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APPLICATIONS OF POINT PROCESS MODELS TO IMAGING AND

BIOLOGY

Burcin Simsek, PhD

University of Pittsburgh, 2016

This dissertation deals with point process models and their applications to imaging and

messenger RNA (mRNA) transcription. We address three problems. The first problem

arises in two-photon laser scanning microscopy. We model the process by which photons

are counted by a detector which suffers from a dead period upon registration of a photon.

In this model, we assume that there are a Poisson (α) number of excited molecules, with

exponentially distributed waiting times for the emissions of photons. We derive the exact

distribution of all observed counts, rather than grouped counts which were used earlier. We

use it to get improved estimates of the Poisson intensity, which leads to images with higher

signal-to-noise ratio. This improvement is because grouping of count data results in loss

of information. We illustrate this improvement on imaging data of paper fibers. Next, we

study two variants of this model: the first uses a finite time horizon and the second considers

gamma waiting times for the emissions.

The second problem concerns the Conway-Maxwell-Poisson distribution for count data.

This family has been proposed as a generalization of the Poisson for handling overdispersion

and underdisperson. Because the normalizing constant of this family is hard to compute,

good approximations for it are needed. We provide a statistical approach to derive an existing

approximation more simply. However, this approximation does not perform well across all

the parameter ranges. Therefore, we introduce correction terms to improve its performance.

For other parts of the parameter space, we use the geometric and Bernoulli distributions,

with correction terms based on Taylor expansions. Using numerical examples, we show that
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our approximations are much better than earlier proposed methods.

In the last problem, we present a new application for Conway-Maxwell-Poisson family.

We use the generalized linear model setting of this family to study mRNA counts. We then

compare its performance with the existing methods used for modeling mRNAs, such as the

negative binomial. This empirical model can be a good modeling tool for dispersed mRNA

count data when a biophysically based model is not available.
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1.0 INTRODUCTION

This dissertation concerns point process models and their applications to imaging and bi-

ology. It consists of three parts: a study of models for photon counting, a study of the

Conway-Maxwell-Poisson distribution for count data, and the application of this distribu-

tion to mRNA transcription. The common thread is that counting problems are difficult

when there are censoring mechanisms like dead periods in the photon counting problem and

off states gene activity in mRNA transcription.

In recent years, one of the most significant biomedical research tools is optical microscopy

which has applications to molecular biology. Many variants of microscopy have been de-

veloped to obtain high-resolution and high-sensitivity three-dimensional images, especially

for deep-tissue imaging. One of these is two-photon laser scanning microscopy (TPLSM,

[13, 25]), which is an essential development in biological imaging [59]. Moreover, it allows

imaging of living tissue up to a very high depth (about one millimeter) with high-resolution

and high-sensitivity fluorescence three-dimensional images [37, 58, 63]. In the first part of

this thesis, we deal with stochastic models for TPLSM and statistical inference for them.

The motivation and objectives of this problem given in Section 1.1.

Next, direct detection of gene activity is often not possible because new proteins from

individual activation events are masked by proteins remaining from previous events [47].

Thus, researchers observe mRNA because it gives information about gene activity. Modeling

such phenomena is complicated because there are many factors that affect outcomes and are

hard to control. In the absence of detailed biophysical knowledge, we propose the use of the

Conway-Maxwell-Poisson family as a potentially good candidate for fitting dispersed mRNA

count data. Before we pursue this, we address an interesting technical problem of obtaining

better approximations to the normalizing constant of the this family: see Section 1.2.
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1.1 MOTIVATION AND OBJECTIVES ON PHOTON COUNTING

PROBLEM

Two-photon microscopy enables imaging of living tissue by minimizing the confounds of

scattered and absorbed light, up to a depth of about one millimeter below the surface of

the brain and with sub-micrometer resolution [14]. Thus, it can be used in many areas such

as physiology, neurobiology, and tissue engineering, for which imaging of highly scattering

tissue is required [59]. Neuroscientists have used TPLSM to image physiological functioning

in microscopic and subcellular neural compartments [40].

As pointed out in Oheim et al. [43], TPLSM is a fluorescence imaging technique. The

duration of time between absorption of an excited photon and emitted photon is called the

fluorescence lifetime. If another photon is emitted during the fluorescence lifetime, the device

cannot detect it. This period is therefore considered a dead period of the device. Since dead

periods lead to undercounts of emitted photons, it is of interest to do statistical inference

for the photon counting problem with dead time [55].

Starting in early 1950s, there have been many studies of probabilistic modeling and

statistical inference for this problem. Almost all of the work that has been done is concerned

with asymptotic results, and none of them give exact results. Knowing the exact results on

this photon counting with dead time problem can not only improve the quality of images, but

can also lead to images with higher resolution and greater sensitivity in three dimensions. The

literature review we have done indicates that there are no relevant probability calculations

and resulting statistical models that address the dead period. Therefore, it is clear that a

mathematical model that relates the number of photons recorded and the actual emitted

photon counts is needed.

In this study, we first address the problem of photon counting with dead time which

appears in TPLSM. We use two separate but equivalent approaches. The first approach

is based on an inhomogeneous Poisson process to capture the underlying biophysics. The

second approach uses an equivalent representation by obtaining the marginal distribution

of D, the number of photons recorded, from its conditional distribution given N , the total

number of emitted photons [56]. We then use maximum likelihood to estimate the underlying
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intensity parameter and dead time of the mechanism. We illustrate our method on imaging

data. We also study several variants of the basic model.

1.2 MOTIVATION AND OBJECTIVES OF

CONWAY-MAXWELL-POISSON PROBLEM

Messenger RNA (mRNA) transcription is a product of gene activity, so it can provide valu-

able information about gene activation and inactivation patterns [59]. mRNA transcription

occurs at a high rate when the gene is in its on state, and no mRNA transcription when its

in its off state. The off state of the gene is analogous to the dead period of TPLSM: see

[44]. Because of this common feature, we are interested in modeling mRNA counts as our

second research direction. We propose the use of the Conway-Maxwell-Poisson, which is an

empirical distribution for modeling mRNA counts.

There are several reasons why we propose the use of the Conway-Maxwell-Poisson family

for mRNA counts. First, the mRNA count data is overdispersed because the mRNA pro-

duced at high rate when the gene is on-state. We believe that the Conway-Maxwell-Poisson

family could potentially be a good candidate for modeling mRNA counts because it is well

known as good for a variety of dispersed data. Second, the distributions used to model

the mRNA counts are special cases of Conway-Maxwell-Poisson family. Therefore, we want

to see how a broad family would perform in modeling mRNA counts. Third, the Conway-

Maxwell-Poisson model was first proposed in the queueing theory context [9]. Queueing

models have also been considered for gene expression and mRNA transcription [17].

Before we address modeling mRNA counts, we deal with another interesting problem

on the Conway-Maxwell-Poisson distribution. The normalizing constant of this distribution

plays an important role in the computation of probabilities, moments, maximum likelihood

estimates and their standard errors. Since it is not always easy to compute the normalizing

constant, good approximations are needed. An earlier approximation for the normalizing

constant is good only in some certain parameter ranges. Below, we improve the quality of

this approximation by introducing some correction terms, and suggesting alternative approx-

3



imations for other extreme parameter ranges.

As a result, in the second part of this thesis, we improve the quality of the approximation

of the normalizing constant of Conway-Maxwell-Poisson distribution. We then use this family

to study mRNA counts, thereby introducing it to a new area.

1.3 OUTLINE

The first five chapters of this thesis deals with the problem that is addressed in Section 1.1. In

Chapter 2, we give a brief review of the literature on counters and TPLSM. We then describe

the problem that motivated us in detail. In Chapter 3, we derive the exact distribution of D,

the number of photons detected: we first give the details of two approaches that we used; we

then turn to the problem of estimating the model parameters; third, we relate this problem

with the more general concept of loss of information due to grouping; finally, we present our

results on both simulated data and paper fiber data. In Chapter 4, we derive the distribution

of D under different model assumptions to study possible extensions of the work presented

in Chapter 3. We are specifically interested in comparing finite versus infinite observation

periods, and exponential vs. gamma waiting times. The proofs and simulation algorithms of

Chapter 3 are given in Chapter 9.

The remaining chapters are for the problems described in Section 1.2: approximating

the normalizing Conway-Maxwell-Poisson distribution and use of this on mRNA counts. In

Chapter 5, after introducing Conway-Maxwell-Poisson family, we investigate the approxi-

mation of the normalizing constant of this family after we present briefly the earlier efforts.

To illustrate the performance of our approximation to the normalizing constant, we present

numerical examples. In Chapter 6, we introduce literature on both the Conway-Maxwell-

Poisson GLM and mRNA counts. We then study the use of the Conway-Maxwell-Poisson on

mRNA counts. In Chapter 7, we summarize our conclusions on both of these two problems

presented in Section 1.1 and Section 1.2. In Chapter 7, we present our conclusions. Finally,

in Chapter 8, we suggest several open problems that are worth pursuing in these areas.
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2.0 PHOTON COUNTING WITH DEAD TIME

2.1 BACKGROUND ON COUNTERS

2.1.1 Definitions

A counter is a machine that can detect and record pulses [30]. Some of the arrivals may

not be recorded by the counter because of its inertia. This is called the dead period of the

counting machine [46]. Depending on the type of dead period, the counters can be classifed

as either Type I counters or Type II counters.

If the dead period only occurs after registration of a pulse, we have a Type I counter or

non-paralyzable counter. If the dead period occurs after each pulse (whether it is recorded

or not), we have a Type II counter or paralyzable counter. Common examples of Type I and

Type II counters are Geiger-Miuller counters [19, 46, 64]. For TPLSM, we are only interested

in Type I counters.

2.1.2 Brief literature review on counters

Type I and Type II counters have been used in various fields, so the statistics literature for

them goes back to early 1950s. Almost all these previous studies about the counters deal

with asymptotic results. Also, most of them used the homogeneous Poisson assumption for

the pulse process, and renewal theory methods are the main analytic tool.

Pyke [46] and Takàcs [64] considered several renewal processes that are connected to

Type I and Type II counters, and derived the limiting distributions of observed counts. Kao

and Smith [30] studied the counter models given by Pyke, and approached the problem by

assuming a phase type interarrival distribution. Albert and Nelson [2] gave the confidence

5



intervals for the mean rate of such counters.

Bentley [4] assumed that the arrivals followed a homogeneous Poisson process, and stud-

ied the limiting distributions of the dead and live periods of the detector. The expected

length of the process being in the dead period was also calculated. Yu and Fessler [67] ob-

tained the first two moments of the observed counts for single photon counting problem for

Type I and Type II counters. They also defined a Type III counter, in which two photons

arrive within dead period of each other, then neither photon will be recorded; they obtained

the exact mean and variance for Type III counters.

Driscoll et. all [14] dealt with the photon counting problem by considering “zero counts”

and “others”. They compared the results with that of “zero counts”, “one counts”, and

“others” on their companion paper [15]. The images and their signal-to-noise ratios (SNR)

were considerably better when using the one counts also. However, they did not compute

the distribution of the observed counts; we turn to that problem in the next section.

2.2 TWO-PHOTON LASER SCANNING MICROSCOPY

2.2.1 Introduction

One of the most significant biomedical research tools in cellular and systems biology is opti-

cal microscopy. Many variants of microscopy have been developed to obtain high-resolution

and high-sensitivity three-dimensional images [18]. One of these, of particular relevance for

deep imaging of brain structure and function, involves pulsed laser light and is dominated by

two-photon laser scanning microscopy (TPLSM, [13, 25]). Two-photon microscopy enables

imaging of living tissue by minimizing the confounds of scattered and absorbed light, up to

a depth of about one millimeter below the surface of the brain and with sub-micrometer res-

olution. Beyond this, pulsed laser light is a powerful tool to image tissue based on harmonic

generation and vibration spectra through coherent anti-Stokes Raman spectroscopy [55].

TPLSM is a valuable tool for biological imaging for living tissues, involves the periodic

excitation of molecules by hundred-femtosecond laser pulses, followed by the emission of
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Figure 1: Schematic of two-photon microscopy.

fluorescent light before the arrival of the next pulse [14, 65]. In TPLSM, the use of a pulsed

laser is necessary to achieve the extreme electric fields that lead to two-photon absorption.

Absorption can only occur within the lifetime of the pulse, which is significantly less than

one picosecond. In contrast, the time between absorption of an excitation photon and the

emission of a photon, called the fluorescence lifetime, is on the order of a few nanoseconds.

Thus, the laser pulse provides a well defined start signal for the emission process. Detection

of a single photon is a mature process [59]. However, every detector and associated threshold

electronics has a dead period, during which the composite system is insensitive to the arrival

of an additional photon. The dead period is typically on the order of one nanosecond and

depends on details of the detector and electronics.
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2.2.2 How TPLSM works.

Figure 1, from [61], demonstrates that TPLSM is a complicated engineering feat. Here, we

describe the main features that are relevant for us from a modeling perspective. First, the

laser excites N molecules on the surface that is to be imaged. Each of those molecules emits

photons. Next, these photons are recorded by the detector, and the resulting photon counts

are used to construct the image. In another words, when the laser beam reaches to the atom

of the tissue: see Figure 2, it relese photons each which has different frequencies: see Figure

3. Thus, the photons arrives at the detector at different times.

!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!

Laser&Beam&

Two&Photon&
Microscope&

Atom&

Detector&Photons&

X1&

X2&

X3&

X4&

Atom&

Figure 2: First step of TPLSM mechanism

2.2.3 Effect of dead period on photon counting process

When recording photons, the detector has a dead period. Thus, if a second photon is emitted

during the fluorescence lifetime, the device will not detect it if it arrives too soon after the

first photon. This process continues so that detection of a second photon leads to a second

dead period, etc. Since dead periods lead to an undercount of the number of emitted photons,

it is of interest to develop statistical methods for the photon counting problem with dead
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Figure 3: Second step of TPLSM mechanism

time.

Figure 4 below is a depiction that illustrates how the dead period of TPLSM affects the

photon counting process. Suppose that 6 photons emitted at times t1 to t6. The detector

would have recorded all these emitted photons if it did not have a dead period after the

registration of each photon. Thus, this would have been a simple point process to analyze.

!

X1# X2# X3# X4# X5# X6#

t1! t2! t3! t4! t5! t6! photon!arrivals!

Figure 4: No dead period.

9



However, after each photon arrival, the detector of the machine has a dead period. In

Figure 5, it can be seen that X2, X4, and X5 arrived at the detector during its dead periods.

We end up recording D = 3 out of N = 6 emitted photons; this undercount in turn results

in degraded images. As we shall see below, the existence of dead periods for TPLSM makes

the photon counting process challenging.

!

X1# X2# X3# X4# X5# X6#

t1! t1+δ! t3! t3+δ! t6! t6+δ!
photon!arrival!
with!dead!time!

Figure 5: Dead periods produced while recording photons.

2.3 EARLIER EFFORTS

To avoid the problem of undercounts, investigators engineered the laser power to obtain

small photon emission rates so that each emitted photon is recorded (with very high prob-

ability) before the next photon arrives. In earlier work, Driscoll et al. [14] collected the

data by assuming that the rate of emitted photons is small and that the dead periods are a

known constant. They used low laser intensities to ensure that the concentration of excited

molecules, and thus the rate of emitted photons was small. At that time, the distribution of

D, the number of detected photons, was only partially known, so they worked with counts

grouped in the categories of zero, one, and greater than one. They compared the images and

signal-to-noise ratios (SNR) by considering zero counts only, zero and one counts only, and

analog methods; for analog methods the total photocurrent is measured as opposed to the

arrival times of individual photons. They showed that the use of zero and one counts gave

considerably better images than the use of zero counts only; we expect further improvement

with the use of higher counts. Hence, we must use higher rates of photon emission, and
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detect or infer as many photons as possible to get better images.

2.4 CHAPTER SUMMARY

In this chapter, we give brief overview of the problem that motivated us to pursue the

distribution of photon counts with dead time. We first address the problem of photon

counting with dead time in TPLSM. By using a simple example, we demonstrate the effect

of the dead period on the counting process. From this example, we can see that the dead

period makes the modeling of the photon counts more complicated. We then summarized the

literature on the earlier efforts in modeling photon counts when there are dead periods. This

literature review indicates that there are no appropriate probability calculations and resulting

statistical models that address the dead period, resulting in bad image quality. Therefore,

it is clear that a mathematical model that relates the number of photons recorded and the

actual emitted photon counts is needed. In the next chapter, we pursue this model.
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3.0 THE DISTRIBUTION OF THE NUMBER OF PHOTONS DETECTED

Our main aim is to obtain the distribution of D, the number of observed photons. We

use two approaches to compute it. In the first approach, the process is represented by an

inhomogeneous Poisson process, and the calculations are done accordingly. In the second

approach, the problem is solved by obtaining the marginal distribution of D from the condi-

tional distribution of D given N , the total number of emitted photons. We give the details

of the second approach because it leads to several interesting polynomial identities using the

marginal distribution of D derived from the first approach.

This chapter is outlined as follows. We start with our assumptions and notation. Sec-

ond, we describe the details of our model, then derive the distribution of D, and study its

properties. Third, we give details of maximum likelihood estimates of the key parameters,

namely the emission rate and the dead period, along with their estimated standard errors;

we also compare the estimates’ standard errors with different degrees of grouping. We use

simulated data and paper fiber data to illustrate the performance of our model. We end this

chapter with a short summary of our work.

3.1 NOTATION AND ASSUMPTIONS

In this work, we make distributional assumptions as in past studies, namely, the Poisson

assumption for the pulse process and exponentially distributed fluorescence lifetimes as in

Oheim et al. [43].

Let N represent the number of excited molecules. We assume that N is a Poisson random

variable with mean α, and let t1, . . . , tn be the photon arrival times. When N = n ≥ 1, let

12



W1, . . . ,Wn be the waiting times for the photon emissions, which are independent exponential

random variables with time constant τ nanoseconds (ns). The order statisticsW(n:1) < . . . <

W(n:n) represent the waiting times for the emission of the photons.

Suppose that the photon detector has a dead period of ∆ ns; the photons that are emitted

during a dead period do not affect that dead period, so this model is a Type I counter. For

our computations below, it is convenient to use a clock with units in terms of the time

constant, so we use the rescaled dead period δ = ∆/τ , and assume that τ = 1 without

loss of generality. Although the observation period T is finite in our application, it is often

large enough that we can assume that it is infinite to get good approximations: see [14]. In

Chapter 4 we will study the finite time horizon case, and assess how large T should be for

the infinite horizon approximation to be good. Let D be the number of photons detected.

In order to express the probabilities P (D = d) in a compact form, we define the following

quantities: for k = 1, 2, · · · , let

Ak = Ak(δ) = (1− e−kδ), Bk = Bk(x) = 1 + x+ · · ·+ xk

{k} =

(
k

2

)
and ζk = ζk(α, δ) = e−αe

−kδ
.

We also use the convention that the product
∏b

k=aAk = 1 whenever b < a.

