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Abstract
This paper discusses the study of two interacting processes in which a feedback mecha-

nism exists between the processes. The study was motivated by problems such as the cir-

cadian oscillation of gene expression where two interacting protein transcriptions form both

negative and positive feedback loops with long delays to equilibrium. Traditionally, data of

this type could be examined using autoregressive analysis. However, in circadian oscilla-

tion the order of an autoregressive model cannot be determined a priori. We propose a

sparse multivariate autoregressive method that incorporates mixed linear effects into

regression analysis, and uses a forward-backward greedy search algorithm to select non-

zero entries in the regression coefficients, the number of which is constrained not to exceed

a pre-specified number. A small simulation study provides preliminary evidence of the valid-

ity of the method. Besides the circadian oscillation example, an additional example of blood

pressure variations using data from an intervention study is used to illustrate the method

and the interpretation of the results obtained from the sparse matrix method. These applica-

tions demonstrate how sparse representation can be used for handling high dimensional

variables that feature dynamic, reciprocal relationships.

Introduction
In randomized clinical trials, multivariate longitudinal data are often sampled, either sparsely
or densely (intensively) [1], over a certain time period. A large part of the longitudinal data
analysis literature has been focused on the sparsely sampled data; e.g., data acquired by annual
or semi-annual visits. For intensive longitudinal data, however, relatively fewer methods have
been proposed, one important component of which is time series analysis [2]. The traditional
time series approaches, such as univariate or multivariate autoregressive (AR) models, are only
applied to one or several time series; e.g., a stock market index series or a commodity price
series. However, in biological and clinical studies, we often observe one time series per subject,
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and in the multivariate case, data often shows a three-dimensional tensor structure, including
the subject, the variable, and the time dimensions.

Jointly modeling multivariate intensive longitudinal data could introduce quite a few
parameters. For example, the AR(m) model below:

Yijt ¼
Xm
t¼1

Xp

k¼1

rkjtYik;t�t þ ϵijt; ð1Þ

would requiremp2 parameters. Here Yijt is the observed outcome of subject i at time t on vari-
able j, ρkjτ is the contribution of the kth variables at time t − τ to the jth variable at time t, and
the error term, ϵijt, is assumed to be independently and identically distributed (i.i.d.) with time-
independent or stationary distribution assumption. Specifically, it can be assumed that
ϵijt � Nð0; s2

j Þ, and that ϵij1t1 and ϵij2t2 are independent if j1 6¼ j2 or t1 6¼ t2. We denote the num-

ber of variables as p and the order of the autoregression asm. The model specified by Eq (1) is
a rather comprehensive model as it could include multiple possibly correlated variables, time-
lagged effects from the same variable, as well as cross-lagged effects from all the other variables
in the model. This kind of model has been found to be useful in applications such as fMRI time
series analysis in which brain activities in various regions of the brain, intensively sampled over
time, are modeled. For example, Harrison et. al, [3] used a multivariate AR model (p = 4,
m = 3) for making inference about attention modulation of connectivity within the dorsal
visual pathway and specifically across brain regions including the posterior parietal cortex and
right prefrontal cortex. Therefore, it is possible that activity in the posterior parietal cortex at
time t − 2 influences the right prefrontal cortex at time t.

Indiscriminatingly including all the variables and all time points as in Eq (1) is not always
optimal especially when the sample size is small and overfitting problems often arise in such
cases. Model selection criteria, such as Akaike Information Criterion (AIC), Bayesian Informa-
tion Criterion (BIC), or other variations [4], would limit selection on the temporal component
to the first few orders, but when the time period is long, one could miss significant autoregres-
sive explanations from outcomes farther back in time. For example, daily blood pressure mea-
surements often show strong correlations between hour 1 and hour 24. Only using
measurements a few hours back would therefore miss the daily cycle. Another example is the
circadian oscillations of gene expressions [5], where two interacting protein transcriptions can
form both negative and positive feedback loops, with delays as long as 12 hours, while gene
expression is measured hourly. These delays are essential to forming the periodic time series of
protein densities, and trying to estimate these delays is an important step in understanding gene
interactions on the molecular level. In terms of statistical modeling, neither an AR(1) nor an AR
(12) are appropriate for these data because there exists only a few nonzero entries in the parame-
ter set {ρkjτjk = 1,. . .,p,j = 1,. . .,p,τ = 1,. . .,T}. This inspires a sparse autoregressive model, in
which we only seek the first few most correlated autoregressive entries, regardless of the time lag
or which variable. If we vectorize the parameter set into a vector, ρ, we would assume ρ is mostly
zero except at a few entries. Some recent work on sparse autoregression models includes Fujita
et. al. [6], who employ a multivariate AR model with l1 penalization to learn gene-regulatory
mechanisms from time-course microarray data, and the Network Granger Causality (NGC)
models of Lozano et. al. [7] and Basu et.al. [8] using group Lasso penality terms.

