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Mengjie Mao, PhD

University of Pittsburgh, 2016

GPU heavily relies on massive multi-threading to achieve high throughput. The massive

multi-threading imposes tremendous pressure on different storage components. This disser-

tation focuses on the optimization of memory subsystem including register file, L1 data cache

and device memory, all of which are featured by the massive multi-threading and dominate

the efficiency and scalability of GPU.

A large register file is demanded in GPU for supporting fast thread switching. This

dissertation first introduces a power-efficient GPU register file built on the newly emerged

racetrack memory (RM). However, the shift operators of RM results in extra power and

timing overhead. A holistic architecture-level technology set is developed to conquer the

adverse impacts and guarantees its energy merit. Experiment results show that the proposed

techniques can keep GPU performance stable compared to the baseline with SRAM based

RF. Register file energy is significantly reduced by 48.5%.

This work then proposes a versatile warp scheduler (VWS) to reduce the L1 data cache

misses in GPU. VWS retains the intra-warp cache locality with a simple yet effective per-

warp working set estimator, and enhances intra- and inter-thread-block cache locality using

a thread block aware scheduler. VWS achieves on average 38.4% and 9.3% IPC improvement

compared to a widely-used and a state-of-the-art warp schedulers, respectively.

At last this work targets the off-chip DRAM based device memory. An integrated ar-

chitecture substrate is introduced to improve the performance and energy efficiency of GPU

through the efficient bandwidth utilization. The first part of the architecture substrate,
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thread batch enabled memory partitioning (TEMP) improves memory access parallelism.

TEMP introduces thread batching to separate the memory access streams from SMs. The

second part, Thread batch-aware scheduler (TBAS) is then designed to improve memory

access locality. Experimental results show that TEMP and TBAS together can obtain up to

10.3% performance improvement and 11.3% DRAM energy reduction for GPU workloads.
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1.0 INTRODUCTION

The functionality of GPU has extended from fixed graphic acceleration to general purpose

computing including image processing, computer vision, machine learning and scientific com-

puting. Because of its vast computational capability, GPU is widely deployed in various plat-

forms ranging from hand-held devices to HPC systems. Modern GPU can support tens of

thousands of concurrent threads executed in single instruction multiple threads (SIMT). The

thread-level parallelism of GPU is being continuously improved; for example, over the past

5 years, the core count of the high-end NVIDIA GPU is increased by nearly 10×, allowing

more than one hundred thousand of threads to run simultaneously in Maxwell architec-

ture [3]. Such extreme multi-threading can effectively amortize the device memory access

latency with the help of frequent hardware thread scheduling: if a thread suspends on waiting

the data from memory, the hardware thread scheduler will almost always be able to switch

to another thread from the huge thread pool. Nevertheless, massive parallelism in GPU

also asserts unbearable pressure on the whole memory subsystem vertically ranging from

the on-chip storage components to the off-chip device memory. The bottleneck of memory

subsystem plays a crucial role limiting the continuous upscaling of GPU computation.

1.1 GPU REGISTER FILE

GPU register file (RF) is the nearest on-chip storage component to core. To support hardware

thread switching, a large RF is indispensable. And as the thread-level parallelism of GPU

keeps being scaled, the RF capacity is increased accordingly; for instance, compared to

GTX 480, the RF size is increased by 4× in GTX 980, marking 512KB RF per stream

1
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Figure 1: The power breakdown of GPU. The statistic is obtained from GPGPU-sim [1]

coupled with GPUWattch [2]

multiprocessor (SM). Traditionally, GPU RF is built with SRAM and can consume up to

16% power of the whole GPU system. It is even comparable to the power consumption of

DRAM or execution unit, as shown in Figure 1. As technology scales, the high leakage power

and the large parametric variability of large on-chip SRAM based storage component have

become the major obstacles impeding GPU power efficiency [4]. Substituting traditional

memory technology with emerging memories [5, 6, 7, 8] appears as a promising approach

to combat these scaling challenges in GPU designs, e.g., using spin-transfer-torque random

access memory (STT-RAM) or embedded DRAM to implement GPU RFs. Compared to

their SRAM counterpart, these emerging memories generally offer smaller cell area or larger

capacity with the same footprint, better scalability, and nonvolatility.

Intuitively, the access frequency of RF is much higher than that of other memory com-

ponents, e.g., on-chip cache, because nearly every instruction must access more than one

register. The dynamic energy is expected to contribute a larger portion of the total RF

energy consumption. We profile prevalent GPU benchmark suites [1, 9, 10, 11] and observe

that the access frequency of RF is nearly 10× ∼30× higher than that of L1 cache. Figure 1

shows the power breakdown of RF at the right of Figure 1. The RF is built on SRAM

and the bank level parameters of RF is extracted from CACTI [12] enhanced with GPU RF

2



model. The emerging memory candidates, however, all suffer from high write energy and

slow write speed. Directly replacing traditional memory cells in the GPU RF with emerging

memory cells may offset the benefits of high density and low leakage power offered by the

emerging memory technologies.

1.2 GPU L1 DATA CACHE

While the RF of modern GPU keeps its size increasing reasonably, the other major on-chip

storage component, L1 data cache almost keeps its size stable [13, 3] due to the design con-

siderations including access speed, thermal and area. Cache hierarchy has been introduced

to GPU designs to reduce the memory access latency by taking advantages of data locality.

Frequent thread switching requires a large number of active threads pending for schedule,

these active thread, however, incurs extremely small cache quota per thread [14]. Moreover,

the increased GPU concurrency results in severer low per-thread L1 data cache quota [14].

As such, conventional cache hierarchy becomes less efficient in retaining the frequently reused

data even the inherent data locality of the applications is high [15].

Prediction of the re-reference interval of cache block plays an important role in general

cache replacement policy: based on the re-reference intervals, the position of the cache block

insertion can be dynamically adjusted to approach ideal cache hit rate [16]. In GPU appli-

cations, however, even perfect prediction of re-reference interval cannot necessarily achieve

a high cache hit rate. Because of high volume of thread contents on small cache capacity,

the cache blocks of a thread can be easily evicted by those of other threads. Such situation

becomes harmful to system throughput, if the cache blocks are re-useful but the re-reference

interval is not short enough to keep the data in cache. Moreover, programming model of

modern GPU often employs a hierarchical thread organization [17, 18], resulting in various

levels of cache locality. Therefore, although the intra-thread cache locality has been well

studied and supported by many replacement policies in CPU domain, retaining the cache

localities among the GPU threads still remains as a very challenging topic.

