The Optimization of Generating Plants in a Microgrid: The Covenant University Electric Power Network Experience

By

OROVWODE Hope Evwieroghene (CUGP060191)

(ND (FPI), B.Eng, M.Eng UNIBEN)

A THESIS SUBMITTED IN THE DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY OF COVENANT UNIVERSITY, CANAANLAND, OTA, OGUN STATE, NIGERIA

January, 2015

CERTIFICATION

This is to certify that the Thesis titled "The Optimization of Generating Plants in a Microgrid: The Covenant University Electric Power Network Experience" by OROVWODE Hope Evwieroghene (Matric. Number CUGP060191), is an original research work and meets the requirements and regulations governing the award of Doctor of Philosophy (Ph.D) in Electrical Engineering and is approved for its contribution to knowledge and literary presentation.

Supervisor: Prof. A.O. Adegbenro	Signature & Date
Co-Supervisor: Prof. C. O. A. Awosope	Signature & Date
Head of Department: Dr. F. E. Idachaba	Signature & Date
External Examiner:	Signature & Date

DEDICATION

This thesis is dedicated to the Almighty God – the Secret and Root of wisdom, understanding and knowledge. Also, I dedicate this thesis to the memories of my late beloved mother, Mrs. Janet Palmer Orovwode, who saw the beginning of this work but did not live to see the end. May her gentle soul rest in perfect peace, Amen.

ACKNOWLEDGEMENTS

To the Father above, God Almighty, I express my utmost gratitude and appreciation for the gift of life, wisdom, intellect and grace that saw me through the research and writing of this Thesis. His guidance and inspiration are unquantifiable. I am grateful to the Chancellor of Covenant University, Dr. David Oyedepo, whose vision to establish this University has provided me the opportunity to embark on the Ph.D programme.

I wish to acknowledge the immense contributions of my former co-supervisor, late Prof. J. C. Ekeh, whose motivation gave me a sense of direction in this research. He saw the beginning but he is no more to witness how it ended. May God grant you eternal rest for all the labour of love you bestowed on me, amen.

My special thanks go to my supervisor, Prof. A. O. Adegbenro who is not tired of my mistakes. His encouragement, support and drive made me always want to work to complete the Ph.D programme. Words are not enough to express my gratitude to my co-supervisor, Prof. C.O.A. Awosope for his patience, guidance, encouragement and constant push. His hands midwife this Thesis. I am proud to have worked under your supervision. You are a great father and mentor.

I am also grateful to the Head of Electrical and Information Engineering (EIE) Department, Dr. F.E Idachaba for his advice and willingness to stand by me at all times even when I am discouraged. To all my friends and colleagues in EIE (too numerous to mention), just writing a bit of lines would not be able to say what you mean to me. God bless you all.

Finally, I want to appreciate my dearest wife, Martha E. Orovwode and my son, Oghenekparobo for all the sacrifices, care and for watching back while I was on the Ph.D programme. God's glory will not cease to shine upon you. The Pastor and members of Mountain of Fire and Miracles Ministries Atan 1, I appreciate the constant prayers, deliverance and encouraging ministrations.

TABLE OF CONTENT

Tile page		i
Certific	cation	ii
Dedicat	tion	iii
Acknow	wledgements	iv
Table o	of Contents	v
Abbrev	viations	х
List of	Figures	xii
List of	Tables	xvi
Abstrac	ct	xviii
	Chapter One	
	Introduction	
1.1	Overview of Global Electricity	1
1.2	Background	2
1.3	Motivation for the study	10
1.4	Significance of the study	11
1.5	Aim and objectives	12
1.6	Research method	13
1.7	Contribution to knowledge	13
1.8	Scope and limitation	13
1.9	Thesis organization	14

Chapter Two

Literature Review

2.1	Review of Electric Power Situation in Nigeria	15
2.2	Requirements of the 21 st century power system	16
2.3	Operational Pattern of Portable Generating Units	18
2.4	Power Supply in Covenant University	20
2.5	Diesel Generating plants	21
2.6	The Covenant University Electric Power Network (CUEPN)	21
2.7	The challenges of the CUEPN	23
2.8	Making a case for Re-Engineering of CUEPN	26
2.9	The Microgrid option	27
2.9.1	The Microgrid Concept	27
2.9.2	Requirements for operating a microgrid	29
2.9.3	Benefits for operating a microgrid	30
2.10	The microgrid technology	31
2.10.1	Microgrid Research & Development activities in some countries around the World .	32
2.11.	Microgrid Components	35
2.12	The Proposed DC microgrid (DC μ G) solution	39
2.13	Observations and Findings from Literature review.	40

