaction. During
an adaptation process, operators make changes to the production system, in order to increase capacity or manufacture a
product variant. These changes are automatically captured and evaluated by the framework, building an experience base of
adjustments that is then used to infer adaptation knowledge. The architecture of the framework consists of agents divided in
two layers: the agents in the lower layer are associated with individual production modules, whereas the agents in the higher
layer are associated with the entire production line. Modelling, learning, and adaptations can be performed at both levels,
using a semantic model to specify the structure and capabilities of the production system. An evaluation of a prototype
implementation has been conducted on an industrial assembly system. The results indicate that the use of the framework in
a typical adaptation process provides a significant reduction in time and resources required.

Keywords Self-learning · Adaptation · Agents · Assembly · Architecture

1 Introduction

To stay competitive, today’s manufacturing enterprises must
respond quickly to ever-changing requirements of volatile
global and local markets. These requirements are dictated
by more demanding customers and the development of
advanced technology. As the number of product variants
increases due to mass customisation and product life cycles
become shorter, manufacturing systems must be designed
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to be highly reconfigurable and adaptive in order to handle
product evolution and variety. Reusability of equipment
can help to exploit unused potential and plays a major
role in the provision of sustainable solutions. However,
adapting existing equipment for new uses may require a
considerable amount of knowledge and skills, integration
efforts and appropriate planning. Due to the uncertainty
regarding these elements and the lack of documentation
about the capabilities and life cycle of existing systems,
adaptation and reuse are not always feasible. For these
reasons and because of general intricacies of adaptation
processes themselves, manufacturing firms often take the
decision to design new production systems, rather than
adapting existing ones. This is the case, in particular, with
regard to assembly systems [1, 2].

This paper presents the design of FRAME (Fast Recon-
figuration in an Adaptive Manufacturing Environment), a
self-learning framework for capturing adaptation knowl-
edge and supporting engineers throughout an adaptation
process. The framework consists of a multi-agent system
whose agents can operate either at a local or global level,
that is, by gathering sensor data or learning how to adapt,
respectively, a single module or station, or the entire pro-
duction line. The framework is not tailored to a particular
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production system, but rather it can be customised for spe-
cific systems and it provides the tools necessary for doing
that. The specialisation for one production system involves
the definition of a semantic model describing the system
in terms of structure and capabilities. One important objec-
tive of our work is minimising the software development
required to deploy the multi-agent system on a new pro-
duction system. The effort is, instead, mostly put on the
software configuration and modelling side. This research
is in line with the goals of the fourth industrial revolu-
tion (Industry 4.0) and the vision of smart factories [3],
which promote higher levels of automation, intelligence and
decentralised control in manufacturing systems.

The automatic generation of knowledge in FRAME
offers significant advantages over manual approaches to
the construction of a knowledge base for adaptive manu-
facturing systems. Firstly, since the generated knowledge
is built automatically from machine data, there is no need
to (1) elicit it from the domain experts (i.e. mechanical
and manufacturing engineers, system integrators, shop floor
operators) and (2) find a suitable representation. Both the
elicitation and representation tasks are problematic because
they produce results that depend on the ability of the
knowledge engineers in capturing and representing useful
knowledge. Secondly, although the generated knowledge is
built from specific cases, its applicability is not limited only
to those cases. Indeed, it can be used in future contexts and
scenarios similar to those encountered in the past. FRAME
uses the ObjectLogic language [4] for defining and querying
production system models, whereas XML is used for agent
communication and for serialising events, machine states
and experience instances. The learning technique is based
on a k-nearest neighbour classification algorithm, which
represents adaptation contexts as points in a multidimen-
sional space.

The rest of the paper is organised as follows. Section 2
analyses related research. Section 3 presents the design
of the FRAME architecture. Section 4 introduces the self-
learning technique implemented in FRAME. Section 5 des-
cribes the experiment and evaluation conducted. Section 6
draws some conclusions.

2 Background and related work

Despite the development of self-organising intelligent sys-
tems that are able to perform individual logical adaptations
autonomously, there is not yet a full solution to support
an entire adaptation process from start to finish. This pro-
cess is often largely human-driven, primarily based on the
experience of system integrators. While there are meth-
ods and tools for solving specific problems, these methods
and tools are not integrated into a general framework that

can be used in a wide range of scenarios. An adaptation
framework comprising information models and automated
learning mechanisms to capture adaptation knowledge is
required in order to facilitate knowledge sharing and support
decision-making.