3



Besides the replacement policies, thread scheduling is considered as another critical ap-

proach improving the cache efficiency [19, 20, 15, 21]. Through the rearrangement of thread

execution order, the re-reference interval of the data of each thread can be dynamically re-

configured, and the cache quota can also adapt to the needs of the running threads. Both

intra- and inter-thread cache localities are required in GPU execution. However, most prior

arts primarily focus on capturing the intra-thread locality. A comprehensive scheduler de-

sign that is capable of exploring multiple different cache localities in GPU applications is

necessary.

1.3 GPU DEVICE MEMORY

The low per-thread cache quota is incapable of filtering the huge volume of memory accesses

to off-chip DRAM device memory[19], causing tremendous pressures on the DRAM device

memory. The DRAM bandwidth is not increased proportional to the increasing of concurrent

threads. From Fermi to Maxwell architecture, the DRAM bandwidth is only increased by two

times when the number of concurrent threads is increased by more than eight times [13, 3].

On the other hand, since the DRAM protocol, GDDR5 [22] does not evolve accordingly, the

increased bandwidth comes from the double-boosted clock rate [23]; consequently, the power

consumption of the device memory is aggravated.

Increasing memory access parallelism and locality via memory scheduling is one of the

primary architectural approaches to improve memory efficiency in multi-core systems [24, 25].

Unfortunately, most existing memory scheduling algorithms are incapable to handle the

extremely high volume of memory accesses in GPU [26, 27] since their implementation cost

is generally unaffordable [28].

Instead of dedicated hardware redesign of memory scheduler, memory partitioning based

on OS memory management is another viable approach to improve memory usage efficiency.

memory partitioning usually attempts to divide and allocate memory resources to threads,

each of which accesses its associated memory partition exclusively to reduce inter-thread

interference [29, 28, 30, 31]. Using memory partitioning to improve DRAM efficiency in

4



GPU is feasible and even attractive because: 1) The pageable unified memory address space

in heterogeneous system allows OS to freely allocate the pages accessed by GPU; 2) The

near-homogeneous multi-threading in GPU can guarantee the memory access fairness and

parallelism if the running threads are evenly dispatched to SMs. This statement, however,

may not be valid in multi-core systems due to the different bandwidth requirements of

heterogeneous threads [31].

However, existing memory partitioning mechanisms of multi-core systems cannot be di-

rectly applied to the GPU domain. For instance, memory bank partitioning [29, 28, 30, 31]

aims the multi-program environment where only limited number of threads are executed

simultaneously. Each thread owns and accesses the assigned banks exclusively. In GPU ap-

plications, however, the number of the threads could be several orders of magnitude greater

than that of the available banks. Each thread cannot own a (or a few) memory bank(s)

exclusively. Moreover, all the threads in a GPU application share an unified address space,

hindering the separation of memory access streams from different threads and making the

implementation of memory partitioning very difficult.

1.4 DISSERTATION CONTRIBUTIONS

This dissertation tackles the bottleneck of memory subsystem in GPU. Three comprehensive

solutions are proposed for three storage components:

• This dissertation introduces a GPU RF design with the emerging racetrack memory

(RM) [32]. RM have extremely small cell area [33, 34], low read and write energy, and

nonvolatility. However, the sequential access mechanism, which means that every read

or write access requires sequentially shifting the target cell to the nearby access port on

the track, results in a long and location-dependent access latency of RM. Hence, a series

of techniques are introduced to alleviate the adverse impact of the sequential access of

the RM based RF on the GPU performance as:

1. A register remapping scheme is proposed to reorganize logical-physical register map-

ping to reduce the average shift distance in RW accesses;
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2. A RM aware warp scheduling (RMWS) algorithm is developed to hide the shift delay

by dynamically prioritizing the ready warps based on the current access port location

on the RM tracks;

3. A new write buffer structure is designed to improve the scheduling efficacy of the

RMWS and save the energy of the RM based RFs through eliminating of the unnec-

essary RF accesses;

4. A novel warp-register mapping technique is proposed to support efficient warp schedul-

ing by removing the schedule hazard among multiple RMWS schedulers.

Our simulation results show that compared to SRAM based GPU RF design with nor-

mal warp scheduler, the application of RW based RF significantly reduce the energy

consumption of RF by 48.5% while the system performance is kept stable.

• This dissertation then proposes a versatile warp scheduler (VWS) to reduce the cache

miss rate in GPU [35]. Not only can VWS outperform the existing works on preserving

intra-thread locality with much more efficient implementation, but also retain inter-

thread cache locality for higher system throughput. The major contributions of VWS

are:

1. Three major types of cache localities are identified in GPU, and their impacts are

quantitatively analyzed on cache usage efficiency;

2. VWS is the first thread scheduler that is capable of retaining both intra- and inter-

thread cache localities;

3. An efficient working set estimator is designed to guide the thread scheduling decision

for better intra-thread locality; a thread structure-aware scheduling policy and a

workload dispatching mechanism are also introduced for better inter-thread locality.

The simulation results show that compared to a widely-used thread scheduler, VWS

can dramatically raise up the L1 data cache hits, and therefore improve the system

performance by 38.4% on average. VWS also outperforms a state-of-the-art scheduler

by 9.3%.

• At last this dissertation proposes to allocate memory banks to specific SMs for GPU

memory access parallelism and locality enhancement. Specifically, a thread batch enabled

memory partitioning (TEMP) is introduced to constrain the majority of the memory
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accesses from a SM to the dedicated banks [36]. Thread blocks, which share the same

set of pages with each other, are grouped into a thread batch. The thread batch is

then dispatched to a SM as a whole and the pages accessed by the thread batch can

be mapped to the banks dedicated to the SM by page coloring [37]. As a result, the

memory access interweaving between SMs and banks is minimized and the memory

access parallelism is maximized. The application of TEMP separates the memory access

streams from different SMs, allowing further enhancement of memory access locality

through optimizing the execution of the thread batches. Thread batch-aware scheduling

(TBAS) is then proposed to prioritize thread batches in order to cluster the accesses to

the row in a bank. The prioritization of thread batches also alleviates the congestion on

memory controllers as well as the reply network from memory partitions to SMs. The

major contributions of TEMP and TBAS are:

1. This is the pioneer work attacking DRAM bandwidth bottleneck in GPU applications

running on heterogeneous shared memory systems utilizing memory partitioning;

2. Thread-data mapping in GPU applications is characterized. According to the char-

acterization, TEMP is proposed to maximize memory access parallelism through the

minimization of inter-SM interference of memory accesses;

3. TBAS is developed to improve memory access locality and mitigate the congestion

on memory controller and reply network, further improving the efficacy of TEMP.

