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Abstract

In this paper, I analyze the role of longevity risk in Hungary
in the public pension system and the life annuity segment of the
life insurance market, which are two primary financial sectors of
relevance to this special type of actuarial risk, using state-of-the-
art econometric methodology. To this end, I present an overview
and the mathematical background of several important current
mortality forecasting techniques from the Lee–Carter model up
to unifying paradigm of the Age–Period–Cohort family of models.
After presenting the findings of a case study on the public pension
system based on the paper of Bajkó, Maknics, Tóth and Vékas, I
conclude that longevity risk jeopardizes the sustainability of the
Hungarian public pension system in the long run. In another case
study, I present an analysis of the role of longevity risk in the pre-
mium of private pension annuities, a relevant topic due to recent
changes in a law on Hungarian voluntary pension funds, following
an earlier analysis of Májer and Kovács. Based on the criterion on
out-of-sample forecasting accuracy, I find that the Cairns–Blake–
Dowd mortality forecasting model aimed specifically at modeling
old-age mortality outperforms the Lee–Carter model applied by
Májer and Kovács . Based on numerical results, I finally conclude
that the role of longevity risk in the Hungarian life annuity mar-
ket has increased significantly in the past decade and is likely to
further increase in the future.
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1 Introduction

1.1 The problem of longevity risk

It is an empirical fact that average human lifespans have increased
very rapidly during the past centuries, primarily due to advances
in medicine and nutrition. The increase is significant even in the
short run. Average lifespans of Hungarian males and females
nearly doubled between 1900 and 2014. It is a very positive
phenomenon in itself, however it is a source of methodological
problems in actuarial science, where it makes the traditional as-
sumption of time-invariant mortality rates inadequate. This is
especially problematic in the fields of pension systems and life
annuities, where the time-invariance assumption may cause gross
errors in actuarial planning, as demonstrated by two case studies
in my paper. Longevity risk may also be interpreted at an in-
dividual level, as increasing human lifespans pose a challenge for
old-age individual financial well-being, as well. My paper focuses
on the actuarial aspect of the problem, even though it has serious
implications in other fields such as demography and quantitative
finance, as well.

1.1.1 Longevity risk in the Solvency II framework

As an important recent development of my topic, the Solvency
II (EU [2009]) risk modeling and management framework of Eu-
ropean insurance companies and pension funds just entered into
force in practice on 1st January 2016. The Solvency II Directive
treats longevity risk as a submodule of the life underwriting risk
module, which itself is an important component of the base sol-
vency capital of the company, and lays down rules for calculating
the solvency capital requirement due to longevity risk, which may
be modeled by means of the so-called standard formula or an inter-
nal model tailored to the individual characteristics of the company
in question. The use of mortality forecasting methods is indis-
pensable in any actuarially adequate internal model of longevity
risk.

1.2 Literature overview

In this section, I present a brief overview of the relevant inter-
national and Hungarian literature of my chosen topic, focusing
on recent developments and papers that are relevant to my own
research.



1.2.1 International literature

The paper of Lee–Carter [1992] has probably been the most im-
portant breakthrough in the history of mortality forecasting. The
authors propose a relatively simple parametric, age- and time-
dependent log-bilinear structure of mortality rates, which gives a
surprisingly accurate description of the evolution of age-specific
mortality rates in the United States between 1900 and 1989. As
the second step of the procedure, the authors propose the rees-
timation of the time-dependent parameters (the so-called mor-
tality index) of the model, prescribing the equality of expected
and observed death counts. Finally, they forecast the time se-
ries of the reestimated mortality index by using autoregressive
integrated moving average (ARIMA, see Asteriou–Hall [2015])
processes. They find the simple specification of a random walk
with drift sufficiently accurate. In this framework, the mortal-
ity index is expected to decrease in a linear pattern, and the
forecasted mortality rates are expected to decrease exponentially.
The procedure has attained the status of the leading mortality
forecasting method in the world by the start of the new mille-
nium (Deaton–Paxson [2001]). Several international applications
of the Lee–Carter [1992] model are summarized by Lee [2000] and
Tuljapurkar–Li–Boe [2000].
The Lee–Carter [1992] model is an extrapolative statistical
method, thus it ignores the underlying causes of mortality de-
cline (advances in healthcare, lifestyle etc.).
Keilman ([1998] and [2008]) argues that official demographic pro-
jections, which frequently rely on expert opinion, systematically
and significantly underestimate the rate of decrease of mortality
rates and thereby the magnitude of longevity risk. Lee–Miller
[2001] and Wong-Fupuy–Haberman [2004] conclude that applying
the Lee–Carter [1992] model retrospectively results in far more
precise forecasts than the corresponding official estimates.
It is an open question how long the past and present rapid de-
crease of mortality will continue in the future. Based on the inac-
curacy of pessimistic official forecasts and the good performance
of the Lee–Carter [1992] model, Wong-Fupuy–Haberman [2004]
expect the decreasing trend to continue in the future, whereas
Carnes–Olshansky [2007] question the applicability of extrapola-
tive methods and expect that average human lifespans in devel-
oped countries will attain a peak and may stagnate or decrease
afterwards.
Several papers have criticized the assumptions of the Lee–Carter
[1992] model and proposed its extensions. As a first extension,
Lee–Carter [1992] themselves propose the introduction of binary
variables in the equations of mortality rates to capture the mor-
tality shock experienced in the years of the Spanish flu epidemic
following the First World War.



