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Each year in the United States 2.5 million people sustain a traumatic brain injury (TBI), making 

TBI one of the leading causes of death and disability. Difficulty self-regulating behavior is 

considered a hallmark deficit of TBI and can impede positive rehabilitation outcomes. Traditional 

clinic-based assessments with TBI cohorts are often compromised due to inaccurate self-reporting 

caused by self-awareness and/or memory challenges. This project developed out of the need for 

more adequate and objective assessment methods of behavior after TBI. The aim of this study was 

to identify physiological states that may serve as real world, real-time prodromes of behavioral 

dysregulation when compared to direct behavioral observation during task performance. Adults 

with TBI (N=14) were asked to complete a protocol of challenging, problem-solving tasks selected 

due to their potential to elicit negative responses believed to be indicative of dysregulation and 

result in task breakdown behaviors. Participants wore a portable biosensor band throughout the 

completion of all research tasks, which allowed for continuous physiological recordings of heart 

rate, breathing rate, and heart rate variability.  Physiology was then synchronized with post hoc 

behavioral ratings conducted by trained clinicians from video recordings and analyzed through 

hierarchical linear mixed model methods to assess both between- and within-subject contribution 

related to the outcome. Testing was conducted at ReMed of Pittsburgh, a community-based brain 
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1.0  INTRODUCTION 

1.1 PROBLEM BACKGROUND 

Each year in the United States it is estimated 2.5 million people sustain a traumatic brain injury 

(TBI), making TBI one of the leading causes of death and disability (Centers for Disease Control 

and Prevention, 2010). Difficulty self-regulating, or exercising control over one’s thoughts, 

emotions, and behaviors to adaptively fit across environment contexts is a hallmark deficit 

experienced by anywhere between 76-97% of adults with TBI (Sherer et al., 1998). This inability 

to self-manage, along with other executive functioning deficits serve as barriers to independence 

and functioning in major life areas including social and vocational (Ylvisaker et al., 2007). The 

resulting negative outcomes have been shown to contribute to decreases in both participation and 

quality of life (QoL).  Therefore, it is not difficult to see why improved evidence-based practice 

for assessment and intervention for the care of the full continuum of TBI has been labeled a priority 

focus area by The United States Department of Defense (Helmick, Baugh, Lattimore, and 

Goldman, 2012).   

1.1.1 Statement of the Problem 

Despite the significant impact of self-regulation (SR) deficits on daily living, the majority of 

research on SR for persons with TBI is typically conducted in clinic settings. Due to the well-
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documented poor self-awareness and difficulty generalizing learned skills across contexts (e.g., 

particularly from the clinic to the real world), clinical settings may not be the most appropriate 

delivery environment to facilitate long-term skill retention in TBI cohorts (McCue, Fairman, & 

Pramuka, 2010). Individuals with TBI tend to function poorly in situations that are unstructured, 

where a high degree of SR is needed (Levine, Deirdre, Schwartz, Boutet, & Stuss, 2000). 

Additionally, intervention delivery within the easily controlled and highly structured clinic may 

not allow for natural representation of functioning or tap into the true environment where 

dysfunction manifests. The challenges faced when selecting appropriate interventions for the target 

group are also present when attempting to understand the shortcomings of traditional assessment 

methods within the clinic. Highly controlled approaches may paint an unclear picture of 

functioning and subsequently, lead to ineffective methods for collecting data. Research has shown 

rehabilitation interventions can be effective and even superior in yielding positive functional 

outcomes when delivered directly in the settings new learned skills will be applied in (McCue, 

Fairman, & Pramuka, 2010). It can be assumed the same thought process can be applied to 

assessment.  

In an overview of recent literature, McCue and colleagues provide supporting evidence for 

having clients engage in the rehabilitation process within an environmental context familiar to 

them (2010).  This support stems from the theory that home or community settings provide unique 

contextual factors that would otherwise not be present in a controlled environment, which may 

positively influence rehabilitation outcomes (e.g., reduced feelings of anxiety about treatment due 

to overall environment familiarity and comfortability, which may lead to buy in and increased 

participation in the rehabilitation process; McCue et al., 2010).   
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Biosensor technology has been shown to be highly efficacious across chronic illness and 

disability for increasing self-regulatory ability through increased self-awareness and training of 

physiological states (Association for Applied Psychophysiology and Biofeedback, 2011; Yucha & 

Gilbert, 2004). More specifically, respiration rate (RR), heart rate (HR) and electric muscle activity 

(EMG) all appear frequently in the literature as responsive signals to target this deficit (Yucha & 

Gilbert, 2004). However, literature focused on the utilization of biomeasures for SR deficits, 

specifically for persons with TBI is scarce, especially for applications in real world settings.  Due 

to the limitations of current assessment methods and interventions, it is suggested rehabilitation 

professionals consider novel methods that are ecologically valid, and shift focus to delivering 

rehabilitation where deficits naturally occur and where assistance is most needed. 

1.2 RESEARCH PURPOSE 

The main purpose of the current research project was to explore physiological states that may serve 

as prodromes for behavioral dysregulation (BD) onset when compared to post hoc behavior 

observation during task completion. This project is the initial and a critical stage in determining if 

a TBI-specific naturalistic rehabilitation intervention is feasible based on the prediction of SR 

physiologically in real-time and in the real world. With this ecologically valid intervention, 

biosensor technology may be used for physiological measurement and prediction of moments 

leading up to maladaptive behaviors that then allow for prospective cognitive rehabilitation 

intervention aimed at increasing SR ability. Ultimately, physiological states that accurately predict 

clinician judgment of behavior within the clinic may provide insight into the ability for these same 

biomeasures to be predictive of BD in the natural environment.  
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1.2.1 Research Aims 

Both a development phase and an initial feasibility study were conducted prior to two full pilot 

studies. This was done in order to gain a greater understanding of the construct of interest and 

determine the feasibility of conducting research in this area. Figure 1 can be referred to for a 

complete research graphic of the trajectory of all studies in the greater research project.    

1. Development of the Overt Behavioral Dysregulation Rating Scale (OBDRS), a novel 

clinician-administered assessment tool for naturalistic observation of BD in adults 

with TBI (Tool development) 

2. Evaluation of the feasibility of measuring physiological states continuously during 

task completion via portable biosensor technology for synchronization with 

observational behavior data from the OBDRS (Study 1: Initial feasibility) 

i. Feasibility testing also assessed several secondary aims: 

1. To evaluate changes in perceived cognition and mood during task 

completion 

2. Exploration of physiological change patterns throughout the 

behavioral observation period 

3. Examine correlations between physiological signals to provide 

insight into factors that may have increased value or redundancy in 

a predictive model 

4. Assess the relationship between physiological change and BD 

event frequencies across time periods 

2. Evaluation of physiological responsiveness (Study 1: Initial feasibility) 

3. Selection of research tasks (Study 1: Initial feasibility) 
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4. Reliability and validity of the OBDRS (Study 2: OBDRS psychometrics) 

5. Development of an EMA method utilizing biosensor technology for exploration of 

physiological signals that may predict BD events in adults with TBI (Study 3: EMA 

model) 

 

Figure 1. Research graphic 

1.2.2 Research Questions 

The feasibility protocol examined three research questions.  The first question was, is it feasible to 

continuously measure physiological profiles via a portable biosensor device during the completion 

of challenging problem-solving tasks for synchronization with recorded behavior events? 

Secondly, are specific physiological signals more responsive than others are when measured 
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during a challenging task protocol? Thirdly, can brainteaser puzzles serve as an appropriate and 

challenging problem-solving task to elicit the construct of interest? 

Study 2 was a more comprehensive assessment of the psychometric properties of the 

OBDRS.  The research questions were, (1) does the OBDRS fully and solely measure the construct 

of BD as it presents in TBI and as defined for the purpose of this study? (2) does the OBDRS 

correlate with existing validated measures of BD and present as distinct from tools measuring 

different constructs? and (3) can the OBDRS be established as a reliable measure of BD through 

rater agreement of recorded behavior events? 

Study 3 was an exploratory study focused on examining physiological change during the 

completion of challenging tasks in adults with TBI, exploring physiological variability both 

between and within individuals and, evaluating physiological variables as potential predictors for 

BD. The main research question was, in adults with TBI, can HR, HRV, and RR taken together 

with age and sex accurately predict BD events?  

It was hypothesized that it would be feasible to continuously measure physiological 

profiles via a portable biosensor device during a behavioral observation period where individuals 

will be asked to complete several challenging tasks. For the exploratory psychometric study, it was 

hypothesized that examination of the OBDRSs psychometric properties will provide evidence for 

both adequate reliability and validity.  Finally, for the EMA protocol, it was believed that HR, 

HRV, and RR when evaluated together with age and sex would serve as a reliable suite of 

prediction variables for BD. 
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1.2.3 Definitions of Important Terms 

A lack of consensus can be found in the head injury literature for understanding TBI severity, 

especially for separating mild TBI (mTBI) from concussion.  The current research focused solely 

on closed TBIs, excluding all other head injuries and including mTBI only when references to 

concussion were not made. This was due to the belief that concussion is a head injury separate in 

nature to TBI.  Additionally, due to the heterogeneity in the SR literature, it was a critical task to 

operationally define behavioral SR as it pertains to this project.  Through consolidation of the 

literature, as well as informal discussions with rehabilitation professionals working with the target 

population, behavior SR will be defined as, ‘a person’s ability to purposefully identify, monitor, 

adapt, and execute control over his/her behavior to fit in congruence with his/her environment.’ 

1.2.4 Basic Limitations 

Studying a multi-faceted concept such as SR can be a complex task.  This comes as a result of 

competing expert opinion on what subdomains truly make up SR, differences in terminology 

across professions, and a highly heterogeneous body of literature—all of which make researching 

this construct challenging at best. More specifically, research on behavioral SR after TBI within 

the context of rehabilitation is scarce, and even more difficult to find when evaluating ecologically 

valid forms of assessing problematic behavior in this cohort. This project sought to pull together 

the available literature and analyze common themes to isolate a conceptual framework upon which 

to build the following research studies.   
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1.2.5 Study Significance 

The inability to self-regulate behavior can lead to a variety of negative rehabilitation outcomes for 

persons with TBI (Braden et al., 2012; Jumisko, Lexell, & Soderberg, 2009; Tate & Broe, 1999). 

After TBI, behavioral challenges can often become defining sequelae and directly influence a 

myriad of negative outcomes leading to poor QoL and low participation (Liu, Chan, Lee, Li, & 

Hui-Chan, 2002; Ylvisaker et al., 2007).  Selecting optimal interventions for increasing self-

regulatory ability can be a difficult task due to the limitations of current, widely used behavior 

assessment methods that most likely have led to broad estimates of incidence and prevalence and 

consequently, an inability to understand the true functional impact of BD (Sabez et al., 2014).   

Naturalistic assessment may be an answer to known assessment challenges when 

attempting to target problematic behavior after TBI. However, despite increasing support for 

implementing more naturalistic research protocols to infer clinical practice, novel EMA methods 

are still needed due to more traditional EMA approaches that require the ability to accurately self-

report often being inappropriate for disability cohorts who experience co-morbid self-awareness 

and memory difficulty along with behavior challenges.  Due to the connection between human 

physiology and behavior, continuous measurement of objective physiological parameters may be 

a viable option for not only detecting the presence of momentary behavior, but to also identify 

antecedents or even consequences of behavior through unique physiological presentation in the 

moments leading up to or following an event (Ali et al., 2012).  This predictive ability, along with 

the inherent heterogeneity of physiology across persons, may subsequently lead to the 

development of not only ecologically valid rehabilitation approaches, but also more individualized 

assessment methods and intervention delivery models focused on intervening prior to the 

occurrence of maladaptive behaviors. 
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2.0  CHALLENGING BEHAVIOR PROFILES IN ADULTS WITH TRAUMATIC 

BRAIN INJURY: FUNCTIONAL IMPACT, REHABILITATION SHORTCOMINGS, 

AND NOVEL ASSESSMENT APPROACHES 

2.1 TRAUMATIC BRAIN INJURY 

A TBI is a type of acquired brain injury where external forces cause sudden trauma to the head 

and can lead to significant damage to the brain (Brain Injury Association of America [BIAA], 

2011).  It is currently the leading cause of death and disability for children and young adults in the 

U.S. (BIAA, 2011).  These injuries are different from congenital or hereditary brain damage; all 

of which occur at birth.  TBI is also distinguished from acquired, non-traumatic brain injuries 

where internal illness is the cause, not force (e.g., anoxia, aneurysm, or stroke).  With a TBI, trauma 

often results from direct impact through skull fractures, penetration, or gunshot wounds, but can 

also occur as a result of acceleration-deceleration forces, such as in a motor vehicle accident.  

Both primary and secondary trauma can occur with a TBI.  Primary injuries occur directly 

from trauma at the moment of injury.  Skull fractures, contusions, hematomas, lacerations, and 

diffuse axonal injury are all examples of primary injuries.  Primary injuries are preventable, but 

not reversible.  Secondary injuries can develop anywhere from the seconds immediately following 

initial force to even days after, sometimes unknowing to the individual—making these symptoms 

especially dangerous when a head injury is not addressed appropriately following impact.  
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Common secondary injuries include but are not limited to, hematomas, brain swelling or edema, 

intracranial pressure, necrosis, ischemia, metabolic changes, and cardiac changes—some of which 

can lead to death.  These injuries are viewed as the evolution of direct impact to the brain. TBIs 

can be classified into two categories, closed head injury and penetrating injury.  Due to variability 

existing between the two diagnostic categories, closed TBIs will serve as the focal point of this 

research.  Table 1 can be referred to for a detailed breakdown of the differences between closed 

and open head injuries. 

 

Table 1. Breakdown of closed and open traumatic brain injuries 

Type Characteristics Common 
Forces Primary Injury Secondary 

Symptoms 
 Closed 

head injury 
 Skull and Dura 

Mater intact 
  
 Brain swells 

with no place to 
expand 

  
 Damage can 

often be global 
  

 Motor vehicle 
accidents 

 Falls 
Violence 
Sports injuries 
Blasts 
 

Contusion 
Hematoma 
Diffuse axonal 
injury 
Coup-contrecoup 

Concussion 
Hematoma 
Cerebral contusion 
Intracranial pressure 
Intracranial infection 
Edema 
Ischemia 
Anoxia 
Epilepsy 
Metabolic changes 
Free radical 
discharge 
Hyponatremia 
Personality changes 
Cardiac changes 
Hypotension 

Penetrating 
injury 

Skull fracture or 
penetration 
 
Focal, localized 
damage 

High velocity 
projectile 
 
Weapon wounds 
 

Lacerations 
Skull fracture 

2.1.1 Risk Factors 

Research has provided evidence for several risk factors associated with TBI.  Age has shown to 

play a significant role when defining risk groups and attributing causal factors of injury.  Three 

age points stand out as being at a higher risk for experiencing a TBI: small children due to falls 
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and abuse (statistics may be underestimated due to inaccurate reporting or non-reporting; Roehr, 

2012); adolescents between 15 and 19 years of age, due to motor vehicle accidents and risk seeking 

behaviors; and with the elderly there is a spike in TBI rates seen due primarily to falls (Bruns & 

Hauser, 2003; CDC, 2006; Nolan 2005).  The elderly contribute to around 22% of TBI-related 

hospitalizations.  In addition, males experience TBI at a higher rate (59%) than females; making 

sex a predictive factor as well (CDC, 2006; Bruns & Hauser, 2003).  Figure 1 displays a casual 

breakdown of TBI from statistics reported by the CDC (2010).  

 

Figure 2. Breakdown of most commonly reported causes of TBI 

Studies have also looked at race and ethnicity as potential risk factors for TBI and although 

there is evidence that young, African-American males are more likely to experience a TBI, this 

data may be confounded by socioeconomic status (Bruns & Hauser, 2003).  It is also important to 

note that TBI related injuries are costly, with the U.S. spending over 76.5 billion dollars on medical 

costs related to head injury in 2000 (CDC, 2006; Leibson et al., 2012).  These numbers are 

especially unfortunate when considering many TBI-related deaths can be prevented all together 

40%

14%
11%

16%

19%
Falls

Motor Vehicle/ Traffic

Assault

Struck By/ Against

Unknown/ Other
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from wearing seatbelts and using helmets (Nolan, 2005).  Just having experienced a TBI 

significantly increases an individual’s risk of sustaining a second or even a third TBI. In addition 

to what is known about risk factors, when examining TBI over the past decade, although rates of 

TBI-related emergency room visits have increased by 70%, only 17% of those individuals were 

admitted or experienced death (CDC, 2010). Statistics like these make it clear that more 

individuals are living with TBI than ever before, potentially resulting from increased education 

and/or earlier seeking of an initial diagnosis—with rates only expected to increase. Rising 

incidence rates speak to a critical need for rehabilitation services not only be available for these 

individuals, but also for the state of the science to advance along with it.  

2.1.2 Diagnosis 

TBIs are typically rated on a three-category scale of severity: mild, moderate, and severe.  

Classification is usually done immediately following trauma by medical professionals through an 

assessment comprised of multiple sources of information.  This assessment serves as a baseline 

for the individual following trauma and oftentimes, subsequent administrations of specific 

assessment components (e.g., objective measures) will occur at multiple time points after injury to 

track progress.  

 Several criteria are often considered when assessing TBI severity. These indicators 

include, loss of consciousness (LOC), presence and duration of coma, post-traumatic amnesia 

(PTA) or confusion, disorientation, and memory loss pertaining to events occurring after the 

injury, objective assessments, as well as neuroradiological evidence (e.g., computer tomography 

scanning or magnetic resonance imaging), a positive neurological exam, and neuropsychological 
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testing (Mayo Clinic, 2012).  Rehabilitation professionals use these informational sources as a 

guide for the development of appropriate and individualized rehabilitation plans for clients.  

It is important to note that although these indicators are often used as a general estimate of 

an individual’s injury severity and prognosis, the high level of variability associated with TBIs 

means this diagnostic approach should be viewed critically.  Brain injury is not a homogeneous or 

highly predictable disability.  

2.1.2.1 Novel classification approach 

Within the field of rehabilitation, a shift has been seen in recent years on how professionals classify 

and approach treating TBI.  Due to the inaccuracies associated with commonly used classification 

methods labeling injury solely from medical factors, a novel approach has emerged where focus 

is placed on the functional impact manifested as a result of injury, and not the characteristics of 

the injury itself at the time of or shortly after occurrence.  For example, a rehabilitation professional 

may look to the severity of the consequences of injury and their impact on daily living (e.g., 

extreme behavioral problems or poor working memory), regardless of the injury itself being 

medically documented as mild, moderate, or severe.   

The current research project supports a classification approach centered around the 

functional impact associated with injury symptomology when conceptualizing behavioral 

challenges after TBI. Although TBI is one of the more commonly known disabilities where 

behavioral problems manifest, it is only one of many cohorts in need of more optimal rehabilitation 

assessment methods and rehabilitation services and supports to help facilitate more adaptable 

behavioral outcomes. 
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2.1.3 Prognosis 

In addition to risk factors and injury severity, the course of a TBI is also influenced by additional 

factors including, whether trauma results in global/diffuse (affecting the entire brain) or focal 

(specific areas) damage, the location of brain exposed to trauma, as well as person-centered factors 

such as age, pre-injury functioning, motivation for rehabilitation, and support systems.  In terms 

of re-injury, individuals who experience a TBI are 3-times more likely to experience another 

throughout their lifetime and after a second TBI they are at an even more elevated risk, being 8-

times more likely to sustain a third injury.  

The most significant gains in terms of restoring functioning are made early on during the 

acute rehabilitation process, generally within six months post injury—supporting the importance 

of early intervention.  Some researchers believe this critical window to be more generous, 

extending as far as two years after injury or longer.  Regardless of level of functioning regained 

and the timeline it occurs in, effects from damage to the brain will be long lasting to some degree, 

especially with moderate to severe TBIs.  It is unlikely for symptomology to resolve completely 

over time without residual effects.   

2.1.4 Outcomes 

Trauma to the brain can cause individuals to experience deficits in major functional domains 

including, physical, cognitive, behavioral, and emotional (Jumisko, Lexell, & Soderberg, 2009).  

Onset of a TBI is sudden, most of the time unexpected, and with that comes an adjustment period 

to disability that individuals often struggle with.  Many of these deficits have been shown to persist 

even decades after injury (Anderson, Brown, Newitt, & Hoile, 2009).  Short and long-term changes 
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to memory, affect, behavior, personality, concentration ability, language skills, insight, problem 

solving ability, arousal, and attention are often seen as well as chronic pain, cognitive fatigue, and 

decreased physical strength (Braden et al., 2012; Tate & Broe, 1999).  These changes not only 

affect the individual, but also have a significant impact on their family, friends, and loved ones—

a TBI’s impact can be global (Nolan, 2005).   

Functional limitations experienced by individuals with TBI often result in educational, 

social, personal, and vocational problems (Anderson, Brown, Newitt, & Hoile, 2009).  Education 

difficulties can result in academic underachievement, which can often have a direct negative effect 

on vocational success.  Social difficulties can lead to isolation and feelings of loneliness, which 

restricts full participation in society and reinforces antisocial behavior from the person with the 

brain injury (Gordon et al., 2006).  Many living with a brain injury display poor time management 

skills and lack punctuality, both of which can serve as barriers for gaining and/or maintaining 

employment.  Extensive research has shown low levels of functioning in multiple major life areas 

decreases QoL and overall life satisfaction (Jumisko et al., 2009).   

SR problems are a common deficit associated with TBI that can have both short and long-

term effects (Liu, Chan, Lee, Li, & Hui-Chan, 2002).  A person with difficulty self-regulating will 

often experience negative functional and rehabilitation outcomes.  Specifically, this could include, 

trouble making and keeping friendships, understanding and respecting the perspectives of others 

(Henry et al., 2006), lack of disability-related awareness, and engaging in risk seeking behaviors.  