Experimental results show that after applying TEMP and TBAS, the performance of a

set of GPU applications is improved by 10.3% while the DRAM energy consumption is

reduced by 11.3%, w.r.t. the baseline without memory partitioning. The dissertation

also evaluates the impact of the execution of heterogeneous CPU-GPU workloads on the

integrated TEMP and TBAS substrate. The dissertation demonstrates that a simple yet

effective solution is capable of addressing the interference incurred by CPU execution,

ensuring TEMP and TBAS keep the high GPU throughput while barely deteriorating

the CPU-side performance.
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1.5 DISSERTATION ORGANIZATION

The rest of this dissertation is organized as follows. Chapter 2 introduces the background

of GPU architecture. Chapter 3 first presents the array-level evaluation of RM based GPU

RF, then describes the details on the architecture optimizations for RM based GPU RF, and

gives the experimental results and the relevant analysis at the last. Chapter 4 analyzes the

GPU cache locality, and then illustrates the details of VWS, at last presents the simulation

results. Chapter 5 detailed the design of TEMP and TBAS, and shows the experiment

results. Chapter 6 reviews the related works. Finally, Chapter 7 concludes the dissertation.
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2.0 GPU ARCHITECTURE

Without loss of generality, we use NVIDIA Fermi [13] as an example to introduce the relevant

knowledge of GPU architecture. A typical GPU architecture is shown in Figure 2. It

consists of many SMs and memory partitions. SMs are connected to memory partitions with

interconnection networks, e.g., a two dimension mesh. Every SM holds a complete SIMD

pipeline, which consists of instruction cache, warp scheduler, register files, shader cores,

L1 data cache and scratchpad memory. Each memory partition has its own DRAM chips,

dedicated memory controller, and L2 cache. All memory partitions are in the same memory

address space so that a SM can access any memory partitions by address.

GPU programming models like CUDA [17] and OpenCL [18] define the workload of-

floaded to a GPU as a kernel. A kernel is highly multi-threaded where all the homogeneous

threads are encapsulated in a grid. A grid is partitioned into thread blocks, each of which

contains up to thousands of threads. During executions, each thread block is dispatched as

a whole to a SM. A thread block in the SM can be further partitioned into fixed-size warps

that are atomically scheduled by warp scheduler and executed by the shader cores in SIMD

fashion. One SM in Fermi can concurrently run up to 48 warps. The shared scratchpad

memory is employed in the SM to support intra-thread block data sharing. The L1 data

cache is used to cache all other data and shared by all shader cores. Note that there is

no hardware cache coherence protocol implemented in GPU. The L1 caches are write-evict

write no-allocate for global data and write-back for per-thread private data. Therefore, the

software can easily maintain the cache coherence.
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3.0 POWER-EFFICIENT GPU REGISTER FILE

In this chapter we first introduce the GPU pipeline stages involved RF and the basics of

RM. Then we present the array-level design of RM based RF, followed by the details of

architecture optimization. We depict our experimental setup in Section 3.4 and show the

experimental results and the relevant analysis in Section 3.5. At the end of this chapter we

will summarize our works on GPU RF.

3.1 BACKGROUND

3.1.1 The GPU Pipeline Stages for RF Accessing

Figure 3 shows two stages – issue and operand collection, in a Fermi SM pipeline. At issue

stage, warps are issued by a warp scheduler: if the selected warp has valid instruction in

its instruction buffer, and confirms with scoreboard that it does not depend on previous

instruction (notified by the r field), then it will be issued; otherwise, the scheduler will select

another warp based on the scheduling algorithm. The issued instruction is attached with a

mask by the SIMT-stack [38] that indicates the active threads within a warp.

Figure 3 (b) shows details of the data path involved in operand collection stage into which

the issued instruction enter. The instruction is buffered in the collector unit, and the register

requests from the instruction are sent to the arbitrator associated with each RF bank. The

arbitrator solves the bank conflict of the pending requests. The GPU RF is highly banked

to virtually support multi-port feature. In this work, we assume there are total 64 entries in

a bank [2]; each entry is 128 bytes, containing 32 32-bit operands, namely, warp register 1;

and a single request can read/write one register.

1We use warp register and register interchangeably.
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Figure 3: The (a) issue and (b) operand collection stage in GPU pipeline.

3.1.2 Domain-wall-shift-write based Racetrack Memory

Figure 4 (a) shows the schematic of one RM cell based on domain-wall-shift-write [39, 40].

As indicated in the name, write operations of such kind of cell rely on magnetic domain

wall motion. The cell consists of a ferromagnetic wire, an MTJ and two access transistors.

Different from conventional 1T1J STT-RAM cell [41], the MTJ in the RM cell contains two

fixed pinning regions whose magnetization orientations are opposite to each other. These

two fixed regions are separated by a free region. In the free region, the magnetization

direction can be changed by injecting current from the two adjacent pinning regions. In write

operations, the WWL (Write Word-Line) transistor is turned on; the cell will be written to

‘1’/‘0’ by setting BL (Bit-Line) to high/low and SL (Source-Line) to low/high. During read

operations, the RWL (Read Word-Line) transistor is turned on, then the sensing current will

go through from the BL to the SL. The decoupled read and write paths can substantially

reduce the read disturbance probability and improve the operation reliability of the RM cell.

A RM comprises of an array of magnetic strips, namely, racetracks. Figure 4 (b) shows

the structure of a racetrack including an access port implemented by the RM cell [33]. The
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racetrack is partitioned into consecutive magnetic domains which are separated by magnetic

domain walls [42]. Each magnetic domain is considered as a RM cell where ‘0’ and ‘1’

are stored as the different magnetization directions, i.e., up and down, respectively. An

important feature of RM is that the RM cell can move along the racetrack in either direction

when injecting the current from different ends of the racetrack. Hence, multiple RM cells can

share one access port: the RM cell to be accessed, say, Mi, must move to the slot under the

access port. The ferromagnetic layer with fixed magnetization direction and the metal-oxide

layer underneath, together with the Mi, constitute a magnetic tunneling junction (MTJ)

structure. Depending on the relative magnetization directions in the fixed ferromagnetic

layer and the Mi, i.e., parallel or anti-parallel, the whole MTJ structure demonstrates low

or high resistance state, respectively.
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3.2 RF BANK DESIGN BASED ON RACETRACK MEMORY

Figure 5 shows the conceptual bank array design using RM2. Multiple rows share the same

WL (word-line) connected to the access port, significantly reducing the number of WLs.

