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Abstract

Background: A living cell has a complex, hierarchically organized signaling system that encodes and assimilates
diverse environmental and intracellular signals, and it further transmits signals that control cellular responses,
including a tightly controlled transcriptional program. An important and yet challenging task in systems biology is
to reconstruct cellular signaling system in a data-driven manner. In this study, we investigate the utility of deep
hierarchical neural networks in learning and representing the hierarchical organization of yeast transcriptomic
machinery.

Results: We have designed a sparse autoencoder model consisting of a layer of observed variables and four layers
of hidden variables. We applied the model to over a thousand of yeast microarrays to learn the encoding system of
yeast transcriptomic machinery. After model selection, we evaluated whether the trained models captured biologically
sensible information. We show that the latent variables in the first hidden layer correctly captured the signals of yeast
transcription factors (TFs), obtaining a close to one-to-one mapping between latent variables and TFs. We further show
that genes regulated by latent variables at higher hidden layers are often involved in a common biological
process, and the hierarchical relationships between latent variables conform to existing knowledge. Finally, we
show that information captured by the latent variables provide more abstract and concise representations of
each microarray, enabling the identification of better separated clusters in comparison to gene-based representation.

Conclusions: Contemporary deep hierarchical latent variable models, such as the autoencoder, can be used to partially
recover the organization of transcriptomic machinery.

Keywords: Yeast, Transcription, Gene expression, Transcriptomic machinery, Signal transduction, Deep learning, Deep
hierarchical neural network, Unsupervised learning, Data mining

Background
A cell constantly responds to its changing environment
and intracellular homeostasis. This is achieved by a sig-
nal transduction system that detects the signals, assimi-
lates the information of diverse signals, and finally
transmits its own signals to orchestra cellular responses.
Many of such cellular responses involve tightly regulated
transcriptomic activities, which can be measured by

microarray or RNA-seq technology and used as readouts
reflecting the state of the cellular signaling system.
Reverse engineering the signaling system controlling

gene expression has been a focus area of bioinformatics
and systems biology. However, this task is significantly
hindered by the following difficulties: 1) a transcriptomic
profile of a cell (with contemporary technology, often a
population of cells) at a given time represents a convolu-
tion of all active signaling pathways regulating transcription
in the cells, and 2) the states of the majority of these signal-
ing pathway are not observed, making it a challenging task
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to infer which genes are regulated by a common signal
pathway, and it is even more challenging to reveal the
relationships among signaling pathways.
Different latent variable models, such as principle com-

ponent analysis [1], independent component analysis [2],
Bayesian vector quantizer model [3], network component
analysis [4–6], and non-negative matrix factorization [5, 6]
models have been applied to analyze transcriptomic data,
with an aim to represent the states of latent pathways
using latent variables. Despite the different strengths and
limitations of these models, they share a common draw-
back: the latent variables in these models are assumed to
be independent, i.e., the latent variables are organized in
single “flat” layer without any connection among them; as
such the models lack the capability of representing the
hierarchical organization of cellular signaling system.
Figure 1 illustrates the task of reverse-engineering a

transcriptomic regulation system. Figure 1a illustrates
the well-appreciated hierarchical organization of sig-
naling molecules in cells and how the information
encoded by signaling molecules are compositionally
organized. It also shows that the convoluted signals
eventually are emitted as changed gene expression. At
this stage, all the hierarchical information of the sig-
naling system is embedded in the data, a vector of gene
expression value, in the form of context-specific and
compositional covariance structures. When given a
collection of transcriptomic profiles collected under

different cellular conditions (Fig. 1b), the ultimate task
is to recover the structure of the signaling systems
shown in Fig. 1a, but the goal remains unattainable
with current methodologies. In this study, we hypothesize
that the hierarchical organization of cellular signals can be
partially reconstructed by models capable of discovering
and representing the context-specific and compositional
covariance structure embedded in transcriptomic data. To
this end, recent development in deep hierarchical models,
commonly referred to as “deep learning” models, e.g., the
autoencoder (deep belief network) shown in Fig. 1c, afford
us the tools to reverse engineer the signaling systems of
cells by mining systematic perturbation data.
In this family of deep hierarchical models, multiple layers

