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ABSTRACT 

The adaptive seamless phase II/III design combines the conventional separate phases II and III 

trials into a single trial, and it allows for adaptations (e.g. sample size reassessment and early 

stopping for futility or success) after the interim analysis. In this study, we propose a simulation-

based method to determine the optimal sample size for the adaptive seamless phase II/III design. 

We assume that a power law relationship exists between the overall sample size and statistical 

power of the final test. The optimal sample size is defined as the minimum sample size that 

provides adequate power with overall type I error rate under control. To find the optimal size, we 

also take correlations between the early and the final outcomes into consideration. The 

methodology is applied to determining sample sizes in a study for a candidate treatment that can 

avoid renal damage during cardiac operations while the most effective dose of the treatment will 

be selected at the interim analysis. 

 

PUBLIC HEALTH SIGNIFICANCE 

Adaptive seamless phase II/III design eliminates the time between the traditional separate trials 

and better utilizes the data collected before the interim analysis, thus will result in faster clinical 

trials. Treatment effect can be confirmed at the final test if adequate power is achieved and the 

overall type I error rate is under control. Using these faster clinical trials, effective treatment can 
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be approved sooner to benefit more patients. In addition, in an adaptive seamless phase II/III 

design more patients will be allocated to the more effective treatment than they would in 

conventional clinical trials.  
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1.0  INTRODUCTION 

Traditional clinical trials are performed in several independent phases. Phase I is the first trial 

conducted among humans and the goal is to evaluate the safety of the treatment. In phase II 

usually less than 100 patients are involved and the goal is to select appropriate dose(s) of the 

study treatment and further assess the safety. In phase III, hundreds to thousands of patients can 

be included and the goal is to confirm the safety and effectiveness of the treatments. However, 

there are several issues violating statistical principles in conventional separated trials. Thall 

(2008) mentioned that in a conventional phase II trial, the comparison between the treatment and 

standard therapy was based on the observed data from a single-arm trial and a fixed estimator 

directly obtained from the historical data. The variance of the test statistics was underestimated 

since the variability of the estimator from historical data was ignored. He also pointed out that 

bias could be caused by patient heterogeneity, because patient covariates can make even larger 

combined effects than treatment in many clinical settings. In addition, phase II trial usually has 

small sample size with limited reliability and validity. 

To improve the scientific reliability and efficiency of conventional phase II and phase III 

trials, adaptive seamless phase II/III design (ASD) was proposed, and it has become popular in 

the pharmaceutical industry (Chow and Chang, 2008). An ASD combines the conventional 

separate phases II and III trials into a single trial, and allows adaptations (e.g. sample size 

reassessment, and early stopping for futility or success) after the interim analysis at midterm 
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(Figure 1). Ellenberg and Eisenberger (1985) presented a similar concept as the two-stage phase 

II/III design but restricted their method to binary outcome for a single treatment versus placebo. 

Thall et al. (1988a) gave a formal and complete presentation of an ASD, while they considered 

the same outcomes in both stages. In the setting of evaluating several experimental treatments 

versus control group, Thall et al. (1988b) proposed a modified two-stage phase II/III design with 

treatment selection in stage 1 and two-arm comparison in stage 2. When final outcome is not 

available for all patients, early outcome is used for treatment selection at the interim analysis. 

Stallard (2010) and Friede et al. (2011) take the correlation of early and late outcomes into 

consideration in the analysis of stage 2, the confirmatory stage. 

An ASD is more efficient since it eliminates the time between the trials conducted 

separately (“seamless”). Therefore, an ASD better utilizes the data before the interim analysis, 

and increases the total follow-up time for patients (Maca et al., 2006). The final analysis is 

conducted by using the data from patients enrolled before and after the midterm adaptation, so 

the total available sample sizes increases. Thus, it provides more reliable inferences than the 

traditional design. 

We need to consider whether an ASD is the proper design to the study, for efficiency and 

ethical issues. Firstly, a study with relatively shorter length of time for decision making than 

recruitment speed is desirable for an ASD. Otherwise, it losses efficiency since we have to pause 

the enrollment during the study. Secondly, pivotal studies are required to provide adequate 

information about the treatment. Separate phase II trial will be recommended if too many 

unknown information on the treatment. Moreover, the surrogate marker for treatment selection 

and study endpoints must be validated and accepted (Gaydos et al., 2009). 
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A number of authors proposed statistical approaches to an ASD, while controlling the 

overall type I error rate at a prespecified level. Group-sequential method, adaptive Dunnett 

method, and combination test method are the three main approaches (Stallard & Todd, 2011). 

The null hypothesis for these methods is that the effectiveness of the study treatments is the same 

as that of the placebo. Stallard and Todd (2003) proposed a group-sequential method based on a 

cumulative normally distributed test statistics. Under this method, only one treatment could be 

selected to continue into the subsequent stage (stage 2). Koenig et al. (2008) proposed an 

adaptive Dunnett test based on a conditional error function. Other adaptations could be made in 

the subsequent stage after an interim analysis. Bauer and Kieser (1999) proposed a combination 

test method, where the final decision for rejection was made by a combination of stage 1 and 

stage 2 P values. Comparing with the group-sequential method, both the adaptive Dunnett 

method and the combination test method allow the selection of more than one treatment at the 

interim and other adaptations. 

Based on the combination test method proposed by Bauer and Kieser, Posch et al. (2005) 

gave a general formulation of the adaptive testing procedure in the context of treatment selection. 

Friede et al. (2011) considered another setting when only information from stage 1 (early 

outcome) was available in the interim analysis for treatment selection, and confirmatory testing 

was exclusively based on the final outcomes. 

A few methods have been developed to estimate the optimal sample size for an ASD 

while controlling the prespecified overall type I error rate and achieving adequate power of the 

overall test. Bischoff and Miller (2009) suggested that sample size reassessment for the stage 2 

could be derived based on the estimated variance of outcome from the interim analysis. Fisher 

(1998) proposed a sample size estimation based on conditional power when no early stopping 
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was planned. On the other hand, Cui et al. (1999) gave an unconditional sample size calculation, 

and the new sample size was based on the assumed effect size and the estimated effect size from 

the observed data in the previous stage. However, this method might provide biased conditional 

power (Gao et al., 2008). 