Wilmoth [1993] criticizes the homoskedasticity assumption of the
model, arguing that the error variance of logarithmic mortal-
ity rates is in fact inversely proportional to the observed death
counts. To remedy this shortcoming, he proposes the weighted
least squares method instead of the Singular Value Decomposi-
tion applied by Lee–Carter [1992].
Lee–Miller [2001] propose a new procedure of reestimating the
mortality index in the Lee–Carter [1992] model and suggest that
the last observed rates should serve as jump-off points in the fore-
casts.
Brouhns et al. [2002a] assume that death counts follow a Poisson
distribution. This variant is known as the Poisson Lee–Carter
method, which has several advantages over the original method:
it does not assume the homoskedasticity of the error terms, it
explicitly takes the exposures and death counts into account, it
does not apply the – rather heuristic – reestimation step proposed
by Lee–Carter [1992], and it may be embedded more easily into
actuarial applications. As an illustration of the latter, Brouhns et
al. [2002a] present an analysis of anti-selection in the life annuity
market based on their model variant.
A common criticism of the Lee–Carter [1992] model is that it
only captures the uncertainty arising from the error terms of the
time series of the mortality index in the confidence intervals of
the forecasts, while taking the estimated parameters of the model
for granted. Brouhns et al. [2005] demonstrate that it is possible
to adequately model parameter uncertainty in the Poisson Lee–
Carter variant proposed by Brouhns et al. [2002a] by means of
bootstrapping (Efron [1979]).
Many authors criticize the Lee–Carter [1992] model for failing
to take into account any cohort effects beyond age and time ef-
fects. The most popular cohort-based extension of the original
method is the Renshaw–Haberman [2006] model. As this proce-
dure has proved to be numerically unstable, Haberman–Renshaw
[2011] simplify their model by assuming the age-independence of
the cohort effect.1

Another way of extending the model is to introduce additional
time series of mortality indices, resulting in so-called multi-factor
mortality forecasting models. Booth–MainDonald–Smith [2002]
present a multi-factor extension of the Lee–Carter [1992] model
based on retaining further singular vectors in the Singular Value
Decomposition proposed by the original authors. The authors
conclude that it is rather complicated to include the additional
mortality factors in the forecasts, and give recommendations for
the reestimation of the mortality indices and the selection of the
appropriate estimation base period.

1. As Hunt–Villegas [2015] point out, even the simplified model may pose computa-
tional challenges.



Beyond mortality rates, the Lee–Carter [1992] method and its ex-
tensions may also be used to forecast age-specific fertility rates, as
illustrated by Hyndman–Ullah [2007] and Wísniowski et al. [2015].
The Age–Period–Cohort (APC) model (Hobcraft et al. [1982] and
Carstensen [2007]), which is a special case of the simplified model
of Haberman–Renshaw [2011], is another simple and popular mor-
tality forecasting method.
The two-factor Cairns–Blake–Dowd [2006] model, which aims to
capture old-age mortality, along with its three-factor generaliza-
tion by Plat [2009], are widely applied methods in actuarial sci-
ence. Plat [2009] recommends a simplifed two-factor version of
his model to forecast old-age mortality. This variant is a cohort-
based extension of the Cairns–Blake–Dowd [2006] model.
Based on an analysis of Finnish and Swedish mortality data,
Lovász [2011] proposes the Plat [2009] model for actuarial ap-
plications. Cairns et al. [2009] propose the Cairns–Blake–Dowd
[2006] model for British and the Renshaw–Haberman [2006] model
for American data. The authors suggest the introduction of a
quadratic age effect in the Cairns–Blake–Dowd [2006] model.
Researchers and practitioners naturally need a unifying framework
of the countless intricate mortality forecasting methods which
have evolved based on the criticism of the Lee–Carter [1992]
model. An appropriate generalized family of these models has
been proposed recently by Hunt–Blake [2014], Currie [2016] and
Villegas et al. [2016]. Among other possible names, this frame-
work is known as the Generalized Age–Period–Cohort (GAPC)
model, and is motivated by the Generalized Linear Model (GLM,
McCullagh–Nelder [1989]), which is widespread in actuarial ap-
plications. The GAPC family unifies age- and time-dependent,
log-bilinear and logit-bilinear, one- and multi-factor, as well as
cohort-free and cohort-based mortality forecasting models. The
resulting wide family includes the Poisson Lee–Carter (Brouhns
et al. [2002a]), Renshaw–Haberman [2006], Age–Period–Cohort
(Carstensen [2007]), Cairns–Blake–Dowd [2006] and Plat [2009]
models besides several other procedures. Additionally, the GAPC
framework also unifies several individually tailored parameter es-
timation, model selection and forecasting procedures.
A comprehensive report of the International Monetary Fund (IMF
[2012]) on the financial impact of longevity risk concludes among
others that every one-year increase of the life expectancy at age
63 increases the value of pension liabilities by 3 per cent in the
United States.
Brouhns et al. [2002b] examines the role of longevity risk in the
premium calculation of life annuities based on the Poisson Lee–
Carter model variant of Brouhns et al. [2002a]. The authors sim-
ulate the model parameters from the multivariate normal distri-
bution (Deák [1990] and Gassmann–Deák–Szántai [2002]) based



on their maximum likelihood estimator and Fisher information
matrix, and compute the net premium of a life annuity for each
replication to approximate its probability distribution. The pa-
per of Hári et al. [2008] applies the two-factor Lee–Carter model
(Booth–MainDonald–Smith [2002]) for this purpose.
Some prominent sources of the quantitative financial aspect of
longevity risk, which itself is not examined in my paper: Krutov
[2006] and Cairns–Blake–Dowd [2008] examine the securitization
of longevity risk, a phenomenon which emerged in the financial
markets in the new millennium, Blake et al. [2006] and Bauer et
al. [2010] present pricing methods for longevity bonds, and Dowd
et al. [2006] analyze the associated longevity swaps from a finan-
cial point of view.

