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PARAMETER ESTIMATION FOR PARTIAL DIFFERENTIAL

EQUATIONS USING STOCHASTIC METHODS

Roxana Elena Tanase, PhD

University of Pittsburgh, 2016

The aim of this thesis is to compare the efficiency of different algorithms on estimating param-

eters that arise in partial differential equations: Kalman Filters (Ensemble Kalman Filter,

Stochastic Collocation Kalman Filter, Karhunen-Loève Ensemble Kalman Filter, Karhunen-

Loève Stochastic Collocation Kalman Filter), Markov-Chain Monte Carlo sampling schemes

and Adjoint variable-based method.

We also present the theoretical results for stochastic optimal control for problems constrained

by partial differential equations with random input data in a mixed finite element form. We

verify experimentally with numerical simulations using Adjoint variable-based method with

various identification objectives that either minimize the expectation of a tracking cost func-

tional or minimize the difference of desired statistical quantities in the appropriate Lp norm.

Keywords: parameter estimation, Kalman Filter, Stochastic Collocation, Markov Chain

Monte Carlo, Adjoint variable.
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LOCATION AND THE KARHUNEN-LOÈVE EXPANSION . . . . . . 33

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Noiseless Simulated Measurements . . . . . . . . . . . . . . . . . . . . 40

iv



3.2.2 Noisy Simulated Measurements . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Real Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Matching the experimental results . . . . . . . . . . . . . . . . . . . . 44

3.3 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.0 STOCHASTIC OPTIMAL CONTROL FOR ELLIPTIC DIFFUSION

EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 State Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Generalized stochastic inverse problems . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Stochastic optimal control problems . . . . . . . . . . . . . . . . . . . 50

4.2.1.1 The optimal control problem using stochastic least squares min-

imization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1.2 The optimal control problem utilizing statistical tracking ob-

jectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Stochastic parameter identification problems . . . . . . . . . . . . . . 54

4.2.2.1 Parameter identification using stochastic least squares mini-

mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2.2 Parameter identification utilizing statistical tracking objectives 57

4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Sensitivity Analysis for the Parameter Estimation in the Elliptic Case 60

4.3.2 Numerical Experiments for the Deterministic Elliptic Case . . . . . . 63

4.3.3 Numerical Experiments for the Stochastic Elliptic Case . . . . . . . . 63

5.0 ESTIMATINGA SPATIALLY VARYING PERMEABILITY FOR THE

PARABOLIC DIFFUSION EQUATION USING KALMAN FILTER,

MCMC AND ADJOINT VARIABLE-BASED ALGORITHMS . . . . . 70

5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Estimates using Kalman Filter algorithm . . . . . . . . . . . . . . . . . . . . 72

5.3 Estimates using MCMC technique . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Estimates using Adjoint variable-based algorithm . . . . . . . . . . . . . . . 83

5.4.1 Sensitivity Analysis for Parabolic Case . . . . . . . . . . . . . . . . . 83

v



5.4.1.1 State Equations, Adjoint Equations, Cost Functional . . . . . 83

5.4.2 Estimates using Adjoint variable-based algorithm on a finer mesh . . . 105

6.0 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 117

6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Future directions: PDE model of inflammation in the lung . . . . . . . . . . 118

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vi



LIST OF TABLES

2.1.1 EnKF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 SCKF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 KLSCKF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.4 KLEnKF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.0.1 Parameter estimation techniques used . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Number of parameters, stochastic space dimension, and ensemble size for the

four methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Time-averaged estimates on interval [2,3] for kp and D using noiseless simu-

lated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Time-averaged estimates on interval [2,3] for kp and D using noisy simulated

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Time-averaged estimates on interval [2,3] for kp and D using real data. . . . 43

5.2.1 Number of parameters, stochastic space dimension, and ensemble size for the

KF methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 MCMC Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Expected values of estimated Ys using KF and MCMC . . . . . . . . . . . . 77

5.3.3 Standard deviations of estimated Ys using KF and MCMC . . . . . . . . . . 78

5.4.1 Computational cost of KF, MCMC and Adj. method using J4 with 10 real-

izations, noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Expected values of estimated Ys using Adj. algorithm with 10 realizations

and noise = 10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



5.4.3 Standard deviations of estimated Ys using Adj. algorithm with 10 realizations

and noise = 10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.4 Expected values of estimated Ys using Adj. algorithm with 10 realizations

and noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.5 Standard deviations of estimated Ys using Adj. algorithm with 10 realizations

and noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.6 Expected values of estimated Ys using Adj. algorithm with 50 realizations

and noise = 10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.7 Standard deviations of estimated Ys using Adj. algorithm with 50 realizations

and noise = 10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.8 Expected values of estimated Ys using Adj. algorithm with 50 realizations

and noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.9 Standard deviations of estimated Ys using Adj. algorithm with 50 realizations

and noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



LIST OF FIGURES

1.1 (a)5x5x5 tensor product rule, (b)sparse grid with 25 collocation points con-

structed by Smolyak algorithm (see http://people.sc.fsu.edu/\protect\

unhbox\voidb@x\penalty\@M\{}jburkardt/presentations/siam uq 2012

part3.pdf ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 En KF random sampling of 2-d stochastic space . . . . . . . . . . . . . . . . 18

2.2 SC KF structured sampling of 2-d stochastic space . . . . . . . . . . . . . . 20

3.1 Parameter estimates and errors using noiseless simulated data for the EnKF(red),

SCKF(green), KLSCKF(blue) and KLEnKF(magenta). . . . . . . . . . . . . 40

3.2 Parameter estimates and errors using noisy simulated data for the EnKF(red),

SCKF(green), KLSCKF(blue) and KLEnKF(magenta). . . . . . . . . . . . . 42

3.3 Parameter estimation using real data for the EnKF(red), SCKF(green), KLSCKF(blue),

KLEnKF(magenta), and Direct Optimization (dashed line). . . . . . . . . . 43

3.4 Time sequence of surfaces obtained by running the model without any filtering

using the parameter estimates of D = 3.30e-6 cm2/h and kp=1.99/h. . . . . 45

3.5 Overlay of the 50% contours for ec obtained by the model and the experimen-

tal images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Deterministic Case: (a)Cost functional J, (b)Log10(J), (c)N=5 trajec-

tories of Y’s, (d)Crossection of target solution versus estimated solution,

(e)Crossections of target diffusion versus estimated diffusion for a 40x40 grid;

tol=10−4, ϵ = 1, β = 10−6. The exact values of Ys are 0.5. . . . . . . . . . . 65

ix



4.2 (a)J , (b)Log10(J) and crossections for: (c)target solution, (d)target diffusion,

(e)mean of target diffusion vs. mean of estimated diffusion, (f)variance of

target diffusion vs. variance of estimated diffusion. Grid considered is 40x40,

tol=10−4, ϵ = 1, β = 10−6, runs=10. The target values of N=5 Ys are random. 66

4.3 Crossections for: (a)mean of target solution vs. mean of estimated solution,

(b)variance of target solution vs. variance of estimated solution, (c)forcing

function f, (d)mean convergence in L2 norm of estimated solution. Grid

considered is 40x40, tol=10−4, ϵ = 1, β = 10−6, runs=10. The target values

of N=5 Ys are random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 (a)J , (b)Log10(J) and crossections for:(c)target solution, (d)target diffusion,

(e)mean of target diffusion vs. mean of estimated diffusion, (f)variance of

target diffusion vs. variance of estimated diffusion. Grid considered is 40x40,

tol=10−4, ϵ = 1, β = 10−6, runs=50. The target values of N=5 Ys are random. 68

4.5 Crossections for: (a)mean of target solution vs. mean of estimated solution,

(b)variance of target solution vs. variance of estimated solution, (c)forcing

function f, (d)mean convergence in L2 norm of estimated solution. Grid

considered is 40x40, tol=10−4, ϵ = 1, β = 10−6, runs=50. The target values

of N=5 Ys are random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Histogram of Yi, i = 1, . . . , 5 using EnKF . . . . . . . . . . . . . . . . . . . . 73

5.2 Yi, i = 1, . . . , 5 estimates and relative errors using EnKF . . . . . . . . . . . 73

5.3 Histogram of Yi, i = 1, . . . , 5 using SCKF . . . . . . . . . . . . . . . . . . . . 74

5.4 Yi, i = 1, . . . , 5 estimates and relative errors using SCKF . . . . . . . . . . . 74

5.5 Histogram of Yi, i = 1, . . . , 5 using KLEnKF . . . . . . . . . . . . . . . . . . 75

5.6 Yi, i = 1, . . . , 5 estimates and relative errors using KLEnKF . . . . . . . . . 75

5.7 Histogram of Yi, i = 1, . . . , 5 using KLSCKF . . . . . . . . . . . . . . . . . . 76

5.8 Yi, i = 1, . . . , 5 estimates and relative errors using KLSCKF . . . . . . . . . 76

5.9 Mean ∓ Std. Deviation for Y1 using KF and MCMC . . . . . . . . . . . . . 78

5.10 Mean ∓ Std. Deviation for Y2 using KF and MCMC . . . . . . . . . . . . . 79

5.11 Mean ∓ Std. Deviation for Y3 using KF and MCMC . . . . . . . . . . . . . 79

5.12 Mean ∓ Std. Deviation for Y4 using KF and MCMC . . . . . . . . . . . . . 80

x



5.13 Mean ∓ Std. Deviation for Y5 using KF and MCMC . . . . . . . . . . . . . 80

5.14 Histogram of Yi, i = 1 . . . , 5 using MCMC . . . . . . . . . . . . . . . . . . . 81

5.15 Yi, i = 1, . . . , 5 estimates using MCMC . . . . . . . . . . . . . . . . . . . . . 82

5.16 Correlation diagram using MCMC . . . . . . . . . . . . . . . . . . . . . . . 82

5.17 Mean ∓ Std. Deviation for Y1 using KF, MCMC and Adj. method using J4

with 10 realizations, noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . 90

5.18 Mean ∓ Std. Deviation for Y2 using KF, MCMC and Adj. method using J4

with 10 realizations, noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . 91

5.19 Mean ∓ Std. Deviation for Y3 using KF, MCMC and Adj. method using J4

with 10 realizations, noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . 91

5.20 Mean ∓ Std. Deviation for Y4 using KF, MCMC and Adj. method using J4

with 10 realizations, noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . 92

5.21 Mean ∓ Std. Deviation for Y5 using KF, MCMC and Adj. method using J4

with 10 realizations, noise = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . 92

5.22 (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 10x10, tol=10−7, ϵ =

50000, β = 10−6, runs=10. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.23 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 94

5.24 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 95

xi



5.25 (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 10x10, tol=10−7, ϵ =

50000, β = 10−6, runs=10. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.26 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 97

5.27 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 98

5.28 (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 10x10, tol=10−7, ϵ =

50000, β = 10−6, runs=50. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.29 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 100

5.30 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 101

xii



5.31 (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 10x10, tol=10−7, ϵ =

50000, β = 10−6, runs=50. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.32 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 103

5.33 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 104

5.34 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 105

5.35 (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 20x20, tol=10−7, ϵ =

50000, β = 10−6, runs=10. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.36 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 107

xiii



5.37 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 108

5.38 (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 20x20, tol=10−7, ϵ =

50000, β = 10−6, runs=10. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.39 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 110

5.40 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 111

5.41 (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 20x20, tol=10−7, ϵ =

50000, β = 10−6, runs=50. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.42 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1. . . . . . . 113

xiv



5.43 (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of

target diffusion vs. variance of estimated diffusion, (c)Mean of target solution

vs. mean of estimated solution, (d)Variance of target solution vs. variance of

estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 114

5.44 (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm

of estimated solution, (d)Mean of target diff coeff. and crossections for:

(e)target solution, (f)target diffusion. Grid considered is 20x20, tol=10−7, ϵ =

50000, β = 10−6, runs=50. Ytarget = 0.5+noise. ∗ randn(1, 5), where noise =

10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.45 (a)mean of target solution and mean of estimated solution; histograms for:

(b)target Y’s, (c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated

Y’s using J5. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,

runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3. . . . . . . 116

xv



1.0 INTRODUCTION

Driven by the needs from applications both in industry and other sciences, the field of

inverse problems [1, 37] has undergone a tremendous growth within the last two decades,

where recent emphasis has been laid more than before on nonlinear problems. Advances in

this field and the development of sophisticated numerical techniques for treating the direct

problems allow to address and solve industrial inverse problems on a level of high complexity

[20, 21, 22].

Parameter estimation is an important field in the area of modeling physical or biological

processes. The set of parameters that maximize the model’s agreement with experimen-

tal data, i.e. the ideal parameter set, can be used to yield important insight into a given

system. It can help scientists more clearly describe the behavior of the system, predict behav-

ioral changes in the system during pathological situations, and assess the efficacy of various

corrective options [44]. In addition, once those ideal parameters have been found, other

mathematical techniques can be used to obtain further insight into the system’s behavior.

Local sensitivity analysis [10] at the optimal parameter set can be used to assess the local

importance of the parameters. Also, the ideal parameter set can be used as a starting point

for obtaining (via, e.g., Markov-Chain Monte Carlo methods [37]) distributions of the pa-

rameters that produce computational estimates that agree reasonably well with experiment.

These distributions can be used to assess the global importance of each parameter.

As mathematical/computational models become more complex in order to better describe

physical systems, parameter estimation can grow in difficulty and cost due to the increase in

number of parameters and consequently computational runtime. The problem of calibrating

a model in a reasonable amount of time depends more and more on efficient methods of

parameter estimation.
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The research for this thesis is mainly focused on estimating parameters that arise in

partial differential equations using different techniques: Kalman Filters [46] (Ensem-

ble Kalman Filter [16], Stochastic Collocation Kalman Filter, Karhunen-Loève Ensemble

Kalman Filter, Karhunen-Loève Stochastic Collocation Kalman Filter [43]), Markov-Chain

Monte Carlo method [19] and Adjoint variable-based method [8].

TheKalman Filter is a two step process that evolves the state and uncertainty/variance

associated with a system optimally by using experimental data corresponding to that system.

The first step (predict or forecast step)

xf
n = f(xa

n−1) +wn

uses a computational model and the uncertainty associated with that model to evolve both

the system’s mean and variance to the next time step at which experimental data is available.

The second step (the analysis or assimilation step)

xa
n = f(xf

n) +Kn(yn − h(xf
n))

uses experimental data and the uncertainty associated with the experiments (measurement

error) to adjust the variable means and variances to more closely agree with the experimental

data.

The Ensemble Kalman Filter(EnKF) tracks the underlying distributions of the state

variables and measurements by representing the underlying distributions using an ensemble

of size q randomly chosen samples for state and measurement vectors and advancing those

distributions over time by advancing each member of the ensemble independently.

For the Stochastic Collocation Kalman Filter(SCKF), probabilistic discretization

is done by collocating the solution on a particular set of points strategically chosen from

the underlying stochastic space and then connect the realizations with suitable interpolatory

basis (Lagrangian). We use sparse grids constructed by the Smolyak algorithm based on

one-dimensional polynomial interpolation at the extrema of the Hermite polynomials (i.e.

Gaussian abscissas)[32]. In most cases, Smolyak can match the precision of the product rule

while avoiding the crushing explosion in function evaluations (see Figure 1.1). Discretiza-

tions on sparse grids involve only O(N(logN)d−1) degrees of freedom, where d is the problem
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dimension and N denotes the number of degrees of freedom in one coordinate direction. The

accuracy obtained this way is comparable to the one using a full tensor product basis involv-

ing O(Nd) degrees of freedom, if the underlying problem has smooth (analytic) dependence

on the random variables. This way, the curse of dimensionality, i.e. the exponential depen-

dence of conventional approaches on the dimension d, can be overcome to a certain extent.

(a) (b)

Figure 1.1: (a)5x5x5 tensor product rule, (b)sparse grid with 25 collocation points constructed by Smolyak
algorithm (see http://people.sc.fsu.edu/∼jburkardt/presentations/siam uq 2012 part3.pdf )

Markov-Chain Monte Carlo (MCMC) is a family of algorithms for modeling un-

certainty. Since calculation of posterior model probabilities is rarely achievable in closed

form for realistic models, approximation methods may be used. MCMC technique produces

a Markov chain (θn)n≥0 which has equilibrium distribution that matches the one of the pos-

terior probability distribution. The state of the chain after a number of steps is then used

as a sample of the desired posterior distribution. The quality of the sample improves as a

function of the number of steps. Popular examples of MCMC methods include Gibbs sam-
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pling, Metropolis-Hastings algorithm, slice sampling, Hamiltonian Monte Carlo, and many

others.

Adjoint variable-based method solves a large class of optimization, inverse, and

control problems. It is one of the gradient-based techniques in which gradient vector of the

cost functional with respect to the unknown parameters is calculated indirectly by solving an

adjoint equation. Although an additional cost arises from solving the adjoint equation, the

gradients of the cost functional can be altogether achieved with respect to each parameter.

Thus, the total cost to obtain these gradients is independent of the number of parameters

and amounts to the cost of solving two partial differential equations (PDEs) roughly. From

a control theory point of view, the algorithm is based on the Pontryagin maximum principle,

since it tries to iteratively solve the necessary conditions for optimality. From an optimization

point of view, the algorithm consists of a gradient descent, in which the gradient of the cost

functional is efficiently computed via the adjoint variable-based method.
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2.0 KALMAN FILTER AND MARKOV CHAIN MONTE CARLO

METHODS

2.1 DERIVING THE KALMAN FILTER

The Kalman filter [5] is a two step process that evolves the state and uncertainty/variance

associated with a system optimally by using experimental data corresponding to that sys-

tem. The first step (predict or forecast step) uses a computational model and the uncertainty

associated with that model to evolve both the system’s mean and variance to the next time

step at which experimental data is available. The second step (the analysis or assimilation

step) uses experimental data and the uncertainty associated with the experiments (mea-

surement error) to adjust the variable means and variances to more closely agree with the

experimental data.

The true system. To help the explanation process, we consider a particular physical

system, an epithelial layer with a small hole in it that closes as time progresses. By taking

multiple epithelial layers (on a petri dish), making random holes of different shapes but

approximately the same size (one hole per dish), and watching the system close as time

progresses, we can make estimates of the average behavior of such systems and the variance

on those behaviors. Those behaviors could be qualitative or quantitative in nature. Taking

an infinite number of such experiments there would eventually be a “true” average state

and a corresponding “true” covariance function. There are two ways to investigate such a

system. One can use experiment or a mathematical model. The Kalman Filter uses both of

these to attempt to create the best estimate of the “true” system.