Related work in this direction includes a capability-based
methodology for adaptation planning, with the objective of
developing tools for the rapid reconfiguration of produc-
tion systems [1]. However, this methodology has only been
applied in an academic research environment and not yet
in an industrial context. Also, the computational processes
associated with this ontological approach are not inves-
tigated. Research on the computational aspects includes
experience-based learning techniques, using classification
algorithms, for the adaptation of assembly systems [5].
Adaptation of plug and produce systems is discussed by [6].
In plug and produce systems, identification and configu-
ration of new devices is performed with minimal human
intervention. One particular objective of automated learning
in intelligent manufacturing systems is accelerating the pro-
duction ramp-up phase, as investigated by [7]. These works
do not describe the design of the whole software system,
though, or how to create a framework of general applica-
tion, which is one of the aims of this paper. A reinforcement
learning approach, guided by human experts, for the produc-
tion ramp-up problem is presented by [8]. The results of this
last work indicate, as anticipated, that an exploration strat-
egy guided by a human operator is more efficient than one
that is purely algorithmic.

2.1 Manufacturing paradigms enabling system
changes

Different manufacturing paradigms, together with physi-
cal and logical enablers, have been introduced to facilitate
system changes [9]. The paradigms include flexible and
reconfigurable manufacturing [10, 11], holonic and agent-
based manufacturing (see, for example, the ADACOR archi-
tecture by [12]) and evolvable assembly systems [13]. A
recent review of reconfigurable manufacturing systems is
conducted by [14]. Reviews of agent-based manufactur-
ing are presented by [15] and [16]. The contributions of
holonic manufacturing to Industry 4.0 are examined by [17].
Although agent-based and holonic manufacturing provide
clear benefits, in particular in terms of flexibility and robust-
ness, there are still barriers to their widespread industrial
adoption. The fact that there is no guarantee on the opera-
tional performance of agent-based solutions prevents them
from being applied to real-time control problems and is an
obstacle to their acceptance by the management of compa-
nies.

System adaptations can be made to increase production,
improve a production process, or produce a product variant.
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They can be either physical or logical, each having different
objectives. Physical adaptations are aimed at increasing
production capacity or producing a product variant, and
include operations such as the addition or modification
of modules or machines. Logical adaptations are aimed
at improving the utilisation of available resources, do
not require hardware alterations and involve changing
parameters or reprogramming to implement, for instance, a
different scheduling or routing policy.

In particular, logical adaptations can be determined and
applied autonomously by intelligent agents. Multi-agent
systems exhibit many self-* capabilities and self-organising
multi-agent mechatronic systems have been developed in
successful academic and industrial projects [18], with typ-
ical applications including manufacturing execution sys-
tems [19, 20], routing and scheduling [21]. Self-organising
behaviour is also characteristic of some natural systems,
which influenced the development of new computational
techniques. A recent application of multi-agent systems is,
for example, distributed diagnosis with bio-inspired algo-
rithms [22]. A holonic manufacturing execution system with
control mechanisms inspired by natural systems is presented
by [23]. The integration of a centralised scheduling system
based on constraint programming with a holonic manu-
facturing execution system is described by [24]. Hybrid
solutions like this one are worthwhile investigating because
they benefit from the strengths of both approaches. The
holonic systems of [23] and [24], along with many oth-
ers, implement the popular reference architecture PROSA
(see [25] for a historical perspective). It would be inter-
esting to compare different architectures or even different
implementations of the same reference architecture, defin-
ing criteria for their evaluation. Also, there is a need for
agent-based design patterns, similarly to object-oriented
design patterns.

Another concept related to distributed intelligence is
product-driven automation. Two heterarchical architectures
for intelligent products are presented by [26]. Product
intelligence seeks to give customers greater control over the
processing of orders [27].

2.2 Agents and cyber-physical systems

Agent-based manufacturing systems have several distinctive
characteristics in common with cyber-physical systems
(CPS), as they are both intelligent and distributed systems
offering high levels of adaptability through the cooperation
of interconnected entities. As a matter of fact, a multi-agent
system can be used to implement the cyber part of a CPS.
A survey of the adoption of agents in industrial CPS is
conducted by [18].

According to the US National Science Foundation, CPS
are “engineered systems that are built from, and depend

upon, the seamless integration of computation and physical
components”. Although systems combining physical and
computational elements have long been in existence, the
design of one type of elements has normally met only
some minimum interface requirements and not taken full
advantage of the capabilities of the other type. To integrate
cyber and physical systems, the approaches of cyberizing
the physical and physicalizing the cyber are identified
by [28]. Some research work in this direction leverages
the multi-agent paradigm. The integrated development of
multi-agent PLC-based control systems using IEC 61131-
3 is discussed by [29]. The combination of mechatronic
production systems and multi-agent systems is investigated
by [30]. What is missing in many works is a general
methodology for designing agent-based control systems,
which would facilitate new developments and applications.
A model-based methodology (DACS) to enable an ordinary
engineer to design an agent-based control system is
described by [31]. More research in this direction is required
to promote the adoption of multi-agent systems in CPS.