3.2 DERIVING THE DISTRIBUTION OF D

We have used two different approaches to derive the distribution of D. When N = n ≥ 1, let

W(n:1) < . . . < W(n:n) be the ordered waiting times. The model that we have just described

is equivalent to an inhomogeneous Poisson process N(t) with intensity λ(t) = αf(t) = αe−t

and cumulative intensity Λ(u) = α(1− e−u): see Daley and Vere-Jones [12]. Thus, the order

statistics of the arrivals W(n:1), . . . ,W(n:n) have the same distribution as the ordered points

from the inhomogeneous process when N(∞) = n. We first use the inhomogeneous Poisson

process formulation to compute the distribution of D. After that, we give a lengthy analysis
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of the order statistics formulation to derive this distribution again; this alternative approach

yields several interesting polynomial identities.

3.2.1 First approach

This approach represents the counter process as the inhomogeneous Poisson process N(t)

with intensity λ(t) = αf(t) = αe−t and cumulative intensity Λ(u) = α(1−e−u). We compute

the first few probabilities P (D = d) to illustrate our general approach. The notation defined

in the previous section is used to express these probabilities in a compact form.

Since [D = 0] = [N = 0], we have

P [D = 0] = P [N = 0] = e−α = ζ0.

The event [D = 1] occurs when there are no emissions in some interval [0, t), one emission

in the interval [t, t+ dt), and no emissions beyond the dead period [t+ δ,∞]: see Figure 6.

t t+ dt t+ δ

0
dead

period1 0

Figure 6: A depiction of [D = 1].

The probability of no emissions in [0, t) is

exp

(
−
∫ t

0

αe−xdx

)
= e−α(1−e

−t);

the probability of an emission in [t, t + dt) is αe−tdt; and the probability of no emissions

after the dead period is

exp

(
−
∫ ∞
t+δ

αe−xdx

)
= e−αe

−(t+δ)

.
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Putting these pieces together and using the substitution x = αe−t, we have

P [D = 1] =

∫ ∞
0

e−α(1−e
−t)e−αe

−(t+δ)

αe−tdt = e−α
∫ α

0

ex(1−e
−δ)dx

=
e−αe

−δ − e−α

1− e−δ
=

ζ1
A1

− ζ0
A1

.

Similarly, the event [D=2] is depicted in Figure 7.

t t+ dt t+ δ u u+ du u+ δ

0 1
dead

period 0 1
dead

period 0

Figure 7: A depiction of [D = 2].

For the first case, the intervals with an observation [t, t+ dt) and [u, u+ du), has probability

αe−tdt, and αe−udu, respectively. For the second case, the intervals with no emissions are

[0, t) ∪ [t+ δ, u) ∪ [t+ δ,∞),

each of these intervals has, respectively, the following probabilities

exp

(
−
∫ t

0

αe−xdx

)
= e−α(1−e

−t1 ),

exp

(
−
∫ u

t+δ

αe−xdx

)
= e−α[e

−(t+δ)−e−u],

and

exp

(
−
∫ ∞
u+δ

αe−xdx

)
= e−αe

−(u+δ)

.

Putting these together, we have

P [D = 2] =

∞∫
t=0

∞∫
u=t+δ

e−α(1−e
−t)α e−te−α(e

−(t+δ)−e−u)α e−ue−αe
−(u+δ)

du dt.

15



We first integrate with respect to u by substituting u = s+ t+ δ and then x = αe−s to get

∞∫
t+δ

e−α(e
−(t+δ)−e−u)e−αe

−(u+δ)

α e−udu = e−αe
−(t+δ)

e−(t+δ)
∞∫
0

eα[e
−(s+t+δ)−e−(s+t+2δ)]αe−sds

= e−αe
−(t+δ)

e−(t+δ)
α∫

0

ex[e
−(t+δ)−e−(t+2δ)]dx

=
e−α e

−(t+2δ) − e−α e−(t+δ)

A1

=
U2(t)− U1(t)

A1

where Um = e−α e
−(t+mδ)

. Next, we integrate with respect to t by substituting x = αe−t to get

P [D = 2] =

∞∫
0

e−α(1−e
−t)α e−t

(
U2(t)− U1(t)

A1

)
dt =

e−α

A1

α∫
0

(
exA2 − exA1

)
dx

=
ζ2 − ζ0
A1A2

− ζ1 − ζ0
A2

1

=
ζ2

A1A2

− ζ1
A2

1

+
e−δζ0
A1A2

.

Notice that, we combined the coefficients of ζ0 above. And for [D = 3] below, we combine

the coefficients of ζ0 and ζ1 thus:

P [D = 3] =
ζ3 − ζ0
A1A2A3

− ζ1 − ζ0
A2

1A2

+
ζ2 − ζ0
A2

1A2

− ζ1 − ζ0
A3

1

=
ζ3

A1A2A3

− ζ2
A2

1A2

+
e−{2}δζ1
A2

1A2

− e−{3}δζ0
A1A2A3

.

In general, for [D = d], combining the coefficients of ζ0, . . . , ζd−2 in similar expressions is

facilitated by the following key result, the proof of which is given in the Appendix.

Lemma 1. For d ≥ 1,

d−1∑
k=0

(−1)k+1 e−{k}δ

k∏
i=1

Ai
d−k∏
i=1

Ai

= (−1)d
e−{d}δ

d∏
i=1

Ai

. (3.1)

16



More generally, the event [D = d] is described by infinitesimal intervals with one observed

emission in each and intervals with no observations after the dead periods. For the first case,

an observation in [ti, ti + dti) has probability αe−tidti, for i = 1, . . . , d. For the second case,

the intervals with no emissions are

[0, t1) ∪

[
d−1⋃
i=1

[ti + δ, ti+1)

]
∪ [td + δ,∞).

The cumulative intensities for these intervals are

Λ[0, t1) =

∫ t1

0

αe−xdx = α(1− e−t1),

Λ[ti + δ, ti+1) = α[e−(ti+δ) − e−ti+1 ] for i = 1, . . . , d− 1,

and

Λ[td,∞) = αe−(td+δ).

Putting these together, we get

P (D = d) =

∞∫
t1=0

. . .

∞∫
td=td−1+δ

H(t1, . . . , td|α, δ) dt1 · · · dtd, (3.2)

where

H(t1, . . . , td|α, δ) = e−α(1−e
−t1 )

d−1∏
i=1

e−α[e
−(ti+δ)−e−ti+1 ]e−αe

−(td+δ)
d∏
i=1

αe−ti .

By applying Lemma 1 for the iterated integrals in (3.2), we get

Theorem 1. For d = 0, 1, . . ., the distribution of D is

pd = P (D = d) =
d∑

k=0

(−1)k
e−{k}δζd−k
k∏
i=1

Ai
d−k∏
j=1

Aj

. (3.3)
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Now that entire distribution of D is known, for TPLSM we can use all available photon

counts without grouping to construct the likelihood and make inferences about the parame-

ters (α, δ); in addition, we are no longer restricted to the use of low intensities. The expres-

sions for these probabilities are rather involved, but they satisfy a simple set of equations:

the first three are

ζ0 = p0, ζ1 = A1p1 + p0, ζ2 = A1A2p2 + A2p1 + p0.

The first equation gives us p0, which we can use with the second to get p1, which we can

then use to solve for p2. In general, we have

Corollary 1. The probabilities in (3.3) satisfy the recursions

ζd =
d∑
i=0

(
d∏

j=i+1

Aj

)
pd−i.

This result can be used for easy computation of the probabilities. Notice that the equa-

tions given in Theorem 1 and Corollary 1 can be represented in matrix notation: define the

vectors pd = (p0, . . . , pd)
′ and ζd = (ζ0, . . . , ζd)

′, so that p = Qdζ and ζ = Rdp, where

Qd =



1 0 0 . . . 0 0

− 1
A1

1
A1

0 · · · 0 0

1
A1A2

− 1
A2

1

1
A1A2

· · · 0 0
...

...
...

. . .
...

...

1
A1A2...Ad−1

− 1
A2

1A2...Ad−2

1
A2

1A2...Ad−3
· · · (−1)d−1

A1A2...Ad−1

(−1)d
A1A2...Ad−1Ad



Rd =



1 0 0 · · · 0 0

1 A1 0 · · · 0 0

1 A2 A1A2 · · · 0 0
...

...
...

. . .
...

...

1 Ad−1 A1Ad−1 · · · A1...Ad−1 0

1 Ad A1Ad · · · A1...Ad−2Ad A1...Ad−1Ad


.

The proof of Corollary 1 is in the Appendix. We show there that QdRd = I, once again

using Lemma 1.
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Corollary 1 also easily establishes the fact that distinct values of α and δ lead to distinct

values of the probabilities. Because of the one-to-one correspondence between {pk} and {ζk},

it is enough to show that distinct values of α and δ lead to distinct values of {ζk}. That is

trivial because of the relations ζ0 = e−α and ζ1 = e−αe
−δ

. Thus, these two parameters are

identifiable; we address the simultaneous estimation when we are making inference on the

underlying intensity paramter and the dead period.

3.2.2 Second approach

The second approach uses the equivalent representation which leads to a lengthy analysis of

the order statistics formulation. Here, using the same model and notation, we first condition

on N to derive the conditional distribution of D given [N = n] and then get the marginal

distribution of D.

Let W(n:1) < . . . < W(n:n) be the ordered waiting times when N = n ≥ 1. These order

statistics can be represented thus [11]:

W(n:k)
d
=
X1

n
+ · · ·+ Xk

n− k + 1
, (3.4)

where the Xk are independent exponential random variables with time constant 1. The first

few probabilities are easy. As before, because the observation period is infinite,

P (D = 0) = P (N = 0) = e−α.

Next, for N ≥ 1, write

P (D = d) =
∞∑
n=d

P (D = d|N = n)P (N = n) =
∞∑
n=d

Pn(D = d)P (N = n).

Using the lack of memory property of the exponential distribution, we have

Pn(D = 1) = P (W(n:n) ≤ W(1:n) + δ) = (1− e−δ)n−1;

and since the generating function of N is

E(uN) = e−α(1−u),
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we have

P (D = 1) =
∞∑
1

(1− e−δ)n−1P (N = n)

=
∞∑
0

(1− e−δ)n−1P (N = n)− P (N = 0)

1− e−δ

=
E(1− e−δ)N − e−α

1− e−δ
=
e−αe

−δ − e−α

1− e−δ
=

ζ1
A1

− ζ0
A1

.

For larger values of d, we decompose the event (D = d). For the d-tuple κ where κ = κ(d) =

(k1, . . . , kd) with 1 = k1 < · · · < kd ≤ n, we observe W(k1) < · · · < W(kd) if and only if

Qκ
i =

 (W(ki+1−1) ≤ W(ki) + δ) ∩ (W(ki+1) > W(ki) + δ) if i = 1, . . . d− 1

(W(ki+1−1) ≤ (W(ki) + δ) if i = d

all occur.

By representation (3.4), for i = 1, . . . , d− 1, Qκ
i depends only on (Xki+1, · · · , Xki+1

), and

Qκ
d depends on Xkd+1, . . . , Xn; hence, the events {Qκ

i : 1 ≤ i ≤ d} are independent. By the

lack of memory property,

P (Qκ
d) = P (W(n) ≤ W(kd) + δ) = (1− e−δ)n−kd ;

and for d ≥ 2 and i = 1, . . . , d− 1,

P (Qκ
i ) =

 n− ki
ki+1 − ki − 1

 e−(n−ki+1+1)δ(1− e−δ)ki+1−ki−1.

Summing over all the d-tuples, we have

Pn(D = d) =
∑
κ

(1− e−δ)n−kd
d−1∏
i=1

P (Qκ
i ) (3.5)

= (1− e−δ)n−de−(n+1)(d−1)δ
d∑
i=2

· · ·
n−d+i∑

ki=ki−1+1

 n− ki
ki+1 − ki − 1

 ekiδ.

With this expression, we use

P (D = d) =
∞∑
d

Pn(D = d)P (N = n).
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to derive the marginal distribution of D. Before deriving the first few probabilities, we recall

the following notation in order to express the probabilities in a compact form:

Bk(x) = 1 + x+ · · ·+ xk for k = 1, 2, · · ·

and let Bk = Bk(e
−δ).

First, sum over kd in equation (3.5) to get P (D = 2).

n∑
kd=kd−1+1

(
n− kd

kd − kd−1 − 1

)
ekdδ =

n−kd−1−1∑
m=0

(
n− kd−1

m

)
e(m+kd−1+1)δ

= e(kd−1+1)δ(1 + eδ)n−kd−1 − e(n+1)δ (3.6)

= e2δBn−1
1 − e(n+1)δ for d = 2.

To get (3.6), we set m = kd− kd−1− 1 and then used the binomial theorem. Next, let d = 2,

and substitute k1 = 1. Then the conditional probability for d = 2 is

Pn(D = 2) = (1− e−δ)n−2e−(n+1)δ[e2δBn−1
1 − e(n+1)δ] =

An2
A1A2

− An1
A2

1

.

Notice that this expression is zero for n = 1 (see Lemma 3 below). Thus, we have

P (D = 2) =
∞∑
n=2

(
An2
A1A2

− An1
A2

1

)
e−ααn

n!
=
∞∑
n=2

(A2α)ne−α

n!A1A2

−
∞∑
n=2

(A1α)ne−α

n!A2
1

=
e−α

A1A2

[
e(A2α) − (A2α)1

1!
− (A2α)0

0!

]
− e−α

A2
1

[
e(A1α) − (A1α)1

1!
− (A1α)0

0!

]
=

ζ2
A1A2

− ζ1
A2

1

+
ζ0
A1

(
1

A1

− 1

A2

)
=

ζ2
A1A2

− ζ1
A2

1

+
e−δζ0
A1A2

.

Note that Lemma 1 appears in the calculation of the coefficient of ζ0.

Next, sum over kd, kd−1 in equation (3.5). Now we define m = kd−1 − kd−2 − 1 and use

the binomial theorem again to get

n−1∑
kd−1=kd−2+1

n∑
kd=kd−1+1

(
n− kd−1

kd−1 − kd−2 − 1

)(
n− kd

kd − kd−1 − 1

)
ekdδekd−1δ
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=
n−1∑

kd−1=kd−2+1

(
n− kd−1

kd−1 − kd−2 − 1

)(
e(kd−1+1)δB

n−kd−1

1 − e(n+1)δ
)
ekd−1δ

=

n−kd−2−2∑
m=0

(
n− kd−2

m

)[
e(2kd−1+3)δe2δmB

n−kd−2−m
1

B1

− eδme(n+kd−2+2)δ

]
= S1 − S2

where

S1 =
e(2kd−2+3)δ

B1

[
B
n−kd−2

2 −
(
n− kd−2

1

)
e2δ(n−kd−2−1)B1 −

(
n− kd−2

0

)
e2δ(n−kd−2)

]

and

S2 = e(n+kd−2+2)δ

[
B
n−kd−2

1 −
(
n− kd−2

1

)
eδ(n−kd−2−1) −

(
n− kd−2

0

)
eδ(n−kd−2)

]
.

Then

S1 − S2 =
e(2kd−2+3)δB

n−kd−2

2

B1

− e(n+kd−2+2)δB
n−kd−2

1 −
(
n− kd−2

1

)
c1 −

(
n− kd−2

0

)
c0.

In this case, the coefficients ci of
(
n−kd−2

i

)
for i = 0, 1 can be generalized using the following

result, the proof of which is given in the Appendix.

Lemma 2. In the calculation of Pn(D = i) for i > 2, the coefficient cd−j+1 of
(
n−kd−i−1

d−j+1

)
for

j = 1, 2, · · · , d− 2 is

e[(d−1)n+(d−2)]δ


d−1∑
k=1

(−1)k
e{d−k−1}δ e−(j−1)(d−k)δBj

d−k−1
d−k−1∏
i=1

Bi

k−2∏
i=1

Bi

 = 0 (3.7)

and the coefficient c0 of
(
n−kd−i−1

0

)
is

e(d−1)(n+1)δ


d−1∑
k=1

(−1)k
e{d−k}δ

d−k−1∏
i=1

Bi

k−2∏
i=1

Bi

 = (−1)d−1
e(d−1)(n+1)δ

d−2∏
i=1

Bi

. (3.8)
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Thus, c1 = 0 and c0 = e2δ(n+1)

B1
, by Lemma 2. This yields

S1 − S2 =
e(2kd−2+3)δB

n−kd−2

2

B1

− e(n+kd−2+2)δB
n−kd−2

1 +
e2δ(n+1)

B1

. (3.9)

For d = 3, kd − 2 = k1 = 1 so substitute this in (3.9) to get Pn(D = 3) as follows

Pn(D = 3) = (1− e−δ)n−3e−2(n+1)δ

[
e5δBn−1

2

B1

− e(n+3)δBn−1
1 +

e2δ(n+1)

B1

]
=

An3
A1A2A3

− An2
A2

1A2

+
An1e

−δ

A2
1A2

.

Note this time that this expression is zero for n = 1, 2 (see Lemma 3 below). By multiplying

the conditional probability of D = 3 given N = n with the marginal probability function of

N = n, we get P (D = 3) as follows

P (D = 3) =
∞∑
n=3

(A3α)n e−α

n!A1A2A3

−
∞∑
n=3

(A2α)n e−α

n!A2
1A2

+
∞∑
n=3

(A1α)n e−αe−δ

n!A2
1A2

=
ζ3

A1A2A3

− ζ2
A2

1A2

+
e−δζ1
A2

1A2

+
α2e−α

2!
h2 +

αe−α

1!
h1 + e−αh0

=
ζ3

A1A2A3

− ζ2
A2

1A2

+
e−{2}δζ1
A2

1A2

− e−{3}δζ0
A1A2A3

,

where

h0 = − 1

A1A2A3

+
1

A2
1A2

− e−δ

A2
1A2

,

h1 = − A3

A1A2A3

+
A2

A2
1A2

− A1e
−δ

A2
1A2

h2 = − A2
3

A1A2A3

+
A2

2

A2
1A2

− A2
1e
−δ

A2
1A2

Notice that Lemma 1 appears when we calculate h0 which is the coefficient of the ζ0 = e−α

term. The coefficients of αje−α

j!
for j = 1, 2, · · · , d − 1 are given in the following result, the

proof of which uses Theorem 1; we do not yet have a direct proof of it.

Lemma 3. For d > 1, the coefficient of αne−α

n!
is

hn =
d−1∑
k=0

(−1)k
e−{k}δAnd−k
k∏
i=1

Ai
d−k∏
i=1

Ai

=
d−1∑
k=0

hnk = 0 for n = 1, 2, . . . , d− 1 (3.10)

To get P (D = d), sum over all kd, kd−1, · · · k1 and do the calculation in the same manner by

using (3.1), (3.7), (3.8), and (3.10) at each step to get the result stated in Theorem 1.
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3.3 FIRST TWO MOMENTS OF D

We now compare the mean µ and variance σ2 of D with those of N , the actual Poisson(α)

number of photons emitted. The expressions for these features are not tractable but are

easy to compute using Corollary 1. We also compare the Fano factor FF = σ2/µ. They

all are depicted in Figure 8. It can be seen there that the mean is smaller than α; the
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Figure 8: Graph of the (a) mean, (b) variance, (c) Fano factor.

variance is even smaller, so that the Fano factor is less than 1, indicating that the D point

process is more regular than a Poisson process. In addition, as the dead period gets larger

the moments of D gets further away from the moments of Poisson process. These results are

expected because of the dead period.