Computational Model. Stepping back to generality, assume that we have a mathe-

matical model of a particular system. In order to use Kalman filter techniques, we discretize
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the system temporally and, if the system has a PDE or a system of PDEs associated with

it, spatially. The discretized system can then be solved using a suitable computational tech-

nique. The system and accompanying solution technique is referred to as the computational

model of the system. This computational model can be used to evolve the discretized system

to a later time. The new discretized system can then be used to reconstruct information as

needed. We refer to such information as computational information.

Experimental Data. For the experimental data, discretized data usually comes in the

form of measurements at various points in the domain or integrals of state variables over a

set region of space. In our case, a two-dimensional grid of computational cells is overlaid

on the pictures of the epithelial cells and corresponding hole. If a particular computational

cell in the grid lies within the hole, the value associated with it is zero. If a particular

computational cell in the grid lies outside of the hole, the value associated with it is one. If

part of the computational cell lies inside the hole while the other part lies outside the hole,

the value assigned to the cell is equal to one minus the fraction of the cell that lies within

the wound. Hence, in general, the experimental data collected in this manner represents the

average amount of epithelial cells in a given region/computational cell.

Computational Error. Given perfect data at a particular time, this computational

model can be used to evolve the system to a later time. There are inherent errors that arise

from using the computational model. These errors include normal spatial and temporal

discretization errors as well as model errors that arise because the mathematical model does

not perfectly describe the underlying physical or biological system. In biological systems,

mathematical model errors are probably responsible for most of the computational error. In

the Kalman filter, these computational errors are assumed to be stochastic and are denoted

by wn, where the subscript n corresponds to the discrete time t = tn. The covariance matrix

associated with this noise is denoted by Qn =< wn,wn >.

Cumulative Error. During the course of the model evolution, errors from previous

time steps accumulate in the current estimate of the solution. The Kalman filter solution

process helps mitigate this error accumulation process and, depending on the amount of

error in the data, the cumulative error may even decrease as time goes on.

Experimental Error. Another source of error during the Kalman filter process is the
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error coming from experiments corresponding to the system in consideration. These errors

come from measurement error and the error that comes from the natural variations that arise

between experiments. In biological systems, these latter errors are probably responsible for

most of the experimental error. In the Kalman filter, these experimental errors are assumed

to be stochastic and are denoted by vn. The covariance matrix associated with this noise is

denoted by Rn =< vn,vn >.

System before Kalman Filtering a given step. Given a particular time step, the

following equations describe the relationships between the computational and true system

and between the experimental measurements and the true system:

xn = x̃n + un,yn = ỹn + vn.

The vector x corresponds to the computational system and y corresponds to the exper-

imental measurements. x̃ and ỹ are vectors that correspond to the true systems.

The vectors x and x̃ include the values of the state variables at the appropriate locations

in the computational grid and any unknown parameters (which may be defined as globally

constant or may vary with respect to space). The values of the state variables may correspond

to values of the state variables at a specific point (appropriate for finite differences) or the

average value of the state variable over an entire computational cell (appropriate for finite

volume).

The vectors y and ỹ include the values of the state variables at the appropriate locations

in the experimental setup. Again, these values may correspond to point specific measure-

ments or be averaged over a specified region or be some other descriptor of the system.

Initial states. The initial noises or errors u0 and v0 are sometimes assumed to be zero

corresponding to initial conditions and experimental data that agrees perfectly with the true

system. This is a suitable assumption if the initial state of the true system is known very

well.

For now, however, we assume that x0 = y0 and that u0 and v0 are nonzero. This is

not an assumption critical for any derivation, but it is nonetheless used. The errors u0

and v0 are assumed to be stochastic and to have nonzero covariance matrices given by:

Pxx,0 =< u0,u0 > and R0 =< v0,v0 >.
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Prediction and analysis. There are two steps in the Kalman Filter, prediction and

analysis.

Prediction. In the prediction or forecast step, one can write the step as:

xf
n = f(xa

n−1). (2.1.1)

Here xf
n and xa

n−1 ∈ Rm are vectors of the state variables and parameters for the given

system (state vectors) from the nth forecast and n− 1st assimilation time steps, respectively,

and f is a forecasting model that is used to evolve the state vector in time. This is the

computational prediction for the values in the state vector/values of the state variables and

parameters at the next time step given the best estimate using both computational model

and experimental data from the previous time step, xa
n−1. The vector xa

n−1 is the adjusted

state vector after data has been taken into account. This adjustment will be considered

later.

In reality, if we had the true state, x̃n−1, at a previous time step, then the true state at

the next time step would be given by:

x̃n = f(x̃n−1) +wn. (2.1.2)

If we had the true state, the model would predict an accurate true state at the next time

step plus or minus the computational error term. As a reminder, we are assuming this error

is stochastic in nature and is white gaussian noise. One can now use (2.1.1) and (2.1.2) to

estimate the covariance matrix at the next time step:

P f
n,xx = < xf

n − x̃n,x
f
n − x̃n >

= < f(xa
n−1)− f(x̃n−1)−wn, f(x

a
n−1)− f(x̃n−1)−wn >

= < f(xa
n−1)− f(x̃n−1), f(x

a
n−1)− f(x̃n−1) > −

< wn, f(x
a
n−1)− f(x̃n−1) > − < f(xa

n−1)− f(x̃n−1),wn > +

< wn,wn >

= < f(xa
n−1)− f(x̃n−1), f(x

a
n−1)− f(x̃n−1) > + < wn,wn >

= < f(xa
n−1)− f(x̃n−1), f(x

a
n−1)− f(x̃n−1) > +Qn.
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Here we used the fact that < wn, f(x
a
n−1) − f(x̃a

n−1) > is zero because wn is symmetrically

distributed about zero (assumed here) and the difference f(xa
n−1)− f(x̃a

n−1) and noise wn are

independently distributed.

Temporarily we define: Pn,ff =< f(xn)− f(x̃n), f(xn)− f(x̃n) >. It turns out this is the

crucial quantity in the prediction step. If f(x) = Ax, then the linear Kalman filter can be

used and the corresponding predicted covariance matrix becomes:

P f
n,xx = < f(xa

n−1)− f(x̃n−1), f(x
a
n−1)− f(x̃n−1) > +Qn

= < Axa
n−1 − Ax̃n−1, Ax

a
n−1 − Ax̃n−1 > +Qn

= A < xa
n−1 − x̃n−1,x

a
n−1 − x̃n−1 > AT +Qn

= AP a
n−1,xxA

T +Qn.

Here we have defined the covariance matrix for the adjusted state vector at time tn as

P a
n,xx =< xa

n−x̃n,x
a
n−x̃n >. In addition, it can be seen that Qn represents the computational

error while AP a
n−1,xxA

T represents the cumulative error (which includes both computational

and experimental errors from times past).

If f(x) is a nonlinear function, then one can perform a Taylor expansion in order to esti-

mate the value of Pn,ff . If one neglects higher order nonlinear terms (which are “neglectable”

if, for instance, ∥xn − x̃n∥2 << ∥xn − x̃n∥), then one comes up with the following formula

for the forecast covariance matrix:

P f
n,xx =

∂f

∂x

∣∣∣∣
x=xn

P a
n−1,xx

(
∂f

∂x

∣∣∣∣
x=xn

)T

+Qn,

where it can be seen that the Jacobian (tangent linear operator) takes the place of the A in

the linear Kalman Filter. This choice for P f
n,xx is made in the extended Kalman Filter.

Adjustment. After the prediction step there is a forecast mean, xf
n, and a forecast

covariance estimate, P f
n,xx. It is necessary to compare computational and experimental data.

In order to do so, a measurement function is used and is defined by:

ỹ = h(x̃).
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Using this function, we then define the adjusted mean, xa
n, as a linear combination of the

predicted mean and the difference between the measured experimental data, yn and what

the experimental data would have been if the predicted state vector really did correspond to

the state of the given system, h(xf
n):

xa
n = xf

n +Kn(yn − h(xf
n)). (2.1.3)

Kn is the Kalman gain and is a blending factor of sorts which blends the model information

with the measurement information.

Kalman GainWe have not yet derived the specific form of this factor. The Kalman gain

is chosen to minimize the amount of uncertainty in the new estimate of the state vector for

the system, xa
n, and depends on the covariances of the forecast state vectors and measurement

values. In order to derive this factor, we desire that the new adjusted covariance,

P a
n,xx =< xa

n − x̃n,x
a
n − x̃n >,

be optimal in some sense. To do so, first consider the covariance matrix associated with

these adjusted state vectors:

P a
n,xx = < xf

n +Kn(yn − h(xf
n))− x̃n,x

f
n +Kn(yn − h(xf

n))− x̃n >

= < xf
n − x̃n,x

f
n − x̃n > + < Kn(yn − h(xf

n)),x
f
n − x̃n > +

< xf
n − x̃n, Kn(yn − h(xf

n)) > +

< Kn(yn − h(xf
n)), Kn(yn − h(xf

n)) >

= P f
n,xx −Kn < h(xf

n)− yn,x
f
n − x̃n > −

< xf
n − x̃n,h(x

f
n)− yn > KT

n +

Kn < h(xf
n)− yn,h(x

f
n)− yn > KT

n .

We define the additional covariance matrices appearing in the above equation as follows:

P f
n,yx = (P f

n,xy)
T = < h(xf

n)− yn,x
f
n − x̃n > (2.1.4)

P f
n,yy = < h(xf

n)− yn,h(x
f
n)− yn > (2.1.5)

and rewrite the equation for P a
n,xx as:
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P a
n,xx = P f

n,xx −KnP
f
n,yx − P f

n,xyK
T
n +KnP

f
n,yyK

T
n . (2.1.6)

This is an expression for the analyzed covariance matrix that is quadratic in Kn. The

diagonal terms correspond to the uncertainty/variance in each element of the analyzed state

vector xa
n. We wish to minimize the sum of these uncertainties. To do so we set:

d(trace(P a
n,xx))

dKn

= 0.

Using a couple of matrix derivative rules for traces:

d(tr(AB))

dA
= BT ;

d(tr(ABAT ))

dA
= 2AB (B symmetric) (2.1.7)

and a simple trace rule, tr(AT ) = tr(A), we can do the following:

tr(P a
n,xx) = tr(P f

n,xx)− tr(KnP
f
n,yx)− tr(P f

n,xyK
T
n ) +

tr(KnP
f
n,yyK

T
n )

= tr(P f
n,xx)− 2tr(KnP

f
n,yx) + tr(KnP

f
n,yyK

T
n ).

Now we can take the derivative of both sides with respect to Kn:

d(tr(P a
n,xx))

dKn

= −2(P f
n,yx)

T + 2KnP
f
n,yy = 0⇒

P f
n,xy = Kn(P

f
n,yy)

−1. (2.1.8)

Here we have used the fact that (P f
n,yx)

T = P f
n,xy. Hence:

KnP
f
n,yy = P f

n,xy

Kn = P f
n,xy(P

f
n,yy)

−1 (2.1.9)

It is important to note that the formulae for P f
n,yy and P f

n,yx have alternate representations

in terms of just state vector quantities. We assume below that the data noise is distributed

independently from the forecast state vectors about the true value. For the forecast data

covariance matrix, the formula is:
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P f
n,yy = < h(xf

n)− yn,h(x
f
n)− yn >

= < h(xf
n)− (ỹn + vn),h(x

f
n)− (ỹn + vn) >

= < h(xf
n)− ỹn,h(x

f
n)− ỹn > − < vn,h(x

f
n)− (ỹn + vn) >

− < h(xf
n)− ỹn,vn > + < vn,vn >

= < h(xf
n)− h(x̃n),h(x

f
n)− h(x̃n) > +Rn. (2.1.10)

For the covariance between the model and data, we have the formula:

P f
n,xy = < xf

n − x̃n,h(xn)− yn >

= < xf
n − x̃n,h(xn)− (ỹn + vn) >

= < xf
n − x̃n,h(xn)− ỹn > + < xf

n − x̃n,vn >

= < xf
n − x̃n,h(xn)− h(x̃n) > . (2.1.11)

When the measurement function is a simple function (e.g. a measurement matrix where the

state vector is linearly related to the data vector), the expressions for P f
n,yy and P f

n,xy found

in equations (2.1.10) and (2.1.11) simplify and the two covariances can be related to the

state vector covariance, P f
n,xx.

We can now substitute the Kalman gain back into the formula for the state vector covariance

matrix:

P a
n,xx = P f

n,xx − P f
n,xy(P

f
n,yy)

−1P f
n,yx − P f

n,xy(P
f
n,xy(P

f
n,yy)

−1)T +

(P f
n,xy(P

f
n,yy)

−1)P f
n,yy(P

f
n,xy(P

f
n,yy)

−1)T

= P f
n,xx − P f

n,xy(P
f
n,yy)

−1P f
n,yx − P f

n,xy(P
f
n,xy(P

f
n,yy)

−1)T +

P f
n,xy(P

f
n,xy(P

f
n,yy)

−1)T

= P f
n,xx − P f

n,xy(P
f
n,yy)

−1P f
n,yx

= P f
n,xx −KnP

f
n,yx. (2.1.12)

This covariance matrix gives information on the uncertainties associated with the state vector

after the adjustment step has taken place.
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There are two primary ways in which the means and variances of the variables are tracked

in the Kalman filter. Traditionally, in both the linear and extended Kalman filter, the mean

and covariance matrix of the state variables each have their own evolution equation and

are explicitly tracked as time evolves. With the advent of the Ensemble Kalman Filter it

has become common to instead track the means and variances by evolving each member of

a sampling, or ensemble, of stochastic variable space. In this latter case, if more specific

information such as the mean or covariance of the variables in the actual system is desired,

they can be estimated by calculating the mean and covariance matrix of the ensemble. Often

the two approaches are mixed (see, e.g. [18, 39, 28, 38]).

Finally we mention that while the Kalman filter has traditionally been used to correct

just the state variables in a given model, it has become common practice to use the Kalman

filter in a parameter estimation role (see [29, 30]). By appending guesses for the unknown

parameter to the state vector, evolving those parameters with the identity function during

the predict step, and then allowing the analysis step to adjust the parameter values so

that the state variables more closely agree with experiment, the parameter values will tend

to evolve towards the ideal values for the system, that is, towards a parameter set that

reproduces the experimental data fairly well. In addition, it is often, though not always, the

case that the first guess for the parameters need not be close to the ideal parameter set in

order for the guesses to converge to that set.

Summary of KF Algorithm The general Kalman filter algorithm consists of the main

two steps, the forward prediction step using the model and the analysis or adjustment step

that assimilates the data information into the model. It also consists of initialization where

we must make a guess for the initial best state vector estimate (xa
0), the initial uncertainty

associated with that estimate (P a
0,xx), and the uncertainties associated with the model and

measurements (Qn/wn and Rn/vn). The model and measurement uncertainties can depend

on time, provided we prescribe how to find those uncertainties at a given time step. In our

calculations, however, we usually assume that these matrices are constant over all time.

Note this algorithm takes the point of view that we are tracking the mean and covariance

of the best estimate for the state vector. There are different ways of finding the covariances

involved in the method. Some of them are detailed above. We now give the explicit, complete,
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Initialize

xa
0 Initial best state vector es-

timate

P a
0,xx Initial uncertainty on best

state vector (can be zero

matrix)

Qn/wn Uncertainty associated

from applying model

Rn/vn Uncertainty associated

with making experimental

measurements

Predict Step

xf
n = f(xa

n−1) Predict new state

P f
n,xx =< f(xa

n−1)− x̃n, f(x
a
n−1)− x̃n > Find new covariance

P f
n,xy =< h(xf

n)− yn,x
f
n − x̃n > Find new covariance

P f
n,yy =< h(xf

n)− yn,h(x
f
n)− yn > Find new covariance

Adjustment Step

Kn = P f
n,xy(P

f
n,yy)

−1 Find Kalman gain

xa
n = xf

n +Kn(yn − h(xf
n)) Find analyzed state

P a
n,xx = P f

n,xx −KnP
f
n,yx Find new covariance

Repeat Process starting from Predict Step

algorithms for the linear, extended, ensemble, stochastic collocation, and Karhunen-Loève

(ensemble and stochastic collocation versions) below.

2.1.1 Linear Kalman Filter

If we assume a linear model, xf
n = Anx

a
n−1, and a linear measurement function, h(xf

n) =

Hnx
f
n, then the algorithm becomes:

14



Initialize

xa
0 Initial best state vector

P a
0,xx Initial best state vector uncertainty

Qn Uncertainty associated with using the

model

Rn Uncertainty associated with making

experimental measurements

Predict Step

xf
n = Anx

a
n−1 Predict new state

P f
n,xx = AnP

a
n−1,xxA

T
n +Qn Find new covariance

P f
n,xy = P f

n,xxH
T
n Find new covariance

P f
n,yy = HnPn,xxH

T
n +Rn Find new covariance

Adjustment Step

Kn = P f
n,xy(P

f
n,yy)

−1 Find Kalman gain

xa
n = xf

n +Kn(yn −Hnx
f
n) Find analyzed state

P a
n,xx = P f

n,xx −KnP
f
n,xxK

T
n Find new covariance

Repeat Process from Predict Step
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Extended Kalman Filter In the extended Kalman filter, we linearize the functions f

and h from equations (2.1.1) and (2.1.3) respectively, by using their Jacobians. The resulting

algorithm is below. Note that for linear functions this algorithm will give the exact same

result as for the linear Kalman filter. The difference comes in the fact that the linear Kalman

filter simply isn’t defined for nonlinear functions while the extended Kalman filter, through

using the Jacobian in the algorithmic process, is:

Initialize

xa
0 Initial best state vector

P a
0,xx Initial best state vector uncertainty

Qn Uncertainty associated with using

the model

Rn Uncertainty associated with mak-

ing experimental measurements

Predict Step

xf
n = f(xa

n−1) Predict new state

An = ∂f
∂x

∣∣
x=xa

n−1
Define Jacobian for f

Hn = ∂h
∂x

∣∣
x=xa

n−1
Define Jacobian for h

P f
n,xx = AnP

a
n−1,xxA

T
n +Qn Find new covariance

P f
n,xy = P f

n,xxH
T
n Find new covariance

P f
n,yy = HnPn,xxH

T
n +Rn Find new covariance

Adjustment Step

Kn = P f
n,xy(P

f
n,yy)

−1 Find Kalman gain

xa
n = xf

n +Kn(yn − h(xf
n)) Find analyzed state

P a
n,xx = P f

n,xx −Kn(P
f
n,xy)

T Find new covariance

Repeat Process from Predict Step
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2.1.2 Ensemble Kalman filter

The Ensemble Kalman Filter (see [16, 12]) tracks the underlying distributions of the state

and measurement vectors not by tracking the mean and covariances associated with the state

vectors as time evolves, but by representing the underlying distribution using an ensemble of

state and measurement vectors and advancing that distribution over time. Given an initial

distribution described by a probability distribution function (e.g. a gaussian), a sampling

of that distribution can be generated (using randn in Matlab for gaussian distributions or

MCMC for more complicated distributions). That sampling or ensemble (of size q) repre-

sents the original distribution. In addition, the noise for the model and measurements are

also represented by ensembles of size q. To initialize the procedure, we must initialize (or

decide upon) the following vector, covariance, ensemble of state vectors, and distributions.