Consequently, the design of row decoder becomes much simpler and the area is smaller than

the traditional one. Note that for each access port, there are two WLs which are responsible

for read and write, respectively. A shift driver supplies shift current to the head or tail of the

track, depending on the location of the accessed bit on the track. Due to design complexity

concern, all the tracks in an array share one shift driver and are controlled by the same

command, or say, the magnetic domains on all tracks in an array move simultaneously. The

magnetic domains on the same row represent a warp register.

The arbitrator associated with each bank is augmented with a shift controller that gen-

erates the shift pulse based on the incoming requests. The right of Figure 5 illustrates the

inside of a shift controller. The row index generated from the row decoder is fed into the

shift controller. The current location of the access port is stored in the location register. By

comparing the row index and location register we can measure the distance between target

register and the access port. Accordingly, the proper shift pulses are emitted from the pulse

generator and drive the shifting on track.

Figure 6 indicates that the deployment of access ports is a tradeoff between area, power

and read/write performance: increasing the number of access ports on a track can boost

the read/write performance of the RM, however, also requires a more complex peripheral

control circuit. As an extreme case, each array can have as few as only two WLs across all

the tracks though the read/write performance will be dramatically degraded by the shapely

increased shift delay.

Figure 6 shows the array-level design exploration of RM based RF of one Fermi SM.

The parameters of each configurations are extracted from modified NVSim [43] which is

enhanced with RM model. We restrict the write pulse within 1ns, and adopt the device-level

parameters from [39, 33] by carefully scaling them down to 32nm technology node. Compared

2For simplicity, we skip the details of inner bank array organization and assume that one bank consists
of one array.
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Figure 6: The design parameters of RM based GPU RF.

to SRAM design, the RF using 4-port (4P) RM reduces the area and leakage power by ∼90%

and ∼93%, respectively, while the read/write energy is also saved by ∼42%/∼50% due to

the smaller area, the shorter routing distance and the simpler decoding logic. However, the

read and write latency are increased by 70% and 140%, respectively, due to the long sensing

delay and write pulse width. Here the read and write latency is measure from the reading

and writing operations on the access port, which means that shift delay is not considered.

Note that the read/write latency of 4P configuration is 0.59/1.26ns that can fit into two

SM cycles3. Therefore, the prolonged read/write latency generates very minimum impact on

system performance. The result also shows that continuing to increase the number of access

port on each track beyond 16 only result in marginal read/write energy saving as the power

consumption of sense amplifiers and write drivers start to dominate the total power. Further

reduction of read latency/energy can be achieved by using thicker oxide that can improve

the TMR of the MTJ structure [40], which is beyond the scope of this dissertation. Given

3The SM frequency of most real GPUs is lower than 1GHz
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the longest track – 64-bit – used in this work, the maximal deployment of access ports is 64.

Such design omits any shifting since every magnetic domain/bit is associated with a private

access port, just like RAM.

3.3 ARCHITECTURE OPTIMIZATIONS FOR RM BASED GPU

REGISTER FILE

3.3.1 Register Remapping

We observe that the usage ratio of RF during GPU execution is generally low, and can be

leveraged to optimize the read/write performance of RM. As we will show in Section 3.4, on

average, only 62.15% RF are allocated for all simulated benchmarks because of the limited

availability of the shared memory and max thread blocks supported by one SM usually make

the RF under full utilization. As a result, only about 40 out of 64 entries are averagely used

in a bank. Figure 7 (a) shows the original register mapping in two banks [44]. Here we

assume there are 2 warps (W0&W1) running on a SM and each warp requires 8 registers

(R0∼R7) interleaving in two banks. Each track has 16-bit and 2 access ports. Within a bank,
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the original mapping allocates all 8 registers together of which the maximum shift distance

is 8 (supposing the access sequence is register 2 of warp 1 (W1R2)→W1R6→W0R0 and the

access port on the top is selected).

Figure 7 (b) shows our proposed register remapping scheme. This scheme packs the

registers around each access port to reduce the maximum shift distance down to 4. As a

warp instruction often reads more than one operand, the shift delay may be reduced by

accessing the registers distributed around different access ports simultaneously or consecu-

tively. In present-day GPU design, the decoder in a RF bank has already designed to be

reconfigurable [44] to fulfill the different register mapping requirements of different appli-

cations/CUDA kernels. Hence, the implementation cost incurred by register remapping is

negligible. There are two preconditions in the implementations of register remapping: 1© the

hardware knows the register file allocation information and 2© the mapping of the registers

of each warp to the banks is fixed. 1© can be satisfied with the help of compilation – com-

piler can deliver the register allocation information to the SM during execution (indeed, this

scheme has already been adopted by CUDA and NVIDIA GPU series [17]). 2© is promised

by the thread block launching scheme: each warp ID, which is used to index the RF, is

reusable for future warps. So once a CUDA kernel is launched, its warp register mapping is

determined and such mapping will never change until the next kernel is launched.

3.3.2 RM Aware Warp Scheduling

As discussed in Section 3.2, although RW can help to reduce the RF area and leakage power,

the read/write energy may not be necessarily saved if a long shift delay is required by data

accesses (e.g., due to limited access port number). Hence, if we can arrange the RF accesses

to be “sequential” then the shift distance between two adjacent RF accesses can be minimized

and the overall shift overhead can be reduced.

Given the facts that thread switching in GPU happens very frequently, and there are

normally dozens of warps pending for scheduling in a SM, we propose to re-arrange the issue

order of the warps based on the distance between the access ports and the registers requested

by corresponding warp instructions to generate sequential accesses to the RM based RF. We

name this technique as RM aware warp scheduling (RMWS).
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In RMWS, we define scheduling score as the maximum distance between the requested

register location and the access port for the instruction of a warp. In a scheduling cycle,

RMWS examines all running warps and selects the one with the lowest scheduling score to

issue. There are three pieces of information are needed to obtain the scheduling score: 1©

the registers that the warp instruction accesses; 2© the locations of the accessed registers;

and 3© the current locations of the access ports.