Chapter Three

The Power Network Requirements, Development and Modeling

3.1	The Power Network Development	41
3.1.1	The goals of the newly proposed electric power network arrangement	42
3.1.2	The Electrical Distribution Layout and the Facilities' Locations	44

3.1.3	Covenant University Load profile Analysis	45
3.1.4	Power Balance Evaluation	49
3.1.5	Power Network Control Technique	49
3.1.6	Required Equipment Determination	51
3.2	Modeling of the Microgrid Components	51
3.2.1	Microsources Model	51
3.2.2	Rectifier Model	52
3.2.3	Modeling of the Inverters	78
3.3	Power Network Arrangement Modeling	103
3.4	Distribution Line Model	111
3.5	Inter-links between Generators and Loads in the Microgrid	112

Chapter Four

	Optimization of the Power Generating Plant in the Microgrid	114
4.1	Fuel Consumption Characteristics of the Power Generators	114
4.2:	The Optimization Problem Formulation	118
4.2.1	The Fuel Cost Function	118
4.2.2	Carbon-Based Pollutant Emission Cost Equation	119
4.2.3	The Objective Cost Function	119
4.2.4	System Operating Constraints	120
4.3	The Solution to the Optimization Problem	124
4.3.1	Classical Methods	125
4.3.2	Non – Classical methods	126
4.3.3.	Hybrid Models Methods	126
4.3.4	The optimization Algorithm	127

Chapter Five

Simulation of the Optimized CUEPN Using Homer®

5.1	Simulation, Sizing and Optimization of the proposed CUEPN	130
5.2	Input data	131
5.2.1	System architectures	131
5.2.2	Electrical primary load	134
5.3	Presentation of results	137
5.4	System Reports - CUEPN proposed network optimization (ACS)	141
5.5.	System Report - CUEPN proposed network optimization (DCS)	147
5.6:	Discussion of results	156
5.6.1	Plant engagement	156
5.6.2	Analysis of Battery Energy Flow	158
5.6.3	Analysis of Fuel Consumption	151
5.6.3	Electricity Production Analysis	162
5.6.4	Carbon dioxide (CO ₂) emission analysis	164

Chapter Six

Conclusion, Achievements and Recommendations for Further Research

6.1	Summary of Work Done	169
6.2	Major Achievements	170
6.3	Adaptability of the Research Work	171
6.4	Recommendations for Further Research	172

References	174
Appendix	187

ABBREVIATIONS

AC	Alternating Current
ACS	Alternating Current Synchronization
CC	Common Coupling
CDS	College of Developmental Studies
CERTS	Consortium for Electric Reliability Technology Solution
CETC	CANMET Energy Technology Center
CLR	Centre for Learning Resources
CO_2	Carbon Dioxide
СР	Constant Power
CSIS	Center for Systems and Information Services
CST	College of Science and Technology
CU	Covenant University
CUEPN	Covenant University Electric Power Network
DC	Direct Current
DCS	Direct Current Synchronization
DCμG	Direct Current Microgrid
DER	Distributed Energy Resource
DG	Distributed Generation
EDT	Economic Dispatch problem
ENG BLK	Engineering Block
EU	European Union
GHG	Green House Gases
HOMER®	Hybrid system optimization for Electric renewables
IEA	International Energy Agency

KCL	Kirchoff's Current law
kW	kilo-Watt
LC	Local Controller
LR	Langrangian Relaxation
LV	Low Voltage
М	Modulating Index
NEDO	Energy and Industrial Technology Development Organization
NTUA	National Technical University of Athens
PCC	Point of Common Coupling
PG	Postgraduate School
PHCN	Power Holding Company of Nigeria
PI	Point of Interconnection
PSERC	Power Systems Engineering Research Center
PWM	Pulse Width Modulation
SCR	Silicon-Controlled Rectifier
SWPWM	Sine Wave Pulse Width Modulation
THD	Total Harmonic Distortion
UPS	Uninterrupted Power Supply
VSI	Voltage Source Inverter