A recent trial of oral propranolol treatments on complicated infantile hemangiomas was 

conducted using the ASD (Léauté-Labrèze et al., 2015). The interim analysis of the study was 

performed after the first 188 patients completed 24 weeks. The best propranolol regimen 

(3mg/kg/day for 6 months) was then selected based on the early outcome (Léauté-Labrèze et al., 

2015). In the final analysis, the effect of the selected treatment was confirmed using Posch’s 

method. In this proposal, our aim was to conduct a simulation study to examine the overall Type 

I error rate and power of the final test based on the information given in the protocol of this 

study. Our simulation was based on the work of Posch et al. (2005) and Friede et al. (2011). 

Details of the method will be described in Section 2. After proposal and before graduation, we 

plan to develop a simulation-based empirical method to estimate the optimal sample size of an 

ASD and apply it to estimate the sample size for the remote ischemic conditioning to avoid renal 

damage during cardiac operations (RICARDO) study led by Dr. John Kellum in the Department 

of Critical Care Medicine. The optimal sample size determinations for an ASD under various 

scenarios will be given in Section 3. In Section 4, we will present our simulation work for the 

study of oral propranolol treatments on complicated infantile hemangiomas (Léauté-Labrèze et 

al., 2015). In Section 5, we will describe the future work of sample size determination for the 

RICARDO study. A final concluding remark will be given in Section 6. 
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Figure 1. Comparison of traditional clinical trials and ASD. 

Adapted from “Adaptive design clinical trials: Methodology, challenges and prospect,” by R. Mahajan and K. 

Gupta, 2010, Indian journal of pharmacology, 42(4), 201. Copyright [2010] by Indian Journal of Pharmacology. 
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2.0  ADAPTIVE TREATMENT SELECTION BASED ON COMBINATION TESTS 

An ASD usually contains two stages of traditional clinical trials, a learning stage (phase IIb) and 

a confirmatory stage (phase III). In phase IIb researchers evaluate efficacy and safety among 

several candidate treatments. In an ASD, researchers will select one or two treatments based on 

the interim analysis at the end of learning stage, and then those patients in the selected treatment 

groups along with those in the control group will continue into the second stage to confirm the 

estimation of treatment effects in the first stage. 

To investigate the effectiveness of study treatment, we define the hypotheses for 

comparing the treatment success rate 𝜃𝜃𝑖𝑖, 𝑖𝑖 ∈ Ω1 = {1, … ,𝑘𝑘} to the placebo success rate 𝜃𝜃0be  

𝐻𝐻𝑖𝑖:𝜃𝜃𝑖𝑖 − 𝜃𝜃0 ≤ 0       against      𝐻𝐻𝑖𝑖′:𝜃𝜃𝑖𝑖 − 𝜃𝜃0 > 0, 𝑖𝑖 ∈ Ω1. 

To reject the elementary null hypothesis 𝐻𝐻𝑖𝑖, 𝑖𝑖 ∈  Ω1, at overall type I error rate 𝛼𝛼, for all 

subsets 𝒮𝒮 ⊆ Ω1 that contain 𝑖𝑖, the intersection hypotheses 𝐻𝐻𝒮𝒮  have to be rejected at level 𝛼𝛼, this 

is known as the closed testing principle (Marcus et al., 1976). For instance, there are three 

treatments A, B, and C, in order to reject the elementary null hypothesis 𝐻𝐻𝐴𝐴 for treatment A at 

level 𝛼𝛼, we need to reject all intersection hypotheses containing treatment A at level 𝛼𝛼, here the 

intersection hypotheses are 𝐻𝐻𝐴𝐴, 𝐻𝐻𝐴𝐴 ∩ 𝐻𝐻𝐵𝐵, 𝐻𝐻𝐴𝐴 ∩ 𝐻𝐻𝐶𝐶, and 𝐻𝐻𝐴𝐴 ∩ 𝐻𝐻𝐵𝐵 ∩ 𝐻𝐻𝐶𝐶. 

To demonstrate Posch’s method of adaptive treatment selection, we first assume the 

outcome is binary data (e.g. success and failure) sampled from Bernoulli (𝜃𝜃𝑖𝑖) for 𝑘𝑘 experimental 

treatments 𝑇𝑇1, … ,𝑇𝑇𝑘𝑘 as well as a control group 𝑇𝑇𝑜𝑜 at stage 1, each arm has 𝑛𝑛1 observations. At 
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stage 2, we also assume binary outcome for the selected treatment 𝑇𝑇𝑖𝑖, 𝑖𝑖 ∈ Ω1, and the control 

group 𝑇𝑇𝑜𝑜, with each arm including 𝑛𝑛2 observations. Assuming balanced sample size, the overall 

sample size for each group is 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2. 

We denote 𝑟𝑟𝑗𝑗,𝑖𝑖 the observed success rate of the 𝑖𝑖𝑡𝑡ℎ treatment at the 𝑗𝑗𝑡𝑡ℎ stage, 𝑟𝑟𝑗𝑗,0 the 

observed success rate for placebo. The standardized test statistic 𝑍𝑍𝑗𝑗,𝑖𝑖 under null for treatment 𝑖𝑖 ∈

Ω1, at stage 𝑗𝑗 = 1, 2 following normal distribution, and 𝑍𝑍𝑗𝑗,𝑖𝑖 is given by 

𝑍𝑍𝑗𝑗,𝑖𝑖 = �𝑛𝑛𝑗𝑗 �𝑟𝑟𝑗𝑗,𝑖𝑖 − 𝑟𝑟𝑗𝑗,0� 

�2𝑟𝑟�𝑗𝑗,𝑖𝑖 �1 − 𝑟𝑟�𝑗𝑗,𝑖𝑖� 
 ,   where �̅�𝑟𝑗𝑗,𝑖𝑖 = (𝑟𝑟𝑗𝑗,𝑖𝑖 + 𝑟𝑟𝑗𝑗,0)/2 . 

Let 𝑝𝑝𝑖𝑖 = 1 −Φ(𝑍𝑍1,𝑖𝑖) and 𝑞𝑞𝑖𝑖 = 1 −Φ�𝑍𝑍2,𝑖𝑖� as p value for stage 1 and stage 2 

respectively, where Φ(. ) is the CDF of standard normal distribution. Next, we use Simes’s 

method to get p values for intersection hypotheses 𝐻𝐻𝒮𝒮.  