Due to the pervasiveness, complexity, and impact of self-regulatory challenges, this deficit serves 

as the focal point for the following research.  
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2.2 SELF-REGULATION 

Research on human behavior over the years has approached SR with a great deal of variability and 

comes with diverging expert opinion on what SR is truly comprised of when broken down into 

smaller sub constructs (Siegert, McPherson, & Taylor, 2004; Vohs & Baumeister, 2010). Terms 

such as self-control, self-monitoring, and self-management are often used interchangeably with 

SR, while other research explicitly distinguishes the terms from one another—claiming SR is a 

broader concept referring to feedback loops and goal-directed behavior, self-management is 

reserved for medication management, while self-control refers to impulse control (Vohs & 

Baumeister, 2010).  In the field of psychology, SR definitions have evolved to not simply mean 

control of the self, but a more active human process of control by the self.  Additionally, debate 

exists on whether unconscious processes should be included in an all-encompassing definition of 

SR and not only the conscious processes more commonly focused on (Vohs & Baumeister, 2010).  

Experts have come to a consensus that both conscious and automatic processes are equally 

important in human ability to exercise control over oneself; however, some still use the term to 

refer solely to conscious processes (Vohs & Baumeister, 2010).  One definition of SR provided by 

Vohs and Baumeister (2004) includes the regulation of thoughts, emotions, attentional processes, 

impulses, appetites, and task performance (Vohs & Baumeister, 2010).   

The lack of universally accepted terminology to describe human ability to control the self 

has made establishing evidence-based practice (EBP) for SR interventions within the field of 

rehabilitation challenging, specifically in terms of assessment, measurement, and tracking 

progress.  Vohs and Baumeister provide an explanation for this in the Handbook of Self-

Regulation: Research, Theory, and Applications stating, “The search for a general understanding 

of SR has not been coherent given the diversity of the field (Vohs & Baumeister, 2010, p.2).”   
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Despite definitional issues and competing expert opinion, common themes have emerged 

across interpretations (Vohs & Baumeister, 2010).  General agreement exists that SR involves 

exercising control over the self to maintain regularity and keep the self in line with preferred 

standard processes (Vohs & Baumeister, 2010).  What is also clear is that our ability as humans to 

exercise control over our external environmental influences and internal processes is vital to our 

existence. It is likely many rehabilitation and health sciences professionals would agree that 

cognitive, behavioral, and emotional processes all play a role in and interact together to make up 

the construct of SR; however, some may still argue these domains in fact represent separate deficits 

all together.  

The provided overview on self-regulation, although necessary to highlight the conceptual 

and methodological challenges inherent when researching this complex construct, was determined 

to be too broad of a construct to focus novel pilot work on. Due to the overt, objective nature of 

behavior, as well as the known direct impact of maladaptive behaviors (e.g., behavioral outbursts 

in the workplace) on rehabilitation outcomes when compared to more covert cognitions and 

emotions, behavior was determined to be an appropriate scope and logical place to begin pilot 

research—especially for application to TBI (Ylvisaker et al., 2007).  Therefore, taking influence 

from the consolidated definition of SR developed from existing literature, for the purposes of the 

current research behavioral self-regulation was defined as ‘a person’s ability to purposefully 

identify, monitor, adapt and control his/her behavior to fit within the context of his/her 

environment.’  Figure 2 depicts the complex integration between the subdomains involved in SR 

and as it commonly presents in TBI.  This figure conveys that although this research focused only 

on the behavioral subdomain, there is an underlying overlap of sub-constructs that cannot be 

ignored.  
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Figure 3. Interaction between the sub-domains making up self-regulation 

2.3 BEHAVIORAL SELF-REGULATION 

It is estimated that 40 percent of all deaths can be attributed to some form of poor SR (Schroeder, 

2007).  The most common examples supporting this percentage are situations involving poor 

decision-making skills or risk-related choices. SR involves exercising control of the self, by the 

self, to maintain homeostasis, define our existence as human beings, and keep in line with preferred 

standard processes (Baumeister, Heatherton, & Tice, p.6, 1994; Vohs & Baumeister, 2010). Three 

main components are believed to make up behavioral SR, (1) monitoring behaviors, (2) motivation 

to reduce discrepancies between societal standards and actual states, and (3) the capacity to change 

these discrepancies when barriers are presented. Hofmann, Schmeichel, and Baddeley state that 

when one or more of these components are not functioning properly, ‘self-regulation failure’ 
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occurs (2012). Regulation of the self is a particularly difficult skill for individuals with TBI due to 

poor self-awareness and other executive functioning abilities.  

Many situational factors (e.g., temptation, impaired judgment and control, direct structural 

damage, or resource depletion) can cause an individual to experience behavioral SR failure 

(Baumeister & Heatherton, 1996; Heatherton, 2011). Failure often manifests as aggression, 

impulsivity, and inappropriate sexual and social behavior and leads to poor outcomes related to 

work, socialization, education, and QoL, but also threats to safety through risk seeking behavior 

such as criminal activity (Quinn & Fromme, 2010).  

Impulsivity, lack of drive or self-initiation, and disinhibition, are all behaviors commonly 

seen in brain-injured populations who fail to self-regulate at a high level (Ylvisaker et al., 2007).  

Behavior problems after a TBI are believed to contribute to a much higher degree to low QoL than 

cognitive or emotional deficits (Ylvisaker et al., 2007).  An individual with a brain injury who 

displays behavior problems will also most likely experience negative social and vocational 

outcomes as consequences of a disconnect between their behavior and societal standards and 

expectations.  

2.3.1 Self-Regulatory Systems 

Executive functioning is believed to either support self-regulatory goal pursuits or lead to SR 

failure (Hofman, Schmeichel, and Baddeley, 2012; Miyake, 2000). This ‘top-down control’ from 

the pre-frontal cortex (PFC) over sub-cortical mesolimbic dopamine system regions of the brain is 

responsible for control over primitive impulses and reward systems (Heatherton & Wagner, 2011; 

Vohs & Baumeister, 2011). Due to the numerous connections between the PFC and other areas of 

the brain, direct damage to the PFC has widespread consequences, and reciprocally, damage to 
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other areas of the brain can easily disrupt normal PFC functioning (Vohs & Baumeister, 2011). 

Theories of self-regulatory balance state SR failure can occur both when the balance shifts in favor 

of the sub-cortical areas (known as bottom-up control) or when damage is experienced directly to 

the PFC. When this balance tips in an unfavorable direction, dopamine receptors are activated and 

serve as antagonists for impulsive or aggressive behavior (Heatherton, 2011). Extensive research 

has shown that even when individuals are instructed to specifically inhibit an impulsive desire, a 

shift in activity can be observed from sub-cortical brain areas to the PFC. When the frontal lobe is 

directly impaired, individuals show an immediate preference for instant reward over delayed 

gratification (Brass & Haggard, 2007).  This suggests the mechanisms involved with SR are 

domain-general, but the sub-cortical regions involved may vary based on the stimulus and situation 

(Heatherton & Wagner, 2011). Therefore, interventions focused on increasing executive 

functioning may yield improvements in an individual’s self-regulatory ability. 

2.3.2 Incidence and Prevalence 

When consolidating the few known studies on the incidence of challenging co-occurring behavior 

profiles after TBI, Johnson and Balleny estimated 78% of individuals display one or more 

behavioral challenges in the home 18 months post injury (1996).  Verbal and physical aggressive 

behavior towards others or objects have been estimated to be anywhere from 11-84% (Baguley, 

Cooper, & Felmingham, 2006; Johnson and Balleny, 1996; Tateno, Jorge, & Robinson, 2014). 

Additionally, research shows that 50% experience reduced social skills, 39% are disinhibited, 30-

46% engage in sexually inappropriate behaviors, more than 50% abuse substances, 80% display 

inappropriate social behavior, 60% show a lack of initiation and/ or perseveration, and physical  
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aggression against the self and wandering are experienced in less than 15% of samples (Feeney, 

Ylvisaker, Rosen, & Greene, 2001; Johnson and Balleny, 1996; Kelly, Brown, Todd, & Kremer, 

2008).  

In an attempt to analyze the prevalence of behavioral SR deficits after TBI, Sabez and 

colleagues estimated both physical and verbal aggression as well as irritability can range anywhere 

from 11-96% (2014). Additionally, 40-71% lack initiation, 6-30% display inappropriate sexual 

behavior, wandering has been seen in 6-14%, and preservation is estimated at up to 25%. These 

same researchers then conducted a comprehensive, multicenter study hoping to mitigate some of 

the weaknesses in the literature by analyzing behavior systematically in over 500 community-

dwelling adults with TBI (Sabez et al., 2014).  Results showed an overall prevalence of challenging 

behaviors of 54%.  When breaking down behaviors individually, inappropriate social behavior 

(33.3%) and aggression (31.9%) were the most prevalent, and 35.5% displayed co-occurring 

behavioral challenges.  These broad and varying statistics make understanding the impact of 

behavior profiles post-TBI difficult at best and suggest a greater need for more systematic 

assessment methods.  

2.3.3 Functional Impact 

Individuals who self-regulate have the ability to implement what Baumeister and colleagues refer 

to as ‘self-stopping,’ or the ability to change behavior patterns by generating alternatives or halting 

the process all together (p. 7, 1994).  Individuals with TBI often lack this self-stopping ability.  

When studying correlations between challenging behavioral profiles and functional 

outcomes, Sabaz and colleagues found as aggression increased, so did the need for support, the 

level of functional disability, and mental health concerns, while participation declined (2014). The 
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limited literature makes it difficult to establish temporal relationships, as research has yet to 

provide evidence for whether behavioral challenges lead to functional decline after injury, or if the 

early stages of functional decline exacerbate BD (Arciniegas & Wortzel, 2014). Research has 

shown these problems to be extremely persistent, still being present several years post injury and 

often times increasing in severity when left untreated (Ylvisaker et al., 2007).  A study conducted 

by Winkler, Unsworth, and Sloan showed that lack of emotional control (e.g., irritability and 

anger) led to maladaptive behaviors and community isolation an average of 8.8 years after 

sustaining a TBI (2006).   

2.3.4 Summary 

The inability to self-regulate behavior can lead to a variety of negative rehabilitation outcomes. 

Behavioral SR deficits are believed to stem from impaired top-down control of the PFC cortex 

over sub cortical areas of the brain associated with impulsivity and reward seeking.  After TBI, 

behavioral challenges can be become defining sequelae and directly influence a myriad of negative 

outcomes and lead to poor QoL.  Selecting optimal interventions for increasing this self-regulatory 

ability is a difficult task due to weaknesses in current behavior assessment methods that have most 

likely led to broad estimates of incidence and prevalence and consequently, an inability to 

understand the true functional impact of BD.  
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2.4 ECOLOGICAL MOMENTARY ASSESSMENT 

Human beings participate in ecological momentary assessment or EMA every day most likely 

without even realizing it. EMA involves the delivery of assessment methods in the real world, with 

real-time or momentary data collection (Heron & Smyth, 2010; Shiffman, Stone, & Hufford, 2008; 

Stone & Shiffman, 1994).  It is an alternative to more traditional assessment approaches conducted 

within the clinic or laboratory setting that is rooted in the importance of the relationship between 

the individual and the environment.  Although EMA research to date has focused primarily on 

smoking cessation and mood, its use is expanding. Advances in technology have now made it 

possible to assess difficult to measure constructs through more objective and reliable data 

collection methods.  Behavior tracking through mobile technologies or wearable physical activity 

monitors are just two examples of EMA application. Due to the well-known measurement 

difficulty associated with challenging behaviors and their impact on rehabilitation outcomes in 

TBI, EMA is suggested as a viable assessment method for this cohort. 

EMA (also known as ambulatory assessment, naturalistic assessment, or experience 

sampling; Runyan et al., 2013) can signal individuals to report on their current state relevant to 

pre-determined outcomes of interest (e.g., mood or physical symptoms), observe behavior, or 

conduct contextual assessments of the environment (Intille et al., 2003).  This often occurs through 

portable technology devices, such as smartphones or wristwatches, where data is most commonly 

collected at multiple randomized time points throughout the day for several continuous days. 

Alternatively, EMA can be non-disruptive and occur during daily living, without any need for 

conscious effort or input from the user (e.g., ambulatory physical activity monitors; Heron & 

Smyth, 2010). This method of momentary data collection eliminates dependency on recall ability 

and reduces concerns over inaccurate self-reporting by only asking individuals to report on 
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experiences at an exact moment in time. Earlier uses of EMA in the literature commonly used 

paper diaries, but weaknesses from this technology (e.g., information integrity and compliance 

rates) led to the development of more reliable sources of data collection less susceptible to biases 

(e.g., behavior observation or wearable self-monitoring systems; Fahrenberg, Myrtek, Pawlik, & 

Perrez, 2007). EMA can be used independently for data collection alone, or to infer deployment 

of a full community-based ecological momentary intervention or EMI.  EMA delivery models 

highlight the importance of true representation of difficulties experienced in the natural 

environment, where it is believed assistance is most needed (McCue, Fairman, & Pramuka, 2010).  

This is in opposition to approaches requiring skill learning or insight development to occur in a 

highly controlled environment where it is believed challenges may be presented or reported in a 

biased and unnatural manner, which limits rehabilitation professionals’ ability to intervene 

effectively when unreliable data is a concern (Smyth & Stone, 2003).   

2.4.1 Applicability in Rehabilitation 

In rehabilitation, naturalistic delivery models present an opportunity for more ecologically valid 

assessment methods; from data collection done by a clinician directly in the environment of the 

individual (e.g., functional based assessments) to remote monitoring facilitated through 

technologies. This is potentially a more methodologically sound process due to the elimination of 

the possibility of finding false relationships in the laboratory or clinic that do not similarly occur 

in real life. EMA also proves to be a highly useful approach when it may be difficult or unethical 

to simulate change in a controlled setting without causing unnecessary harm, but the event may 

happen naturally in the real world (e.g., stress inducing situations; National Commission for the 

Protection of Human Subjects of Biomedical and Behavioural Research, 1978).  Real world 
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assessment methods provide the opportunity for adaptation in novel settings due to the inability to 

predict pseudo-randomly occurring environmental stimuli. 

The real-time data collection provided by EMA lends itself to additional therapeutic 

advantages.  A clinicians’ presence can be extended into the individual’s natural environment as 

opposed to only during finite clinic hours.  This continuous opportunity for data collection allows 

for more effective use of clinician time, due to potentially less traveling to see clients and overall 

time needed for gathering reliable information (Heron & Smyth, 2010).  Difficulties often 

experienced by clinicians when attempting to get clients to collect data between sessions to further 

facilitate the rehabilitation process are lessened due to events of interest and recording occurring 

directly in the real world as challenges naturally manifest.  As a result, positive effects may be 

seen in terms of compliance rates, which may lead to less services and supports needed over time 

and less follow-up or ‘booster services.’  By freeing up clinician availability and increasing 

compliance, EMA may prove to be a cost-effective and timely assessment approach that supports 

a more efficient rehabilitation process through reliable data to build rehabilitation plans from that 

yields long-term positive outcomes.   

Momentary collection of objective data also means less reliance on self-report data, which 

proves to be problematic when working with disability groups who, due to cognitive challenges or 

mental health concerns, have difficulty reporting accurately.  Furthermore, spontaneous data 

collection eliminates the effect of diminished recall ability, or what Smyth and Stone refer to as 

‘retroactive reconstruction,’ where the individual may recall an event differently due to the 

outcome (2003).  This can be especially true when long periods of time separate an event and data 

collection.  Retroactive reconstruction, which can truly invalidate recall data, can often happen 

when the individual’s current state or mood is negative during the moment when they are asked to 
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remember an event or situation (Smyth & Stone, 2003; Yoshiuchi, Yamamoto, & Akabayashi, 

2008).  A less biased data collection method can result in greater confidence in assessment results 

and consequently, the interventions inferred from the data.   

Additionally, by delivering assessments during daily living, EMA provides the ability for 

clinicians to reach greater numbers of people, including those who may be unable to consistently 

make it into a therapeutic setting (e.g., persons living in rural areas).  A method that reaches clients 

more easily may also positively influence compliance rates and limit ‘fake compliance’ (or 

disguising compliance through recording of data at other times aside from the designated times). 

EMA also allows for examining time-sensitive phenomenon and rapidly changing states (e.g., 

physiology), while also being able to account for data patterns that may vary depending on the 

time of day (e.g., the influence of cognitive fatigue on task performance) and examine temporal 

relationships between variables to potentially infer cause and effect. 

Arguably, the most important factor when evaluating the utility of EMA for rehabilitation 

is this delivery model’s focus on self-management.  The use of technology as an awareness tool is 

intended to gradually fade over time to encourage independent SR. By this time, it is expected new 

naturalistic skills have been learned and implemented effectively and the user now begins to drive 

the rehabilitation process, not the technology, until its presence as an assessment tool is no longer 

necessary.  Skills are then reinforced long-term through positive outcomes of their use once the 

technology is no longer an active component of the rehabilitation plan.  
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2.5 BIOSENSORS AS AN OBJECTIVE EMA APPROACH 

Biosensor facilitated EMA can provide ambulatory monitoring of individuals who are considered 

at-risk for challenging behavior (Fahrenberg et al., 2007). The physiologic system has long been 

directly linked to our emotions, cognitions, and behaviors (Lang, 1978) and researchers have 

theorized covert physiology may actually directly influence the development or maintenance of 

challenging behavior (Cohen, Yoo, Goodwin, & Moskowitz, 2011). This theory suggests that 

physiological events may serve as antecedents, concomitants and/or consequences of challenging 

behavior, and that certain physiological patterns (e.g., increased HR or decreased HRV) may 

increase the likelihood an individual engages in a particular behavior.  Cohen and colleagues 

provide support for this, showing that interventions are twice as likely to yield successful outcomes 

if they target the underlying functions of behavior (2011).  Physiology is believed to be one of 

those underlying functions. Although much of the EMA and physiology literature examines the 

relationship between physiology and mood regulation, it is possible there is a greater ability to 

answer research questions related to SR from a behavioral approach due to the clear visual 

presence or absence of behavior in a given moment when compared to more subjective emotions 

or cognitions. 

Physiology is a multifaceted and highly individualized system both across and within 

human beings (Wilhelm, Pfaltz, & Grossman, 2006).  This characteristic allows for rehabilitation 

assessment methods using biosensors to be tailored to the individual and dynamic as changes occur 

over time. However, due to this inherent variability, physiological responsiveness patterns may 

vary across persons.  Therefore, it is recommended that several physiologic parameters be assessed 

to give a broader assessment of behavioral states (Wilhelm, Pfaltz, & Grossman, 2006). 

Naturalistic physiological monitoring can be highly useful as one component of a multimodal 
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assessment process that provides a comprehensive picture of the challenges experienced by an 

individual (Fahrenberg et al., 2007). 

Behaviors are considered more spontaneous than emotions or cognitions; therefore, 

existing EMA questionnaires focused on mental processes and attitudes are not suitable for 

measuring behavior (Fahrenberg et al., 2007). Whereas a survey-based EMA delivered through a 

smartphone application can alert an individual at randomized time points during the day to self-

report on how they feel in that exact moment, this same approach would be inefficient for 

measuring behavior due to the inability to simultaneously engage in a behavior while reporting on 

the act. Therefore, measuring behavior through more traditional EMA approaches still relies on 

retrospective recall to some degree, which is not appropriate for application with individuals with 

disabilities who experience impaired self-awareness or limitations in other executive functions 

such as motor skills, processing speed, and memory (e.g., TBI; Fahrenberg et al., 2007). Using 

biosensors as an EMA approach eliminates the need for retrospective recall or self-awareness, and 

reduces client burden, as physiology is monitored effortlessly without any input from the user.   

Naturalistic monitoring also provides a variety of data-sampling strategies for analyzing 

the relationship between physiology and behavior that make it possible to answer a diverse set of 

research questions ranging from, continuous monitoring without further intervention to, interactive 

monitoring where detected physiological change prompts the user to engage in momentary self-

reporting and symptom self-monitoring where the user practices self-management skills to take 

control of a behavioral problem and implement or seek out adaptive responses (Fahrenberg et al., 

2007). These strategies also allow for the evaluation of temporal relationships to be explored 

between behavior occurrences and physiology.   
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Finally, the reliable assessment of physiological correlates of behavior is possible due to 

technological advancements allowing for non-disruptive physiological monitoring during daily 

living.  When assessing physiology through wearable technology, the technology itself can become 

reinforcing to the individual due to the personal learning gained about unconscious bodily states 

that would otherwise go unnoticed. This awareness training may supports SR skill building 

through monitoring and adapting physiological states independently over time, as technology is 

eventually faded out. It is important to note that research on the utilization of biosensors as an 

objective EMA approach for measuring behavior is still in an exploratory state, and research is 

needed to empirically connect measured physiology with maladaptive behavior in the target group. 

The following studies sought to support this research direction.   

2.5.1 Naturalistic Assessment of Behavioral Dysregulation Using Biosensors 

The current gold standard for assessing behavior is clinician behavioral observation (Fahrenberg 

et al., 2007).  But what happens when the individual goes into the real world without the clinician 

by his/her side?  Often times, assessment in-between sessions halts because services are not 

directly provided by a professional or the ability to generalize learning across contexts is impaired.  

Additionally, the majority of EMA research utilizes self-report questionnaires aimed at asking 

participants to recall experiences from periods of time that are often loosely defined (e.g., ‘over 

the past few days’), despite multiple reports providing evidence that this methodology may not 

accurately record experience, but instead record subjective mental representations of experience 

(Fahrenberg et al., 2007). This speaks to a greater need for reliable ambulatory assessment methods 

for measuring behavior that utilize more objective data measurement approaches.   
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2.5.2 Sensor Identification 

Recently, physiological states have been explored as an objective EMA data collection method for 

measuring behavior when traditional self-reporting EMA approaches may be unreliable or 

inappropriate.  This reliance on self-reporting is a limitation of many current assessment methods 

used with disability cohorts who have difficulty reporting accurately (e.g., TBI). Research 

questions on naturalistic behavior that were once difficult to answer due to methodological 

limitations may now be possible to systematically study through EMA models using biosensor 

technology. However, due to a lack of evidence on physiological correlates of behavior for the 

target population, an overview of psychological parameters of impulsivity and aggression was 

conducted due to both behaviors being characteristic of BD after TBI and the extensiveness of 

literature dedicated to this area of study.  