We often assume a time series has reached the equilibrium when samples are taken, but
after an intervention, which could be time dependent—e.g., treatment dropped, switched, or
with different dose levels given a subject’s conditions—we would like to know how the inter-
vention alters the equilibrium. This is the case in our second motivating example, a multicenter
randomized clinical trial in which hourly blood pressure data over a 24-hour period is recorded
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both before and after diet interventions. It is possible that after the interventions, equilibrium
would reach a different state than before. This can be modeled through combining a linear
mixed-effects (LME) model with an autogressive model [9], in which the LME model could
include all the time dependent or independent predictors. Introducing random effects could
also be beneficial, as subjects would often reach equilibrium differently, for example, depending
on demographics or certain physiological characteristics.

Here we propose a sparse multivariate autoregressive analysis that takes into account the
autocorrelations within the multiple observed outcomes over an arbitrarily long history, but
only keeping those most correlated in the history. Hence while more variations can be
explained, the model still remains parsimonious. We then combine the AR part with the LME
part and jointly estimate both sets of parameters. The combined AR and LME model would
specifically target time series that are often observed in clinical trials before and after interven-
tion, which would be difficult to analyze using one sparse multivariate AR model, because an
intervention often changes time series to a different equilibrium state.

Motivating Examples
Example 1. Circadian rhythms reflect oscillating expressions of genes. Fig 1 schematically
describes a simplified model of Drosophilia circadian oscillations [5], in which dCLOCK and
PER represent two proteins while dclock and per represent their transcriptors respectively. The
model contains both a positive and a negative feedback loop. Using dCLOCK protein level as
an example, the two feedback loops work as follows: (1) dCLOCK activates per transcription
and thus PER synthesis with lag τ1; PER binds with dCLOCK, decreasing the presence of
dCLOCK (the negative feedback loop), and thereby also de-activates per transcription; and (2)
increase in dCLOCK also leads to more dCLOCK (the positive feedback loop) because the acti-
vated PER binds to dCLOCK, leading to the de-repression of dclock transcription, with lag τ2.
The two different lagged feedback mechanisms can be respectively modeled by eqs (2) and (3).

dY1

dt
¼ v1

1

1þ K1 þ K1e
aðY1;t�t1

�Y2;t�t1
Þ � k1Y1; ð2Þ

dY2

dt
¼ v2

1

1þ ½K2ð1þ eaðY2;t�t2
�Y1;t�t2

ÞÞ��1 � k2Y2; ð3Þ

where we use Y1 to denote PER and Y2 for dCLOCK. The model parameters, K1,K2,v1,v2,k1,
and k2, are given as constants. The two time delays, τ1 and τ2, are essential to forming the circa-
dian oscillations of Y1 and Y2. Eqs (2) and (3) are based on the ordinary differential equations
in [5] with a slight modification. The quantity freely available dCLOCK protein Free dCLOCK
was originally calculated by the function Free dCLOCK(t) =max([dCLOCK(t) − PER(t)],0).
To avoid a possible discontinuity at zero in simulated data, we instead used the logistic trans-
form exp(αx)/[1+exp(αx)], where x is Free dCLOCK(t) and α is a scaling parameter.

As we shall see later, the process can be approximated by the AR(m) model in Eq (1) in
which an exponential transform exp(Y) replaces Y on the RHS of the equation. However, the
traditional multivariate AR models would involve many unnecessary parameters, if, for exam-
ple, the delays are long and/or more proteins are involved in the model; e.g., more complex
ODE models in [10, 11]. It would be highly desirable if we could pinpoint the exact delays
through an AR model but with nonzero entries only at certain delays. This example inspired
our focus on sparsity.

Example 2. The Dietary Approaches to Stop Hypertension (DASH) trial was a multicenter,
randomized parallel-arm feeding study that tested the effects of dietary patterns on blood
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pressure (BP). The three diets were a control diet (low in fruits, vegetables, and dairy products,
with a fat content typical of the average diet in the United States), a diet rich in fruits and vege-
tables (a diet similar to the control except it provided more fruits and vegetables and fewer
snacks and sweets), and a combination diet rich in fruits, vegetables, and low-fat dairy foods

Fig 1. A simplified model (a) of Drosophilia circadian oscillator and (b) the output of the system as a
function of time. Fig 1(b) is a rendition of Fig 1A in [5].

doi:10.1371/journal.pone.0131371.g001
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and reduced in saturated fat, total fat, and cholesterol (DASH diet). Participants were healthy
adults 22 years of age or older who were not taking antihypertensive medication. The subjects’
BP measurements, including systolic blood pressure (SBP) and diastolic blood pressure (DBP),
were taken over two 24-hour periods, one before the diet intervention and the other after. For
more details, see [12] and [13].

After comparing the average BP (ABP) over a 24-hour period of cohorts before and after
the intervention, Moore et. al. [13] found fruit/vegetable and DASH diets significantly
(p< 0.0001) lowered ABP, when compared with the control diet (fruit/vegetable diet, -3.2/-1.0
mmHg; DASH Diet, -4.6/-2.6 mmHg). However, after considering within-subject correlation,
the model by Simpson and Edwards [14] found the reduction in SBP by the DASH diet reduced
from -4.6 mmHg to -3.6 mmHg. Presumably, the intervention altered the equilibrium of the
BP cycles, and we can model this effect additively by adding intervention predictors onto the
AR process. Because large BP variations are explained by previous measurements (the AR
part), we expect a further reduction of the diet effects. Also, adding random effects would be
useful for addressing subject-specific variations.