𝑝𝑝𝒮𝒮 = min
𝑖𝑖∈𝒮𝒮

𝑠𝑠
𝑙𝑙
�⃗�𝑝𝑖𝑖 , 

where 𝑙𝑙 is the rank of 𝑝𝑝𝑖𝑖 in the vector �⃗�𝑝,  and �⃗�𝑝 includes the 𝑝𝑝 values of all 𝑠𝑠 elementary 

hypotheses 𝐻𝐻𝑖𝑖′s in the intersection hypothesis 𝐻𝐻𝒮𝒮, 𝑖𝑖 ∈ 𝒮𝒮.  

We denote 𝑝𝑝𝒮𝒮 as the stage 1 p value for intersection hypotheses 𝐻𝐻𝒮𝒮 and 𝑞𝑞𝒮𝒮 as the stage 2 

p value for intersection hypotheses 𝐻𝐻𝒮𝒮 obtained from the Simes test. For simplicity, we assume 

only one treatment is selected to continue into stage 2. We define 𝑞𝑞𝒮𝒮 = 𝑞𝑞𝒮𝒮∩Ω2 where Ω2 ⊆ Ω1 is 

the treatment selected for the second stage and 𝑞𝑞∅ = 1, 𝑞𝑞𝒮𝒮 will be equal to the p value for the 

selected treatment in stage 2.  

To combine the p values from the two stages, we use the weighted inverse normal 

method to define a combination p values through the function: 
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𝐶𝐶(𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖) = 1 −Φ[𝜐𝜐Φ−1(1− 𝑝𝑝𝑖𝑖) + 𝜔𝜔Φ−1(1 − 𝑞𝑞𝑖𝑖)] , 

where 𝜐𝜐 = �𝑛𝑛1 𝑛𝑛⁄ ,𝜔𝜔 = �𝑛𝑛2 𝑛𝑛⁄   such that 𝜐𝜐2 + 𝜔𝜔2 = 1.  

We define the decision function of a combination test  

𝜑𝜑𝐶𝐶(𝑝𝑝𝑖𝑖,𝑞𝑞𝑖𝑖) = � 1       𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖 ≤ 𝑎𝑎 𝑜𝑜𝑟𝑟 𝑏𝑏𝑜𝑜𝑏𝑏ℎ 𝑝𝑝𝑖𝑖 ≤ 𝑏𝑏 𝑎𝑎𝑛𝑛𝑎𝑎 𝐶𝐶(𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖) ≤ 𝑐𝑐
0             𝑜𝑜𝑏𝑏ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒                                                     

 

Therefore, we can make a decision, reject the null for 𝜑𝜑𝐶𝐶 = 1, or not. Treatment will be 

stopped because of early rejection of the null hypothesis (𝑝𝑝𝑖𝑖 ≤ 𝑎𝑎), or futility (𝑝𝑝𝑖𝑖 > 𝑏𝑏). With 

prespecified a and b, c can be solved by  

𝑎𝑎 + ∫ ∫ 1[𝐶𝐶(𝑥𝑥,𝑦𝑦)≤𝑐𝑐]
1
0

𝑏𝑏
𝑎𝑎 𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑 = 𝛼𝛼 , 

where we define the indicator function 

1[.]  = � 1       𝑖𝑖𝑖𝑖 𝐶𝐶(𝑑𝑑,𝑑𝑑) ≤ 𝑐𝑐
0       𝑜𝑜𝑏𝑏ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒     

   

In the final analysis, the null hypothesis 𝐻𝐻𝑖𝑖, 𝑖𝑖 ∈  Ω1, will be rejected at familywise type I 

error rate 𝛼𝛼, if for each 𝒮𝒮 ⊆ Ω1, the intersection hypothesis 𝐻𝐻𝒮𝒮 is rejected at level 𝛼𝛼, i.e. 

𝜑𝜑𝐶𝐶(𝑝𝑝𝒮𝒮 , 𝑞𝑞𝒮𝒮) = 1.  

Friede et al. (2011) further extended the above method and took the correlation between 

early and final outcome into consideration. Generally, combination test with closed testing 

principle becomes more conservative when the correlation between early and final outcome 

decreases (Friede et al., 2011). Since early and final outcomes are usually different but correlated 

in many real applications, our simulation was based on the work of Posch et al. (2005) and 

Friede et al. (2011). 
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3.0  OPTIMAL SAMPLE SIZE DETERMINATION 

Our objective is to determine the optimal sample size for an ASD through simulation using a 

prespecified type I error rate and power. The total sample size includes estimated sample size 𝑛𝑛1 

for stage 1 in each arm and reassessed sample size 𝑛𝑛2 for stage 2 in each arm based on the 

interim analysis. We assume a “power law relationship” exists between the overall sample size 

and statistical power of the final test. A power law is a functional relationship between the two 

quantities, where one quantity varies as a power of another. That is,  

𝑃𝑃(𝑁𝑁) = 1 + 𝜋𝜋𝑁𝑁−𝛾𝛾, 

where 𝑁𝑁 is the total sample size, 𝑃𝑃(𝑁𝑁) is the statistical power, 𝜋𝜋 < 0 and 𝛾𝛾 > 0 need to be 

estimated. In this study, we consider three different scenarios as described in detail below. 

Paragraph. 

3.1 SCENARIO I: ESTIMATE THE OPTIMAL SAMPLE SIZE 𝑵𝑵𝑵𝑵 FOR STAGE 1 

WITH FIXED FUNCTIONAL RELATIONSHIP BETWEEN 𝑵𝑵𝑵𝑵 AND 𝑵𝑵𝑵𝑵. 

Let 𝑁𝑁1 be the total sample size at stage 1, 𝑃𝑃(𝑁𝑁1) be the power of the final test which is a function 

of 𝑛𝑛1, and 𝐴𝐴(𝑁𝑁1) be the overall type I error rate which is a function of 𝑛𝑛1. We assume that i) the 
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ratio of sample size in treatment vs. placebo is fixed; ii) the functional relationship between 𝑁𝑁 

and 𝑁𝑁2, 𝑁𝑁2 = 𝑖𝑖(𝑁𝑁1), is fixed. Therefore, we can estimate the optimal total sample size 𝑁𝑁 by 

𝑁𝑁1 𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑎𝑎𝑙𝑙 = 𝑚𝑚𝑖𝑖𝑛𝑛{𝑁𝑁1:𝑃𝑃(𝑁𝑁1) > 𝑃𝑃∗,𝐴𝐴(𝑁𝑁1) ≤ 𝛼𝛼∗} , 

𝑁𝑁𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑎𝑎𝑙𝑙 = 𝑁𝑁1 𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑎𝑎𝑙𝑙 + 𝑖𝑖�𝑁𝑁1 𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑎𝑎𝑙𝑙� , 

where 𝛼𝛼∗ is a prespecified overall type I error rate, and we plan to achieve at least 𝑃𝑃∗ power. 