Cardiovascular and electrodermal activity (EDA) physiological measures make up the 

majority of research on physiological correlates of both aggression and impulsivity. Results from 

a study evaluating physiological correlates of impulsivity in a non-clinical sample found low HRV 

during task completion similar to previous research findings on impulsive individuals (Patrick, 

2008).  In an extensive review of the literature on psychophysiological correlates of aggression, a 

trend was shown between individuals who display hostility (often through verbal and physical 

aggression) and increased cardiovascular reactivity when in the presence of stress or provocation 

(Patrick, 2008). Additionally, confirmation for studying both HR and EDA when measuring 

aggression also comes from a meta-analysis conducted by Lorber where the relationship between 

aggression and both HR and EDA was replicated; however, larger, moderate effect sizes were seen 

for HR when compared to EDA (2004). 
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Although this body of evidence is characterized by conflicting outcomes due to 

methodological and theoretical differences, non-replication, and heterogeneity of the behavior 

constructs measured, overall, the research supports the responsiveness of both HR and EDA in the 

presence of executive functioning deficits, decreased inhibitory control, and increased aggression 

(Fowles, 2000; Iacono, Carlson, & Malone, 2000). Impulsive individuals seem to display an under 

arousal of autonomic functioning, while aggressive behavior is linked to the inverse relationship—

autonomic hyperarousal (Knyazev, Slobodskaya, & Wilson, 2002).  Therefore, there seems to be 

a true association worth exploring between behavior challenges and physiology. Directional 

differences in the relationship between physiological effects and behavioral challenges suggest 

there may be value in analyzing target behaviors individually; however, the commonly co-

occurring nature of challenging behaviors makes exploring the overall construct of behavioral SR 

a logical starting point.   

When consolidating the evidence on physiology and behaviors of dysregulation, HR, HRV, 

and electrodermal skin response all emerge as physiological states worth exploring in an EMA 

model for measuring behavioral SR deficits in adults with TBI.  Additionally, due to the known 

influential relationship breathing rate has on overall autonomic functioning, especially its direct 

connection to HRV, and documented differences in physiological presentation across sexes (de 

Geus, Willemsen, Klaver, & van Doornen, 1995; Kring & Gordon, 1998), both sex and RR are 

also important factors to consider.   
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2.6 SUMMARY 

Naturalistic assessment may be an answer to known assessment challenges when attempting to 

accurately measure problematic behavior after TBI. However, the development of novel EMA 

methods that do not rely on self-report or retrospective recall are needed due to these components 

being inappropriate for disability cohorts who experience low self-awareness and poor recall 

ability along with behavior challenges. Due to the connection between human physiology and 

behavior, continuous measurement of objective physiological parameters is proposed to be a viable 

option for the ability to detect the presence of momentary behavior, and to identify antecedents or 

consequences of behavior through unique physiological presentations in the moments leading up 

to or following an event (Ali et al., 2012). This potential for prediction, along with the inherent 

heterogeneity of physiology across persons may subsequently lead to the development of 

ecologically valid and individualized intervention delivery models focused on intervening prior to 

the occurrence of maladaptive behaviors. Given preliminary yet promising results from the 

literature, this is an area worthy of research.  

The link between covert physiological states and overt behaviors may lead to more reliable 

assessment approaches for measuring behavior SR deficits in adults with TBI through naturalistic 

delivery models.  Research on impulsivity and aggression suggests EDA, HR, and HRV may be 

the most responsive physiological correlates of behavioral SR challenges.  The current research 

provided insight into the ability to examine temporal relationships between physiology and 

behavior, and therefore, explore predictive factors.  Based on the literature, known physiological 

covariates, and methodological considerations, it was determined HR, HRV, RR, age and sex 

would be utilized in this research as predictors to explore in a hierarchical linear mixed model 

analysis to determine the predictive utility of physiology on BD. Promising results from this pilot 
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research provide support for replication testing of a novel EMA model for measuring behavior 

outcomes historically characterized by methodological challenges in similar cohorts.  The current 

research is an initial and critical stage in developing a reliable EMA method for behavioral 

challenges experienced after TBI that may lead to better identification of successful interventions 

for increasing self-regulatory ability and ultimately support positive long-term rehabilitation 

outcomes. 
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3.0  TOOL DEVELOPMENT 

3.1 RESEARCH PURPOSE AND AIMS 

The aim of this study was to develop a novel clinician-administered assessment tool for measuring 

BD naturalistically in adults with TBI. This tool was developed for comparison with the current 

gold standard of behavioral observation by a clinician in hopes the OBDRS tool may serve as an 

improved assessment method for BD.   

3.2 METHODS 

3.2.1 Tool Development 

The OBDRS is a clinician-administered assessment tool for naturalistic observation of BD in 

adults with TBI.  It was developed due to a clear gap in the literature and lack of availability of 

tools for measuring BD naturalistically in the real world, in real-time in adults with TBI. The final 

version of the tool was developed through an iterative process from consolidating the literature on 

BD in TBI, analyzing the strengths and shortcomings of similar existing assessment tools, and 

receiving informal input from rehabilitation clinicians on what behaviors they typically see in their 

own clients that may be indicative of BD and lead to subsequent task breakdown (see Appendix A 
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for the OBDRS tool).  It is important to note that the OBDRS was designed as a research tool and 

not a clinical tool to be used in real-time.  

This scale was designed to categorize types of behaviors that are believed to be indicative 

of BD during task completion specifically in the target group.  The OBDRS measures behavior 

type, frequency, duration, off-task behavior, and task disengagement/engagement. The OBDRS 

measures six target behaviors: disengagement, opposition, non-verbal (non-violent) dysregulation, 

physical aggression/violence, verbal dysregulation, and perseveration. Each behavior was 

operationally defined for the purpose of this research. Definitions of each observation period, as 

well as guidelines for properly recording both off-task and task engagement behaviors are also 

provided in the appendix. The tool is to be completed in a post hoc manner, through clinician 

ratings of behavior based on the defined coding scheme used while watching video recordings of 

behavioral observation sessions. 

Using the original version of the tool, which was formatted through an embedded excel 

worksheet, throughout each observation period from start to finish if an individual engaged in a 

target behavior a clinician began working across a row in the record sheet recording: the 

observation period, time of behavior onset, the type of target behavior, if the individual was off-

task during this behavior, a brief description of the behavior, whether or not the individual re-

engaged in the task, and the time of re-engagement (if applicable).  Each row represented a single 

behavior incidence. Each behavior incidence was recorded even if the individual redirected 

independently or if the onset or continuation of the behavior did not disrupt task engagement. The 

OBDRS can also account for events that fall in more than one target behavior category (e.g., 

throwing an object while also refusing to continue the task), as well as behavior incidences whose 

start-stop times overlap.  The tool produces a total score, representing the overall frequency of all 
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behaviors of dysregulation during the observation period, a sub-score for measuring the frequency 

of each of the six target behaviors individually and, total time in seconds spent engaging in 

behaviors of interest. Sub-scores allow for the examination of differences across behavior type.  

The OBDRS is intended to be synchronized with objective physiological data recorded from 

external biosensor technology.  

The original format of the tool proved to be labor intensive for clinicians when conducting 

behavior ratings.  In order to increase usability, the tool was modified to be embedded into a 

behavioral coding software program as a behavioral coding scheme.  This allowed for review of 

video recordings and behavior ratings to occur within one integrated system and make coding a 

more streamlined experience for the clinician raters.    
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4.0  MEASURING BEHAVIORAL DYSREGULATION VIA BIOSENSOR 

TECHNOLOGY: INTITIAL FEASIBILITY 

4.1 RESEARCH PURPOSE AND AIMS 

The primary aim of this study was to (1) examine the feasibility of a biomeasure device to 

accurately record changes in physiological activity that correlate with behavior during task 

completion, (2) evaluate physiological responsiveness, and (3) select research tasks. The following 

four secondary aims were also examined to provide a wide breath of data to gain a greater 

understanding the constructs measured and infer future pilot research.   

1. Evaluate self-reported changes in cognition and mood over time during task 

completion 

2. Explore trend patterns in physiological signals across time periods 

3. Assess correlations between physiological signals that may provide insight into 

factors that may have the greatest utility in a predictive model 

4. Examine the correlation between physiological change and clinician ratings of 

behavioral (gold-standard) 

This phase of the research project was intended to be exploratory in nature due to the 

limited amount of available research to extract meaningful effect sizes to guide future research 

efforts.  Therefore, no formal hypotheses were developed prior to running the protocol.  
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4.2 METHODS 

4.2.1 Variables 

Several physiological measures served as continuous independent variables in this study.  Skin 

temperature (ST) was recorded using a temperature sensor taped to the body using medical self-

adhesive tape. Skin conductance or GSR was recorded from two surface electrodes placed around 

the wrist. HR was obtained from an electrocardiogram (ECG) signal on the wrist. HRV or the 

difference between the maximum and minimum HR recordings within an observation period was 

extracted from the HR data.  RR was recorded using a respiration sensor band worn over light 

clothing around the abdominal area with the central part of the sensor just above the navel. Alpha 

and beta waves were derived from overall brain activity recorded through an electroencephalogram 

(EEG) sensor. All signals were sampled up to 2048 hz per second. Behavior dysregulation served 

as the binary categorical dependent variable (0= absent; 1= present). Perceived cognition and 

mood, impulsivity, and daily stress were also examined to gain greater insight into whether any 

participants were experiencing higher levels of impulsive behavior and stress prior to completing 

the study.  The current study also sought to examine the relationship between subjective cognitive 

and emotions states and objective physiological change and behavior.    

4.2.2 Assessments 

4.2.2.1 Overt behavioral dysregulation rating scale 

The OBDRS is checklist developed for the purposes of this research that produces ratings on 

whether specific behaviors indicative of dysregulation are present or absent during a task 
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observation period. Data from this tool allowed for associations to be evaluated between behavior 

and physiological measures due to the external time stamp on the checklist and the internal time 

stamp embedded within the biomeasure software. Two trained clinicians each completed post hoc 

behavioral analyses using the tool through video recordings of each participant.  See Appendix A 

for a copy of the scale. 

4.2.2.2 PROMIS cognition and mood scale 

A scale for measuring momentary cognition and mood scale was developed for the purposes of 

this research from the Patient Reported Outcomes Measurement Information System (PROMIS) 

database.  PROMIS is a databank of highly reliable and precise patient-reported measurements on 

physical, mental and, social health and well-being. Ten items with established individual reliability 

through item response theory were selected due to their ability to measure cognitive and mood 

states and were merged into one questionnaire.  All items are self-scored on a Likert scale ranging 

from 0 (never) and 4 (always). The total score of all items was used for analyses, where higher 

scores indicated greater difficulty with cognition and mood.  

4.2.2.3 Barrett impulsiveness scale 

The Barrett Impulsiveness Scale (BIS) is a widely used 30-item questionnaire measuring 

impulsivity.  It is a self-administered tool where individuals are asked to rate each item on a 4-pt 

Likert scale ranging from 1 (rarely or never) to 4 (almost always/always).  A total score is 

calculated from summing the ratings from the individual items, where higher scores indicate 

greater impulsivity.  Three second-order factors, and six first order factors or subscales can also 

be derived from the BIS, attentional (further deduced into attention and cognitive instability), 

motor (further deduced into motor and perseveration), and non-planning (further deduced into self-
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control and cognitive complexity).  It is recommended researchers report the total score and at 

least the second order factors when using the BIS.  

4.2.2.4 Daily event stress scale 

The Daily Events Stress Scale is a single-item tool developed specifically for this study to assess 

the level of stress participants are experiencing in daily living around the time they complete the 

study.  Individuals are asked to rate on a Likert scale from 1 (not stressed at all) to 10 (the most 

stressed) on how much life stress they have experienced during the past seven days. The item score 

was used for analyses, where higher scores indicated greater stress levels.  

4.2.3 Participants and Recruitment 

4.2.3.1 Healthy volunteers 

Six healthy University of Pittsburgh undergraduate students severed as volunteers for this study.  

Despite this research being focused on behavioral challenges after TBI, it was determined that due 

to the limited available evidence to guide research efforts, it was appropriate and ethical conscious 

to run feasibility research on a neurotypical population to examine feasibility before exposing a 

more vulnerable population to the protocol. Aside from being enrolled in an undergraduate 

rehabilitation psychology course, no additional inclusion/exclusion criteria were used for the 

selection of the healthy volunteers in this study. Volunteers were recruited through an informal 

flyer read aloud during class and passed around.  Interested individuals provided their contact 

information and consented for the research coordinator to contact them.  
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4.2.3.2 Recruitment 

A convenience sampling method was used for identifying both the healthy volunteers and clinician 

raters for this study.  Master’s students were enrolled in the Clinical Mental Health and 

Rehabilitation Counseling program and participants were sampled from a class taught by the 

primary investigator on the project.  No formal sample size estimations were conducted prior to 

recruitment due to the exploratory nature of this first study.   

4.2.4 Clinician Training 

Two Master’s level students in the University of Pittsburgh Clinical Mental Health and 

Rehabilitation Counseling program were formally trained to serve as clinician raters for this study.  

Aside from enrollment in their academic program, no additional inclusion/exclusion criteria were 

used for sample selection.   

Clinician raters were trained through a standardized protocol occurring over a 3-week 

period prior to rating participant videos.  Training included reviewing articles on relevant content, 

and learning how to administer and score the OBDRS for four mock participant videos.  Each 

video scored was reviewed in detail by the research coordinator and the raters individually.  

Successful completion of training was determined once both raters establish inter-rater reliability 

via a kappa statistic of at least .80. 
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4.2.5 Instrumentation 

4.2.5.1 Video recording system 

The Rehabilitation Engineering Research Center on Telerehabilitation (RERC-TR) developed the 

Versatile and Integrated System for Telerehabilitation (VISyTER; Parmanto et al., 2010). 

VISyTER is an integrated system that provides both real-time and asynchronous communication 

channels to support the collaboration and delivery of rehabilitation services remotely. VISyTER 

was used for video recordings of all participants and as the database for archiving sessions for later 

review. Participants were continuously recorded during all research activities, and when a 

recording was completed, the entire session was archived by the secure portal. This archive was 

treated as private data in the same secure fashion as each participant’s identifiable information and 

was not removed from the secure TR server. A back-up video was also recorded using a standard 

external video camera, and these files were stored securely. 

4.2.5.2 The observer xt software 

The Observer-XT is a widely used software package developed by Noldus that allows for the 

collection, presentation, and analysis of behavior data. Noldus allows for behavior coding tools, 

like the OBDRS to be embedded into the software program and allows for clinician ratings to be 

easily compared, analyzed and synced with other external data (e.g., continuous physiological 

data; Zimmerman, Bolhuis, Willemsen, Meyer, & Noldus, 2009). Videos were uploaded 

temporary into the software for rating purposes, but were not stored in the Noldus system. All 

videos were stored on the secure server at the University of Pittsburgh as mentioned above. 
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4.2.5.3 Nexus-10 biofeedback system 

Sten’s Corporation in San Rafael, California produced the Nexus-10 Biofeedback System. It is a 

10-channel biofeedback system with the portability to be carried on the person using the device; 

therefore, allowing for continuous measurement of physiological data in any context. "The system 

can monitor physiological responses (e.g., brain activity, blood pressure, muscle tension, HR, 

respiration, skin conductance, temperature, and etc.), with a 10-channel interface device that 

communicates with any computer using Bluetooth. The portable system can be used to monitor 

emotions, attitudes, perceptions, and mental processes that can be helpful for professionals 

developing innovative devices, systems, and interventions for people with behavioral limitations 

(Sten's Corporation, 2015).”  In this project, the device was worn by study participants throughout 

all research activities (including pre and post testing measures).  Figure 4 depicts a participant 

wearing the device in the testing room.  

 

Figure 4. Participant connected to Nexus-10 device. 
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4.2.6 Identification of Research Tasks 

Due to the potential for this research to yield results translational to rehabilitation clinical practice 

when working with individuals with TBI to achieve independence and employment goals through 

increased self-regulatory skills, the researchers felt it was necessary for the selected tasks to be 

functional in nature, where individuals would be required to implement problem-solving and 

decision making strategies—both necessary skills for living independently and gaining and 

maintaining employment, but common functional deficits experienced by persons with TBI.  After 

research and informal testing of several potential functional tasks, off-the-self challenging 

brainteaser puzzles were selected as the research task for the current protocol (Figure 5).   

 

Figure 5. Off-the-shelf problem solving puzzles 

   

4.2.6.1 Research tasks 

LEGO blocks were selected as the baseline task. This task was intended to be non-stressful, and 

provide baseline physiological measures to be utilized as thresholds during completion of the 
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problem-solving task later on in the protocol. The baseline task required participants to build a 

structure out of LEGO blocks. A LEGO set and an easy-to-follow instruction guide was provided. 

The duration of the baseline task was 10 minutes long, which was believed to be enough time to 

gather accurate and stable physiological data representative of each individuals’ true resting state. 

For the problem-solving task, three different off-the-shelf challenging puzzles series were 

presented to each participant (Rubik's cubes, Perplexus epic globes, and hanayama metal puzzles). 

Each task series consisted of three tasks each with a different level of difficulty (easy, medium, 

and hard) to allow for task completion to get increasingly more challenging. Participants were told 

they had 20 minutes to work on solving the puzzles and that compensation would be awarded for 

each puzzle they solved correctly. This choice was given to participants as to how they worked 

through attempting to solve the puzzles to ensure effort.  

The recovery task was 10 minutes long and required participants to read freely through a 

stack of provided magazines. This task was intended to serve as a time period where participants 

can engage in a non-stressful task before leaving the testing room. 

 

Figure 6. Feasibility protocol graphic 
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4.2.7 Procedure 

This study followed a descriptive cross-sectional cohort design.  It was non-experimental and 

therefore, did not utilize randomization, blinding, or allocation processes. Participants completed 

all research activities over one session that took no longer than 1.5 hours to complete.  Participation 

involved having participants complete a series of challenging problem-solving tasks, as well as 

filling out questionnaires prior to, during, and after task completion.  The research tasks were 

administered face-to-face, one time to all participants. The research coordinator was responsible 

for running all participants through the study protocol as well as administering and scoring all 

assessments.  

After setting up the device, participants completed all pre-test assessments. Afterwards, 

participants were presented with the baseline task. After baseline, participants were introduced to 

the problem-solving task.  Participants were given 20 minutes to attempt to work through the 

puzzles. Completion of the easiest level earned them $5; completion of the medium level earned 

them $10; completion of the highest difficulty level earned them $15. Participants were informed 

that they could choose to work on the series however they wish (e.g., working with one difficulty 

level for the entire time period or attempting several different levels of difficulty or puzzles). A 

difficulty level (e.g., easy) did not need to be completed before moving on to another—moving 

between tasks and returning to a previously attempted task was allowed. At six time points 

throughout the 20-minute duration (beginning, 5th minute, 10th minute, 15th minute, 20th minute, 

and immediately following task completion), the research coordinator checked in with the 

participant to ask them to stop what they were doing and complete the same PROMIS scale they 

completed as part of their pre-testing assessment. These ratings were recorded on a participant 

self-report rating form. Immediately following the problem-solving period participants completed 
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the recovery task as their final research task of the day. After the participants completed the 

recovery task, he/she was asked to complete the PROMIS scale a final time. Figure 6 displays a 

graphic of the study protocol. 

After completion of all research tasks, the associated compensation was provided to the 

participant for each task successfully completed. Time was kept using a countdown timer visible 

to both the research coordinator and participants during the entire observation period. At any point 

during the task participants could choose to not continue working. In the event that this happened, 

the research task would have ended before the time cap expired—this did not occur though. All 

research efforts were approved by the University of Pittsburgh Institutional Review Board (IRB) 

prior to running any research activities (#PRO13090443).  

4.2.8 Facilities and Personnel 

All research activities were performed in the Rehabilitation Science & Technology (RST) 

Department in Forbes Tower at the University of Pittsburgh in Pittsburgh, Pennsylvania. All 

members of the research team were affiliated with the RST department and possessed the 

appropriate qualifications to run a study of this nature.   

4.2.9 Data Collection 

All data collected was kept confidential by giving each participant an arbitrary identification 

number, which served as a link between raw data and the individual providing it. This confidential 

data was entered into a spreadsheet (using the identification number for coding purposes) by the 

research coordinator for statistical analyses and stored separately (in a data safekeeping room 
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within the Pitt-RST facilities) from any identifiable information. This process allowed raw data to 

not be identified, even by other members of the research team who had access to it. 

4.2.10 Data Source and Analyses 

The data set analyzed contained data for six individuals on variables related to behavior, mood, 

cognition, stress, and physiology. Physiology served as the sole continuous independent variable 

with eight levels (representing the different signals measured), while mood, cognition, and stress 

level were analyzed as nominal independent variables.  Behavioral dysregulation was the 

dependent binary variable. Statistical analyses examined the ability for a biomeasure device to 

accurately record changes in physiological activity that correlate with behavior events of interest 

(e.g., task breakdown) during task completion. In addition, changes in cognition and mood over 

time, physiological signal patterns, inter-correlations between physiological signals and 

synchronization between physiology and BD events were explored. All statistical analyses were 

conducted using the Statistical Package for the Social Sciences Software (SPSS, v. 22) and the 

Observer XT Software.  

This exploratory data analysis focused on descriptives and correlations only.  Means, 

standard deviations, effect sizes (Cohen’s d), and frequencies were used for all descriptive 

analyses, and Pearson product moment correlations and the kappa statistic were used for measuring 

inter-rater reliability. 
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4.3 RESULTS 

4.3.1 Participant Demographics 

Six individuals participated in this study, four females and two males. Age (M=21, SD=1.37) was 

normally distributed. Most students were female (66.7%), equally distributed across sophomore, 

junior, and senior education levels (33.3% each), and the majority were psychology majors 

(83.3%) and right-handed (83.3%).  