of hidden (latent) variables are organized as a hierarchy,
which can be used to capture the compositional relation-
ships embedded in the transcriptomic data in a distributed
fashion, i.e., different layers can capture different degrees of
detail. For example, the relationships between TFs and
their target genes can be captured by a hidden variable
layer (hereafter referred to as hidden layer) immediately
above the observed the layer of observed gene expression
variables, whereas the function of pathways regulating TFs
can be represented by higher hidden layers. Therefore,
deep hierarchical models provide an abstract representa-
tion of the statistical structure of the transcriptomic data
with flexibility and different degrees of granularity. We
hypothesize that, if accurately trained, a deep hierarchical

A B C

Fig. 1 An overview of studying molecular signaling transduction using an autoencoder. a An example of molecular signaling transduction. b An
example of the heatmap of gene expression microarrays. c An autoencoder model consisting of hierarchically organized hidden variables. After the
model was trained, we evaluated the information learnt from the autoencoder model by testing whether the information carried by hidden variables
in the autoencoder has real biological entities
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model can potentially represent the information of real
biological entities and further reveal the relationships
among them.
In this study, we designed and trained a sparse deep auto-

encoder model to learn how the information is encoded in
yeast cells when subjected to diverse perturbations. Our re-
sults indicate that deep learning models can reveal biologic-
ally sensible information, thus learning a better
representation of the transcriptomic machinery of yeast,
and we believe that the approach is applicable to more
complex organisms.

Methods
In this study, we investigated using the autoencoder
model [7] and sparse autoencoder model [8] to represent
the encoding system of the signal transduction systems
of yeast cells. Before introducing the autoencoder model
and sparse autoencoder model, we will first briefly re-
view restricted Boltzmann machines (RBMs) as building
blocks for the autoencoder.

Restricted Boltzmann Machines (RBMs)
A RBM is an undirected probabilistic graphical model that
consists of two layers of stochastic binary variables (repre-
sented as nodes in the graph): a visible layer v ∈ {0, 1}D and
a hidden layer h ∈ {0, 1}F. The energy function E of the
state {v, h} of the RBM is:

E v; h; θð Þ ¼ −a⊺v−b⊺h−v⊺Wh

¼ −
XD
i¼1

aivi−
XF
j¼1

bjhj−
XD
i¼1

XF
j¼1

vihjwij

In this equation, the binary state of visible variable i is
represented by vi, the binary state of hidden variable j is
by hj and the model parameters are θ = {a, b, W}. The
bias for visible variable i is ai the bias for hidden variable
j is bj and the weight between visible variable i and hidden
variable j is wij.
The joint distribution of the hidden and visible vari-

ables is defined using a Boltzmann distribution, and the
conditional probability of the states of hidden variables
and visible variables are as follows:

Pr v; h; θð Þ ¼ 1
Z θð Þ exp −E v; h; θð Þð Þ

Z θð Þ ¼
X
v;h

exp −E v; h; θð Þð Þ

Pr hj ¼ 1jv� � ¼ σ bj þ
Xm
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Wijvi

 !

Pr vi ¼ 1jhð Þ ¼ σ ai þ
Xn
j¼1

Wijhj

 !

where σ(x) is the logistic function 1/(1 + exp(−x)), m is
the total number of visible variables and n is the total
number of hidden variables.
The efficient algorithm for learning parameters of the

RBM model was introduced in detail in literature and
our previous work [7, 9, 10].

Autoencoder
Unlike a RBM, which captures the statistical structure of
data using a single layer of hidden nodes, an autoencoder
uses multiple layers in a distributed manner, such that
each layer captures the structure of different degrees of
abstraction. As shown in Fig. 1c, an autoencoder contains
one visible (input) layer and one or more hidden layers.
To efficiently train the autoencoder, we treat it as a series
of two-layered restricted Boltzmann machines (RBM)
stacked on top of each other [7, 9]. The inference of the
hidden node states and learning of model parameters are
performed by learning the RBM stacks bottom-up, which
is followed by a global optimization of generative pa-
rameters using the back-propagation algorithm. More
details of the algorithm and pseudo code for training an
autoencoder were discussed in both literature and our
previous work [7, 9, 10].