3.4 INFERENCE ABOUT THE UNDERLYING INTENSITY PARAMETER

We first estimate both (α, δ) simultaneously. We then study inference about α by assuming

that the dead period δ is known.
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3.4.1 MLE

In applications, when we are unsure about the value of δ, we must estimate both (α, δ) si-

multaneously given the observed counts D = (D1, . . . , Dm). Write pk = pk(α, δ), and assume

that the observations are independent with common distribution (3). The log-likelihood for

(α, δ) is

lnL(α, δ|D) = ln

(
m

m0, · · · ,mC

)
+

K∑
k=0

mk ln pk(α, δ), (3.11)

where K = max1≤i≤mDi, and mk =
∑m

i=1 I(Di = k). We use standard Newton-Raphson

methods to get the maximum likelihood estimates (MLEs) (α̂, δ̂) and approximate standard

errors from the Fisher information matrix Î(α̂, δ̂) using second differences [11]. For numerical

purposes, it is more convenient to use the parametrization (η, θ) = (e−α, e−δ), which restricts

the search to the unit square [0, 1]2; of course, the MLEs transform easily, as does the Fisher

information matrix. In our discussion below we use the original parametrization.

Next, assuming δ is known, and that the observations are independent with common

distribution (3), we turn to the problem of estimating the underlying Poisson intensity

parameter α given the observed counts D = (D1, . . . , Dm) using standard methods to get

the maximum likelihood estimate and its approximate standard error. Then log-likelihood

in (3.11) becomes

l(α) = lnL(α|D) = ln

(
m

m0, · · · ,mK

)
+

K∑
k=0

mk ln pk(α), (3.12)

where K = max1≤i≤mDi, and mk =
∑m

i=1 I(Di = k). Unless K = 1, the log-likelihood is not

tractable, so we use Newton-Raphson iterations to compute the MLE α̂ and its estimated

standard deviaton ŝ(α̂) using the observed Fisher information (see Efron and Hinkley (1978)).

The Newton-Raphson steps are

αn+1 = αn −
l′(α)

l′′(α)
, where l′(α) =

dl(α)

dα
and l′′(α) =

d2l(α)

dα2
.

Thus, the standard error of α̂ is

ŝ(α̂) =
1√
mÎ(α̂)

.
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In this section, our main aim is to estimate the underlying intensity parameter α since its

estimate is used to get an estimate of the SNR =
√
α under our model assumptions. There-

fore, summaries for the δ known case is summarized in the rest of this section. When there

is doubt about the magnitude of the dead period, we estimate both (α, δ) simultaneously:

see Section 3.4.1.2.

3.4.1.1 Simulated data

The details of the R code used for our simulations are in the Appendix. One run using the

true values α = 2, δ = 1, m = 100, yielded the following counts: m0 = 5, m1 = 50, m2 = 34,

m3 = 11, mj = 0 for j ≥ 4. The estimated standard deviation of α̂ is based on the observed

Fisher information: Î(α̂) = 0.16. Thus, the standard error of α̂ is

ŝ(α̂) =
1√
mÎ(α̂)

= .25.

Table 8 below is an illustration of Newton Raphson steps when maximizing (3.12).

Table 1: Newton Raphson iterations

Iteration 0 1 2 3 4 5 6

αn 0.50000 0.86593 1.33038 1.73799 1.96664 2.05825 2.08968

Iteration 7 8 9 10 11 12 13

αn 2.09989 2.10314 2.10418 2.10451 2.10461 2.10464 2.10465

Figure 9 depicts the log-likelihood which shows that a quadratic approximation is good near

the MLE.

3.4.1.2 For the paper fiber data

Our colleagues David Kleinfeld and Philbert Tsai of the Physics Department at UC San

Diego provided count data by imaging filter paper under several power settings: 20%, 30%,

40%, 50%, 75%, 100%, which represent the percent (of maximum) laser power used in each
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Figure 9: Log-likelihood plot.

run. When processing the filter paper data under each power setting, the pixel dwell time

for each data point is 1.6 microseconds and the laser repetition rate is approximately 76

megahertz. This yields a maximum count of 122 laser pulse triggers per pixel. The resulting

data sets consist of fluorescence taken from 400-by-400 pixel frame which yields 160,000

unique points along a line through the sample, with the line repeated approximately 50

times. Therefore, we have 160,000 columns for each of which represents 50 repeated trials

of data taken from one particular position in the sample.

For illustrative purposes, we use the data from the 20% power setting. In this case, the

majority of pixels had 0 counts, indicating dark regions; in the brighter regions, the counter
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recorded 1 photon most of the time. The number of 2 counts were considerable even in this

low power setting, and there were relatively few 3-or-more counts. Under this low power

setting, for each pixel we use the model (3.11) to estimate (αi, δi) simultaneously for pixel

i. The majority of the estimates of δi were between 1.0 to 1.5 ns, with a median value of

approximately 1.5 ns. Thus, we assume here that the dead period is constant across all

pixels, so we set δi ≡ 1.5 to estimate αi.

In the dark regions, there were no photon arrivals at all. For such cases, we set α̂ = 0.

For pixels which had at least one photon (among the approximately 122 trials) the range

of α̂ varies from (.001, 3.159). The smaller α estimates correspond to the dark part of the

image and the higher α values correspond to the brighter regions.

3.4.2 Fisher information

We now turn to the problem of obtaining the standard error of the parameter estimates.

The earlier papers [14, 15] used the information only about 0 counts and 0 and 1 counts and

compared the Fisher information for them. Since the the distribution of D was not known

in that study, they used grouping as follows to get the Fisher Information:

• 0 counts and ≥ 1 counts (I0 = its Fisher information)

• 0 counts, 1 counts, and ≥ 2 counts (I1 = its Fisher information)

They reported that grouping the data into three groups led to a large improvement in

image quality because I1 is much larger than I0. We can see that grouping in effect creates

incomplete data which results loss of information. Thus, the Fisher information grows as we

add more actual (as opposed to grouped) counts in the original data.

When estimating (α, δ) simultaneously, the expected Fisher information is

I(α, δ) = −E [H(α, δ)] = −E

∂2l(α,δ)∂α2

∂2l(α,δ)
∂α∂δ

∂2l(α,δ)
∂α∂δ

∂2l(α,δ)
∂δ2

 ,
where H is the Hessian matrix of the log-likelihood. The corresponding observed Fisher

information is

Î(α̂, δ̂) = −H(α̂, δ̂) = −

∂2l(α̂,δ̂)∂α2

∂2l(α̂,δ̂)
∂α∂δ

∂2l(α̂,δ̂)
∂α∂δ

∂2l(α̂,δ̂)
∂δ2

 ,
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where the complete log-likelihood is given in (3.11).

When estimating α assuming that δ is known, the expected and observed Fisher infor-

mation are, respectively,

I(α) = E [−l′′(α)] and Î(α̂) = −l′′(α̂),

where the complete log-likelihood is given in (3.12).

3.4.3 Loss of information due to grouping

Now that we know the general formula for the distribution of the D, we can use this to

derive the Fisher Information of the complete data, and it is given in (3.12). As stated in

McLachlan and Krishnan [38], grouping the data leads to loss of information; in this section

we use their notation. Let X represent the complete data, and Y represent the grouped

(incomplete) data. Let K represent the conditional distribution of Y given X . Because the

complete data log-likelihood can be written as

lnLinc(α) = lnLc(α)− lnK(d|α),

the expected Fisher information is

Iinc(α) = Ic(α)− Im(α; d),

where Iinc(α) is the incomplete information, Ic(α) is the complete information, and Im(α; d)

is the missing information.

Now suppose that we categorize the data into k + 1 groups: 0, 1, · · · , k counts and all

greater counts collapsed into the ≥ k group. The monotonicity of the information follows

from the fact that Ik ≤ Ik+1, where Ik is the information by based on k groups. Here, Ik is a

collapsed version of Ik+1. Since the missing information for k+ 1 group is smaller than that

of k groups, the monotonicity follows.
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3.4.3.1 Simulated data

In this section, we examine how the observed Fisher information changes by estimating I0,

I1, and I2. For this purpose, data are simulated by using δ = 1, α = 2, 2.2, . . . , 3.0, and total

sample size m = 100 for each case. Let m0 be the total number of 0 counts, m1 be the total

number of 1 counts, m2 be the total number of 2 counts, and m3+ = 1−m0 −m1 −m2 be

the total number of ≥ 3 counts. Thus, the incomplete log-likelihood is

linc(α) = lnL(α|D) = c+
2∑

k=0

mk ln pk(α) +m3+ ln p3+(α)

where

c = ln

(
m

m0,m1,m2,m3+

)
and p3+(α) = 1− p0 − p1 − p2.
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Figure 10: Fisher Information for different groupings.
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In Figure 10, we plot the Fisher information for three different groupings: the black curve

is for I0, the red curve is I1, and the green curve is I2. Notice that there is a large increase

in going from I0 to I1, and a much smaller increase to I2. We will see later that even this

smaller improvement in Fisher information leads to improvement in the SNR: see Figure 12.

Next, if we were to study a the finer grouping with counts 0, 1, 2, 3, and 4+ and redo

these calculations, the Fisher information I3 would be quite close to I2. The reason is that

when small α values are of interest, the probabilities p3, p4, · · · are very small, and so we do

not gain much information even if we consider additional counts. Thus, we only consider

grouping on 0, 1, 2, and ≥ 3 in this study.

For the simulated data in Section 3.4.1.1, using the grouping 0, 1, 2, and 3+, the expected

Fisher information is Iinc(α̂) = 25.85 and the observed Fisher information is obtained as

Î(α̂) = 37.89. Following the recommendation of Efron and Hinkley [16], we use the observed

Fisher information result to get the standard error of α̂.

3.4.3.2 Paper fiber data

The paper fiber data sets consist of fluorescence taken from 400-by-400 pixel frame which

yields 160,000 unique points along a line through the sample, with the line repeated ap-

proximately 50 times. Therefore, we have 160,000 columns for each of which represents 50

repeated trials of data taken from one particular position in the sample. For illustrative

purposes, we use the data from the 20% power setting. In this case, the majority of pixels

had 0 counts, indicating dark regions; in the brighter regions, the counter recorded 1 photon

most of the time. The number of 2 counts were considerable even in this low power setting,

and there were relatively few 3-or-more counts.

In particular, we focus on comparing estimates of αi from various groupings of counts

because their apparatus had difficulty in distinguishing among counts higher than 3. Let

mi+ =
∑

j≥imj be the number of trials with at least i photon counts. Previous work [14]

compared the grouping (m0,m1+) with (m0,m1,m2+). Figure 11 depicts the estimates of αi

based only on the zero, one, and two-or-more count summaries. Figure 12 summarizes the

differences in estimates of αi between the grouping (m0,m1,m2+) against (m0,m1,m2,m3+).

We note that even though there are relatively few three-or-more counts, all of the estimates
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Figure 11: Contour plot of α̂i estimates based on (m0,m1,m2+)

for the latter grouping are at least as large as for the former groupings. In the lighter regions

the increase in the estimates of αi is considerably larger.
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Figure 12: Contour plot of improvement in α̂i estimates

3.5 CHAPTER SUMMARY

In this chapter, our main aim is to derive a mathematical model that relates the number

of photons recorded and the actual emitted photon counts is needed. In particular, we

derive the exact distribution of D, the number of photons deteced by using two equivalent

approaches. We assumed an infinite observation horizon and a fixed dead period for both of

them. Using this model, we are primarily interested in estimating the underlying intensity

parameter because its estimate determines the intensity of a single pixel in an image, and it

also gives a measure of the SNR. Therefore, we turn to inference on the underlying intensity

Poisson parameter (α) and standardized dead time (δ) of the mechanism. Then, we relate our
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results to the more general principle of loss of information due to grouping. Next, we used our

model on simulated data. Finally, our collaborators extended earlier work by modifying the

digital counting electronics used in Driscoll, et al. [14] so that counts could now be grouped

in the categories of zero, one, two, three and greater than three. Their data were obtained

using higher laser intensities which yield higher emission intensities, or higher Poisson rates

α. They initially collected the data on paper fiber for us to get the rescontructed images

based on our method. Currently, our collaborators are working on getting us the data on

other applications. All proofs of the results presented in this chapter are in the Appendix.
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4.0 MODEL EXTENSIONS

In Chapter 3, we developed our model assuming exponential waiting times assumption and

an infinite observation period. Our aim in this chapter is to investigate the effect of the

variants of these assumptions that are of practical interest. First, the experiments have a

finite time horizon T , so it is of interest to know how large T must be in order for the infinite

horizon results are good approximations. Next, although exponential waiting times are well

supported by theoretical considerations, it is useful to know the effect upon our results of

plausible other waiting time distributions, specifically the gamma family. In this chapter,

we study these two issues.

4.1 FINITE TIME ASSUMPTION

Earlier, we assumed that the observation period is infinite to derive the distribution of D. In

this section, we assume that the observation period is a finite horizon, [0, T ], because actual

experiments are of course finite length. The calculations for finite time are considerably more

complicated because of the possibility of an emission close to T which leads to a truncated

dead period. Thus, we only provide details for d ≤ 2 and use numerical calculations to

compare with the infinite horizon results.

4.1.1 P (D = d) for finite horizon based on approach in Section 3.2.1

We use the same assumptions and notation as in Section 3.2.1. If there is no photon arrival

to the detector before our observation period T , then we would have [D = 0]. Thus, we can
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calculate the probability of this event as

P (D = 0) = exp

(
−
∫ T

0

αe−xdx

)
= e−α(1−e

−T ).

There are two possible ways to record a single photon. One way is that the first dead

period ends before the observation period, T : see Figure 13. In this case, the event [D = 1]

occurs before time T and there is no emission between the end of the dead period and T .

t t+ dt t+ δ T

0
dead

period1 0

Figure 13: First way to record a single photon when the observation period is finite.

Therefore, the probability of each these intervals given in Figure 13:

• no emissions in [0, t) is

exp

(
−
∫ t

0

αe−xdx

)
= e−α(1−e

−t);

• an emission in [t, t+ dt) is αe−tdt

• no emissions after the dead period is

exp

(
−
∫ T

t+δ

αe−xdx

)
= e−αe

−(t+δ)

eαe
−T
.

Note that the first photon must arrive at the detector before time T −δ in order for t+δ < T

in Figure 13. Thus, 0 < t < T − δ.

Putting these pieces together and using the substitution x = αe−t, we have the proba-

bility of the first way, fw, as

fw = eαe
−T
∫ (T−δ)

0

e−α(1−e
−t)e−αe

−(t+δ)

αe−tdt = eαe
−T
e−α

∫ α

αe−(T−δ)
ex(1−e

−δ)dx

=
e−α(e

−δ−e−T ) − e−α(1−e−(T−δ))

1− e−δ
. (4.1)
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The second way of recording a single photon is emitted close to T so that its dead period

exceeds T : see Figure 14.

t t+ dt T

0
dead

period1

Figure 14: Second way to record a single photon when the observation period is finite.

The probability of each of these intervals given in Figure 14:

• no emissions in [0, t) is

exp

(
−
∫ t

0

αe−xdx

)
= e−α(1−e

−t);

• an emission in [t, t+ dt) is αe−tdt.

This happens if a photon arrives after time T − δ, so that T − δ < t < T . Thus, the

probability of second way, sw, is

sw= =

∫ T

(T−δ)
e−α(1−e

−t)αe−tdt = e−α
∫ αe−(T−δ)

αe−T
exdx = e−α(1−e

−(T−δ)) − e−α(1−e−T ). (4.2)

By summing (4.1) and (4.2), we get the probability of recording one photon:

P [D = 1] = fw + sw (4.3)

=
e−α(e

−δ−e−T ) − e−α(1−e−(T−δ))

1− e−δ
+ e−α(1−e

−(T−δ)) − e−α(1−e−T ),

which agrees with the formula we derive below using our second approach. Notice that as

T →∞, the expression in (4.3) tends to

ζ1
A1

− ζ0
A1

.

We expect that the probability in (4.1) is much larger than that in (4.2). We now want

to explore the effect of the probability of seeing a photon very close to T , (4.2), on the
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probability of recording one photon, (4.3). In Table 2, we assumed δ = 1, and compare the

probabilities of these two cases.

Table 2: Comparison of equation 4.1 with equation 4.2

T=2 T=4 T=6 T=8 T=10

α = .5
for 4.1 .255 .345 .355 .356 .356

for 4.2 .080 .010 .001 0 0

α = 1.5
for 4.1 .503 .556 . 558 .558 .558

for 4.2 .114 .011 .001 0 0

α = 2.5
for 4.1 .559 .513 .502 .501 .501

for 4.2 .009 0 0 0 0

From this numerical example, we can see that (4.2) is negligible, in which case (4.3) is

approximated thus:

P (D = 1) ' e−α(e
−δ−e−T ) − e−α(1−e−(T−δ))

1− e−δ
, (4.4)

and as T →∞, we also have (4.4) tends to

ζ1
A1

− ζ0
A1

.

The depiction of the event [D=2] is more complicated. We again have two possible ways

of recording two photons:

• First case: the second dead period ends before T ;

• Second case: the second dead period exceeds T .

In the first situation, we record two photons if no photon emission in [0, t); a photon emission

in [t, t+dt); no emission in [t+δ, u); a photon emission in [u, u+du); no emission in [u+δ, T ).

Notice here that 0 < t < T − 2δ and t < u < T − δ. By combining the probabilities for these

intervals, we get the probability of the first case as

(T−2δ)∫
t=0

(T−δ)∫
u=t

(
1− e−αe−t

)(
e−αe

−(t+δ) − e−αe−u
)(

e−αe
−(u+δ) − e−αe−T

)
α2e−te−udt du. (4.5)
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In the second situation, we record two photons if there is no photon emission in [0, t); a

photon emission in [t, t+ dt); no emission in [t+ δ, u); a photon emission in [u, u+ du); and

the second dead period exceeds T . Notice here that the second arrival time must be close

to T , so this probability will also be small, but not as small as (4.2). However, we do not

pursue this calculation because it is quite involved.

4.1.2 Finite time assumption for approach in Section 3.2.2

We start with a Poisson(α) number of photons actually emitted and their arrivals following

exponential waiting times with parameter τ . As before, we rescale the dead period δ = ∆/τ ,

and assume τ = 1 without loss of generality. In Section 3.2.2, we used an alternate approach

to derive the distribution of D for an infinite observation horizon. Here we derive this for a

finite observation time period. Once again, we only do this for [D = 0] and [D = 1] explicitly;

we only indicate the steps need to get P (D = d) for larger d because the calculations are

very involved.

The case of P (D = 0) is fairly straightforward:

P (D = 0) = P (N = 0) + P (N ≥ 1,W(1) > T )

= P (N = 0) +
∞∑
n=1

P (N = n)P (W(1) > T )

= P (N = 0) +
∞∑
n=1

P (N = n)e−nT =
∞∑
n=0

P (N = n)e−nT

= E(e−NT ) = e−α(1−e
−T ).

However, the case of P (D = 1) already requires the computation of probabilities for many

configurations.

P (D = 1) =
∞∑
n=0

P (D = 1, N = n) =
∞∑
n=0

Pn(D = 1)P (N = n)

where

Pn(D = 1) = P (D = 1|N = n).

The configurations that lead to [D = 1] are the following.
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1. When no photon is emitted, n = 0, then obviously P0(D = 1) = 0.

2. When a single photon is emitted, n = 1, then it is recorded only if it arrives before T .

Thus, we have P1(D = 1) = P (W1 ≤ T ) = (1− e−T ).