4.3.2 Pre-Testing Assessments 

All assessments showed non-normal distributions (p<.05).  These distributions along with the 

spread shown in the data (BIS [M=69.8, SD=7.06]; PROMIS [M=23, SD=8.22]; Daily events 

stress scale [M=4.8, SD=.41]), were believed to be a result of both the small sample size and the 

inherent variability of these constructs between college students.  Average total scores on the BIS 

seemed to be slightly elevated (M=67, SD=7.06) from expected norms, but this result was not 

significant. Elevated scores on the BIS may be easily explained by the students preparing to enter 

their midterm exam week at the time of testing, which most likely had an impact on their 

performance on these measures. Although the overall BIS score was not normally distributed (p-

value = .002), all three BIS subscales displayed normal distributions. 
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4.3.3 Cognition and Mood over Time 

PROMIS cognition and mood mean scores proved to be stable throughout the majority of the 

problem solving period, with only the difference between the final five minutes (M=19.17, 

SD=7.36) and the first five minutes (M=17, SD=5.87), showing a clinically meaningful, small 

effect (d = .24).  This result suggests it may take more time during a stressful task for participants 

to self-report changes in mood or cognition.  Clinically significant differences were seen in mean 

change scores when comparing the overall problem solving period (M=18.04, SD=7.09) to 

baseline (M=13.83, SD= 5.95) (d = .64), indicating a medium effect, and a small effect was 

observed when comparing the recovery period (M=15.17, SD= 5.31) to baseline (M=13.83, SD= 

5.95) (d = .24). This data shows that participants experienced greater perceived difficulty 

controlling their cognitive and emotional state during the problem-solving period when compared 

to baseline.  This difficulty was seen to a much greater degree during the problem-solving period, 

but the small effect size during the recovery period is most likely a result of stress responses still 

being elevated so soon after task completion.  

Table 2. Mean physiology compared to baseline and behavior frequency across time 

 Alpha 
Amplitude 

Beta 
Amplitude RSP- Rate HR HRV Behavior  

Baseline 14.4 (3.9) 8.1 (3.1) 21.7 (2.7) 93.7 (13.5) 61.5 (18.1) 2 

Problem-
Solving 

10.5 (1.7) 
d= 1.30*** 

6.0 (1.2) 
d= 0.89*** 

21.0 (2.0) 
d= 0.29* 

88.9 (11.3) 
d= 0.39* 

56.9 (16.1) 
d= 0.27* 22 

Recovery 
10.7 (1.4) 

d= 1.26*** 
6.1 (1.3) 

d= 0.84*** 
18.9 (2.0) 

d= 1.18*** 
82.8 (14.6) 
d= 0.78** 

53.9 (17.3) 
d= 0.43* 7 

-Mean, standard deviation and Cohen’s d effect size reported 
*small effect 
**moderate effect 
***large to extra-large effect 
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4.3.4 Physiology across Time  

Continuous recording of physiological data across all observation periods showed several signals 

to be more responsive than others. GSR, ST, and EMG did not show any significant change 

between observation periods.  However, Table 2 shows a range of small to extra-large Cohen’s d 

effect sizes across observation periods for EEG, RR, HR, and HRV when compared to baseline. 

These findings suggest that further research should consider focusing on these physiological 

signals.   

Table 3. Inter-correlations for physiological variables 

 SC/ GSR Skin 
Temp 

Alpha 
Amplitude 

Beta 
Amplitude 

EMG 
Amplitude RSP- Rate HR HRV 

SC/ GSR X - - - - - - - 
Skin Temp .13* X - - - - - - 
Alpha 
Amplitude .05 .01 X - - - - - 
Beta 
Amplitude .05 .01 .96*** X - - - - 
EMG 
Amplitude .01 .03 .10* .12* X - - - 
RSP- Rate .03 .01 .02 .02 .04 X - - 
HR .10* .16* .01 .01 .04 .16* X - 
HRV .03 .00 .01 .01 .03 .00 .02 X 

*small effect 
**moderate effect 
***large to extra-large effect 

4.3.5 Physiological Correlations 

Correlations between physiological measures were examined using Pearson product moment 

correlations by averaging physiological recordings across the entire observation period for all 

participants.  Results showed only minimal correlations between pairs of physiological signals at 
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best (r = .00 - r = .16), with the exception of the very strong positive correlation found between 

alpha and beta waves (r = .96), which was interpreted to be a confounding effect due to the direct 

influential reverse relationship the two states share (Table 3).   

4.3.6 Physiological Change and Behavior Patterns 

Frequency of BD incidences was recorded for each observation period through post hoc ratings of 

behavior from video recordings.  These frequencies were then compared to physiological data.  

Incidences of behavioral events rose from the baseline to the problem-solving period, and began 

to fall back toward baseline levels during the recovery period—an expected pattern (Table 2).  This 

data, along with physiological change data suggest that alpha amplitude, beta amplitude, HR, 

HRV, and RR data may have the greatest value in providing insight into BD that occurs during 

task completion in adults with TBI.   

4.3.7 Preliminary Inter-Rater Reliability 

Clinicians reached excellent inter-rater reliability on the coding of mock participant videos (N=4) 

during the training phase, calculated using the kappa statistic prior to rating the six study 

participants (κ = .83).  Excellent inter-rater reliability was again achieved when analyzing the six 

study participants (κ = .87).  This reliability, although preliminary and on a very small sample size, 

provides promise that the OBDRS has the ability to become a reliable behavioral assessment tool 

and is worthy of further exploration on larger samples. 
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4.4 DISCUSSION 

The present study explored the relationship between BD and physiology across observation 

periods and found several physiological signals showed clinically meaningful differences during 

task completion when compared to baseline: alpha amplitude, beta amplitude, RR, HR, and 

HRV—suggesting these signals be analyzed further and that these specific signals may have more 

predictive utility than others when entered into models of BD.  Non-responsiveness was seen for 

GSR, ST, and EMG, which is contradictory to research suggesting EMG and GSR are highly 

predictive measures of stress. A potential explanation for these results is the nature of the tasks 

participants were asked to complete and sensor placement. Participants were asked to physically 

manipulate objects with their hands, while also having sensors for several signals (e.g., ST, EMG, 

and GSR) placed on the fingers and palms. Additionally, the pressure placed on some of the sensors 

from simply holding onto the objects had the potential to introduce bias into the data (e.g., GSR). 

It is highly possible the location of the sensors had an impact on participants’ ability to maintain 

full range of motion and move freely throughout the research tasks (e.g., EEG sensors placed on 

the head with short leads connecting back to the device).   

An additional explanation for consideration is that the research tasks selected did 

appropriately capture the construct of interest (i.e. behavior dysregulation), but physiological 

expectations based on stress literature may not carry over to protocols where BD and not stress is 

the outcome of interest.  The assumed link between the two constructs may be directly influenced 

by the tasks selected.  No noteworthy correlations were found between pairs of physiological 

signals, with the exception of alpha and beta waves, indicating that physiology is highly 

individualized when averaged across persons. This supports physiological theory and previous 

research highlighting the challenges of analyzing physiology across individuals (Collins, 1999; 
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Davies & Morris, 1993). Finally, physiological signals did show to change in parallel with 

behavioral incidence frequencies across all participants, supporting the need for further research 

examining the temporal relationship between BD and physiology (Table 2).   

Secondary analysis of the data showed that when compared to baseline, clinically 

meaningful differences were seen in perceived cognition and mood during all other observation 

periods.  This magnitude of difference remained stable during the four checkpoint intervals within 

the problem-solving observation period when analyzed separately.  These results suggest that 

perceived cognition and mood do in fact change in parallel with internal physiological states and 

correlate with behavior.  This PROMIS measure may yield meaningful data as a more conscious 

assessment method along with unconscious bodily states.   

Overall, the present exploratory study provided evidence that it is feasible for biomeasure 

technology to reliability detect changes in physiological activity during task completion that 

correlates with clinician behavioral observation. These findings, if replicated in larger-scaled, 

predictive modeling protocols have the potential to infer the development of novel assessment 

methods that may ultimately allow for rehabilitation service delivery prior to the onset of 

potentially damaging behaviors.  Portable technology measuring physiological states can then 

extend rehabilitation services into the community, where technology will be able to not only 

measure, detect, and predict behavior, but also trigger full interventions through integrated mobile 

applications.  This novel rehabilitation capability can lead to increased service delivery efficiency, 

through maximizing clinician time and decreasing costs. This study supports continued research 

in this area, specifically on establishing the psychometric properties of the OBDRS, exploring 

physiological states that may have the greatest value in a predictive model for BD, and the 
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development of a rehabilitation mobile application for pairing with portable biomeasure 

technology. 

4.4.1 Limitations 

This study, as anticipated had several limitations.  Small sample size and the convenience sampling 

method used as well as methodological restrictions made for a small, skewed sample on a 

population different from the target group. Due to these limitations, the study experienced limited 

statistical rigor through only running basic descriptives and correlations.  However, despite these 

restrictions, this study was a critical exploratory phase in the greater research project—a phase that 

needed to happen to infer feasibility and the potential for future research.   

Additionally, after running six participants through the research protocol it became clear 

that it might be possible to shorten the length of each research task and still see a clinically 

meaningful physiological effect.  Due to limited research on frustrating task completion and 

behavior in TBI, tasks had to be selected that were believed to be challenging enough to elicit a 

frustration response and physiological change. Due to the neurotypical sample used and minimal 

number of BD incidences observed, it is difficult to answer questions regarding the appropriateness 

of the tasks in the protocol.  

Finally, when using new technology instrumentation can be a concern. The research team 

took care to deliver the research protocol equally across all participants, including the use of 

calibrated biosensor technology and an automated computer program with an embedded protocol. 

However, it was determined that the Nexus-10 device, due to its sensor placement and cord lengths 

would be inappropriate moving forward with protocols requiring participants to move around, 

manipulate objects with their hands, and play an active role in research tasks. It is possible 
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physiological responsiveness was falsely represented in the data collected from this device due to 

these instrumentation challenges experienced. Without this limitation and the use of a device that 

better fit the needs of the protocol, responsiveness may have resulted differently. Exploration of 

alternative portable devices on the market should be conducted before moving forward with future 

protocols.  

4.4.2 Protocol Modifications 

Given the knowledge gained from the initial feasibility protocol, several changes were proposed 

moving forward to both the psychometrics and EMA protocols to strengthen study methodology.  

4.4.2.1 Tasks 

Due to the limited number of outcomes observed during task completion, it was determined that 

brainteaser puzzles may not be appropriately eliciting the construct of interest. It was proposed 

that new tasks be selected moving forward that were more supported in the literature as research 

tasks that may lead to the desired response.   

The new research tasks chosen were selected through an extensive review of the literature.  

Due to a lack of a strong body of evidence isolating appropriate tasks for eliciting a negative 

behavioral response, a literature search was conducted from well-established stress, health, and 

psychology journals where studies were reviewed that used reliable and valid tasks to simulate 

stress responses in laboratory or clinic settings. The method of researching was based on the 

assumption that a direct link exists between internal stress responses, physiology, and behaviors.  

Therefore, selecting tasks with establish psychometric properties for eliciting a stress response was 
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a logical place to begin when attempting to isolate tasks that may also lead to frustration and task 

breakdown. 

Several common themes emerged from condensing the literature on stress responses during 

task completion. Serial subtraction tasks, where individuals are asked to count backwards in 

increments starting from a large number and are corrected by a researcher and required to start 

over each time an error is made appeared often in the literature.  Additionally, stress research 

protocols commonly used (as an independent task, but oftentimes along with a subtraction task) 

impromptu speech preparation and delivery, where an individual is told they will be given a short 

amount of time to plan a speech on something believed to be a salient topic (such as career goals). 

With this task, individuals are also told they will deliver their speech in front of a committee who 

will grade them on their performance while also being videotaped.  The committee is always made 

up of confederates, who are actually members of the research team.  With this type of task, 

deception is used and as a result carefully planned debriefing periods are conducted immediately 

following the completion of the research protocol to ensure the participant is informed of the 

reason for the deception and why it was necessary, as well as give them time to ask questions and 

return to a non-elevated state.   

A well-established, commonly used, and standardized battery of stress tests called the Trier 

Social Stress Test (TSST), emerged as the most commonly implemented protocol in this literature 

review (Birkett, 2011; Kirschbaum, Pirke, & Hellhammer, 1993). Several components of the TSST 

were determined to be highly beneficial for use in this research; however, some aspects of the 

protocol (e.g., planned deception) were determined to be inappropriate and unnecessary for 

application with a vulnerable disability cohort such as TBI.  This along with other considerations 

(e.g., the use of a confederate panel and the inability to take cortisol samples due to limited 
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resources), made the TSST as a standardized battery not meet the criteria for identifying 

appropriate research tasks for this research protocols.  However, the tasks themselves were still 

determined to have value, and as a result, a modified version of the TSST was selected as the best 

approach. The serial subtraction task and a version of the speech preparation and delivery task that 

did not involve planned deception and simply videotaped participants giving their speech after 

preparing it, without the use of a confederate panel was anticipated to be enough to elicit the 

desired response in a controlled environment in the target population given judgements made by 

clinicians working on this project.  

4.4.2.2 Technology and Signals 

After extensive searching, the Bioharness-3 device was selected as an alternative to the Nexus-10 

device used during initial feasibly testing.  Keeping in mind the instrumentation challenges 

experienced during the feasibility study, it was critical for researchers to select a more user-friendly 

device for the current protocol.  Given the needs of this project, (e.g., object manipulation and need 

for participant movement) and the availability of devices on the market, the Bioharness-3 was 

selected due to its comfortability, support of the user’s full range of motion, and capability of 

measuring all responsive signals from Study 1, with the exception of EEG.  Since user-friendliness 

was the main priority in selecting a new device, this left limited options to find a device that would 

measure all signals collected during initial feasibility testing (the ideal scenario). However, the 

Bioharness-3 did have the capability of measuring all responsiveness signals from Study 1, with 

the exception of EEG, which was determined to be an appropriate device moving forward that was 

also supported by the findings from Study 1.  

Portable biosensor technology measuring EEG is highly limited and the devices that were 

available did not meet the needs of this project.  Therefore, it was determined moving forward that 
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this signal be removed from data collection in support of a stronger methodology. Removal of the 

EEG signal from the current research is not reflective of a lack of utility this signal may provide 

to predicting BD, but rather a result of instrumentation restrictions (e.g., need for a portable, 

wearable device) of the current research and limited options to support those efforts.  Future 

research examining physiological predictors of BD should still consider incorporating EEG if 

study methodologies allow. 
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5.0  OBDRS PSYCHOMETRICS1 

5.1 RESEARCH PURPOSE AND AIMS 

The aim of this study was to determine the reliability and validity of the OBDRS tool.  This study 

was intended to serve as a follow-up to the preliminary reliability established in the initial 

feasibility protocol (Study 1).  In addition to inter-rater reliability, content validity was assessed 

through a rehabilitation expert survey group and construct validity was assessed through 

correlating the OBDRS tool with existing ‘like’ and ‘unlike’ measures. The research questions for 

this study were (1) does the OBDRS fully and solely measure the construct of BD as it presents in 

TBI and as defined for the purpose of this study? (2) does the OBDRS correlate with existing 

validated measures of BD and present as distinct from tools measuring different constructs? and 

(3) can the OBDRS be established as a reliable measure of BD through rater agreement of recorded 

behavior events? 

Despite the significant impact of behavior SR deficits on daily living, the most commonly 

used assessments for measuring behavior in persons with TBI are delivered in clinic settings, and 

may not be appropriate due to the easily controlled and highly structured clinic not allowing for 

natural representation of functioning or tap into the true environment where dysfunction manifests.   

                                                 

1 Multiple sections within this chapter contain repeated content from the feasibility research discussed in Chapter 4. 
An editorial decision was made by the author to retain this repeated content with the goal in mind of each chapter 
being able to be read as standalone content methodologically. 
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The OBDRS is unique in that no reliable and valid research tool currently exists to assess 

challenging behavior profiles in post-acute TBI in naturalistic settings. Of the assessment tools 

that have been widely used, most have psychometric properties established through inpatient or 

therapeutic samples in highly controlled environments, or require retrospective recall.  

Additionally, existing tools often do not measure the full construct of behavior SR—only targeting 

a specific behavior, such as impulsivity, or even measuring a different construct all together.  This 

is attributed to the heterogeneity of the available literature and competing expert opinion on the 

construct of interest. There is a need for a tool that can assess post-TBI behavior in the moment in 

the real world during the completion of tasks that are similar to those experienced during daily 

living.  The OBDRS hopes to bridge this evidence gap.   

5.1.1 Hypotheses 

It was hypothesized that the OBDRS will prove to be a reliable and valid assessment tool for the 

measurement of BD in adults with TBI. More specifically: 

1. Clinicians in the expert feedback group will be in perfect agreement that the content of 

the OBDRS represents the construct of BD. 

2. The OBDRS will prove to be highly correlated (r ≥ .50) to similar assessment tools and 

weakly correlated (r < .50) with tools measuring constructs unlike BD. 

3. The OBDRS will have adequate inter-rater reliability of ≥ .80 between the two trained 

clinicians.        
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5.2 METHODS 

5.2.1 Participants and Recruitment 

Recruitment and testing of all participants occurred from September 2015-March 2016. 

Rehabilitation professionals and study participants were all be sampled through a non-

experimental convenience sampling method.  

5.2.1.1 Rehabilitation experts 

Three rehabilitation experts, consisting of two doctorate-level brain injury rehabilitation 

researchers and one former head injury project leader and behavioral clinician, with extensive 

experience working with individuals with TBI, were hand-selected by the principal investigator of 

this study based on their experience and ability to provide meaningful feedback on the OBDRS 

for the target population and for the purpose of developing a reliable tool.   

5.2.1.2 Participants 

Participants in the challenging task research protocol were adults with TBI who experience BD 

challenges during daily living.  ReMed of Pittsburgh, a brain injury rehabilitation program in 

Pittsburgh, Pennsylvania served as both the recruitment and testing site due the ability to sample 

from a representative cohort of the target group. Eligible participants must have been currently 

receiving either residential or outpatient rehabilitation services at ReMed, have a primary diagnosis 

of TBI and subsequent behavioral challenges, and not currently receiving treatment for a 

psychiatric diagnosis. ReMed case managers working directly with program clients identified and 
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referred all potential participants by reading a provided recruitment script and scheduling 

interested participants to be consented and tested by the research coordinator on site.  

5.2.2 Data Measurement and Collection 

Pre-testing assessments, as well as behavioral events data from the OBDRS post hoc clinician 

ratings were used to examine the psychometric properties of the developed tool. This study 

identified BD as the sole binary dependent variable (‘0’= behavior dysregulation absent; ‘1’= 

behavior dysregulation present) based upon researchers wanting to know if any behavior of interest 

was present or absent and not which target behavior specifically. BD was measured by clinician 

raters post hoc during each second for the entire recording period and the total score of BD 

frequency for each participant was used for validity analysis. This small sampling window will 

allow for capturing spontaneous or brief changes in the variables of interest.  

The research tasks, including all pre-testing assessments took no longer than two hours to 

complete. All assessments were administered and scored by the primary research coordinator, 

while all behavior data was recorded by clinician’s post hoc ratings from video recordings of 

participant research sessions. 

All data collected was kept confidential by giving each participant an arbitrary 

identification number, which served as a link between raw data and the individual who provided 

it. This confidential data was entered into a spreadsheet (using the identification number for coding 

purposes) by a research team member for statistical analyses and stored separately (in a data 

safekeeping room within Pitt-RST facilities) from any identifiable information. This process 

allowed raw data to remain unidentified, even by the research team members who had access. 
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5.2.3 Assessments 

Several pre-testing assessments were given to all participants that served as measures for 

evaluating both the convergent and discriminant validity of the OBDRS.  All assessments were 

well established, widely used, and psychometrically valid measures for assessing either SR or 

constructs believed to be unlike the construct of interest (e.g., mindfulness).   

5.2.3.1 OBDRS rating scale 

The OBDRS is checklist developed for the purpose of this research that produces ratings on 

whether specific behaviors believed to be indicative of BD are present or absent during an 

observation period. Data from this tool allowed for associations to be evaluated between behavior 

and physiological measures due to the external time stamp on the checklist and the internal time 

stamp embedded within the biomeasure software. Two trained clinicians each completed a post 

hoc behavioral analyses through video recordings of each participant (see tool development section 

of Chapter 3 for detailed information on the scale and Appendix A for actual tool). 

5.2.3.2 Behavioral assessment of the dysexecutive syndrome dysexecutive questionnaire 

The self-administered version of the Behavioral Assessment of the Dysexecutive Syndrome 

Dysexecutive Questionnaire or DEX is a 20-item survey of common problems experienced with 

executive functioning deficits.  It measures three factors, behavior, cognition, and emotion.  

Individuals self-report on their own experiences by answering on a Likert scale, ranging from 0 

(never) to 4 (very often).  The total sum of all items is used for scoring, where higher scores 

indicate greater degrees of dysregulation, and oftentimes the self-rating questionnaire is compared 

to an independent rater version of the DEX questionnaire—completed by a member of the 
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individual’s support system or therapeutic team.  This study used only the self-administered form 

due to interest in measuring only the participants; perception of the self.  The DEX questionnaire 

has been shown to have high inter-rater reliability (κ = .88-1.00, p = .001; Emmanouel, Mouza, 

Kessels, and Fasotti, 2014). Research has also shown the DEX to be a valid instrument for 

measuring discrepancies between self-reported and support-system versions of the tool, indicating 

impaired perception of self-regulatory ability from the individual of focus (Emmanouel, Mouza, 

Kessels, and Fasotti, 2014). 

5.2.3.3 Go/no-go test 

The Go-/No-Go test is a neuropsychological measure of response inhibition and impulsivity—both 

components of SR (Fillmore, 2003). A version of the test is part of the Luria-Nebraska 

Neuropsychological Battery, a widely used standardized test battery focused on the screening and 

evaluation of neuropsychological difficulties (Golden, 1980). With this test, participants are given 

instructions to perform an action in response to two different stimuli, one representing the ‘go’ 

condition and the other representing the ‘no-go’ condition (e.g., “When I knock once you knock 

twice, when I knock twice you knock once.”) The test administrator conducts six trials of four 

different stimuli tests, delivering the two “go/no-go” conditions in a pseudo-random format and 

allowing the participant time to respond.  The four different tests are hand knocking on table, hand 

squeezing in response to colors, hand raising in response to knocking, and hard vs. soft hand 

knocking.  The number of errors made in each trial is recorded and transferred to a scale that 

produces a quantitative score ranging from 0 to 8 errors. The Go/No-Go test is a validated tool for 

measuring impulse control in children with Attention Deficit Hyperactivity Disorder or ADHD 

(Weafer, Milich, & Fillmore, 2011), as well as substance abuse populations (Fillmore & Rush, 

2006) and other cohorts known to display poor inhibitory control.   
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5.2.3.4 Mindfulness attention awareness scale 

The Mindfulness Attention Awareness Scale or MAAS is a 15-item self-administered tool where 

participants are asked to rate each item on a Likert scale ranging from 1 (almost always) to 6 

(almost never), for items all pertaining to everyday experiences.  The MAAS measures an 

individuals’ awareness and attention to situations taking place in the present, a core component of 

the greater mindfulness construct.  The average of all items is used for scoring, where higher scores 

are a reflection of greater levels of dispositional mindfulness.  The MAAS has shown to be a highly 

reliable and valid tool for measuring mindfulness in diverse cohorts, including community 

dwelling adults, college students, and individuals with cancer (Brown & Ryan, 2003). 