For our future work, the RICARDO study fits this scenario. We need to assume a 

prespecified functional relationship between 𝑛𝑛1 and 𝑛𝑛2, and conduct simulations to determine the 

optimal value of 𝑛𝑛1 and achieve adequate power with type I error rate under controlled.  

3.2 SCENARIO II: ESTIMATE THE OPTIMAL SAMPLE SIZE 𝑵𝑵𝑵𝑵 FOR STAGE 2 

WITH FIXED SAMPLE SIZE 𝑵𝑵𝑵𝑵 FOR STAGE 1. 

With a fixed sample size 𝑁𝑁1 for stage 1, we aim to estimate the minimum sample size 𝑁𝑁2 for 

stage 2 in order to achieve the greatest power of the final test under a prespecified overall type I 

error rate. In other words, we are looking for the best adaptation method, i.e. we will choose the 

best function 𝑔𝑔(. ) to achieve the greatest power with minimum sample size, 𝑁𝑁2 = 𝑔𝑔(𝑁𝑁1)  and 

𝑁𝑁𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑎𝑎𝑙𝑙 = 𝑁𝑁1 + 𝑔𝑔(𝑁𝑁1). 

Sample size estimation in the protocol of Léauté-Labrèze et al. (2015) was performed 

under this scenario. They fixed stage 1 sample size per arm to be 35, then explored the power 

change as a function of 𝑁𝑁2 with the one-sided overall type I error rate α = 0.005.  
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3.3 SCENARIO III: ESTIMATE THE SET OF OPTIMAL SAMPLE SIZES {𝑵𝑵𝑵𝑵,𝑵𝑵𝑵𝑵} 

WHERE 𝑵𝑵𝑵𝑵 AND 𝑵𝑵𝑵𝑵 ARE INDEPENDENT. 

In this scenario, we assume that 𝑁𝑁1 and 𝑁𝑁2 are independent, thus no sample size adaptation 

method exists. We will find the set of optimal sample sizes {𝑁𝑁1,𝑁𝑁2} when the greatest power is 

reached and the type I error rate is controlled. The power could be shown in a 3D space, where 

changing either 𝑁𝑁1 or 𝑁𝑁2 changes the power. 
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4.0  SIMULATION-BASED TYPE I ERROR RATE AND POWER 

In the protocol of oral propranolol treatments on complicated infantile hemangiomas study 

(Léauté-Labrèze et al., 2015), four treatment regimens with a control group were considered. 

Only one treatment was selected and continued along with placebo in stage 2. They denoted 𝑛𝑛1 

as stage 1 sample size for each arm, 𝑛𝑛2 as stage 2 sample size for each arm. Therefore, the 

minimum total sample size was 5𝑛𝑛1 + 2𝑛𝑛2. From the interim analysis, the estimated success rates 

were: 10% for placebo, 30% for regimen 1 (1 mg/kg/day for 3 months), 35% for regimen 2 (1 

mg/kg/day for 6 months), 40% for regimen 3 (3 mg/kg/day for 3 months), and 50% for regimen 

4 (3 mg/kg/day for 6 months). The overall one-sided type I error rate was 𝛼𝛼 = 0.005 and power > 

90% was considered adequate.  

Using the method proposed by Posch et al. (2005), we simulated the type I error rates and 

powers under different sets of sample sizes and only the most effective regimen was chosen after 

the interim analysis. As shown in Tables 1 and 2, we got similar results as those shown in the 

protocol. We used the R package ASD (Parsons et al., 2012) to produce these results. 
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Table 1. Estimated one-sided type I error rate when the most effective regimen is chosen at the 

interim analysis with various (n1, n2). 

Level (superiority) of Type I Error Rate Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.0047 0.0010 0.0013 0.0012 0.0012 35 40 255 

0.0046 0.0010 0.0013 0.0011 0.0012 35 45 265 

0.0046 0.0010 0.0013 0.0011 0.0012 35 50 275 

0.0047 0.0010 0.0012 0.0014 0.0011 35 55 285 

0.0047 0.0009 0.0012 0.0015 0.0011 35 60 295 

Note. Results were given based on 104 simulations for each scenario. 

 

Table 2. Estimated power when the most effective regimen is chosen at the interim analysis with 

various (n1, n2). 

Power (superiority) Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.9431 0.0022 0.0108 0.0449 0.8852 35 40 255 

0.9501 0.0022 0.0111 0.0462 0.8906 35 45 265 

0.9544 0.0023 0.0115 0.0472 0.8934 35 50 275 

0.9576 0.0023 0.0117 0.0480 0.8956 35 55 285 

0.9610 0.0023 0.0120 0.0494 0.8973 35 60 295 

Note. Results were given based on 104 simulations for each scenario. 
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5.0  RICARDO STUDY 

Researches have found that remote ischemic preconditioning (RIPC), having transient external 

compression of the upper arm, prior to cardiac surgery is associated with reducing the occurrence 

of acute kidney injury (AKI) and is strongly associated with the release of cell-cycle arrest 

biomarkers into the urine (Zarbock, et al., 2015a; Kashani, et al., 2013; Bihorac, et al., 2009). 

John Kellum, MD proposed a multicenter, randomized, double-blind, adaptive seamless phase 

II/III trial entitled “Remote ischemic conditioning to avoid renal damage during cardiac 

operations (RICARDO)” to further investigate the effectiveness of this intervention, including an 

assessment of the effect size and the selection of optimal dose of RIPC.  