Sparse autoencoder
In a conventional RBM model, each hidden unit is fully
connected to the observed variables. After training, there
is usually a non-zero weight between each pair of visible
and hidden nodes. Based on the assumption that the
change in gene expression due to a specific perturba-
tion—most microarrays in this study are experiment-vs-
control—is likely meditated by a small number of TFs or
pathways, we adopted the sparse autoencoder model
[8, 11] to simulate the cellular response to perturba-
tions. The sparse autoencoder model enables one to
specify that only a certain percent of hidden nodes have a
high probability to be set to 1 (“on”) by adding a penaliza-
tion term to the optimization function. Optimization of
the traditional RBM is performed by minimizing the
negative log-likelihood of the data during RBM training
within an autoencoder:

minimize θf g−
Xs

1¼1
log
Xn

j¼1
Pr v1; h1j θj Þ
�

Where s is the total number of samples, n is the total
number of hidden units and θ = {a, b,W}. The sparse RBM
adds the regularization term [8] into the optimization:

minimize θf g−
Xs
l¼1

log
Xn
j¼1

Pr vl; hljjθ
� �

þ λ
Xn
j¼1

p−
1
s

Xs
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Where λ is the regularization constant and p is a con-
stant (usually representing the percent of nodes desired
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to be on) controlling the sparseness of the hidden units
hj. For the traditional RBM, the parameters are updated
just based on the gradient of the log-likelihood term.
But for the sparse RBM, the parameters are updated not
only based on the gradient of the log-likelihood term
but also the gradient of the regularization term.

Non-negative matrix factorization
Non-negative matrix factorization (NMF) has been ap-
plied to reduce the dimension of expression data from
thousands of genes to a handful of hidden representa-
tions (ex. metagenes) [5]. NMF is an algorithm based on
decomposition by parts that can reduce the dimension
of a matrix V [6].

V ¼ W �H

Given that the gene expression data is represented as
matrix V, NMF factorizes it into a basis matrix (W) and
a coefficient matrix (H). All three matrices should have
non-negative elements. The number of hidden regula-
tors is pre-defined, and is usually much smaller then the
number of genes. In this study, we used the Matlab
function nonnegative matrix factorization “nnmf” to per-
form NMF analysis.

Model selection of autoencoder and sparse autoencoder
We performed a series of cross-validation experiments
to search for an “optimal” structure for autoencoders
and sparse autoencoders. We adopted a four-layered
autoencoder to represent the hierarchical structure of
biological processes shown in Fig. 1c. We then explored
models with different numbers of hidden units in each
hidden layer. We set the initial structure of both autoen-
coder and sparse autoencoder to the following ranges:
h(1): 100–428; h(2): 50–100; h(3): 50; and h(4): 25. We
iteratively modified the structure of the model by chan-
ging the number of hidden nodes within a layer using a
step size of 50 for the first and second hidden layer.
Then we explored all combinations in the range stated
above. In this case, the total number of models tested is
14 (7*2) for both autoencoder and sparse autoencoder.
For the sparse autoencoder, we chose three sparsity con-
stants that are 0.05, 0.1 and 0.15. Under each particular
setting, we performed ten fold cross-validation to assess
the performance of a model.
We used two criteria of evaluating the performance of

the models. One is the reconstruction error, which is the
difference between the original input data and the recon-
structed data after training the model [12]. Due to the
sparse features of the sparse autoencoder, we used Bayesian
information criterion (BIC) [13] as another criteria for
comparing models. BIC combines the factors of likelihood

and number of free parameters to be estimated. The model
with the lowest BIC is preferred.

BIC ¼ −2⋅ lnL̂ þ k⋅ ln nð Þ
L̂ ¼

YN
i¼1

pm 1−pð Þ1−m

where L̂ is the maximized value of the likelihood func-
tion of the model, k is the number of free parameters to
be estimated, n is the number of samples, p is the prob-
ability predicted from the model for a gene to be active
in an experiment, and m is the true binary state of a unit
in the input data.