5.2.3.5 Satisfaction with life scale 

The Satisfaction with Life Scale (SLS) is a brief 5-item self-administered tool measuring an 

individual’s cognitive perception of their satisfaction with life.  Responses are rated on a Likert 

scale, ranging from 1 (strongly disagree) to 7 (strongly agree).  The total sum of all items is used 

for scoring, where higher total scores indicate greater satisfaction with life.  The SLS is a well-

established, reliable, and valid assessment for measuring the construct of life satisfaction (Pavot, 

Diener, Colvin, & Sandvik, 1991). 

5.2.4 Clinician Training 

Two clinicians (Master's level students from the RST department) were hand selected and trained 

by the research coordinator on how to complete post hoc behavior ratings using the OBDRS tool 

through the behavior coding software. Both raters reviewed videos of all participants completing 
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the research protocol. These raters did not interact with study participants, were unaware of 

assessment results, and completed all ratings independently of each other. 

Clinician raters were trained through a standardized protocol occurring over a 3-week 

period prior to rating participant videos.  Training included reviewing articles on relevant content, 

introduction to the OBDRS including how to administer the tool, and the scoring of four mock 

participant videos not included in the sample of videos clinicians rated for the research project.  

Each mock video scored was reviewed in detail by the clinician and the research coordinator to 

address coding concerns and provide feedback.  Successful completion of training was defined as 

when both raters established inter-rater reliability via a kappa statistic of at least .80 on the four 

mock participant videos. At this point, clinicians were cleared to begin coding real participant 

videos. 

5.2.5 Instrumentation 

5.2.5.1 Video recordings 

Video recordings were taken using a standard video recording camera. Participant videos were 

stored on a secure server at the University of Pittsburgh and only accessed by the researchers 

associated with this project. All participants were asked to give consent to be videotaped and have 

their videos analyzed after completion of the study before any research tasks occurred. 

5.2.5.2 The observer xt software 

The Observer-XT is a widely used software package from Noldus that allows for the collection, 

presentation, and analysis of behavior data. Noldus allows for behavior coding tools, like the 

OBDRS to be embedded into a software program that allows for clinician ratings that can be easily 
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compared, analyzed and synchronized with other external data sources (e.g., physiological 

monitors). To complete a behavior rating, a video recording is temporarily uploaded from the 

secure server into the software, but videos are not stored in the Noldus system permanently. All 

videos remained stored on a secure server after clinician ratings were completed. 

5.2.6 Procedure 

The current research design followed a single group, cross-sectional design. This study was non-

experimental and therefore, did not utilize randomization, blinding, or allocation processes. This 

project was approved by the University of Pittsburgh IRB prior to conducting any research 

activities (#PRO15100307). 

5.2.6.1 Electronic survey group 

A small electronic survey group (N=3) was held with a group of rehabilitation professionals who 

have extensive experience working with individuals with TBI. This group occurred via email and 

required no more than one hour of each clinicians’ time. The goal of this session was to have 

rehabilitation professionals critically review the OBDRS, specifically focusing on the tools’ ability 

to fully and reliably capture the construct of BD as (1) it pertains to adults with TBI and (2) how 

the researchers on this project have chosen to operationalize the construct. Quantitative and 

qualitative feedback gained from the experts was utilized for tool modifications and establishing 

the content validity of the OBDRS.   
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5.2.6.2 Challenging task protocol 

The research protocol was administered face-to-face, one time to all participants. The research 

coordinator was responsible for running all participants through the protocol as well as 

administering and scoring all pre-testing assessments. Participants were video recorded and 

permission to record was obtained during the written consent process. The consent process 

occurred immediately prior to the administration of all research tasks. 

The study protocol began with a pre-testing period where three self-rating questionnaires 

were administered along with one clinician-administered performance measure. Following pre-

testing, participants were escorted to a relaxation room where they were left alone and asked to 

simply relax for ten minutes. This allowed for participants to re-stabilize from any potentially 

evaluated states resulting from being asked to fill out potentially stressful self-assessments.  

Immediately following the acclimation period, participants were introduced to the first 

research task. Participants completed serial subtraction where they were asked to count down from 

6233 by 13s. The task ended when either the participant reached 0 or five minutes had elapsed. 

Participants were informed prior to beginning the task that if at any point they made an error they 

would be asked to stop and start the task over from the beginning. A visual timer was provided 

letting participants know how much time they had left to work on the task. The subtraction task 

used in this study was adapted from the TSST identified in development and feasibility work 

(Study 1).   

 Following the serial subtraction task, participants immediately moved into the speech 

preparation and delivery task. Here participants were told they would be given 10 minutes to 

prepare a 5-minute speech on how their injury has affected their life. They were given scrap paper 

and a pencil and pen to write ideas on while they planned their speech. At the end of the five-
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minute preparatory period participants were then asked to stand and present their speech to the 

camera. What they were not told before completing the task was that they would be required to 

present their speech without using their notes. This element was introduced to add a spontaneous 

unplanned stressor into a life situation. This speech task was also adapted from the TSST.  

 Immediately following the speech task, participants were asked to complete a third and 

more functional task. The hamburger turning task is a functional task developed and used clinically 

for over the past 12 years by clinicians and researchers at the University of Pittsburgh (Shugars, 

2007). This task requires participants to prepare 16 fake hamburger patties on a faux grill based 

on a 30-step procedure modeled after actual hamburger cooking process used in Wendy’s 

restaurants.  This task has been shown be a clinically useful measure of executive functioning 

(Shugars, 2007) and was selected to serve as a hands-on task that may be more representative of 

meaningful experiences during daily living that result in challenges for the target group when 

compared to the other two (more cognitive based) tasks in the protocol. Completion of this task 

required participants to first watch a brief, narrated step-by-step video of a person completing the 

task correctly from start to finish. Next, participants were asked if they had any questions about 

the task and then were introduced to task props (fake hamburger patties, faux grill, real saltshaker, 

and spatula). Participants were also given a list of task steps to use as a cognitive aid if they chose 

to do so while completing the task. Participants were told they would have 15 minutes to correctly 

cook all the hamburger patties and that similarly to the serial subtraction task, if they made an 

error, they would be alerted to the error and then asked to start the task over from the beginning.  

Finally, after the completion of all research tasks, there was a 20-minute post-testing 

recovery period where participants were again left alone in a quiet room and asked to simply relax.  

This period was set aside to allow participants to return to baseline levels from any potentially 
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elevated states before testing concluded. After the recovery period ended, the research coordinator 

escorted the participant back to the main testing room, stopped the video recording, answered any 

remaining questions participants may still have had about the study, and provided compensation. 

ReMed staff remained on-call during testing in the event a participant experienced distress levels 

beyond what was expected and considered appropriate during a common stressful event. This type 

of elevated effect was not anticipated and did not occur. Figure 7 shows the full OBDRS 

psychometric protocol.  

 

Figure 7. Tool psychometrics protocol 

5.2.7 Facilities and Personnel 

All research activities were conducted at ReMed of Pittsburgh’s clinical facilities in Pittsburgh, 

Pennsylvania.  Members of the research team were all affiliated with the RST department at the 

University of Pittsburgh and possessed the appropriate qualifications to run a study of this nature.   
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5.2.8 Data Source 

The data set contained repeated measures data for each participant on the dependent dichotomous 

variable BD, where ‘0’ = absent and ‘1’= present, based on post hoc clinician ratings. Therefore, 

many records were nested within each participant and each record represented one second of data 

collection. This nested setup allowed researchers to examine the ability of the OBDRS to be a 

reliable and valid measure of BD both within- and between-subjects. Fixed, non-nested assessment 

data on SR, impulsivity, life satisfaction, and mindfulness, as well as demographic data was also 

included. For analyses of fixed, non-nested variables (i.e. variables collected at only one time point 

that remain unchanging, such as age), only the first record for each participant’s data was selected 

due to all remaining records having repeated information in the corresponding cells (i.e. if a 

participant was 23 years old, each record in the age column for the entire dataset for that particular 

individual read ‘23’). BD analyses used the full nested dataset, where variables had the ability to 

change over time (e.g., present or absent). All statistical analyses were conducted using the 

Statistical Package for the Social Sciences Software (SPSS, v. 22), and Noldus the Observer XT 

Software. All data was evaluated at the .05 alpha level.   

5.2.9 Data Analyses 

5.2.9.1 Validity 

Content validity was examined from feedback gained from rehabilitation experts participating in 

the electronic survey group.  Raters filled out a yes/no table asking if the six target behaviors within 

the tool are representative of the BD construct and objectively measurable.  This table allowed for 

increased efficiency when determining rater agreement and the ability to gather quantitative 
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evidence for assessing content validity. Qualitative data was also collected through rater’s open-

ended responses to questions about the tool. Quantitative and qualitative professional feedback 

supporting the OBDRS as a tool that captures the entire construct of BD in the target population 

is a necessary stage in the process of moving toward establishing the tool’s construct validity.   

Several validated and widely used assessment tools were used to measure how much the 

OBDRS is like other tools measuring similar constructs and the extent to which the OBDRS differs 

from tools measuring different constructs.  

The SLS and the MAAS measuring perceived life satisfaction and mindfulness ability were 

used to determine the discriminant validity of the OBDRS.  Discriminant validity was measured 

through Pearson product moment correlation coefficients, evaluating the correlation between the 

two scales being compared. It was anticipated the OBDRS would be weakly correlated with both 

the SLS and the MAAS. 

The DEX and the Go/No-Go Test were used to measure whether the OBDRS is highly 

similar to tools measuring similar constructs.  Convergent validity was measured through 

correlations evaluating the correlation between the two scales being compared. It was anticipated 

the OBDRS would have high correlations with both the DEX and the Go/No-Go Test through 

evaluation of Pearson product moment correlation coefficients.  

5.2.9.2 Inter-rater reliability 

Due to the dichotomous nature of the outcome variable, inter-rater reliability was assessed through 

percent agreement or the agreement between raters on whether BD was present during the 

observation period. Percent agreement is calculated from the proportion of exact agreements over 

the total number of possible agreements, where percentages closer to 100% indicate greater 

agreement between raters (Portney & Watkins, 2009, p. 598). This measure of agreement, although 
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simple to understand, is typically reported along with additional measures of reliability due to its 

ability to overestimate agreement and not account for chance. For that reason, the kappa statistic 

was also used to obtain a chance-corrected measure of agreement between raters. The kappa 

statistic ranges from 0 (agreement equal to chance) to 1 (perfect agreement) and values above .60 

indicate substantial agreement between raters (Sim, & Wright, 2005; Portney & Watkins, 2009, p. 

598-600). 

5.3 RESULTS 

5.3.1 Descriptives 

Table 4 shows demographic characteristics of the sample (N=14).  All continuous demographic 

measures were normally distributed, with the exception of time at ReMed. This sample of adults 

with TBI was on average 40.5 years old, 152.2 months post injury, and a client at ReMed for 19.7 

months. The majority of the sample was Caucasian, male, single or divorced, and receiving 

services from the outpatient side of the rehabilitation program—a sample make-up consistent with 

the greater population of individuals with TBI.  
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Table 4. Participant demographics 

  
Demographic 

N=14 
  W 

Age (years), mean (SD) 40.5 (3.28) 0.938* 
20-29 3 (22)  
30-39 4 (28.6)  
40-49 3 (21.4)  
50-59 3 (21.4)  
≥ 60 1 (7.1)  
   

Time Since Injury (months), mean (SD) 152.2 (36.0) 0.886* 
   
Time at ReMed (months), mean (SD) 19.7 (9.3) 0.576  
   
Sex, n (%)   

Male 10 (71.4)  
Female 4 (28.6)  
   

Race, n (%)   
Caucasian 14 (100)  
   

Ethnicity, n (%)   
Non-Hispanic or Latino 14 (100)  
   

Marital Status, n (%)   
Single 7 (50.0)  
Divorced 5 (35.7)  
Separated 1 (7.1)  
Relationship 1 (7.1)  
   

Cause of Injury, n (%)   
MVA as pedestrian 4 (28.6)  
MVA as driver 7 (50)  
Fall 3 (21.4)  

   
Living Status, n (%)   

Residential 9 (64.3)  
Outpatient 5 (35.7)   

*p-value ≥ .05 
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5.3.2 Content Validity 

Content validity of the OBDRS tool was assessed as an initial and critical phase of establishing 

evidence that the tool appropriately and fully measured the construct of BD.  Expert raters 

assessing the tool’s content validity were carefully selected due to their professional experience 

working directly with individuals with TBI in clinical, community, and/or research settings. Table 

5 displays results from feedback given by these professionals on whether each individual behavior 

included in the tool measured a construct representative of BD as it may be experienced in adults 

with TBI, was a measurable construct, objectively defined, discrete, and reflective of a threshold 

behavior. Appendix F can be referred to for a complete overview of the feedback rating form 

provided to rehabilitation experts. Experts were in perfect agreement across the six target 

behaviors as presented measured the construct of interest across all criteria (Table 5).  This level 

of agreement served as confirmatory data to support moving forward to examine the tool’s ability 

to meet the next phase of validity, construct validity.  

Table 5. Expert ratings on target behaviors in the overt behavioral dysregulation rating scale 

  JK MP SC % Agreement 
  Yes No Yes No Yes No  
Disengagement x  x  x  100% 
Resistance x  x  x  100% 
Non-Verbal (non-violent) Dysregulation x  x  x  100% 
Physical Aggression/ Violence x  x  x  100% 
Verbal Dysregulation x  x  x  100% 
Perseveration x  x  x  100% 

Total Agreement             100% 
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5.3.3 Construct Validity 

Construct validity of the OBDRS tool was assessed to determine if the developed tool proved to 

be ‘like’ or strongly correlated with existing validated scales measuring similar constructs, while 

also dissimilar or weakly correlated with existing measures assessing diverging constructs. For 

assessing convergent validity, two validated measures widely used for assessing self-regulatory 

ability were compared to the OBDRS, the DEX and the Go/No-Go. Discriminant validity of the 

OBDRS was assessed through comparisons between the developed tool and the SLS measuring 

life satisfaction, and the MAAS, measuring mindfulness. Descriptive statistics (Table 6) show all 

assessments were normally distributed (p ≥ .05) providing support for running bivariate Pearson 

product moment correlations between all measures.  

Results from a correlation matrix (Table 7) show the OBDRS displayed strong 

relationships with both the DEX (r = .535) and the Go/No-Go (r = -.564), indicating the measure 

strongly converged with validated measures of SR. When comparing the OBDRS to the DEX, the 

relationship between the two measures was positive, which was expected given higher scores on 

both instruments indicate greater dysregulation.  The expected positive relationship between the 

OBDRS and the Go/No-Go test was confirmed as well due to higher scores on both measures also 

representing a greater degree of dysregulation. When examining discriminant validity, the OBDRS 

displayed a barely discernable, negative relationship with the SLS, which was expected given the 

SLS measures life satisfaction on a scale where lower numbers represent less satisfaction.  
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However, there was a positive, moderate correlation between the OBDRS and the MAAS (r = 

.469), suggesting the two measures may be assessing related constructs.  

Table 6. Assessment descriptives 

  
Min Max Mean Std. Deviation Variance 

Shapiro-Wilk 
Test for 

Normality 
    Statistic Std. Error   W 

DEX 6 37 23.07 2.504 9.37 87.76 0.950* 
MAAS 3.79 5.79 4.50 0.142 0.53 0.28 0.889* 
SLS 5 25 13.93 1.357 5.08 25.76 0.966* 
GO/NOGO 0 2 0.43 0.202 0.76 0.57 0.616* 
OBDRS 4 30 13.64 2.032 7.60 57.79 0.930* 
*p-value ≥ .05      

 

Table 7. Bivariate Pearson product moment correlations for evaluation of the overt behavioral dysregulation rating 

scale's construct validity 

  DEX MAAS SLS GO_NO_GO OBDRS 
DEX 1         
MAAS -.472 1       
SLS -.265 .26 1     
GO_NO_GO -.428 .43 .009 1   
OBDRS .535* .469 -.047 .564* 1 
* Correlation is significant at the 0.05 level (2-tailed).   
 
   

5.3.4 Inter-Rater Reliability 

Percent agreement was calculated between two clinician raters from the proportion of behavioral 

agreement over the total behavioral events rated.  Due to the nature of the dataset, each second of 
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the video recorded observation period was rated dichotomously as ‘1’= behavior present or ‘0’= 

behavior absent.  Table 8 shows both raters were in agreement 95% of the time, with only 4682.6 

seconds of total disagreement across all participant videos coded—indicating excellent reliability. 

Additionally, Cohen’s kappa was calculated to measure the average rate of agreement while more 

accurately accounting for chance agreement.  The resulting kappa statistic of κ = .60 falls on the 

boarder of moderate to substantial agreement and was significant at the .05 level.  

 

Table 8. Inter-rater reliability analysis of the overt behavioral dysregulation rating scale 

    Statistic 95% CI 

Observer A and Observed B 
(combined results) 

Agreement (sec) 80435.6   
Disagreement (sec) 4682.6  

% Agreement (/100) .95  

Cohen's Kappa (/1.0) .60* .58-.61 
*Indicates significance     

 

Due to percent agreement and the kappa statistic measuring an overall average of 

agreement across all target behaviors in the OBDRS tool, an additional reliability analysis was 

conducted to further evaluate disagreement and whether any one specific category of behavior may 

be influenced by reliability results.  This subjective analysis added rich information to the 

quantitative reliability statistics.  Table 9 represents a confusion matrix of the six target behaviors 

of the OBDRS tool and the agreement between raters for individual behavior categories.  Two 

important pieces of information stand out when examining this table. First, the majority of 

disagreements came from the disengagement/engagement behavior, where one rater coded the 

participant as disengaged while the other determined the individual was actually engaged at that 

moment in time. Secondly, taking into account all other behaviors aside from disengaged/engaged, 

the majority of coding discrepancies occurred when one rater coded a behavior as present and the 
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other rater coded that time period as having no behavior present at all.  These results suggest that 

reliable behavior coding may be influenced by unique factors pertaining to specific behaviors.   
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Table 9. Confusion matrix displaying inter-rater reliability of the overt behavioral dysregulation rating scale’s target behaviors 

 Engaged Disengaged Opposition Verbal 
Dysregulation 

Physical 
Aggression/ 

Violence 

Non-Verbal 
Dysregulation Perseveration No 

Records  Total  

Engaged 77788.4 704.2 - - - - - - 78492.5 
Disengaged 1820.3 2205.0 - - - - - - 4025.3 
Opposition - - 36.4 - - - - 33.6 70.0 
Verbal 
Dysregulation - - - 286.1 - - - 257.1 543.2 

Physical 
Aggression/ 
Violence 

- - - - - - - 0.8 0.8 

Non-Verbal 
Dysregulation - - - - - 119.7 - 48.2 167.9 

Perseveration - - - - - - - 96.4 96.4 
No Records - - 176.4 655.9 - 889.7 - - 1722.1 
Total 79608.6 2909.2 212.8 942.0 - 1009.4 - 436.1 85118.2 
*Agreements can be found on the diagonal shaded boxes and disagreements are represented in the white boxes. All 
data is represented in seconds during the recording period.     
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5.4 DISCUSSION 

The aim of this study was to establish the psychometric properties of the OBDRS tool.  

Promising results were seen for both content and construct validity.  Perfect agreement was 

shown between all three expert professional raters, indicating the six target behaviors represented 

in the OBDRS tool may be appropriately measuring the construct of interest as defined by the 

researchers. Examination of the tool’s construct validity provided further support for the OBDRS’s 

potential for measuring the construct of self-regulation and only that construct—with the tool 

strongly converging with validated, widely used measures of self-regulation while also showing 

its discriminant nature from tools measuring unlike constructs, such as mindfulness and life 

satisfaction.  Although a moderate correlation was observed between the OBDRS and the MAAS, 

one potential explanation for this relationship is that several items represented on the MAAS may 

not only measure mindfulness, but may also cross over construct boundaries to capture aspects of 

self-regulation (e.g., ‘I snack without being aware that I’m eating’ and ‘I find it difficult to stay 

focused on what’s happening in the present’).  This correlation may suggest that mindfulness and 

self-regulation are related constructs—at least how both tools approach measuring their respective 

constructs.  However, the strength of the relationship was not of large concern to researchers due 

to the correlation coefficient being smaller in magnitude when compared to the convergent 

relationships measured.  

When taking into account all aspects of validity measured in this study, even considering 

the moderate correlation between the MAAS and the OBDRS, this study provides preliminary 
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evidence supporting future larger-scale research examining the OBDRS’s psychometric properties 

for measuring BD.  

As expected, the OBDRS proved to be a reliable assessment of BD between two trained 

clinician raters.  A percent agreement analysis showed the raters agreed in their post hoc behavior 

ratings across participants 95% of the time, showing excellent agreement.  The kappa statistic, run 

as a more rigorous measure of reliability that also accounts for chance agreement, showed 

bordering substantial reliability between raters.  Upon further examination of agreement, results 

showed the two raters disagreed the majority of the time when rating the engaged/ disengaged 

target behavior—suggesting there may be an inherent uniqueness when coding this particular 

behavior that may be negatively influencing the kappa statistic.  Overall, reliability statistics from 

this study show promise that the OBDRS tool can be a reliable measure of BD and also warrants 

further exploration of the differences that may exist between different target behaviors of the tool 

that may impact reliability.  The disengaged/engaged target behavior is the only continuous 

behavior coded by the OBDRS (i.e. an individual must be either engaged or disengaged at all times 

during the observation period—requiring raters to always code one or the other), which might 

speak to an increased difficulty when coding this behavior or additional training that may be 

needed for reliable coding of this behavior.  Future exploration of the behavioral coding scheme 

and reliability differences across target behavior when analyzed individually could infer 

improvements to the coding scheme itself or clinician training protocols.   