Subscript en corresponds to ensembles of vectors.

The algorithm, along with a short description of each step, is listed in Table 2.1.1.

In this and the other three algorithms (Stochastic Collocation Kalman filter, Karhunen-

Loève Stochastic Collocation Kalman filter, Karhunen-Loève Ensemble Kalman filter), the

dimension of the state/parameter vector x is m = n + 2, where n is the number of grid

cells. In particular, we have one free state variable per grid cell and two parameters D and

kp. In this and the next algorithm, since the spatial noise is uncorrelated, the dimension of

the stochastic space is also m. Ensembles of state vectors, measurement noise, and model

noise are of size q and are random, rather than structured, samplings of the stochastic space,

see Figure 2.1. When q is large enough, the ensembles should have a mean and variance

that is approximately equal to the mean and variance of the underlying distributions. The

index k corresponds to the kth ensemble member. The ensembles of noise vectors {wn,k}qk=1

and {vn,k}qk=1 are drawn from the normal distributions with covariance matrices Qn and Rn,

respectively.

If the ensembles of vectors include enough members, q, the ensembles should have a mean

and variance that is approximately equal to the mean and variance of the original underlying

distributions. The state vector ensemble is evolved through time using the model and each

member of the ensemble is updated using the measured data as follows. The index k corre-
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Figure 2.1: En KF random sampling of 2-d stochastic space

Initialize

xa
0 Initial best state vector

P a
0,xx Initial best state vector uncertainty

xa
0,en Use xa

0 and P a
0,xx to obtain a sampling or ensemble of q vectors

that correspond to/represent the underlying distribution

w Distribution of model noise corresponding to the uncertainty

of using the model. At every time step a new ensemble of

noise vectors (of size q) is drawn from this distribution.

v Distribution of measurement noise corresponding to the

uncertainty associated with making experimental measure-

ments. At every time step a new ensemble of noise vectors

(of size q) is drawn from this distribution.

sponds to the kth ensemble member, the index i or j correspond to the ith or jth component

in the given ensemble member vector.

It is important to note that it is usually the case that the dependence of results on

the initialization values chosen decreases as the number of data assimilation steps increase.

18



Table 2.1.1: EnKF Algorithm

Initialize

xa
0 Initial best state vector

P a
0,xx Initial best state vector uncertainty

{xa
0,k}

q
k=1 Use xa

0 and P a
0,xx to obtain a sampling or ensemble

of q vectors

Prediction Step

xf
n,k = f(xa

n−1,k) +wn,k Predict new state for each ensemble member

xf
n = 1

q

∑q
k=1 x

f
n,k Mean new state, according to model

yf
n = 1

q

∑q
k=1 h(x

f
n,k) Mean new measurement, according to model

Ef
x,k = xf

n,k − xf
n Deviation of kth forecast ensemble member from

mean

Ef
y,k = h(xf

n,k)− yf
n Deviation of kth forecast measurement of ensemble

member from mean measurement

P f
n,xx = 1

q−1

∑q
k=1E

f
x,k(E

f
x,k)

T New xx-covariance

P f
n,xy =

1
q−1

∑q
k=1E

f
x,k(E

f
y,k)

T New xy-covariance

P f
n,yy =

1
q−1

∑q
k=1E

f
y,k(E

f
y,k)

T New yy-covariance

Adjustment Step

Kn = P f
n,xy(P

f
n,yy)

−1 Find Kalman gain

xa
n,k = xf

n,k

+Kn(yn + vn,k − h(xf
n,k))

Find analyzed state for each ensemble member

xa
n = 1

q

∑q
k=1 x

a
n,k Mean best estimate state, after measurement ad-

justment

Ea
x,k = xa

n,k − xa
n Deviation of kth analyzed ensemble member from

mean

P a
n,xx = 1

q−1

∑q
k=1E

a
x,k(E

a
x,k)

T Find new covariance

end
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Hence, with enough data assimilation steps, initialization values become unimportant, just

necessary to begin the data assimilation process.

2.1.3 Stochastic Collocation Kalman filter

In the ensemble Kalman filter, the mean and variance of the ensemble converge to the true

mean of the ensemble (according to Monte Carlo sampling) as 1/
√
q. Because of this, a

large number of ensemble members is often required if the ensemble Kalman filter is going

to effectively track the true underlying distribution as it evolves in time. When the model

function f is costly to evaluate, the large number of required ensemble members lead to a

very slow ensemble Kalman filter.

To alleviate this problem, it has become practice (unscented Kalman filter, sigma point

Kalman filter, Gaussian filters, stochastic collocation Kalman filter) to build ensembles that

consist of points strategically chosen from the underlying stochastic space [18, 39, 28, 43].

This is in contrast to the ensemble Kalman filter where the stochastic space is randomly

sampled. When points are strategically chosen, numerical integration techniques on the

corresponding structured grid can be used to obtain good estimates of what the mean and

covariance of the underlying matrix are.

Figure 2.2: SC KF structured sampling of 2-d stochastic space

The stochastic collocation method builds an interpolant in the stochastic space using

solution values at qSC collocation points. Therefore its computational complexity is qSC times
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that of a deterministic problem. Thus, we need to choose a nodal set Θ with fewest possible

number of points under a prescribed accuracy requirement. There are several choices of

such collocation points, using either tensor products of one-dimensional nodal sets, or sparse

grids constructed by the Smolyak algorithm [32, 42]. The Smolyak approximation is a linear

combination of product formulae, and the linear combination is chosen in such a way that an

interpolation property for one-dimensional spaces is preserved for multidimensional spaces.

Only products with a relatively small number of points are used and the resulting nodal set

has significantly fewer number of nodes compared to the tensor product rule. In this paper,

we use Smolyak formulae that are based on one-dimensional polynomial interpolation at the

extrema of the Hermite polynomials, which are the orthogonal polynomials with a weight

given by the probability density function of the normal distribution (i.e. Gaussian abscissas).

Other choices, such as the extrema of the Chebyshev polynomials (i.e. Clenshaw-Curtis

abscissas), can be considered as well. The SCKF algorithm is given in Table 2.1.2. Here qSC

is the size of the ensemble, {rSC,k}qSC

k=1 ∈ Rm, are the collocation points, and {cSC,k}qSC

k=1 are

the collocation weights. In our implementation we use Smolyak level one sparse grid [32, 42],

which has two collocation points in each dimension plus the origin, resulting in qsc = 2m+1.

Remark 2.1.1. It is important to note that we have modified the standard SC implemen-

tation. In particular, since the set of collocation points is fixed, sampling the noise at these

points at each data assimilation step would result in adding noise to the model and mea-

surements in the same stochastic direction. To avoid this, at each data assimilation step

the Kalman gain is used to adjust the mean and a new ensemble is generated using the new

mean, the vector of collocation points and the new covariance matrix.

2.1.4 Karhunen-Loève Stochastic Collocation Kalman filter,

Karhunen-Loève Ensemble Kalman filter

The most costly portion of the Kalman filter is the functional evaluation of f, which corre-

sponds to advancing the computational model in time. As such, the fewer ensemble members

a method needs to obtain satisfactory results, the faster the method is. For low-dimensional

systems, the stochastic collocation Kalman filter needs few ensemble members in its or-
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Table 2.1.2: SCKF Algorithm

Initialize

xa
0 Initial best state vector (corresponds to a mean)

P a
0,xx Initial best state vector uncertainty/covariance

{rSC,k}qSC

k=1 Collocation points

{cSC,k}qSC

k=1 Weights for stochastic collocation

For n = 1 . . . N

Prediction Step

xa
n−1,k = xa

n−1 +
√
P a
n−1,xxrSC,k

Use variance associated with each component to

readjust the ensemble

xf
n,k = f(xa

n−1,k) Predict new state

xf
n =

∑qSC

k=1 cSC,kx
f
n,k Mean new state, according to model

yf
n =

∑qSC

k=1 cSC,kh(x
f
n,k) Mean new measurement, according to model

Ef
x,k = xf

n,k − xf
n Deviation of kth ensemble member from mean

Ef
y,k = h(xf

n,k)− yf
n Deviation of measurement of kth ensemble mem-

ber from mean measurement

P f
n,xx =

∑qSC

k=1 cSC,kE
f
x,k(E

f
x,k)

T +Qn Find new covariance

P f
n,xy =

∑qSC

k=1 cSC,kE
f
x,k(E

f
y,k)

T Find new covariance

P f
n,yy =

∑qSC

k=1 cSC,kE
f
y,k(E

f
y,k)

T +Rn Find new covariance

Adjustment Step

Kn = P f
n,xy(P

f
n,yy)

−1 Find Kalman gain

xa
n = xf

n +Kn(yn − yf
n) Find adjusted mean state

P a
n,xx = P f

n,xx −KnP
f
n,yyK

T
n Find new covariance

end
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ganized ensemble, while the Ensemble Kalman filter needs many in its randomly chosen

ensemble. As the dimension is increased, however, the stochastic collocation Kalman filter

suffers from the curse of dimensionality. For instance, for one spatially dependent variable

on a coarse 10 × 10 × 10 computational grid, the dimension of the stochastic space is one

thousand, therefore over one thousand ensemble members are required to run the stochastic

collocation Kalman filter. A 20 × 20 × 20 grid would require over eight thousand ensemble

members. The ensemble Kalman filter often requires only around one thousand ensemble

members for similarly sized grids.

To address this problem, one can explore a parametrized noise representation, such as

the Karhunen-Loève (KL) expansion. The uncertainties associated with each component

of the state vector are often correlated with each other. This is especially true when the

components correspond to spatially dependent variables on computational grids. We use

the KL expansion to represent these spatially correlated uncertainties. It is very similar to

a Fourier expansion of a function with eigenfunctions that look sinusoidal. On a discrete

grid of size p × p × p, one needs p3 KL eigenfunctions to completely represent a given

discrete correlation function on the grid. Like a Fourier series, however, it can be shown that

in continuous space the eigenvalues decay fast and the KL expansion of a given function

converges to that function as more terms are included in the expansion [14]. As such,

including the first few terms of the KL expansion in discrete space, instead of p3 terms, will

allow to sufficiently represent the distribution of the possible state of the system. Doing

so reduces the effective stochastic space and allows one to use a much smaller ensemble to

represent the underlying distributions. This corresponds to fewer necessary evaluations of

the model function f and faster Kalman filtering.

Given a correlation function in two dimensions Cv(x⃗α, x⃗β) for a stochastic variable v, the

corresponding Karhunen-Loève expansion for that variable is given by [14]:

v(x⃗, ω) = E[v](x⃗) +
∞∑
i=1

ξi(ω)
√
λifi(x⃗),

where the corresponding eigenfunctions fi(x⃗) satisfy the following integral equation∫∫
D

C(x⃗α, x⃗β)fi(x⃗α)dx⃗α = λifi(x⃗β).
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Due to the symmetry and positive definiteness of the covariance function, the corresponding

eigenfunctions are mutually orthogonal. In addition, since in our case the noise being rep-

resented is normally distributed at each point, ξi(ω) are uncorrelated normal distributions

with mean zero and standard deviation one.

As we discretize the model, it is useful to discuss the corresponding discrete version of

the KL expansion, which is just an eigenfunction expansion. Recall that we consider a cell-

centered finite difference method on a two-dimensional rectangular grid with n grid cells.

Let C ∈ Rn×n be the covariance matrix where Cij is the covariance between the noise at

the two cell centers (xi, yi) and (xj, yj). The corresponding expansion is

v⃗(ω) = E[v⃗] +
n∑

i=1

ξi(ω)
√

λie⃗i,

where C the eigenvectors e⃗i ∈ Rn satisfy

Ce⃗i = λie⃗i.

The eigenvectors are mutually orthogonal because of the symmetry and positive definite-

ness of the covariance matrix. In our computations we use the covariance matrix [15]

Cij = σ2e−|xi−xj |/Lx−|yi−yj |/Ly ,

where σ is the variance and Lx, Ly are the correlation lengths. The above function is widely

used for modeling diffusion processes in porous media [45, 15]. We assume that it is also

suitable for cell migration processes. The better our estimate of the covariance function/-

matrix of the process, the better the corresponding estimate of the KL expansion for the

process will be and the better the KL version of the KF will perform [46, 45]. We also note

that the variance σ above and the corresponding
√
λi’s can be rescaled from one time step

to another.

Our primary assumption that we employ when applying the Karhunen-Loève expansion

in the Kalman filter is that the covariance matrix of the process in question looks approxi-

mately like the above covariance function. Approximately is an important word for as we do

not really know what the corresponding covariance matrix looks like for the cell migration

process.
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Table 2.1.3: KLSCKF Algorithm

Initialize

xa
0 Initial best state vector

P a
0,xx Initial best state vector uncertainty

E Matrix of orthonormalized eigenvectors

{rKL,k}qKL

k=1 Collocation points

{cKL,k}qKL

k=1 Weights for stochastic collocation

For n = 1 . . . N

Prediction Step

PE = ETP a
n−1,xxE Project covariance onto the KL eigenspace

xa
n−1,k = xa

n−1 + E
√
PErKL,k Use projected covariance to readjust the ensemble

xf
n,k = f(xa

n−1,k) Predict new state

xf
n =

∑qKL

k=1 cKL,kx
f
n,k Mean new state, according to model

yf
n =

∑qKL

k=1 cKL,kh(x
f
n,k) Mean new measurement, according to model

Ef
x,k = xf

n,k − xf
n Deviation of kth ensemble member from mean

Ef
y,k = h(xf

n,k)− yf
n Deviation of measurement of kth ensemble mem-

ber from mean measurement

P f
n,xx =

∑qKL

k=1 cKL,kE
f
x,k(E

f
x,k)

T +Qn Find new covariance

P f
n,xy =

∑qKL

k=1 cKL,kE
f
x,k(E

f
y,k)

T Find new covariance

P f
n,yy =

∑qKL

k=1 cKL,kE
f
y,k(E

f
y,k)

T +Rn Find new covariance

Adjustment Step

Kn = P f
n,xy(P

f
n,yy)

−1 Find Kalman gain

xa
n = xf

n +Kn(yn − yf
n) Find adjusted mean state

P a
n,xx = P f

n,xx −KnP
f
n,yyK

T
n Find new covariance

end
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The better our estimate of the covariance function/matrix of the process, the better the

corresponding estimate of the Karhunen-Loève expansion for the process will be and the

better the Karhunen-Loève version of the KF will perform (see e.g., [46, 45]). Unfortunately,

finding out what the covariance function/matrix really looks would probably require the use

of extensive MCMC simulations coupled with an appropriate definition of the probability

space for the initial wound shapes and sizes. Both running the MCMC appropriately and

defining an appropriate probability space would take much time and effort. In addition,

during that process we would also obtain parameter estimates along the way to obtaining

estimates of the covariance function/matrix rendering employment of the KF for parameter

estimation afterwards unnecessary.

Hence we proceed instead without a highly accurate covariance function/matrix by mak-

ing some of the following assumptions (some of which have already been discussed). We

assume the noise associated with the process being modeled is distributed normally at each

point in the domain (however, each the noise may have a different standard deviation at

each point). We also assume that the covariance may be represented approximately by the

above covariance function/matrix. This means, in particular, that the noise can be written

using an expansion:

n(x⃗, ω) ≈
∞∑
i=1

ni(ω)fi(x⃗)

n⃗(ω) ≈
∞∑
i=1

ni(ω)e⃗i,

where the normal distributions ni(ω) have mean zero, are independent of each other, and

have standard deviations approximately equal to
√
λi. Define these standard deviations to

be si for the time being. To allow for some flexibility, we do not always set si to be equal to
√
λi but rather allow them to vary. The corresponding expansion for the noise becomes

n(x⃗, ω) ≈
∞∑
i=1

siξi(ω)fi(x⃗)
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n⃗(ω) ≈
M∑
i=1

siξi(ω)e⃗i.

If the process indeed has a covariance equal to the covariance function/matrix above,

the si will not stray too far from
√
λi. In addition, another critical assumption, we assume

that the si decay to zero relatively rapidly as i grows so that there are only a few dominant

eigenfunctions/vectors.

Recovering the “best” si for a given covariance function/matrix given above (with covari-

ance C(x⃗α, x⃗β)/C) from another random covariance matrix (with covariance C̃(x⃗α, x⃗β)/C̃)

becomes an important question later on. Hence consider a random normal distribution with

an associated covariance matrix that may or may not look like the covariance function/-

matrix given above. The corresponding noise for that matrix (denoted with tildes) is given

by:

⃗̃n(ω) ≈
M∑
i=1

√
λ̃iξ̃i(ω)⃗̃ei.

We wish to know how much of this noise will lie along the ith eigenvector direction for

the first covariance function/matrix. This is easily found (note the eigenvectors have been

normalized to have unitary length):

p̃j(ω) = ⃗̃n||e⃗j(ω) ≈ e⃗Tj

M∑
i=1

√
λ̃iξ̃i(ω)⃗̃ei

≈ e⃗Tj

M∑
i=1

z̃i(ω)⃗̃ei

≈ e⃗Tj Ẽ⃗̃z(ω)

˜⃗p(ω) ≈ ET Ẽ⃗̃z(ω).

The corresponding noise can then be rewritten in the new basis as:

⃗̃n(ω) =
M∑
j=1

p̃j(ω)e⃗j
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or if we truncate using only the dominant eigenfunctions/vectors we get:

⃗̃n(ω) =
N∑
j=1

p̃j(ω)e⃗j

= E⃗̃p(ω)

= EET Ẽ⃗̃z(ω),

where usually N << M (though N = M still works) and the dimensions of the vector ⃗̃p and

matrix of eigenvectors E have been adjusted appropriately.