By using the adaptive seamless phase II/III design, four regimens with different doses of 

RIPC were used along with the control group (sham-RIPC intervention) at stage 1. In the interim 

analysis, we will select the regimen that yields the highest proportion of urinary [TIMP-

2]•[IGFBP7] ≥ 0.5 (ng/ml)2/1000 and without a major adverse event (including any increase in 

AKI). The selected regimen and the control group will be used in stage 2 to determine the overall 

effectiveness. The primary endpoint is the major adverse kidney events at 90-days post surgery 

(MAKE90), including death and dialysis or persistent renal dysfunction (2x baseline creatinine). 

In order to determining the optimal sample size, we take into account the correlation between the 

early outcome (proportion of biomarker [TIMP-2]•[IGFBP7] ≥ 0.5 (ng/ml)2/1000) and the final 
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outcome (MAKE90). In addition, we utilized closed testing procedure together with combination 

tests to control the family-wise one-sided type I error rate to 𝛼𝛼 = 0.005. 

In the pilot study conducted by Zarbock, et al.(2015b), patients were randomized into the 

intervention group and the control group. Patients in the intervention group were treated with 3 

cycles of 5-min inflation of a blood-pressure cuff to 200 mm Hg (or at least to a pressure 50 

mmHg higher than the systolic arterial pressure) on one upper arm; each inflation is followed by 

a 5-min reperfusion with the cuff deflated. This intervention is considered as regimen 2 in the 

RICADO study. Patients in the control group are treated with 3 cycles of upper limb ‘pseudo’-

ischemia at a lower pressure; in each cycle a 5-min blood-pressure cuff inflation to a pressure of 

20 mm Hg higher than the systolic arterial pressure is followed by a 5-min cuff deflation. In the 

RICARDO study, regimen 1 has a lower dose (2 cycles for 3 minutes) than regimen 2 dose; 

regimen 3 and regimen 4 have higher doses with 3 cycles of 7 minutes and 4 cycles of 5 minutes, 

respectively. 

We estimated the proportion of MAKE90 for sham-RIPC (𝜃𝜃�0= 0.25) and regimen 2 (𝜃𝜃�2= 

0.14) from the previous study (Zarbock, et al., 2015b). We further assumed the proportion of 

MAKE90 for regimen 1, 3, and 4 as 𝜃𝜃�1 = 0.2, 𝜃𝜃�3 = 0.12, and 𝜃𝜃�4 = 0.10, respectively. The early 

outcome is defined as the proportion of urinary [TIMP-2]•[IGFBP7] ≥ 0.5 (ng/ml)2/1000 for 

each regimen and for the control. From the pilot data, we estimated this proportion as �̂�𝑝0 = 0.25 

for sham-RIPC and �̂�𝑝2 = 0.37 for regimen 2. For regimen 1, 3, and 4, we assumed the proportion 

as �̂�𝑝1 = 0.31, �̂�𝑝3 = 0.39, and �̂�𝑝4 = 0.41 respectively. Moreover, we estimated the correlation 

between early outcome and MAKE90 from the pilot data, and it is denoted by phi coefficient, 𝜙𝜙� = 

-0.15. We plan for having equal sample size per arm, and we expected the overall power to be at 

least 80%. 
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Sample size estimation for the RICARDO study is performed under scenario I as 

mentioned in Section 3. We do not have enough information about the required sample size for 

stage 1, so we explored different values of  𝑛𝑛1 in our simulations. Moreover, we controlled the 

ratio of stage 2 sample size (𝑛𝑛2) to stage 1 sample size (𝑛𝑛1) in between 5 and 20. For each value 

of 𝑛𝑛1, we estimated the total sample size with four different ratios of 𝑛𝑛2 to 𝑛𝑛1. The results are 

shown in Tables 3 to 8. 

Table 3. Estimated one-sided type I error rate when the most effective regimen is chosen at the 

interim analysis with n1 = 15 and different n2. 

Level (superiority) of Type I Error Rate Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.0038 0.0004 0.0009 0.0016 0.0009 15 150 375 

0.0040 0.0004 0.0009 0.0017 0.0010 15 200 475 

0.0040 0.0003 0.0010 0.0016 0.0011 15 250 575 

0.0042 0.0003 0.0012 0.0016 0.0011 15 300 675 

Note. Results were given based on 104 simulations for each scenario. 

 

Table 4. Estimated power when the most effective regimen is chosen at the interim analysis with n1 = 

15 and different n2. 

Power (superiority) Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.5565 0.0058 0.0973 0.1775 0.2759 15 150 375 

0.6865 0.0071 0.1335 0.2258 0.3201 15 200 475 

0.7709 0.0094 0.1618 0.2584 0.3413 15 250 575 

0.8217 0.0109 0.1830 0.2781 0.3497 15 300 675 

Note. Results were given based on 104 simulations for each scenario. 
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Table 5. Estimated one-sided type I error rate when the most effective regimen is chosen at the 

interim analysis with n1 = 20 and different n2. 

Level (superiority) of Type I Error Rate Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.0040 0.0004 0.0009 0.0018 0.0009 20 150 400 

0.0038 0.0004 0.0009 0.0016 0.0009 20 200 500 

0.0039 0.0004 0.0009 0.0017 0.0009 20 250 600 

0.0040 0.0004 0.0010 0.0015 0.0011 20 300 700 

Note. Results were given based on 104 simulations for each scenario. 

 

Table 6. Estimated power when the most effective regimen is chosen at the interim analysis with n1 = 

20 and different n2. 

Power (superiority) Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.5779 0.0047 0.0977 0.1834 0.2921 20 150 400 

0.7054 0.0058 0.1316 0.2303 0.3377 20 200 500 

0.7869 0.0079 0.1588 0.2624 0.3578 20 250 600 

0.8376 0.0091 0.1802 0.2812 0.3671 20 300 700 

Note. Results were given based on 104 simulations for each scenario. 

 

 

 

 

 



18 

Table 7. Estimated one-sided type I error rate when the most effective regimen is chosen at the 

interim analysis with n1 = 30 and different n2. 

Level (superiority) of Type I Error Rate Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.0038 0.0003 0.0009 0.0018 0.0008 30 150 450 

0.0040 0.0004 0.0009 0.0018 0.0009 30 200 550 

0.0039 0.0004 0.0009 0.0017 0.0009 30 250 650 

0.0038 0.0004 0.0009 0.0016 0.0009 30 300 750 

Note. Results were given based on 104 simulations for each scenario. 

Table 8. Estimated power when the most effective regimen is chosen at the interim analysis with n1 = 

30 and different n2. 