3. When two photons are emitted, n = 2, the detector records only one photon if any of

the following disjoint events occurs:

• [W(1) ∈ (T − δ, T )] with probability

P (T − δ ≤ W(1) ≤ T ) = P

(
t− δ ≤ X1

2
≤ T

)
= e−2(T−δ) − e−2T = e−2T (e2δ − 1);

• [W(1) ≤ T − δ, W(2) ≤ W(1) + δ] with probability

P (W(1) ≤ T − δ,W(2) ≤ W(1) + δ) = P

(
X1

2
≤ T − δ,X2 ≤ δ

)
=

(
1− e−2(T−δ)

)
(1− e−δ);

• [W(1) ≤ T − δ, W(2) > T ] with probability

P (W(1) ≤ T − δ,W(2) > T ) = P

(
X1

2
≤ T − δ, X1

2
+X2 > T

)
=

∫ T−δ

0

2e−2xe−(T−x) dx

= 2e−2T
∫ T−δ

0

e−x dx = 2e−T
(
1− e−(T−δ)

)
.

Thus, P2(D = 1) is the sum of the probabilities of these events:

P2(D = 1) = e−2T (e2δ − 1) +
(
1− e−2(T−δ)

)
(1− e−δ) + 2e−T

(
1− e−(T−δ)

)
.

4. When at least three photons are emitted, n ≥ 3, the detector would record a photon if

one of the following disjoint events occurs:

• [W(1) ∈ (T − δ, T )] with probability

P (T − δ ≤ W(1) ≤ T ) = P

(
t− δ ≤ X1

n
≤ T

)
= e−nT (enδ − 1);
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• [W(1) ≤ T − δ and W(n) ≤ W(1) + δ] with probability

P (W(1) ≤ T − δ,W(n) ≤ W(1) + δ) = P

(
X1

n
≤ T − δ,

n∑
j=1

X(j)

n− j + 1
≤ X1

n
+ δ

)

= P [X1 ≤ n(T − δ)]P

(
n∑
j=2

X(j)

n− j + 1
≤ δ

)
=

(
1− e−n(T−δ)

)
(1− e−δ)n−1; (4.6)

• [W(1) ≤ T − δ and W(2) > T ] with probability

P (W(1) ≤ T − δ,W(2) > T ) = P

(
X1

n
≤ T − δ, X1

n
+

X2

n− 1
> T

)
=

∫ T−δ

0

ne−nxe−(n−1)(T−x) dx

= ne−(n−1)T
(
1− e−(T−δ)

)
; (4.7)

• [W(1) ≤ T − δ, W(j) ≤ W(1) + δ, W(j+1) > T ] for 2 ≤ j ≤ n− 1 with probability

P (W(1) ≤ T − δ, W(j) ≤ W(1) + δ, W(j+1) > T ]) = P (Y1 ≤ T − δ, Y2 < δ,
3∑
i=1

Yi > T )

where Y1 = X1/n has pdf ne−nx, and

Y2 =

j∑
i=2

Xi

n− i+ 1

has pdf

gY2(u) = (j − 1)

(
n− 1

j − 1

)
(1− e−u)j−2e−(n−j+1)u

because it has the same distribution as that of the (j − 1)st order statistic from a

sample size (n−1), and Y3 = Xj+1/(n−j) has pdf (n−j)e−(n−j)z. Thus conditioning

on Y1 and Y2, we finally get the probability

=

∫ T−δ

0

ne−nxP

(
n−1∑
k=j−1

Xk

n− k + 1
≤ δ,

n−1∑
k=j−1

Xk

n− k + 1
+
Xj+1

n− j
> T − x

)
dx

=

∫ T−δ

0

ne−nx
(∫ δ

0

gA2(u)e−(n−j)(T−u−x)du

)
dx

=

∫ T−δ

0

ne−nx
(
n− 1

j − 1

)
e−(n−j)(T−x)

∫ δ

0

(j − 1)(1− e−u)j−2e−udu dx

=

(
n

j

)
(1− e−δ)j−1e−(n−j)T (1− e−j(T−δ)). (4.8)
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Note that, in (4.8), if we set j = n, we get (4.6); if we set j = 1, we get (4.7); if we

set j = 0, we get 0.

Combining these terms, we get

Pn(D = 1) = e−nT (enδ − 1) +
n∑
j=1

(
n

j

)
(1− e−δ)je−(n−j)T (1− e−j(T−δ))

= e−nT (enδ − 1) +
1

(1− e−δ)

[
(1− e−δ + e−T )n −

(
(1− e−δ)e−(T−δ) + e−T

)n]
= e−nT (enδ − 1) +

[
(1− e−δ + e−T )n − e−n(T−δ)

]
(1− e−δ)

(4.9)

In fact, the expression (4.9) works for all n = 0, 1, 2, . . ..

Next, we use the generating function of a Poisson random variable

E(uN) =
∞∑
n=0

un P (N = n) = e−α(1−u)

to sum the series in (4.9) to get P (D = 1).

P (D = 1) =
∞∑
n=1

Pn(D = 1)P (N = n)

=
e−α(e

−δ−e−T ) − e−δe−α(1−e−(T−δ)) − (1− e−δ)e−α(1−e−T )

1− e−δ
(4.10)

The expression in (4.10) tends to the expression derived by using the infinite observation

time period:
e−αe

−δ − e−α

1− e−δ
=

ζ1
A1

− ζ0
A1

as T →∞.

Now we outline the approach to [D = 2]. When n ≥ 2, we record the first and kth

photons (k = 2, . . . , n) under the following configurations.

• T − 2δ < W(1) < T − δ, W(1) ≤ W(k−1) ≤ W(1) + δ, and W(1) + δ ≤ W(k) ≤ T ;

• W(1) < T − 2δ, W(1) ≤ W(k−1) ≤ W(1) + δ, and T − δ ≤ W(k) ≤ T ;

• W(1) < T − 2δ, W(1) ≤ W(k−1) ≤ W(1) + δ, W(k−1) + δ ≤ W(k) ≤ T − δ, and Lk

where Ln = Ω, Ln−1 = [W(1) > T ] ∪ [W(n) ≤ W(n−1) + δ],

and for k = 2, 3, . . . , n− 2,

Lk = [W(k+1) > T ] ∪ [W(n) ≤ W(k) + δ] ∪
(
∪n−1j=k+1[W(j) ≤ W(k) + δ] ∩ [W(j+1) > T ]

)
.

42



It is clear that the number of configurations increases considerably for calculating the prob-

abilities of higher photon counts. Since the computations of P (D = d) for d ≥ 2 are much

more cumbersome, we do not pursue these steps.

4.1.3 How large T should be?

We now assess how large T should be in order to use infinite observation time period as an

approximation for the finite horizon. We compare the probabilities P (D = 0) and P (D = 1)

under both assumptions. Recall that for the finite case,

P (D = 0) = e−α(1−e
−T ),

P (D = 1) =
e−α(e

−δ−e−T ) − e−δe−α(1−e−(T−δ)) − (1− e−δ)e−α(1−e−T )

1− e−δ
,

and for the infinite case

P (D = 0) = e−α and P (D = 1) =
e−αe

−δ − e−α

1− e−δ
.

Table 3: Value P (D = 0) under different model assumption

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=∞

α = .5 .729 .649 .622 .612 .609 .607 .607 .607 .607

α = 1 .532 .421 .387 .375 .370 .369 .368 .368 .368

α = 1.5 .387 .273 .240 .229 .225 .224 .223 .223 .223

α = 2 .282 .177 .150 .140 .137 .136 .136 .135 .135

α = 2.5 .205 .115 .093 .086 .084 .083 .082 .082 .082

α = 3 .150 .075 .058 .053 .051 .050 .050 .050 .050

43



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alpha=0.5

T

va
lu

e 
of

 p
0

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alpha=1.5

T

va
lu

e 
of

 p
0

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alpha=2.5

T

va
lu

e 
of

 p
0

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alpha=3.5

T

va
lu

e 
of

 p
0

1 2 3 4 5 6 7 8 9 10

Figure 15: Comparison of values of P (D = 0) under finite observation period assumption

(colored line) and infinite observation period (black line).

In Table 3, we compare the value P (D = 0) under finite and infinite observation period

assumption. From this table, we can see that as the observation period T grows, the prob-

ability of seeing nothing shrinks because the longer we wait the more likely we are to see a

photon. In addition to this, as T gets larger, P (D = 0) for the finite case tends to that for

the infinite case. And as α gets larger the value of P (D = 0) converges faster as T → ∞.

Figure 15 depicts the Table 3.
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Figure 16: Comparison of values of P (D = 1) under finite observation period (colored line)

and infinite observation period (black line).

Now, we do same study for values of P (D = 1); the results are summarized in Table 4.

We can conclude that when α ≤ 1 and observation period is small, we underestimate the

probability of seeing a photon: see Figure 16 for α = 0.5. This probability tends to that

for the the infinite observation case. For α > 1, the finite case over-estimates the value of

P (D = 1) if the observation period is small. However, its value gets closer to that of from

infinite case as we observe longer period of time. To sum up, from these tables, we can see

that it is reasonable to assume an infinite observation period because our collaborators use

T ≥ 8 ns.
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Table 4: When δ = 1, the value p1 under different model assumption

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=∞

α = .5 .271 .335 .350 .354 .356 .357 .357 .357 .357

α = 1 .469 .523 .519 .516 .514 .513 .513 .513 .513

α = 1.5 .613 .617 .582 .567 .562 .559 .559 .558 .558

α = 2 .718 .1652 .585 .559 .549 .546 .545 .544 .544

α = 2.5 .794 .650 .554 .520 .508 .503 .502 .501 .501

α = 3 .850 .625 .508 .468 .454 .449 .447 .446 .446

4.2 GAMMA WAITING TIMES ASSUMPTION

When N = n ≥ 1, the waiting times W1, . . . ,Wn for the emissions of the photons are assumed

to be Wi are independent exponential random variables with time constant τ nanoseconds

(ns). We then we use the rescaled dead period δ = ∆/τ , so we could assume that τ = 1

without loss of generality. We now change the assumption on the waiting times: suppose

that Wi are independent Gamma(k, 1).

To demonstrate the general approach we calculate the probabilities P (D = d) for d =

0, 1, 2, 3 under this new assumption using only our first approach given in Section 3.2.1.

Under this model setting, we have an inhomogeneous Poisson process N(t) with intensity

λ(t) = αf(t) = α
tk−1 e−t

Γ(k)
.

We also assume that the observation period is infinite. We use the same notation that as in

section 3.1. We also introduce the incomplete gamma function

M(t) =

∫ ∞
t

xk−1 e−x dx.

We also introduce new notation for the component probabilities depicted in Figure 6 and 7

in Section 3.2.1: pij is the probability of the jth interval for the case [D = i].
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Since [D = 0] = [N = 0], we have

P [D = 0] = P [N = 0] = e−α = ζ0.

The event [D = 1] is depicted in Figure 6. The probability of no emission in [0, t) is

p11(t, α, δ) = exp

(
−
∫ t

0

α
xk−1 e−x

Γ(k)
dx

)
= exp

(
−
∫ ∞
0

xk−1 e−x

Γ(k)
dx+

∫ ∞
t

α
xk−1 e−x

Γ(k)
dx

)
= exp

(
−α +

α

Γ(k)
M(t)

)
;

the probability of an emission in [t, t+ dt) is

p12(t, α, δ) = αf(t) = α
tk−1 e−t

Γ(k)
dt;

and the probability of no emission in [t+ δ,∞) is

p13(t, α, δ) = exp

(
−
∫ ∞
t+δ

α
xk−1 e−x

Γ(k)
dx

)
= exp

(
− α

Γ(k)
M(t+ δ)

)
.

By combining these terms, we get

P (D = 1) =

∞∫
0

p11(t, α, δ) p12(t, α, δ) p13(t, α, δ)dt.

Similarly, we obtain the probability of [D = 2] by multiplying the probabilities of each

interval in Figure 7:

p21(t, α, δ) = p11(t, α, δ), p22(t, α, δ) = p12(t, α, δ),

p23(t, u, α, δ) = exp

(
−
∫ u

t+δ

α
xk−1 e−x

Γ(k)
dx

)
= exp

(
α

Γ(k)
[M(u)−M(t+ δ)]

)
,

p24(u, α, δ) = α
uk−1 e−u

Γ(k)
du,

and

p25(u, α, δ) = exp

(
−
∫ ∞
u+δ

α
xk−1 e−x

Γ(k)
dx

)
= exp

(
− α

Γ(k)
M(u+ δ)

)
.
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Thus,

P (D = 2) =

∞∫
0

∞∫
t+δ

p21(t, α, δ) p22(t, α, δ) p23(t, u, α, δ) p24(u, α, δ) p25(u, α, δ)dudt.

Since these probabilities cannot be written in a compact form, we do not to include the

derivation of the [D = d] for d > 2. However, for d = 0, 1, 2, 3, we evaluated the probabilities

numerically for k = 1, 2, 3, 4 and (α, δ) = (2, 1): see Table 5 below. We include k = 1, the

exponential case, to verify our computation and to compare with various gammas.

Table 5: First four probabilities based on gamma assumption

gamma(1,1) gamma(2,1) gamma(3,1) gamma(4,1)

P (D = 0) .1353 .1353 .1353 .1353

P (D = 1) .4116 .3468 .3266 .3167

P (D = 2) .3362 .3273 .3167 .3101

P (D = 3) .0908 .1490 .1623 .1678

The first row of this table is independent of waiting time because when there are no

photons emitted, waiting times are irrelevant. The probability of recording a one or two

photons under gamma assumption is smaller than that for the exponential. On the other

hand, the probability of recording three or more than photons (which can be seen clearly

from table 6) under gamma waiting times is larger than that of exponential waiting times.

Next, we study the effect of the shape parameter of the gamma on P (D = d). For this

purpose, we used simulation to estimate the probabilities. Recall that as the shape parameter

k increases, the waiting time for a new photon to be emitted has longer expectation. Hence,

a new photon arrival to the detector has higher probability of being outside of the detector’s

dead period. That is why we are more likely to see higher photon counts as k gets larger.

This makes the probability of recording more than two photons increases with the increase

in k.
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To illustrate this we did a simulation, the details of which are given in the Appendix.

The results for the Poisson-Gamma model with α = 2, δ = 1, and k = .5, 1, 2, 4, 8, 16 are

summarized in Table 6.

Table 6: Probabilities for Poisson-gamma model

Gamma(k,1)

k=.5 k=1 k=2 k=4 k=8 k=16 Poisson(2)

P (D = 0) .1353 .1353 .1353 .1353 .1353 .1353 .1353

P (D = 1) .5317 .4181 .3561 .3244 .3087 .2957 .2707

P (D = 2) .2809 .3315 .3230 .3066 .2964 .2884 .1805

P (D = 3) .0473 .0993 .1432 .1632 .1660 .1725 .0902

P (D = 4) .0027 .0132 .0355 .0554 .0704 .0779 .0361

P (D = 5) .0001 .0006 .0045 .0118 .0177 .0229 .1203

P (D = 6) 0 0 .0004 .0012 .0032 .0046 .0034

P (D = 7) 0 0 0 .0001 .0003 .0006 .0009

From Table 6, we can see that as k increases, the waiting time for a new photon arrival

gets larger. We have a higher chance of detecting more photons because they are more

likely to arrive the detector after its dead period. Thus, we can conclude that the dead

period becomes less important as k increases because P (Gamma(k, 1) ≤ δ) → 0. Thus, as

the shape parameter gets larger, the limiting distribution tends to the original Poisson(α)

counts, which are given in the last column of Table 6.

Based on this simulation study, we see how the waiting times of the photon arrivals plays

a crucial role in this counting process. If the photons arrive too soon to the detector, they

have a high probability to be within the dead period. Longer waiting times make the effect of

the dead period on the counting process less important. In particular, longer waiting times

lead to smaller undercounts, which in turn allows us to capture the underlying counting

process more accurately.
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4.3 CHAPTER SUMMARY

In this chapter, we consider several extensions of our model assumptions and derive the

distribution of D under them. We first address the finite horizon assumption using our

two approaches from Chapter 3. In both cases, we only calculate explicitly P (D = 0) and

P (D = 1), and sketch the higher count cases because they are too involved. We also give an

approximation for P (D = 1) for the finite case, and assess its accuracy. We then compute the

probabilities for various values of T : our numerical work shows that when the observation

period is at least 8 ns, we can safely assume an infinite horizon instead of a finite one, leading

to simpler expressions for the probabilities. We next propose the gamma assumption for the

waiting times. We compare its performance with both exponential times and underlying

Poisson process. We conclude that as the shape parameter of the gamma gets larger, we

have actual Poisson counts as the limiting distribution.
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5.0 APPROXIMATING THE CONWAY-MAXWELL-POISSON

NORMALIZING CONSTANT

The Conway-Maxwell-Poisson distribution is a generalization of the Poisson distribution; it

is used to model both under-dispersed and over-dispersed data. This distribution involves

a normalizing constant which appears also in the moments and MLE calculations of the

parameters. Thus, there is no close form for the moments and MLEs, and accurate approxi-

mations of the normalizing constant are necessary. There have been some studies that have

described the computational schemes and handy approximations for the normalizing con-

stant. However, these approximations perform well only in some certain parameter ranges.

Therefore, in this chapter, we propose several new approximations for different parameter

ranges where the earlier approximations perform poorly.

We first describe the Conway-Maxwell-Poisson distribution, we then summarize the ear-

lier approximation. Next, we demonstrate the details of our approach. We end this chapter

by illustrating the performance of our approximation with a comparison of our approxima-

tions with the existing approximation [57].

5.1 CONWAY-MAXWELL-POISSON DISTRIBUTION

For modeling count data the Poisson distribution is widely used. However, in many ap-

plications the equality of the mean and variance of the Poisson is often too restrictive.

Overdispersion (underdispersion), where the variance is greater (less) than the mean, are

commonly encountered in count data [8, 48]; in such cases, the Poisson model can be a poor

fit. The Conway-Maxwell-Poisson family is a useful alternative in such cases. Conway and
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Maxwell [9] introduced it for studying queuing systems with state-dependent service rates.

The Conway-Maxwell-Poisson is a two-parameter family of distributions on the nonnegative

integers. Its parameters λ and ν model the intensity and the dispersion, respectively. Since

it has two parameters, it is flexible enough to fit a wide range of count data than the Poisson.

For integer k ≥ 0, the Conway-Maxwell-Poisson variate Y has the probabilities

P (Y = k|λ, ν) = C(λ, ν)−1
λk

(k!)ν
, where C(λ, ν) =

∞∑
k=0

λk

(k!)ν
.

The parameter space is

Θ = {(λ, ν) : λ > 0, 0 < ν ≤ ∞} ∪ {(λ, ν) : 0 < λ < 1, ν = 0}.

It can be seen that the series λj

(j!)ν
converges for any λ > 0 and ν > 0 because the ratio of

two sunsequent terms of the series λ
jν

goes to 0 as j →∞.

There were no systematic studies of the probabilistic or statistical properties of the

Conway-Maxwell-Poisson family until the series of papers by Shmueli and her colleagues

[39, 54, 50]. In their work, they studied this family in great detail. They showed that the

Conway-Maxwell-Poisson is an exponential family, can fit overdispersed and underdispersed

data, and can be modified to account for zero-inflated data. They also provide the details of

standard approaches to maximum likelihood and Bayes estimation of the parameters, and

gave an approximation to the normalizing constant of this distribution. Below, we give a

brief summary of the Conway-Maxwell-Poisson distribution.