Mapping between the hidden units and known biological
components
Based on the weights between each hidden unit in the
first hidden layer and all the visible units (genes), we
used a threshold (top 15 % of the absolute values of
weights) to cut the edges between a hidden node and
the observed genes, such that an edge indicates that the
hidden node regulates the gene. We then identified all
genes predicted to be regulated by a hidden node as a
gene set. Based on the DNA-Protein interaction table
[14, 15], we also identified the gene set regulated by a
known TF. We then assessed the significance of overlap-
ping of gene sets regulated by hidden nodes and TFs
using hypergeometric testing.

Consensus clustering of experiment samples
Consensus cluster clustering [16] was used to cluster the
experiment samples using different datasets as input.
The R implementation of ClusterCons [17] was down-
loaded from CRAN (https://cran.r-project.org/src/con-
trib/Archive/clusterCons/). The inputs for consensus
clustering are the samples represented using original
gene expression values, NMF megagenes values and the
states of hidden variables under all experiment samples
respectively. The partition around medoids (PAM) and
K-means algorithms were used as base clustering algo-
rithms. The inputs for cluster by cluster consensus clus-
tering are the samples represented using samples
clusters derived from the nodes from different hidden
layers as features. If one sample belongs to a sample
cluster, its input value is 1. Otherwise, its input value is 0.

Finding pheromone related hidden units
We calculated the significance between the state of a
hidden node and the state of proteins related to phero-
mone signaling pathway by using the chi-square test.
First, we used a threshold (top 15 %) to designate the
state of a hidden unit as active or inactive based on its
activation probability. Then, for each hidden unit, we
created a contingency table to collect the counts of the
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joint state of the hidden node and whether any mem-
ber of the pheromone pathway is perturbed in a spe-
cific experiment. We used the contingency table to
perform the chi-square test. We used a p-value of 0.01
as the significance threshold.

Gene ontology analysis
GO [18] provides a standard description of what gene
products do and where they are located. One of the fre-
quently used databases that provide GO information for
yeast is Saccharomyces Genome Database SGD. We first
used the combination of weights [19] between neighbor-
ing hidden layers to get the weights between the hidden
units in a particular hidden layer and the genes. A gene
is regarded as being regulated by a hidden unit if their
weight is in the top 15 % of all weights. When a gene set
of interest associated with a hidden unit is available, we
used the method mentioned in [20] to summarize the
GO terms capturing as much as semantic information
associated with those genes [21]. We identified the GO
terms that could summarize the largest number of
genes, while undergoing a minimal information loss.

Results and discussion
Training different models for representing yeast
transcriptomic machinery
We collected a compendium of 1609 yeast cDNA micro-
arrays from the Princeton University Microarray Database
(puma.princeton.edu), and we combined them with 300
microarrays from the study by Hughes et al. [22], which
was used in a previous study of the yeast signaling system
[23]. The combined dataset is ideal for studying the yeast
signaling system because it represents a large collection of
perturbation experiments that are of biological interest.
For example, the data from the study by Hughes et al. [22]
were collected from yeast cells with genetic perturbations
(deletion of genes) or chemical treatments, and similarly
the microarrays from the database were collected from
specific conditions and contrasted with “normal” growth
condition. Taking advantage of the experiment-vs-control
design of cDNA microarrays, we identified differentially
expressed genes (3-fold change) in each array and retained
2228 genes that were changed in at least 5 % of the micro-
arrays. We then represented the results of each microarray
experiment as a binary vector, in which an element repre-
sented a gene, and its value was set to 1 if the gene was
differentially expressed, and 0 otherwise. Thus, each micro-
array represented the transcriptomic changes in response
to a certain condition, presumably regulated by certain spe-
cific signaling components, which is unknown to us.
We investigated the utility of the autoencoder model

(also known as deep belief network) [9], with one ob-
served layer representing the microarray results and 4
hidden variable layers (hereafter referred to as hidden

layers) representing the yeast signaling components in
yeast transcriptomic machinery. In this model, a hidden
node is a binary variable, which may reflect the state of a
collection of signaling molecules or a pathway, such that
the switching of the node state between 1 and 0 can re-
flect the changing state of a pathway.
The probabilistic distribution of the state of a node in