5.4.1 Potential Limitations 

As is often the case with pilot rehabilitation research, this study had a small sample size that was 

sampled through a convenience sampling method.  Although this sampling method is not 
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considered ideal when the goal is unbiased sampling, this method is often employed when 

obtaining participants in rehabilitation research due to the availability of recruitment sites, 

community relationships and partnerships, methodological considerations, and the need for finding 

participants who meet potentially difficult to find exclusion/ inclusion criteria (e.g., rare 

conditions).  ReMed of Pittsburgh proved to be a highly valuable resource to this project by their 

willingness to assist with recruitment and allow the research team to conduct this project on-site. 

This sampling method was beneficial for an exploratory project of this nature where ensuring a 

cohort of individuals was selected who experienced the outcome of interest in daily living was 

critical.  

 With the goal in mind of including as many participants as possible who met 

inclusion/exclusion criteria, individuals from both the residential and outpatient side of the 

rehabilitation program were included in this study.  It can be argued that individuals in the 

residential program may be in need of increased assistance and rehabilitation services and 

therefore, may not have a comparable degree of self-regulatory ability to individuals participating 

in the outpatient program, who mostly live independently or with family members and typically 

display a greater level of independence. As a result, differences between residential and outpatient 

samples may be worthy of future exploration with a larger sample sizes and equal individuals 

across groups.  

As previously mentioned, when developing a new measurement tool, it is critical to ensure 

the tool accurately and fully measures the intended construct of interest.  One of the major aims of 

this study was to establish psychometrics properties for the OBDRS tool. Although results were 

promising, showing excellent content validity between rehabilitation experts, convergence with 

‘like’ measures and discriminant properties from tools measuring differing constructs, and 
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displaying sufficient inter-rater reliability between clinicians, the small-scaled nature of this 

project requires results to be viewed critically and establishes a need for larger-scaled projects 

replicating these findings.  If replication is successful, researchers and clinicians can have 

increased confidence in the OBDRS tool as a reliable measure of BD. 

Task selection is a potential limitation shared by both the feasibility and psychometric 

protocols.  In the original study researchers questioned whether the selected tasks, although 

challenging, had the ability to elicit the construct of interested. It was determined at that point that 

moving forward new tasks be selected with more evidence to support their use with less 

methodological restrictions.  As mentioned earlier in the text, the TSST served as a foundation for 

researchers to select new tasks from due to the protocol’s well-established use in the health 

psychology literature for encouraging stress responses.  Due to methodological and ethical 

considerations, the TSST protocol was adapted to meet the needs of this project, which also 

included the addition of a third, more functional task.  This method of task selection gave 

researchers greater confidence that the tasks selected had the ability to evoke the outcome of 

interest.  Although results seem to support the continued use of the tasks, it must be considered 

that these tasks were not only adapted from a standardized protocol, but also were selected based 

on an assumption that a direct link exists between internal stress responses and overt behaviors of 

frustration.  
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6.0  EMA PROTOCOL: BEHAVIORAL DYSREGULATION PREDICTION VIA 

PHYSIOLOGY2 

6.1 RESEARCH PURPOSE AND AIMS 

The aims of this research were to examine physiological change during the completion of 

challenging tasks in adults with TBI, explore physiological variability both between and within 

individuals, and evaluate physiological variables as potential predictors for BD. This project is an 

initial and critical stage in the process of developing a TBI-specific EMA/EMI using biosensor 

technology that intervenes prior to the occurrence of maladaptive behaviors and allows for 

prospective intervention for increasing behavioral SR ability.  Ultimately, variables that correlate 

to a high degree with clinician judgment within the laboratory will provide insight to the potential 

for these same biomeasures to be predictive of BD in the natural environment where SR deficits 

truly manifest. This was exploratory study and the main research question was, in adults with TBI, 

can HR, HRV, and RR taken together with age and sex accurately predict BD events?  

Given what is known from review of relevant literature on adults with TBI, BD, and 

physiology, it was hypothesized HR, HRV, RR, when controlling for age and sex, would be able 

to reliably predict the probability of BD in adults with TBI during task completion. More 

specifically, we believed it would be possible to isolate a predictive model that not only 

                                                 

2 Multiple sections within this chapter contain repeated content from the both feasibility and psychometric research 
discussed in Chapters 4 and 5. An editorial decision was made by the author to retain this repeated content with the 
goal in mind of each chapter being able to be read as standalone content methodologically. 
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appropriately fits the data, but could also be applied to external datasets and guide future research 

efforts.   

6.2 METHODS 

6.2.1 Participants and Recruitment 

Recruitment and testing of all participants occurred from September 2015-March 2016. 

Rehabilitation professionals and study participants were all be sampled through a non-

experimental convenience sampling method.  

6.2.1.1 Rehabilitation experts 

Three rehabilitation experts, consisting of two doctorate-level brain injury rehabilitation 

researchers and one former head injury project leader and behavioral clinician, with extensive 

experience working with individuals with TBI, were hand-selected by the principal investigator of 

this study based on their experience and ability to provide meaningful feedback on the OBDRS 

for the target population and for the purpose of developing a reliable tool.   

6.2.1.2 Participants 

Participants in the challenging task research protocol were adults with TBI who experience BD 

challenges during daily living.  ReMed of Pittsburgh, a brain injury rehabilitation program in 

Pittsburgh, Pennsylvania served as both the recruitment and testing site due the ability to sample 

from a representative cohort of the target group. Eligible participants must have been currently 
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receiving either residential or outpatient rehabilitation services at ReMed, have a primary diagnosis 

of TBI and subsequent behavioral challenges, and not currently receiving treatment for a 

psychiatric diagnosis. ReMed case managers working directly with program clients identified and 

referred all potential participants by reading a provided recruitment script and scheduling 

interested participants to be consented and tested by the research coordinator on site.  

6.2.2 Sample Size Estimation 

Post hoc power analyses using G*Power software were conducted at multiple time points 

throughout testing for updated estimations of power. Recruitment and testing remained ongoing 

until adequate power was met for an exploratory research project. The current study examined 

nested data, where thousands of observations were nested within individuals. As a starting 

guideline, if 30 participants were run and served as the level-2 sample size, and each participant 

was recorded for 90 minutes, then each participant would have approximately 5,400 observations 

due to data being collected each second during the recording period.  Therefore, the level-1 sample 

size, which represents the total number of records across all individuals, would be 30 (participants) 

x 5,400 (observations) = 162,000 (Stone, Shiffman, Atienza, & Nebeling, p. 339). This 

determination was made using sample size guidelines citing the use of at least 30 participants when 

there are 20-40 observations per individual for conducting mixed-model (or nested data) methods 

(Bell, Morgan, Schoeneberger, Loudermilk, Kromrey, & Ferron, 2010; Bolger, & Laurenceau, 

2013, p. 37). This study resulted far more than 20-40 observations per individual, therefore, the 

sample size for analyses using the nested dataset was not a concern. 
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6.2.3 Data Measurement 

For evaluation of BD prediction via physiological states, this study identified BD as the sole 

dependent and dichotomous variable (‘0’= behavior dysregulation absent; ‘1’= behavior 

dysregulation present) based upon researchers wanting to mainly know it any behavior of interest 

was present or absent.  Three physiological measures served as continuous independent variables 

and were continuously recorded via a biosensor technology device. Due to the known influence of 

specific demographic variables on physiology (Collins, 1999; Davies & Morris, 1993), both age 

and sex were entered into statistical tests as a continuous and categorical covariate respectively 

when appropriate.  All physiological measures and the outcome variable were measured each 

second for the entire recording period.  This small sampling window will allow for capturing 

spontaneous or brief changes in the variables of interest.  

6.2.4 Data Collection 

The research tasks took no longer than two hours to complete. Behavior data was recorded by 

clinician post hoc ratings from video recordings of participant research sessions and biosensor 

technology continuously recorded physiological states. 

All data collected was kept confidential by giving each participant an arbitrary 

identification number, which served as a link between raw data and the individual who provided 

it. This confidential data was entered into a spreadsheet (using the identification number for coding 

purposes) by a research team member for statistical analyses and stored separately (in a data 

safekeeping room within Pitt-RST facilities) from any identifiable information. This process 

allowed for raw data to remain unidentified, even by the research team members who had access. 
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6.2.5 Assessments 

6.2.5.1 OBDRS rating scale 

The OBDRS is checklist developed for the purpose of this research that produces ratings on 

whether specific behaviors believed to be indicative of BD are present or absent during an 

observation period. Data from this tool allowed for associations to be evaluated between behavior 

and physiological measures due to the external time stamp on the checklist and the internal time 

stamp embedded within the biomeasure software. Two trained clinicians each completed a post 

hoc behavioral analyses through video recordings of each participant (see tool development section 

of Chapter 3 for detailed information on the scale and Appendix A for actual tool). 

6.2.6 Clinician Training 

Two clinicians (Master's level students from the RST department) were hand selected and trained 

by the research coordinator on how to complete post hoc behavior ratings using the OBDRS tool 

through the behavior coding software. Both raters reviewed videos of all participants completing 

the research protocol. These raters did not interact with study participants, were unaware of 

assessment results, and completed all ratings independently of each other. 

Clinician raters were trained through a standardized protocol occurring over a 3-week 

period prior to rating participant videos.  Training included reviewing articles on relevant content, 

introduction to the OBDRS including how to administer the tool, and the scoring of four mock 

participant videos not included in the sample of videos clinicians rated for the research project.  

Each mock video scored was reviewed in detail by the clinician and the research coordinator to 

address coding concerns and provide feedback.  Successful completion of training was defined as 
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when both raters established inter-rater reliability via a kappa statistic of at least .80 on the four 

mock participant videos. At this point, clinicians were cleared to begin coding real participant 

videos. 

6.2.7 Instrumentation 

6.2.7.1 Bioharness-3 

The Bioharness-3 from Zephyr Technology Corporation is a portable physiological monitoring 

system worn as a smart fabric strap around the abdominal with a biomodule disc incorporating 

ECG and breathing detection sensors integrated in it.  The device uses Bluetooth to continuously 

measure and transmit physiological data in real world, real-time environmental contexts, including 

research labs, clinics, and general daily living contexts for users. The Bioharness-3 has the ability 

to measure HR, RR, HRV, activity data, posture, speed, GPS, speed and distance, and peak 

acceleration.  It is one of few remote measurement devices on the market currently with established 

reliability and validity (Hailstone & Kilding, 2011; Johnstone, Ford, Hughes, Watson, Mitchell, & 

Garrett, 2012; Kim, Roberge, Powell, Shafer, & Williams, 2013). The Bioharness-3 comes with 

integrated software applications making for streamlined data transfer and analysis.  

6.2.7.2 Video recordings 

Video recordings were taken using a standard video recording camera. Participant videos were 

stored on a secure server at the University of Pittsburgh and only accessed by the researchers 

associated with this project. All participants were asked to give consent to be videotaped and have 

their videos analyzed after completion of the study before any research tasks occurred. 
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6.2.7.3 The observer xt software 

The Observer-XT is a widely used software package from Noldus that allows for the collection, 

presentation, and analysis of behavior data. Noldus allows for behavior coding tools, like the 

OBDRS to be embedded into a software program that allows for clinician ratings that can be easily 

compared, analyzed and synchronized with other external data sources (e.g., physiological 

monitors). To complete a behavior rating, a video recording is temporarily uploaded from the 

secure server into the software, but videos are not stored in the Noldus system permanently. All 

videos still remained stored on a secure server after clinician ratings were completed. 

6.2.8 Procedure 

The current research design followed a single group, cross-sectional design (although data was 

analyzed using longitudinal methods). This study was non-experimental and therefore, did not 

utilize randomization, blinding, or allocation processes. This project was approved by the 

University of Pittsburgh IRB prior to conducting any research activities (#PRO15100307). 

The research protocol was administered face-to-face, one time to all participants. The 

research coordinator was responsible for running all participants through the protocol. Participants 

were video recorded and permission to record was obtained during the written consent process. 

The consent process occurred immediately prior to the administration of all research tasks. 

Physiological signals were continuously recorded throughout the entire testing period, beginning 

from device set-up and extending throughout the recovery period—measuring data during any 

given moment for comparison with behavioral events.  
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The study protocol began with a device set-up and pre-testing period.  During this time, 

participants were introduced to and asked to put on the Bioharness-3 device. Following pre-testing, 

participants were escorted to a relaxation room where they were left alone and asked to simply 

relax for ten minutes. This allowed for participants to re-stabilize from any potentially non-

baseline physiological levels simply from being asked to wear a device for data collection or from 

filling out potentially stressful self-assessments. The first five minutes of data collection during 

this time period was viewed as acclimation data, and therefore, was not used in any statistical 

analyses.  The last five minutes of collected data then served as baseline data for further analyses.  

Removal of the first five minutes of data increased the likelihood that the data used for baseline is 

a true representation of each participant’s resting physiological state.  

Immediately following the acclimation period, participants were introduced to the first 

research task. Participants completed serial subtraction where they were asked to count down from 

6233 by 13s. The task ended when either the participant reached 0 or five minutes had elapsed. 

Participants were informed prior to beginning the task that if at any point they made an error they 

would be asked to stop and start the task over from the beginning. A visual timer was provided 

letting participants know how much time they had left to work on the task. The subtraction task 

used in this study was adapted from the TSST identified in development and feasibility work.   

 Following the serial subtraction task, participants immediately moved into the speech 

preparation and delivery task. Here participants were told they would be given 10 minutes to 

prepare a 5-minute speech on how their injury has affected their life. They were given scrap paper 

and a pencil and pen to write ideas on while they planned their speech. At the end of the five-

minute preparatory period participants were then asked to stand and present their speech to the 

camera. What they were not told before completing the task was that they would be required to 
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present their speech without using their notes. This element was introduced to add a spontaneous 

unplanned stressor into a life situation. This speech task was also adapted from the TSST.  

 Immediately following the speech task, participants were asked to complete a third and 

more functional task. The hamburger turning task is a functional task developed and used clinically 

for over the past 12 years by clinicians and researchers at the University of Pittsburgh (Shugars, 

2007). This task requires participants to prepare 16 fake hamburger patties on a faux grill based 

on a 30-step procedural list modeled after the actual hamburger cooking process used in Wendy’s 

restaurants.  This task has been shown be a clinically useful measure of executive functioning 

(Shugars, 2007) and was selected to serve as a more hands-on task when compared to the other 

two tasks in the protocol. Completion of this task required participants to first watch a brief, 

narrated step-by-step video of a person completing the task correctly from start to finish. Next, 

participants were asked if they had any questions about the task and then were introduced to task 

props (fake hamburger patties, faux grill, real saltshaker, and spatula). Participants were also given 

a list of task steps to use as a cognitive aid if they chose to do so while completing the task. 

Participants were told they would have 15 minutes to correctly cook all the hamburger patties and 

that similarly to the serial subtraction task, if they made an error, they would be alerted to the error 

and then asked to start the task over from the beginning.  

Finally, after the completion of all research tasks, there was a 20-minute post-testing 

recovery period where participants were again left alone in a quiet room and asked to simply relax.  

This period was set aside to allow participants to return to baseline physiological levels before 

testing concluded. After the recovery period ended, the research coordinator escorted the 

participant back to the main testing room, stopped the video recording, disconnected the biosensor 

device, answered any remaining questions participants may still have had about the study, and 
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provided compensation. ReMed staff remained on-call during testing in the event a participant 

experienced distress levels beyond what was expected and considered appropriate during a 

common stressful event. This type of elevated effect was not anticipated and did not occur. Figure 

8 depicts all phases of the research protocol. 

 

Figure 8. EMA protocol (identical to Study 2 protocol minus assessment during pre-testing period) 

6.2.9 Facilities and Personnel 

All research activities were conducted at ReMed of Pittsburgh’s clinical facilities in Pittsburgh, 

Pennsylvania.  Members of the research team were all affiliated with the RST department at the 

University of Pittsburgh and possessed the appropriate qualifications to run a study of this nature.   

6.2.10 Data Source 

The data set contained repeated measures data for all participants on physiology and BD. Each 

record represented one second of data collection. BD was the sole dependent, dichotomous 

variable, where ‘0’ = absent and ‘1’= present based on clinician ratings. All physiological variables 

served as continuous independent variables and demographic data was included. Therefore, many 



 96 

records were nested within each participant. This nested setup allowed researchers to examine the 

ability for continuous physiological data to predict BD events and change over time. All statistical 

analyses were conducted using the Noldus the Observer XT Software and Statistical Analysis 

Software (SAS, v. 9.4). All data was evaluated at the .05 alpha level.   

6.2.11 Data Analysis 

The present research involved examining physiological predictors of BD. The research question 

was, in adults with TBI who experience difficulty self-regulating behavior, do HR, HRV, age, sex, 

and RR significantly predict the probability that BD will occur?  Due to the research question 

evaluating change over time in a sample of repeated measures, this study followed a longitudinal, 

event-contingent design, where the event is the occurrence of a target behavior.   

The participants themselves served as the Level 2 or between-subjects analysis, which 

included person-specific variables of age and sex. Both physiological and behavioral data served 

as the Level 1 or within-subjects analysis.   

6.2.11.1 Data pre-processing 

Table 10 depicts the 5-step process used to process the raw dataset to fit appropriately with planned 

statistical analysis.  Data cleaning is considered a critical stage in the analysis process when 

working with large, repeated measures datasets. The data was organized into spreadsheets for each 

participant individually, where each row represented a single observation or one second of time 

and each column represented one predictor variable for that record. Data was then trimmed to 

exclude biased time points during the observation period (e.g., device set up and acclimation), then 

evaluated for missing data and methods for appropriately dealing with missing data (Huck, 2012; 
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Portney & Watkins, 2009), aggregated when appropriate, and finally re-combined into one large 

dataset.  

Table 10. 5-step data cleaning process 

  Step Process 

1 
 
Creation of Individual 
Datasets 

− Combined dataset used to create 14 separate datasets for 
each participant 

− This allowed for data cleaning to account for within-subject 
differences  

 

2 Data File Trimming 

− First 5 minutes and last 5 minutes of each participant data 
file was removed through trimming 

− This was done to ensure data was not being analyzed that 
captured influence from device acclimation or removal 

− This is a process commonly used with biosensor technology 
 

3 
 
Missing Values and 
Imputation 

− Descriptives run to assess amount of missing data for each 
participant.  

− Missing data was determined to be data either outside of the 
device's acceptable range or system missing data.  

− Variables containing missing data were recoded into new 
variables as a '-1'.  
⋅ If <=5% of data was missing--> mean imputation 

conducted (missing data replaced by the average of 2 
nearby data points)  

⋅ If >5% of data missing --> multiple imputation 
conducted (missing data replaced by predicted values 
based on available data 

4 Data Aggregation 

− A second data file created from the long data file containing 
records in seconds for all participants.   

− This new file aggregated all within-subject records to either 
a person-specific mean or total value (depending on the 
variable) across all time periods of interest.   

− This allowed for analyzing between-subject differences.  
 

6.2.11.2 Generalized linear mixed model 

Due to the hierarchical nature of the dataset, a hierarchical linear model (HLM) was the most 

appropriate analysis for the nested data.  However, traditional HLM models assume normally 

distributed, continuous outcomes as well as independence between measures—assumptions 
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violated by the dataset used in this study. Data that is hierarchical in nature, but with a research 

question concerned with both between and within-subject differences (yielding correlated data), 

along with a non-normal data distribution, are not appropriate for traditional HLM models (Garson, 

2013). Hierarchical generalized linear mixed modeling (GLMM) served as an alternative HLM 

approach that could account for the correlated nature of the dataset, and non-normal categorical 

outcome variable. GLMMs are an extension of generalized linear models that include random 

effects in the linear predictor (Garson, 2013). They are more complex than generalized linear 

models, but are appropriate when the primary focus is on evaluating the effect of predictor 

variables on an outcome over time within a given individual (SAS Institute, 2005).  It was 

determined that the SAS PROC GLIMMIX procedure was the most appropriate analysis to answer 

the research question (Littell, Stroup, Milliken, Wolfinger, & Schabenberger, 2006; Walls, & 

Schafer, 2005).  

6.2.11.3 Model building process 

A structured model building process was followed based on guidelines from Schabenberger (2005) 

and Bell, Ene, and Schoeneberger (2013). The process began with an unconditional model, where 

no predictors were included.  This model was then compared to more complex models as 

parameters were added in and each model was evaluated for improvement of model fit from the 

previously tested model.  This process continued until it was determined a model had been isolated 

to answer the research question. Due to the exploratory nature of this study, the model building 

process remained simple and used forward selection, where one variable was added into the model 

at a time. Predictor variables in the model were the three physiological variables as well as age, 

sex and, time since injury. 
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The procedure used followed a binomial distribution due to the dependent variable being 

dichotomous in nature and utilized a logit link function.  The Laplace estimation, a commonly 

used estimation technique used in PROC GLIMMIX, was used to model the data through a ‘quasi-

likelihood’ approach, which approximates maximum likelihood.  Since maximum likelihood 

approaches are inappropriate for non-normal data, the Laplace estimation allows for models to be 

analyzed for best fit using the same strategies used in multi-level linear modeling (Ene, Leighton, 

Blue, & Bell, 2015). 

6.2.11.4 Model fit and examination 

Model fit was determined using the Bayesian Information Criterion, or BIC.  The BIC is a 

penalized likelihood method commonly used to evaluate mixed model accuracy through maximum 

likelihood estimation.  Given the likelihood of observed data automatically increases when 

additional parameters are added into a model, the BIC gives a more accurate justification for 

adding or removing parameters based on a model complexity penalty (Seltman, 2009).  This 

penalty estimates the accuracy of a model while taking into account both the number of parameters 

and number of participants included. When comparing two or more models, the smaller BIC 

indicates a better fitting model.  Although determination of what magnitude of difference between 

two BIC values should be considered significant is highly subjective (Bell, Ene, & Schoeneberger, 

2013), suggested ranges provided by O'Connell and McCoach (adapted from Raftery 1995) were 

used along with researcher judgement to determine model fit—where a difference of 6-10 

suggested strong evidence for a better fitting model and a difference of 10 or greater indicated very 

strong evidence in favor of the more complex model (2008).   