Power (superiority) Sample Size 

Overall Regimen 1 Regimen 2 Regimen 3 Regimen 4 n1 n2 min(N) 

0.6152 0.0036 0.0969 0.1943 0.3204 30 150 450 

0.7364 0.0048 0.1278 0.2394 0.3644 30 200 550 

0.8154 0.0068 0.1550 0.2695 0.3841 30 250 650 

0.8633 0.0079 0.1749 0.2875 0.3930 30 300 750 

Note. Results were given based on 104 simulations for each scenario. 

From Tables 3-8, the overall type I error rate was controlled under 0.005 for all settings. 

We found that statistical power increases as total sample size gets larger. The power of the final 

test achieves 80% when total sample size is closed to 650. Based on these results, we suggest the 

acceptable sample size to be 675 patients in total, with recruiting 15 patients per arm in stage 1 

and 300 patients per arm in stage 2. 
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Moreover, we compared the required stage 1 sample size using an ASD with the required 

sample size using other four traditional phase II trial designs: the two-arm trial design, the group-

sequential design, and the multi-arm trial designs with and without treatment selection. We used 

the early outcome (the proportion of urinary [TIMP-2]•[IGFBP7] ≥ 0.5 (ng/ml)2/1000) as the 

endpoint for hypothesis testing in the four traditional designs. The same settings as those in the 

RICARDO study were used, which include four candidate treatment regimens and a control 

group. Sample size estimations were done using the R package ASD and the R packages MAMS 

(Magirr et al., 2012). The results of the estimated sample sizes using different trial designs are 

summarized in Table 9. If we conduct four separate two-armed trials, the required total sample 

size is 88; if we conduct four separate group-sequential trials, the maximum required sample size 

is 112; if we use a multi-arm study, 90 and 75 patients with and without treatment selection, 

respectively, will be required for the design. As shown in Tables 3-8, we only need 75 patients 

for stage 1 if using an ASD. These results showed that an ASD can reduce sample size for stage 

1 and allocate more patents to more effective treatment in stage 2.  

 

Table 9. Comparison of maximum sample size required for different designs. 

Design Option  Maximum Sample Size 

  Four separate two-armed trials 88 

  Four separate group-sequential trials 112 

  Multi-arm study with treatment selection 90 

  Multi-arm study without treatment selection 75 

  Adaptive seamless design (stage 1) 75 
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We checked the power law assumption by plotting estimated total sample size and power 

under twelve twelve different settings of 𝑛𝑛1 and 𝑛𝑛2 in Tables 3-8 and comparing their deviation 

from the theoretical curve. Figure 2 shows that the points scattered around the theoretical curve 

with relatively small departures. We concluded that a power law relationship between total 

sample size and statistical power is probable. 

 

Figure 2. Power law relationship between total sample size and statistical power. 
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6.0  DISCUSSION 

For a trial with complex setting such as an adaptive seamless design, it is more feasible to 

determine the sample size through simulations than deriving the closed form of the sample size 

formula. Posch et al. (2005) proposed an empirical method to estimate the effect of the selected 

treatment. They used the closed testing principle together with the combination tests in the final 

analysis. Friede et al. (2011) extended the method of Posch et al. and took the correlation of early 

and final outcomes into consideration. Our simulations were based on the work of both Posch et 

al. and Friede et al. and a power law relationship between the total sample size and the statistical 

power was assumed.  

Based on the information provided in the protocol of the trial of oral propranolol in 

infantile hemangioma (Léauté-Labrèze et al., 2015), we estimated the first-stage and the second-

stage sample sizes by controlling the overall type I error rate and the power of the final test, 

using the method of Posch et al. (2005). For the RICARDO study, we applied the same method 

to estimate the required total sample size via simulations. The power law relationship is a 

reasonable assumption since the statistical power is expected to converge with infinitely large 

sample size. With a prespecified functional relationship between the sample sizes in stages 1 and 

in stage 2 (5 ≤ 𝑛𝑛2 𝑛𝑛1 ≤⁄  20), we estimated the total required sample size by assuming different 

values of 𝑛𝑛1. Based on the simulation results, we suggested the total required sample size to be 

675 patients under the condition that the overall type I error rate is less than 0.005 and the overall 
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power is greater than 80%. Moreover, our simulation results showed that the required sample 

size in the RICARDO study is smaller if an ASD is used in stage 1, as compared with the sample 

size required by other traditional phase II designs.  

An ASD not only shortens the total length of time, but it also can assign more patients to 

the more effective treatment. It is worth noting that despite many strengths of an ASD, it may not 

always be the best choice. When there is a lack of information about the treatment of interest, the 

final treatment recommendation derived from a study using ASD could be misleading. In 

addition, an ASD will lose its efficiency if the recruitment rate is relatively fast with respect to 

the waiting time for the interim analysis. In the RICARDO study, we had obtained sufficient 

information about the treatment of interest from pilot studies, and the expected waiting time for 

decision making is short relative to recruitment time. Therefore, it is feasible and reasonable to 

use an adaptive seamless design in the RICARDO study.  

One of the limitations in our sample size estimation for the RICARDO study is that we 

did not simulate an intensive set of (𝑛𝑛1,𝑛𝑛2), sample sizes for stage 1 and stage 2 within a 

prespecified range of the total sample size to check the power law assumption. Currently, we 

fitted a curve with twelve points of (𝑛𝑛1,𝑛𝑛2) with a total sample size ranging from 375 to 750 

patients. Simulations with more data points of (𝑛𝑛1,𝑛𝑛2) will be needed to capture the lower part 

features and the convergence limit of the power law curve.  

Besides, a statistical study is required to assess the fit of the power law curve. We will 

need to investigate the goodness of fit of the power law relationship. An alternative way to assess 

the fit is to conduct multiple simulations and generate an interval of power estimates for each 

sample size (e.g. with the first and the third quartiles being the lower and upper ends of the 
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interval), then we can check whether the power law curve fitted by the median powers will pass 

through all intervals.  