We use Figure 7 (b) as an example to illustrate how the scheduler calculates the schedul-

ing score of a warp instruction: assuming that an instruction of W1 accesses R2 and R4

( 1©). Scheduler can get 1© from the instruction buffer associated with the warp. Here the

location of R2/R4 ( 2©) is 1/0 bit away from the nearest access port ( 3©). The highest score

– 1 bit, is set as the scheduling score of W1. Because we evenly distribute the access ports

on each track, every access port covers the same number of bits ( e.g., 8-bit in Figure 7 (b)),

called a port segment. Note that all banks of a RF have the same port segment. We use the

relative location w.r.t. port segment, namely, bit-map location (BML), to represent 2©. A

BML can be calculated by using the register ID and the warp ID attached to a RF request

as:

num regwarp,bank = dnum regwarp/num banke, (3.1)

num regport segt = dnum regwarp,bank/num porttracke, (3.2)

BML = dnum regport segt × warpIDe+ bRegID/num bankc%num regport segt + offset,

(3.3)

where num regwarp is the number of warp registers allocated to a warp; num bank is the

total register banks of a RF; num porttrack is the number of access ports on a track; offset is

the distance between the first empty bit on the top and the first valid bit in a port segment.

For example, the BML of W0R0 in Figure 7 (b) is 2. The red values in Equation (3.1)

– (3.3) can be pre-determined when a CUDA kernal is launched. Furthermore, all the

arithmetic calculation are fix-point with 6-bit resolution4; Hence, the logic to generate BML

has negligible hardware cost and can be easily installed in the scheduler.

4In Fermi a RF bank has at most 64 registers.

19



As aforementioned, all tracks in a RF bank move simultaneously. Hence, the BMLs of

all the registers at every access port are the same. We can define the BML of a bank (i.e.,

bank BML) as the BML of any register at an access port. Here the bank BML represents the

relative location of the access port in their assigned port segment ( 3©). The scheduler tracks

the bank BML of each RF bank: once an instruction is issued, the generated RF requests

are pushed into the pending queue of an arbitrator associated with the RF bank. For a

warp instruction that is scheduled to issue, we can compare the BML of the registers to be

accessed by this instruction with the one of the newest pending request of the bank to obtain

the scheduling score of the instruction. Like our former work [34], we do not introduce any

automatic back or forth access port adjustment [45] after issuing a RF request, because we

found that such adjustment has little performance or energy merit but complicates the shift

controller design.

The major cost of RMWS is searching for the warp instruction which has the smallest

scheduling score. This is a typical min/max search problem and the cost increases linearly

when the number of concurrent warps in an SM increases [46]. Here we introduce a high

efficient scheduler design which only looks for the minimum scheduling score and avoids

many expensive calculations.

Figure 8 depicts an example about how the proposed scheduler works. Similar to Figure 7

(b), there are two warps to be scheduled: W0 has an instruction accessing R0 and R5, while

W1 has an instruction accessing R2 and R1. At the first step of RMWS, the BML of each

register access is preprocessed by:

BMLpp = 0x1� (portsegt− 1)� BML. (3.4)

Here both shifts are arithmetic shift. For example, the BML of W0R0 is 0x2. Through the

preprocessing in step 1©, we obtain the BMLpp of W0R0 which equals 0xE0. At step 2©, the

BMLpp of W0R0 is XORed with the BMLpp of bank0 corresponding the newest pending

request. At step 3©, the result of step 2© – 0x18, is then logically right shifted until its LSB

becomes non-zero. The number of 1’s in the obtained result – 0x03, called normalized bit

distance, represents the distance between W0R0 and its assigned access port (in this case,

normalized bit distance = 2). The normalized bit distances of the other register accesses
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Figure 8: The scheduling procedure of RMWS.

can be calculated similarly, except for W1R1: in this case, the output of step 2© is 0x0. The

normalized bit distance of the W1R1 is directly set to 0x0 and nothing needs to be done at

step 3©. The normalized bit distances of the registers to be accessed by the same instruction

are ORed together at step 4© to produce the scheduling score of the instruction. At step 5©,

the scheduling scores of all ready instructions form an array. We scan every column of the

array from right to left and perform bit-wise AND of all the bits on the same column. If

the result of the bit-wise AND of a column is zero, or say, there is at least one bit in that

column is zero, the row whose bit is zero will have the minimum scheduling score and the

corresponding warp instruction will be scheduled for issue. If the warp cannot be issued due

to other constraints (we will discuss this case in Section 3.3.2.1), the scan will continue from

the current column until the warp with the next minimum scheduling score is found.

The above RMWS algorithm can be easily implemented in current GPGPU design. In

fact, the widely used scheduling algorithms, e.g., loose round robin (LRR) or greedy-then-

oldest (GTO) [1], also adopt a scan-liked mechanism for warp selection: both of them select a

warp from the warp pool and then check with the corresponding instruction buffer. If there

is no ready instruction for the selected warp, they will select the next warp until a warp

instruction can be issued. Hence, we expect RMWS to have a comparable timing overhead

comparable to advanced GTO.

We note that RMWS overlooks one possibility that the registers accessed by a warp

instruction locate in the same bank but are separated by the assigned access port at different

sides. However, such a case rarely happens because in GPGPU execution, most of the warp
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instructions are managed to collect their operands from different RF banks to minimize the

bank conflict of register accesses. Although we are able to elaborate our RMWS algorithm

to consider this scenario, e.g., using circular shift, we decide to tolerate such an inaccuracy

simply because the occurrence probability of this scenario is very low: our profiling results

shows that among all the executed instructions, only 1% of them have more than two registers

located in the same RF bank, not even talking about if they are separated by the same

access port at different sides. As we shall show in Section 3.5.1.1, such low probability of

miscalculating the scheduling score does not visibly affect the efficacy of the RMWS.

3.3.2.1 Write Buffer RMWS design assumes that the service order of the pending

RF requests is deterministic because of the FCFS (first-come-first-serve) policy adopted by

the arbitrator. Write requests, however, may invalidate this assumption: a write request

is generated from writeback stage of the pipeline but not issue stage. Hence, inserting a

write request to the deterministic read request sequence will introduce uncertainty to the

calculation of scheduling score. In order to remove this uncertainty, we introduce a write

buffer to store the incoming write request and use piggyback-write policy to dispatch the

write requests from write buffer to RF: the write operation is performed when the target

register is moved to an access port by the previous read or write request. By doing so,

RMWS only needs to consider the read requests during the calculation of scheduling score.