5.1.1 Special cases of Conway-Maxwell-Poisson

When ν = 0 and 0 < λ < 1, the normalizing constant of Conway-Maxwell-Poisson distribu-

tion is just a geometric sum:

C(λ, ν) =
∞∑
k=0

λk =
1

1− λ
,

and the distribution itself reduces to

P (X = x|λ, ν) = λx(1− λ) for x = 0, 1, 2, . . .
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When ν = 0 and λ ≥ 1, C(λ, ν) diverge; thus, the distribution is undefined. When ν = 1,

the normalizing constant of Conway-Maxwell-Poisson distribution is

C(λ, ν) = eλ,

so the distribution reduces to

P (X = x|λ) =
λxe−λ

x!
for x = 0, 1, 2, . . .

As ν → ∞, C(λ, ν) → 1 + λ; hence the distribution itself approaches to Bernoulli

distribution with probability of succsess

P (X = 1) =
λ

1 + λ
.

To sum up, the Conway-Maxwell-Poisson includes three well-known distributions as spe-

cial cases: geometric when ν = 0 and 0 < λ < 1; Poisson when ν = 1; and Bernoulli with

parameter p = λ/(λ + 1) when ν → ∞. Hence, it acts as a bridge between these distri-

butions. This also holds for the sum of n independent Conway-Maxwell-Poisson random

variables: when ν = 0 and 0 < λ < 1, the distribution of sums reduces to negative binomial

distribution with parameters n and 1 − λ; when ν = 1, the sum has a Poisson distribution

with parameter nλ; when ν →∞, the sum of Conway-Maxwell-Poisson random variables is

binomial with parameters n and p = λ/(1 + λ).

Imoto [28] proposed a three-parameter generalized Conway-Maxwell-Poisson distribution

so that it includes the negative binomial distribution as a special case. We omit the details

of this generalization.
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5.1.2 Moments

The Conway-Maxwell-Poisson distribution has an exponential family form given by

P (X = x|λ, ν) = exp [− log(C(λ, ν)) + x log(λ)− ν log(x!)] .

The moments of the sufficient statistics of the Conway-Maxwell-Poisson distribution,

E(X) = λ
d log(C(λ, ν)

dλ
and E(log(X!)) = −d log(C(λ, ν)

dν

both involve the normalizing constant C(λ, ν). Since these equations cannot solved analyt-

ically, we need good approximations for the normalizing constant in order to approximate

moments well. Shmueli, et al. [54] approximated this by

E(X) ∼ λ1/ν − ν − 1

2ν
. (5.1)

More generally, the moments of Conway-Maxwell-Poisson distribution can be expressed

recursively because this distribution belongs to the family of two-parameter power series

distributions [26, 54].

E(Xr+1) =

 λE(X + 1)1−ν if r = 0,

λ dE(Xr)
dλ

+ E(X)E(Xr) if r > 0.

Because the calculation of the moments involve the normalizing constant, for integer

values of ν, Nadarajah [41] represented this by rewriting C(λ, ν) in terms of the generalized

hypergeometric function. She used the following representation of the generalized hyperge-

ometric function:

pFq(a1, . . . , ap; b1, . . . , bp;x) =
∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bp)k

xk

k!

where (c)k = c(c + 1) . . . (c + k + 1) is the ascending factorial. Later we will use a slightly

different representation of the generalized hypergeometric function than this one.

It is clear that

0Fν−1(; 1, . . . , 1;λ) = C(λ, ν)
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Thus, the probability generating function of Conway-Maxwell-Poisson distribution is

G(s) = E(sX) =
0Fν−1(; 1, . . . , 1;λs)

0Fν−1(; 1, . . . , 1;λ)
.

Then, the mean of Conway-Maxwell-Poisson distribution is

E(X) =

[
dG(s)

ds

]
s=0

= λ
0Fν−1(; 2, . . . , 2;λ)

0Fν−1(; 1, . . . , 1;λ)
.

In general, she obtained the rth factorial moment of the Conway-Maxwell-Poisson random

variate X:

E(X(X − 1) . . . (X − k + 1)) =
λk

(k!)ν−1
0Fν−1(; k + 1, . . . , k + 1;λ)

0Fν−1(; 1, . . . , 1;λ)
.

From this, we can easily get the variance of X as

E(X) =
λ2

2ν−1
0Fν−1(; 3, . . . , 3;λ)

0Fν−1(; 1, . . . , 1;λ)
+ E(X)− [E(X)]2. (5.2)

Nadarajah also compared equation (5.2) with equation (5.1). However, ν has to be an integer

in order to be able to use the formulation above.

By using the generalized hypergeometric function representation of the normalizing con-

stant, Nadarajah also obtained the cumulative distribution function (cdf) of the Conway-

Maxwell-Poisson distribution; we do not include the cdf in this section since our derivations

do not deal with that.
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5.1.3 MLEs

The likelihood function of the Conway-Maxwell-Poisson distribution is

L(k1, . . . , kn|λ, ν) = C(α, ν)−n


n∏
i=1

λki(
n∏
i=1

ki!

)ν


= C(α, ν)−n λ
∑n
i=1 ki exp

(
−ν

n∑
i=1

log(ki!)

)
. (5.3)

Since the Conway-Maxwell-Poisson distribution follows an exponential family form, the nat-

ural parameter for this is [log(λ),−ν], and the sufficient statistics are[
n∑
i=1

ki,
n∑
i=1

log(ki!)

]
.

It is clear that MLEs cannot be computed analytically because of the complicated normal-

izing constant. Thus, we need iterative methods to solve for MLEs.

5.2 APPROXIMATION OF THE NORMALIZING CONSTANT

From Section 5.1, we can see that the normalizing constant, C(α, ν), plays an important role

in the computations commonly used for fitting models to data: for computing probabilities,

moments, and maximum likelihood estimates and their standard errors. However, it is not

always easy to compute, so good approximations are needed. This section describes several

ways to approximate the normalizing constant of Conway-Maxwell-Poisson distribution.

Henceforth, we use a reparametrization of Conway-Maxwell-Poisson distribution by let-

ting α = λ1/ν because it gives a simpler centering parameter. This new parametrization is

P (X = k|α, ν) = C(α, ν)−1
(
αk

k!

)ν
, where C(α, ν) =

∞∑
k=0

(
αk

k!

)ν
.

For the case of integer ν, Shmueli, et al. [54] expressed C(λ, ν) as a (ν − 1)-dimensional

integral involving complex exponentials and used Laplace’s method to derive an approxima-

tion. Their numerical calculations showed that this approximation was good when λ > 10ν ,
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or α > 10. Since their approximation performs well in some parameter ranges but not in

others, it is of interest to get an alternate approximation to C(α, ν) for these parameter

ranges.

Our aims in this section are first to show that this approximation is in principle valid for

all ν > 0, not just integers; second, to use correction terms based on certain expansions to

improve upon this approximation; and third, for ν near 0, to propose the use of the geometric

approximation with correction terms. First, we sketch the approach of Shmueli, et al. [54] and

discuss its limitations. Next, we give a new derivation of the same approximation of C(α, ν)

by using well known statistical methods: in particular, we express C(α, ν) as an expectation

of a function of a Poisson variate, and use a Gaussian approximation to the square root of a

Poisson for large α and all ν > 0. Then, we connect the normalizing constant to two special

functions: the generalized hypergeometric function 0Fν−1 for integer ν, and the modified

Bessel function of the first kind, I0 for ν = 2. The well-known asymptotic expansion for

I0(z) for |z| → ∞ points to the need for correction terms to the leading term. Thus, finally,

we compute the first two correction terms and assess them numerically. We show that we

have an improvement over the approximation due to Shmueli, et al. [54], considerably so

where it does poorly. We end this section with a discussion and propose future directions.

5.3 EARLIER APPROACH: LAPLACE APPROXIMATION FOR

INTEGER ν

Shmueli and her colleagues [54, 39] derived an asymptotic approximation and upper bound

for integer ν using Laplace’s method on a (ν−1)-dimensional integral that represents C(λ, ν).

Below is a brief account of their steps and approximation.

First, since
1

2π

∫ π

−π
ee
ix

e−ixk dx =
1

k!
,

we have

1

2π

∫ π

−π
ee
ix

C(λe−ix, ν) dx =
∞∑
k=0

λk

(k!)ν
1

2π

∫ π

−π
ee
ix

e−ixk dx = C(λ, ν + 1).
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This expresses C(λ, ν + 1) as an integral of C(λ, ν). Iterating this process starting from

C(λ, 1) = eλ leads to a representation of C(λ, ν) for integer ν > 0, as a multiple integral:

C(λ, ν) =
1

(2π)ν−1

∫ π

−π
. . .

∫ π

−π
exp

(
ν−1∑
j=1

eixj + λ e−
∑ν−1
j=1 ixj

)
dx1 . . . dxν−1.

Then, Laplace’s method [5] applied to the multiple integral yields

C(λ, ν) =
∞∑
k=0

λk

(k!)ν
=

exp
(
νλ1/ν

)
λ(ν−1)/2ν(2π)(ν−1)/2

√
ν

[
1 +O(λ−1/ν)

]
, (5.4)

which in our parametrization is

C(α, ν) =
eνα

(2πα)
ν−1
2
√
ν

[
1 +O(α−1)

]
(5.5)

as α = λ1/ν → ∞. Notice that this approximation requires ν > 0; we will see at the end of

next section below that when ν < 1 and λ < 1 an approximation based on the geometric

distribution with correction terms is a better approximation.

They also present results of numerical examples to check the relative error of their approx-

imation. Their numerical studies show that the leading term in the asymptotic expression in

(5.4) is a good approximation for certain parameter ranges; however for ν > 1 it consistently

underestimates the true value of the C(α, ν). In addition, their results for non-integer values

of ν suggests that this approximation also applies to all real ν. An investigation into other

aspects of this family by Nadarajah [41] also assumes that ν is an integer, and connects this

series to the generalized hypergeometric functions, which we discuss in Section 4.

In 2015 Gillispie and Green [20] extended Shmueli et al.’s [54, 39] derivation of the ap-

proximation of C(λ, ν). In their work they used the same framework. After using rather

involved complex variable methods including contour integrals, they showed that this ap-

proximation holds for all ν. However, they did not address the issue of the improving the

performance of this approximation when λ < 10ν .

In the next section, we use a statistical approach to derive the asymptotic approximation

with the same leading term: our argument works for all ν > 0; it also provides explicit

expressions for the first two terms of an asymptotic expansion which can be used to attempt

to improve underestimation by the leading term.
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5.4 OUR APPROACH

We begin this section by proposing more statistical approach to derive the approximation

of the normalizing constant of Conway-Maxwell-Poisson distribution. We then connect this

normalizing term with the generalized hypergeometric function. Then, obtain some correc-

tion terms to improve the approximation and to address the underestimation. We end this

section by proposing a new approximation to the normalizing term for both ν and λ are

small.

5.4.1 A statistical approach for all ν > 0

In this section, we describe the steps of our approach. We write the normalizing constant

as the expectation of a function of X, a Poisson(α) variate, and use Stirling’s formula to

approximate that function. Next, we approximate 2
√
X by a normal distribution for large

values of α; we then use elementary expansions for the log gamma and log functions, and

end by taking expectations of the resulting expression.

5.4.1.1 Express normalizing constant as an expectation

Notice that we can rewrite the normalzing as an expectation of a function of Poisson variate

C(α, ν) =
∞∑
k=0

(
αk

k!

)ν
= eα

∞∑
k=0

e−α
αk

k!

(
αk

k!

)ν−1
= eαEα

(
αX

X!

)ν−1
. (5.6)

When α is large, X will be large with high probability, with the most likely value near α.

Stirling’s approximation [1] says that

Γ(α + 1) ∼ ααe−α
√

2πα as α→∞.
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Using Stirling’s approximation in (5.6), we get

C(α, ν) = eαEα

(
αX

ααe−α
√

2πα

ααe−α
√

2πα

X!

)ν−1

=
eνα

(2πα)
ν−1
2

Eα

(
αXe−α

√
2πα

Γ(X + 1)

)ν−1

=
eνα

(2πα)
ν−1
2

Eα[U(α,X)]. (5.7)

Note that the constant term in (5.7) is the same as the asymptotic expression in (5.4) above,

except for the
√
ν term in the denominator. To show that Eα[U(α,X)] is approximately

ν−1/2 and assess the order of magnitude of the error, we study U(α,X) or equivalently

ln[U(α,X)] = (ν − 1)

[(
X +

1

2

)
lnα− α +

ln(2π)

2
− ln Γ(X + 1)

]
. (5.8)

5.4.1.2 Use Normal approximation to 2
√
X and expansions

Because X has a Poisson(α) distribution, for large α, the distribution of 2
√
X is approxi-

mately normal with mean 2
√
α and variance 1. We first pursue our approximation based

on the 2
√
X transformation, which uses the simpler expression than the transformations

that are better interms of stabilizing the variance. In the future, we will use Anscombe’s

2
√
X + 3/8 (see [32]), which is a better variance stabilizing transformation than the 2

√
X

transformation, to get an approximation to the normalizing term.

Let Z be a standard normal variate; for 2
√
X transformation, we have

2
√
X ∼ (Z + 2

√
α) so that X ∼ (Z + 2

√
α)2

4
= α + Z

√
α +

Z2

4
.

Using this normal approximation, we obtain

ln[U(α,X)]

(ν − 1)
'

[(
α + Z

√
α +

Z2

4
+

1

2

)
ln(α)− α +

ln(2π)

2

]
− ln Γ

(
α + Z

√
α +

Z2

4
+ 1

)
= A−B. (5.9)
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In (5.9), we leave A as is; for B, we use the first three terms of the following expansions

ln Γ(x+ 1) =

(
x+

1

2

)
ln(x+ 1)− (x+ 1) +

ln(2π)

2
+O(x−1) for x→∞,

ln(1 + t) = t− t2

2
+
t3

3
+ . . . for |t| < 1.

to obtain

B = ln Γ

(
α + Z

√
α +

Z2

4
+ 1

)
=

(
α + Z

√
α +

Z2

4
+

1

2

)
ln

(
α + Z

√
α +

Z2

4
+ 1

)
−
(
α + Z

√
α +

Z2

4
+ 1

)
+

ln(2π)

2

=

(
α + Z

√
α +

Z2

4
+

1

2

)
ln(α) (5.10)

+

(
α + Z

√
α +

Z2

4
+

1

2

)
ln

(
1 +

Z√
α

+
Z2

4α
+

1

α

)
−
(
α + Z

√
α +

Z2

4
+ 1

)
+

ln(2π)

2
.

By substituting (5.10) in (5.9), we get

ln[U(α,X)]

ν − 1
= A−B ' −Z

2

2
− 6Z + Z3

12
√
α

+O(α−1)

Then, using ex ' 1 + x for small x, we have

U(α,X) ' exp

[
−(ν − 1)

Z2

2

]
exp

[
−(ν − 1)

6Z + Z3

12
√
α

]
exp

[
O(α−1)

]
= exp

[
−(ν − 1)

Z2

2

] [
1− (ν − 1)

6Z + Z3

12
√
α

]
[1 +O(α−1)] (5.11)
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5.4.1.3 Take expectations

Finally, subsitute (5.11) in (5.7), and notice that 6Z+Z3 is an odd function, so its expectation

is 0, to get

Eα[U(α,X)] ' 1√
2π

∫ ∞
−∞

e−(ν−1)z
2/2

[
1− (ν − 1)

6z + z3

12
√
α

]
e−z

2/2[1 +O(α−1)] dz

=
1√
2π

∫ ∞
−∞

e−(ν−1)z
2/2e−z

2/2[1 +O(α−1)] dz

=
1√
ν

[1 +O(α−1)],

so that

C(α, ν) = eαEα

(
αX

X!

)ν−1
=

eνα

(2πα)
ν−1
2
√
ν

[1 +O(α−1)] as α→∞, (5.12)

which is the same asymptotic expression as in (5.5).

Table 7: Percentage errors when approximating C(λ, ν) by using (5.12)

values of ν

λ 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

0.1 -100 -79 -36 -11 -1 0 -2 -5 -9 -13

0.3 -98 -38 -7 1 1 -1 -4 -7 -10 -13

0.5 -83 -12 3 4 1 -1 -4 -7 -9 -11

0.7 -49 2 6 4 1 -1 -4 -6 -8 -10

0.9 -9 8 7 4 1 -1 -3 -5 -6 -7

1.1 10 9 6 3 1 -1 -3 -5 -6 -7

1.3 5 7 5 3 1 -1 -3 -4 -6 -7

1.5 1 5 4 3 1 -1 -2 -4 -5 -6

1.7 0 3 3 2 1 -1 -2 -3 -5 -6

1.9 0 2 3 2 1 -1 -2 -3 -4 -5

In summary, we have used a standard statistical approach and elementary expansions to

show that the expression is valid for all real ν > 0. However, as we pointed out earlier, this

approximation does not perform well across all the parameter ranges, which can be seen in
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Table 7 summarized in [54]. Negative numbers in this table means that the approximated

value is lower than the exact value, so we have an underestimate of the normalizing con-

stant when we use this approximation. Our next aim is to improve the performance of this

approximation for the parameter ranges where (5.12) does poorly.

5.4.2 GENERALIZED HYPERGEOMETRIC FUNCTION APPROACH

Nadarajah [41] has connected the Conway-Maxwell-Poisson family with the generalized hy-

pergeometric (Fox-Wright) functions and studied the moments and cdfs; however, she did

not deal specifically with the problem of approximating the normalizing constant. Even

though ν must be an integer for this connection to hold, we pursue it for illustration because

the special case ν = 2 motivates the use of correction terms. The generalized hypergeometric

functions are

pFq

 (a1A1) (a2A2) . . . (apAp)

(b1B1) (b2B2) . . . (bqBq)
; z

 =
∞∑
n=0

∏p
i=1 Γ(ai + Ain)∏q
j=1 Γ(bj +Bjn)

zn

n!
,

where an empty product is defined as 1. When p = 0, q = ν − 1, and ai = Ai = bj = Bj = 1

and set z = λ, we get

C(λ, ν) = 0Fν−1[−; 1, · · · , 1;λ] or C(α, ν) = 0Fν−1[−; 1, · · · , 1;αν ].

When ν = 2, the generalized hypergeometric function reduces to the modified Bessel

function of the first kind: C(α, 2) = I0(2α). Using the known asymptotic expansion [1]

Iη(z) ∼ ez√
2πz

(
1− 4η2 − 1

8z
+

(4η2 − 1)(4η2 − 9)

2!(8z)2
+O(z−3)

)
as |z| → ∞,

we have

C(α, 2) = I0(2α) ∼ e2α
√
α
√

4π

(
1 +

1

16α
+

9

512α2
+O(α−3)

)
as α→∞. (5.13)

We see from this expansion that the estimate in (5.4) is most likely an underestimate of the

normalizing constant because the first two correction terms of order α−1 and α−2 are both

positive.
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As mentioned before, all relative errors in this chapter are expressed in percents. Table 8

presents the relative errors of the two of the approximations in (5.13): the leading term only,

and the leading term with first-order correction. We note that Shmueli et al. [54] presented

the relative errors for the leading term only for λ and ν values from 0.1 to 1.9. Based on their

table, they stated that the approximation is not good when α = λ1/ν < 10. Our illustration

in Table 8 (using the λ parametrization) demonstrates that even in this range including a

correction term improves the approximation considerably. Including the second correction

term will in this case lessen the underestimate; however, that correction is typically much

smaller than the first-order correction, so we omit it.