a given layer is dependent on the nodes in the adjacent
parent layers, defined by a logistic function. The directed
edges between nodes of adjacent layers indicate that,
conditioning on the state of nodes in parent layer, the
nodes in a child layer are independent. In other words,
the statistical structure (patterns of joint probability of
nodes) among the nodes in a child layer is captured by
the nodes in the parent layer. For example, in our case,
if the nodes in the 1st hidden layer (directly above the
gene expression layer) represent the states of transcrip-
tion factors, then co-differential expression (covariance)
of a set of genes is solely dependent on (or explained by)
the TFs that regulate the genes. Similarly, the co-
regulation of TFs is determined by its parent layer,
which may reflect the state of signaling pathways. Thus,
this model is suited to capture the context-specific
changes and compositional relationship among signaling
components in a distributed manner. The model is re-
ferred to as autoencoder because, when given a collection
of observed data, it learns to use hidden nodes to encode
the statistical structure of observed data, and it is capable
of probabilistically reconstructing the observed data.
Since the autoencoder model in our study is bio-

logically motivated, we hypothesize that the nodes in
the first hidden layer would likely capture the signal of
TFs. Thus the number of nodes in this layer should be
close to the number of known TFs for yeast, of which
there are around 200 well-characterized yeast TFs [24].
However, for a given microarray from a perturbation
experiment, genes that respond to a specific perturb-
ation are likely regulated by a few transcription factors.
Thus we also investigated a model referred to as sparse
autoencoder [8, 25], which performs regularized learning
of model parameters and allows a user to constrain the
percent of nodes in a layer that can be set to the “on”
state, see Methods for details. In our experiment, we
constrained that, in the first hidden layer, around 10 % of
hidden nodes should be used to encode the changes in a
microarray.
We first evaluated how adding a sparse regularization

term influenced the state of hidden units (the probability
of hidden units to be active/on). We trained a conven-
tional autoencoder and a sparse autoencoder (setting the
sparsity constraint to 10 %) using the microarrays. For
each microarray, the models probabilistically inferred
the state of each hidden node (the probability of a node
to take a value of 1). Figure 2 shows the histogram of
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the expected states of the nodes in the first hidden layer
associated with all microarray samples. In the conven-
tional autoencoder, a relatively larger number of the
nodes in the first hidden layer had a non-zero probabil-
ity to be 1 (“on state”) (Fig. 2a), whereas the majority of
the hidden nodes in the sparse autoencoder model were
expected to take a value of 0 (“off state”) (Fig. 2b). Thus,
the sparse autoencoder strives to use less hidden nodes
to encode the same statistical structure in the observed
data, instead of using every hidden node, with each con-
tributing a little to the expression of genes. This is a de-
sired property conforming to our assumption that the
response to a specific perturbation should be encoded
by a relatively small number of TFs.
We further evaluated how well models with different

architectures (mainly concentrating on the number of
hidden nodes in the first hidden layer) can be used to
represent the transcriptomic machinery of yeast. Table 1
shows the results of a limited model selection experi-
ment based on our biological assumptions (note that an
exhaustive search of possible combinations of architec-
ture and parameter settings is intractable). We calcu-
lated the reconstruction error, which is the sum of the

differences across all microarrays between the observed
expression state (0 or 1) of genes in microarrays and the
expected states of genes reconstructed by the autoenco-
der. The results indicate that models of the same type
(conventional or sparse autoencoder) could learn to en-
code data with a similar accuracy across the range of the
architectures studied here, although the sparse autoen-
coder had higher reconstruction errors.
While the results indicate that the reconstruction

errors of sparse autoencoder models were a bit higher
than the ones of the traditional autoencoder, it should
be noted that the sparse autoencoder reconstructed the
same data with a much smaller number of hidden vari-
ables. From the perspective of the minimum description
length (MDL) principle [26], a model is preferred if it
can encode the information of a dataset with a minimal
description length while achieving a similar or better re-
construction of data. In information theory, the descrip-
tion length is measured as the number of bits needed to
encode the data, and in our case each bit is encoded by
a hidden node. Thus, the sparse autoencoder potentially
is a more desirable model even if it suffers a higher re-
construction error. To quantify and compare the utility