As a secondary supporting method for determining a strong balance between the model’s 

complexity and fit to the data, once a model with the best fit was selected according to the BIC, 
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the Pearson chi-square/df ratio was evaluated to confirm that the variability in the selected model 

had been properly modeled without concern for over dispersion of correlated data, where ratios 

closest to 1 indicate a good fit (Schabenberger, 2005). In addition to goodness of fit statistics 

individual odds ratios (ORs) were examined for each predictor while accounting for all other 

variables in the model (Schabenberger, 2005).  

6.3 RESULTS 

Three versions of the full dataset were used depending on the analysis. Descriptives were analyzed 

by selecting only the first record for each individual in the dataset, given the variables examined 

were fixed and not susceptible to change over repeated measures (e.g., age). The resulting dataset 

was 14 records long, where one record represented one participant’s data. Physiology and behavior 

trends were also analyzed using this aggregated file, where variables were represented as 

condensed averages across participants in order to examine between-subject differences across all 

time periods of interest. For the PROC GLIMMIX procedure, a long data file, made up of over 

88,000 uncondensed, repeated measure observations was used for exploring predictive factors. 

This dataset used a 2-level nest, where level-2 data represented the individual participants and 

level-1 data represented the records nested within each participant (Walls & Schafer, 2005). Due 

to this study examining physiology’s ability to predict behavior only during the completion of 

challenging task periods, the time period of interested was extracted from the original long file—

resulting in a smaller dataset of 28,327 records.  
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6.3.1 Descriptives 

Table 4 shows demographic characteristics of the sample (N=14).  All continuous demographic 

measures were normally distributed, with the exception of time at ReMed. This sample of adults 

with TBI was on average 40.5 years old, 152.2 months post injury, and a client at ReMed for 19.7 

months. The majority of the sample was Caucasian, male, single or divorced, and receiving 

services from the outpatient side of the rehabilitation program—which is representative of the 

greater population of individuals with TBI.  

6.3.2 Behavior Outcomes and Physiology Trends 

Behavior event frequencies and the amount of time participants spent engaging in target behaviors 

were analyzed to determine if in fact the OBDRS tool could pick up behaviors of interest and 

warrant a GLMM analysis. Table 11 provides a breakdown of the six target behaviors measured 

during both the baseline and task period (recovery is not represented due to methodological 

constraints not allowing for measurement of behavior during this time period). Overall, 191 

behavior event were coded, representing a total of 3,393 seconds of total recording time being 

represented by a ‘1’ or present behavior. Both perseveration and physical aggression/violence were 

never coded by either clinician and therefore, these behaviors are not represented in the table. 

Verbal dysregulation was the most commonly coded behavior, representing 104/191 or 54.5% of 

the total number of behaviors coded.  This was compared to the next most commonly coded 

behavior category of disengagement (18.8%), with non-verbal dysregulation following close 

behind (18.3%), and opposition representing only 8.4% of all coded behaviors. When analyzing 
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behaviors by time period as expected, the majority of coded behaviors (180/191) occurred during 

the task period, representing 94.2% of all behaviors coded.   

Table 11. Overt behavioral dysregulation rating scale behavior count data 

Observation Period # of Behaviors Observed Engaged Time (sec) 

Baseline 11 240 
Disengagement 3  
Opposition 2  
Non-verbal dysregulation 3  
Verbal dysregulation 3  
   
Task 180 3153 
Disengagement 33  
Opposition 14  
Non-verbal dysregulation 32  
Verbal dysregulation 101  
   
Total 191 3393 

 

Average between-subject physiological trends over time (baseline, task, recovery) were 

examined to assess change patterns. Physiological states that showed clinically meaningful change 

during the task period may suggest these same signals have potential to be predictive of BD during 

task completion. Cohen’s dav was used to assess mean change, and is a form of the traditional 

Cohen’s d often used with repeated measures data (Lakens, 2013). Figure 9 displays average 

change of HR, RR, and HRV over time. When examining physiological change from baseline to 

the task period, a clinically meaningful effect was seen for both HR (dav = -.405) and HRV (dav = 

.502), with HRV showing the larger effect. These changes indicate both HR and HRV were 

responsive to the tasks presented. Physiological change was also observed from the task period to 

recovery—which is anticipated when a recovery period with no stimuli is presented after the 

completion of challenging tasks. Here, both HR and HRV showed small, clinically meaningful 

effect sizes (dav = .415; dav = -.330) that were significant at the .05 level.  These numbers suggest 



 103 

that from the task period to recovery, HR is decreasing and HRV variability is increasing.  Also 

worth noting was the lack of a clinically meaningful change in RR between any of the time periods.  

This may provide evidence that this physiological measure may not prove to be  predictive of BD. 

This analysis provided only a method for examining between-subject change, and although 

valuable, results should be interpreted carefully when within-subject differences are also of 

importance.  

 

Note: x represents statistical significance | number of * represents size of effect 

Figure 9. Physiology by participant and time (between-subjects effect) 

 

Figure 10 provides a visual representation of mean physiology for each time period of 

interest against BD (represented as total number of seconds).  When focusing on the task period 

(the primary period of interest), this period was characterized by a very large percent of total BD, 

along with increased HR, decreased HRV, and stable RR when compared to baseline. With the 

exception of RR being unchanging, both HR and HRV moved in expected directions when 

individuals are exposed to stressful stimuli (increase in HR and decrease in HRV). This data 

suggests both behavioral and physiological change occurred during the task period when compared 
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to baseline and recovery, providing support for examining whether physiology can in fact be 

predictive of BD.  

 

 

Figure 10. Average physiology and total behavior across time 

Finally, in support of highlighting the inherent physiological variability between persons, 

Figure 11 is a visual comparison of two participants who seemly emerged as a physiological and 

behavioral responder (left side) and non-responder (right side). With the responder participant, the 

task period was characterized by increased HR and decreased HRV, and a steady change was also 

seen with RR—with breathing rate increasing (the expected direction). Behavior also increased 

substantially during the task period, especially during the speech task. Contrastingly, the non-

responder saw seemingly stable measures for HR and RR, along with slow but steady increase in 

HRV, moving in the opposite direction as expected.  One similarity the responder and non-

responder share is the behavioral spike during the speech task.  Although physiological and 

behavioral differences between individual research tasks is outside the scope of the research 

question for this project, it certainly is a pattern worthy of further exploration. What Figure 11 
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does do is further the argument for studying both within and between subject variability when 

researching physiology and behavior.  

 

 

Figure 11. Example of a physiological and behavioral responder and non-responder 

6.3.3 Generalized Linear Mixed Model 

6.3.3.1 Preliminary analyses 

Although GLMMs come with the flexibility of less assumptions due to their ability to account for 

non-normally distributed data, there is still one assumption researchers must at least be aware of, 

and that is multi-collinearity. Pearson product moment correlations were run between all pairs of 

physiological predictors in order to assess whether strong relationships existed between any two 

predictors and subsequently, may impact model fit by adding redundancy when entered into a 

model together. Table 12 displays a correlation matrix containing physiological measures of HR, 

RR, and HRV and as expected, all measures were moderately correlated with one another. Again, 

these correlations did not suggest a GLMM was not an appropriate fit for the data, but instead 

provided additional information that may assist with model selection and interpretation.   
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Table 12. Evaluation of multicollinearity of continuous predictors in a generalized mixed linear model 

 HR RR HRV 

HR 1   

RR 0.362 1  

HRV -0.441 0.345 1 

* Correlation is significant at the 0.05 level (2-tailed). 

While between-subject trends were examined for average physiology and behavior, within-

subject variability may be even more important to examine due to the GLMM analysis chosen for 

its unique ability to capture intra-subject data through repeated measures analyses. Figure 12 

represents three average growth trajectories, one for HR, RR, and HRV respectively.  Each graph 

allows for a visual analysis of both within- and between-subject variability by the plotting light 

grey lines, one representing each participant, and a thicker, solid black line representing the overall 

sample average (Singer & Willett, 2003). While the black line is a visual for the overall average, 

what is most interesting about a growth trajectory is its ability to visually display both within and 

between subject variability across time.  The x-axis in all three plots represents time (baseline, task 

1, task 2, task 3, and recovery) and the y-axis displays physiological readings.  These graphs show 

that as expected, large amounts of variability were seen both between- and within-subjects when 

measuring physiology.  Of special note is the HRV growth trajectory, showing arguably the 

greatest variability from its large peaks and valleys for some participants, while others remained 

more stable over time.  This may be an indication of the predictive value of HRV.  
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Figure 12. Average growth trajectories for physiological variables 

Figure 13 provides an additional method for viewing physiological variability in the 

sample. Individual panels represent each participant and display within-subject change on the 

particular physiological variable of interest.  This is in contrast to the average growth trajectories, 

which plot all sample data on one set of axes. Panels can also be compared to visually assess 

variability over time between-subjects (Singer & Willett, 2003). Unique to panel plots is the ability 

to more concretely identify members of the sample as responders (individuals showing 

physiological change over time) and non-responders (those not showing much change). Although 

not a formal analysis, examination of data from Figures 12 and 13 isolate change patterns worthy 

of further study.  Of the most notable was the lack of responsiveness of RR in the majority of the 

sample, the high peaks and valleys associated with HR and HRV, and overall movement in the 

expected direction during periods of stress, and the unanticipated direction RR moved in when 

compared to expected RR patterns during stressful experiences.  
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Figure 13. Empirical growth panel plots showing between- and within-subject physiological variability 

6.3.3.2 Model fit 

An exploratory GLMM was run using the SAS PROC GLIMMIX procedure to determine the 

probability of HR, RR, and HRV predicting BD when controlling for age, sex, and time since 

injury due to evidence of their influence on physiology and post-injury behavior (Buss, Larsen, 

Westen & Semmelroth, 1992; Sharma, 2003). Fourteen participants were included in the model, 

with individual records nested within each participant. This dataset contained 28,327 observations, 

where 2,648 or 9.3% of the data contained an event as the outcome. The syntax written for this 
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model was constructed to predict the probably of the outcome of interest being a ‘1’, or that 

behavior was present.  

An unconditional model including no predictors was first run to calculate the intraclass 

correlation coefficient (ICC) using the Level-2 covariance estimate for the intercept and an 

estimated Level-1 error variance of 3.29 suggested from Snijders & Bosker (1999) (as cited in 

O’Connell et al., 2008 due to dichotomous mixed models assuming no Level 1 residual).  The ICC 

showed that the participants alone could account for 48.9% of the variability in BD, suggesting 

that 51.1% of the variance in the data may stem from within-subjects factors, further supporting 

the use of a multi-level model for this nested dataset.  This effect is not surprising given the well-

documented differences in physiological states both within and across individuals (Buss, Larsen, 

Westen & Semmelroth, 1992; Sharma, 2003).  

Examination of model results overall did not yield positive findings for discussion; that is, 

there were negligible effects (ORs near 1) for all physiological variables. Evaluation of ORs of 

demographic variables did however show a large, clinically meaningful effect for sex, where 

females (‘=1’) had 4.23 greater odds than men of experiencing BD.  

6.4 DISCUSSION 

The aims of this study were to (1) examine physiological change during the completion of 

challenging tasks in adults with TBI, (2) explore physiological variability both between and within 

individuals and, (3) evaluate physiological variables as potential predictors of BD.  

Examination of the physiological recordings from the Bioharness-3 and coded behavioral 

incidences showed a large increase in observed BD during the task period.  Physiological change 
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mirrored this increased behavior, as clinically meaningful change was seen in both HR and HRV 

when comparing average change between baseline and the task period.  Interestingly, and not 

expected was the lack of a meaningful change in RR during all time periods of interest, suggesting 

this physiological state may not be sensitive to the tasks presented in the current study.  Both HR 

and HRV experienced changes in expected directions (i.e. increased HR and decreased HRV) 

indicative of a stress response during the task period.  Further examination of average change 

trajectories displaying both within- and between-subject differences showed that although 

between-subject averages of physiology moved in expected directions, individual change was 

highly varied—moving in the intended direction for some individuals, or remaining unchanged or 

even moving in unexpected directions for others).  Building upon this within-subject variability is 

the large degree of between-subject variability seen when examining physiology on a case-by-case 

basis.  Results support well-established literature on the physiological differences that exist both 

across and within individuals—something researchers must be conscious of when interpreting 

results (Collins, 1999; Davies & Morris, 1993).  This inter and intra physiological variability may 

speak to a need for isolating characteristics that define individuals as ‘responders’ and ‘non 

responders’ and also distinguish these two groups from each other for analysis.  Future research 

should focus on (1) determining if it is possible to objectively identify factors that characterize 

individuals as physiological and behavioral responders and non-responders, (2) examining 

additional differences between these two groups (e.g., demographic differences), and (3) building 

a model that may better predict BD through use of a dataset consisting of only responder data.  It 

is possible the prediction of BD through physiological change will be an assessment method most 

effective when tailored specifically to individuals who display a subset of defining characteristics 

(e.g., higher than normal baseline HR).  
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Results from the unconditional model showed 48.9% of the variability in the outcome was 

explained by between-subject factors, while the remaining 51.1% may stem from within-subject 

variability.  These results provide further support for examining both within- and between-subject 

change through repeated measures data when physiology is a construct of interest.  This finding 

sheds light on a potential shortcoming of literature only looking at between-subject changes—

suggesting over half of the variability in the outcome can be lost.   

It was determined that known influencing factors of physiology should be controlled for 

during model building due to their potential influence on the predictive utility of the physiological 

signals included in the model.  However, results showed both age and time since injury, as well as 

all three physiological variables did not result in clinically meaningful prediction of the outcome 

when included in the model.  

One positive finding that stood out and is worthy of discussion is the very large difference 

in odds seen between males and females experiencing the outcome—with females being at 4.23 

greater odds of experiencing BD than men.  Several potential and highly likely explanations exist 

for this sex difference. A connection might exist between sex and the specific type of BD engaged 

in during the protocol.  Preliminary visual examination of the data and reports from the research 

coordinator showed that women more commonly engaged in non-verbal and verbal behaviors (e.g., 

crying and negative self-talk), while men seemed to be more oppositional or disengaged (e.g., 

requesting breaks, quitting tasks, or asking to do complete a task different than instructions stated).  

Therefore, it might be that sex is not necessarily the important explanatory factor in these results, 

but maybe it is the type of target behavior, and that a particular subset of the six target behaviors 

measured may increase the likelihood of predicting the outcome over others.  It may also be that 
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there truly is a difference between men and women regardless of the type of behaviors expressed 

when experiencing a maladaptive behavioral response to the research task.   

Looking further into the finding that men most commonly disengaged compared to women, 

disengagement was also the behavior clinician raters most commonly disagreed on when coding. 

It is possible sex differences are being misrepresented due to coding challenges that may exist with 

this behavior in particular when compared to the five other behaviors. Additionally, unique to the 

coding of disengagement is when a participant quit a task, they were required to allow the timer to 

reach zero before being able to move onto the next task or recovery period.  In this case, clinicians 

were trained to code the outcome as present from behavior onset through the remaining time on 

the clock the participant was not working on the task.  Although disengagement was in fact present 

during this time frame, the stimuli causing the behavior response (i.e. the task itself) was not 

present if the individual was not actively participating.  Therefore, the coding of a ‘1’ during this 

time period may be falsely influencing sex results. Building upon the uniqueness of the 

disengagement behavior and its potential influence on study results, is that disengaging may not 

simply be an example of BD. Disengagement may in fact be serving as an effective avoidance 

strategy or coping withdrawal for the participants who decided to discontinue working on the 

research task, and as a result participants reduced their physiological response due to removal of 

the stressor.  Whereas the data shows a behavioral of dysregulation is present, those individuals 

may in fact have been having a positive or event neutral experience due to the task being over.  

These potential explanations for the differences in sex seen in the data suggest sex, 

differences between target behaviors, disengagement as a target behavior versus a form of coping 

withdrawal, and the coding approach itself may all be worthy of further exploration to determine 

if any of the identified factors may be influencing differences observed in sex when predicting BD.   
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This overall lack of positive findings from the GLMM, although not anticipated, suggests 

that the statistical approach may not have been the most appropriate for analyzing factors that may 

influence BD. Therefore, these results provide strong support for future research efforts to focus 

primarily on exploring more optimal approaches of analyzing the current dataset (e.g., machine 

learning techniques) to answer the research question.  

6.4.1 Potential Limitations 

With the goal in mind of including as many participants as possible who met inclusion/exclusion 

criteria, individuals from both the residential and outpatient side of the rehabilitation program were 

included in this study.  It can be argued that individuals in the residential program may be in need 

of increased assistance and rehabilitation services and therefore, may not have a comparable 

degree of self-regulatory ability to individuals participating in the outpatient program, who mostly 

live independently or with family members and typically display a greater level of independence. 

As a result, differences between residential and outpatient samples may be worthy of future 

exploration with a larger sample sizes and equal individuals across groups.  

Task selection is a potential limitation shared by all protocols.  In the original study, 

researchers questioned whether the selected tasks, although challenging, had the ability to elicit 

the construct of interested. It was determined at that point in order to move forward new tasks be 

selected with more evidence to support their use with less methodological restrictions—which was 

done prior to conducting OBDRS psychometric testing in Study 2.  As mentioned earlier in the 

text, the TSST served as a foundation for researchers to select new tasks from due to the protocol’s 

well-established use in the health psychology literature for encouraging stress responses.  Due to 

methodological and ethical considerations, the TSST protocol was adapted to meet the needs of 
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this project, which also included the addition of a third, more functional task.  This method of task 

selection gave researchers greater confidence that the tasks selected had the ability to evoke the 

outcome of interest.  Although results seem to support the continued use of the tasks, it must be 

considered that these tasks were not only adapted from a standardized protocol, but were selected 

based on an assumption that a direct link exists between internal stress responses and overt 

behaviors of frustration. Therefore, another potential limitation of this project is the lack of 

literature on BD after TBI and physiology, and TBI.  Due to this lack of evidence, it was 

determined by the researchers that utilization of well-established literature in stress, health, and 

psychology could serve as a supportive foundation to guide research efforts.  It can be presumed 

there is a logical link between internal stress responses and overt manifestations of maladaptive 

behavior, but the connection is assumed to a degree. Future research exploring these relationships 

could greatly increase the understanding of the connections between constructs.  

It is important to also mention that when examining the task period, differences may exist 

between the three individual tasks in the predictive utility of physiology on BD.  This was an area 

outside the scope of this research project; however, it is possible that the differing nature of the 

three tasks presented will cause different degrees of physiology change and behavior frequencies.  

A secondary analysis focused on examining whether significance differences exist between the 

three tasks may indicate some tasks are better at eliciting the outcome of interest, and that future 

protocols should be adapted to focus solely on that particular task or a collection of similar tasks 

as opposed to the three highly different tasks selected for this protocol.  

Due to the exploratory nature of this project, the protocol was delivered within a controlled 

clinic setting.  Although this delivery context does not support the ultimate goal of EMA research 

(i.e. naturalistic contexts), this initial stage proved to be necessary in determining if physiological 
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change had the ability to predict the outcome in the target group.  To gain supporting evidence, 

researchers needed to have increased control over the sample and environment. It is believed 

results from this study do support the future development of a community-delivered protocol.  

Finally, although this study chose to analyze repeated measures data through a GLMM, 

this approach is not the only way of examining this complex dataset.  Based on the overall lack of 

positive research findings from the model, our statistical approach may not have been appropriate 

and other methods must be explored to truly answer the research question. Machine learning—a 

commonly used approach for determining predictive factors of an outcome using large and 

complex datasets, is an alternative that was considered early on when conceptualizing this project. 

This approach may have better matched the research question and therefore, could have resulted 

in more meaningful findings that led to a greater and more complex discussion on physiology’s 

role in predicting BD. Despite the limited rigor of the GLMM, what the current study was able to 

accomplish was to (1) establish evidence of clinically meaningful physiological change over time 

during the completion of challenging tasks in adults with TBI and (2) provide support for the 

importance of examining physiological variability both between and within individuals. These 

findings establish a direct relationship between physiology and BD—an area currently under 

addressed in the literature. This evidence alone provides support for future research to continue 

examining the potential of physiology to predict BD in the target group through alternative 

approaches.  
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7.0  SUMMARY 

7.1 IMPLICATIONS 

7.1.1 Novel Assessment Method for Consideration 

The current research aimed to develop and provide support for a needed objective assessment 

method of BD that had the capability of being delivered through an EMA approach.  When 

focusing on the target group of adults with TBI who experiencing difficulty self-regulatory 

behavior during daily living, no naturalistic assessment method existed for accurately and reliably 

measuring the construct of interest.  Exploration of naturalistic delivery models is important for 

rehabilitation researchers to consider due to the increased ecological validity that comes with this 

data collection method; however, it arguably comes with an even increased importance for TBI 

researchers and those working clinically with individuals with TBI.  TBI is a disability where 

individuals experience alarmingly high rates of poor self-awareness, lack of self-regulatory ability, 

behavioral breakdowns, and memory challenges.  Symptoms like these shed light on a disconnect 

between traditional assessment methods of behavior and the target group due to not only their 

delivery within highly controlled clinic settings that may be masking true representation of 

behavioral challenges experienced during daily living, but also the dependency on the retrospective 

recall and self-awareness abilities of the individual when asked to report on behavior.  It is 

encouraged rehabilitation professionals begin exploring assessment methods that utilize objective 

forms of data collection that do not require self-awareness or retrospective recall abilities and move 
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toward methods more complimentary with and supportive of the challenges faced by individuals 

with TBI. 

7.1.2 Reliable and Naturalistic Data Collection 

By utilizing objective EMA protocols, researchers and clinicians can have confidence that the data 

collected is not only reliable, but representative of how phenomena of interest manifest in the real 

world. This increased confidence will allow for an increased understanding of constructs measured 

and the relationships between them.  The current research serves as only one exemplar of how 

objective EMA protocols can be developed and tested.  Results from this study can give researchers 

a greater understanding of physiological patterns after TBI and how those physiological states not 

only change during periods of time when challenging experiences are encountered, but also the 

potential for physiology to predict maladaptive behavioral outcomes.  It gives researchers and 

clinicians the ability to draw conclusion about overt behavior and its relationship with internal 

physiological states. This EMA method can be used for research purposes or in the clinic when 

measuring physiology is of importance, and can also be paired with a rehabilitation intervention.  