Table 8: Relative errors in (5.13) for leading term and for first-order correction; ν = 2.

values of λ leading term first correction

0.1 -14.4 2.6

0.3 -13.9 -4.0

0.5 -11.9 -4.1

0.7 -10.3 -3.6

0.9 -9.1 -3.1

1.1 -8.1 -2.6

1.3 -7.4 -2.3

1.5 -6.7 -2.0

1.7 -6.2 -1.7

1.9 -5.8 -1.5

This illustration shows the usefulness of correction terms. The literature [7] on the asymp-

totics of the generalized hypergeometric functions pFq require integer values of p and q,

which in our case restricts ν to be an integer. Therefore, in the next section we extend our

statistical approach by including more terms in the expansions for ln(1 + t) and ln Γ(x+ 1)

to get correction terms of order α−1 and α−2 for all ν > 0.
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5.4.3 CORRECTION TERMS

For our statistical approach to get an approximation to the normalizing term above, we

first write the normalizing constant as an expectation as in equation (5.8). We then used

the normal approximation, which yielded (5.9). Next, we used the first three terms of the

expansions for ln(1 + t) and ln Γ(x+ 1). However, the estimate in (5.12) underestimates the

normalizing constant and it performs very poorly in some certain parameter ranges. Thus,

in this section, we allow more terms in these expansions in order to get correction terms,

which we will demonstrate will improve the performance of this approximation.

5.4.3.1 Use the expansions for ln(1 + t) and ln Γ(x+ 1) with more terms

To derive the correction terms, we use more terms in the expansions below to further study

B in (5.9): for x→∞,

ln Γ(x+ 1) =

(
x+

1

2

)
ln(x+ 1)− (x+ 1) +

ln(2π)

2
+

1

12(x+ 1)
+O(x−3), and

ln(1 + t) =
6∑

n=1

(−1)n+1 t
n

n
+O(t7) for |t| → 0.

Following the same steps as in Section 3, we get

lnU(α, ν)

(ν − 1
) ' −Z

2

2
− Z3 + 6Z

12
√
α

+
Z4 + 12Z2 + 8

96α
− Z5 + 2Z3 + 4Z

48α
√
α

+
Z6 + 30Z4 + 120Z2

1920α2
+O(α−5/2). (5.14)

As in (5.11), we first exponentiate this expression, and expand all but the e−(ν−1)z
2/2 term

in a two-term Taylor series: ex ' 1 + x for small x, we have

U(α,X) ' exp

[
−(ν − 1)

Z2

2

]
exp

[
−Z

3 + 6Z

12
√
α
− Z5 + 2Z3 + 4Z

48α
√
α

]
exp

[
Z4 + 12Z2 + 8

96α
+
Z6 + 30Z4 + 120Z2

1920α2

] [
+O(α−5/2)

]
(5.15)

= exp

[
−(ν − 1)

Z2

2

] [
1− (ν − 1)

(
Z3 + 6Z

12
√
α

+
Z5 + 2Z3 + 4Z

48α
√
α

)]
[
1 + (ν − 1)

(
Z4 + 12Z2 + 8

96α
+
Z6 + 30Z4 + 120Z2

1920α2

)]
[1 +O(α−5/2)]
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5.4.3.2 Take expectations

Next, we take the expectation of the (5.15). First, we note that the terms with odd powers

of Z integrate to 0, so

E

{
e−(ν−1)Z

2/2

[
(ν − 1)

(
Z3 + 6Z

12
√
α

+
Z5 + 2Z3 + 4Z

48α
√
α

)]}
= 0.

Thus, as we did before in (5.15), we omit the odd terms when taking the expectation of

U(α,X). Because odd powers of Z integrate to zero, the error term here becomes O(α−3)

rather than O(α−5/2). The resulting expansion is

E

{
e−(ν−1)Z

2/2

[
1 + (ν − 1)

(
Z4 + 12Z2 + 8

96α
+
Z6 + 30Z4 + 120Z2

1920α2

)]
[1 +O(α−3)]

}
,

so we obtain Eα[U(α,X)] as

Eα[U(α,X)] =
1√
ν

[
1 +

ν − 1

12α

(
3

8ν2
+

3

2ν
+ 1

)
+
ν − 1

16α2

(
1

8ν3
+

3

4ν2
+

1

ν

)
+O(α−3)

]
.

As a result, the normalizing constant with correction terms of order up to α−2 is

C(α, ν) =
eνα

(2πα)
ν−1
2
√
ν

[
1 + (ν − 1)

(
8ν2 + 12ν + 3

96αν2
+

1 + 6ν

144α2ν3

)
+O(α−3)

]
(5.16)

as α→∞.

Before turning to the details of the numerical illustration, we return to the special case

ν = 2: note that the leading term is the same as in (5.13); however the two correction terms

in (5.16) are
1

α

59

16(24)
' 0.1536

α
and

1

α2

13

2(512)
' 0.0127

α2

instead of
1

16α
=

0.0625

α
and

9

512α2
=

0.0177

α2

in (5.13). We attribute this difference to the fact that our statistical approach to the case

for all ν > 0 is different from the Laplace method approach for the modified Bessel function

Iη(z).

We now have correction terms to the approximation of normalizing constant. Since these

correction terms have positive sign, it will reduce the underestimate. We present several

numerical examples to study the effect of these correction terms on the normalizing term.

66



5.4.4 NUMERICAL EXAMPLES

Our aim in this section is to conduct numerical examples to illustrate how the correction

terms improve the approximation of the normalizing constant. In order to assess the perfor-

mance of the approximations, we need to know the exact values of the normalizing constant.

When α is small, we simply sum a finite number of terms in the series because it converges

quickly. When α is very large, we sum the series around the modal value after factoring

it out. In particular, it is easy to see that ak = (αk/k!)ν , then ak+1/ak < 1 if and only if

α < k+ 1, so that the modal probability is kα is the integer nearest to α− 1. Thus, we write

C(α, ν) =
∞∑
k=0

(
αk

k!

)ν
=

(
αkα

kα!

)ν ∞∑
k=0

(
αk−kαkα!

k!

)ν
'

(
αkα

kα!

)ν kα+h∑
kα−l

(
αk−kαkα!

k!

)ν
,

where l and h can be determined by examining the successive differences, and stopping when

those differences are sufficiently small.

Let C̃0(α, ν) be the approximated value for the normalizing constant. Then, the approx-

imated value for the equation (5.4) is just the leading term, so we have

C̃(λ, ν) =
∞∑
k=0

λk

(k!)ν
=

exp
(
νλ1/ν

)
λ(ν−1)/2ν(2π)(ν−1)/2

√
ν

=
eνα

(2πα)(ν−1)/2
√
ν
. (5.17)

Table 9 summarized the relative errors made by using (5.17) which is based on the leading

term only.

Our aim is to compare the performance of (5.17) with the approximation that uses

correction terms. Thus, we pursue the approximated value for the equation (5.16) which

introduces correction terms to (5.17), so we have

C̃1(α, ν) =
eνα

(2πα)
ν−1
2
√
ν

[
1 + (ν − 1)

8ν2 + 12ν + 3

96αν2

]
. (5.18)

We did not include the correction term of order α−2 because it is much smaller, hence less

consequential. The relative error for the approximation which uses the first correction term

is summarized in Tables 10.
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Notice that, for ν > 1, our correction terms in (5.16) as well as in (5.18) are all positive.

From the table in Shmueli, et al. [54]: see Table 7, we know that for ν > 1 the leading term

underestimates the true value. Thus, we focus on ν > 1. In addition, from their work, we

know that the leading term is a good approximation for α > 10; hence we consider α ≤ 10,

and assess the accuracy of the leading term and the first-order correction in Tables 9 and

10, respectively. We see considerable improvement when we use the first-order correction,

unless λ is very small, in which case a direct summation of the series is easy and accurate.

Table 9: Relative error using the leading term in (5.17)

values of ν

λ 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

0.1 0.1 -1.9 -5.2 -8.9 -12.6 -16.0 -19.1 -21.9

0.3 -1.4 -4.4 -7.4 -10.2 -12.7 -14.9 -16.9 -18.6

0.5 -1.5 -4.2 -6.8 -9.0 -11.0 -12.7 -14.3 -15.6

0.7 -1.3 -3.8 -6.0 -7.9 -9.5 -11.0 -12.3 -13.4

0.9 -1.2 -3.3 -5.2 -6.9 -8.4 -9.7 -10.9 -11.9

1.1 -1.0 -2.9 -4.6 -6.2 -7.5 -8.7 -9.8 -10.7

1.3 -0.9 -2.6 -4.1 -5.5 -6.8 -7.9 -8.9 -9.8

1.5 -0.8 -2.3 -3.7 -5.0 -6.2 -7.3 -8.2 -9.1

1.7 -0.7 -2.1 -3.4 -4.6 -5.7 -6.7 -7.7 -8.5

1.9 -0.6 -1.9 -3.1 -4.3 -5.3 -6.3 -7.2 -8.1

2.1 -0.6 -1.7 -2.9 -3.9 -4.9 -5.9 -6.8 -7.6

2.3 -0.5 -1.6 -2.7 -3.7 -4.7 -5.6 -6.5 -7.3

2.5 -0.5 -1.5 -2.5 -3.5 -4.4 -5.3 -6.2 -7.0
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Table 10: Relative errors using first correction term in (5.18)

values of ν

λ 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

0.1 9.1 15.2 14.6 11.7 8.2 4.7 1.4 -1.6

0.3 1.9 2.8 1.9 0.5 -1.0 -2.5 -3.8 -4.9

0.5 0.6 0.6 -0.1 -1.0 -1.9 -2.7 -3.4 -4.0

0.7 0.19 -0.02 -0.6 -1.2 -1.8 -2.3 -2.8 -3.1

0.9 0.03 -0.2 -0.6 -1.1 -1.5 -1.9 -2.2 -2.4

1.1 -0.03 -0.3 -0.6 -0.9 -1.3 -1.5 -1.7 -1.8

1.3 -0.04 -0.3 -0.5 -0.8 -1.0 -1.2 -1.3 -1.4

1.5 -0.04 -0.2 -0.4 -0.6 -0.8 -0.9 -1.1 -1.1

1.7 -0.04 -0.2 -0.3 -0.5 -0.6 -0.8 -0.8 -0.9

1.9 -0.03 -0.1 -0.3 -0.4 -0.5 -0.6 -0.7 -0.7

2.1 -0.01 -0.1 -0.2 -0.3 -0.4 -0.5 -0.5 -0.5

2.3 -0.0 -0.1 -0.1 -0.2 -0.3 -0.4 -0.4 -0.4

2.5 0.0 -0.03 -0.1 -0.2 -0.2 -0.3 -0.3 -0.3

5.4.5 Approximation of C(λ, ν) when λ and ν small

In this section, we turn to the case where both ν and λ are small because the leading term in

(5.4) can be very poor in that region. For small ν it is more natural to consider an expansion

around the geometric distribution than the Poisson (ν = 1) because the Conway-Maxwell-

Poisson distribution reduces to the geometric when ν = 0. In this case, the expansion is the

much simpler Taylor expansion of C(λ, ν) about ν = 0:

C(λ, ν) =
1

1− λ
− ν

∞∑
k=0

ln(k!)λk +O(ν2). (5.19)
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In Table 11, we compare leading term in (5.4) with the geometric (G0), and its linear (G1)

correction term. The linear correction term already gives very accurate results, so we do not

consider a quadratic correction term in (5.19).

Table 11: Comparison of relative errors for (5.4) and (5.19)

(λ, ν) Eq (5.4) G0 G1

(.1,.1) -100.0 0.1 -0.0

(.3,.1) -97.7 1.0 -0.1

(.5,.1) -83.3 4.4 -0.9

(.7,.1) -49.1 16.4 -8.4

(.1,.3) -78.7 0.2 -4.0

(.3,.3) -38.4 2.6 -0.8

(.1,.5) -35.8 0.3 -0.1

(.3,.5) -6.8 3.8 -1.9

(.1,.7) -10.8 0.4 -0.2

Finally, when ν is very big, the denominator (k!)ν grows rapidly, so the defining series

for C(λ, ν) converges rapidly, and will approximate the limiting Bernoulli distribution.

5.5 CHAPTER SUMMARY

This chapter has proposed a statistical approach to derive the approximation of the nor-

malizing constant of the Conway-Maxwell-Poisson distribution. The approximation can be

used for all ν, not only for integers. This approximation is good in certain parameter ranges,

namely λ > 10ν . Thus we extend this approximation by including correction terms which

improve its performance. We also proposed new approximations for ν < 1 and ν very large.

Our numerical results are encouraging, because they clearly demonstrate that our ap-

proach gives reasonably accurate results. The statistical approach above does have one loose
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end that must be tied up: we must rigorously justify the taking of the expectation after using

the normal approximation to the square root of a Poisson variate. Our contributions are the

following: our method applies for all ν > 0, not just integer ν. Next, we provide correction

terms and give numerical examples that help guide us in determining when to use them.

We also give an alternate approximation for very small ν, when the primary approximation

(5.4) is poor.
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6.0 APPLICATION OF CONWAY-MAXWELL-POISSON GLM FOR

MRNA COUNTS

Previous studies [22, 17, 68] have shown that mRNA transcription occurs in short rapid bursts

which lead to non-Poisson counts. Because of that, the mRNA count data are overdispersed.

Thus, this stochastic process cannot be modeled by a Poisson process. In this chapter, one

of our aims is to propose the use of the Conway-Maxwell-Poisson family of distributions for

modeling mRNA count data. This family has the form

P (X = k|λ, ν) ∝ λk

(k!)ν
, k = 0, 1, 2, . . . .

and was introduced by Conway and Maxwell [9] initially for modeling queues and state-

dependent service rates. Since then, it has been shown to be useful in other applications,

especially by Shmueli and her colleagues [54, 50]. Hoewever, it has not used before for

modeling mRNA counts. Thus, we propose the use of Conway-Maxwell-Poisson distribution

as an alternative modeling tool for mRNA counts.

This chapter is organized as follows: first we summarize the literature on the application

of Conway-Maxwell-Poisson distribution, we then give a brief account of possible modeling

tools for mRNA count data. Next, we introduce the generalized linear model (GLM) version

of the Conway-Maxwell-Poisson and negative binomial to incorporate covariate information

from different experimental conditions. We also consider zero inflation to model excess zero

counts. We then apply the proposed models to E. coli bacteria and mammalian cells to

illustrate our proposed methods.
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6.1 LITERATURE REVIEW

In this section, we summarize applications of the Conway-Maxwell-Poisson distribution and

provide a brief overview of the literature. We then present the literature on mRNA count

data in order to show what types of models are used.

6.1.1 On Conway-Maxwell-Poisson distribution

Conway and Maxwell [9] introduced the Conway-Maxwell-Poisson family for modeling queues

and service rates in 1960s. Until about a decade ago, there were not many studies about

it. Then, around mid-2005, Shumeli and her colleagues [29, 39, 50, 52, 54] published a

systematic series of papers. They studied the probabilistic and statistical properties of this

family: see previous chapter for more details.

Guikema and Goffelt [24] developed a Conway-Maxwell-Poisson generalized linear model

(GLM) using a different parametrization for it because the (λ, ν) parametrization does not

give a clear centering parameter. This GLM setting has been used to analyze motor vehicle

crashes [33]. Later, Barriga and Francisco Louzada [3] constructed a zero-inflated Conway-

Maxwell-Poisson regression model and applied it to apple cultivar data.

Most applications of this family are to model motor vehicle crashes [24, 33, 34, 35, 54, 70].

The reason for this is that car crash data are usually overdispersed and sometimes underdis-

persed. In the situations where the negative binomial distribution is not a good modeling

tool, they proposed the Conway-Maxwell-Poisson family as an alternative. We note that

Conway-Maxwell-Poisson family does not always give the best fit; most of the time it per-

forms as well as the negative binomial [33]. In additon, there are also computational diffi-

culties when using the Conway-Maxwell-Poisson family because of its normalizing constant.

In the previous chapter, we have addressed that issue.

Guikema et al. [24] also reached a similar conclusion for overdispersion. However, they

studied the use of the Conway-Maxwell-Poisson GLM on underdispersed data. In particular,

they compared the GLM setting of this family with the negative binomial GLM. They

conclude that Conway-Maxwell-Poisson GLM can fit data better negative binomial GLM
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for underdispersed data sets, and it performs as well as the negative binomial GLM for

overdispersed data sets.

In biology, Ridout and Besbeas [48] used the Conway-Maxwell-Poisson for modeling

clutch size, which is the number of eggs per nest, for a species of bird. This data is under-

dispersed, and they used different forms of a weighted Poisson distribution, one of which is

Conway-Maxwell-Poisson. They concluded that Conway-Maxwell-Poisson performs poorly.

Imoto [28] proposed a three-parameter generalized Conway-Maxwell-Poisson distribu-

tion which includes the negative binomial distribution as a special case. Cordeiro at el.

[10] also introduced a new parameter to Conway-Maxwell-Poisson distribution to obtain an

exponential-Conway-Maxwell-Poisson distribution. This new three-parameter distribution

includes the exponential-geometric and exponential-Poisson distributions as special cases.

By using Markov Chain Monte Carlo (MCMC) methods, Vicente et al. [66] proposed a

Bayesian analysis of the Conway-Maxwell-Poisson family on right-censored survival data.

Rodrigues et al. [49] used this Conway-Maxwell-Poisson cure rate survival model to model

cancer recurrence. These two studies demonstrated that the Conway-Maxwell-Poisson family

provides a practical tool for modeling survival data with cure rates.

From this brief literature review, the consensus from these studies is that the more

complex Conway-Maxwell-Poisson GLM does not provide a significant benefit over the tra-

ditional negative binomial GLM for overdispersed data. However, it is useful for underdis-

persed data since the negative binomial GLM does not do a good job in that case. Even if

Conway-Maxwell-Poisson GLM does not outperforms over the traditional methods, it can

still address problems with wide range of dispersion [51]. Because the consensus is based on

limited applications, in this chapter, we introduce the use of the Conway-Maxwell-Poisson

GLM for mRNA count data to see how it performs relative to other models for dispersed

data.

6.1.2 On mRNA counts

Direct detection of gene activity is often not possible because new proteins from individual

activation events are masked by proteins remaining from previous events [47]. Since mRNA
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transcription is a product of gene activity, it can provide valuable information about gene

activation and inactivation patterns [23, 36, 60]. In addition, mRNA transcription can

also be used to infer information about protein synthesis because it too is typically more

difficult than the measurement of its precursor mRNA. Thus, researchers determine the gene

activation or inactivation by observing mRNA production, as seen in Figure 17: see [62].

Figure 17: Gene activation and inactivation.

When the gene is in its off-state, mRNA is not transcribed; when it switches to its on-state,

mRNA is transcribed at a high rate [44]. Thus, mRNA transcription occurs in short rapid

bursts, which is depicted in Figure 18: see [62]. The first part of this figure, Figure 18A,

depicts the gene activity, and the second part of it, Figure 18B, depicts the corresponding

mRNA production. We can see that the mRNA produced at high rate when the gene is in

on state, and no mRNA production in the off state of the gene. The burstiness of mRNA

production is not well modeled by a Poisson process: we expect that it is better to use a

two-state model for mRNA production [60]. Pendar et al. [45] used partioning of Poisson

process to address this issue.