These two examples motivated us to combine a sparse multivate AR model with a linear
mixed effects (LME) model to form a sparse multivariate autoregressive linear mixed effects
model (SMARLME). The first example was used as a basis for simulations studies designed to
determine how well our parsimonious model can accurately recover the original signal. We fur-
ther analyzed the data from the second example to illustrate the utility of the model in a more tra-
ditional longitudinal data context. It is worth mentioning that the motivating example in [9]—i.e,
parathyroid hormone (PTH) and serum calcium (Ca) levels interacting with the treatment Maxa-
calcitriol doze level—is also an excellent example for the SMARLMEmodel. Compared to the
AR(1) + LMEmodel in [9], the SMARLMEmodel could be more parsimonious and more far-
reaching into the history of the interaction between PTH and Ca. These two examples demon-
strate the flexibility of the SMARLME for modeling phenomena in which multi-variables in a
system create feedback loops with specific lag times.

Analysis
Let Yijt be the observed outcome of subject i at time t for variable j, and Xiut be the u

th predictor
for subject i at time t, i = 1,. . .,N, j = 1,. . .,p, and t = 1,. . .,T. The combined multivariate AR
with the LME model can be described in scalar form as,

Yijt ¼
Xt�1

t¼1

Xq

k¼1

rkjtYikðt�tÞ þ
Xt�1

t¼1

Xr

u¼1

bujtXiuðt�tÞ þ Zitbi þ ϵijt; ð4Þ

where vector Yik(t − τ) is the observed k
th outcome of subject i at time t − τ, ρkjτ represents the

contribution of the kth outcomes at time t − τ to the jth outcome at time t, and βujτ represents
the contribution of the uth predictor at time t − τ to outcome j, and Xiu(t − τ) represents the
value of the uth predictor. The terms Zit and bi respectively represents the design matrix for the
random effects and the vector of random effects. The simplest case would be Zit being identity
and bi being a single random effect bi in which bi is normally distributed with mean zero and
variable σ2. The error term, ϵijt, is assumed to be independent and normally distributed with
constant variance, and independent from bi. We denote the number of included predictive out-
come variables by q (q� p), and the number of predictors by r.

In contrast to the linear AR(m) model, this model is more flexible as well as comprehensive
because it considers the entire history of observations of all variables including both outcomes
and predictors. Furthermore, to accommodate a wider array of dynamical systems, trans-
formed variable of Yik(t − τ) can be included as predictor. For example, for the circadian system
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described by the two ODEs in Eqs (2) and (3), we included exponentiated terms of Yik(t − τ) on
the RHS of Eq (1). For the dynamic system in the circadian rhythm example, the nonlinear
feedback mechanism would ensure stationarity of the model without necessarily constraining
linear AR parameters, ρ. It is beyond the scope of this paper to discuss model stationarity, and
we refer interested readers to [15].

In practical implementation of the model, we limit the history up to a certain period, d, such
as a 24-hour period for observations with a strong daily cycle, and for shared parameters as in
[14], we remove the variable index in βujl so that it becomes βul. With the assumptions of equi-
librium and time-independent Xiu, we can further remove the time index and simply denote
the regression parameter by βu.

The model specified by Eq (4) can be succinctly represented using matrix notation. To set
up notation, we denote the vector (Yijt, j = 1,. . .,p) by Yit, and the q × q coefficient matrix (ρkj(t
− τ),k,j = 1,. . .,q) at a given lag of τ by ρτ. Similarly, matrix βτ of size p × r is the coefficient
matrix of Xi(t − τ), where Xi(t − τ) of size r × 1 is the vector of predictors of subject i, and ϵit is the
vector (ϵijt) of length p.

In vector notation, the model now can be expressed as:

Yit ¼
Xd

t¼1

ρtYiðt�tÞ þ
Xd

t¼1

βtXiðt�tÞ þ Zibi þ ϵit: ð5Þ

The sparsity constraint is implemented through the following steps: (1) group all autore-
gression coefficients into a single vector—i.e., ρ = {vec(ρ1)

T,vec(ρ2)
T,. . .,vec(ρd)

T)T—and all pre-
dictor coefficients into a single vector—i.e., β = {vec(β1)

T,vec(β2)
T,. . .,vec(βd)

T)T. Here vec(A)
denotes the vector formed by vectorizing the I × Jmatrix A = (aij) to form the vector (a11,
a21,. . .,aI1,a12,. . .,aIJ)

T. (2) Limit the number of nonzero entries in ρ and β to a given constant
—i.e.,

subject to kρk0 þ kβk0 � n; ð6Þ

where k�k0 is the l0 norm, or the number of non-zero entries in the vector. This implementation
enforces sparsity in the set of the predictor coefficients when the predictors are time-varying
and are not necessarily shared by all outcomes.