In order to use this formula, however, we must eigendecompose the random matrix each

time we want to project the noise corresponding to that matrix onto the known probability

space given by the covariance function/matrix formulae given above.

Finally, Table 2.1.4 presents the KL version of the EnKF algorithm. The only difference

is that the ensemble is projected onto the KL eigenspace at each assimilation step.
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Table 2.1.4: KLEnKF Algorithm

xa
0 Initial best state vector

P a
0,xx Initial best state vector uncertainty

{xa
0,k}

q
k=1 Use xa

0 and P a
0,xx to obtain a sampling or ensemble

of q vectors

Prediction Step

xa
n−1,k = xa

n−1 + EET (xa
n−1,k − xa

n−1) Project the ensemble’s distance from the mean onto

the eigenspace and use this to construct an appro-

priately structured ensemble

xf
n,k = f(xa

n−1,k) +wn,k Predict new state for each ensemble member

xf
n = 1

q

∑q
k=1 x

f
n,k Mean new state, according to model

yf
n = 1

q

∑q
k=1 h(x

f
n,k) Mean new measurement, according to model

Ef
x,k = xf

n,k − xf
n Deviation of kth forecast ensemble member from

mean

Ef
y,k = h(xf

n,k)− yf
n Deviation of kth forecast measurement of ensemble

member from mean measurement

P f
n,xx = 1

q−1

∑q
k=1E

f
x,k(E

f
x,k)

T New xx-covariance

P f
n,xy =

1
q−1

∑q
k=1E

f
x,k(E

f
y,k)

T New xy-covariance

P f
n,yy =

1
q−1

∑q
k=1E

f
y,k(E

f
y,k)

T New yy-covariance

Adjustment Step

Kn = P f
n,xy(P

f
n,yy)

−1 Find Kalman gain

xa
n,k = xf

n,k

+Kn(yn + vn,k − h(xf
n,k))

Find analyzed state for each ensemble member

xa
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q
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a
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end
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2.2 MARKOV CHAIN MONTE CARLO METHODS

Uncertainty is often an appropriate model for systems of high complexity, which arise in a

broad spectrum of scientific fields and research areas. The mathematical treatment of the

models and algorithms in chapters 4 and 5 is Bayesian, which means that all the results

consider the unknown parameters as random variables and search the probabilistic distribu-

tion of the unknowns. Probability distributions are used for modeling the uncertainties in

the models. By introducing the concept of the stochastic prior state space to the Bayesian

formulation, the deterministic forward problem is reformulated as a stochastic one ([19, 24]).

In Bayesian inference framework, we consider the forward problem F (m) ≈ d, where m is

a vector of unknown model parameters and d is a vector of measurements, both m and d

are assumed to be random variables. The Bayesian approach combines a prior distribution

model with the likelihood to formulate the posterior probability density function (PPDF):

p(m|d) ≈ p(d|m)p(m), where p(m|d) is the PPDF, p(d|m) is the likelihood function and p(m)

is the prior probability density function. The PPDF is considered as a solution to the inverse

problem, and various statistics can be estimated from the samples of this distribution.

2.2.1 The Metropolis-Hastings Algorithm

Suppose we wish to draw samples from the posterior distribution π(θ), where θ is consid-

ered our parameter that needs to be estimated. The Metropolis-Hastings Markov Chain

(MHMC) sampling algorithm (see, e.g. [49, 50]) is a Monte Carlo method for finding sam-

ples (θ1, . . . , θn) for any distribution π(θ). The algorithm begins with some arbitrary initial

value θ0, then for each iteration n, where n = 1, 2, 3, . . ., generate a candidate value θ∗ from

proposal distribution Q(x, θn−1), which gives us a candidate for the next value θn, given the

previous sample value θn−1. When Q is symmetric, i.e. Q(x, y) = Q(y, x), we have a special

case of MHMC, called Metropolis algorithm. Next, we must calculate the acceptance ratio

α =
π(θ∗) ·Q(θ∗, θn−1)

π(θn−1) ·Q(θn−1, θ∗)
,

which will be used to decide whether to accept or reject the candidate. If α ≥ 1, then au-

tomatically accept the candidate by setting θn = θ∗. Otherwise, accept the candidate with
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probability α; if the candidate is rejected, set θn = θn−1, instead. The resulting sequence

(θn)n≥0 is a Markov Chain that has a stationary probability distribution that converges to

π(θ) when considering the limit upon large n. We present here the algorithm, which was

used in chapter 5:

Metropolis-Hastings Algorithm:

INITIALIZATION: θ0.

for n = 1, 2, 3, . . . do

Sample a candidate value θ∗ from proposal distribution Q.

Compute α = π(θ∗)·Q(θ∗,θn−1)
π(θn−1)·Q(θn−1,θ∗)

.

if α ≥ 1 then

Accept θn = θ∗.

else

Accept with probability α.

end if

end for

2.2.2 Parallel Tempering

We incorporated parallel tempering, or replica exchange, into our numerical simulations for

improving exploration of the parameter space. In parallel tempering, we simulate M replicas

of a system in parallel, for a set of temperatures T1 < T2 < · · · < TM−1 < TM . It is not clear

how to choose the optimal number M of replicas. Chains at neighboring temperature levels

partially exchange their configurations through swapping. At higher temperature levels,

corresponding to lower β values, swaps are easily accepted because the distribution is flat

and thus hotter chains travel around the sample space a lot. At lower temperature levels,

swaps are rarely accepted because the distribution is very spiky and hence any colder chains

tend to get stuck in the local energy minima (see [11]). At convergence, the simulation

from the first chain represent draws from the target distribution. By carefully choosing

the βi values, where βi =
1

kBTi
, i = 1, . . . ,M and kB is the Boltzmann constant, significant
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improvement in the mixing properties of several Monte Carlo simulations can be achieved

that exceeds the extra computational cost of running parallel simulations [31].
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3.0 PARAMETER ESTIMATION FOR A NONLINEAR DIFFUSION

MODEL OF EPITHELIAL CELL MIGRATION USING STOCHASTIC

COLLOCATION AND THE KARHUNEN-LOÈVE EXPANSION

Traditional approaches to obtaining ideal parameter sets include least-squares or maximum

likelihood approaches in which a cost functional (usually a sum of weighted squared differ-

ences between model and experimental values) is minimized. Direct optimization methods

such as the Nelder-Mead simplex method or the conjugate gradient method are often used to

find the corresponding minimum of the cost functional, which serves as the ideal parameter

set [35]. Probability based methods, such as the MCMC method, have also been used to

explore parameter space and search for optimal parameters. Direct optimization techniques

may get stuck in local minima and may require large amounts of time to find minima in high

dimensional space. While improved implementations of the MCMC algorithms exist, see

[11, 19, 41, 40, 2], MCMC generally suffers from the need of a large number of simulations

before optimal parameter sets are obtained.

Usually, in the above methods, a simulation is run from the start of an experiment to

the end of an experiment before the cost function is evaluated and the best guess for the

optimal parameter set is adjusted. In contrast, sequential data assimilation techniques adjust

parameter sets at every time at which experimental data is available. Adjusting parameters

more often usually allows for quicker convergence to desired parameter estimates. In this

chapter, which follows the paper [7], we study several Kalman filter (KF) techniques [12]

that update the parameter estimate multiple times per simulation run and compare their

performance for parameter estimation for a partial differential equation (PDE) model of cell

migration in an in vitro experiment [1].

Kalman filter methods usually take a running temporal model and periodically update
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it by using experimental measurements. While traditionally these methods have been used

to update the values of the dependent variables for a given model of a physical system, they

can also be used to update estimates of the parameter values of the model if an initial guess

for those parameter values is given [18].

The original linear Kalman filter can only be used for models with linear dynamics. The

extended Kalman filter uses the Jacobian to linearize and deal with nonlinear dynamics. Both

the linear and extended Kalman filters track the underlying distributions of the dependent

variables and unknown parameters through time by evolving and tracking the mean and

variance of the variables in the model. While the extended Kalman filter can be used on

moderately nonlinear problems, it can suffer when presented with highly nonlinear problems.

This is because the Jacobians provide only local information.

Other Kalman filters alleviate the problem of potentially misleading local information by

using a global sampling of points, rather than a local mean and Jacobian-derived variance,

to represent the underlying distribution. The ensemble Kalman filter [16, 12] tracks the

evolution of the variable distributions by using a Monte Carlo sampling of the variable

space that is evolved through time. Recently other Kalman filters have been introduced

that use structured samplings of stochastic space that are based upon quadrature rules

[18, 39, 43]. Our stochastic collocation Kalman filter (SCKF) is of this type as it uses sparse

grid collocation or quadrature in order to estimate the mean and variance resulting when

the model is propagated in time. For moderately sized problems, filters based on structured

sampling can be more efficient than the ensemble Kalman filter, since they require fewer

realizations to obtain comparable accuracy.

For spatial models where PDEs are discretized on a grid, the model errors, i.e., the

errors introduced to the variables when using the model to evolve those variables in time,

can be either spatially uncorrelated or correlated. We consider cell-centered discretization

with a free variable at each grid cell. Therefore, with uncorrelated model errors, there

is one stochastic dimension per each element of the spatial grid, resulting in an increased

dimension of the stochastic space when the spatial grid is refined. However, for PDE models,

the model errors at one grid location tend to be associated with model errors at nearby grid

locations. To incorporate this correlation, we have assumed that the errors at the grid cells
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can be represented by a Karhunen-Loève (KL) expansion, which is based on an eigenfunction

expansion of the covariance. The KL expansion can be truncated due the fast decay of the

eigenvalues (see [14]). This results in a reduction in the dimension of the effective stochastic

space which corresponds to fewer computations needed for a desired parameter estimation.

In particular, there is one stochastic dimension for each KL term and the dimension of the

stochastic space is independent of the spatial grid.

We investigate the efficiency and accuracy of using sequential data assimilation via KF

methods, structured sampling via SC methods, and the KL expansion for parameter estima-

tion in a model of intestinal epithelial cell migration. We do this by comparing parameter

estimates obtained from five different parameter estimation techniques (see Table 3.0.1):

direct optimization of a cost functional (DO), ensemble Kalman filter (EnKF), stochastic

collocation Kalman filter (SCKF), ensemble Kalman filter with KL expansion (KLEnKF),

and stochastic collocation Kalman filter with KL expansion (KLSCKF). In the SC algo-

rithms, a new random ensemble is generated after each data assimilation step to avoid

adding noise in the same stochastic direction. We present computational results for two

cases with synthetic data with and without noise, as well as experimental data from the

laboratory of David Hackam [1]. We observe that all algorithms are able to match the target

solution or experimental data and to estimate the diffusion coefficient and the growth rate

in section 3.2. However, the algorithms that employ SC acceleration and the KL expansion

are computationally more efficient, as they require fewer ensemble members for comparable

accuracy.
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Technique

sequential

data

assimilation

structured

sampling

Karhunen-

Loève

expansion

DO

EnKF X

SCKF X X

KLEnKF X X

KLSCKF X X X

Table 3.0.1: Parameter estimation techniques used

3.1 METHODS

3.1.1 Experiments

The experimental data was obtained in the Hackam Lab at the University of Pittsburgh and

the experimental procedures have been presented in [1].

3.1.2 Model

The mathematical model consists of a two-dimensional domain representing a layer of ep-

ithelial cells that evolves in time according to the partial differential equation

∂ec
∂t

= D∇ ·
((

e2c
e2c + (ec,max − ec)2

)
∇ec

)
+ kpec(ec,max − ec). (3.1.1)

This nonlinear diffusion equation for the epithelial cell concentration ec has been used to

model wound closure in necrotizing enterocolitis [3]. Here D is the diffusion coefficient, kp

is the growth rate, and ec,max = 1 is the maximum concentration.

The S-shaped nonlinear diffusion term is chosen from the Buckley-Leverett model of

two-phase flow in porous media [9]. It results in increase in epithelial cell migration when

the epithelial layer integrity increases, with no migration at ec = 0 and maximal migration

at ec = ec,max.
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A standard cell-centered finite difference method was implemented in MATLAB to dis-

cretize this equation on a 10×10 grid (100 free state variables) including appropriate upwind-

ing of the nonlinear diffusion term [17] and using Forward Euler in time with step sizes that

do not violate the CFL condition, see [3] for details. The simulation domain is the rectangle

[−0.05, 0.05] × [−0.035, 0.035] discretized on a 10 × 10 spatial mesh. The initial condition

for all tests is obtained from the initial image from the experimental data. It corresponds

to an initial wound with irregular shape that closes during the simulation. We take ec = 0

inside the wound and ec = 1 outside.

3.1.3 Measurements

To compare the efficiency and accuracy of the four methods for this particular model, we

consider three separate sets of measurements for the given system. The first set of measure-

ments is manufactured by running the model for 3.75 h with kp = 1/h and D = 3 × 10−6

cm2/h. The second set of measurements is obtained by adding white noise with variance

3 × 10−3 to the values in the first set of measurements. The third set of measurements is

taken directly from the in vitro experiment mentioned in Section 3.1. We use a time series of

images in order to determine the edge of the wound, see Figure 3.5, and the measured value

of ec in a grid cell is equal to the fraction of the cell that resides outside the wound edge

yielding 0 for cells entirely inside the wound edge and 1 for those entirely outside the edge.

We refer to the three sets of measurements as noiseless simulated measurements, noisy sim-

ulated measurements, and real measurements. Both the simulated and real measurements

are assimilated every fifteen minutes.

3.1.4 Comparisons

For both the noiseless and noisy simulated measurements, we calculate the parameters errors,

i.e., the difference between the actual value of the parameter and the estimated value. For

the real measurements case, we compare the parameter values obtained via the KF methods

with parameter values obtained using a direct optimization simplex method [35]. The latter
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is based on minimizing the residual error

R(t) =

√∫
Ω

(m⃗model(t)− m⃗experiment(t))2dxdy,

where m⃗model is the vector of estimated measurements of state variables and parameters

according to the model and m⃗experiment is the vector of actual measurements. In particular,

the method finds the parameter values that minimize the local residual at time tn+1, i.e.,

given m⃗model(tn) = m⃗experiment(tn), find Dmodel(tn+1) and kmodel
p (tn+1) such that R(tn+1) is

minimized. The direct optimization solution is used as a reference solution, i.e., the closer a

KF result is to the direct optimization result, the more accurately the KF method estimates

the parameters.

3.2 NUMERICAL RESULTS

The numerical experiments are performed using MATLAB. The equation (3.1.1) is dis-

cretized on a rectangular mesh using cell-centered finite differences in space, an upwind

scheme [17] for the effective diffusion coefficient, and Forward Euler for the time integration

with step sizes that do not violate the CFL condition, see [3] for details.

The simulation domain is the rectangle [−0.05, 0.05] × [−0.035, 0.035] discretized on a

10× 10 spatial mesh. For the simulated measurements, the initial condition is ec = 0 within

a disk centered at the origin with an area 20% of the total area, and ec = 1 outside of

the disk. Dirichlet condition ec = 1 is specified on the boundary. This corresponds to an

initial wound at the center that closes during the simulation. The parameter values used for

producing the simulated measurements are D = 3 × 10−6 for the diffusion coefficient and

kp = 1 for the growth rate. The parameter estimation methods for all three measurement

types are implemented with initial guesses D = 1× 10−6 and kp = .5.

For each of the three types of aforementioned measurements, we use each of the four

parameter estimation techniques presented in Section 3.1: the EnKF, SCKF, KLSCKF and

KLEnKF methods. Since the function evaluation to advance the model in the prediction

step is the dominant computational cost, and each ensemble member requires one function
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Number of spatial Dimension of Ensemble

parameters stochastic space size

EnKF n = 10× 10 = 100 m = n+ 2 = 102 q = 10n = 1000

SCKF n = 10× 10 = 100 m = n+ 2 = 102 qSC = 2m+ 1 = 205

KLSCKF nKL = 7× 7 = 49 mKL = nKL + 2 = 51 qKL = 2mKL + 1 = 103

KLEnKF nKL = 7× 7 = 49 mKL = nKL + 2 = 51 q = 10nKL = 490

Table 3.2.1: Number of parameters, stochastic space dimension, and ensemble size for the four methods.

evaluation at each data assimilation step, for comparison purpose we define the computa-

tional cost to be the size of the ensemble. Recall that for the EnKF the dimension of the

stochastic space is m = n+ 2, where n is the number of grid cells. Here n = 10× 10 = 100

and m = 102. We choose for the size of the ensemble q = 1000, which corresponds to 10

ensemble members per grid cell. In the SCKF, the dimension of the stochastic space is

also m = n + 2 = 102, but the size of the ensemble for level one Smolyak sparse grid is

qSC = 2m + 1 = 205. In the KL-based methods the dimension of the stochastic space is

independent of the number of cell in the physical grid, but depends on the number of terms

in the KL expansion. In our simulations we choose nKL = 7 × 7 = 49 KL terms, using

7 eigenfunctions in each x and y directions. Since the KL eigenvalues decay exponentially

fast, the truncated series provides a highly accurate approximation of the full one, see Sec-

tion 2.1.4. The dimension of the stochastic space is mKL = nKL + 2 = 51 and the size of

the SC ensemble is qKL = 2mKL + 1 = 103. Finally, in the KLEnKF, the dimension of

the stochastic space is as in the KLSCKF, mKL = 51, but the size of the ensemble needs

to be chosen to provide an accurate Monte Carlo sampling. For a fair comparison to the

EnKF where q = 10n, we choose here q = 10nKL = 10 × 49 = 490. These dimensions are

summarized in Table 3.2.1. Note that the computational cost of EnKF is approximately

twice the cost of the KLEnKF, five times the cost of the SCKF, and ten times the cost of

KLSCKF.
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Figure 3.1: Parameter estimates and errors using noiseless simulated data for the EnKF(red), SCKF(green),
KLSCKF(blue) and KLEnKF(magenta).

3.2.1 Noiseless Simulated Measurements

Figures 3.1a and 3.1c show the Kalman filter parameter estimates as a function of time for

noiseless simulated measurements. It can be seen that as time goes on, all methods converge

to the actual parameter values (horizontal lines) used to produce the noiseless simulated

measurements. Figures 3.1b and 3.1d show the error associated with the parameter estimates.

The most accurate parameter estimate is produced by the SCKF (green), but overall the

accuracy in all four methods is comparable. This is also evident from the time-averaged

estimates and relative errors for the parameters kp and D given in Table 3.2.2. Note that

the averaging is done over the time interval [2,3] in order to minimize the effect of the

incorrect initial guess and the possible singular behavior at the end of the simulation when

the wound is closing.
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Table 3.2.2: Time-averaged estimates on interval [2,3] for kp and D using noiseless simulated data.

kp D

Mean Rel.Error Std.Dev. Mean Rel.Error Std.Dev.