When the write buffer is overflowed, a writeback will be performed regardless the current

location of the registers being accessed in the RF bank. The overflow of the write buffer

may harm the efficacy of RMWS. But as we shall show in Section 3.5.1.1, the probability of

write buffer overflow is considerably low that the its impact is marginal.

In general, the RF access frequency in GPU is very high so that the lifetime of a GPU

register value is short [4]. This characteristic has two positive side effects: first, the data

stored in the write buffer is very likely to be accessed by a RF read request before it is written

back to the RF (RAW dependency); second, a write request residing in the write buffer may

be erased by a later issued instruction which also writes to the same warp register (WAW

dependency). By leveraging these two dependencies, the introduction of write buffer can filter

the read/write requests to the RF and further reduces the RF access energy consumption by
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Figure 9: (a) The overview of the modified pipeline stages; (b) The WBIT by assuming each

RF bank is associated with 2 WBDA entries, only the logic for logging write request is shown

here; (c) The flow of logging write request; (d) The flow of logging read request.

leveraging the low access cost of the write buffer. To perform the data dependency detection

between the write buffer and the issued instructions, the write buffer is divided into two parts

– write buffer data array (WBDA) and write buffer info table (WBIT), which are deployed

in arbitrator and scoreboard, respectively.

Figure 9 (a) shows GPU pipeline augmented with RMWS and write buffer, including the

modifications on the following stages: As shown in Figure 9 (a), RMWS scheduler reads

the instruction buffer ( 1©) and then generates the scheduling score array (see Figure 8). The

scheduler then picks up a ready warp instruction and updates the WBIT in the scoreboard

( 2©). WBIT is a set-associated table tracking the utilization of WBDA; the ways of a set

in WBIT equals the number of WBDA entries associated with a register bank, as shown in

Figure 9 (b). Each WBIT entry has four fields – V (1 bit) indicates whether the associated

WBDA entry is valid; R (1 bit) indicates whether the associated WBDA entry has received

the data; warp ID (6-bit) and register ID (6-bit) record the write request; and F (up to

4-bit) is a counter recording how many in-flight read requests will read the corresponding

WBDA entry so as to avoid the WAR hazards and help the scoreboard to label the relevant

warp instructions as ready in the instruction buffer.
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Figure 9 (c) and (d) depict how scoreboard processes an incoming warp instruction.

The warp ID and register ID fields of an instruction are used to log the write/read request

information into a WBIT entry. A warp instruction cannot be issued if: 1© write buffer is

full, 2©WAW hazard or 3© RAW hazard happens. 1© happens only when all WBDA entries

are valid (V = 1) but none of them is ready for writing back to RF. It may be because

the corresponding instructions have not produced the output data yet (R = 0) or the read

requests to the particular WBDA entries are still in-flight (F > 0). 2© and 3© never happen

because the scoreboard can detect both hazards, preventing the unready warp instruction

from being selected by scheduler. The scoreboard allows a warp instruction to issue if none of

the above conditions exists ( 4©); otherwise, the scheduler will select another warp instruction

( 3©). Whenever a read request retrieves the data from a WBDA entry, the arbitrator notifies

the scoreboard to decrease the F field of the WBIT entry associated with that WBDA entry

( 6©). The write request writes the WBDA entry assigned by the scoreboard at issue stage,

and notifies the scoreboard to update the R field of the corresponding WBIT entry ( 7©).

The scoreboard then checks the instruction buffer and labels the warp instructions as ready

if no hazard is detected ( 8©). Once the data has been written back from WBDA to RF, the

arbitrator notifies the scoreboard to recycle the corresponding entry in WBIT ( 9©).

If we assume there are two WBDA entries for each bank and total 16 banks in a SM,

the WBIT costs 72-byte and the WBDA costs 4KB (128 bytes per entry). The incurred

performance and energy overheads are very low and are considered in our evaluations.

3.3.3 Support for Multiple Warp Schedulers

Using multiple independent warp schedulers in each SM [46, 13] allows the GPU to achieve

near-to-peak hardware performance as well as the reduction in the design complexity of each

scheduler. However, with the introduction of RM based RF and RMWS, increasing the

number of schedulers in a SM may potentially degrade the scheduling efficiency because the

local optimization at each RMWS scheduler does not necessarily generate a global optimal

outcome. We refer to such inefficiency caused by multiple schedulers as schedule hazard.

Figure 10 gives an example illustrating the schedule hazard between two RMWS schedulers
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Figure 10: An example of schedule hazard between two RMWS schedulers. Register R1∼R4

are used to represent the scheduling scores/instructions of four warps. R4 is selected in cycle

2 because the bank BML is represented by the BML of R1 at that time.

of a RF bank: scheduler 0 should dispatch R2 at cycle 1 to achieve a global optimal solution

by considering the track movement triggered by scheduler 1. However, it falsely picks up R1

which offers a local optimal solution for scheduler 0 only.

Schedule hazard comes from the inconsistency of the track movement directions requested

by multiple simultaneously scheduled warp instructions. In order to eliminate the schedule

hazard and keep a concise scheduler design, we introduce warp-register remapping which is

shown in Figure 11. Compared to the original register remapping in Figure 7 (b), all registers

of a single warp are mapped to the same bank by warp-register remapping. Each scheduler

can work independently without interfering to each other.

To implement warp-register remapping, we divide the RF banks into equal-sized, non-

overlap subsets, each of which is bound to a warp schedule. The warps, which are allocated

to a scheduler, access all their operands from the subset of RF banks associated with that

scheduler. As such each scheduler can exclusively emit RF requests to its private-owned

RF banks and leverages RMWS to produce optimal scheduling without any interference of

schedule hazard. Even the registers accessed by a warp span a reduced stretch now, the

bank conflict incurred by warp-register remapping is expected as mild, since for each bank,

the number of warps it serves is also decreased.
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3.4 EXPERIMENT METHODOLOGY

3.4.1 Applications

We construct a diverse application set from [1, 9, 10, 11] to evaluate our proposed GPGPU

RF architecture. All applications are fully simulated except for KM, FWT and RD, which

are simulated for the only first 2 billion instructions. The detailed characteristics of the

applications used in this paper is summarized in Table 1.