1.2.2 Hungarian literature

Baran et al. [2007] fit a three-factor generalized Lee–Carter [1992]
model to Hungarian mortality data, and conclude that the es-
timation period of the years 1949–2003 is inappropriate due to
structural breaks in the mortality patterns, which are absent if
the period 1989–2003 is used instead. The authors warn practi-
tioners that forecasts should be interpreted with caution due to
the past variability of Hungarian mortality.
Since the mortality of annuitants may differ substantially from the
general population, and at the same time, the short history and
small size of the Hungarian life annuity market mostly rule out
the possibility of the creation of company- and product-specific life
tables, Arató et al. [2009] recommend the use of past life tables
of other countries which are sufficiently similar to the experience
of the company in question. They propose three possible metrics
to assess the similarity of life tables along with a simulation pro-
cedure which may be used to compute the critical values of the
associated test statistics, and recommend a forecasting procedure
based on a simple parametric mortality law.
Májer–Kovács [2011] apply the Lee–Carter [1992] model on mor-
tality data of Hungarian people aged between 65 and 100 years in
the period 1970–2006, and compute the life expectancy at the cur-
rent retirement age of 65 years as well as the net single premium
of a life annuity based on two assumptions: the static life table
of 2006 and the dynamic life table obtained by their forecasts.
According to their results, the static model underestimates the
life expectancy at retirement by 6.33 per cent and the net single
premium of the life annuity by 4.51 per cent compared to the dy-
namic approach. The authors present confidence intervals based
on two approaches: by considering only the uncertainty arising
from the error terms of the mortality index, as proposed by Lee–
Carter [1992], and by treating the stochastic trend parameter of
the mortality index as a random variable, thereby capturing some



of the parameter uncertainty inherent in the model. Addition-
ally, they demonstrate that life annuities do not become risk-free
for the annuity provider even in an infinite portfolio of policies if
longevity risk is present.
Banyár [2012] presents a comprehensive treatise of the practical
and theoretical questions of the modeling of life annuities provided
to pension fund members.
Bajkó–Maknics–Tóth–Vékás [2015] apply the Lee–Carter [1992]
model to forecast age-specific Hungarian mortality and fertility
rates and analyze the sustainability of the Hungarian public pen-
sion system based on their forecasts and a cohort-based pension
model.

2 The applied methodology

2.1 Statistical indicators of mortality

The most fundamental statistical indicator of mortality is the mor-
tality rate, which may be obtained as the ratio of the death count
and the corresponding exposure in a given population and period:

m =
D

E
, (1)

where m is the mortality rate, D ∈ N is the number of deaths
in the given population and period and E > 0 is the correspond-
ing exposure, which may be defined as the number of people in
the given population at the beginning of the period (the so-called
initial exposed to risk, denoted by E0) or the average number of
people alive in the given population during the same period (the
so-called central exposed to risk, denoted by Ec).
Among several important types of mortality rates, age-specific
mortality rates are of cardinal importance. In this case, the given
population is the group of people belonging to the age group
x ∈ {1, 2, . . . , X} at the beginning of the period. The age group
is usually denoted in the lower index of mortality rates, death
counts and exposures. Thus age-specific initial and central mor-
tality rates are computed as follows:

m0
x =

Dx

E0
x

(x = 1, 2, . . . , X),

mc
x =

Dx

Ecx
(x = 1, 2, . . . , X).

(2)

These two quantities may be related to each other based on ap-
proximations of the average lifetime of the deceased.



2.2 The Lee–Carter model

In this section, I assume that mxt denotes the central death rates
mc associated with the age group x ∈ {1, 2, . . . , X} and calendar
year t ∈ {1, 2, . . . , T}, suppressing the upper index c for simplicity.
The calendar years are assumed to be consecutive.
The Lee–Carter [1992] model assumes that the central death rates
mxt > 0 are known for all age groups x ∈ {1, 2, . . . , X} and cal-
endar years t ∈ {1, 2, . . . , T}, and are described by the following
equation:

lnmxt = ax + bxkt + εxt (x = 1, 2, . . . , X, t = 1, 2, . . . , T ),
(3)

where X ≥ 2 and T ≥ 2 are integers.
In Equation (3), ax, bx and kt are age- and time-dependent param-
eters and εxt are error terms, which are assumed to be independent
and normally distributed with mean 0 and equal variance σ2 > 0:2

εxt ∼ N (0, σ2) (x = 1, 2, . . . , X, t = 1, 2, . . . , T ).

In this case, the age- and time-specific mortality rates are inde-
pendent with the following distributions:

lnmxt ∼ N (ax + bxkt, σ
2) (x = 1, 2, . . . , X, t = 1, 2, . . . , T ).

Introducing the following parameter vectors facilitates the remain-
der of the presentation of the model:

a =


a1
a2
...
aX

 , b =


b1
b2
...
bX

 , k =


k1
k2
...
kT

 .
The model has 2X + T + 1 parameters, which are meant to give
a parsimonious description of the original XT mortality rates.
It causes an identification problem that the parameters (a,b,k)
may be transformed as follows, while remaining valid in Equa-
tion 3:

(ã, b̃, k̃) =
(
a + αb,

1

β
b, β(k− α1)

)
(α, β ∈ R, β 6= 0)

2. Lee–Carter [1992] do not name a specific distribution beyond the mean and variance,
but inserting the additional normality assumption leads to their original parameter
estimates in a rigorous maximum likelihood setting.



To eliminate any degrees of freedom, Lee–Carter [1992] propose
the following additional constraints:3

X∑
x=1

bx = 1Tb = 1,

T∑
t=1

kt = 1Tk = 0.

(4)

The logarithmic transformation of the mortality rates on the left-
hand side of Equation (3) is motivated by two circumstances: the
variance-stabilizing transformation increases the validity of the
homoskedasticity assumption, and additionally, the negativity of
the untransformed mortality rates is ruled out this way.
The maximum likelihood estimates of the parameters ax
(x = 1, 2, . . . , X) are equal to the average log-mortality rates by
age group:

âx =
1

T

T∑
t=1

lnmxt (x = 1, 2, . . . , X).

For notational simplicity, centralized logarithmic mortality rates
m̃xt and their matrix may be defined as follows:

m̃xt = lnmxt −
1

T

T∑
t=1

lnmxt (x = 1, 2, . . . , X, t = 1, 2, . . . , T ),

M =


m̃11 m̃12 . . . m̃1T

m̃21 m̃22 . . . m̃2T
...

...
. . .

...
m̃X1 m̃X2 . . . m̃XT

 .

Using this notation, the maximum likelihood estimators of the
vectors b and k are equal to the dominant left and right singular
vectors of the matrix M after proper normalization according to
the identification constraints (4), and the maximum likelihood
estimator of the error variance is equal to the root mean squared
error of the model:

σ̂2 =
1

XT

X∑
x=1

T∑
t=1

(lnmxt − âx − b̂xk̂t)2.