3 Architectural design

FRAME consists of a number of distributed agents and
auxiliary software components running on PCs, PLCs or
industrial PCs. The functionalities implemented include
self-learning and adaptation, sensor data analysis, system
modelling and simulation, as well as human-computer inter-
action. The framework provides general implementations
of the agents, in the sense that they are not specialised
for one industrial application but, instead, offer functions
that are useful to address typical automation problems.
The use of the agents for a particular application requires
the specification of application-dependent details, including
communication protocols, system architecture and capa-
bilities, production process, sensor data and configuration
parameters, performance requirements. FRAME agents can
be deployed on individual modules or stations, or on the
entire system.

Sensor data are used to evaluate the performance of
the production system and how it responds to changes.
These data are used to calculate a KPI (Key Performance
Indicator), which can be defined in the framework itself as
a function of finished product quality or throughput. For
example, the performance could be measured by the cycle
time. In this case, sensor data should include the time when
a part is first acted upon and the time when the finished
product is complete. The physical sensors that produce
these data could be photoelectric sensors using a beam of
light to detect the presence of parts on a conveyor belt at
the beginning and end of the production process. Another
example is vision systems with cameras and inspection
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software for feature detection. There are no requirements
for the physical sensors that can be used with FRAME,
provided that the associated sensor data are defined in a
semantic model and their semantics is shared by the agents.

From a software development perspective, FRAME is
designed in an object-oriented fashion, with agents imple-
mented by objects of classes defined by the framework. The
specialisation of the agents for one application involves the
derivation of new classes from those offered by the frame-
work. In addition to the main agent classes, the framework
contains other classes representing entities such hardware
resources, agent capabilities, production objectives, sensor
data, communication messages, experience and adaptation
knowledge. All these classes can be reused, either by inher-
itance or composition, in different specialised agents.

The communication infrastructure of the framework
provides two communication mechanisms between agents:
synchronous and asynchronous. The former is used to
ask agents for information or to request the execution
of operations. This mechanism is implemented using web
services. The latter is used to notify agents when events
occur. This mechanism is implemented using a publish-
subscribe pattern.

3.1 Agent types and roles

Figure 1 gives an overview of the framework architecture.
The various components and their relationships will be
explained in the next subsections. The following types of
agents are identified:

– ER agent: the Experience Recognition agent captures
the adjustments being made and stores them in an
experience base, which contains all the changes and
their impact on performance (Section 3.2).

– LEARN agent: the self-learning agent offers the self-
learning function. This is applied to the machine state
received from the ADAPT agent and the experience
base (Section 3.3).

– ADAPT agent: the adaptation agent captures the current
machine state and queries the LEARN agent for
applicable adjustments (Section 3.3).

– HMI agent: the human-machine interface agent pro-
vides an intelligent interface between the user (the
engineer or system integrator making changes) and the
agent framework. It presents the user with a ranked
list of adjustments produced by the ADAPT agent and
guides the user through an adaptation (Sections 3.3
and 3.4).

Multiple instances of an agent type can be created and
deployed on different physical components or layers, as
discussed in Section 3.5.

3.2 Experience recognition

Experience recognition (ER) is the process of recording
the adjustments being made to the machine and evaluating
their impact. An adaptation usually involves a number of
adjustments. By adjustment we mean an atomic change that
cannot be broken down into separate changes. Examples
of adjustments are changing pick-and-place points, cam
angles, speed, pressure, grippers or pallet geometry, or
even using different part styles. Some adjustments can be
performed through software (e.g. pick-and-place points),
while others require physical operations. In the former
case, the adjustments are captured by the framework
automatically. In the latter case, they must be entered
manually. The effect of an adjustment must be measurable
by the KPI, in the sense that a difference in performance
should be reflected in the KPI value. If this is not the case,
the self-learning technique cannot be applied.

The ER process is triggered by adjustment events.
Events are structured data defined in the semantic model
(Section 3.6) and generated by the machine or by agents,
and transmitted in XML format using a publish-subscribe
pattern. The ER agent subscribes to adjustments events,
i.e. it listens to this type of events. Figure 2 shows an
example of adjustment event serialised into XML. The
various FrameKeyModel elements uniquely identify the
parameter being modified by referring to entities defined
in the semantic model. Experience can be created in two
different ways: an experience instance can be created for
each individual adjustment or for an adjustment session. In
the former case, when the ER agent receives an adjustment
event it queries the event base, a deductive and object
oriented data store of all the generated events, for the
state events generated by the machine before and after
the adjustment. These events are used to construct a
representation of the state of the machine before and after
the adjustment. A machine state is represented by a list of
attribute-value pairs in the experience base. Figure 3 shows
an example of state event serialised into XML. The ER
agent then calculates the KPI on both states and creates an
experience instance with this information in the experience
base. In the latter case (Fig. 4), a “start adjustment session”
event signals that a series of adjustments is going to take
place. When the ER agent receives this event, it captures
the state of the machine at that point and calculates the
KPI, then it records and groups all the adjustment events
generated until it receives an “end adjustment session”
event. At that point, the ER agent captures the state of the
machine again, calculates the KPI and creates an experience
instance with these two KPI values. In both cases, the
representation of a machine state at a certain point in
time is constructed by querying the event base for the
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Fig. 1 Overview of FRAME architecture (solid lines indicate flow of data, dotted lines indicate dependencies)