EnKF 0.9990 0.10 % 0.0028 2.9999e-06 0.003 % 1.9551e-08

SCKF 1.0001 0.01 % 9.2122e-06 2.9995e-06 0.010 % 3.8195e-10

KLSCKF 1.0018 0.18 % 6.1535e-04 2.9759e-06 0.803 % 8.0139e-09

KLEnKF 1.0006 0.06 % 0.0052 3.0128e-06 0.426 % 3.1334e-08

3.2.2 Noisy Simulated Measurements

Figures 3.2a and 3.2c show the Kalman filter parameter estimates as a function of time

for the noisy simulated measurements. All methods converge to the actual parameter values

used. The convergence, however, is not nearly as tight as in the cases with noiseless simulated

measurements, Figures 3.2b and 3.2d show the error associated with the parameter estimates.

The errors for all Kalman filter techniques are approximately the same. In this case, the

accuracy of the parameter estimation techniques is limited by the noise in the measurements.

As it can be seen in Table 3.2.3, the relative errors in the time-averaged mean estimates are

slightly larger than in the noiseless measurement case.

3.2.3 Real Measurements

Figures 3.3a and 3.3b show the Kalman filter parameter estimates as a function of time for

real data measurements. For comparison we have used the parameters obtained by direct

optimization (dashed line) as a best estimate. The time-averaged estimates over time interval

[2,3] for all five techniques are given in Table 3.2.4.

We observe that the KL techniques are able to obtain parameter estimates that are in

agreement with the direct parameter estimation technique for both the proliferation rate and

the effective diffusion rate. As opposed to the two previous simulated measurement cases,

the parameter estimates obtained using the parameter estimation techniques with the real
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Figure 3.2: Parameter estimates and errors using noisy simulated data for the EnKF(red), SCKF(green),
KLSCKF(blue) and KLEnKF(magenta).

Table 3.2.3: Time-averaged estimates on interval [2,3] for kp and D using noisy simulated data.

kp D

Mean Rel.Error Std.Dev. Mean Rel.Error Std.Dev.

EnKF 0.9963 0.37 % 0.0046 2.9930e-06 0.23 % 1.8997e-08

SCKF 1.0002 0.02 % 0.0017 3.0098e-06 0.32 % 1.1484e-08

KLSCKF 1.0015 0.15 % 0.0016 2.9817e-06 0.61 % 2.3084e-08

KLEnKF 0.9997 0.03 % 0.0063 3.0149e-06 0.49 % 3.7723e-08
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Figure 3.3: Parameter estimation using real data for the EnKF(red), SCKF(green), KLSCKF(blue),
KLEnKF(magenta), and Direct Optimization (dashed line).

Table 3.2.4: Time-averaged estimates on interval [2,3] for kp and D using real data.

kp D

Mean Std.Dev. Mean Std.Dev.

En KF 2.0275 0.2511 5.2521e-06 2.0617e-06

SC KF 2.0848 0.2230 3.6097e-06 2.3661e-06

KL SC KF 1.7446 0.2261 1.2520e-05 2.7342e-06

KL En KF 2.0176 0.2258 5.9341e-06 2.9548e-06

Direct Optimization 2.0077 0.1715 3.6211e-06 2.5226e-06
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measurements do not converge to one value. Rather, they appear to depend on time. There

is clearly a significant variation toward the end of the simulation. This could be explained

by the fact that the wound is almost closed at the end, see Figures 3.4 and 3.5 and the data

becomes less reliable. It is also possible that the current model may not completely capture

all dynamics of the system. One may consider the potential need to eliminate, adjust, or

add terms to the model equation.

3.2.4 Matching the experimental results

Here we demonstrate that, using the estimated parameter values, the model produces simu-

lation results that match very well the in vitro experiment. We use the parameters estimated

by the SCKF since the temporal variance of the SCKF estimates is closest to the temporal

variance of the direct optimization technique.

We note that the parameter estimate at t = 0 corresponds to the initial guess for the

parameters and does not incorporate any data information into that parameter estimate.

Additionally, as seen in Figure 3.3, as the wound closes, the parameter estimates begin to

change more rapidly with respect to time. For these reasons, to obtain a single parameter

estimate for the entire time course of the simulation, we take the time-averaged values of

the parameter estimates appearing in Figure 3.3 for 2 ≤ t ≤ 3. This averaging on the SCKF

gives parameter estimates of D = 3.30× 10−6 ± 1.51 cm2/h and kp = 1.99 ± 0.25/h.

The model is then run, without filtering, with D = 3.30× 10−6 cm2/h and kp = 1.99/h.

The resulting simulation produces Figure 3.4. The figure shows a time sequence of the values

of ec(x, y, t). To obtain an estimate of where the wound edge is, we take the ec = 50% contour

and project it into the x− y plane.

To compare this wound edge estimate with the actual wound edge seen in experiment, we

take the contours obtained and overlay them on the images from the in vitro wound healing

experiment in Figure 3.5. It can be seen that using the parameter estimates obtained from

the SCKF parameter estimation technique produces results that are in a very good agreement

with the experiment.
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Figure 3.4: Time sequence of surfaces obtained by running the model without any filtering using the param-
eter estimates of D = 3.30e-6 cm2/h and kp=1.99/h.

 t = 0 h  t = 0.5 h  t = 1 h  t = 1.5 h

 t = 2 h  t = 2.5 h  t = 3 h  t = 3.5 h

200 µm

Figure 3.5: Overlay of the 50% contours for ec obtained by the model and the experimental images.

3.3 DISCUSSION AND CONCLUSIONS

In chapter 3 we developed and analyzed four Kalman filter algorithms for data assimilation

and parameter estimation for time dependent nonlinear diffusion equations and compared

their performance for a model of epithelial cell migration. The methods are based on ei-

ther random Monte Carlo sampling (ensemble methods) or structured stochastic collocation
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sampling. In addition, either uncorrelated random noise or correlated noise parametrized

by the Karhunen-Loève expansion is considered. This results in the methods EnKF, SCKF,

KLSCKF, and KLEnKF. The SC methods with sparse grid collocation points provide im-

proved approximation in stochastic space compared to Monte Carlo sampling, and thus result

in comparable accuracy with a smaller ensemble size. Furthermore, KL parametrization of

the noise results in a stochastic space of smaller dimension (one stochastic dimension per KL

term) compared to uncorrelated noise (one stochastic dimension per element of the spatial

grid). Consequently, the most efficient method is KLSCKF, followed by SCKF, KLEnKF,

and EnKF, see Table 3.2.1.

We compared the performance of the four methods for two cases of simulated measure-

ments, with and without noise, as well as data from in vitro experiment of epithelial cell

migration. In all cases the four methods exhibited similar accuracy, making the more effi-

cient methods preferable. In the simulated data cases, all methods converged to the correct

parameter values for the growth rate kp and the diffusion D, with small relative errors for

the time-averaged mean value estimates. In the real measurements case, all four methods

performed comparably to a much more expensive direct optimization simplex method. The

methods exhibited certain time variation in the estimated parameters, especially near the

end of the simulation. This could be due to singularity in the data when the wound is almost

closed, but could also indicate the need to consider a more complex model. Nevertheless

using the estimated parameters provided an excellent match of the computed wound shape

to the experimental data, as evident from the series of images in Figure 3.5.
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4.0 STOCHASTIC OPTIMAL CONTROL FOR ELLIPTIC DIFFUSION

EQUATION

4.1 PROBLEM SETTING

Let D be a convex bounded polygonal domain in Rd, d = 1, 2, 3, and (Ω,F , P ) a complete

probability space, where Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and

P : F → [0, 1] is a probability measure. The general framework for the stochastic inverse

problem is the following: we seek random parameters, coefficients κ(ω, x) and/or forcing

terms f(ω, x), with x ∈ D, ω ∈ Ω, that minimize the mismatch between stochastic measured

and simulated data. We denote by W (D) a Banach space of functions v : D → R and define

the stochastic Banach space L2
P (Ω;W (D)), consisting of Banach valued functions that have

finite second moments:

L2
P (Ω;W (D)) =

{
v : Ω→W (D) | v is strongly measurable,

∫
Ω

∥v(ω, ·)∥2W (D)dP (ω) < +∞
}
.

4.1.1 State Equations

Soil properties are difficult to measure on the whole spatial domain, therefore the material

properties used in the simulation of groundwater flows are usually flawed by uncertainties.

There has been recently an increasing interest in the modeling and computational aspects

of the uncertainties of the groundwater flow [63, 69, 70] and porous media, see e.g., [54, 55,

72, 65, 71, 74].

We consider the groundwater flow problem in a regionD ⊂ Rd, where the flux is related to the

hydraulic head gradient by Darcy’s law. We model the uncertainties in the soil by describing

the conductivity coefficient κ as a random field denoted κ(ω, x). Similarly, the stochastic
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forcing term f(ω, x) models the uncertainty in the sources and sinks (see, e.g. [47, 73, 53]

and the references therein). Therefore the hydraulic head p and velocity u are also random

fields satisfying the elliptic stochastic partial differential equation (SPDE):


u(ω, x) = −κ(ω, x)∇p(ω, x) in Ω×D,

∇ · u = f in Ω×D,

p = 0 on Ω× ∂D.

(4.1.1)

In order to write an appropriate weak formulation for (4.1.1), we need to introduce the

Hilbert space (see [58])

H(div,D) =
{
v ∈ (L2(D))d | ∇ · v ∈ L2(D)

}
with the corresponding norm

∥v∥H(div,D) = (∥v∥2L2(D) + ∥∇ · v∥2L2(D))
1/2.

Currently, numerical methods for Darcy flow consider two different approaches: the first

one using the primal, single-phase formulation for pressure, which involves solving a Poisson

equation for pressure, and the second one using a mixed, two-phase formulation, with velocity

and pressure as the variables of interest.

We will now make the following assumptions concerning the abstract state equations given

by (4.1.1):

A1) the solution u, p to (4.1.1) has realizations in the Banach spaces H(div,D) and L2(D)

respectively, i.e., u(ω, ·) ∈ H(div,D), p(ω, ·) ∈ L2(D) almost surely and ∀ω ∈ Ω

∥u(ω, ·)∥H(div,D) + ∥p(ω, ·)∥L2(D) ≤ C∥f(ω, ·)∥L2(D)

where C is a constant independent of the realization ω ∈ Ω.

A2) the forcing term f ∈ L2
P (Ω;L

2(D)) is such that the solution u, p is unique and bounded

in L2
P (Ω;H(div,D)) and L2

P (Ω;L
2(D)) respectively.
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The linear elliptic SPDE (4.1.1) with κ(ω, ·) uniformly bounded and coercive, i.e., there

exists κmin > 0 and κmax <∞ such that

P
[
ω ∈ Ω : κmin ≤ κ(ω, x) ≤ κmax ∀x ∈ D

]
= 1, (4.1.2)

and f(ω, ·) square integrable with respect to P , satisfies assumptions A1 and A2 (see [33, 34]).

We shall assume that D is a bounded and open subset of Rd, either with smooth boundary

(of class C2 for instance) or convex. This implies that for every f ∈ L2
P (Ω;L

2(D)), problem

(4.1.1) has a unique solution (u, p) ∈ L2
P (Ω;H(div,D))× L2

P (Ω;L
2(D)).

Throughout this chapter, the expected value of a random variable X(ω) with probability

density function (p.d.f.) ρ will be denoted

E [X] =

∫
Ω

X(ω)dP (ω) =

∫
R
xρ(x)dx.

The usual multiplication by test functions v ∈ H(div,D) and w ∈ L2(D) and subse-

quent application of Green’s Theorem in the system (4.1.1) yield the standard weak mixed

formulation, namely: find u(ω, x) ∈ L2
P (Ω;H(div,D)) and p(ω, x) ∈ L2

P (Ω;L
2(D)) such that


E
[(
κ−1u, v

)
(L2(D))d

−
(
p,∇ · v

)
L2(D)

]
= 0, ∀v ∈ H(div,D)

E
[(
∇ · u,w

)
L2(D)

]
= E

[(
f, w

)
L2(D)

]
, ∀w ∈ L2(D).

(4.1.3)

Throughout the rest of this chapter, for simplicity of notation, the inner product in L2(D)

or (L2(D))d will be denoted by (·, ·).
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4.2 GENERALIZED STOCHASTIC INVERSE PROBLEMS

First we define the admissible set of conductivity coefficients given by

Aad = {κ ∈ L∞(Ω;L∞(D)) | κ(ω, x) satisfies (4.1.2)} , (4.2.1)

then given κ ∈ Aad let the admissible set of states and controls be defined as

Bad =
{
(u, p, f) | u ∈ L2

P (Ω;H(div,D)), p ∈ L2
P (Ω;L

2(D)) and f ∈ L2
P (Ω;L

2(D))
}
.

(4.2.2)

Finally, given f ∈ L2
P (Ω;L

2(D)) let the admissible set of states and coefficients be described

as

Cad =
{
(u, p, κ) | u ∈ L2

P (Ω;H(div,D)), p ∈ L2
P (Ω;L

2(D)) and κ ∈ Aad

}
. (4.2.3)

We also introduce the stochastic target functions p ∈ L2
P (Ω;L

2(D)) a given possible per-

turbed observation of the pressure, and u ∈ L2
P (Ω;H(div,D)) a given possible perturbed

observation of the Darcy velocity.

4.2.1 Stochastic optimal control problems

In this section we consider a general class of minimization problems for solving the stochastic

inverse problem for the random forcing function f(ω, x) and the solution (u(ω, x), p(ω, x))

satisfying a.s. (4.1.1). Here we assume as given the input random process κ ∈ Aad and the

targets p ∈ L2
P (Ω;L

2(D)) and u ∈ L2
P (Ω;H(div,D)) and we want to recover (u∗

J , p
∗
J , f

∗
J ) such

that

(u∗
J , p

∗
J , f

∗
J ) = inf

(u,p,f)∈Bad

{J(u, p, f) : subject to (4.1.1)} (4.2.4)

where J(u, p, f) is a given stochastic functional constructed to track the desired random

fields (u, p) or the statistical quantities of interest (QoI) of such stochastic functions. This

leads to the following definition.

Definition 1 (Stochastic optimal control). A 3-tuple (u∗
J , p

∗
J , f

∗
J ) ∈ Bad satisfying (4.1.1)

a.s., for which the infimum in (4.2.4) is attained is called the stochastic optimal solution and

the control f ∗
J is referred as stochastic optimal control.
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In what follows we will describe two functionals, denoted J1(u, p, f) and J2(u, p, f), used

to solve stochastic optimal control problems. The first functional, defined in (4.2.5), is based

on the standard classical approach based on stochastic least squares approximation. The

second functional, defined in (4.2.8), uses statistical tracking objectives and is easily gener-

alizable for higher order moments, similarly to (4.2.20). We will derive the corresponding

adjoint equations, state the necessary conditions for existence and uniqueness of the stochas-

tic optimal solution and prove the necessary conditions for optimality.

4.2.1.1 The optimal control problem using stochastic least squares minimization

For κ ∈ Aad given data, we consider the following optimal control problem associated with

a stochastic elliptic boundary value problem:

(P.1)



Minimize the cost functional

J1(u, p, f) = E
[
1

2
∥u(ω, ·)− u(ω, ·)∥2(L2(D))d +

1

2
∥p(ω, ·)− p(ω, ·)∥2L2(D)

]
+E

[
α
2
∥f(ω, ·)∥2L2(D)

]
,

on all (u, p, f) ∈ Bad subject to the stochastic mixed state equations (4.1.1).

(4.2.5)

Using standard techniques (see e.g. [66, 67, 48, 51, 68, 61, 60, 56]) one can prove that the

problem (4.2.5)-(4.1.1) has a unique optimal solution that is characterized by a maximum

principle type result.

We introduce the co-state elliptic equations, written in weak mixed form:

 E [(κ−1q, v)− (z,∇ · v)] = −E [(u− u, v)] , ∀v ∈ H(div,D),

E [(∇ · q, w)] = E [(p− p, w)] , ∀w ∈ L2(D).
(4.2.6)

We now state the necessary conditions for optimality in problem (P.1).
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Proposition 1. (û, p̂, f̂) is the unique optimal solution in problem (4.2.5)-(4.1.3) if and only

if there exists a co-state (q, z) ∈ L2
P (Ω;H(div,D)) × L2

P (Ω;L
2(D)) such that (û, p̂, f̂ , q, z)

satisfies the following optimality conditions:

E [(κ−1û, v)− (p̂,∇ · v)] = 0, ∀v ∈ H(div,D)

E [(∇ · û, w)] = E
[
(f̂ , w)

]
, ∀w ∈ L2(D)

E [(κ−1q, v)− (z,∇ · v)] = −E [(û− u, v)] , ∀v ∈ H(div,D),

E [(∇ · q, w)] = E [(p̂− p, w)] , ∀w ∈ L2(D)

E
[
(z + αf̂ , fs − f̂)

]
≥ 0, ∀(û, p̂, fs) ∈ Bad.

(4.2.7)

The proof of this result follows in similar manner with the next result, Theorem 1. We

note that it is possible to solve the coupled optimality system in one-shot, see e.g. [66].

4.2.1.2 The optimal control problem utilizing statistical tracking objectives

Now we aim at matching expected values, i.e., we consider the following problem:

(P.2)



Minimize the cost functional

J2(u, p, f) =
1

2
∥Eu(·, x)− Eu(·, x)∥2(L2(D))d +

1

2
∥Ep(·, x)− Ep(·, x)∥2L2(D)

+α
2

∫
D
Ef 2(·, x)dx,

on all (u, p, f) ∈ Bad subject to the stochastic mixed state equations (4.1.1).

(4.2.8)

Remark 1. Note that we have

∫
D

[
Eu(·, x)− Eu(·, x)

]2
dx ≤ E

(
∥u− u∥2L2(D)

)
,∫

D

[
Ep(·, x)− Ep(·, x)

]2
dx ≤ E

(
∥p− p∥2L2(D)

)
,

which justifies the functional (4.2.8).
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Theorem 1. The 3-tuple (ũ, p̃, f̃) is the unique optimal solution in problem (4.2.8)-(4.1.3)

if and only if there exists a co-state (q, z) ∈ L2
P (Ω;H(div,D)) × L2

P (Ω;L
2(D)) such that

(ũ, p̃, f̃ , q, z) satisfies the following optimality conditions:

E [(κ−1ũ, v)− (p̃,∇ · v)] = 0, ∀v ∈ H(div,D)

E [(∇ · ũ, w)] = E
[
(f̃ , w)

]
, ∀w ∈ L2(D)

E [(κ−1q, v)− (z,∇ · v)] = −E [(Eũ− Eu, v)] , ∀v ∈ H(div,D),

E [(∇ · q, w)] = E [(Ep̃− Ep, w)] , ∀w ∈ L2(D)

E
[
(z + αf̃ , fs − f̃)

]
≥ 0, ∀(ũ, p̃, fs) ∈ Bad.