3.4.2 Simulation platform

We use GPGPU-Sim [1] as our simulation platform, which has been modified with all the

proposed architectural optimizations. Fermi-liked SM [13] is adopted and simulated by

GPGPU-Sim. The simulator configuration is depicted in Table 2. To accurately simulate

register remapping, we configure the GPGPU-Sim to run PTXPlus codes which exactly

exposes the register allocation to hardware. We extract the performance statistics from

GPGPU-Sim and also generate the detailed access statistic of RM based RF for energy

consumption measurement.

We choose the widely-used GTO as the basic scheduler in our GPGPU configuration.

Although there are many other scheduling algorithms [4, 47, 15, 19, 48, 49], most of them

focus on improving the performance of some particular applications, e.g. memory intensive

applications. Instead, RMWS is designed for more generic scenarios and can be easily

incorporated into other schedulers. For example, for two-level scheduler [4], we can replace

the LRR at each level with RMWS. In this work, we did not take into account the integrated

solution combing RMWS and other schedulers and leave it to our future research.

The design parameters of RF implemented with different memories are depicted in Ta-

ble 3; all parameters are generated by modified NVSim [43] at 32nm technology node. For

the 4P RM, we adopt the device parameters from [39, 33] and the memory cell area data

from [34]. The SM frequency is set to 700 MHz, which implies that the RF is running at

1400 MHz [1]. The read latency of 4P RM can fit into one cycle while the write latency is

two cycles. We conservatively assume the delay of shifting one bit on a track as one cycle.

27



Table 1: The characteristics of GPU applications∗: the number of registers allocated for each

thread(# Regs/thread); the supported max warps/SM(Max warps); the usage of RF(RF

usage); and the used entries/bank(Entries/bank).

Application Abbr. Class # Regs/thread Max warps RF usage Entries/bank

Coulombic Potential CP C1 15 32 49.6% 30
StoreGPU STO C1 48 12 56.3% 36

Matrix Q Computation MRI-Q C1 12 48 56.2% 36
Hotspot HOT C1 34 24 79.7% 52

Image Diffusion SRAD C1 14 48 65.6% 42
BlackScholes BLK C1 25 32 78.1% 50

Parallel Radix Sort RST C1 16 53 82.8% 53
Scalar Products SCP C1 20 48 93.7% 60

Sorting Networks SN C1 16 48 75.0% 48
Laplace Discretization LPS C2 17 32 53.1% 34

Neural Network NN C2 21 8 16.4% 13
Lattice-Boltzmann Method LBM C2 36 27 94.9% 62

Breadth First Search BFS C2 12 48 56.2% 36
Kmeans Clustering KM C2 10 48 46.9% 30

Path Finder PF C2 13 48 60.9% 39
Streamcluster SC C2 12 48 56.3% 36

Discrete Cosine Transform DCT C2 32 16 50.0% 32
Histogram HIST C2 16 48 75.0% 48
Vector Add VD C2 10 48 46.9% 30

Weather Predication WP C3 63 16 98.4% 63
Back Propagation BP C3 11 48 51.5% 33
Binomial Options BINO C3 20 48 93.7% 60

Fast Walsh Transform FWT C3 14 48 65.6% 42
Reduction RD C3 10 48 46.9% 30

SobolQRNG SQG C3 14 16 21.9% 16
Matrix Transpose TSP C3 10 48 46.9% 36

∗For the applications containing multiple kernels, we sort the kernels by their RF usage and select
the median one to represent the application.
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Table 2: Simulation configuration.

Number of SMs 15

SM(core)/Interconnect/L2/DRAM clock 700/1400/700/924MHz

L1/shared memory/Constant/Texture/L2 16/48/8/2/786KB

RF size/SM 128KB

banks/RF 16

SP/SFU/MEM collectors 6/8/2

Warp size 32

Number of threads/SM 1536

Max CTAs/SM 8

scheduler LRR, GTO, DAWS

The actual shift current density is decided by the target shift velocity [50] and the length of

one magnetic domain. We use the parameters from [50] to estimate the shift energy of 4P

RM while also taking the shift driver overhead into account. We also add one extra cycle to

write back stage when performing the consistency in write buffer. All the above timing and

energy overheads have been included in our simulations.

A register bank in a Fermi SM consists of 2048 32-bit registers; there are 64 entries

(each entry has 32 32-bit registers) within a bank. In 4P RM RF design, a bank includes

1024 tracks, each of which has 64 bits. As there are 4 ports on a track, the maximum shift

distance is 15-bit. The write buffer size is set to 32 and each two entries of the write buffer

are associated with a bank.

3.5 RESULT

In this section, we will first evaluate the performance and energy of the GPU with one

scheduler per SM, followed by the exploration on different design parameters. At last, we

will present the evaluation of multi-scheduler design.
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Table 3: Parameters of RF and write buffer.

Structure Register file Write buffer

Cell SRAM 4P DWSW-RM SRAM

R/W energy 103.88/102.37pJ 59.34/50.49pJ 8.34/8.09pJ

R/W latency 0.34/0.33ns 0.57/1.26ns 0.09/0.09ns

Leak. power 14.41mW 0.27mW 0.94mW

shift energy/bit - 1.8pJ -

3.5.1 Results of Single Scheduler Design

3.5.1.1 Performance Figure 12 shows the performances of different design choices. The

baseline RF design is built with SRAM; GTO is used as the default warp scheduler. Directly

deploying 4P RM based RF with GTO (4P+GTO) degrades the overall performance by

4.8% w.r.t. the GTO baseline. Register remapping reduces the average shift distance, such

a performance degradation is limited within 3.4%. Combined with register remapping, the

performance of RMWS is within 0.3% of the baseline. We also evaluate the performance of

register file cache (RFC) [51]. As indicated by its name, RFC introduces a small cache for

the RF, reducing the accesses to RFC. The function of write buffer in RMWS is a subset

of the function of RFC; consequently, the implementation overhead of write buffer is less
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Figure 12: The performance of 4P+GTO, 4P+RFC, register remapping, RMWS.
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than that of RFC. We observe 8.9% performance degradation of RFC. RFC uses two-level

scheduler [51] which perform inferior compared to GTO, even RFC avoids a considerable

amount of RF accesses.