For a simpler form of the model, observe that the time-varying predictors, Xi(t − τ), along
with the predictors from which we seek sparse coefficients can be included into the AR part
and treated as part of the outcome set, Yi(t − τ). Mathematically, the two forms are equivalent.
Hence, we separate out the time-independent and shared predictors and simplify the model to:

Yit ¼
Xd

t¼1

ρtYiðt�tÞ þ XT
i βþ Zibi þ ϵit; subject to kρk0 � n; ð7Þ

where vector β of size r × 1 is the shared time-homogeneous regression coefficient vector. The
covariance structure of the error term, ϵit, is assumed to be conditionally independent given
the other terms, including the fixed and random effects, in the model. We use the model speci-
fied in Eq (7) as the basic SMARLME model for subsequent discussions.

Estimation method
Operationally, solving model Eq (7) involves both model selection and parameter estimation.
We shall see that the proposed algorithm resolve the two problems jointly. To estimate the
sparse ρ and β and the random effects, we take an alternating approach. In other words, we
alternate between the estimation of the AR parameters and the fixed and random effects.
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First, given AR parameters ρ̂ðsÞ at the sth iteration, the model becomes a regular LME model

with pseudo-outcomes, Y y
it ¼ Yit �

Xd

t¼1
ρ̂ðsÞ
t Yiðt�tÞ, and hence any LME estimating algo-

rithm can be applied here with the independent covariance structure. The current estimates

of the LME model can be used for the pseudo-outcomes, Y�
it ¼ Yit � XT

i β̂
ðsÞ � Zib̂

ðsÞ
i , where

b̂
ðsÞ
i is the predicted random effect vector, and can be used to solve the following sparse least-

squares problem,

min
r

X
i;t

kY �
it �

Xd

t¼1

rtYit�tk2

2; subject tokrk0 � n; ð8Þ

where k�k2 is the l2 norm of vectors. Denote matrix Y�
t of size N × p as observations of all out-

comes and all subjects at time t, and group all observations into a single vector—i.e.,

y� ¼ ðvecðY�
1ÞT ; . . . ; vecðY�

TÞTÞT . Similarly, vectorize ρτ into ρ. After some matrix manipula-
tions, we have the following l0 minimization problem,

min
ρ

ky� � Aρk22; subject to kρk0 � n: ð9Þ

For illustration purpose, we ignore the fixed and random effects. Matrix A of size Np(T − 1) ×
p2 d has the following form,

A ¼

Ip � Y1

Ip � Y2 Ip � Y1

Ip � Y3 Ip � Y2 Ip � Y1

::::

Ip � Yt�1 ::: Ip � Yt�d

::::

Ip � YT�1 ::: Ip � YT�d

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

; ð10Þ

where square matrix Ip of size p×p is the identity matrix, and� indicates the Kronecker prod-
uct. An example of the Amatrix and a practical refinement are given in S1 File.

The minimization problem in Eq (9) can be solved by a fast-computing Forward Backward
greedy algorithm (FoBa), which we will briefly explain. For more details, see e.g., [16],[17]. The
FoBa algorithm consists of two steps. The first step is forward searching. This step is equivalent
to what statisticians call Forward Stepwise Regression or what signal processing researchers
call Orthogonal Matching Pursuit [16]. See [18]. In this step, FoBa initializes a residual vector b
= y, the solution ρ = 0, and an index set Γ = ;. At each iteration, it first finds the largest absolute
entry i of the vector ATb, and attaches it to Γ; i.e., Γ = Γ [ {i}. Next, it updates the solution
entries in the index set Γ by solving b = AΓρΓ through Gauss elimination, where AΓ represents
a matrix with only columns of A in the index set Γ, and ρΓ denotes the solution entries in Γ.
Then it updates the residual vector, b = y − Aρ, before the next iteration.

The step in seeking the largest absolute entry of ATb is equivalent to finding the most corre-
lated column in A with y, before removing its contribution to y and moving on to search for
the next most correlated. Conceptually, this is equivalent to seeking the most correlated Yt − τ

with Yt. Because there are only matrix-vector multiplications involved, the algorithm is very
efficient. The procedure bears some apparent resemblance to the stepwise forward procedure
in regression, which involves sequentially adding variable that improves the model the most in
terms of criterion such as minimizing the residual sum of squares. Like the least square
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procedure typically used in stepwise forward selection, FoBa uses a greedy algorithm on the
history of Y by sequentially searching for the next “best” variable. Thus the two approaches are
similar in terms of their search strategy. However, they are also different in the following
aspects: (1) the FoBa uses a selection procedure that is based on the largest inner product with
the original elements in A, as opposed to based on the inner product with the normalized
orthogonal elements in least square forward selection regression, and (2) a constraint is placed
on the number of elements to be included in the selection set in FoBa, as opposed to stop add-
ing variable according to a threshold of changing residual sum of squares in forward selection
regression. The first point is subtle and carries computational implication: the FoBa only needs
to orthogonalize the elements that are being selected whereas least square forward selection
needs to orthogonalize all elements. See [19] for a detailed explanation.