(4.2.9)

Proof. The sensitivity equations corresponding to the state equations (4.2.6) are E [(κ−1us, v)− (ps,∇ · v)] = 0, ∀v ∈ H(div,D)

E [(∇ · us, w)] = E [(fs, w)] , ∀w ∈ L2(D),
(4.2.10)

where fs ∈ L2
P (Ω, L

2(D)), ps ∈ L2
P (Ω, L

2(D)) and us ∈ L2
P (Ω, H(div,D)). Then the opti-

mality condition for problem (4.2.8) writes

0 ≤
dJ2(u|f̃ , p|f̃ , f̃)

df
fs ≡

dJ2(ũ, p̃, f̃)

d(u, p, f)
(us, ps, fs) (4.2.11)

=

∫
D

E[us(·, x)]E[ũ(·, x)− u(·, x)]dx+

∫
D

E[ps(·, x)]E[p̃(·, x)− p(·, x)]dx+ α

∫
D

E[f̃fs]dx

=

∫
D

E
[
us(·, x)E[ũ(·, x)− u(·, x)]

]
dx+

∫
D

E
[
ps(·, x)E[p̃(·, x)− p(·, x)]

]
dx+ α

∫
D

E
[
f̃fs

]
dx

(since E[ũ(·, x)− u(·, x)] is deterministic)

=

∫
D

E
[
− us(·, x)κ−1q + z∇ · us

]
dx+

∫
D

E
[
ps(·, x)∇ · q

]
dx+ α

∫
D

E
[
f̃fs

]
dx

(by (4.2.9) with v = us)

= E
[ ∫

D

−us(·, x)κ−1q + z∇ · usdx

]
+ E

[ ∫
D

ps(·, x)∇ · qdx
]
+ αE

[ ∫
D

f̃fsdx

]
(by Fubini’s theorem)

= E
[ ∫

D

−us(·, x)κ−1qdx+

∫
D

∇ · uszdx

]
+ E

[ ∫
D

κ−1us(·, x)qdx
]
+ E

[ ∫
D

αf̃fsdx

]
(by (4.2.10) )
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= E
[ ∫

D

fszdx

]
+ E

[ ∫
D

αf̃fsdx

]
(by (4.2.10))

= E
[ ∫

D

(
z + αf̃

)
fsdx

]
= E

[(
z + αf̃ , fs

)]
, ∀(us, ps, fs) ∈ TanBad

(
ũ, p̃, f̃

)
, z + αf̃ ∈ NBad

,

where we have used the fact that E [ũ(·, x)− u(·, x)] is a deterministic quantity, the adjoint

equations (4.2.9), Fubini’s theorem, the sensitivity equation (4.2.10) and the definition of

normal cone. Here TanBad denotes the tangent cone, while NBad
is the normal cone (see

[36]).

The necessary and sufficient conditions (4.2.9) resemble the optimality system (4.2.7),

the difference is only in the adjoint equations which have a deterministic right-hand side.

Nevertheless, the adjoint variables (q, z) are still stochastic quantities.

4.2.2 Stochastic parameter identification problems

We also study the identification of the coefficient κ in the stochastic boundary value problem

(4.1.1). In the deterministic case, for the direct problem, where κ is given, the existence and

uniqueness results are well known, see e.g. [64]. The linear deterministic inverse problem

related to (4.1.1) has been studied in e.g. [48, 68], for the nonlinear deterministic see e.g.

[52].

For the identification problem, we are given possible perturbed observations u, p corre-

sponding to the state variables u, respectively p, and we must determine κ in (4.1.1) such

that u(κ) = u and p(κ) = p in Ω×D. Of course, such a κ may not exist.
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4.2.2.1 Parameter identification using stochastic least squares minimization

The least squares approach leads us to the minimization problem:

(P.3)



Minimize the cost functional

J3(u, p, κ) = E
[
1

2
∥u(ω, ·)− u(ω, ·)∥2(L2(D))d +

1

2
∥p(ω, ·)− p(ω, ·)∥2L2(D)

]
+E

[
β
2
∥κ(ω, ·)∥2L2(D)

]
,

on all (u, p, κ) ∈ Cad subject to the stochastic mixed state equations (4.1.1).

(4.2.12)

We introduce the co-state elliptic equations for this problem (P.3):


E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= E

[
− (u∗ − u, v)

]
, ∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[
(p∗ − p, w)

]
, ∀w ∈ L2(D).

(4.2.13)

Theorem 2. Let (u∗, p∗, κ∗) be an optimal solution in problem (4.2.12)-(4.1.3). Then there

exists a co-state (q, η) ∈ L2
P (Ω;H(div,D))×L2

P (Ω;L
2(D)) such that (u∗, p∗, κ∗, q, η) satisfies

the following optimality conditions:



E
[
((κ∗)−1u∗, v)− (p∗,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · u∗, w)

]
= E

[
(f, w)

]
, ∀w ∈ L2(D)

E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= E

[
− (u∗ − u, v)

]
, ∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[
(p∗ − p, w)

]
, ∀w ∈ L2(D)

κ∗(ω, x) = max{κmin,min{ 1
β
(κ∗)−2u∗(ω, x)q(ω, x), κmax}},

a.e. in Ω×D.

(4.2.14)
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Proof. The sensitivity equations are
E
[(

(κ∗)−1us − (κ∗)−2κsu
∗, v
)
− (ps,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · us, w)

]
= 0, ∀w ∈ L2(D),

(4.2.15)

where (us, ps, κs) ∈ Tan Cad
(
u∗, p∗, κ∗) .

Let Sad = {(u, p, κ) ∈ Cad : (u, p, κ) satisfy the state equations (4.1.1)} be set of admis-

sible states and parameters to problem (4.2.12). We introduce the tangential cone to the set

Sad at (u, p, κ) ∈ Sad

TanSad(u, p, κ) = {(us, ps, κs) which satisfy the sensitivity equations (4.2.15),

us ∈ L2
P (Ω;H(div,D)), ps ∈ L2

P (Ω;L
2(D)), κs ∈ TanAad}.

(4.2.16)

Recall that if

J(u∗, p∗, κ∗) = inf
(u,p,κ)∈Sad

J(u, p, κ)

and the functional J(u, p, κ) is Gâteaux differentiable, then necessarily

dJ(u∗, p∗, κ∗)

d(u, p, κ)
(us, ps, κs) ≥ 0 for all (us, ps, κs) ∈ TanSad(u∗, p∗, κ∗), (4.2.17)

where dJ(u∗,p∗,κ∗)
d(u,p,κ)

≡ dJ(u(κ∗),p(κ∗),κ∗)
dκ

stands for the Gâteaux derivative of J at (u∗, p∗, κ∗) ∈ Sad,

and (u∗, p∗, κ∗) ≡ (u(κ∗), p(κ∗), κ∗). Applying the optimum principle given by (4.2.17) it

follows that the optimality condition for problem (4.2.12) writes

0 ≤ dJ3(u(κ
∗), p(κ∗), κ∗)

dκ
κs ≡

dJ3(u
∗, p∗, κ∗)

d(u, p, κ)
(us, ps, κs)

= E
[ ∫

D

us(·, x)
(
u∗(·, x)− u(·, x)

)
dx

]
+ E

[ ∫
D

ps(·, x)
(
p∗(·, x)− p(·, x)

)
dx

]
+ E

[
β

∫
D

κ∗(·, x)κs(·, x)dx
]

= E
[
−
∫
D

us(·, x)(κ∗)−1(·, x)q(·, x) + η(·, x)∇ · us(·, x)dx
]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx
]

+ βE
[ ∫

D

κ∗(·, x)κs(·, x)dx
]

(by (4.2.13) with v = us and w = ps)
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= E
[
−
∫
D

us(·, x)(κ∗)−1(·, x)q(·, x)dx
]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx
]

+ βE
[ ∫

D

κ∗(·, x)κs(·, x)dx
]

(by (4.2.15) with w = η)

= E
[
−
∫
D

(κ∗)−2(·, x)κs(·, x)u∗(·, x)q(·, x)dx−
∫
D

ps(·, x)∇ · q(·, x)dx
]

+ E
[ ∫

D

ps(·, x)∇ · q(·, x)dx
]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx
]

(by (4.2.15) with v = q)

= E
[ ∫

D

(
− (κ∗)−2(·, x)u∗(·, x)q(·, x) + βκ∗(·, x)

)
κs(·, x)

]
, ∀(us, ps, κs) ∈ TanBad

(
u∗, p∗, κ∗)

where we have used the adjoint equations (4.2.13), the sensitivity equations (4.2.15).

4.2.2.2 Parameter identification utilizing statistical tracking objectives For the

identification problem matching expected values, given a possible perturbed observation (u, p)

corresponding to the state variables u, p, we seek κ in (4.1.1) such that Eu(κ) = Eu and

Ep(κ) = Ep in D. Therefore we consider the problem:

(P.4)



Minimize the cost functional

J4(u, p, κ) =
1

2

∫
D

[
Eu(·, x)− Eu(·, x)

]2
dx+

1

2

∫
D

[
Ep(·, x)− Ep(·, x)

]2
dx

+β
2

∫
D
Eκ2(·, x)dx,

on all (u, p, κ) ∈ Cad subject to the stochastic state equations (4.1.1).

(4.2.18)

Theorem 3. Let (̊u, p̊, κ̊) be an optimal solution in problem (4.1.1) and (4.2.18). Then there

exists a co-state (q, η) ∈ L2
P (Ω;H(div,D)) × L2

P (Ω;L
2(D)) such that (̊u, p̊, κ̊, q, η) satisfies
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the following optimality conditions:



E
[
(̊κ−1ů, v)− (p̊,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · ů, w)

]
= E

[
(f, w)

]
, ∀w ∈ L2(D)

E
[
(̊κ−1q, v)− (η,∇ · v)

]
= E

[
− (Eů− Eu, v)

]
, ∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[
(Ep̊− Ep, w)

]
, ∀w ∈ L2(D)

κ̊(ω, x) = max{κmin,min{ 1
β
(̊κ)−2ů(ω, x)q(ω, x), κmax}}, a.e. in Ω×D.

(4.2.19)

Proof. See the proof of Theorem 4.

For the problem of matching covariance, and/or higher order moments, the cost func-

tional used in problem (4.2.18) can be generalized as follows. Assume we are interested in

L-order moments, and f ∈ LL
P (Ω;L

2L−2(D)), then

(P.5)



Minimize the cost functional

J5(u, p, κ) =
L∑

ℓ=1

αu,ℓ

2ℓ

∫
D

[
Euℓ(·, x)− Euℓ(·, x)

]2
dx+

β

2

∫
D

Eκ2(·, x)dx+

+
∑L

ℓ=1
αp,ℓ

2ℓ

∫
D

[
Epℓ(·, x)− Epℓ(·, x)

]2
dx

on all (u, p, κ) ∈ Cad subject to the stochastic state equations (4.1.1).

(4.2.20)

We introduce the co-state elliptic equations for this problem (P.5):


E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= −E

[∑L
ℓ=1 αu,ℓ(u

∗)ℓ−1(E(u∗)ℓ − Euℓ, v)

]
, ∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[∑L
ℓ=1 αp,ℓ(p

∗)ℓ−1(E(p∗)ℓ − Epℓ, w)
]
, ∀w ∈ L2(D).

(4.2.21)
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Theorem 4. Let (u∗, p∗, κ∗) be an optimal solution in problem (4.2.20)-(4.1.3). Then there

exists a co-state (q, η) ∈ L2
P (Ω;H(div,D))×L2

P (Ω;L
2(D)) such that (u∗, p∗, κ∗, q, η) satisfies

the following optimality conditions:

E
[
((κ∗)−1u∗, v)− (p∗,∇ · v)

]
= 0,∀v ∈ H(div,D)

E
[
(∇ · u∗, w)

]
= E

[
(f, w)

]
,∀w ∈ L2(D)

E
[
((κ∗)−1q, v)− (η,∇ · v)

]
= −E

[∑L
ℓ=1 αu,ℓ(u

∗)ℓ−1(E(u∗)ℓ − Euℓ, v)

]
,∀v ∈ H(div,D)

E
[(
∇ · q, w

)]
= E

[∑L
ℓ=1 αp,ℓ(p

∗)ℓ−1(E(p∗)ℓ − Epℓ, w)
]
,∀w ∈ L2(D)

κ∗(ω, x) = max{κmin,min{ 1
β
(κ∗)−2u∗(ω, x)q(ω, x), κmax}},

a.e. in Ω×D.

(4.2.22)

Proof. The sensitivity equations are
E
[(

(κ∗)−1us − (κ∗)−2κsu
∗, v
)
− (ps,∇ · v)

]
= 0, ∀v ∈ H(div,D)

E
[
(∇ · us, w)

]
= 0, ∀w ∈ L2(D),

(4.2.23)

where (us, ps, κs) ∈ Tan Cad
(
u∗, p∗, κ∗) . Applying the optimum principle given by (4.2.17)

it follows that the optimality condition for problem (4.2.20) writes

0 ≤ dJ5(u(κ
∗), p(κ∗), κ∗)

dκ
κs ≡

dJ5(u
∗, p∗, κ∗)

d(u, p, κ)
(us, ps, κs)

=
L∑

ℓ=1

∫
D

αu,ℓE
[
us(·, x)(u∗)ℓ−1(·, x)

]
E
[
(u∗)ℓ(·, x)− uℓ(·, x)

]
dx

+
L∑

ℓ=1

∫
D

αp,ℓE
[
ps(·, x)(p∗)ℓ−1(·, x)

]
E
[
(p∗)ℓ(·, x)− pℓ(·, x)

]
dx+ β

∫
D

E
[
κ∗(·, x)κs(·, x)

]
dx

=
L∑

ℓ=1

∫
D

αu,ℓE
[
us(·, x)(u∗)ℓ−1(·, x)E

(
(u∗)ℓ(·, x)− uℓ(·, x)

)]
dx

+
L∑

ℓ=1

∫
D

αp,ℓE
[
ps(·, x)(p∗)ℓ−1(·, x)E

(
(p∗)ℓ(·, x)− pℓ(·, x)

)]
dx+ β

∫
D

E
[
κ∗(·, x)κs(·, x)

]
dx

=

∫
D

E
[
− us(·, x)(κ∗)−1(·, x)q(·, x) + η(·, x)∇ · us(·, x)

]
dx+

∫
D

E
[
ps(·, x)∇ · q(·, x)

]
dx
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+ β

∫
D

E
[
κ∗(·, x)κs(·, x)

]
dx (by (4.2.21) with v = us and w = ps)

= E
[ ∫

D

−us(·, x)(κ∗)−1(·, x)q(·, x) + η(·, x)∇ · us(·, x)dx
]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx
]

+ βE
[ ∫

D

κ∗(·, x)κs(·, x)dx
]

= E
[
−
∫
D

us(·, x)(κ∗)−1(·, x)q(·, x)dx
]
+ E

[ ∫
D

ps(·, x)∇ · q(·, x)dx
]

+ βE
[ ∫

D

κ∗(·, x)κs(·, x)dx
]

(by (4.2.23) with w = η)

= E
[
−
∫
D

(κ∗)−2(·, x)κs(·, x)u∗(·, x)q(·, x)dx−
∫
D

ps(·, x)∇ · q(·, x)dx
]

+ E
[ ∫

D

ps(·, x)∇ · q(·, x)dx
]
+ βE

[ ∫
D

κ∗(·, x)κs(·, x)dx
]

(by (4.2.23) with v = q)

= E
[ ∫

D

(
− (κ∗)−2(·, x)u∗(·, x)q(·, x) + βκ∗(·, x)

)
κs(·, x)

]
, ∀(us, ps, κs) ∈ TanBad

(
u∗, p∗, κ∗)

where we have used the adjoint equations (4.2.21), the sensitivity equations (4.2.23).

4.3 NUMERICAL EXPERIMENTS

Now I briefly present the algorithm used, together with the derivation of the gradient algo-

rithms.

4.3.1 Sensitivity Analysis for the Parameter Estimation in the Elliptic Case

Consider the state equations: 
u = −κ∇p in Ω×D,

∇ · u = f in Ω×D,

p = 0 on Ω× ∂D.

(4.3.1)

We introduce the adjoint equations:
∇ · q = p− p in Ω×D,

κ−1q +∇η = −(u− u) in Ω×D,

η = 0 on Ω× ∂D.

(4.3.2)
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Define the cost functional:

J3(Yi) =
1

2
E
[
∥u(Yi, ·)− u(Yi, ·)∥2L2(D)

]
+
1

2
E
[
∥p(Yi, ·)− p(Yi, ·)∥2L2(D)

]
+
β

2
E
[
∥κ(Yi, ·)∥2L2(D)

]
,

∀i = 1 . . . N .

We assume that the map κ → u is differentiable. Then, the sensitivity equations are the

following: 
u+ ϵus = − ((κ+ ϵκs)∇(p+ ϵps)) in Ω×D,

∇ · (u+ ϵus) = f in Ω×D,

ps = 0 on Ω× ∂D.

(4.3.3)

Multiplying out and using the state equations (4.3.1), we get:
κ−1us − κ−2κsu = −∇ps in Ω×D,

∇ · us = 0 in Ω×D,

ps = 0 on Ω× ∂D.

(4.3.4)

Next, we multiply by the adjoint variables q, η and integrate over D:

∫
D
κ−1usq −

∫
D
κ−2κsuq = −

∫
D
∇psq in Ω×D,∫

D
∇ · usη = 0 in Ω×D,

ps = 0 on Ω× ∂D.

(4.3.5)

Integrate by parts:

∫
D
κ−1usq −

∫
D
κ−2κsuq =

∫
D
ps∇ · q in Ω×D,∫

D
us∇η = 0 in Ω×D,

ps = 0 on Ω× ∂D.

(4.3.6)

There are no boundary terms since η = 0 and ps = 0 on Ω× ∂D.