The parameter vector k is called the mortality index, which rep-
resents the evolution of overall mortality by calendar year in the
model, while the elements of the parameter vector b represent the
age-specific sensitivities of the log-mortality rates with respect to
changes in the mortality index.

3. 1T = (1, 1, . . . , 1) is the summation vector of the appropriate dimension.



The maximum likelihood estimators uniquely exist under a set of
sufficient regularity conditions.
If age- and period-specific central exposures Ecxt > 0 and death
counts Dxt ∈ N are known for all x ∈ {1, 2, . . . , X} and t ∈
{1, 2, . . . , T}, then Lee–Carter [1992] propose the reestimation of
the mortality index so that the equation

k̂
(adj)

= {k ∈ RT : Dt =
X∑
x=1

Dxt =
X∑
x=1

Ecxte
ax+bxkt (t = 1, 2, . . . , T )}

holds, which ensures that estimated and observed death counts
are equal in all calendar years. This step is motivated by the fact
that the original estimates of the mortality index do not take the
sizes of age groups into consideration, thereby disproportionately
tilting the fit of the model towards otherwise less relevant younger
ages.
Lee–Carter [1992] model the reestimated mortality index as an
ARIMA process (see e.g. Asteriou–Hall [2015]). They argue that
the ARIMA(0, 1, 0) specification of a random walk with drift
(RWD) typically provides a satistfactory fit, and this specifica-
tion is used in the majority of applications:

k̂
(adj)
t = k̂

(adj)
t−1 + s+ φt (t = 2, 3, . . . , T ), (5)

where k̂
(adj)
1 ∈ R is a given initial value, s ∈ R is the drift pa-

rameter and the terms φt denote the error terms, which are as-
sumed to be independent normal random variables with mean 0
and identical variance σ2RWD > 0. Additionally, the error terms
are independent from those of the log-mortality rates. The max-
imum likelihood estimates of the parameters of Equation (5) are
as follows:

ŝ =
1

T − 1

T∑
t=2

(k̂
(adj)
t − k̂(adj)t−1 ) =

k̂
(adj)
T − k̂(adj)1

T − 1
, (6)

σ̂2RWD =
1

T − 1

T∑
t=2

(k̂
(adj)
t − k̂(adj)t−1 − ŝ)

2.

Future log-mortality rates may be estimated by extrapolating
Equation (5) and applying Equations (3) and (6):

ln m̂x,T+j = âx + b̂x(k̂
(adj)
T + jŝ) (x = 1, 2, . . . , X, j = 1, 2, . . .).

Forecasting uncertainty may be modeled by the Monte Carlo sim-
ulation (Deák [1990]) of the error terms of Equation (5).

2.3 The Generalized Age–Period–Cohort
(GAPC) family of models

The Generalized Age–Period–Cohort (GAPC) family of models
(Hunt–Blake [2014], Currie [2016] and Villegas et al. [2016]) is a



unifying framework of several mortality forecasting methods. In
this section, mxt denotes either the inital m0 or central mc mor-
tality rates associated with the age group x ∈ {1, 2, . . . , X} and
calendar year t ∈ {1, 2, . . . , T}.
In order to apply this methodology, it is necessary to know the
death counts Dxt ∈ N and the set of central or initial expo-
sures Ecxt > 0 or E0

xt ∈ N>0 for all x ∈ {1, 2, . . . , X} and
t ∈ {1, 2, . . . , T}. The model considers the death counts Dxt to be
realizations of random variables D̃xt, which are either Poisson on
binomially distributed, depending on the type of exposures:

D̃xt ∼ Poisson(Ecxtm
c
xt) (x = 1, 2, . . . , X, t = 1, 2, . . . , T )

vagy D̃xt ∼ Bin(E0
xt,m

0
xt) (x = 1, 2, . . . , X, t = 1, 2, . . . , T ).

(7)

The model family assumes that the random variables D̃xt

(x = 1, 2, . . . , X, t = 1, 2, . . . , T ) are independent.
The mortality rates on the right-hand side of Equation (7) are
given by the following equation:

g(mxt) = ηxt (x = 1, 2, . . . , X, t = 1, 2, . . . , T ), (8)

where ηxt is called the systematic component of the model and
g : R>0 → R is a continously differentiable, strictly increasing
function (the so-called link function). Hunt–Blake [2014] propose
the logarithmic link function g(y) = ln y (y > 0) for central death

rates and exposures and the logit link function g(y) = ln
(

y
1−y

)
(0 < y < 1) for initial death rates and exposures. I follow this
convention in my paper.
The systematic component (8) is the following function of ages,
periods and cohorts:

ηxt = ax +

N∑
i=1

b(i)x k
(i)
t + b(0)x ct−x (x = 1, 2, . . . , X, t = 1, 2, . . . , T ),

(9)

where N ∈ N is the number of age-period interactions in the

model, ax and {b(i)x }Ni=0 are age-dependent, {k(i)t }Ni=1 are period-
dependent and ct−x are cohort-dependent, real-valued parameters.
The model has (N+1)(X+T )+2X−1 parameters, which capture
the original XT mortality rates.
Typically, Equation (9) must be accompanied by identification
constraints, which depend on the model specification in question.
At the end of this section, I shall present in more detail five pop-
ular models which are members of the GAPC family.