Previous studies [22, 31, 68] have shown that mRNA transcription occurs in short rapid
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bursts which lead to non-Poisson counts [42]. Because of this burstiness, the mean number of

mRNA transcriptions is typically smaller than its variance, hence it is overdispersed. Instead,

earlier studies [60, 53] model the count distribution using a negative binomial distribution.

Figure 18: Bursty behavior of mRNA.

GLM methods do not appear to have been used to systematically used to study mRNA

counts, but were suggested by [69]. Thus, in this chapter, our aim is to apply GLM methods

to mRNA data. We specifically propose the Conway-Maxwell-Poisson (COM-Poisson) GLM

as a potential alternative to the more common negative binomial GLM.

6.2 CONWAY-MAXWELL-POISSON GLM FOR MRNA COUNTS

Because of bursty behavior of mRNA, the mean number of mRNA transcriptions is typically

smaller than its variance, hence it is overdispersed. Thus, this stochastic process cannot

be modeled by a Poisson process. Elgart, et al. [17] illustrate the use of Little’s law from

queueing theory to stochastic gene expression models: specifically, they relate the mean

mRNA burst size, the mean arrival rate of the mRNAs, and the average decay time. They

emphasize that Little’s law only depends on the means of these three quantities, with no

further distributional assumption.

In this chapter, we propose an empirical model for mRNA counts, so we will first give our
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motivation for introducing the Conway-Maxwell-Poisson. We then give brief introduction on

Conway-Maxwell-Poisson GLM, and apply the empirical model and negative binomial and

biophysical models on two example datasets to compare the performance of the empirical

distribution versus the others.

6.2.1 Why use Conway-Maxwell-Poisson GLM for mRNA counts?

The Conway-Maxwell-Poisson family has not yet been used to model mRNA count data;

however, there are several reasons that suggest that it could be a good candidate.

• They include the bursty behavior of mRNA, which makes it non-Poisson, for which

Conway-Maxwell-Poisson is a good alternative tool.

• This bursty behavior leads to overdispersion, and Conway-Maxwell-Poisson is known to

be good for handling a variety of dispersed data.

• It contains the common geometric, Poisson, and binomial as special cases, which have

been widely studied in the mRNA count modeling literature, so it is a potentially useful

umbrella that could detect deviations from these cases.

6.2.2 Conway-Maxwell-Poisson GLM and its zero-inflated version

The general form of the Conway-Maxwell-Poisson GLM is then (see [24])

ln(α) = β0 +

p∑
i=1

βixi and ln(ν) = γ0 +

q∑
j=1

γjzj (6.1)

where xi and zj are covariates for i = 1, . . . p and j = 1, . . . q: p covariates are related to

the centering link function and the other q covariates are for the dispersion link function. In

previous studies, except [51], no covariates were assigned to the dispersion link function in

which case (6.1) reduces to

ln(α) = β0 +

p∑
i=1

βixi and ln(ν) = γ0. (6.2)

In this study, we assign covariates to both link functions and compare its performance with

the reduced version of it given in (6.2). The resulting likelihood function of the Conway-

Maxwell-Poisson GLM is complicated, so we need iterative numerical procedures to compute
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maximum likelihood estimates of the parameters and their standard errors. Bayesian meth-

ods using Markov chain Monte Carlo have also been used as an alternative: see [24, 33].

The zero-inflated Conway-Maxwell-Poisson is constructed in a standard way as follows:

P (X = k) =

 p+ (1− p)C(α, ν)−1 if k = 0

(1− p)C(α, ν)−1
(
αk

k!

)ν
if k = 1, 2, . . .

(6.3)

where 0 ≤ p ≤ 1, µ ≥ 0, and ν > 0. For the GLM case the parameters α, ν, p depend on

the covariates. The zero-inflated Conway-Maxwell-Poisson model with logistic link function

and normal link function have also been studied [3] and implemented in proc countreg

in SAS.

6.2.3 The other models

We first establish our notation. The negative binomial distribution is derived as a gamma

mixture of Poisson random variables by assigning a gamma(1/α, 1/α) prior on the parameter

of Poisson model.

f(yi|xi) =
Γ(yi + α)

Γ(yi + 1)Γ(α)

(
α

α + µi

)α(
µi

α + µi

)yi
for yi = 0, 1, 2, . . .

where α > 0. The zero-inflated Poisson and negative binomial can be constructed as in (6.3).

Once again, we use the log link just as for the Conway-Maxwell-Poisson.

Although the gamma distribution is a model for continuous data, we introduce it here be-

cause it is an approximation to the probability distributions that arise from certain chemical

master equations that describe the mRNA dynamics: see the supplement to [47]. Bokes also

conducted a study where he used chemical master equations and its gamma approximation

[6]

f(yi|xi) =
1

Γ(ν)yi

(
νyi
µi

)ν
e
−
(
νyi
µi

)
for 0 < yi <∞.

This time, we use the reciprocal link: µ−1i = x′iβ.
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6.3 MRNA COUNT DATA SETS

In this section we apply the models above to mRNA count data from So, et al. [59] and Raj,

et al. [47].

6.3.1 Comparing E. coli expression levels for different promoters

We now briefly describe the experimental conditions and resulting mRNA data. So, et al. [59]

measured the expression levels of different promoters and different conditions by conduct-

ing 20 experiments, and recording the mRNA counts produced under each condition. For

illustration, we use mRNA counts of five of these experiments, in which different expression

levels from different promoters are used to obtain the counts. In these experiments, bacterial

strain TK310, whose relevant genotype was ∆cyaA ∆cpdA ∆lacY, was grown with 0 to 1

mM of IPTG (isopropyl β-D-1-thiogalactopyranoside) and 0 to 10 mM of cAMP (adenosine

3’,5’-cyclic monophosphate).

The aim of these experiments is to achieve different expression levels from the Plac pro-

moter, and use that to compare mRNA lifetimes for the same transcript at different ex-

pression levels and at different growth rates. The details of the expression levels can be

summarized as follows:

• In the first experiment, bacterial strain TK310 was grown with .1mM of cAMP and seven

different levels of IPTG: 0µM, 3µM, 10µM, 30µM, 100µM, 300µM, 1000µM.

• In the second experiment, strain TK310 was grown with 1mM of IPTG and six different

levels of cAMP: 0µM, 3µM, 10µM, 30µM, 100µM, 300µM.

• The third experiment is similar to the second experiment, but it allows higher levels of

cAMP. Strain TK310 was grown with 1mM of IPTG and nine different levels of cAMP:

0µM, 3µM, 10µM, 30µM, 100µM, 300µM, 1000µM, 3000µM, 10000µM.

• In the fifth experiment, strain TK310 was grown with 1mM of IPTG and with seven

different levels of cAMP: 0µM, 30µM, 100µM, 300µM, 1000µM, 3000µM, 10000µM.

• The ninth experiment is similar to the first experiment; it uses 10mM of cAMP with the

same levels of IPTG as in experiment 1.
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For each experimental condition, mRNA count data were collected. More biophysical details

of these experiments can be found in the supplementary material of [59].

For experiments 1 and 9, IPTG is the covariate because the cAMP is fixed; in experiments

2,3, and 5, cAMP level is the covariate because IPTG is fixed. We first fit the Conway-

Maxwell-Poisson with no covariate assigned to the dispersion link as in (6.2). Next, we

fit the Conway-Maxwell-Poisson regression by assigning the same covariate to both link

functions in (6.1). For each of the data sets, we compare these fits with those of the negative

binomial regression models by using BIC, which are summarized in Table 12 (NB stands

for negative binomial). In this table, we abbreviate Conway-Maxwell-Poisson and negative

binomial as CMP and NB, respectively. The first row of this table is the fit of model (6.2),

and the second row of it is the fit of model (6.1). It is clear that assigning a covariate to the

dispersion link function improves the fit of the Conway-Maxwell-Poisson model considerably.

In all but one case, the Conway-Maxwell-Poisson GLM with a covariate assigned to both

link functions performs better than the negative binomial.

Table 12: BIC of each model fit for E. coli data

CMP with one-link CMP with two-link NB

experiment 1 13064 12131 11853

experiment 2 40833 37609 38060

experiment 3 72265 65885 66789

experiment 5 42504 38736 38869

experiment 9 57424 47442 47770

Next, because of the excessive number of zeroes, we consider zero-inflated versions of the

negative binomial and Conway-Maxwell-Poisson, with links described in (6.2) and (6.1). The

analyses are summarized in Table 13, and we use the abbreviations ZICMP and ZINB are

used for zero-inflated versions of Conway-Maxwell-Poisson and negative binomial, respec-

tively. It is clear that the zero-inflation models are better than the regular models. Among

the zero-inflated models, the Conway-Maxwell-Poisson model with covariate assigned to the

both link functions is at least as good the negative binomial in two of five cases. The use
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of covariates for both links in both the zero-inflated Conway-Maxwell-Poisson and Conway-

Maxwell-Poisson models is substantially better than not using covariates for the dispersion

link.

Table 13: BIC for each zero-inflated model fit

ZICMP with one-link ZICMP with two-link ZINB

experiment 1 11318 11323 11268

experiment 2 36038 35877 35651

experiment 3 67274 65467 66158

experiment 5 40081 38610 38887

experiment 9 57443 47448 45101

In the tables above, we summarized BIC values of the five experiments for illustrative

purposes. We have not presented a summary of the model parameter estimates because

our main purpose here is to do model comparison. However, almost the estimates of the

model parameters are significant at the .05 level. We also did similar model comparisons

for the experiments that we have not included in Tables 12 or 13. A brief summary of the

comparison of the models for all 20 experiments follows:

• In 18 experiments, the Conway-Maxwell-Poisson with a covariate assigned to both link

functions performs considerably better than the Conway-Maxwell-Poisson with with no

covariate assigned to dispersion link. A similar conclusion holds for the zero-inflated

case.

• In 9 experiments, the Conway-Maxwell-Poisson with a covariate assigned to both link

functions performs better than the negative binomial, and in 2 experiments, their per-

formance is almost the same, that is, the BIC difference between them is less than 10.

Here again, the same conclusion holds for the zero-inflated cases of these models.

• In the majority of the experiments, the performance of the Conway-Maxwell-Poisson

with with no covariate assigned to dispersion link and its zero-inflated version are much

poorer than the negative binomial and its zero-inflated version, respectively.
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Overall, the Conway-Maxwell-Poisson with a covariate assigned to both link functions per-

forms as well as the negaive binomial. However, computational difficulties for the normalizing

constant of Conway-Maxwell-Poisson in certain parameter ranges leads to slower run times

than that of the negative binomial. In addition, the SAS implementation had occasional

difficulty in computing the Hessian matrix for both the negative binomial and the Conway-

Maxwell-Poisson, more so for the Conway-Maxwell-Poisson.

6.3.2 Comparing different doxycycline levels in mammalian cells

Cells from a homogeneous population can express different numbers of molecules of specific

proteins. Raj et al. [47] has studied these variations by counting individual molecules of

mRNA produced from a reporter gene. They considered two cell lines: E-YFP-M1-1x (gene-

line 1 below) from a 1x-tetO construct, and E- YFP-M1-7x (gene-line 7 below) from 7x-

tetO construct. They found that the variability across the population remained constant

for all doxycycline concentration levels for the 1x-tetO construct, but that it varied non-

monotonically for the 7x-tetO construct.

In their experiments, they varied the doxycycline concentration levels thus: 0 ng/ml, 0.02

ng/ml, 0.04 ng/ml, 0.08 ng/ml, 0.16 ng/ml, 0.32 ng/ml. Then they measured the number of

mRNA molecules per cell. From biophysical considerations, they derived a detailed model

for the count distribution, which they then approximated by a gamma distribution [47].

Here, we propose different regression models for these data sets by treating doxycycline

concentration levels as the covariate, and extending their approximation to a gamma GLM.

The fits are summarized in Table 14. In this table the abbreviations CMP and NB are used

for Conway-Maxwell-Poisson and negative binomial, respectively.

From Table 14, it can be seen that the fit of Conway-Maxwell-Poisson improves when

we introduce in the dispersion link function; however, neither Conway-Maxwell-Poisson or

negative binomial is as good as the gamma fit. We also ran the regression models with two

covariates: the doxycycline levels and gene lines for these models. The fits are summarized in

the last column of Table 14. As in the above case, gamma is the best fit among all proposed

models.
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Table 14: BIC of each model fit for mammalian cells

CMP with one-link CMP with two-link NB Gamma

gene-line1 5287 5284 5292 5197.33

gene-line7 5386 5331 5006 4559.53

combined case 10680 10609 10554 9946.88

Once again, we do not summarize the parameter estimates here; for each model fit, we

found that the mRNA counts are significantly different for doxycycline concentration levels.

We include this example in this study to emphasize the importance of using a model that is

derived from biophysical considerations, which yields a continuous approximation to count

data. It can be seen that it outperforms other models that are commonly used for count

data. We can conclude that when there is a biophysically derived distribution, it performs

well; we also show that in the absence of such biophysical knowledge the Conway-Maxwell-

Poisson is competitive with the more commonly used negative binomial. Because both the

Conway-Maxwell-Poisson and negative binomial arise in queueing theory, we suggest further

inquiry into that theory to study mRNA dynamics: see [69].

6.4 CHAPTER SUMMARY

Modeling biological phenomena can be complicated because there are many factors that

affect outcomes and are hard to control. In the experimental data that we study here, the

variation between genes that are from the same population makes it unreasonable to conclude

that a single model is best universally. This chapter has introduced an empirical model for

modeling mRNA counts.

Moreover, this chapter serves as a new research direction in the use of Conway-Mawell-

Poisson family. Our aims in this section are to introduce the Conway-Maxwell-Poisson family,

model zero inflation, and to consider regression methods to study mRNA count data under

different experimental conditions. In particular, we show that the use of covariates in both
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link functions for the Conway-Maxwell-Poisson or zero-inflated Conway-Maxwell-Poisson

GLM is much better than assigning no covariate to the dispersion link. We compare this

family with the more commonly used negative binomial and zero-inflated negative binomial

GLM; for E. coli data, we see that the zero-inflated Conway-Maxwell-Poisson GLM is as

good as the zero-inflated negative binomial GLM.

In the absence of detailed biophysical knowledge, the Conway-Maxwell-Poisson family is

a potentially good candidate for fitting over dispersed mRNA count data. And when we do

know more about the biophysics, this analysis can help to confirm the derived approximations

to probability distributions from master equations, as we demonstrated for the mammalian

cell data. The Conway-Maxwell-Poisson model was first proposed in the queueing theory

context [9]. Queueing models have also been considered for gene expression and mRNA

transcription [17]. Given the good fits of the Conway-Maxwell-Poisson family and its variants

above, we suggest that it may be worthwhile to pursue this connection with queueing theory

to describe mRNA dynamics.
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7.0 CONCLUSION

This thesis addresses two research problems that arise in biological settings, both involv-

ing counting processes. We summarize our conclusions on these problems in the following

sections.

7.1 PHOTON COUNTING WITH DEAD TIMES

In earlier studies, the investigators were not using all available data to reconstruct images

because they did not know how to estimate key parameters in when there are dead periods

in the TPLSM detector. To avoid this problem, they only used low laser powers in order to

reduce the probability that there is a photon emission during the dead period. They also

did not know how to calculate the probability of recording d photons for d ≥ 1; thus, they

grouped the data as seeing nothing (recording 0 photons) and everything else (recording at

least one photon). As a result of using only low laser powers and grouping the data (not

using all the information that they have), their constructed image quality was very poor.

This showed the need for a mathematical model for the number of photons recorded, D, and

the main purpose of this study was to derive the distribution of D, from which we derived

improved parameter estimates, which led to improved image quality.

When deriving the distribution of D, we first assumed an infinite observation horizon and

a fixed dead period. Under this model assumptions, we derived the entire distribution of D by

using two equivalent approaches, which in addition gave a family of interesting polynomial

identities. There are two important advantages of knowing the entire distribution of D,

which are:
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• higher laser powers are now feasible, unlike the earlier studies which were restricted to

low laser powers;

• we can use all available photon counts without grouping the data unlike the earlier studies

which grouped the data as seeing nothing (0 counts) and everything else (at least one

photon).

Thus, we can use all the available data to construct the likelihood and make inferences for

the model parameters. Using this model, our primary interest is to estimate the underlying

intensity parameter because its estimate determines the intensity of a single pixel in an image,

and it also gives a measure of the SNR. After making inference on the model parameters, we

relate our results to the more general principle of loss of information due to grouping. This

generalization also emphasizes the importance in using all available data instead of working

with grouped data. We initially used our model on simulated data to assess the magnitude

of the loss of information due to grouping.

Next, our collaborators extended earlier work to allow higher laser powers which yield

higher emission intensities, or higher Poisson rates α. As the laser power gets larger, we

are more likely to see higher photon counts, so we can demonstrate the effectiveness of our

model. Hence, our colleagues modified the digital counting electronics used in Driscoll, et al.

[14]; they initially collected the data on paper fiber for us to get the resconstructed images

based on our method. The reconstructed images show that we sharper images even when

we use higher laser powers. Our collaborators are working on getting us data for other

applications, so our work continues.

Later, we pursued several extensions of our model: first, we considered a finite time

horizon, and second, we considered the gamma waiting time distribution. For the finite

horizon, we derived the probabilities of observing either zero or one photon and outlined the

method for larger counts. Due to the computational difficulties, we have not pursued the

entire distribution of D for larger counts. Using numerical calculations we investigated how

large the time horizon must be in order for the infinite case to be a good approximation.

This numerical work showed that when the observation period is at least 8 ns, we can safely

assume an infinite observation period the infinite observation period approximates the finite

one well. We then changed our exponential waiting time assumption to gamma waiting
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times. We showed numerically that as the shape parameter of the gamma increases, we

approach the original Poisson probabilities. The intuition is clear: as the shape parameter

increases, the emission waiting time larger, lessening the effect of the dead period.

7.2 APPROXIMATION OF THE NORMALIZING CONSTANT OF

CONWAY-MAXWELL-POISSON

Shmueli and her colleagues [54, 50, 39] brought attention to the Conway-Maxwell-Poisson

distribution, which was introduced by Conway and Maxwell [9]. The normalizing constant

of this distribution is hard to compute, and so Shmueli and her colleagues proposed an

approximation for it. However, their approximation was valid only for integer ν, and the

approximation did well only in some certain parameter ranges. In 2015, Gillispie and Green

[20] generalized their approximation to all ν. These two works were computationally very

involved, and they did not provide correction terms to improve the performance of the

approximation.