latest state events generated up to that point. The KPI
is calculated on such representation. After an adjustment
occurs, it is normally necessary to wait for some parts to
be manufactured before capturing the state of the machine
again, calculating the KPI on the new state and thus
measuring the impact of the adjustment. Figure 5 outlines
the XML structure of an experience instance. Machine-
StateAttributeList in MachineStateBefore-
Change and MachineStateAfterChange is a list
of attribute-value pairs containing all the attributes of the
associated machine state. FrameAdjustmentEvent-
List in AdjustmentLog contains all the adjustments of
the session if experience is created per adjustment session,
and only one adjustment otherwise.

The choice between creating experience per adjustment
or per adjustment session depends on the level of refinement
that one wants to have in the experience base and therefore
when adapting, as well as on performance considerations.
If experience is created per adjustment, more specific
knowledge on the impact of single adjustments will
be available. For each occurrence of a certain type of
adjustment, a separate evaluation with KPI calculations will
take place, thus providing a series of related experience
instances in different contexts. If experience is created per
session, less specific knowledge on single adjustments will
be available, but it will be possible to suggest multiple

adjustments at each step of an adaptation process, as
described in Section 4. In addition, if experience is created
per adjustment, more queries to the event base will be
executed (two for each adjustment), compared with the case
of adjustment sessions (two for each session).

The experience base is used by the LEARN agent,
described in the next subsection.

3.3 Self-learning and adaptation

The LEARN agent implements a learning technique for gen-
erating adaptation knowledge. This technique generalises
the examples contained in the experience base created by the
ER agent. This knowledge is used by the ADAPT agent to
recommend adjustments to the user (the engineer or system
integrator making changes). The LEARN agent is invoked
by the ADAPT agent during an adaptation.

The following is a step-by-step description of a typical
adaptation scenario employing the LEARN and ADAPT
agents, together with the other agents, in FRAME:

1. The HMI agent warns the operator that the system
performance is sub-optimal. This happens when the
KPI being calculated is out of tolerance.

2. The operator queries the HMI agent for a feasible
adjustment that would improve the performance. The
HMI agent relays the request to the ADAPT agent.
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Fig. 2 Example of adjustment event serialised into XML, indicating
that the value of the parameter P FRAME C1 UG1 Reversal1-
Device Grippers Cam FallingBegin (a cam angle used in

the production system of Section 5) is set to 280◦

3. The ADAPT agent queries the event base for the latest
state events and builds a representation of the current
state of the machine.

4. The ADAPT agent queries the LEARN agent for a list
of ranked adjustments that are applicable to the current
machine state. The LEARN agent generates and returns
this list.

5. The ADAPT agent can optionally run the received
adjustments through a behaviour model to validate them
and adjusts the rankings accordingly.

6. The ADAPT agent sends the ranked list of adjustments
to the HMI agent, who presents it to the operator.

7. The operator selects one adjustment from the list and
applies it.

The ranked list of adjustments is generated as described
in the Section 4. The operator’s chosen action results in a
new adjustment that triggers the creation of new experience
on that adjustment. Of course, the operator does not

Fig. 3 Example of state event serialised into XML, indicating
that the value of the attribute (DataItem) DI FRAME C1 UG1-
CheckFrontCap Device CheckCap2 successfulChecks

(number of successful checks in a process of the production system of
Section 5) is 41

necessarily have to choose one of the presented adjustments
and they are free to apply any. The new experience will
refine future rankings in similar contexts.

3.4 Proactive HMI

The HMI agent provides an intelligent interface between the
user and the agent framework, since it can guide the user
and not simply receive input or present output. This agent
plays these roles:

– Proactive system: the HMI agent guides the user
through the steps involved in the execution of an
adaptation and gives feedback on the changes being
made by showing the resulting KPI value. For each
change, the HMI agent can show pictures or videos
illustrating the operations to perform step by step. By
looking at the KPI value, the user can see whether the
changes have produced the desired effect.
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Fig. 4 Experience capture with
adjustment sessions. The start
and end of a session are signalled
by events. All the adjustments
made in a session are recorded
as part of the experience
instance being created

– Service provider: the HMI agent can be requested by
other components to visualise messages (e.g. errors,
warnings, notices) or ask the user for specific input, in
particular information on manual adjustments (e.g. type
of adjustment, components affected, values of parameters).

– Source of events: the HMI agent generates events about
the operations carried out by the user through the HMI.

– Diagnostic tool: the HMI agent can provide the user
with diagnostic information. For example, an event
browser is available to analyse the content of events and
their flow between components.

