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Abstract

Probabilistic graphical models, such as Bayesian net-
works, are intuitive and theoretically sound tools for
modeling uncertainty. A major problem with applying
Bayesian networks in practice is that it is hard to judge
whether a model fits well a case that it is supposed to
solve. One way of expressing a possible dissonance be-
tween a model and a case is the surprise index, proposed
by Habbema, which expresses the degree of surprise by
the evidence given the model. While this measure re-
flects the intuition that the probability of a case should
be judged in the context of a model, it is computation-
ally intractable. In this paper, we propose an efficient
way of approximating the surprise index.

Introduction

Bayesian networks (BNs) (Pearl 1988) are a modeling tool
widely used in systems performing reasoning under uncer-
tainty. A BN is an acyclic graph, where nodes correspond
to random variables in the model and graphical part models
explicitly stochastic dependencies among variables. Uncer-
tainty is modeled by means of associating a set of condi-
tional probability distributions with each node. A BN as a
whole encodes the joint probability distribution (JPD) over
a set of discrete random variables using a relatively small
number of parameters.

In this paper, we focus on determining if a given set of ob-
servations (observed variables) is likely to occur in the con-
text of a given model. If a set of observations is deemed to
be unlikely, it can be due to a rare event or the model being
incorrect or unable to capture the mechanism that produced
the observations. The surprise index (Habbema 1976) was
proposed to measure the likelihood of an observation in the
context of a model. A major problem with the surprise index
is that calculating it in real life models is computationally in-
feasible. In this paper, we propose a method to approximate
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the surprise index by exploiting some properties of the JPD
and sampling algorithms.

In terms of real-life applications in the context of au-
tonomous systems, we can envisage several scenarios. The
first example would be diagnostic context where there are
several separate Bayesian networks, each of them responsi-
ble for modeling one sub-system (e.g., avionics, propulsion,
sensor suite, etc.) — it is a common practice in diagnostic
BNs in order to make modeling and inference tractable. In
the diagnostic process, observations (error messages from
on-board monitoring system) would be passed to all BN
models, and then each model would determine how relevant
evidence is for it’s context and the model(s) with the lowest
surprise index would be used, avoiding the use of models
which are not suitable for the case at hand.

The second scenario would include a set of models that
would model various scenarios of enemy intent (e.g., routine
intercept, hostile action, etc.). Each model would capture
typical behavior for a given intent and current state of in-
formation on enemy actions would be entered to each model
to determine most likely model based on surprise index. In
both cases, we assume that models can have different sets of
variables and, therefore, direct comparison of probabilities is
not possible. The goal is to determine if given observations
are likely to be produced by the model only assuming the
knowledge of the model and the set of observations, without
any external validation schema.

Modeling Using Bayesian Networks

Let a scenario be a set of outcomes — assignments of values
to all variables modeled by a BN. A scenario may be con-
sidered as a single observation of all variables in the model.
Let a case (evidence) be a subset of a scenario (assignment
of values to some variables in BN). Let case variables be
a subset of all variables modeled by BN, that are instanti-
ated by the case. Let a case domain be a set of all possible
assignments of values to case variables.

Figure 1 shows an example of a BN consisting of five
binary variables. An example of scenario will be s =
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Figure 1: A Simple Bayesian network. There are five vari-
ables: A, B, C, D, and E. Each variable has possible out-
comes: {ai,as}, {b1,ba}, {c1,¢a2}, {d1,dz2}, and {e, ea};
additionally there are conditional probability tables Pr(A),
Pr(B), Pr(C), Pr(D|A, B), and Pr(E|A, B, C).

{a1,b2,c1,d2,e2}. An example case will be ¢ = {a1,¢1}.
The case c variables are {4, C'} and case ¢ domain contains
22 = 4 elements.

A BN can be used to calculate the posterior probabil-
ity distribution over variables of interest given the case evi-
dence. As well, a BN enables to retrieve the marginal proba-
bility of observing a case (e.g., Pr(B = b)) while keeping a
simple representation of the JPD. This probability quantifies
how often we may observe a given case. If this probability
is low comparing to alternative cases, it may imply one of
two situations: (1) a rare event, or (2) the case does not fit
the model and, therefore, the model’s predictions are unre-
liable. The former may be particularly relevant to the situ-
ations in which we have multiple models describing differ-
ent domains and competing against each other. Examples of
such, can be: a diagnostic system composed of many models
for different subsystems, which would calculate probability
of a fault in a subsystem given a set of observations; or var-
ious models designed to model different scenarios (such as
enemy intent, describing various targets, etc.) which would
attempt, based on available evidence, to determine which of
these models is most relevant to the current situation.