7.1.3 Clinician Efficiency 

A data collection method that is not only reliable, but one that can collect data continuously outside 

of finite clinic hours may increase clinician efficiency.  With EMA, using objective data sources 

such as wearable physiological monitors allow for continuous data collection during daily living 

without the presence of a clinician.  This method of collecting data can result in larger pools of 

data to infer challenges from and needed services, and a more accurate and reliable representation 
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of how deficits truly manifest outside of the clinic walls.  This rich data has the potential for 

clinicians to spend less time collecting data over many sessions, spend less time asking the client 

to recall experiences during each session, and increase the ability to select the most appropriate 

interventions and rehabilitation plan due to confidence in reliable data to infer decisions.  Wearing 

a device that continuously monitors and collects data independently may also decrease client 

burden, given data collection occurs without any needed input from the user.  This reduced burden 

may also positively influence client buy-in. Clinicians may also see decreased time spent obtaining 

client buy-in, due to the self-knowledge gained about internal physiological states while wearing 

the device being reinforcing in itself. Increased clinician efficiency often leads to reduced costs 

spent on rehabilitation as a result of maximizing clinician time though more efficiently working 

with clients to achieve goals.  

7.1.4 Individualized Intervention Pairing 

The ability to successfully use an objective EMA approach to measure constructs of interest in 

community settings also opens doors for opportunities to pair assessment methods with naturalistic 

rehabilitation interventions. Future directions of this research include the use of a mobile 

application delivering an audio prompt that serves as a warning sign, indicating physiology has 

moved over a threshold that may predict a negative behavioral event may soon follow.  This is 

only one example of the potential EMA data collection methods may have when paired with 

intervention.  Development of full mobile applications that provide more structured and involved 

rehabilitation intervention components when paired with physiological monitors may also be 

possible (e.g., relaxation applications), or even the deployment of mobile applications that prompt 

the user to enter additional information about what they are experiencing in that exact moment 
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when meaningful physiological change is detected.  These interventions have the capability to be 

individually tailored across persons to deliver the best fitting intervention based on individualized 

needs.  While one individual may respond to prompts encouraging them to engage with a mobile 

application focused on relaxation techniques, another may only need an auditory prompt for 

redirection. This pairing of assessment and intervention in the real world is another way of 

maximizing clinician efficiency.   

7.1.5 Client-Centered Approach 

An objective EMA approach fits highly in line with the rehabilitation principle of the importance 

of the rehabilitation process being client centered and person-driven. Using this research as an 

example, future assessment and intervention community-delivered protocols may see participants 

gain an increased awareness about their own behavior and physiology from the wearable 

technology itself and their ability to engage in that process.  Wearing the device and being able to 

track change may be reinforcing in itself due to the knowledge gained about the self.  Interventions 

paired with EMA can not only be individualized but also encourage self-management due to 

deployment occurring during daily living and the requirement that the individual attend to warning 

signs and respond adaptively to potentially harmful situations.  The use of technology for EMA 

data collection protocols often includes covert devices already used by the general community 

(e.g., smartphones and wearable activity monitors), which increases the chance an individual will 

buy-in to using the device and not feel they are doing something different than anyone else.  In 

many cases, individuals using EMA collect data on devices they already own, and without any 

knowledge of anyone around the person. This technology is intended to fade over time to 

encourage independent and unprompted SR skills once new behaviors are learned and a greater 
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sense of self-awareness has been reinforced.  EMA and intervention are truly a pairing that can 

reinforce the client-centered and client driven principles that guide rehabilitation. 

7.2 FUTURE DIRECTIONS 

Results from this research shed light on multiple areas worthy of further research to establish 

additional support of the OBDRS as an accurate and reliable assessment of BD as well as the 

ability for physiological change to predict BD and serve as a novel and naturalistic assessment 

approach that can occur in real-time.  

7.2.1 Secondary Data Analyses 

Before conducting future new research protocols, the current dataset can be used to further 

examine promising findings in the form of secondary data analysis.  This dataset allows for (1) 

further examination of characteristics that may separate ‘responders’ from ‘non-responders’; (2) 

use of machine learning techniques to more appropriately examine physiological factors that may 

predict BD; (3) the creation of predictive models focused on predicting individual target behaviors 

to assess if any particular behaviors may be better predicted by physiology; (4) a more thorough 

assessment of the role sex may play in experiencing BD; (5) the evaluation of differences in 

physiological trends and behavioral outcomes across different tasks and; (6) the use of different 

data cleaning processes (e.g., handling the disengagement behavior coding differently or removing 

behaviors all together prior to analysis), to test sensitivity and specificity of future predictive 

models.  
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Additionally, mentioned earlier in the text was the potential for machine learning 

techniques to add richness to study findings and be applied to the current dataset. ORs from 

statistical models help to explain the magnitude of the effect a variable has on the outcome, but 

may have limited ability to explain how well the model predicts the outcome.  Machine learning 

would provide more information on the sensitivity and specificity of the model selected. This can 

be done through cross validation where the dataset for each participant is separated into two 

separate datasets—one for testing and the other for validation. The testing dataset can be up to 

80% of the original dataset and is used for model building.  The remaining (up to 20%) data is set 

aside for the final model to be applied to in order to determine if the clinician rater’s observation 

of behavior matches the outcome from the model.  This is done for each participant separately to 

examine if a model can be built for each participant individually, and therefore, provide support 

for the development of individual models of BD.  

7.2.2 New Research Protocols 

Examination of the reliability of validity of the OBDRS support running large-scaled studies aimed 

at more concretely establishing the tool’s utility for measuring BD.  Currently no tool exists 

specifically for naturalistic measurement of BD in non-acute TBI cohorts, and follow-up 

replication protocols will be a necessary and a critical next step to generate further support for and 

awareness of the tool.  It is intended the OBDRS become a widely used assessment tool for the 

construct of interest and fill an existing gap in the literature. 

 When focusing on future studies aimed at further examination of physiology’s ability to 

predict BD, results from this study suggest a logical next step is to explore factors that may be 

influencing predictive model outcomes (e.g., task type, target behaviors, and sex), or the addition 
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of new signals not included in the current research that may possess predictive value (e.g., voice, 

motion, tone/inflection).  A larger-scaled psychometric replication study can also be used as an 

opportunity to analyze tasks and target individual behaviors while also exploring any influential 

role sex may play.  A larger sample will allow sufficient power to be achieved when analyzing 

these group differences.  Findings from this study will also allow researchers to assess whether 

defined groups can be characterized as ‘responders’ and ‘non responders.’  

Results gained from a follow-up protocol looking at factors influencing the predictive 

relationship of physiology on BD will ultimately lead to a more optimal fitting model that better 

predicts the outcome.  This increased confidence will allow researchers to then use the best fitting 

model to determine whether a “therapeutic window” exists in the moments prior to a behavior 

occurring. The identification of a therapeutic window is a critical next step in the future of this 

research.  If it can be determined that physiology is in fact serving as a warning sign in the moments 

leading up to a behavior, it must then be determined if that window of time is wide enough for 

subsequent cognitive rehabilitation intervention to be delivered in.  Machine learning with an 

autoregressive model could again be useful here for examining which sized therapeutic window 

provides the best predictive value.  

The intervention selected for delivery within the window is intended initially to be simple; 

something an individual can attend to quickly in the moment and something that can serve as an 

indicator that an undesirable behavioral event may occur.  This can be something as simple as a 

tone or vibration from a mobile device that is integrated with biosensor technology.  The ideal here 

is that the technology continuously measures physiological states and when those measures cross 

over a pre-determined threshold that is individualized to the person, the intervention (e.g., tone) 
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will deploy from the mobile application.  Each individual will be trained to attend to the tone and 

realize what it means when it is heard prior to intervention deployment. 

If a critical therapeutic window can be established along with the development of an 

intervention for pairing with the assessment protocol, the next phase in this research is real world 

application.  Here individuals will wear the biosensor device during daily living, allowing their 

physiology to be recorded at any given moment in time and allowing for the cognitive intervention 

to be deploy during daily living when life situations are experienced that cause physiological 

change outside of pre-determined ‘normal’ limits.  It is the hope that this novel assessment and 

intervention pairing can be effectively delivered outside of the clinic and allow for a true test of a 

context-specific model that supports increasing self-regulatory ability.  If future research aims are 

achieved, long-term research aims will focus on adaptation and replication of the protocol to other 

disability cohorts who experience difficulty self-regulating behavior (e.g., individuals with Autism 

Spectrum Disorder, Attention Deficit Hyperactivity Disorder, and/or anxiety).  

7.3 CONCLUSION 

Physiological states have been explored as an objective EMA data collection method for measuring 

behavior when traditional self-reporting EMA approaches may be unreliable or inappropriate.  

This reliance on self-reporting is a limitation of many current assessment methods used with 

disability cohorts who have difficulty reporting accurately (e.g., TBI).  Research questions on 

naturalistic behavior that were once difficult to answer due to methodological limitations may now 

be possible to systematically study through EMA models using biosensor technology. Due to the 

impact of persistent and often intervention-resistant behavior challenges after TBI and the negative 
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impact the inability to self-regulate has on daily living, it is important for rehabilitation 

professionals to explore novel assessment methods in an attempt to bridge this evidence gap and 

support positive rehabilitation outcomes.  
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APPENDIX A 

OVERT BEHAVIORAL DYSREGULATION RATING SCALE 

Purpose: This scale has been designed to categorize types of behaviors that are believed to be 
indicative of behavioral dysregulation during task completion and subsequently, lead to task 
breakdown.  The OBDRS measures behavior type, frequency, duration, off-task behavior, and 
task re-engagement. It is to be completed by the clinician during direct behavior observation or 
post hoc behavior ratings.  
 
Measure: The OBDRS measures the following 6 target behaviors: 
 

• Disengagement 
• Opposition 
• Non-Verbal (non-violent) Dysregulation 
• Physical Aggression/ Violence 
• Verbal Dysregulation 
• Perseveration 

 
Each behavior is operationally defined on the following page based on the purpose of the rating 
scale. Definitions of each observation period, as well as guidelines for properly recording task re-
engagement behavior and unique coding time restrictions are also provided. Please refer to the 
Appendix for specific examples of each target behavior prior to completing the OBDRS.  
 
Instructions: Throughout each observation period from start to finish, if the individual engages in 
1 of the 6 target behaviors, begin working across a row in the record sheet recording: the 
observation period, time of behavior onset, the type of target behavior, if the individual was off-
task during this behavior, a brief description of the behavior, whether or not the individual re-
engaged in the task, and the time of re-engagement (if applicable).  Each row represents a single 
behavior incidence. Each behavior incidence is recorded even if the individual redirects 
independently or if the onset or continuation of the behavior does not disrupt engagement.  

 
You may observe several behaviors during a particular period or none at all. Additionally, a 
behavior may fall under more than one target behavior category-if so, mark all the target 
behaviors that apply to the behavior being rated in that particular row. Finally, it is possible that 
one behavior incidence can begin while another behavior is ongoing (e.g., the individual walks 
away from the task [disengagement] and then throws their pen against the wall [physical 
aggression/violence]).  If this happens, make sure to record these behaviors in separate rows.  



 126 

OPERATIONAL DEFINITIONS 
 

Disengagement (D): Volitional withdraw from the task or situation. Disengagement means the 
person is not actively engaging in the task (e.g., either by sitting down but not working on the task or 
getting up and removing themselves from the task table), and not simply being inattentive or 
distracted (see non-verbal/ non-violent dysregulation). An individuals’ disengagement cannot be due 
to unplanned environmental influences (e.g., a fire alarm going off). Whether the individual 
disengages is independent of their decision to return to the task at a later time point, or to not return. 
Disengagement can be dually coded along with another target behavior for the same behavior 
incidence. This is because being disengaged can occur simultaneously with another form of 
behavioral dysregulation (but can also occur alone with coding additional behaviors). For example, 
if the person threatens to quit, but continues to complete the task, that behavior incidence is coded 
solely as verbal dysregulation; however, if the individual says they are going to quit and then 
proceeds to get up and walk away from the task table, then that behavior occurrence is coded as both 
verbal dysregulation AND disengagement.  It is important to make note that although 
disengagement may occur in the same time frame as another coded behavior, their associated start/ 
stop times may differ.   
 
Opposition (O): The act of opposition to any aspect of the task or situation. This act can be in 
response to a current situation (e.g., demanding help with a task) or an anticipated situation (e.g., an 
individual stating prior to the task their refusal to fill out questionnaires afterwards).  
 
Non-Verbal (non-violent) Dysregulation (NVD): An act that does not involve using words.  These 
acts are non-violent in nature.  Non-verbal/ non-violent cues can be represented as an overt behavior 
(e.g., staring out of the window) or vocal sounds (e.g., crying, moaning, changes in vocal tone). This 
type of behavior can be due to inattentiveness or distraction and can be either volitional (e.g., foot 
stomping) or involuntary (e.g., self-stimulating behavior). 
 
Physical Aggression/ Violence (PAV): An act that causes the self or another individual to be in 
danger or potential danger. Physical aggression or violence can also be displayed through the 
individuals’ interaction with an object, regardless if this act involves another person (e.g., throwing a 
chair at a wall or throwing it directly at a person). The presence of these acts is independent of any 
long-lasting damage done. 
 
Verbal Dysregulation (VD): Changes in or manipulation of verbal processes. These acts can be 
directed at the self (e.g., self-deprecating comments), another individual (e.g., interrupting), or an 
object (e.g., yelling or making insults). A verbal dysregulation act can also be non-directive. For 
verbal dysregulation to be coded, word must be produced.  Any other changes in speech or vocal 
sounds (e.g., pitch changes, crying) must be coded as non-verbal dysregulation.  It is important to 
note that constructive self-talk/ self-guidance is not a form of verbal dysregulation, but a beneficial 
problem-solving strategy, and therefore, should not be coded. 
 
Perseveration (P): Repetition or continuation of a motor or verbal act or gesture that persists even 
after it is no longer an appropriate response. Coding a behavior of perseveration means there is 
evidence to suggest the persistent behavior is unwarranted or beyond effectiveness. This act can be 
in the form of extended maintenance (e.g., difficulty moving on from a specific topic), verbal 
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repetition or recurrence (e.g., repeatedly saying the same word or phrase), or a continuous and 
uninterrupted motor act (e.g., constant slamming of a hand on a table). An act of perseveration 
continues to an excessive degree, frequency, or time point.  Its presence is independent of any 
redirection by the individual or given from an external source. Behaviors of perseveration are not 
simply repetitive acts. While an individual asking several times for clarification on tasks instructions 
shows repetition, this behavior may be a problem-solving strategy and necessary to aid them in 
completing the task, and therefore goes un-coded. Preservation implies the individual is unable to 
generate an alternative behavior, often due to a lack of cognitive inflexibility to generate an 
alternative (e.g., the inability to follow changes in task instructions despite effort to do so). Only 
repetitive acts that appear to not be related to a problem-solving strategy should be coded, and fall 
under either verbal dysregulation OR non-verbal/ non-violent dysregulation. 
 

OBSERVATION PERIODS 
 

Baseline (B): The 10 minutes prior to the completion of pre-testing assessments where the 
individual is asked to simply relax and not engage in any research tasks.  This serves as an 
acclimation period after the participant is hooked up to the technology. 
 
Pre-Testing Assessments (PTA): Period of time when participants are asked to complete four 
assessment measures.  This time frame occurs immediately following the BASELINE period. 
 
Serial Subtraction (SS): Period of time when participants are asked to complete a serial 
subtracting task requiring them to count down from 6233 by 13s. The task will end when either 
(1) the participant successfully reaches 0 or (2) 5 minutes has elapsed. This time frame occurs 
immediately following the PRE-TESTING ASSESSMENT period. 
 
Speech Task (ST): Period of time when participants are asked to spend 10 minutes preparing a 
short speech on their disability, and the immediate 5 following minutes delivering their speech 
without looking at their notes. This time frame occurs immediately following the SERIAL 
SUBSTRACTION period. 
 
Hamburger Turning Task (HTT): Period of time when participants are asked to complete a 30-
step procedural task on how to cook hamburgers.  This time frame occurs immediately following 
SPEECH TASK period. 
 
Recovery (R): Period of time where no research tasks are presented and the individual is asked to 
simply focus on relaxing. This time frame occurs immediately following the HAMBURGER 
TURNING TASK period. 
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RE-ENGAGEMENT 
 

Task re-engagement refers to whether or not the individual returns to working on the task as 
instructed AFTER a period of being disengaged.  Re-engagement can be viewed as the opposite 
of being disengaged.  A period of disengagement MUST be followed by a point where the 
individual re-engages in the task again (unless, they choose to not continue with the task at all).  
Remember, a target behavior can still occur without causing the individual to be disengaged (e.g., 
threatening to quit the task but continuing to work). Therefore, re-engagement is only possible 
after the individual has a break in task completion. This behavior is coded by marking the 
individual as engaged, which also ends the disengagement period simultaneously.   
 

CODING TIME RESTRICTIONS 
 

There are two important things to consider when coding the 6 behaviors of dysregulation. 

1. Behaviors falling within the category of non-verbal (non-violent) dysregulation can be 
challenging to code as a result of difficulty discerning whether the behavior is occurring 
all together (e.g., face scrunching), or if the behavior is maladaptive in nature (e.g., 
repeated pen tapping).  Therefore, in order to code a non-verbal (non-violent) behavior, 
the behavior incidence must be 3 seconds in duration or longer.  Behaviors in this category 
that do not meet this minimum duration go un-coded. It is important to note that the 3-
second minimum guideline only applies to this behavior category, incidences in all other 
behavior categories will always be coded regardless of their duration. 

 
2. When determining if multiple behavior incidences of the same behavior type (e.g., 

Opposition) are separately coded behaviors or part of one larger, longer behavior 
incidence, each behavior must have at least 3 seconds of time between them for them to be 
coded as separate behaviors independent of one another.  If less than 3 seconds occurs 
between the end of one behavior and the beginning of the next, the incidence is coded as 
one, larger behavioral event.  For behaviors incidences of different behavior types 
occurring closely in time (e.g., Opposition and physical aggression/ violence), if less than 
3 seconds occurs between the two behaviors code the start and stop times for the two 
behaviors separately and treat as two completely separate behavior incidences.  It is 
possible the start/ stop times for two different behaviors occurring closely in time 
completely or partially overlap, this is ok.  

 
 

TARGET BEHAVIOR EXAMPLES 

Disengagement 

• Refusal to continue with task 
• Wanders away from task table 
• Initiates taking a break from task 
• Noticeable slowing of task completion pace and/ or effort 
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Opposition 

• Uncooperative, resistant 
• Overly demanding 
• Inflexible to change/ redirection 
• Appears to intentionally deviate from task rules/ instructions 

Non-Verbal (non-violent) Dysregulation 

• Jaw clenching 
• Grimace 
• Face scrunching 
• Sighing 
• Foot stomping 
• Sudden quietness 
• Increase in talking speed or 

frequency 
• Cries or laughs 
• Increase in heavy breaths or 

breathing rate 

• Body shaking (e.g., leg bouncing or fidgetiness) 
• Folding of arms 
• Rocking, rubbing, moaning, or other self-stimulatin  

behavior 
• Clenching fist(s) 
• Pen clicking 
• Finger tapping 
• Makes loud noises (direct or indirect) 
• Change in voice tone (e.g., volume, pitch or sound) 
• Inappropriate touching/misjudgment of personal 

space 
Verbal Dysregulation 

• Difficulty articulating thoughts 
• Expressions of frustration (e.g., “this is so frustrating) 
• Sub-vocalization (e.g., talking or mumbling under breath) 
• Self-deprecating comments/ negative self-talk 
• Abrupt or dismissive verbalization (e.g., responses that suggest intentional non-

responsiveness) 
• Interrupts research staff 
• Multiple requests for breaks or help with task 
• No vocal filter (e.g., inappropriate comments, use of foul language or insults) 
• Shouts angrily (direct or indirect) 
• Threat making toward others (verbal or through gestures) 

Physical Aggression/ Violence 

• Explosive and/or unpredictable aggression toward self, others, or objects 
o Bangs head, hits fist into objects, throws self on floor or into an object 
o Throws objects or physically acts on an object with or without breaking it 
o Strikes others (with or without causing physical injury) 
o Picks or scratches skin, hits self, pulls hair (or other minor physical behaviors) 
Perseveration 

• Restlessness or excessive movement for a continued period of time 
• Persistent behavior (motor, verbal, or gesture) that is unwarranted or beyond effectiveness 
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APPENDIX B 

BEHAVIORAL ASSESSMENT OF THE DYSEXECUTIVE SYNDROME 

DYSEXECUTIVE QUESTIONNAIRE 
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APPENDIX C 

MINDFULNESS ATTENTION AWARENESS SCALE 
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APPENDIX D 

SATISFACTION WITH LIFE SCALE 

 



 134 

APPENDIX E 

GO/NO-GO TEST 
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APPENDIX F 

EXPERT FEEDBACK EVAULATION FORM 

Instructions:  Please review the attached rating scale.  Your feedback is welcomed on all aspects 
of the tool including: format, instructions, user friendliness, clarity, operational definitions of 
target behaviors, research tasks selected for observation periods, and appendix of target behavior 
examples.  As you evaluate the tool, please provide answers to the following questions: 
 
1) Are the 6 target behaviors related to behavioral signs of dysregulation in the target population 
(please select yes/no)?        
 

 Yes No 

Disengagement   

Resistance   

Non-verbal(non-violent) dysregulation   

Physical Aggression/ Violence   

Verbal Dysregulation   

Perseveration   

 
2) Are the definitions for each target behavior sufficiently objective and behaviorally stated? 
 
3) Are the behaviors being measured discrete?          
 
4) Do the target behaviors reflect a threshold behavior (i.e. can it be dichotomously present or 
absent)? 
 
5) Are any behaviors not represented on the scale that should be? 
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