Thus, we proposed a simpler statistical approach to derive the approximation of of the

normalizing constant. It also holds for all ν, not only integers. This approximation is good

in some certain parameter ranges, namely λ > 10ν . Numerical work showed that it under-

estimates the normalizing constant for ν > 1. We therefore extended this approximation

by introducing correction terms which improved the performance of this approximation for

ν > 1. We also studied other parameter ranges where the basic approximation does poorly:

namely, for ν very small and very large. For ν = 0, we have the geometric distribution; thus,

for small ν we proposed a Taylor series approximation about nu = 0. Our numerical example

demonstrated a huge improvement. Similarly, for ν very large, we used an approximation

based on the Bernoulli distribution.
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7.3 CONWAY-MAXWELL-POISSON GLM FOR MRNA COUNTS

In this study, we proposed the use of the Conway-Maxwell-Poisson family for fitting overdis-

persed mRNA count data in the absence of detailed biophysical knowledge. This work

serves as a new research direction in the use of the Conway-Maxwell-Poisson family. We in-

troduced the GLM for this family, modeled zero inflation, and considered regression methods

to study mRNA count data under different experimental conditions. We assigned covariates

in both link functions for the Conway-Maxwell-Poisson. It turned out that the performance

of Conway-Maxwell-Poisson GLM with covariates assigned to both link function is much bet-

ter than that of with no covariate assigned to the dispersion link. When we compared this

family with the more common negative binomial, we see that GLM setting of our empirical

fit performed as well as the negative binomial GLM. Given the good fits of the Conway-

Maxwell-Poisson family and its variants above, we suggest that it is worthwhile to pursue

its connection with queueing theory to describe mRNA dynamics.
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8.0 FUTURE WORK

Our work so far has focused on the two different type of counting problems. There remain

several interesting open problems described below that may be worthwhile to pursue in the

future. We describe them below.

8.1 FOR PHOTON COUNTING PROBLEM

So far, we have worked on the photon counting problem assuming a Type I counter. We ob-

tained the distribution of the number of photons detected by using two different approaches,

did inference about the underlying intensity parameter, evaluated the effect of grouping on

the Fisher Information, and assessed the fit of the model on the simulated data and images of

paper fiber data. We then considered several extensions of our model to investigate different

model assumptions. The remaining open problems of interest for this study are given below.

• Consider Type II counters for this problem: When recording photons with exis-

tence of dead time, the dead period may occur after each pulse (whether it is recorded

or not). For such processes, the detector is a Type II counter, so the model assumption

should be changed accordingly.

• Use gamma waiting times for the approach in Section 3.2.2: In Chapter 4, we

considered extensions of our model, and proposed the use of gamma waiting times instead

of exponential waiting times. We only pursued this based on our approach in Section

3.2.1, and it could be interesting to do that with under our second approach given in

Section 3.2.2.
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• Apply our model on image data from living cells: Given the wide range of usage

of TPLSM, applying our results could yield better image quality for many different

applications.

8.2 FOR APPROXIMATION OF THE NORMALIZING CONSTANT OF

THE CONWAY-MAXWELL-POISSON

In Chapter 5 we investigated how to improve the performance of the normalizing constant

and extended the approximation by including correction terms for ν > 1, and we proposed

new approximations for ν < 1 and ν very large.

• One open problem: We must rigorously justify the taking the expectation after using

normalizing approximation to the square root of a Poisson variate.

• Use of different transformation: For X a Poisson(α) random variate, we use the

normal approximation to 2
√
X for large α in Chapter 5. There is another transformations

that is better in terms of stabilizing the variance: Anscombe’s 2
√
X + 3/8 (see [32]).

It would be useful to pursue a similar calculations for the normal approximation to

2
√
X + 3/8, in order to derive another approximation for the normalizing constant; it

would be of interest to see if the correction terms using 2
√
X + 3/8 transformation will

be better than that of the 2
√
X transformation.

• Extension of the generalized hypergeometric function: In Chapter 5, when we

investigated the correction term, we represented the normalizing constant as generalized

hypergeometric function only for the case of integer ν. Possible extension of generalized

hypergeometric function could give a good approximations for he normalizing constant

for all ν, and lead to other families of count distributions.
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8.3 FOR APPLICATION OF THE CONWAY-MAXWELL-POISSON TO

MRNA PRODUCTION

In this dissertation we have presented only a limited number of examples of the use of the

Conway-Maxwell-Poisson and its variants to mRNA production data. It would be of interest

to apply these to a much larger range of experimental data to see how well this model

performs relative to both other common empirical models for dispersion like the negative

binomial and biophysically derived models.

In addition, queueing models have also been considered for gene expression and mRNA

transcription [17, 27]. Given the good fits of the Conway-Maxwell-Poisson family and its

variants above, we suggest that it may be worthwhile to pursue this connection with queueing

theory to describe mRNA dynamics. In particular, what is known about mRNA production

justifies the use of Little’s law, which is only moment based. What is needed is a more

thorough description using distributional properties that can perhaps bring other queueing

theory methods. The CMP, which arose from queueing applications, can be a good candidate

for fitting other mRNA production data sets in order to help capture the characteristics of

possible underlying biophysical processes.
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9.0 APPENDIX: FOR PHOTON COUNTING PROBLEM

9.1 PROOFS

Proof of Lemma 1. Suppose that d = 2c is even. To have a concise presentation, let

θ = e−δ so that Ak = Ak(θ), and equation (3.1) becomes

d−1∑
k=0

(−1)k+1 θ{k}∏k
i=1Ai

∏d−k
i=1 Ai

=
θ{d}∏d
i=1Ai

. (9.1)

Multiply both sides of (9.1) by the least common denominator

d∏
i=1

Ai

c∏
i=1

Ai

to get the polynomials {fi : 1 ≤ i ≤ d+ 1} in the first column of Table 15. The cumulative

sums F3 = f1 + f2 and {Fk = Fk−1 + fk−1 : 4 ≤ k ≤ d} are in the second column there.

Using the fact that for i < j, Ai − Aj = −θiAj−i, we start with

F3 = f1 + f2 = −A1A2 · · ·Ac + A2A3 · · ·AcAd

= A2A3 · · ·Ac(−A1 + Ad) = θA2A3 · · ·AcAd−1;

the other cumulative sums follow similarly, ending with Fd+1 = −fd+1.
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Table 15: For even case c = d/2.

f1 = −A1A2 · · ·Ac θ{0}

f2 = A2A3 · · ·AcAd θ{1}

f3 = −A3 · · ·AcAd− 1Ad θ
{2} F3 = A2A3 · · ·AcAd−1 θ{2}

f4 = A4 · · ·AcAd−2Ad−1Ad θ{3} F4 = −A3 · · ·AcAd−2Ad−1 θ{3}
...

...

fc−1 = (−1)c−1Ac−1AcAc+3 · · ·Ad θ{c−2} Fc−1 = (−1)cAc−2Ac−1AcAc+3 · · ·Ad−1 θ{c−2}

fc = (−1)cAcAc+2 · · ·Ad θ{c−1} Fc = (−1)c+1Ac−1AcAc+2 · · ·Ad−1 θ{c−1}

fc+1 = (−1)c+1Ac+1Ac+2 · · ·Ad θ{c} Fc+1 = (−1)c+2AcAc+1 · · ·Ad−1 θ{c}

fc+2 = (−1)c+2AcAc+2 · · ·Ad θ{c+1} Fc+2 = (−1)c+3AcAc+1 . . . Ad−1 θ
{c+1}

...
...

fd−2 = A4 · · ·AcAd−2Ad−1Ad θ{d−3} Fd−2 = −A4 · · ·AcAd−3Ad−2Ad−1 θ{d−3}

fd−1 = −A3 · · ·AcAd−1Ad θ{d−2} Fd−1 = A3 · · ·AcAd−2Ad−1 θ{d−2}

fd = A2 · · ·AcAd θ{d−1} Fd = −A2 · · ·AcAd−1 θ{d−1}

Fd+1 = A1A2 · · ·Acθ{d}

We omit the details for the case of odd d, given in Table 16 because it the proof for odd

d is similar to that of for even d.

Proof of Theorem 1. Define the functions

Um(t) = e−αe
−(t+mδ)

,

and note that∫ ∞
tk−1+δ

Um(tk)e
−α[e−(tk−1+δ)−e−tk ]αe−tkdtk =

Um+1(tk−1)− U1(tk−1)

Am
. (9.2)

Thus, in equation (3.2), we integrate out td to get∫ ∞
td−1+δ

e−α[e
−(td−1+δ)−e−td ]e−αe

−(td+δ)αe−tddtd =
U2(td−1)− U1(td−1)

A1

.
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Table 16: For odd case c = d−1
2

.

f1 = −A1A2 · · ·Ac θ{0}

f2 = A2A3 · · ·AcAd θ{1}

f3 = −A3 · · ·AcAd− 1Ad θ
{2} F3 = A2A3 · · ·AcAd−1 θ{2}

f4 = A4 · · ·AcAd−2Ad−1Ad θ{3} F4 = −A3 · · ·AcAd−2Ad−1 θ{3}
...

...

fc = (−1)cAcAc+3 · · ·Ad−1Ad θ{c−1} Fc = (−1)c−1Ac−1AcAc+3 · · ·Ad−1 θ{c−1}

fc+1 = (−1)c+1Ac+2 · · ·Ad−1Ad θ{c} Fc+1 = (−1)cAcAc+2Ac+3 · · ·Ad−1 θ{c}

fc+2 = (−1)c+2Ac+2 · · ·Ad−1Ad θ{c+1} Fc+2 = (−1)c+1Ac+1Ac+2 · · ·Ad−1 θ{c+1}

fc+3 = (−1)c+3AcAc+3 · · ·Ad−1Ad θ{c+2} Fc+3 = (−1)c+2AcAc+2 · · ·Ad−1 θ{c+2}

...
...

fd−2 = (−1)d−2A4 · · ·AcAd−2Ad−1Ad θ{d−3} Fd−2 = (−1)d−3A4 · · ·AcAd−3Ad−2Ad−1 θ{d−3}

fd−1 = (−1)d−1A3 · · ·AcAd−2Ad−1 θ{d−2} Fd−1 = (−1)d−2A3 · · ·AcAd−2Ad−1 θ{d−2}

fd = (−1)dA2 · · ·AcAd θ{d−1} Fd = (−1)d−1A2 · · ·AcAd−1 θ{d−1}

Fd+1 = −A1A2 · · ·Acθ{d}

Next, integrate out td−1 in (3.2) to get∫ ∞
td−2+δ

U2(td−1)− U1(td−1)

A1

e−α[e
−(td−2+δ)−e−td−1 ]αe−td−1dtd−1

=
U3(td−2)− U1(td−2)

A1A2

− U2(td−2)− U1(td−2)

A2
1

=
U3(td−2)

A1A2

− U2(td−2)

A2
1

+
e−{2}δU1(td−2)

A1A2

.

The last expression is obtained by using Lemma 1, to combine the coefficients of the U1

terms. Next, integrate out td−2 down to t2 — each time applying Lemma 1 — to get

V (t1) =
d−1∑
k=0

(−1)k
e−{k}δUd−k(t1)∏k
i=1Ai

∏d−1−k
j=1 Aj

.
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Finally, integrate out t1 to get

∫ ∞
0

e−α(1−e
−t1 )V (t1)αe

−t1dt1 = P (D = d).

Proof of Corollary 1. Define the vectors pd = (p0, . . . , pd)
′ and ζd = (ζ0, . . . , ζd)

′. We can

restate the result in Theorem 1 as

p = Qdζ,

and the result in the Corollary as

ζ = Rdp;

thus, we must show that QdRd = I. Note that for 0 ≤ a, b ≤ d,

Qd = (qab), where qab =


0 if b > a

(−1)a−bθ{a−b}
b∏
i=1

Ai
a−b∏
j=1

Aj

if b ≤ a

and

Rd = (rab), where rab =


0 if b > a

a∏
i=a−b+1

Ai if b ≤ a
.

Therefore, their product Sd = (sab), where

sab =
d∑

k=0

qakrkb =
a∑
k=b

qakrkb =
a∑
k=b

(−1)a−kθ{a−k}

k∏
i=1

Ai
a−k∏
j=1

Aj

k∏
i=k−b+1

Ai

=
a∑
k=b

(−1)a−kθ{a−k}

k−b∏
i=1

Ai
a−k∏
j=1

Aj

.

By inspection, sab = 0 for b > a, and saa = 1. Next, let j = k − b in this expression and use

Lemma 1 with d = a− b to get sab = 0 for b < a.
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Proof of Lemma 2. In the calculation of the Pn(D = d) several complicated terms appear

as a coefficients of
(
n−kd−i−1

d−j+1

)
for j = 1, · · · , d−2; we show that these coefficients sum to zero.

Lemma 2 gives a general formulation for those coefficients. Before proving this, we first state

the relationship between the coefficients for j = 1 and the coefficients for j = 2, · · · , d−2. We

can use the coefficient of
(
n−kd−i−1

1

)
as our baseline group since the coefficient of

(
n−kd−i−1

d−j+1

)
for j = 2, · · · , d − 2 can be derived from the coefficient of

(
n−kd−i−1

1

)
. We demonstrate

several cases to clarify how we use the coefficients for j = 1 as baseline group. To calculate

Pn(D = 5), we have the following identities as the coefficients of
(
n−kd−4

j

)
for j = 0, 1, 2, 3:

c0 = −e
δ(4n+10)B0

3

B1B2B3

+
eδ(4n+7)B0

2

B1B2

− eδ(4n+5)B0
1

B2
1

+
eδ(4n+4)

B1B2

=
eδ(4n+4)

B1B2B3

,

c1 = −e
δ(4n+6)B1

3

B1B2B3

+
eδ(4n+4)B1

2

B1B2

− eδ(4n+3)B1
1

B2
1

+
eδ(4n+3)

B1B2

= 0,

c2 = −e
δ(4n+2)B2

3

B1B2B3

+
eδ(4n+1)B2

2

B1B2

− eδ(4n+1)B2
1

B2
1

+
eδ(4n+2)

B1B2

= 0,

c3 = −e
δ(4n−2)B3

3

B1B2B3

+
eδ(4n−2)B3

2

B1B2

− eδ(4n−1)B3
1

B2
1

+
eδ(4n+1)

B1B2

= 0.

c3 and c2 can be derived from c1 as follows:

• multiply the first term of c1 by e−(d−1)(j−1)δ = e−4δ(j−1) for j = 2, 3 to get the first terms

of c2 and c3, respectively.

• multiply the second term of c1 by e−(d−2)(j−1)δ = e−3δ(j−1) for j = 2, 3 to get the second

terms of c2 and c3, respectively.

• multiply the third term of c1 by e−(d−3)(j−1)δ = e−2δ(j−1) for j = 2, 3 to get the third

terms of c2 and c3, respectively.

• multiply the last term of c1 by e−(d−4)(j−1)δ = e−δ(j−1) for j = 2, 3 to get the last terms

of c2 and c3, respectively.

A similar pattern follows for all d. For this reason, the proof of Lemma 2 is only given for

j = 1.

Next, the relationship between the polynomials Ai and Bi is

Bi =
Ai+1

e−δA1

for i = 1, 2, . . . (9.3)
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Multiply both sides of (3.7) by the least common denominator

d−k−2∏
i=1

Bi

k−2∏
i=1

Bi

and then substitute (9.3) in the resulting equation. Let the polynomials be {gi : 1 ≤ i ≤ d+1}

and each cumulative sums be G3 = g1+g2 and {Gk = Gk−1+gk−1 : 4 ≤ k ≤ d}. We illustrate

this for d = 4. From (3.7), we know that the coefficient of
(
n−kd−3

1

)
, c1, is

c1 = e(3n+2)δ

[
− e

δ

B1

+ 1− 1

B1

]
= e(3n+2)δ (−eδ +B1 − 1)

B1

=
e(3n+2)δ

B1

[
−eδ +

A2

e−δA1

− 1

]
=
e(3n+2)δ

B1

[
−A1 + A2 − e−δA1

]
The polynomial term that appears in above equation is the same as the polynomial that

appears in Lemma 1 for d = 2, and c1 = 0 since Lemma 1 can be rewritten as

d∑
k=0

(−1)k+1 e−{k}δ∏k
i=1Ai

∏d−k
i=1 Ai

= 0.

In general, the coefficient of
(
n−kd−3

1

)
terms for d = k yields same polynomial that appear in

Lemma 1 for d = k − 2 – gi = fi−2.

For equation (3.8), we will use the same argument. After multiplying both sides of (3.8)

by the least common denominator

d−k−2∏
i=1

Bi

k−2∏
i=1

Bi

and then substitute (9.3) in the resulting equation. Let each polynomial be {hi : 1 ≤ i ≤

d+ 1}. For d = 4, the coefficient of
(
n−kd−3

0

)
from (3.8) is,

e(3n+3)δ

[
− e3δ

B1B2

+
eδ

B1

− 1

B1

]
= −e

(3n+3)δ

B1B2

After multiplying both sides by B1B2 term, substitute (9.3), we get

−A1 + A3 − eδA3 = −e3δA1.

This is equivalent to the polynomials that appear in Lemma 1 for d = 3. Thus, once again

the coefficient of
(
n−kd−3

0

)
terms for d = k are exactly the same polynomials that appears in

Lemma 1 for d = (k − 1): gi = fi−1. Since the polynomials in Lemma 2 are just a shifted

version of those in Lemma 1, the proof of Lemma 2 follows from Lemma 1.
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Proof of Lemma 3. In the second approach

P (D = d) =
∞∑
n=d

Pn(D = d)P (N = n)

=
∞∑
n=0

d∑
k=1

hnk
e−ααn

n!
−

[
d−1∑
n=1

d∑
k=1

hnk
e−ααn

n!

]
−

d∑
k=1

h0k
e−αα0

0!

=
∞∑
n=0

d∑
k=1

hnk
e−ααn

n!
− e−α

d∑
k=1

h0k (9.4)

In equation (9.4), h0k is just the polynomials that appears in Lemma 1, and we know that

the terms appears bracket has to be zero by Theorem 1:

e−α
d−1∑
n=1

d∑
k=1

hnk
αn

n!
= 0

In order for this equation to hold, the coefficient of the polynomials, αi/i!, must be zero,

completing the proof of Lemma 3.

9.2 SIMULATION STEPS

9.2.1 For infinite observation period

• Generate N ∼ Poisson (α) for α = 0.5, 1.0, . . . , 3.0.

• If N = 0, then D = 0 and stop.

• If N ≥ 1, generate W1, . . . ,WN which follows iid Exponential(1). Let W(1), . . . ,W(N) be

the corresponding order statistics.

• W(1) is always recorded. Then the detector has its first dead period [W(1), (W(1) + δ)].

• Next, count the number of photons that arrive in the first dead period [W(1), (W(1) + δ)].

– If all W(2), . . . ,W(N) arrive the detector in the detector, then set D = 1.

– If one of W(2), . . . ,W(N) arrive the detector after (W(1) + δ), then detector records it,

so increment: D ← D + 1. We now have the second dead period [W(i), (W(i) + δ)]

and the subscript i here is the second recorded photon. Repeat this step until W(N).
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9.2.2 For finite observation period

• Generate N ∼ Poisson (α) for α = 0.5, 1.0, . . . , 3.0.

• If N = 0, then record [D = 0].

• If N ≥ 1, generate W1, . . . ,WN which follows iid Exponential(1). Let W(1), . . . ,W(N) be

the corresponding order statistics.

• If W1 > T , then just record [D = 0].

• If W1 ≤ T , [W(1), (W(1) + δ) ∧ T ] is the first dead period. Now, count the number of

photons that arrive in the dead period. If there is any photon arrival after this first dead

period [W(1), (W(1)+δ)∧T ], then the detector would record it and so [W(2), (W(2)+δ)∧T ]

is the second dead period. Check for the second dead period to calculate the number of

photon arrivals in this dead period. Repeat this until W(N).
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