The parameter vector of the GAPC family may be written as

ζT = (a1, a2 . . . , aX ,

b
(0)
1 , b

(0)
2 , . . . , b

(0)
X ,

b
(1)
1 , b

(1)
2 , . . . , b

(1)
X ,

b
(2)
1 , b

(2)
2 , . . . , b

(2)
X ,

...

b
(N)
1 , b

(N)
2 , . . . , b

(N)
X ,

k
(1)
1 , k

(1)
2 , . . . , k

(1)
T ,

k
(2)
1 , k

(2)
2 , . . . , k

(2)
T ,

...

k
(N)
1 , k

(N)
2 , . . . , k

(N)
T ,

c1−X , c1−X+1, . . . , cT−1) ∈ R(N+1)(X+T )+2X−1,

which may be estimated by means of the maximum likelihood
method. In the case of central exposures, the log-likelihood of the
model is

`(ζ) =

X∑
x=1

T∑
t=1

χxt

(
− Ecxtmc

xt +Dxt(lnE
c
xt + lnmc

xt)− ln(Dxt!)
)
,

where

mc
xt = g−1(ηxt) = eηxt (x = 1, 2, . . . , X, t = 1, 2, . . . , T ),

and in the case of initial exposures, the log-likelihood function is

`(ζ) =
X∑
x=1

T∑
t=1

χxt

(
ln

(
E0
xt

Dxt

)
+Dxt lnm0

xt + (E0
xt −Dxt) ln(1−m0

xt)
)
,

where

m0
xt = g−1(ηxt) =

1

1 + e−ηxt
(x = 1, 2, . . . , X, t = 1, 2, . . . , T ).

The log-likelihood function has to be maximized with respect to
ζ, subject to the identification constraints of the model variant in
question. Brouhns et al. [2002a] propose the Newton method for
the numerical optimization of the log-likelihood function.
Model selection may be perfomed using the likelihood ratio test,
the Akaike and Bayesian information criteria or by estimating
models on a training period and minimizing the out-of-sample
forecasting error of the model in a subsequent test period.

The mortality indices k
(i)
t (i = 1, 2, . . . , N , t = 1, 2, . . . , T ) are

usually modeled and forecasted jointly as a multivariate random



walk with drift, and the cohort effects cj (j = 1−X, 2−X, . . . , T−
1) are normally modeled and forecasted as an ARIMA process.4

Point estimates of the systematic component of the model may
be obtained by substituting the forecasted values of the mortality
indices and the cohort effect into Equation (9) as follows:

η̂x,T+j = âx +
N∑
i=1

b̂(i)x Ê(k̂
(i)
T+j) + b̂(0)x Ê(ĉT+j−x)

(x = 1, 2, . . . , X, j = 1, 2, . . .).

(10)

Subsequently, point estimates of future mortality rates may be
obtained by applying Equations (10) and (8) as follows:

m̂x,T+j = g−1(η̂x,T+j) (x = 1, 2, . . . , X, j = 1, 2, . . .).

Forecasting uncertainty due to the error terms of the time series of
mortality indices and cohort effects may be modeled using Monte
Carlo simulation (Deák [1990]). However, this procedure under-
estimates the actual forecasting uncertainty as it fails to take any
parameter uncertainty into account by treating the estimated pa-
rameters of the model for granted. In order to include parameter
uncertainty in the estimates, Brouhns et al. [2005] propose semi-
parametric bootstrapping (Efron [1979]), while Koissi et al. [2006]
proposes residual bootstrapping.
In the semiparametric bootstrap procedure proposed by Brouhns
et al. [2005], B ∈ N>0 bootstrap samples of death counts Db

xt

(b = 1, 2, . . . , B, x = 1, 2, . . . , X, t = 1, 2, . . . , T ) are generated
from Poisson distributions with means equal to the observed death
counts, and the parameters of the selected GAPC and time series
specifications are reestimated in each of the bootstrap samples.
The probability distribution of the analyzed indicators (e.g. death
rates or life expectancies) may be approximated by their empirical
bootstrap distributions, and the approximation is asymptotically
consistent as the number of bootstrap samples converges to infin-
ity.
I now present the five particular members of the GAPC family
which I applied in my analysis.

2.3.1 The Poisson Lee–Carter (LC) model

Brouhns et al. [2002a] suggest the Poisson Lee–Carter model with
systematic component

ηxt = ax + bxkt (x = 1, 2, . . . , X, t = 1, 2, . . . , T ). (11)

4. Renshaw–Haberman [2006] propose an ARIMA(1, 1, 0) process with drift, while Plat
[2009] suggest an ARIMA(2,2,0) process with drift.



Brouhns et al. [2002a] assume central exposures and propose the
logarithmic link function. In contrast to Equation (3), Equa-
tion (11) contains no error terms, as the error variance is contained
by the Poisson distributions of the hypothetical death counts in
this model variant. The identification constraints of this model
variant are identical to the ones proposed by Lee–Carter [1992]:

X∑
x=1

bx = 1,

T∑
t=1

kt = 0

The reestimation of the mortality index is not necessary in this
model. It is worth noting that the original Lee–Carter [1992]
model itself is not a member of the GAPC family.

2.3.2 The Renshaw–Haberman (RH) model

Renshaw–Haberman [2006] extend Equation (11) with a cohort
effect:

ηxt = ax + b(1)x k
(1)
t + b(0)x ct−x (x = 1, 2, . . . , X, t = 1, 2, . . . , T ).

They assume central mortality rates and the logarithmic link func-
tion.
Due to the numerical instability of the model, Haberman–
Renshaw [2011] propose a simplified version of their model with
the systematic component

ηxt = ax + bxkt + ct−x (x = 1, 2, . . . , X, t = 1, 2, . . . , T ). (12)

The authors propose the following identification constraints:

X∑
x=1

bx = 1,

T∑
t=1

kt = 0,

T−1∑
i=1−X

ci = 0.

I apply the simplified variant of the model according to Equa-
tion (12) in my analysis.

2.3.3 The Age–Period–Cohort (APC) model

The Age–Period–Cohort model (Carstensen [2007]) is a special
case of the RH model. Its systematic component is

ηxt = ax + kt + ct−x (x = 1, 2, . . . , X, t = 1, 2, . . . , T ),



This model is typically applied in conjunction with central expo-
sures, the logarithmic link function and the following identification
constraints:

T∑
t=1

kt = 0,



T−1∑
i=1−X

ci = 0,

T−1∑
i=1−X

ici = 0.

2.3.4 The Cairns–Blake–Dowd (CBD) model

The Cairns–Blake–Dowd [2006] model of old-age mortality has
the systematic component

ηxt = k
(1)
t + (x− x̄)k

(2)
t (x = 1, 2, . . . , X, t = 1, 2, . . . , T ),

(13)

where x̄ = 1+X
2 is the arithmetic mean of the age indices in the

model. The authors propose the application of the model in ages
above x0 = 60 years. ηxt in Equation (13) describes the mortality
of people aged x0 + x. Cairns–Blake–Dowd [2006] assume initial
exposures and the logit link function. No identification constraints
are necessary in this model.