LIST OF FIGURES

Figure 1.1	Global oil consumption (1960–2008).	4
Figure 1.2	Global production of oil and gas.	4
Figure 1.3(a)	Global electrical power generation and carbon dioxide emission (1960-2012) .	5
Figure 1.3 (b)	Global electrical power generation (1980-2012)	6
Figure 2.1	TIGER TG – 950 Generator	18
Figure 2.2	Pie chat showing an annual purchase and operational costs of a typical TIGER TG – 950 Generator.	20
Figure 2.3	The Covenant University Electric Power Network (CUEPN)	23
Figure 2.4	Covenant University load duration curve.	25
Figure 2.5	Covenant University excess capacity duration curve.	26
Figure 2.6	A microgrid with distributed generation and utility power grid	29
Figure 3.1	The electrical distribution layout and the facilities' location	43
Figure 3.2	The schematics of the existing network distribution layout and the facilities' location	44
Figure 3.3(a)	Load curve for year 2011	46
Figure 3.3(b)	Load curve for year 2012	47
Figure 3.3(c)	Load curve for year 2013	47
Figure 3.4	Flow chart for generators' availability	48
Figure 3.5	Control flow chart developed for network	50
Figure 3.6	Single-Phase, half- wave rectification model	53
Figure 3.7 (a)	The Matlab simulink/Simpowersystem model simulation of three	
	half-wave rectifiers connected to a common load	56
Figure 3.7 (b)	The display of the DC output voltage and the AC input voltages	
	on the scope.	56

Figure 3.8	Single-phase, full-wave rectification model	57
Figure 3.9 (a)	Matlab simulink/ Simpowersystem model simulation of the full-wave uncontrolled rectification	59
Figure 3.9 (b)	The display of the DC output voltage and the AC input voltages on the scope.	60
Figure 3.10	Half-wave controlled rectification.	61
Figure 3.11	Single-phase, full-wave controlled rectification	62
Figure 3.12 (a)	Simulink/Simpowersystem model simulation for a three single-phase controlled rectifiers.	64
Figure 3.12 (b)	The output scope display showing the AC sources input waveform, the DC output and the SCR trigger pulses.	65
Figure 3.13	A three-phase, half-wave uncontrolled rectification.	66
Figure 3.14	Full-wave, three-phase rectification model.	68
Figures 3.15 (a)	Simulink/Simpowersystem model simulation for a three, three-phase, full-wave uncontrolled rectification	70
Figures 3.15 (b)	The display of the DC output voltage and the AC input voltages on the scope	70
Figures 3.16 (a)	Simulink/Simpowersystem model simulation for a three, three-phase, the half-wave uncontrolled rectification	71
Figures 3.16 (b)	The display of the AC input and the DC output waveforms on the scope.	71
Figure 3.17	Three-phase controlled half-wave converter.	72
Figure 3.18	Three-phase controlled full-wave converter.	74
Figure 3.19 (a)	Simulink/Simpowersystem simulation of the three-phase controlled full-wave rectifier and the associated SCR trigger wave forms	76
Figure 3.19 (b)	The display of the AC input, the six thyristor firing pulses and the DC output waveforms on the scope	77
Figure 3.20	Basic inverter configuration	78
Figure 3.21	Inverter output voltage	79

Figure 3.22	The schematic of a full bridge inverter for a single-phase AC output	79
Figure 3.23 (a)	The simulink/Simpowersystem simulation of the single-phase DC-AC converter	83
Figure 3.23 (b)	The display of the load current, output AC voltage and the DC input voltage waveforms on the scope	83
Figure 3.24	Matrix arrangement of inverter switches	84
Figure 3.25	Basic 3-phase inverter configuration	85
Figure 3.26 (a)	Circuit illustration PWM by the sine-triangle comparison method.	90
Figure 3.26 (b)	Comparison waveforms of the sine-triangle comparison method.	90
Figure 3.26 (c)	Switching pulses of the PWM sine-triangle comparison method.	91
Figure 3.27	The relationship between abc reference frame and the stationary 'dq' reference frame	94
Figure 3.28	Space Vector representation of the switching state	96
Figure 3.29	Voltage space vector and its components in (d,q) axis.	98
Figure 3.30	The switching pulse pattern for the three-phase in the 6 different sectors	102
Figure 3.31	Electrical component representation of Figure 3.1	104
Figure 3.32	Electrical circuit large signal modeling of the proposed $DC\mu G$	105
Figure 3.33	Network signal flow representation of Figure 3.1	106
Figure 3.34	A two-source, two- load network arrangement	112
Figure 3.35	A three- source, three- load network arrangement	113
Figure 3.36	A four- source, four- load network arrangement.	113
Figure 4.1a	Fuel-Cost curve for a 250-kW diesel power generator	116
Figure 4.1b	Fuel-Cost curve for a 500-kW diesel power generator	117
Figure 4.1c	Fuel-Cost curve for a 1000-kW diesel power generator	117
Figure 4.2	The flow chat of the solution to the algorithm	129