We have tried different packages in R and different macros in SAS for sample size and 

power estimations. Among them, the R package ASD performs the best in replicability also takes 

the correlation between the early and the final outcomes into account. Our simulations showed 

that package ASD gave different estimation results for different seed numbers. To overcome the 

variability, we suggest running simulations with random choices of different seed numbers and 

reporting the median of the estimated sample sizes. 
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APPENDIX: R CODE FOR SAMPLE SIZE SIMULATION IN THE RICARDO STUDY 

### Simulate sample size in ASD  

library(asd) 

# Estimated one-sided type I error rate when the most effective regimen is chosen at the interim 

analysis  

result_type1<- treatsel.sim(n=list(stage1=15, stage2=150), 

effect=list(early=rep(0.75,5), final=rep(0.25,5)), 

               outcome=list(early="B", final="B"), nsim=10000, 

corr=0.15, seed=4358098, select=1, 

weight=NULL, level=0.005, ptest=c(1,4), 

method="invnorm", fu=FALSE, file = "") 

# Estimated power when the most effective regimen is chosen at the interim analysis 

result_p<- treatsel.sim(n=list(stage1=15, stage2=150), 

effect=list(early=c(0.75,0.69,0.63,0.61,0.59), final=c(0.25,0.2,0.14,0.12,0.10)), 

outcome=list(early="B", final="B"), nsim=10000, 

corr=0.15, seed=4358098, select=1, 

weight=NULL, level=0.005, ptest=c(1:4), 

method="invnorm", fu=FALSE, file = "") 
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### Simulate sample size in other study designs  

library(MAMS) 

delta <- 6 

sigma <- sqrt(25) 

# four separate two-arm 

mams.rev(K=1, J=1, alpha=0.025, power=0.8, r=1, r0=1, 

         p=pnorm(delta/(sqrt(2)*sigma)) , p0=0.5) 

# four separate group-seq 

mams.rev(K=1, J=2, alpha=0.025, power=0.8, r=1:2, r0=1:2, 

         p=pnorm(delta/(sqrt(2)*sigma)) , p0=0.5, 

u.shape="triangular", l.shape="triangular")

# multi-arm w/o selection 

mams(K=4, J=1, alpha=0.025, power=0.8, r=1, r0=1, 

       p=pnorm(delta/(sqrt(2)*sigma)) , p0=0.5) 

# multi-arm with treatment selection 

mams(K=4, J=2, alpha=0.025, power=0.8, r=1:2, r0=1:2, 

     p=pnorm(delta/(sqrt(2)*sigma)) , p0=0.5, 

u.shape="triangular", l.shape="triangular")



 26 

BIBLIOGRAPHY 

Bauer, P., & Kieser, M. (1999). Combining different phases in the development of medical 
treatments within a single trial. Statistics in medicine, 18(14), 1833-1848. 

Bihorac, A., Yavas, S., Subbiah, S., Hobson, C. E., Schold, J. D., Gabrielli, A., Layon, A.J., & 
Segal, M. S. (2009). Long-term risk of mortality and acute kidney injury during 
hospitalization after major surgery. Annals of surgery, 249(5), 851-858. 

Bischoff, W., & Miller, F. (2009). A seamless phase II/III design with sample-size re-estimation. 
Journal of biopharmaceutical statistics, 19(4), 595-609. 

Chow, S. C., & Chang, M. (2008). Adaptive design methods in clinical trials-a review. Orphanet 
Journal of Rare Diseases, 3(11), 169-90. 

Cui, L., Hung, H. J., & Wang, S. J. (1999). Modification of sample size in group sequential 
clinical trials. Biometrics, 853-857. 

Ellenberg, S. S., & Eisenberger, M. A. (1985). An efficient design for phase III studies of 
combination chemotherapies. Cancer treatment reports, 69(10), 1147-1154. 

Fisher, L. D. (1998). Self-designing clinical trials. Statistics in medicine, 17(14), 1551-1562. 

Friede, T., Parsons, N., Stallard, N., Todd, S., Valdes Marquez, E., Chataway, J., & Nicholas, R. 
(2011). Designing a seamless phase II/III clinical trial using early outcomes for treatment 
selection: An application in multiple sclerosis. Statistics in Medicine, 30(13), 1528-1540. 

Gao, P., Ware, J. H., & Mehta, C. (2008). Sample size re-estimation for adaptive sequential 
design in clinical trials. Journal of Biopharmaceutical Statistics, 18(6), 1184-1196. 

Gaydos, B., Anderson, K. M., Berry, D., Burnham, N., Chuang-Stein, C., Dudinak, J., Fardipour, 
P., Gallo, P.,Givens, S., Lewis, R., Maca, J., Pinheiro, J., Pritchett, Y., & Krams, M. 
(2009). Good practices for adaptive clinical trials in pharmaceutical product 
development. Drug Information Journal, 43(5), 539-556. 

Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S. M., Bell, M., Bihorac, A., 
Birkhahn,R., Cely, C.M., Chawla, L.S., Davison, D.L., Feldkamp, T., Forni, L.G., Gong, 
M.N., Gunnerson, K.J., Haase, M., Hackett, J., Honore, P.M., Hoste, E.AJ., Joannes-
Boyau, O., Joannidis, M., Kim, P., Koyner, J.L., Laskowitz, D.T., Lissauer, M.E., Marx, 



 27 

G., McCullough, P.A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N.I., Shaw, 
A.D., Shi, J., Sprague, A.M., Vincent, J., Vinsonneau, C., Wagner, L., Walker, M.G., 
Wilkerson, R.G., Zacharowski, K., & Kellum, J.A. (2013). Discovery and validation of 
cell cycle arrest biomarkers in human acute kidney injury. Critical Care, 17(1), R25. 

Koenig, F., Brannath, W., Bretz, F., & Posch, M. (2008). Adaptive Dunnett tests for treatment 
selection. Statistics in Medicine, 27(10), 1612-1625. 

Léauté-Labrèze, C., Hoeger, P., Mazereeuw-Hautier, J., Guibaud, L., Baselga, E., Posiunas, G., 
Phillips, R.J., Caceres, H., Lopez Gutierrez, J.C., Ballona, R., Friedlander, S.F., Powell, 
J., Perek, D., Metz, B., Barbarot, S., Maruani, A., Szalai, Z.Z., Krol, A., Boccara, O., 
Foelster-Holst, R., Febrer Bosch, M.I., Su, J., Buckova, H., Torrelo, A., Cambazard, F., 
Grantzow, R., Wargon, O., Wyrzykowski, D., Roessler, J., Bernabeu-Wittel, J., Valencia, 
A.M., Przewratil, P., Glick, S., Pope, E., Birchall, N., Benjamin, L., Mancini, A.J., 
Vabres, P., Souteyrand, P., Frieden, I.J., Berul, C.I., Mehta, C.R., Prey, S., Boralevi, F., 
Morgan, C.C., Heritier, S., Delarue, A., & Voisard, J. J. (2015). A randomized, controlled 
trial of oral propranolol in infantile hemangioma. New England Journal of Medicine, 
372(8), 735-746. 