The second step in FoBa is the backward step. It is designed to circumvent the problem that
when an entry is chosen and included in Γ, it cannot be removed, thus implying that mistakes
made in the early steps cannot be later corrected. The adaptive (FoBa) addresses this issue in the
backward step [17]. At each iteration, FoBa searches through Γ to remove entries that would
not significantly increase the least-square penalty term. The FoBa has shown to be a serious
competitor to other algorithms for sparsifying matrices including LASSO [20][17]. Recently,
other modifications in using the underlying orthogonal matching pursuit engine for finding a
sparse solution to underdetermined systems of linear equation have been proposed, e.g., [18].

In terms of search strategy, the forward-backward approach in FoBa is analogous to for-
ward-backward model selection in linear regressions, where significant variables are forwardly
added in and then backwardly removed. Although the algorithm requires an input parameter,
n, to restrict the number of nonzero entries in ρ, the backward-search step would typically gen-
erate results with fewer nonzero entries in its solution. In other words, if the true model con-
tains n̂ nonzero entries, we can select n	 n�, and still be able to recover n� nonzero entries in
ρ. We illustrate this through our first example using a simulation study, which is described in
the next section. In this sense, the model selection and estimation in the proposed SMARLME
procedure can be jointly accomplished. In practice, we recommend a strategy of incrementing
n in steps and select a model based on information criterion; e.g., Bayesian information crite-
rion (BIC) or Akaike information criterion (AIC).

We summarize the estimation procedure as follows:
Initialization. Initialize ρ as ρ(0) = 0.
Iterations. At the sth iteration,

1. Given the current estimates r̂ðs�1Þ, solve the linear mixed effects model through the pseudo-
outcomes,

Yy
it ¼ Yit �

Xd

t¼1

rðs�1Þ
t Yit�t; ð11Þ

and denote the current estimates of β as β̂ðsÞ, and also estimate the predicted random effects

b̂
ðsÞ
i .

2. Given β̂ðsÞ; b̂ðsÞ, update the pseudo-outcomes as

Y�
it ¼ Yit � XT

i β̂
ðsÞ � Zib̂

ðsÞ
i ; ð12Þ

and solve the l0 minimization problem stated in Eq (9) for ρ̂ðsÞ, using the FoBa algorithm.
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Note that if ρ = 0—i.e., the first step of the estimation procedure— we are solving a regular
LME model without the AR part. The likelihood or the information criterion (AIC or BIC) of
this model can be saved for later comparison with that of the SMARLME model for the justifi-
cation of choosing the more complex SMARLME model.

Results
Here we will present analysis results of two motivating examples, namely the circadian oscilla-
tor and BP measurements. The circadian-oscillator data were simulated using the ODEs in Eqs
(2) and (3). The BP data set was a subset of data collected from the DASH study.

0.1 Simulation Studies: Circadian Oscillator
To facilitate simulation of data, we used the following discretized version of Eq (3) and Eq (3)
by setting dt = 1. Here Y1 represents the variable PER, and Y2 represents the variable dCLOCK.

Y1ðtÞ � Y1ðt � 1Þ ¼ v1
1

1þ K1 þ K1e
aðY1;t�t1

�Y2;t�t1
Þ � k1Y1ðtÞ; ð13Þ

Y2ðtÞ � Y2ðt � 1Þ ¼ v2
1

1þ ½K21þ eaðY2;t�t2
�Y1;t�t2

Þ��1 � k2Y2ðtÞ; ð14Þ

We further set the two delays as τ1 = τ2 = 12, and set parameters in Eqs (2) and (3) as v1 =
.5,v2 = .25,k1 = .5,k2 = .5,K1 = .3, K2 = .1, and α = 10. These values were based on values sug-
gested by [5] and for offering realistic biological rhythms in the simulated data. Using Eqs (13)
and (14), the true curves of simulated dCLOCK and PER over time, referred to as no-noise
data hereafter, are shown in Fig 1(b). To simulate realistic data, Gaussian white noise of differ-
ent levels was then added to the no-noise data. We choose three levels of Gaussian noise—i.e.,
σ = 0.01,0.05, and 0.1—and the simulation and estimation are repeated 1,000 times for each
noise level. The simulated sample of 100 curves with added noise of standard deviation σ = 0.1
are shown in Fig 2 over a 72-hour period.

No time-independent and shared predictors are given in this simulation experiment; our
sole purpose is to recover the most correlated entries in history with Yt. In addition to having
the linear terms of Yt − τ in the AR part, we also include expYt − τ terms. To make the model as
parsimonious as possible, we set the history period d = 15, three hours greater than τ1 and τ2,
and the number of nonzero entries in ρ as n = 25. Using the no-noise data and the FoBa algo-
rithm, we identified 7 nonzero locations. Thus using n = 25 is substantially larger than the true
number of nonzeros, n� = 7. Setting n	 n� helps us justify whether the forward-backward
greedy algorithm can successfully remove uncorrelated entries while keeping the most corre-
lated entries.