2.3.5 The Plat model

The systematic component of the Plat [2009] model is

ηxt = ax + k
(1)
t + (x− x̄)k

(2)
t + (x̄− x)+k

(3)
t + ct−x

(x = 1, 2, . . . , X, t = 1, 2, . . . , T ),

where x̄ = 1+X
2 is the arithmetic mean of age indices in the model

and (x̄− x)+ = max{x̄− x; 0}.
In the special case of modeling old-age mortality, the author rec-

ommends the omission of the third mortality index k
(3)
t , resulting

in the systematic component

ηxt = ax + k
(1)
t + (x− x̄)k

(2)
t + ct−x (x = 1, 2, . . . , X, t = 1, 2, . . . , T ).

(14)

ηxt in Equation (14) describes the mortality of those aged x0 + x,
where x0 is a base age (e.g. x0 = 60).
I use the old-age variant of the Plat model according to Equa-
tion (14) in my analysis. Plat [2009] assumes central exposures
and the logarithmic link function, and proposes the following iden-



tification constraints:

T∑
t=1

k
(1)
t = 0,

T∑
t=1

k
(2)
t = 0,

T−1∑
i=1−X

ci = 0,

T−1∑
i=1−X

ici = 0.

3 Results

I present two case studies in this paper. The first case study
analyzes the Hungarian public pension system, while the second
one examines the role of longevity risk in the premium calculation
of pension annuities.

3.1 Case study I:
The sustainability of the
Hungarian pension system

My first case study is built on the paper of Bajkó–Maknics–Tóth–
Vékás [2015], which uses the Lee–Carter [1992] model to forecast
some main demographic indicators of Hungary until 2035, and
presents a cohort-based pension model, which the authors use
to analyze the impact of the present demographic and macroe-
conomic trends as well as some hypothetical parametric pension
policy measures on the sustainability of the Hungarian public pen-
sion system.
The authors use mortality data of the Hungarian general popula-
tion from the period 1950–2012, and select the estimation base pe-
riod of the years 1980–2012 based on the criterion of out-of-sample
forecasting accuracy in the test period of the years 2001–2012,
where accuracy is measured by the χ2 test statistic for life tables
(Benjamin–Pollard [1993]). They forecast the gender-specific mor-
tality indices using an ARIMA(1, 1, 1) specification, which they
select by means of the Box–Jenkins methodology (Asteriou–Hall
[2015]). They forecast life expentancies at birth to increase up to
82.12 years for females and 75.95 years for males by 2035 from
the current values of 78.91 years for females and 72.13 years for
males.
Following Hyndman [2007], Bajkó–Maknics–Tóth–Vékás [2015]



forecast age-grouped fertility rates using the estimation base pe-
riod of 2000–2012 and official fertility data, and demonstrate the
rapid increase of the mean childbearing age, which they expect to
continue in the future. Their estimates indicate a slighlty increas-
ing total fertility rate, which is nevertheless expected to remain
well below the approximate critical replacement value of 2.1 (Es-
penshade et al. [2003]) throughout the forecasting period.
Based on their estimates of mortality and fertility, they forecast
the population of the country by means of a simple recursion,
and estimate the population size to decrease to 8 647 505 people
by 2035, 51.5 per cent of whom are expected to be female. It
is important to note that their results do not take the effect of
migration into account. Additionally, they forecast a rapidly and
progressively increasing old-age dependency ratio, which seriously
jeopardizes the sustainability of the system.
They build a cohort-based model of the incomes and expenditures
of the system using their own demographic forecasts and simple
additional forecasts of future employment rates and real wages.
Besides the mean estimates, they construct optimistic and pes-
simistic scenarios of the latter two indicators, which they apply
for scenario-based sensitivity analysis. They forecast the incomes
of the system based on their forecasts of age- and gender-specific
population counts, employment rates and real wages as well as the
legislation on pension contributions (Parliament [2014]). They do
not take some minor sources of income (such as fines and govern-
ment contributions) into account, which they consider impossible
to model due to the extent of their past variability. They fore-
cast gender-specific initial pensions at the retirement age using
the pension formula defined by law, determine the percentages
of pension-aged people who are entitled to government pensions
based on projections and index already existing pensions by the
assumed inflation rate. Beyond regular old-age pensions, they
take other types of pensions into account by projecting current
trends.
They validate their model by forecasting the main indicators of
the model for the years 2012 to 2014 and comparing them to their
actual realizations, and find the short-term forecasting accuracy
of their model surpisingly good.
Numerical results of the model and the sensitivity analyses are dis-
cussed in Section 3.3. Overall the authors find the sustainability
of the system highly problematic in the medium term, and be-
yond the short term measures of increasing pension contributions
and the retirement age and keeping the indexation of pensions in
line with the inflation rate, they propose two important long-term
solution strategies: providing more incentives for childbearing as
well as for middle-aged employment, where there is still room for
improvement despite the otherwise increasing overall employment



rate.

3.2 Case study II:
Longevity risk in the premium
calculation of pension annuities

The motivation of the second case study is the methodological up-
grade of the analysis presented by Májer–Kovács [2011] and the
assessment of the change in the impact of longevity risk on the
premium calculation of pension annuities in the period between
2006 and 2014. I apply the Generalized Age–Period–Cohort fam-
ily of models (Hunt–Blake [2014], Currie [2016] and Villegas et
al. [2016]) in conjunction with the bootstrapping procedure pro-
posed by Brouhns et al. [2005] to forecast old-age mortality rates
and quantify the impact of longevity risk as well as the associated
forecasting uncertainty.
I base my analysis on unisex mortality data (as mandated by
EU [2004]) of the age group of 65 to 99 years of the Hungarian
general population5 from the period 1975–2014, and select the
Cairns–Blake–Dowd [2006] model based on the estimated out-of-
sample forecasting error of the five GAPC models presented in
Section 2.3.6 I assessed the out-of-sample forecasting accuracy on
the period 2005–2014 by applying the χ2 test statistc for life ta-
bles (Benjamin–Pollard [1993]) in the age group of 65 to 84 years.
The importance of the analysis is increased by the new legislation
on pension annuities in relation to voluntary pension funds (Par-
liament [2015]), which mandates these funds to offer its members
the option to purchase life annuities at retirement, complement-
ing the option to purchase closed-term financial annuities, which
have been available for a long time in this context, albeit being
less appropriate for the desired purpose of providing old-age fi-
nancial security to fund members.
I shall present further numerical results and their interpretation
in Section 3.3.