A B

Fig. 2 The histogram of the expected states of hidden units (probability of hidden units to be on) in the first hidden layer for the conventional
autoencoder (a) and sparse autoencoder (b) respectively. For both models, the number of hidden units from the first hidden layer to the fourth
hidden layer is 214, 100, 50, and 25 respectively. The sparsity threshold for the sparse autoencoder is 0.1. A hidden unit has a state under each
experiment condition. Therefore, the total number of states for all hidden units is the number of experiment condition (1609) * the number of
hidden units (214). The x-axis is the probability of a hidden unit to be on ranging from 0 to 1. The y-axis is the count of states

Table 1 Reconstruction error of models with different architectures

Reconstruction error Architecture 1
(100:100:50:25)

Architecture 2
(150:100:50:25)

Architecture 3
(214:100:50:25)

Architecture 4
(428:100:50:25)

Autoencoder training 150.20 150.23 148.94 150.81

Autoencoder test 188.57 189.12 190.76 189.63

Sparse autoencoder training (0.1) 170.19 170.07 170.41 171.94

Sparse autoencoder test (0.1) 206.58 208.40 203.99 203.27
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of conventional and sparse autoencoders, we calculated
the Bayesian information criteria (BIC) of the models,
and the results are shown in Table 2. The results indi-
cate that the BIC of the sparse autoencoder with an
architecture consisting of hidden layers with 214, 100,
50, 25 hidden nodes (1st to 4th) respectively is the lowest
(the best) among the compared models. Since the num-
ber of hidden nodes in the first hidden layer of this
model agrees better with the knowledge of the number
of transcription factors, we chose to investigate the re-
sults derived from this model in the following sections.

Distributed representation enhances discovery of signals
of TFs
The motivation of using a hierarchical model is to allow
latent variables in different hidden layers to capture in-
formation with different degree of abstraction in a dis-
tributed manner. When modeling transcriptomic data,
one goal is to discover the signals of TFs. In a sparse
autoencoder, it is natural to expect that the 1st hidden

layer should capture the signals encoded by TFs. We test
this hypothesis by evaluating the overlap of the genes
predicted to be regulated by a hidden node in the 1st

hidden layer and those known to be regulated by a TF.
A statistically significant overlapping between them is
shown in Fig. 3.
Indeed, the results indicate that sparse autoencoder is

capable of capturing and representing the information
of TFs, in that there is an almost one-to-one mapping
between hidden nodes and known TFs as shown in
Fig. 3a. For a few hidden variables that are significantly
mapped to multiple TFs, we further investigated if these
TFs are members of known TF complexes [27]. As an
example, we found that a hidden node is significantly
mapped to AFT1 and PUT3, which are two yeast TFs
known to cooperatively regulate genes involved in ion
transportation [28]. As another example, a hidden node
is mapped to both MSN2 and MSN4 [29], which belong
to the same family and form hetero-dimers to regulate
genes involved in general stress response.
To demonstrate the advantage of hierarchical and

distributed representations, we compare our results with
another latent variable model commonly used to represent
microarray data, the non-negative matrix factorization
model (NMF) [6]. The NMF can be thought of as a model
consisting of an observed layer (gene expression) and a
single hidden layer (hidden variables/metagenes [5]),
which is used to capture all signals in embedded in mi-
croarrays, whereas the same information is distributed
to multiple layers of hidden variables in the sparse

Table 2 BIC scores of different models

Arch 1 (100,100,50,25) Arch 2 (214, 100, 50, 25)

Autoencoder 3.25e + 006 = 1.99e + 006 +
1.26e + 006;

4.41e + 006 = 1.71e +
006 + 2.70e + 006;

Sparse
autoencoder

2.06e + 006 = 1.93e + 006 +
1.26e + 005;

1.96e + 006 = 1.69e +
006 + 2.70e + 005;

The cells show the BIC score (bold) and the individual terms of the BIC (see
Methods). The numbers in the parentheses associated with each architecture
(Arch) indicate the number of hidden nodes in 1st – 4th hidden layers