The FoBa algorithm applied to the no-noise data resulted in 7 non-zero coefficients in the
linear model. The positions, indexes, and values for the nonzero terms predicting the system
(Y1,Y2) are depicted in Table 1. The observed no-noise data and the predicted values based on
the linear system with 7 non-zero entries are depicted in Fig 3. It can be seen that the recovery
of the original curve is almost perfect when noise is not present.

Fig 4 shows the mean and confidence intervals (in error bars) of estimates derived from
1,000 replicates by applying FoBa to simulated data for each noise level. The AR parameters
ρkjτ are organized as a single vector, with the first index changes fastest. The vertical lines corre-
spond to the positions of which true non-zero terms are located. Because only expYt − τ terms
were selected, and none of the Yt − τ terms were chosen in any replication, Fig 4 does not
include parameters for the Yt − τ terms.
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Fig 5 shows the observed and predicted values of the variables Y1 and Y2 at the three desig-
nated levels of noise. Because of space, out of n = 1,000 samples we randomly selected two at
each level to show how well the FoBa algorithm recovers the pattern. To further summarize the
fits of the SMARLME model based on FoBa estimates, in Table 1 we present the results of the
simulation study in the form of bias and mean squared error (MSE) of the estimates over 1,000
replications. Bias and MSE are defined as follows:

Bias ¼ 1

NL

X
n;l

j ^rðnÞ
l � rðnÞ

l j;MSE ¼ 1

NL

X
n;l

ð ^rðnÞ
l � rðnÞ

l Þ2; ð15Þ

where rðnÞ
l , l = 1,. . .,L denotes the AR parameter derived from the nth replication, where

n = 1,. . .,N, and N was set at 1,000 in this experiment.
In general, the SMARLME procedure recovers the parameters quite well, as evidenced by

the small biases and mean squared errors. The result also shows that both bias and MSE
increase with the level of noise in the data, as expected. We also make the following observa-
tions: (1) FoBa provides almost perfect fit to the nonlinear no-noise data using a small number
of nonzero coefficients. The coefficients at lag 1 and 12 are substantial and are consistent with

Fig 2. Sample of 100 simulated curves with added Gaussian noise of σ = 0.1.

doi:10.1371/journal.pone.0131371.g002
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the way data were generated. (2) When σ = 0.1, and given that the true signal variance at
0.0268, we have a rather low signal-noise ratio (SNR) of 2.7, suggesting that the algorithm can
recover true time lags reasonably well even under very noisy situations. Here SNR is defined as
the signal variance divided by the noise variance. (3) There exist non-zero coefficients in loca-
tions that are not expected—e.g., at lag 11. This may arise because data at lag 11 are highly cor-
related with data at lag 12. An implication of this observation is that there potentially exist
multiple solutions that fit the observed data equally well. (4) There exist some small coefficients
which are close to zero—e.g., ρ2,2,17 at position 68. For this position, as the noise level increases,
FoBa is less likely to select coefficient at this location. This is reflected in the Count column in
Table 1, which represents the number of times that the model select the correct position of pre-
dictor out of 1,000 replications. At σ = 0.1, FoBa does not select this location at all. An implica-
tion of this observation is that for coefficients with small nonzero values, they are not always
selected especially when the noise level is substantial. (5) Regardless of the model selected, the
FoBa provides predicted values that fit the observed values quite well (see Fig 5). This simula-
tion indeed demonstrates that the SMARLME could effectively recover intrinsic highly-corre-
lated delays in periodic data with feedback loops.

0.2 Data Application: Blood Pressure Data
As noted in [14], more work is needed on the longitudinal analysis of 24-hour blood pressure
data given the lack of a generally accepted ‘standard’ analysis method. Hence the appeal of
illustrating our method with the DASH data. The 24-hour hourly BP data of a sample of 340
subjects before and after intervention is concatenated together to form a 48 x 1 vector for the
SBP and the DBP of each subject. The SBP and DBP data of a subsample of 50 subjects, before
and after intervention, are shown in Fig 6, along with the sample mean curves in thick, black

Table 1. Statistics on the Estimated Parameters.

Position True value k* j* τ* Noise level Count Bias (SD) MSE (SD)

2 -0.11474 1 2 1 0.01 1000 0.0001 (1.2E-04) 3.471E-08 (3.9E-08)

2 -0.11474 1 2 1 0.05 1000 0.0028 (1.6E-03) 1.019E-05 (8.4E-06)

2 -0.11474 1 2 1 0.1 1000 0.0092 (3.9E-03) 1.008E-04 (4.3E-05)

4 0.27467 1 1 1 0.01 1000 0.0050 (5.0E-03) 4.948E-05 (7.8E-05)

4 0.27467 1 1 1 0.05 1000 -0.0160 (6.0E-03) 2.916E-04 (1.1E-04)

4 0.27467 1 1 1 0.1 1000 -0.0469 (3.2E-02) 3.210E-03 (3.0E-03)