Take expectation and add the first two identities of (4.3.6):

E
[∫

D

us

(
κ−1q +∇η

)]
− E

[∫
D

κ−2κsuq

]
= E

[∫
D

ps∇ · q
]
.
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Using the adjoint equations (4.3.2), the previous identity becomes:

−E
[∫

D

us(u− u)

]
− E

[∫
D

κ−2κsuq

]
= E

[∫
D

ps(p− p)

]
.

We give below the pseudocode for the Adjoint variable-based Algorithm, as in [75]:

INITIALIZATION: i ← 1, RelError ← 1000, Choose initial conditions for Y, ϵ = 1,

ϵ← 2ϵ/3

while RelError > tol do

ϵ← 3ϵ/2, i← i+ 1

Solve Adjoint Equations (for the adjoint variables)

Solve Standard Gradient Update, i.e. Yi+1 = Yi − ϵ dJ
dYi

Solve State Equations

Evaluate Jn(i)

while J
(i)
n > J

(i−1)
n do

ϵ← ϵ/10

Solve Standard Gradient Update

Solve State Equations

Evaluate Jn(i)

end while

RelError ←
∣∣∣J (i)

n − J
(i−1)
n

∣∣∣ / ∣∣∣J (i)
n

∣∣∣
end while

The numerical experiments were performed using MATLAB R2012a and were solved on

a square domain [0, 1] × [0, 1]. The convergence is computed on a 40 × 40 spatial mesh,

with Dirichlet boundary conditions. For solving the equation (4.3.1) numerically, an upwind

scheme is used to find the effective diffusion coefficient and central difference for finding the

hydraulic gradient. We assume the true random diffusion coefficient κ and the exact solution

p to be given by:

κ(ω, x) = (1 + x2 + y2) +
1

N
∗

N∑
n=1

cos (nπx) · cos (nπy)Yn(ω)
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p(ω, x) =
N∑

n=1

sin (nπx) · sin (nπy)Yn(ω)

and then we calculate the source f(ω, x).

To understand the dynamics that the computational model produces, we first present some

sample simulations. The tolerance was taken 10−4, the step size for the adjoint algorithm is

ϵ = 1 and the coefficient β = 10−6 in the cost functional formula.

4.3.2 Numerical Experiments for the Deterministic Elliptic Case

The exact values used for producing simulated measurements were 0.5 for the Yi, i = 1, . . . , N

in the formula for the diffusion coefficient k. Figures 4.1(a) and 4.1(b) show the plot for the

cost functional J and the logarithm of J to base 10. The trajectories of the N = 5 Ys, the

crossection of target solution versus estimated solution, the crossection of target diffusion

versus estimated diffusion are presented in figures 4.1(c), (d) and (e) respectively.

4.3.3 Numerical Experiments for the Stochastic Elliptic Case

The exact values used for producing simulated measurements were considered uniformly

distributed random numbers for the Yi, i = 1, . . . , n. To understand the dynamics that the

computational model produces, we present sample simulations on a 40x40 spatial mesh,

where we first considered 10 realizations (see Figures 4.2 and 4.3) and then 50 realizations

(see Figures 4.4 and 4.5) for our stochastic model.

In the first simulation where only 10 realizations were considered, we observed that

for achieving the same tolerance of 10−4 for the relative error, the cost functional J3 only

needs to do 27 iterations, whereas J4 and J5 require 76 and 61 iterations respectively. By

plotting crossections, we observed that our estimated solutions corresponding to either J3, J4

or J5 approximate very well the mean of the target solution, while the variance of the target

solution is better approximated when using the solution corresponding to J3 cost functional.

When considering the crossections for the diffusion coefficient, the mean and variance of our

estimated diffusion were not doing so well in approximating the mean and variance of the

target diffusion coefficient. One explanation would be the fact that our cost functionals try to
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minimize the difference between the estimated and target solutions, whereas the difference

between the estimated and target diffusion coefficient is never taken into account in the

formulas of the cost functionals.

In the second simulation with 50 realizations being considered, the cost functional J3

only needs 22 iterations, whereas J4 and J5 require 47 and 95 iterations respectively. By

plotting crossections, again it was observed that our estimated solutions corresponding to

either J3, J4 or J5 approximate really well the mean of the target solution, whereas for the

variance, it seems the solution corresponding to J5 is closer to the variance of the target

solution. By looking at the crossections for the diffusion coefficient, we can see the mean

and variance of our estimated diffusion are not doing so great in approximating the mean

and variance of the target diffusion coefficient.
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Figure 4.1: Deterministic Case: (a)Cost functional J, (b)Log10(J), (c)N=5 trajectories of Y’s,
(d)Crossection of target solution versus estimated solution, (e)Crossections of target diffusion versus es-
timated diffusion for a 40x40 grid; tol=10−4, ϵ = 1, β = 10−6. The exact values of Ys are 0.5.
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Figure 4.2: (a)J , (b)Log10(J) and crossections for: (c)target solution, (d)target diffusion, (e)mean of target
diffusion vs. mean of estimated diffusion, (f)variance of target diffusion vs. variance of estimated diffusion.
Grid considered is 40x40, tol=10−4, ϵ = 1, β = 10−6, runs=10. The target values of N=5 Ys are random.
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Figure 4.3: Crossections for: (a)mean of target solution vs. mean of estimated solution, (b)variance of
target solution vs. variance of estimated solution, (c)forcing function f, (d)mean convergence in L2 norm of
estimated solution. Grid considered is 40x40, tol=10−4, ϵ = 1, β = 10−6, runs=10. The target values of N=5
Ys are random.
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Figure 4.4: (a)J , (b)Log10(J) and crossections for:(c)target solution, (d)target diffusion, (e)mean of target
diffusion vs. mean of estimated diffusion, (f)variance of target diffusion vs. variance of estimated diffusion.
Grid considered is 40x40, tol=10−4, ϵ = 1, β = 10−6, runs=50. The target values of N=5 Ys are random.
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5.0 ESTIMATING A SPATIALLY VARYING PERMEABILITY FOR THE

PARABOLIC DIFFUSION EQUATION USING KALMAN FILTER, MCMC

AND ADJOINT VARIABLE-BASED ALGORITHMS

Diffusion is a spontaneous movement of particles from an area of high concentration to

an area of low concentration. A typical example of inverse problem is the identification

of permeability of the aquifer from flow data. The permeability function for a soil may

change spatially due to uncertainties in soil fabric, thus a Bayesian computational approach is

developed for the estimation of permeability in flows through porous media. For complicated

physical phenomena, the measurements error and model error can impact the accuracy of

the estimates ([23]).

5.1 MODEL

We consider the nonlinear inverse problem of estimating the permeability in porous media

flow. 
∂p
∂t
(x, t)−∇ · (κ(x)∇p(x, t)) = f(x) in D × Time,

p = 0 on ∂D × Time

p(x, 0) = 1Disk(0,0.01) on D

(5.1.1)

We assume the source f(x) = 0 and the true diffusion coefficient κ to be given by:

κ(x) = (1 + x2 + y2) +
1

1000

N∑
n=1

cos

(
nπx

Lx

)
· cos

(
nπy

Ly

)
Yn
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The exact values used for producing simulated measurements were 0.5 for the Yi, i = 1, . . . , n

in the formula for the diffusion coefficient k. We observed that one KL version of Kalman

Filter, namely KLEnKF, gives the least dispersed results and can’t estimate the means

of Yis as well as the other Kalman Filters. Moreover, the Kalman Filter approach shows

significant improvement in efficiency(take less cpu time per modeling time step) and accuracy

(more quickly converge to the correct parameter estimate) over Parallel Tempering [11], a

computationally expensive MCMC method for which we considered 3 chains and 100,000

realizations.
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5.2 ESTIMATES USING KALMAN FILTER ALGORITHM

The equation (5.1.1) is discretized on a rectangular domain [−0.05, 0.05]× [−0.035, 0.035], on

a 10× 10 spatial mesh, using cell-centered finite differences in space, an upwind scheme for

the effective diffusion coeffcient, and Forward Euler for the time integration on the interval

(0, 0.2) with 25 time steps.

In all the types of Kalman Filter (which were presented in more detail in chapter 2 ), the

algorithm was started with an initial guess of 1 for all the parameters Ys involved, where

both model state noise and measurement noise is assumed to be 10−3.

Assuming the computational cost to be the size of the ensemble, for both EnKF and

SCKF the dimension of the stochastic space is m = n+5, where n is the number of grid cells.

Here n = 10×10 = 100 and m = 105. We choose for the size of the ensemble q = 1000, which

corresponds to 10 ensemble members per grid cell. For the SCKF, the size of the ensemble

is qSC = 2m+ 1 = 211. For the KL implementation,we choose nKL = 7× 7 = 49 KL terms,

using 7 eigenfunctions in each x and y directions. The dimension of the stochastic space is

mKL = nKL + 5 = 54 and the size of the SC ensemble is qKL = 2mKL + 1 = 109. Finally, in

the KLEnKF, the dimension of the stochastic space is as in the KLSCKF, mKL = 54, but the

size of the ensemble chosen is q = 10nKL = 10×49 = 490. These dimensions are summarized

in Table 5.2.1. We observe that the computational cost of EnKF is approximately twice the

cost of the KLEnKF, five times the cost of the SCKF, and ten times the cost of KLSCKF.

Table 5.2.1: Number of parameters, stochastic space dimension, and ensemble size for the KF methods.

Number of spatial Dimension of Ensemble

parameters stochastic space size

EnKF n = 10× 10 = 100 m = n+ 5 = 105 q = 10n = 1000

SCKF n = 10× 10 = 100 m = n+ 5 = 105 qSC = 2m+ 1 = 211

KLSCKF nKL = 7× 7 = 49 mKL = nKL + 5 = 54 qKL = 2mKL + 1 = 109

KLEnKF nKL = 7× 7 = 49 mKL = nKL + 5 = 54 q = 10nKL = 490
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Figure 5.1: Histogram of Yi, i = 1, . . . , 5 using EnKF
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Figure 5.2: Yi, i = 1, . . . , 5 estimates and relative errors using EnKF
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Figure 5.3: Histogram of Yi, i = 1, . . . , 5 using SCKF
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Figure 5.4: Yi, i = 1, . . . , 5 estimates and relative errors using SCKF
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Figure 5.5: Histogram of Yi, i = 1, . . . , 5 using KLEnKF
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Figure 5.6: Yi, i = 1, . . . , 5 estimates and relative errors using KLEnKF
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Figure 5.7: Histogram of Yi, i = 1, . . . , 5 using KLSCKF
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Figure 5.8: Yi, i = 1, . . . , 5 estimates and relative errors using KLSCKF
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5.3 ESTIMATES USING MCMC TECHNIQUE

The Bayesian estimation of the spatially varying permeability is performed using Markov

Chain Monte Carlo methods, which were presented in chapter 2.

Table 5.3.1: MCMC Rates

Parallel Tempering Chains

1st chain 2nd chain 3rd chain

acceptance rate 0.3377 0.3404 0.3378

swap rate 0.2598 0.2375

Table 5.3.2: Expected values of estimated Ys using KF and MCMC

E(Y1) E(Y2) E(Y3) E(Y4) E(Y5)

SCKF 0.5023 0.4975 0.5019 0.4986 0.5005

EnKF 0.5028 0.5022 0.4997 0.4985 0.4997

KLSCKF 0.5026 0.4974 0.5021 0.4985 0.5005

KLEnKF 0.5088 0.4991 0.5109 0.4924 0.5005

MCMC 0.4972 0.5057 0.4976 0.4984 0.5018
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Table 5.3.3: Standard deviations of estimated Ys using KF and MCMC

σ(Y1) σ(Y2) σ(Y3) σ(Y4) σ(Y5)

SCKF 0.0945 0.0966 0.0842 0.0790 0.0754

EnKF 0.1038 0.0982 0.1008 0.0885 0.0801

KLSCKF 0.0956 0.0970 0.0843 0.0792 0.0755

KLEnKF 0.0500 0.0500 0.0500 0.0500 0.0500

MCMC 0.0400 0.0954 0.0916 0.0505 0.0161
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Figure 5.9: Mean ∓ Std. Deviation for Y1 using KF and MCMC
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Figure 5.10: Mean ∓ Std. Deviation for Y2 using KF and MCMC
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Figure 5.11: Mean ∓ Std. Deviation for Y3 using KF and MCMC
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Figure 5.12: Mean ∓ Std. Deviation for Y4 using KF and MCMC
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Figure 5.13: Mean ∓ Std. Deviation for Y5 using KF and MCMC
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5.4 ESTIMATES USING ADJOINT VARIABLE-BASED ALGORITHM

For the parabolic state equations, in the optimization problems, the approach we take is

discretize-then-optimize [27]. We assume the existence of Lagrange multipliers [57, 59] and

we present the derivation of sensitivity and adjoint equations for the continuous state equa-

tions and semi-discrete in time approximation using Backward Euler methods for both the

sensitivity analysis and the Matlab implementation of algorithms. These semi-discrete op-

timality systems are used in the algorithms for producing the results presented in Tables

5.4.2, 5.4.3, 5.4.4, 5.4.5, 5.4.6, 5.4.7, 5.4.8, 5.4.9.

5.4.1 Sensitivity Analysis for Parabolic Case

5.4.1.1 State Equations, Adjoint Equations, Cost Functional Consider the state

equations: 
p∗n+1−p∗n

∆t
−∇ ·

(
κ∇p∗n+1

)
= fn+1 in Ω×D,

p∗0 = p0 on Ω× ∂D.
(5.4.1)

We introduce the adjoint equations:
ηm − ηm+1 −∆t∇ · (κ∇ηm) = ∆t (p∗m − pm) in Ω×D,m = 1, 2, . . . N − 1

ηN −∆t∇ · (κ∇ηN) = ∆t (p∗N − pN) in Ω×D,

η = 0 on Ω× ∂D.

(5.4.2)

Define the cost functional:

J3(Yi, i = 1 . . . N) =
1

2
∆tE

[
N∑

n=1

∥pn(Yi, ·)− pn(Yi, ·)∥2L2(D)

]
+

β

2
E
[
∥κ(Yi, ·)∥2L2(D)

]
Description of the adjoint equations We start with the sensitivity equations:
(p∗n+1+ϵps,n+1)−(p∗n+ϵps,n)

∆t
−∇ ·

(
(κ+ ϵκs)∇(p∗n+1 + ϵps,n+1)

)
= fn+1 in Ω×D

ps,0 = 0 on Ω× ∂D.
(5.4.3)

Multiplying out and using the state equations (5.4.1), we get:

ps,n+1 − ps,n
∆t

−∇ ·
(
κ∇ps,n+1 + κs∇p∗n+1

)
= 0.
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Next, we multiply by the adjoint variable ηn+1, integrate over D and then apply the sum-

mation operator ∆t ·
N−1∑
n=0

:

∆t

N−1∑
n=0

∫
D

ps,n+1 − ps,n
∆t

ηn+1︸ ︷︷ ︸
I

−∆t

N−1∑
n=0

∫
D

∇ ·
(
κ∇ps,n+1 + κs∇p∗n+1

)
ηn+1︸ ︷︷ ︸

II

= 0. (5.4.4)

Now, I can be rewritten as following:

I =

∫
D

(
N−1∑
n=0

ps,n+1ηn+1 −
N−1∑
n=0

ps,nηn+1

)
m=n+1
=

∫
D

(
N∑

m=1

ps,mηm −
N−1∑
n=0

ps,nηn+1

)

=

∫
D

N−1∑
m=1

ps,mηm + ps,NηN −
N−1∑
n=1

ps,nηn+1 − ps,0︸︷︷︸
=0

η0


=

∫
D

(
N−1∑
m=1

ps,m(ηm − ηm+1) + ps,NηN

)
.

Integration by parts on II yields:

II = ∆t
N−1∑
n=0

−
∫
∂D

κ∇ps,n+1 ηn+1︸︷︷︸
=0on∂D

n⃗+

∫
D

κ∇ps,n+1∇ηn+1 −
∫
∂D

κs∇p∗n+1 ηn+1︸︷︷︸
=0on∂D

n⃗+

+

∫
D

κs∇p∗n+1∇ηn+1

= ∆t

∫
∂D

N−1∑
n=0

ps,n+1κ∇ηn+1︸ ︷︷ ︸
=0on∂D

n⃗−∆t

∫
D

N−1∑
n=0

ps,n+1∇ · (κ∇ηn+1) + ∆t

∫
D

N−1∑
n=0

κs∇p∗n+1∇ηn+1

(by integration by parts again)

Thus (5.4.4) becomes:

0 = I + II

=
∫
D

N−1∑
m=1

ps,m(ηm−ηm+1)+
∫
D
ps,NηN−∆t

∫
D

N−1∑
n=0

ps,n+1∇·(κ∇ηn+1)+∆t
∫
D

N−1∑
n=0

κs∇p∗n+1∇ηn+1.
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Taking expection and using the substitution m = n+ 1, we obtain:

0 = E
∫
D

N−1∑
m=1

ps,m(ηm−ηm+1)+E
∫
D

ps,NηN−∆tE
∫
D

N∑
m=1

ps,m∇·(κ∇ηm)+∆tE
∫
D

N∑
m=1

κs∇p∗m∇ηm.

(5.4.5)

The Derivative of the Cost Functional:

dJ

dYi

Yi,s = lim
ϵ→0

J(Y1, . . . , Yi + ϵYi,s, . . .)− J(Y1, . . . , Yi, . . .)

ϵ

= ∆tE
∫
D

N∑
m=1

(p∗m − pm)ps,m + βE
∫
D

κ
dκ

dYi

Yi,s

(5.4.6)

By identifying the coefficients of ps,m from (5.4.5) and (5.4.6), where m = 1 . . . N , we infer

the already stated form of the adjoint equations (5.4.2):
ηm − ηm+1 −∆t∇ · (κ∇ηm) = ∆t (p∗m − pm) in Ω×D,m = 1, 2, . . . N − 1

ηN −∆t∇ · (κ∇ηN) = ∆t (p∗N − pN) in Ω×D,

η = 0 on Ω× ∂D.

Using the adjoint equations (5.4.2), the previous identity (5.4.5) becomes:

0 = ∆tE
∫
D

N∑
m=1

(p∗m − pm)ps,m +∆tE
∫
D

N∑
m=1

κs∇p∗m∇ηm. (5.4.7)

Therefore (5.4.6) has the following expression:

dJ

dYi

Yi,s = ∆tE
∫
D

N∑
m=1

(p∗m − pm)ps,m + βE
∫
D

κ
dκ

dYi

Yi,s

(by using (5.4.7))
= −∆tE

∫
D

N∑
m=1

κs∇p∗m∇ηm + βE
∫
D

κ
dκ

dYi

Yi,s.