A B

Fig. 3 Mapping between transcription factors (TFs) and hidden variables in the first hidden layer. Results for sparse autoencoder (a) and NMF (b)
are shown. The transcription factors (TFs) are arranged along x-axis, and the hidden variables are arranged along y-axis. Each point in the figure
represents the value of –log(p-value) of the enrichment score between genes regulated by a hidden node and a TF. The pseudo-color bar shows
the scale of the –log(p-value)
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autoencoder. We trained a NMF model with 214 “meta-
genes”, which is the same as the number of hidden nodes
in the 1st hidden layer of the sparse autoencoder, and the
results of mapping between latent factors and TFs are
shown in Fig. 3b.
Indeed, the results clearly demonstrate the expected

difference between the two models. With the capability
of capturing the context-specific and compositional rela-
tionship of signals regulating expression in a distributed
manner, the hidden nodes in the 1st hidden layer clearly
capture the specific signals of TFs, whereas the signals
regulated TFs are delegated to the higher level hidden
nodes. In contrast, with only a single layer of latent vari-
ables, all signals in the data need to be “squeezed” into
these latent variables, such that a latent factor (a “meta-
gene”) has to represent the signal of multiple TFs. There-
fore, the results support our hypothesis that, benefitting
from the distributed representation of the statistical struc-
tures across multiple hidden layers, the sparse encoder can
concisely learn and represent the information of biological
entities, in this case the TFs.

Latent variables can capture the information of signaling
pathways
We further investigated whether certain hidden nodes
can represent the states of well-known yeast signaling
pathways, i.e., whether the state of a hidden node can be
mapped to the state of a collection of proteins in a path-
way. In a previous study [23], we were able to recover
the pheromone signaling pathway and a set of target
genes whose transcription were regulated by the phero-
mone pathway, by mining the systematic perturbation
data from the study by Hughes et al. [22] in which 14
genes involved in yeast pheromone signaling were per-
turbed by gene deletion. In the current study, we identified
the microarray experiments in which the aforementioned
14 pheromone-pathway genes were perturbed, and we
examined if the state of any hidden node was statistically
associated with perturbation of pheromone pathway, using
the chi-square test (see Methods). Interestingly, we found
2 hidden nodes in the 1st hidden layer that are significantly
associated with the perturbation experiments, one with
a chi-square test p ≤ 2.47e-05, and the other with a p ≤
3.82e-02. Further inspecting the genes predicted to be
regulated by these hidden nodes, we found a significant
overlap between the pheromone target genes from our
previous study and the genes regulated by these hidden
nodes (data not shown). These results indicate that the
hidden nodes of the sparse autoencoder model are cap-
able of capturing the signals of specific yeast pathways.
However, it should be noted that, by design, a hidden
node in the high level layers of the sparse autoencoder
might encode the signals of multiple pathways that
share strong covariance.

The hierarchical structure captures signals of different
degrees of abstraction
One advantage of the hierarchical structure of an autoen-
coder is to represent information with different degrees of
abstraction. Intuitively, the lower level hidden layers
should capture the highly specific signaling pathways or
signaling molecules, such as TFs, whereas the high level
hidden layers may encode more general information. To
test this hypothesis, we identified the genes regulated by
each hidden node by performing a linear weight com-
bination experiment [19] (multiplication of weights
between different hidden layers). We then applied a
semantic analysis method previously developed by our
group [20], which identifies the most appropriate con-
cept from the Gene Ontology (GO) to summarize the
genes. Interestingly, we found that genes regulated by
AFT1 and PUT3 are significantly enriched among the
genes regulated by a hidden node in the 2nd hidden
layer, and the genes regulated by this hidden node is sum-
marized by the GO term GO:0006826 (iron ion transpor-
tation), shown in Fig. 4. Using the same method, we
found another hidden node whose related genes were
annotated with GO:0006357 (regulation of transcription
from RNA polymerase II promoter). Thus, the results indi-
cate that the distributed representation of information
enables the hidden nodes at the different level of hierarchy
to capture information of different degrees of abstraction.