36 0.063997 1 1 9 0.01 753 -0.0184 (2.6E-02) 1.021E-03 (1.8E-03)

43 0.251 1 1 11 0.01 1000 -0.0077 (1.0E-02) 1.666E-04 (2.9E-04)

43 0.251 2 1 11 0.05 999 0.0517 (2.0E-02) 3.079E-03 (2.3E-03)

43 0.251 2 1 11 0.1 258 -0.1945 (9.6E-02) 4.703E-02 (2.7E-02)

46 0.28112 2 2 12 0.01 1000 -0.0002 (1.2E-04) 4.265E-08 (4.8E-08)

46 0.28112 1 2 12 0.05 1000 -0.0533 (2.5E-02) 3.449E-03 (3.1E-03)

46 0.28112 1 2 12 0.1 902 -0.1283 (5.4E-02) 1.936E-02 (2.0E-02)

48 -0.34163 1 1 12 0.01 1000 0.0082 (6.9E-03) 1.144E-04 (1.9E-04)

48 -0.34163 1 1 12 0.05 1000 0.1694 (1.5E-02) 2.893E-02 (4.0E-03)

48 -0.34163 1 1 12 0.1 997 0.2021 (1.1E-02) 4.099E-02 (5.3E-03)

68 0.03964 1 1 17 0.01 999 0.0001 (2.9E-03) 8.563E-06 (5.0E-05)

68 0.03964 1 1 17 0.05 8 -0.0394 (2.8E-03) 1.559E-03 (1.3E-04)

* k = predictor variable, j = estimated variable, τ = lag

doi:10.1371/journal.pone.0131371.t001
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dashed lines. An intervention variable, δt, is introduced to differentiate the before from the
after intervention period; i.e., δt = 0,1� t� 24;δt = 1,25� t� 48. Thus, our model accounts
for the three week distance between the measurements before the intervention period and
those after. Three diet groups are coded as two separate binary variables, namely the vegetable/
fruit diet and the DASH diet. Eight predictors include intercept, vegetable/fruit diet, DASH
diet, control diet and intervention period, vegetable/fruit diet and intervention period, DASH
diet and intervention period, race, and age. The AR equilbria without intervention are assumed
to be the same before and after intervention, and hence the intervention effects can be sepa-
rately estimated. A subject-specific random effect is added onto the intercept term. We set
d = 23, and the total number of entries in ρ is p2d = 22×23 = 92. For model selection, we vary n
from 0 to 59, and choose the minimum-BIC model within this range.

From Fig 7(a), we see the minimum BIC appears at n = 56 (the actual number of nonzeros
in ρ is 36), which is far less than the BIC of the LME model; i.e., when n = 0. The sharp decline
of BIC even at n = 1 suggests that adding the AR part to the LME model would be more appro-
priate. Observing the flattened BIC after n = 20, we can choose more parsimonious models.
The convergence of fixed-effects estimates is shown in Fig 7(b). Fig 8 shows the estimated ρ,

Fig 3. Observed values and fitted values based on estimates from FoBa for data without noise.

doi:10.1371/journal.pone.0131371.g003
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and for a better presentation, we split ρ into four parts, each at a length of 23. For example, the
first subplot shows {ρ11τjτ = 1,. . .,23}, which corresponds to the contribution of SBP at time t −
τ to SBP at time t. The U-shapes observed in Fig 8 corresponds well to the correlation plots
seen in Fig 9(a), which also inspire the circular autoregressive-correlation structure in [14]. We
also plot the estimated correlations between predicted BP values in Fig 9(a) with 9(b), and com-
paring the two figures, we can see that our model can capture more subtle structures such as
the W-shapes of the original correlations. The slight elevation of the predicted correlations is
due to the removed noise term in the predicted values.

Table 2 presents the estimates, standard errors, and p-values from our SMARLME mode fit,
along with those from an LME model fit for comparison with the mean-value model in [13].
The intercept parameter represents the average of SBP and DBP for the non-white, control diet
group during the pre-intervention period for the “No AR”model and the residual average after
variation removal in the “AR” (SMARLME) model. The “diet group and intervention” parame-
ters indicate the estimated differences in blood pressure from this average for the groups during
the intervention period, while the diet parameters indicate these differences during the pre-
intervention period. The “White” parameter indicates the estimated difference in blood pres-
sure for White subjects, and the age parameter denotes the estimated change in blood pressure
for each yearly increase in age. Clearly, the estimated effects of the DASH diet and the vegeta-
ble/fruit diet are both reduced from the mean-value (No AR) model with our (AR) model fit,
although they are still significant. Interestingly, even within the control group, there appears to
be a significant difference before and after the intervention period with our model fit, as seen in

Fig 4. Themean and confidence interval of estimated ρ, shown as a single vector. The vertical lines represent the positions of true nonzero values. The
three panels (top to bottom) respectively show results for three levels of noise: σ = 0.01,0.05,0.1.

doi:10.1371/journal.pone.0131371.g004
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Fig 5. Observed and fitted values of two randomly selected samples (as rows) from each noise level σ = 0.01,0.05,0.1 respectively from the
leftmost column to the rightmost column. The observed data are represented in triangles (PER) and circles (dCLOCK), and the lines represent fitted
values.

doi:10.1371/journal.pone.0131371.g005

Fig 6. The 24-h BP data of a subsample of 50 subjects before and after intervention.

doi:10.1371/journal.pone.0131371.g006
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Fig 7. (a) The BICs of models with increasing n. (b) The convergence of fix-effect estimates.

doi:10.1371/journal.pone.0131371.g007
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the estimate of the control diet and intervention period, while the mean-value model shows
otherwise.