(5.4.8)

In order to compare the Y’s estimates obtained by using adjoint variable-based technique

with the results provided by Kalman filter and MCMC, sample simulations were produced

on the same 10x10 spatial mesh, where we first considered 10 realizations and then 50

realizations for our stochastic model. Since Kalman filter and MCMC are stochastic methods
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by nature, in order to incorporate stochasticity in our adjoint code, the target Ys were

generated using a normal distribution with mean 0.5 and standard deviation denoted by the

variable noise. For our examples, a first case with noise = 10−1 was considered and then

a smaller noise of 10−3. To be more specific, we are taken into account 4 cases: the first 2

cases have 10 realizations with noises of 10−1 and 10−3 respectively, the last 2 cases have 50

realizations with noises of 10−1 and 10−3 respectively.

For all the four cases considered, by plotting crossections, we observed that both our

estimated solutions and estimated diffusion coefficients corresponding to eitherJ3, J4 or J5

approximate very well the mean of the target solution, respectively the mean of target

diffusion coefficient, while the variance of the target solution and target diffusion coefficient

is not too well approximated.

For the case where only 10 realizations were considered with a noise of 10−1, we observed

that for achieving the same tolerance of 10−7 for the relative error, the cost functional

J3 decreases 2 orders of magnitude, whereas the decrease for J4 and J5 was 4 orders of

magnitude. By plotting the histograms, we get roughly the same mean(see Table 5.4.2) and

the same standard deviation(given in Table 5.4.3) for the Ys estimates obtained when using

J4 and J5 cost functionals. When 10 realizations were considered with a noise of 10−3, the

cost functional J3 decreases 4 orders of magnitude, but 5 orders of magnitude for J4 and J5.

Since the noise is so small, the mean of all estimated Ys is the same, regardless of the cost

functional used(see Table 5.4.4), whereas the standard deviation(see Table 5.4.5) for the Y

estimates obtained by using J4 and J5 cost functionals apears to be the same as in the case

with 10 runs and a noise of 10−1.

For the cases with 50 realizations being considered, the results are comparable to the

ones obtained by having only 10 realizations.

Remark 5.4.1. The computational cost of the adjoint variable-based algorithms is estimated

as follows: the cost of one iteration of the gradient algorithm (one forward equation plus one

adjoint/backward equation), times the number of iterations, times the number of realizations.

From Remark 5.4.1 we see that the cost of the adjoint-based algorithm using noise of
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10−1 is 30 iterations × 2 equations × 10 realizations, so 600 equations solved. For the noise

of 10−3, the cost is roughly 32 iterations × 2 equations × 10 realizations, so 640 equations

solved. We recall the cost associated with using EnKF, SCKF, KLSCKF and KLEnKF

for parameter estimation from Table 5.2.1. Hence the adjoint-based method is roughly six

Table 5.4.1: Computational cost of KF, MCMC and Adj. method using J4 with 10 realizations, noise = 10−3

Method EnKF SCKF KLSCKF KLEnKF MCMC Adjoint

eq. solved 1000 211 109 490 100,000 640

times more expensive than KLSCKF. Moreover, from figures 5.17, 5.18, 5.19, 5.20, 5.21,

we observe that among all the methods considered, the adjoint-based algorithm is the most

accurate, as it recovers the means with the smallest standard deviation.

Table 5.4.2: Expected values of estimated Ys using Adj. algorithm with 10 realizations and noise = 10−1

E(Y1) E(Y2) E(Y3) E(Y4) E(Y5)

Adj J3 0.5097 0.5134 0.5105 0.5082 0.5087

Adj J4 0.5065 0.5102 0.5073 0.5050 0.5055

Adj J5 0.5066 0.5103 0.5073 0.5051 0.5056

Adj Ytarget 0.5195 0.4833 0.5226 0.5149 0.4761
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Table 5.4.3: Standard deviations of estimated Ys using Adj. algorithm with 10 realizations and noise = 10−1

σ(Y1) σ(Y2) σ(Y3) σ(Y4) σ(Y5)

Adj J3 0.0397 0.0423 0.0399 0.0422 0.0453

Adj J4 0.0088 0.0113 0.0076 0.0060 0.0084

Adj J5 0.0088 0.0113 0.0076 0.0060 0.0084

Adj Ytarget 0.0445 0.1169 0.1223 0.0968 0.0712

Table 5.4.4: Expected values of estimated Ys using Adj. algorithm with 10 realizations and noise = 10−3

E(Y1) E(Y2) E(Y3) E(Y4) E(Y5)

Adj J3 0.4989 0.5027 0.4997 0.4974 0.4980

Adj J4 0.4989 0.5027 0.4997 0.4974 0.4980

Adj J5 0.4989 0.5027 0.4997 0.4974 0.4980

Adj Ytarget 0.5002 0.4998 0.5002 0.5001 0.4998

Table 5.4.5: Standard deviations of estimated Ys using Adj. algorithm with 10 realizations and noise = 10−3

σ(Y1) σ(Y2) σ(Y3) σ(Y4) σ(Y5)

Adj J3 0.0043 0.0081 0.0080 0.0072 0.0100

Adj J4 0.0088 0.0113 0.0076 0.0060 0.0084

Adj J5 0.0088 0.0113 0.0076 0.0060 0.0084

Adj Ytarget 0.0004 0.0012 0.0012 0.0010 0.0007
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Table 5.4.6: Expected values of estimated Ys using Adj. algorithm with 50 realizations and noise = 10−1

E(Y1) E(Y2) E(Y3) E(Y4) E(Y5)

Adj J3 0.5016 0.5010 0.5020 0.5008 0.5037

Adj J4 0.4972 0.4966 0.4976 0.4964 0.4993

Adj J5 0.4971 0.4966 0.4976 0.4963 0.4992

Adj Ytarget 0.4902 0.5102 0.5073 0.4757 0.4980

Table 5.4.7: Standard deviations of estimated Ys using Adj. algorithm with 50 realizations and noise = 10−1

σ(Y1) σ(Y2) σ(Y3) σ(Y4) σ(Y5)

Adj J3 0.0534 0.0551 0.0560 0.0537 0.0550

Adj J4 0.0107 0.0117 0.0122 0.0112 0.0090

Adj J5 0.0107 0.0117 0.0122 0.0112 0.0090

Adj Ytarget 0.0815 0.0961 0.1028 0.0828 0.0904

Table 5.4.8: Expected values of estimated Ys using Adj. algorithm with 50 realizations and noise = 10−3

E(Y1) E(Y2) E(Y3) E(Y4) E(Y5)

Adj J3 0.5002 0.4997 0.5007 0.4994 0.5023

Adj J4 0.5002 0.4997 0.5007 0.4994 0.5023

Adj J5 0.5002 0.4997 0.5007 0.4994 0.5023

Adj Ytarget 0.4999 0.5001 0.5001 0.4998 0.5000
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Table 5.4.9: Standard deviations of estimated Ys using Adj. algorithm with 50 realizations and noise = 10−3

σ(Y1) σ(Y2) σ(Y3) σ(Y4) σ(Y5)

Adj J3 0.0053 0.0074 0.0097 0.0124 0.0117

Adj J4 0.0106 0.0116 0.0121 0.0111 0.0090

Adj J5 0.0107 0.0117 0.0121 0.0111 0.0090

Adj Ytarget 0.0008 0.0010 0.0010 0.0008 0.0009
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Figure 5.17: Mean ∓ Std. Deviation for Y1 using KF, MCMC and Adj. method using J4 with 10 realizations,
noise = 10−3
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Figure 5.18: Mean ∓ Std. Deviation for Y2 using KF, MCMC and Adj. method using J4 with 10 realizations,
noise = 10−3
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Figure 5.19: Mean ∓ Std. Deviation for Y3 using KF, MCMC and Adj. method using J4 with 10 realizations,
noise = 10−3
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Figure 5.20: Mean ∓ Std. Deviation for Y4 using KF, MCMC and Adj. method using J4 with 10 realizations,
noise = 10−3
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Figure 5.21: Mean ∓ Std. Deviation for Y5 using KF, MCMC and Adj. method using J4 with 10 realizations,
noise = 10−3
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Figure 5.22: (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
10x10, tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.23: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,
runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.24: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 10x10,
tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.25: (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
10x10, tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.26: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,
runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.27: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 10x10,
tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.28: (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
10x10, tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.29: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,
runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.30: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 10x10,
tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.31: (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
10x10, tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.32: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 10x10, tol=10−7, ϵ = 50000, β = 10−6,
runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.33: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 10x10,
tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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5.4.2 Estimates using Adjoint variable-based algorithm on a finer mesh

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 Crossections of Mean of target diffusion coeff versus Mean of estimated diffusion coeff

 

 
E(D

target
)

E(D
3
)

E(D
4
)

E(D
5
)

(a)

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

6

7
x 10

−8Crossections of Variance of target diffusion coeff versus Variance of estimated diffusion coeff

 

 
Var(D

target
)

Var(D
3
)

Var(D
4
)

Var(D
5
)

(b)

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Crossections of Mean of target solution versus Mean of estimated solution 

 

 
E(u

target
)

E(u
3
)

E(u
4
)

E(u
5
)

(c)

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4 Crossections of Variance of target solution versus Variance of estimated solution 

 

 
Var(u

target
)

Var(u
3
)

Var(u
4
)

Var(u
5
)

(d)

Figure 5.34: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,
runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.35: (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
20x20, tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.36: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 20x20,
tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.37: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,
runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.38: (a)Log10(Ji), i = 3, 4, 5, (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
20x20, tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.39: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 20x20,
tol=10−7, ϵ = 50000, β = 10−6, runs=10. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.40: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,
runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.41: (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
20x20, tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.42: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 20x20,
tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−1.
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Figure 5.43: (a)Mean of target diffusion vs. mean of estimated diffusion, (b)Variance of target diffusion vs.
variance of estimated diffusion, (c)Mean of target solution vs. mean of estimated solution, (d)Variance of
target solution vs. variance of estimated solution. Grid considered is 20x20, tol=10−7, ϵ = 50000, β = 10−6,
runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.44: (a)Log10(Ji), i = 3, 4, 5 (b)Ji, i = 3, 4, 5, (c)Mean convergence in L2 norm of estimated solution,
(d)Mean of target diff coeff. and crossections for: (e)target solution, (f)target diffusion. Grid considered is
20x20, tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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Figure 5.45: (a)mean of target solution and mean of estimated solution; histograms for: (b)target Y’s,
(c)estimated Y’s using J3, (d)estimated Y’s using J4, (e)estimated Y’s using J5. Grid considered is 20x20,
tol=10−7, ϵ = 50000, β = 10−6, runs=50. Ytarget = 0.5 + noise. ∗ randn(1, 5), where noise = 10−3.
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 THESIS SUMMARY

In chapter 3 we developed and analyzed four Kalman filter algorithms for data assimilation

and parameter estimation for time dependent nonlinear diffusion equations and compared

their performance for a model of epithelial cell migration. The methods are based on ei-

ther random Monte Carlo sampling (ensemble methods) or structured stochastic collocation

sampling. In addition, either uncorrelated random noise or correlated noise parametrized

by the Karhunen-Loève expansion is considered. This results in the methods EnKF, SCKF,

KLSCKF, and KLEnKF. We compared the performance of the four methods for two cases

of simulated measurements, with and without noise, as well as data from in vitro experiment

of epithelial cell migration. While it is observed that all algorithms perform reasonably well

in matching the target solution and estimating the diffusion coeffcient and the growth rate,

it is illustrated that the algorithms that employ SC and KL expansion are computationally

more effcient, as they require fewer ensemble members for comparable accuracy. The work

done for this chapter was accepted to Mathematical Biosciences [7].

In chapter 4 we formulated the stochastic optimal control theoretical results in mixed form

for an elliptic diffusion equation with random input data. We proposed an Adjoint variable-

based algorithm for stochastic parameter identification, that either minimize the expectation

of a tracking cost functional (J3) or minimize the difference of desired statistical quantities

in the appropriate Lp norm (J4, J5). Some work from this chapter was incorporated in

the ”Identification problems for random elliptic PDEs” poster at the workshop ”Computa-

tional methods for Control of Infinite-dimensional Systems”, Institute for Mathematics and

Applications, University of Minnesota, March 2016.
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In chapter 5 we modeled a porous media flow through a parabolic diffusion equation with

spatially varying permeability. We estimated the means and standard deviations of the

parameters involved by using the four types of Kalman Filters aforementioned, MCMC and

Adjoint variable-based algorithms.

6.2 FUTURE DIRECTIONS: PDE MODEL OF INFLAMMATION IN THE

LUNG

The developed algorithms give rise to many interesting, new research problems, which will

be studied as next steps of these works. We consider a PDE model of inflammation in the

lung and assume that we are keeping track of eight different variables. For the first three

variables, the lung is assumed to be composed of three components:

SA air saturation

ST tissue saturation

SBl blood saturation

In addition, five different players in the immune response are also considered:

B bacteria

M (activated) macrophages

N (activated) neutrophils

Cp pro-inflammatory cytokines

Ca anti-inflammatory cytokines

The main idea is to solve a set of reaction-diffusion equations describing the immune respone

in the lungs, use the values to determine an inflammatory variable z, which will then be

used to determine volumes of the alveolar air space, tissue and blood of the respective lung

compartments. We have a set of equations for the other parameters above from [3], governing

the immune response variables:

∂B

∂t
−∇ ·DB(z)∇B = kBgB(1−B/Bmax)− kBB/(1 +B/ϵ)

−R(Ca)(kMBMB + kNBNB) (6.2.1)

∂M

∂t
−∇ · (DM(z)∇M − γMCp(z)M∇Cp − γMB(z)M∇B)
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= −kMM +R(Ca)(kBMB + kCpMCp)Mrest (6.2.2)

∂Cp

∂t
−∇ ·DCp(z)∇Cp = −kCpCp + kMCpM + kNCpN−

R(ca)(kCpNCpNrest + kCpMCpMrest) (6.2.3)

∂Ca

∂t
−∇ ·DCa(z)∇Ca = −kCaCa + kcnn

Q

1 +Q
(6.2.4)

∂N

∂t
−∇ · (DN(z)∇N − γNCp(z)N∇Cp)

= −kNN +R(Ca)kCaNCaNrest (6.2.5)

Q =
kCaMM + kCaNN

1 + knc(Ca/C̄a)2
R(ca) =

1

1 + knc(Ca/C̄a)2
(6.2.6)

Diffusion and chemotaxis

To complete the equations, we have to define diffusion and advection coefficients that depend

on the air, blood, and tissue saturations. A simple definition would be:

D(z) = D(SA, SBl, ST ) = D0(DASA +DBlSBl +DTST ) (6.2.7)

γ(z) = γ(SA, SBl, ST ) = γ0(γASA + γBlSBl + γTST ) (6.2.8)

We have not yet defined any of the free parameters involved except D0. Some estimates for

D0 exist in Barber et al. [3]. These values should also appear where the coupling between

the lung components volumes and the reaction-diffusion equations occurs.

Model of inflammation on the lung compartments

We can use the equations from Reynolds et al. [4] to obtain an algebraic set of equations for

the saturations. It is true we plan to adjust these, but we use those equations for now:

SBl(z) =
SBlref

1 +mvtbz
(6.2.9)

SA(z) =
SAref

1 +mvtaz
(6.2.10)

ST (z) = STref
+ SBlref −

SBlref

1 +mvtbz
+ SAref

−
SAref

1 +mvtaz
(6.2.11)

The quantity z represents the amount of inflammation in a given area. It is given by the

relatively general expression:
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z =
N + kCpNCp

1 + kCaCa

(6.2.12)

Note two desired behaviors: first, when z = 0 (i.e. no swelling), we have ST = STref
,

SA = SAref
, and SB = SBref

. Second, when z =∞, ST = 1, SA = 0 and SB = 0.

For the initial model in this development, the following assumptions are made: first, the

total volume of the lung is conserved, and the total saturations of the spatial components

sum to 1, i.e ST + SA + SBl = 1.

A characteristic of inflammation is the swelling of tissue cells, which is caused by leakage of

fluids due to increased permeability of the capillaries [6, 4]. The second assumption is that

the volume of the tissue increases over time. The inflammation variable z drives the tissue

volume, and is expressed by:

z =
N + kCpNCp

1 + kCaCa

, (6.2.13)

where kCpN and kCa are constants that determine the amount the neutrophil and pro- and

anti-inflammatory components afect inflammation.

In Reynolds et al.[4], the assumption that the volumes are directly affected by the intensity

of the inflammation was also made. However, in that model, volume is lost from the blood

and alveolar air space as inflammation is increased, and the tissue volume is adjusted ac-

cordingly(equations (6.2.9),(6.2.10),(6.2.11)). Our lung model aims to model tissue swelling

as a result of the fluid leakage, and adjust the blood and air volumes accordingly.

Another factor we wish to take into account is compliance of media in the respiratory unit.

Since air is more compliant than blood, the swelling of the tissue should affect the volume

of the alveolar air with a greater impact than the volume of the blood. This is taken into

account by the requirement mA > mBl, where mA and mBl are constants that determine

ability of tissue swelling to increase the alveolar and blood volumes, respectively.

The inflammatory variable z, described by equation (6.2.13), drives the tissue volume, which

we express by:

ST = 1− 1− ST0

1 +mT z
,
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We note that when z = 0, i.e. no inflammation, the amount of tissue is at its initial

saturation(ST = ST0), and when z → ∞ , then ST = 1. In this case, the tissue swells to

dominate the entire respiratory unit, and both the blood and alveolar saturations tend to

zero. To express this into a set of linear equations, we need to have expressions for SA and

SBl that capture the above dynamics.

In order to satisfy these constraints, we first write

SA = SA0 −
SA0(ST − ST0)

1− ST0

,

and the expression for SBl follows from volume conservation (SBl+SA = 1−ST ). For things

to work out, the tissue swelling ability constant is ”forced” to be

mA =
SA0

1− ST0

,

which physically is the ratio of the initial alveolar air saturation to the initial alveolar air

and blood saturations. This gives the expressions

SA = SA0 −mA(1− ST0)

SBl = SBl0 − (1−mA)(1− ST0),

which forces the compliances to be fixed constants depending on initial saturations, which

are reported to be about SA0 = 0.9 and SBl0 = ST0 = 0.05, so the greater compliance of the

alveolar air region is reflected in these numbers, but it seems kind of restricted.
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