3.5 Framework layers

The framework architecture has two layers: a lower layer,
called station level, and an upper layer, called system level
(Fig. 6). The station level interfaces directly the machine,
whereas the system level interfaces both the machine
and the station level. FRAME agents are deployed on

both layers. The agents of the station level are used for
adapting individual modules or assembly stations and are
deployed on each station. The agents of the system level
are used for adapting the production system as a whole.
Agents of the same type can, therefore, run simultaneously
both at the station level in different stations and at the
system level. Furthermore, other components (event base,
experience base, semantic model and behaviour model) are
also deployed on both layers.

In general, agents of the same type have the same
role and behaviour in the two layers, but there are some
important differences. The station level processes all the
events generated by each individual station separately,
whereas the system level receives all the events generated
by all the stations. The ER agent of the system level captures
the adjustments that have an effect on multiple stations, as
well as those that are applied at the station level, and adds
them to a system-level experience base. The system-level
experience base represents all these changes, including an
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Fig. 5 Outline of the XML structure of an experience instance

evaluation of their effect on the whole system. In addition,
the system-level experience base contains the experience
received from all the stations. A LEARN agent of the station
level applies the learning algorithm only to the station-
level experience base of the station it is deployed on. In
contrast, the LEARN agent of the system level applies the
learning algorithm to the system-level experience base. The
ADAPT agent of the system level creates a representation
of the system-level machine state as the union of all
station-level machine states (where a machine state is
represented by a set of attribute-value pairs). Note that
the station level can operate independently of the system
level and does not require its presence. Similarly, agents
of the station level deployed on different stations do not
interoperate.

Fig. 6 2-layer FRAME
architecture: system and station
levels

Since learning can occur at both station and system level,
there can be changes having an opposite effect at different
levels, in the sense that they are positive for a station but
negative for the whole system, or the other way around. In
general, the rankings of station-level adjustments may not
be the same at the system-level. Also, a system-level change
can have different effects on different stations. Clearly,
the objective of an adaptation is to reach a target KPI at
the system level. Although we do not have mechanisms
to relate precisely this global objective to local ones, in
order to reach the global objective, it is typically useful
to focus on local objectives in the first instance. This is
especially the case if there is more experience available at
the station level than at the system level, indicating that the
changes recommended at the station level are more reliable.
This happens, in particular, when an adaptation involves
using a module, possibly from another system, for which an
experience base has already been built, whereas there is not
experience available yet for the other modules, stations or
for the full system.

3.6 Semantic modelling

An important part of the framework is composed of two
models: a common semantic model (CSM) and a (system)
semantic model (SM). The CSM is a meta-model of a
production system, that is, a general model that describes
what a typical automated production system consists
of (resources, capabilities, devices, operations, products,
parts, etc.), but does not define a particular one. The
production engineer uses the CSM to create a SM for a
specific production system, in which all the application-
dependent declarative knowledge is represented. One
particular application of the CSM is structuring operator
knowledge and relating it to machine data during the ramp-
up of an assembly system [32]. Although the main use
case of FRAME is assembly systems, the default CSM
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provided by FRAME can be extended to cater for different
manufacturing processes.

In particular, a SM for an assembly system specifies the
properties of products being assembled, assembly process
and equipment, as well as the relationships between them.
Specifically, the SM contains parts and products, assembly
operations and associated modules, process parameters,
sensor data, performance measures, agents and their
capabilities. The combination of CSM and SM provides a
knowledge representation framework for modelling sensor
data, experience and adaptation knowledge, that is also used
for agent communication. Agents can produce or consume
data whose structure is defined in the CSM/SM or data that
reference entities defined in the CSM/SM.

Both CSM and SM are created using the ObjectLogic
language [4] and the OntoBroker semantic middleware [33].
ObjectLogic is a deductive, object-oriented database lan-
guage which combines a declarative semantics and an
object-oriented data model. OntoBroker enables FRAME to
store a large number of events in an event base and exe-
cute very expressive queries written in ObjectLogic. Events
specify properties or instantiate elements defined in the SM,
whereas queries are used to retrieve events. For example,
Fig. 7, shows a query that retrieves all the latest events
related to the same SM element generated in a specified time
interval.

Both events and queries can reference elements defined
in the CSM/SM. An editor is provided to create a SM
using a mind map approach, so that no knowledge of
ObjectLogic is required. The mind map is translated into
ObjectLogic automatically, and the generated SM can be
edited manually if necessary. An extract of the mind map
of the SM used in the experiment (Section 5) is shown in

Fig. 8. A screen capture of the SM editor is shown in Fig. 13
in the Appendix.

3.7 Behaviour model

Based on the SM, a behaviour model using discrete event
simulation can be defined to analyse the behaviour of the
production line. A behaviour model allows to simulate
changes that are proposed by the ADAPT agent or that the
operator intends to try out. Such a model is useful to detect
poor potential changes without actually applying them on
the physical machine. Key performance indicators that can
be calculated include cycle time, machine and buffer usage,
and failure rate. Simulations results produce knowledge on
the effect of changes. This form of knowledge can be used
when there is no information about a particular change in
the experience base.