Concise representation enhances the discovery of
global patterns
Given a large comprehensive dataset, it is often interesting
to learn if distinct perturbations affect common biological
processes of the cell [22, 23]. A common approach to dis-
cover such patterns is to perform clustering analysis and
examine if certain samples (thereby experimental pertur-
bations) are clustered together. In general, the result of a
clustering analysis is significantly influenced by whether
the features representing each sample are informative.
Non-informative features may not reveal any real informa-
tion, whereas features concisely reflecting the states of
cellular signaling system may provide insights regarding
the system. To examine if the signals represented by the
latent variables are more informative than original gene
expression values and NMF metagene values, we repre-
sented the samples in our dataset using the original gene
expression values, NMF metagene values and the expected
states of the hidden nodes in a hidden layer respectively,
and we then compared the results of consensus clustering
(Fig. 5).
The results clearly demonstrate that, if samples are

represented in the high-dimensional gene expression
space, the majority of the samples cannot be grouped
into distinct clusters. When we use the low-dimensional
NMF metagenes space, it performs slightly better than
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using original gene expression space. But, the clusters
derived are still not well separated. In contrast, when
samples were represented using the expected states of
hidden nodes of the 1st hidden layer, the samples can be
consistently separated into distinct clusters. Represent-
ing samples using the expected states of the nodes from
other hidden layers also produced clearly separated
clusters (data not shown). The results indicate that the

states of hidden nodes are much more informative in
terms of representing distinct characteristics of individ-
ual samples, thus enabling clean separation of samples
by the clustering algorithms. Although it would be in-
teresting to systematically inspect the common charac-
teristics of the samples in terms of whether the
perturbation experiments affect common signaling
pathways, such an analysis requires broad and in depth

Fig. 5 Clustering of experiment samples represented using original gene expression data (a), NMF metagenes (b) and expected state of hidden
nodes in the first hidden layer (c). Consensus clustering results show how consistently a set of samples is assigned into a common cluster during
repeated clustering experiments using samples with replacement from a dataset. A yellow box indicates a set of samples that are consistently
assigned to a common cluster, and the brightness of yellow reflects the consistency

Fig. 4 Example of hierarchical Gene Ontology (GO) map for hierarchical hidden structure
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knowledge of yeast genetics, which is beyond the ex-
pertise of our group.

Information embedded in data is consistently represented
in different hidden layers
We hypothesized that, in a successful hierarchical repre-
sentation of a dataset, the information embedded in data
should be consistently encoded by different hidden layers,
even though two different layers are of different dimen-
sionality and identity of the nodes are totally different. In
other words, when a sample is represented by the state of
the nodes from different hidden layers, the characteristics
that distinguish this sample from others (or make it simi-
lar to others) should be retained despite being represented
by the nodes from different layers. To test this hypothesis,
we first performed consensus clustering using nodes from
different hidden layers as features to get sample clusters,
and then we compare if members within a cluster derived
using one representation significantly overlap with the
members from another cluster derived using a different

representation. Figure 6 shows the results of assessing the
overlaps of the samples clusters derived using the nodes
from the 1st and 2nd hidden layers as features respectively.
The results indicate that the majority of the clusters
derived with different representations agree. Interest-
ingly, a cluster derived from the 2nd hidden layer as
features subsumes (maps to) two clusters derived using
the 1st hidden layer as features, indicating that the 2nd

layer captures more general information. The results
indicate that, even though the dimensionality and
identity of features of each hidden layer are significantly
different, the information encoded by the hidden nodes
in a sparse autoencoder is preserved across different
layers.

Conclusion
In this study, we investigated the utility of contemporary
deep hierarchical models to learn a distributed representa-
tion of statistical structures embedded in transcriptomic

Fig. 6 Cluster by cluster clustering for clusters in the 1st hidden layer and the 2nd hidden layer. The x-axis is the 9 sample clusters using the states
of hidden units in the 2nd hidden layer indexed by the superscript (2). The y-axis is the 9 samples clusters using the state of hidden units in the
1st hidden layer indexed by the superscript (1). For example, 1(1) is the first sample cluster using the states of hidden units in the 1st hidden layer
and 1(2) is the first sample cluster using the states of hidden units in the 2nd hidden layer. A yellow box indicates that the members of two clusters (derived
from different representation) significantly overlap, with the brightness of yellow reflecting the degree of overlap
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data. We show that such a model is capable of learning
biologically sensible representations of the data and re-
vealing novel insights regarding the machinery regulating
gene expression. We anticipate that such a model can be
used to model more complex systems, such as perturbed
signaling systems in cancer cells, thus directly contribut-
ing to the understanding of disease mechanisms in trans-
lational medicine.
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