3.3 Summary

I now summarize my main research questions and the answers to
them in the following list:

• What are the expected trajectories of Hungarian male and
female age-specific mortality rates, fertility rates, the popu-

5. Banyár [2012] elaborates on the question of the selection of the appropriate life
table for pension annuities. As no company-specific mortality data were available,
I had no option but to work with data for the general population.

6. I performed the necessary calculations in the statistical environment R (R [2008]
and Villegas et al. [2016]).



lation of the country, the life expectancies at birth and the
old-age dependency ratio until the year 2035?
Answer: The forecasts presented in the paper of Bajkó–
Maknics–Tóth–Vékás [2015], which rely on the Lee–Carter
[1992] model, indicate that both male and female age-specific
mortality rates are expected to decrease significantly until
2035, besides a slightly increasing fertility rate, which is nev-
ertheless expected to remain well below the critical value of
2.1. As a result of these processes, the population of Hungary
is expected to drop below 8 648 000 people by 2035, and the
age distribution of the population is expected to change signif-
icantly. Life expectancies at birth are expected to rise up to
76 years for men and 82 years for women, while the old-age
dependency ratio is expected to increase above 40 per cent by
2035, which is one and a half times its current value, pos-
ing a serious challenge to the sustainability of the Hungarian
public pension system.

• How long is the current balance of the incomes and expen-
ditures of the Hungarian public pension system sustainable
given the present trends in employment, mortality, fertil-
ity, real wage improvement and the current retirement age?
What is the expected trajectory of the balance of the system?
Which parametric changes may prolong the equilibrium of the
system and how long are they effective?
Answer: The cohort-based pension model presented in the pa-
per of Bajkó–Maknics–Tóth–Vékás [2015] predicts the balance
of the system to drop into the negative range starting in 2026,
and the deficit is expected to reach the size of 8 per cent of all
pension-related taxes and contributions by 2035. According to
the model, the problem may be resolved by increasing pension-
related contributions as a percentage of gross wages by 4 per
cent by 2035, or by increasing the share of the social con-
tribution tax allocated to the public Pension Insurance Fund
from the value of 85.46 per cent in 2015 back to the value of
96.3 per cent in 2014. However, this would be detrimental to
the Health Insurance Fund, which is the other recipient of the
same tax. If real wages evolve in the future according to the
assumed optimistic and pessimistic scenarios then a deficit
will first emerge in 2035 and 2022, respectively, assuming that
all other parameters are unchanged. Similary, if employment
evolves in the future according to the assumed optimistic and
pessimistic scenarios then the first deficit will appear in the
system in 2034 and 2023, respectively, given that all other pa-
rameters behave according to the base scenario. However, if
the retirement age is continuously increased according to the
expected increase of the life expectancy at the retirement age,
as in Denmark, then the model indicates no deficit throughout



the forecasting period up to 2035.

• Which widely applied mortality forecasting method provides
the most accurate description of Hungarian old-age mortal-
ity rates based on the criterion of out-of-sample estimation
accuracy?
Answer: Out of five popular mortality forecasting techniques,
the Cairns–Blake–Dowd [2006] model, which is specifically
recommended for the modeling of old-age mortality, has the
best forecasting accuracy for the ages of 65 to 84 years on
the testing period 2005–2014. This model produces the low-
est growth rate of the estimation error as the time horizon
increases, and a significantly smaller error than the other-
wise second most precise Poisson Lee–Carter in the ages be-
tween 65 and 70 years, which are of paramount importance
in the premium calculation of life annuities. The use of the
overparametrized Plat [2009] and Renshaw–Haberman [2006]
models leads to overfitting, which may be inferred from their
excellent fit on the training period and their weak forecasting
performance on the testing period, which deteriorates rapidly
as the forecasting horizon increases.

• What is the size of the error and the associated financial loss
if the annuity provider calculates the life expectancy at retire-
ment and the net single premium of the life annuity starting
at retirement based on the classical actuarial methodology,
assuming static – instead of dynamic – mortality?
Answer: Based on the dynamic unisex life table generated by
the Cairns–Blake–Dowd [2006] model, the life expectancy at
retirement is approximately two years higher than the corre-
sponding value obtained under the assumption of static mor-
tality. The static calculation underestimates the net single
premium of the life annuity starting at retirement by 6.43 per
cent, which causes an immediate deficit of 1 million 60 thou-
sand HUF in the premium reserve and a financial loss of
the same size in the case of a hypothetical life annuity with a
yearly payout of 1 million HUF. This loss is highly significant
in actuarial practice.

• Has the size of the premium calculation error resulting from
ignoring longevity risk increased significantly in the past eight
years?
Answer: Yes. In the period between 2006 and 2014, the un-
derpricing error caused by static premium calculation has in-
creased from 4.51 per cent, as presented by Májer–Kovács
[2011], to 6.43 per cent. This increase is highly significant
in actuarial practice, and it is statistically significant beyond
doubt due to the enormous sample size of the Hungarian gen-
eral population, irrespectively of the type of statistical test ap-
plied.



Based on the answers to my research questions, I establish the
following conclusions in relation to the research hypotheses pre-
sented in the introduction of my paper:

• Hypothesis 1: The improvement of Hungarian mortality
along with the current trends in fertility and employment are
jointly expected to lead to the excess of expenditures versus
incomes of the Hungarian public pension system, which im-
plies the unsustainability of the system in the medium term.
Conclusion: Yes, the balance of the Hungarian public pension
system is expected to incur a progressively increasing deficit
starting in 2026 under the standard model assumptions and
the current parameters of the system, as demonstrated by the
cohort model of Bajkó–Maknics–Tóth–Vékás [2015].