The creation of a behaviour model from a semantic
model can be automated and the model can be dynamically
updated to reflect the current state of the modelled system
when changes have been applied, as presented by [34]. A
behaviour model can be used by the ADAPT agent or by the
user. Behaviour models are implemented in FRAME using
the simulation modelling software Lanner Witness.

4 Self-learning implementation

When invoked, the LEARN agent generates a ranked list
of adjustments that are applicable to the given machine
state (also called adaptation context in the following, when
referring to the machine state before a change). These
adjustments are found by searching the experience base.

Fig. 7 ObjectLogic query that retrieves all the latest events of type %MAINTYPE% and subtype %SUBTYPE% related to the same SM element
(DATAITEM) generated in a specified time interval %STARTTIME% - %ENDTIME%
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Fig. 8 Extract of the SM (mind
map form) of the production
system used in the experiment.
FRAME C1 UG1 Reversal1 is
an operation consisting of
reversing a pen. It is specified
by parameters indicating, for
instance, cam raising and falling
angles, sensor positions and
gripper force
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The rankings are calculated based on the similarity of the
adaptation contexts and the effectiveness of the associated
adjustments in the experience base. Similarity of adaptation
contexts is measured using a distance function calculated
on multidimensional points representing machine states,
constructed from sensor data and configuration parameters.
The effectiveness of a past adjustment is measured by the
KPI calculated on the machine state after the change.

The adjustments that were applied in the most similar
contexts and that produced the best results are placed at the
top of the list. The rationale is that an effective adjustment
in a similar context is likely to produce a positive result. The
first adjustment of the list is therefore the one recommended
by the LEARN agent. The list may contain a large number
of adjustments, depending on the accumulated experience
and the number of possible adjustments. The adjustments
with the lowest rankings could be filtered out. However,
it may be useful to provide even the adjustments with the
lowest rankings, so that the user can avoid them.

The process carried out to determine which adjustment
to perform in one adaptation context can be framed as a
classification problem. The objective of this problem is to
learn how to identify the class of an instance based on a
set of examples. The learning system receives in input some
examples (training set) and produces a program (classifier)
that is able to infer the class of instances that are not in
the training set. In our adaptation problem, the instances
to classify are the adaptation contexts in which the user
queries the self-learning system, the classes are the possible
adjustments and the training set is given by the experience
instances in the experience base.

The adaptation problem is, however, more complex than
a typical classification. The set of possible adjustments
depends on the specific context. In general, there are
preconditions associated with an adjustment, indicating
if the adjustment is applicable or not. For example,
adjustments related to devices not currently connected are
clearly not applicable.1 In addition, we do not want only
to identify what type of adjustment is the best, but also
how to make it, that is, the values of associated parameters.
For example, if the recommended adjustment is “increase
the pressure of cylinders”, we need to know what the new
pressure should be. In the rest of this section, we will show
how to determine both adjustment types and values.

4.1 Experience base search

The search in the experience base is based on a variant
of the k-nearest neighbour classification algorithm (kNN).

1Preconditions are currently hard-coded in FRAME. Ideally, they
should be specified in the SM.

Adaptation contexts are represented by points in a
multidimensional space and their similarity is captured by a
distance function. In kNN, given a point x to classify, the k

nearest points to x are located and the class to assign to x is
chosen among the neighbours’ classes by applying a voting
scheme. A simple voting scheme consists of assigning the
most common class among the neighbours (see Fig. 9).
The class of an adaptation context is the adjustment being
applied in it.

Adaptation contexts can be defined by numerical or
categorical attributes. The value of an attribute can be
undefined if, for example, the module or sensor that
produces it is not present or is faulty. Hence, we use a
heterogeneous Euclidean-overlap metric (HEOM) [35]:

d(x, x′) =
√
√
√
√

n
∑

i=1

wi(di(x, x′))2,

where:

– x and x′ are two n-dimensional points,
– wi ∈ [0, 1] is the weight assigned to attribute i, and
– di(x, x′) ∈ [0, 1] is the distance between x and x′ on

attribute i, defined as:

di(x, x′) =
⎧

⎨

⎩

1 xi or x′
i is unknown,

overlap(xi , x′
i ) attribute i is nominal,

rndiffi (xi , x′
i ) otherwise.

The function overlap gives 0 if its arguments are the
same, otherwise 1. The function rndiffi (range normalised
difference) is defined as:

rndiffi (x, y) = |x − y|
maxi − mini

,

where maxi and mini are, respectively, the maximum and
minimum values observed in the training set for attribute i.