Discussion
The main contribution of this paper is in its (1) explicit modeling of reciprocal features of mul-
tiple time series, and (2) offering of a simple and practical solution to the potentially high-
dimensional lagged components in the model. There exists a large literature on either compo-
nents (1) and (2) that could be dated back to early work such as [21]. More recent work in (2)
includes the non-reciprocal dynamic-factor model [22], which aims to capture the dynamics of
a time series such as a financial indicator with a large number of lagged-predictor variables,
such as supply and order variables. Similar to our goal here, different methods such as the prin-
cipal component and shrinkage method have been proposed to solve the high-dimensional
problem [23, 24]. For reciprocal-causal models in (1), earlier work arose both in the psycho-
metric literature, especially in structural equation modeling, and in economics. For example,

Fig 8. The nonzero entries of β showing a circular structure.

doi:10.1371/journal.pone.0131371.g008
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Fig 9. (a) The empirical correlations of SBP and DBP data, where the x-axis is the time lag, τ, and each
circle represents the correlation between, for example, SBPt andDBPt − τ. Because for a fixed τ there
can be multiple ts depending on the availability of data, we can observe multiple circles at some τ.(b) The
model-estimated correlations of SBP and DBP data. Because the model estimates are not limited by the
availability of data, we have the same number of circles at each τ.

doi:10.1371/journal.pone.0131371.g009
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the so-called cross-lagged models have been developed for reciprocal time series [25], although
the method mostly addresses problems of relatively low dimension and short panel of cohort
data (in the notation of Eq (1), p = 2 and m = 1). Thus, one can view this paper as a way to
extend reciprocal models in time series to high dimensions—both in term of interacting vari-
ables and the time variable—and to offer a sparse representation of the model structure. One
interesting feature of the proposed method for SMARLME is that it simultaneously addresses
the model selection and the estimation problem. Additionally, as we have shown in the circadian
oscillation example, nonlinear variations over time can also be modeled using transformed
terms in the linear predictive model. Further research is required to evaluate the scope and limit
of using linear models for nonlinear feedback systems. Although the current SMARLMEmodel-
ing setup is such that the sparsity is induced by the cardinality constraint, it is possible that
some specific sparse structure could be a priori defined, as pointed out by a reviewer. Such an
implementation can indeed limit the FoBa search space and improve computational efficiency.

There are several limitations of the current work. First, we have not addressed stationary
conditions of the model. It is possible that the estimated model is non-stationary. However,
our focus has been in clinical applications in which the long-term behavior of the model may
not be a primary concern. In fact, the FoBa algorithm proposed in this paper does not require
that the time series are stationary. A second limitation is that we have not taken into account
the impact of model selection on inference [26, 27]. In other words, the selected sparse model
structure may not be correct and therefore it is possible that the coefficients and standard
errors reported in Table 2 are biased. This is an issue that cannot be adequately covered in this
paper. Further research will examine the impact of selecting different sparse model on coverage
properties. Finally, a limitation of the current work is that we have restricted the discussion to
linear models and avoided nonlinear regression models. The nonlinear circadian rhythm
example used for the generative model in our simulation study has been linearized with expo-
nentiated transformed variables. The estimation proceeds using the proposed linear algorithm,
which actually brings some simplification to the problem. The simplification could also be use-
ful when interpreting parameters in the fixed and random effect components of SMARLME,
which in some cases could be the primary goal of inference, for example in medical applica-
tions in which the AR component is treated as a nuisance factor.

Supporting Information
S1 File. S1 File contains an example about the use of matrix formulation for the FoBa esti-
mation of the multivariate autoregressive model.
(PDF)

Table 2. Estimates of the Mixed-Effects Model.

No AR AR

Estimate SE p-value Estimate SE p-value

Intercept 105.3 1.221 0.000 36.479 0.662 0.000

Control and Intv -0.481 0.521 0.356 -1.098 0.354 0.002

DASH and Intv -4.115 0.517 0.000 -2.405 0.356 0.000

Veg/Fruit and Intv -3.374 0.517 0.000 -2.209 0.357 0.000

DASH 0.34 1.125 0.763 0.103 0.388 0.791

Veg/Fruit 1.076 1.126 0.339 0.411 0.388 0.29

White 0.026 0.907 0.977 0.001 0.315 0.997

Age 0.577 0.212 0.006 0.198 0.073 0.007

doi:10.1371/journal.pone.0131371.t002
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