• Hypothesis 2: One of the newer mortality forecasting meth-
ods that have evolved in the new millennium provides a bet-
ter description of Hungarian old-age mortality rates than the
classical Lee–Carter [1992] model.
Conclusion: Yes, the Cairns–Blake–Dowd [2006] two-factor
mortality forecasting method provides the most accurate de-
scription of Hungarian old-age mortality rates based on the
criterion of out-of-sample forecasting accuracy in the chosen
test period.

• Hypothesis 3: The importance of longevity risk in the pre-
mium calculation of life annuities starting at retirement in-
creased in Hungary between 2006 and 2014.
Conclusion: Yes. By relying on a static life table, annuity
providers would have incurred a significantly larger financial
loss in 2014 than eight years earlier, based on the criteria
of both practical and statistical significance, which implies
that the significance of longevity risk in the premium calcula-
tion of life annuities increased in the same period. Addition-
ally, since the insured population is typically subject to lower
mortality rates than the general population, and the insured
population who purchase annuity products typically have even
lower mortality rates than the whole of the insured population,
which may party be attributed to opportunistic anti-selection
(Banyár [2003]), even larger errors may be expected in actual
portfolios of life annuities. The importance of the question is
further increased by the new government regulation on the
provision of life annuities to members of voluntary private
pension funds (Parliament [2015]), which is likely to lead to
an expansion of the Hungarian market of life annuities.

The results of this paper may and should be extended in sev-
eral directions in the future. I mention three specific possible
lines of future research. The analysis of the Hungarian public
pension system should be amended by a similar model of the in-



comes and expenditures of the public healthcare system, which
is also seriously affected by the problem of longevity risk. This
is a highly challenging topic, as the methodology of the analysis
of morbidity rates and health expenditures is very different from
the modeling of pension systems, and it requires much more de-
tailed datasets. Another promising direction is the application of
pension microsimulation models. This methodology enables the
modeler to take distributional effects into account, thereby en-
abling more accurate forecasts. Finally, I consider it important
to create an integrated statistical and microeconomic model of
anti-selection in the life annuity market, as even otherwise very
accurate forecasts may be highly misleading if the hypothetical
insurance portfolio assumed for premium calculation differs signif-
icantly from the actual composition of the portfolio of policies. A
thoroughly validated anti-selection model based on a wide dataset
would provide a useful tool for actuaries and researchers analyzing
the Hungarian market of life annuities.
Beyond the answers to my research questions and the conclusions
of my research hypotheses, the main methodological contributions
of my analysis are the cohort-based pension model presented by
Bajkó–Maknics–Tóth–Vékás [2015], which is tailored to the char-
acteristics of the Hungarian public pension system, the applica-
tion of the Lee–Carter [1992] model to Hungarian fertility rates
and the application of the newest mortality forecasting methods
and their unifying framework of Generalized Age–Period–Cohort
models to Hungarian mortality data.
The main practical contributions of my analysis are the actuarial
forecasting and sensitivity analysis of the indicators of the Hungar-
ian pension system, the analysis of the role of longevity risk in the
premium calculation of life annuities in Hungary and the detailed
comparison of the most popular mortality forecasting methods on
Hungarian mortality data in the GAPC framework.
I hope that researchers as well as practising pension and life in-
surance actuaries will benefit from my results in the future and
successfully use them for the construction of models which take
longevity risk into account in a methodologically proper way.
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Hári, N., De Waegenaere, A., Melenberg, B. & Nijman, T.E.
(2008). Longevity Risk in Portfolios of Pension Annuities. In-
surance: Mathematics and Economics, 42(2):505–519. http:

//dx.doi.org/10.1016/j.insmatheco.2007.01.012.

Hobcraft, J., Menken, J. & Preston, S. (1982). Age, Period, and
Cohort Effects in Demography: A Review. Population Index,
48(1):4–43. http://dx.doi.org/10.2307/2736356.

http://dx.doi.org/10.3386/w8534
http://dx.doi.org/10.3386/w8534
http://dx.doi.org/10.1111/j.1539-6975.2006.00163.x
http://dx.doi.org/10.1111/j.1539-6975.2006.00163.x
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1023/b:popu.0000020882.29684.8e
http://dx.doi.org/10.1023/b:popu.0000020882.29684.8e
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004L0113&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004L0113&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0138&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0138&from=EN
http://dx.doi.org/10.1198/106186002385
http://dx.doi.org/10.1198/106186002385
http://dx.doi.org/10.1016/j.insmatheco.2010.09.003
http://dx.doi.org/10.1016/j.insmatheco.2010.09.003
http://dx.doi.org/10.1016/j.insmatheco.2007.01.012
http://dx.doi.org/10.1016/j.insmatheco.2007.01.012
http://dx.doi.org/10.2307/2736356


Hunt, A. & Villegas, A. (2015). Robustness and convergence in the
Lee–Carter model with cohort effects. Insurance: Mathemat-
ics and Economics, 64:186–202. http://dx.doi.org/10.1016/
j.insmatheco.2015.05.004.

Hunt, A. & Blake, D. (2014). A general procedure for
constructing mortality models. North American Actuar-
ial Journal, 18(1):116–138. http://dx.doi.org/10.1080/
10920277.2013.852963.

Hyndman, R.J. & Ullah, M. (2007). Robust forecasting of mor-
tality and fertility rates: a functional data approach. Compu-
tational Statistics & Data Analysis, 51(10):4942–4956. http:

//dx.doi.org/10.1016/j.csda.2006.07.028.

IMF (2012). Global Financial Stability Report. Chapter 4: The fi-
nancial impact of longevity risk. International Monetary Fund,
Washington D.C. http://www.imf.org/external/pubs/ft/
gfsr/2012/01/pdf/text.pdf, letöltés dátuma: 2016.02.11.
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