Fig. 9 kNN algorithm: The point to classify is indicated by “?”. The
possible classes are: “blue triangles”, “orange squares” and “yellow
circles”. If k = 3 (solid line circle) the most common class is “blue
triangles”. If k = 5 (dashed line circle) the most common class is
“orange squares”
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In the generation of the rankings, we consider not only
the similarity between adaptation contexts, but also the
system performance obtained by the adjustments in the
experience base. The performance is measured by the KPI
of the machine state after the adjustment. An experience
instance has the form (x, adj, x′), where:

– adj = (t, v) is an adjustment of type t and value v

– x is the machine state before adj
– x′ is the machine state after adj

Let

– E = (x, adj, x′) be an experience instance,
– y be an adaptation context,
– d be a HEOM, and
– f be a KPI.

The similarity-performance function ed
f [7] is defined as:

ed
f (E, y) =

⎧

⎨

⎩

d(x, y)
f (x′)

iff (x′) �= 0

∞ otherwise.

The smaller the value of ed
f (E, y), the better adj is antici-

pated to be in y.

4.2 Voting and ranking

Let y be an adaptation context to be classified, d a distance
function and f a KPI. There are two cases to consider:

k = 1 The experience instances are sorted by ed
f (E, y), in

ascending order, to produce a ranked list of adjustments
for y. The first experience instance in the list (the
one with the smallest value of ed

f (E, y)) contains the
recommended adjustment type and value.

k > 1 This is described in Procedure 1. Let E1, . . . , Ek

be the k experience instances having the smallest values
of ed

f (E, y), in ascending order. A class must be selected
among those of these k nearest neighbours. To this
end, a voting scheme is applied. Note that selecting
the most common class among the neighbours may not
be a good scheme, because this class is likely to be
the most frequent in the training set. One method is to
assign different weights to the neighbours, based on their
respective distances from the point to be classified. In our
solution, we use ed

f to calculate the weights. This way,
both the distance of a neighbour and the impact of its
associated adjustment on the performance of the system
are considered. We define the weight w(Ei) of Ei as
follows:

w(Ei) = ed
f (Ek, y) − ed

f (Ei, y)

ed
f (Ek, y) − ed

f (E1, y)

The instances E1, . . . , Ek are grouped by class. For each
class, the weights of its instances are summed up. The
recommended adjustment type is represented by the class
having the largest sum of weights. For an adjustment
type t , the instances among E1, . . . , Ek having class t are
selected. If numerical, the adjustment value is calculated
as the weighted mean of all the adjustments values of
these selected instances. The values w(Ei) are used as
weights. Further adjustments can be proposed similarly
by considering the other classes in descending order of
sum of weights.

5 Experimental evaluation

FRAME was evaluated on a production system for the
assembly of injection pens. This system is made up of
various pick-and-place and inspection modules. The pick-
and-place modules are used for rotating and moving parts,
and putting them together. The inspection modules are used
for checking the presence and correct position of parts on
pallets, and the quality of the finished product in terms of
correct dimensions and assembly. Figure 10 shows a picture
of the machine. If a finished product has passed all the
checks, then it is accepted, otherwise it is rejected. Bad parts
are not reworked because the process would not be cost-
effective. Therefore, maximising the number of good parts
is indispensable for this production system.
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Fig. 10 Production system for the assembly of injection pens

A conveyor system is used to transport pallets holding
the parts from station to station. An injection pen consists of
three parts: a body, a tank and a cap. When fed into the line,
each pallet holds the parts for assembling 3 injection pens
and, at the end of the process, holds the finished products.
Each pick-and-place module operates 3 grippers, one for
each pen to assemble. The assembly machine is cam-
driven and consists of 7 modules performing the following
operations:

1. Check the presence of the parts on the pallet;
2. Pick-and-place tanks into bodies;
3. Check that tanks have been inserted correctly into

bodies;
4. Pick-and-place caps onto bodies;
5. Check that caps have been inserted correctly onto

bodies;
6. Reverse pens;
7. Check reversal.

The sequence of operations is linear.
The aim of the experiment was to evaluate how the self-

learning framework can aid operators in system adaptations.
This was done by adapting the production system for
the manufacture of a product variant with some minor
differences compared to the original product, in terms of
physical and geometrical characteristics. The adaptation
involved making some mechanical changes, in particular
changing some of the grippers. All the affected parameters
in grippers and inspection devices had to be adjusted (e.g.

position and dimensions of the parts, opening and closing
angles of the grippers, pressure of the grippers). Although
the product variant was not much different to the original
one, such adaptation process could be laborious as assembly
operations must be very precise and require repeatable
positioning.

The experiment was organised as follows. First, the sys-
tem was adapted by 4 operators individually. During this
phase FRAME was used to capture the changes being made
by the operators and to build experience, but not to rec-
ommend changes. An experience base of adjustments was
built by the ER agent at the system level. The original state
of the machine was restored after each operator completed
the process. Then, the system was adapted by 4 other oper-
ators individually using FRAME with the experience base
built in the previous phase. The operators of the two groups
had comparable experience and skills, and did not commu-
nicate during the experiment. The number of adjustments
performed by the two groups for completing the process and
the average levels of system performance reached at the end
were compared.