Maca, J., Bhattacharya, S., Dragalin, V., Gallo, P., & Krams, M. (2006). Adaptive seamless 
phase II/III designs-background, operational aspects, and examples. Therapeutic 
Innovation & Regulatory Science, 40(4), 463. 

Magirr, D., Jaki, T., & Whitehead, J. (2012). A generalized Dunnett test for multi-arm multi-
stage clinical studies with treatment selection. Biometrika,99(2), 494-501. 

Mahajan, R., & Gupta, K. (2010). Adaptive design clinical trials: Methodology, challenges and 
prospect. Indian journal of pharmacology, 42(4), 201. 

Marcus, R., Eric, P., & Gabriel, K. R. (1976). On closed testing procedures with special 
reference to ordered analysis of variance. Biometrika, 63(3), 655-660. 

Parsons, N., Friede, T., Todd, S., Marquez, E. V., Chataway, J., Nicholas, R., & Stallard, N. 
(2012). An R package for implementing simulations for seamless phase II/III clinical 
trials using early outcomes for treatment selection. Computational Statistics & Data 
Analysis, 56(5), 1150-1160. 

Posch, M., Koenig, F., Branson, M., Brannath, W., Dunger-Baldauf, C., & Bauer, P. (2005). 
Testing and estimation in flexible group sequential designs with adaptive treatment 
selection. Statistics in Medicine, 24, 3697–3714. 

Stallard, N. (2010). A confirmatory seamless phase II/III clinical trial design incorporating short‐
term endpoint information. Statistics in medicine, 29(9), 959-971. 

Stallard, N., & Todd, S. (2003). Sequential designs for phase III clinical trials incorporating 
treatment selection. Statistics in medicine, 22(5), 689-703. 



 28 

Stallard, N., & Todd, S. (2011). Seamless phase II/III designs. Statistical methods in medical 
research, 20(6), 623-634. 

Thall, P. F., Simon, R., Ellenberg, S. S., & Shrager, R. (1988a). Optimal two-stage designs for 
clinical trials with binary response. Statistics in medicine, 7(5), 571-579. 

Thall, P. F., Simon, R., & Ellenberg, S. S. (1988b). Two-stage selection and testing designs for 
comparative clinical trials. Biometrika, 75(2), 303-310. 

Thall, P. F. (2008). A review of phase 2–3 clinical trial designs. Lifetime data analysis, 14(1), 
37-53. 

Zarbock, A., Schmidt, C., Van Aken, H., Wempe, C., Martens, S., Zahn, P. K., Wolf, B., Goebel, 
U., Schwer, C.I., Rosenberger, P., Haeberle, H., Görlich, D., Kellum, J.A., & Meersch, 
M. (2015a). Effect of remote ischemic preconditioning on kidney injury among high-risk 
patients undergoing cardiac surgery: a randomized clinical trial. JAMA, 313(21), 2133-
2141. 

Zarbock, A., Kellum, J., Van Aken, H., Schmidt, C., Martens, S., Görlich, D., & Meersch, M. 
(2015b). Long-term effects of remote ischaemic preconditioning in high risk patients 
undergoing cardiac surgery: follow-up of a randomised clinical trial. Intensive Care 
Medicine Experimental, 3(Suppl 1), A411. 


	TITLE PAGE
	COMMITTEE MEMBERS
	ABSTRACT
	TABLE OF CONTENTS
	 LIST OF TABLES
	Table 1. Estimated one-sided type I error rate when the most effective regimen is chosen at the interim analysis with various (n1, n2).
	Table 2. Estimated power when the most effective regimen is chosen at the interim analysis with various (n1, n2).
	Table 3. Estimated one-sided type I error rate when the most effective regimen is chosen at the interim analysis with n1 = 15 and different n2.
	Table 4. Estimated power when the most effective regimen is chosen at the interim analysis with n1 = 15 and different n2.
	Table 5. Estimated one-sided type I error rate when the most effective regimen is chosen at the interim analysis with n1 = 20 and different n2.
	Table 6. Estimated power when the most effective regimen is chosen at the interim analysis with n1 = 20 and different n2.
	Table 7. Estimated one-sided type I error rate when the most effective regimen is chosen at the interim analysis with n1 = 30 and different n2.
	Table 8. Estimated power when the most effective regimen is chosen at the interim analysis with n1 = 30 and different n2.
	Table 9. Comparison of maximum sample size required for different designs.

	LIST OF FIGURES
	Figure 1. Comparison of traditional clinical trials and ASD.
	Figure 2. Power law relationship between total sample size and statistical power.

	1.0  INTRODUCTION
	2.0  ADAPTIVE TREATMENT SELECTION BASED ON COMBINATION TESTS
	3.0  OPTIMAL SAMPLE SIZE DETERMINATION
	3.1 SCENARIO I: ESTIMATE THE OPTIMAL SAMPLE SIZE 𝑵𝟏 FOR STAGE 1 WITH FIXED FUNCTIONAL RELATIONSHIP BETWEEN 𝑵𝟏 AND 𝑵𝟐.
	3.2 SCENARIO II: ESTIMATE THE OPTIMAL SAMPLE SIZE 𝑵𝟐 FOR STAGE 2 WITH FIXED SAMPLE SIZE 𝑵𝟏 FOR STAGE 1.
	3.3 SCENARIO III: ESTIMATE THE SET OF OPTIMAL SAMPLE SIZES {𝑵𝟏, 𝑵𝟐} WHERE 𝑵𝟏 AND 𝑵𝟐 ARE INDEPENDENT.

	4.0  SIMULATION-BASED TYPE I ERROR RATE AND POWER
	5.0  RICARDO STUDY
	6.0  DISCUSSION
	APPENDIX: R CODE FOR SAMPLE SIZE SIMULATION IN THE RICARDO STUDY
	BIBLIOGRAPHY