Figure 5.1	AC synchronization (ACS) of the proposed microgrid network arrangement.	131
Figure 5.2	DC synchronization (DCS) of the proposed microgrid network arrangement	132
Figure 5.3	The graphical representation of possible capacities combinations from each center	133
Figure 5.4	The hourly load variation for the University	136
Figure 5.5	The monthly average load plot	136
Figure 5.6	The percent frequency of occurrence of the load.	136
Figure 5.7	The ACS best (winning) configuration	137
Figure 5.8	The DCS best (winning) configuration.	138
Figure 5.9	Diesel powered Generating plants engagement chat.	157
Figure 5.10	Graphical representation of the battery energy flow pattern .	158
Figure 5.11	Power Generating centers annual Fuel Consumption	160
Figure 5.12	Total Annual Fuel Consumption for three system configuration.	161
Figure 5.13	Percentage of Fuel that could be saved operating DCS or ACS configuration.	161
Figure 5.14	The graphical representation of electrical energy contribution from the various generating centers	163
Figure 5.15	Total annual capacity comparison of the three models with utilized capacity.	164
Figure 5.16	The plot of the total emission in each operating model	166
Figure 5.17	The amount of CO_2 not disposed off in the environment by virtue of the optimization of the power generators in the University	167

LIST OF TABLES

Table 2.1	Specification details of TIGER TG – 950 Generator	19
Table 2.2	Purchase and annual operational costs of a typical TIGER TG – 950 Generator	19
Table 2.3	Power generating plants in Covenant University	22
Table 3.1	The switching pattern of the switching devices.	80
Table 3.2	Switch states, active devices and the resulting phase voltages	97
Table 4.1	Fuel consumption profile for the 250-kW diesel generator.	115
Table 4.2	Fuel consumption profile for the 500-kW diesel generator.	115
Table 4.3	Fuel consumption profile for the 1000-kW diesel generator.	116
Table 5.1	The possible combination capacities of the generating plants in the network	133
Table 5.2	The input configuration parameter comparison for the two architectures (DCS & ACS)	134
Table 5.3	Mean Load Data from the Base Station	135
Table 5.4	Overall best (winning) capacity configuration for ACS	139
Table 5.5	Overall best (winning) capacity configuration for DCS	140
Table 5.6	Summary of the results obtained for the ACS scheme	. 155
Table 5.7	Summary of the results obtained for the DCS scheme.	156
Table 5.8	Annual plant engagement	157
Table 5.9	Battery Energy Flow	158
Table 5.10	Power Generating centers annual Fuel Consumption	159
Table 5.11	Analysis of Annual Fuel used	160
Table 5.12	Electricity production Statistics	162
Table 5.13	Total annual capacity comparison	162

Table 5.14	Calculated Carbon dioxide emitted and un-emitted under the existing	
	and the microgrid configurations	165
Table 5.15	Simulated Carbon dioxide emitted and un-emitted under the existing	
	and the microgrid configurations	168

ABSTRACT

The use of fossil fuel in electricity generation has created three significant issues for the world to deal with. The issues are security (availability and reliability) of supply, climate change and the cost of fuel required for electricity generation. Covenant University, currently running a cluster of stand-alone diesel powered generating plants situated at different locations within the campus has a lot of unused available capacity within the system which invariably increases the operating (fuel) cost of power generation and also contributes to the environmental pollution through the emission of greenhouse gases within the campus. This research work, using a bottom-up approach, developed a new Electric Power network arrangement by integrating the power generators into a microgrid where there would be a common pool of energy sources for all the loads attached to the power network. The network operational functionality and a developed optimized dispatch algorithm were simulated in Matlab to select generators based on their operating parameters to serve the required loads. Hybrid System Optimization Model for Electric Renewables (HOMER 2.81) software was used as the simulation, sizing and optimization tool to evaluate the performance of the developed network. This method minimized the unused capacity being wasted by reducing power plant engagement and consequently reducing the cost of fuel and carbon-based environmental pollution from the power generators that are operated in the campus. This, in turn, should encourage greenness, curbed pollution, and enhances system security and reliability. The fuel cost and emission were reduced by as much as 44.3% and 51.8% respectively. Consequently, for the specific problem identified in the operation of the Covenant University Electric Power Network, a model was developed to solve it. The developed model, in all its intent and purposes, can be generalized; that is, it can be applied to any cluster of independent dissimilar power generating plants.