The performance of the system was characterised in
terms of quality of the finished product. The number of
good parts out of the total number of parts assembled in a
batch was used as KPI. The value of this KPI was updated
every time the quality of an assembled part was checked.
The number of parts produced by each operator between
two consecutive adjustments was fixed and it was equal
to 6. The current KPI value was visible to the operators
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to allow them to evaluate the result of their actions. The
operators were expected to obtain a target KPI value of
0.98 in order for the adaptation process to be considered
complete. The average KPI values obtained by the two
groups of operators in the first 25 steps of the adaptation
process are shown in Fig. 11. After 25 steps, the first group
(that did not use FRAME) reached an average KPI of 0.8,
while the second group (that used FRAME) reached an
average KPI of 0.95. Further adjustments were required
for all operators except one to complete the process. To
reach the target KPI, the 4 operators of the group that
did not use FRAME made respectively 30, 33, 36 and
37 adjustments, whereas the 4 operators of the group
that used FRAME made respectively 25, 29, 29 and 31
adjustments.

Figure 12 shows the number of times that the operators of
the second group applied the following types of changes: (1)
the adjustment recommended by the ADAPT agent (i.e. the
first-ranked adjustment), (2) a different adjustment ranked
by the ADAPT agent and (3) any other adjustment not
ranked by the ADAPT agent. The operators followed the
recommendations of FRAME most of the times. Only in
a few cases did they choose another adjustment among
those suggested, and in very few cases a different one.
They decided not to apply any of the suggested adjustments
when they thought that those changes were not useful or
safe in that context, that they had already applied them
(successfully or not) or that they could get better results with
different changes.

The evaluation suggests that the use of FRAME to rank
and recommend changes allows operators to perform system
adaptations in fewer steps and thus in a shorter period
of time. Figures 13 and 14 in the Appendix show screen
captures of the SM editor used in the experiment, some KPI
values being produced and new experience being created.

Fig. 11 Average quality values of the two groups of operators during
the adaptation, the group that used FRAME (with self-learning) and
the one that did not (no assistance)

Fig. 12 Types of changes applied by the operators of the group that
used FRAME in the adaptation: 1 changes recommended by the self-
learning (SL) framework (i.e. first-ranked changes), 2 other changes
ranked (lower than first) by the SL framework, 3 any other changes not
ranked by the SL framework

6 Conclusion

Multi-agent systems can be employed to offer advanced
levels of interconnectivity and intelligence in production
systems, from data acquisition and analysis to distributed
control, self-learning and adaptation. In this paper, we have
presented FRAME, a multi-agent framework implementing
a self-learning technique that generalises from the adapta-
tion experience captured on a machine. FRAME has been
evaluated on an automated assembly system, showing that
it can effectively help engineers throughout an adapta-
tion process. The domain of application of the framework
is, however, wider and includes, in general, any produc-
tion system. Further experimentation on a number of more
complex production systems is required to confirm the gen-
erality of the results of this paper. This is planned as future
work.

The deployment of FRAME on a specific production
system requires the definition of a semantic model, which
describes the structure and capabilities of the system,
and the implementation of the low-level interface with
the hardware. Minimal development work is required to
customise agent behaviour for a specific production system.
Adaptation knowledge is built directly from the experience
base, hence there is no need to construct manually a
knowledge base.

The accuracy of the learning method depends on the
distance and KPI functions used to define the similarity-
performance function. The similarity-performance function
is based on the assumption that one adjustment is likely
to have the same effect on similar states. To improve
this function, weights of attributes of adaptation con-
text could be determined dynamically based on the rel-
evance of the attributes to different contexts and adjust-
ments. Another interesting development of the similarity-
performance function is the integration of a method to eval-
uate adaptations in contexts defined in terms of production
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capabilities. These capabilities would be expressed using
more sophisticated semantics, which adaptation contexts
cannot represent at the moment as lists of attributes.

Research on cyber-physical systems in manufacturing
should provide methodologies and tools to integrate
seamlessly the physical and cyber aspects, despite the
heterogeneity of their designs. Integration should allow the
physical elements to make the best use of the available
computational resources, and not simply ensure that the

minimum interface requirements are met on either side. A
self-learning framework like FRAME can help to achieve
this goal.

Appendix:

Figures 13 and 14 contain screen captures of, respectively,
the SM editor of FRAME and new experience being logged.

Fig. 13 A screen capture of the SM editor taken while entering product details



Int J Adv Manuf Technol

Fig. 14 A screen capture of the system taken while logging the creation of new experience, showing the most recent KPI values and a query to
the event base being made to capture the machine state after a change
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29. Schütz D, Wannagat A, Legat C, Vogel-Heuser B (2013) Devel-
opment of PLC-based software for increasing the dependability
of production automation systems. IEEE Trans Industrial Info
9(4):2397–2406

30. Foehr M, Leitão P, Wagner T, Jäger T, Lüder A (2012)
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