Interpretation of Probability

Probability of observing a case is a quantity dependent on
the context of a model, making it difficult to compare those
quantities across different models. The bigger domain is
covered by the model (number of variables, their outcomes),
generally the probability of a case is lower. This is due to
the fact that the probability over all cases must always add
up to 1, and with the number of variables, the number of
possible cases grows exponentially. That makes interpreta-
tion of a probability of a case between two different models
challenging. Let us think about two models describing the
probability of sequences of independent tosses of a fair coin.
The first model describes 5 independent coin tosses, while
the the second 20 independent tosses. In the first model,
we have 2° possible equiprobable outcomes with probability
1/2% = 0.03125, while the second model is defined by 22°
possible outcomes with probability 1/22° ~ 1075,

In both models the probability of getting all “heads” is
different, but both models describe exactly the same mech-
anism and are equally correct. To address the problem of
interpretation of a case probability in the context of different
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models we may use a surprise index.

Surprise Index

Surprise index of a case ¢ (Habbema 1976) is defined as a
sum of probabilities of less probable cases from the case do-
main. In particular:

SI(c) € Z

ci : Pr(c;)<Pr(c)

Pr(c;) .

According to this definition, the more unexpected the case
is, the smaller is the surprise index. In the example of coin
tosses, in both cases we will have the same surprise index
equal to 0.

The practical problem with using the surprise index is that
its computation is intractable for regular models. It requires
to iterate through all combinations of variables’ outcomes
(which is exponential in the number of variables) to calcu-
late the exact value (Jensen et al. 1990).

In this paper, we show that it is still possible to reliably
approximate the surprise index within reasonable computa-
tion time.

Approximating the Surprise Index

Based on Druzdzel’s (1994) study of asymmetries in proba-
bilities in the JPD, we propose a method to approximate sur-
prise index. Druzdzel suggests that one can approximate the
distribution of values in the JPD by the log-normal distribu-
tion (which is equivalent to approximation of logarithms of
JPD values by the normal distribution) by applying central
limit theorem.

A general method for calculating the properties of this dis-
tribution was presented by Bouckaert et al. (1996), however
it is limited to cases where the conditional probability dis-
tributions in BN are strictly positive, i.e., do not contain pa-
rameters equal to zero.

JPD values distribution describes the probability of get-
ting a given value of probability in a BN, when we pick
a scenario from entire domain with uniform distribution —
each scenario may be picked equiprobably. For our purpose
we need a distribution of probability values of scenarios de-
rived with a probability originating from the model. This
distribution expresses the contribution of different values of
probability to probability mass. Druzdzel (1994) has shown
that this distribution can be reliably approximated by the tail
of the log-normal distribution, assuming log-normality of
probability values. Again, this is equivalent of normal dis-
tribution in logarithmic scale.

We use properties estimated from the JPD (mean and stan-
dard deviation) to create a normal approximation of values
of probabilities given the model. So we have

M
p = E(X) = ZPr(si)logPr(si), (1)
0?2 = E(X?) —E2EX)
M
= ZPr(si) (log Pr(s;))? — 42, ()
i=1



where M is the number of all scenarios and s; is a particu-
lar scenario. Then the cumulative distribution function of the
normal distribution (corresponding to the log-normal distri-
bution) is the approximation of the surprise index (it inte-
grates over all less probable cases by its definition). This
may be expressed as

SI(s) = Fy(u,0) (log(Pr(s))) ,

where Fiy(,, ) 18 the cumulative distribution function of the
normal distribution with ; and o as parameters.

Approximating Statistics by Sampling

In some cases, calculation of statistics necessary to compute
an approximation of the surprise index may be impractical
computationally. This problem arises when a BN model has
large number of dependencies between variables or a case
for which we wish to calculate the surprise index consists of
a small number of variables. In those situations, we propose
to use approximated values of the mean and the standard
deviation obtained by means of stochastic sampling. As we
are interested in estimating probability distribution over case
probabilities, we must randomly sample cases from case do-
main using model. We estimate the mean and the standard
deviation using the probabilities of cases calculated from the
BN model.

To obtain a set of cases for the estimation of the mean
and the standard deviation, we start with generating scenar-
ios from the BN by means of probabilistic-logic sampling
(Henrion 1988) and selecting only the values of the case
variables.

The proposed algorithm takes as the input (1) a case ¢ for
which the surprise index is to be calculated and (2) a BN B.
Below an outline of the algorithm is presented:

e based on input case c determine case domain

e generate n cases and calculate the marginal probability of
each case using B

—-s=g
— generate scenario s by traversing through B; for each
variable X in B:
* assign the value x; of variable randomly using the
conditional probability distribution for X
* add x; to the scenario s
— collapse scenario s to case cs that has the same case
domain as ¢
— calculate marginal probability for cs and take it’s loga-
rithm (log Pr(cs))
e calculate mean and standard deviation of obtained loga-
rithms of probabilities of ¢,s (i.e. log Pr(cy)s)
e calculate surprise index using cumulative distribution
function of the normal distribution.
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The algorithms described in this paper were implemented

and tested using the SMILE® reasoning engine for graphi-
cal probabilistic model, contributed to the community by the
Decision Systems Laboratory, University of Pittsburgh, and
available at https://genie.sis.pitt.edu/.
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