To analyze the GPU performance in details, we divide the applications into three cat-

egories based on the sensitivity of their performance to RF access delay when GTO is em-

ployed:

• C1 is sensitive to a prolonged RF access delay. With 4P+GTO, the geometric mean

(GMEAN) of performance is reduced by ∼11.7%. Most applications in C1 are compute-

intensive and exhibit extremely high data parallelism.

• C2 is mildly sensitive to RF access delay as the included applications’ performance

degradation are restricted within 2.8%. Some applications in C2 are memory-intensive

applications and their performance is limited by the available memory bandwidth; the

performance of the other applications, however, is constrained by the limited innate

parallelism. As a result, the performance impact of RF access delay is limited.

• The performance of the applications belonging to C3 is even improved slightly by 2.1%

after employing RM based RF. This improvement mainly comes from some side effects

introduced in the runtime behaviors such as: the RF access delay positively affects the

pipeline execution, e.g., less bubble stalls in the pipeline due to less structural/data

hazards; and the cache performance may be also be improved due to the different warp

execution order [15, 19].

Figure 13 shows the accumulated percentage of scheduling scores of issued warp instructions.

Nearly 39% of warp instructions in C1 are issued with a scheduling score of 3 or above; for

C2 and C3, this percentage decreases down to 27%. This again explains that in 4P+GTO,

why the performance variances of C2 and C3 are lower than that of C1. After applying

RMWS, the number of the issued instructions with a scheduling score of 3 or above reduces

significantly in all three categories, especially in C1. As a result, we observe a dramatic

performance improvement of C1 in RMWS. For all applications with RMWS, the number of

warp instructions issued with a scheduling score of 3 or above is averagely reduced by ∼13%

w.r.t. 4P+GTO, demonstrating the effectiveness and applicability of RMWS.

31



0%

20%

40%

60%

80%

100% (b)

15  14   13   12   11   10   9    8      7    6    5     4    3     2    1    0  15 14  13   12   11   10   9    8      7     6    5     4    3     2    1   0

Pe
ce

nt
ag

e 
of

 to
ta

l i
ss

ue
d 

w
ar

p 
in

st
.

 C1(4P+GTO)
 C2(4P+GTO)
 C3(4P+GTO)
 total(4P+GTO)

(a)  C1(RMWS)
 C2(RMWS)
 C3(RMWS)
 total(RMWS)

Figure 13: The accumulated percentage of scheduling score of (a) 4P+GTO and (b) RMWS.

C1 C2 C3 AVG
0%

25%

50%

75%

100%

 

N
om

al
iz

ed
 #

 o
f r

ea
d/

w
rit

e

 Reg read  WB read  Reg dirct. write
 WB writeback  WB overflow  WB voided

 

 

Figure 14: The RF access distribution of RMWS.
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Figure 15: The waiting-cycle and shifts performed by RF requests.

Figure 14 depicts the efficacy of write buffer. By resolving the RAW and WAW depen-

dencies, write buffer avoids ∼33.3% RF reads (WB read) and ∼31.5% writes (WB voided) in

RMWS. Thanks to piggyback-write, 63.8% of total write requests to the RF are performed

without any shifting: 36.1% of them can directly write to RF (Reg dirct. write) as the target

register is just at the access port; the rest 27.7% are stored in write buffer and activated

only when their target registers move to the access ports (WB writeback). The percentage

of the RF writes triggered by the overflow of write buffer (WB overflow) is lower than 5%.

Some other factors to measure the efficacy of RMWS are the reduction in the waiting-

cycle of RF requests and the average shift distance associated with RF requests, as depicted

in Figure 15. Compared to 4P+GTO, the waiting-cycle of RF requests in register remap-

ping/4P+GTO/RMWS are reduced by 8.3%/16.3%/22.6%, respectively. The reduction in

waiting-cycle indicates the alleviation of shift-delay-induced RF access conflict, leading to

substantial performance improvement in C1. C2 and C3, however, achieve marginal speed

up because they are insensitive to the RF access delay.
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Figure 16: The RF energy consumption of GTO (1st bar), 4P+GTO (2nd bar), 4P+RFC

(3rd bar), register remapping (4th bar) and RMWS (5th bar), all of which are normalized

to the value of GTO.

3.5.1.2 Energy As shown in Figure 16, the introduction of RM achieves significant RF

energy saving. The application of RM (4P+GTO) eliminates almost the entire leakage energy

consumption. The dynamic energy directly consumed by the read and write operations of

RM cells is also averagely reduced by 39.1%. The shifting on track, however, introduces

40.3% energy overhead. Total 13.4% energy is saved by 4P+GTO compared to baseline.

Register remapping further saves the energy by 11.8% due to the reduction in shift energy.

4P+RFC reduces 39.7% of the RF energy consumption. The considerable energy saving of

4P+RFC is due to the RFC filtering a large amount of RF accesses. RMWS achieves 13.4%

more (48.5% total) average energy saving on top of register remapping. The energy saving

of RMWS mainly comes from the filtering of unnecessary RF requests by the write buffer

as well as the further reduction in shift energy. As shown in Figure 15, the number of shifts

performed in RMWS decreases by 52.7% compared to 4P+GTO. The energy consumption

of write buffer is only about 3% of the total RF energy consumption.
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Figure 17: The performance/energy of RMWS with different access ports on a track, nor-

malized to the performance/energy of GTO with SRAM based RF.

3.5.2 Exploration of Access Port Placement

Figure 17 shows the performance and energy exploration results of RMWS by varying the

number of access ports from 1 to 64 on a track. As discussed in Section 3.2, the energy

dissipation raises along with the increasing of access port followed by the decrease in shift

overhead. The overall performance continues being improved as the increasing of the number

of access ports. It is because the schedule decision made by RMWS gradually approaches

the one of GTO when the number of access ports increases. The energy consumption sharply

climbs up when the number of access ports on a track increases because of: 1© The dynamic

energy increases due to a more complicated design of the peripheral circuitry and the increase

of the interconnect length over a larger RF area. 2© More writes to the RF bank due to

the improved availability of the access ports. 3© The degraded capability of write buffer to

solve the RAW/WAW dependency when piggyback write is applied. It directly results in the

increases of RF writes and reads. And 4© the additional leakage energy introduced by the

extra access ports. Here we could not obtain the energy consumption result from NVSim
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Figure 18: The impact of write buffer size on RMWS performance/energy, normalized to

the performance/energy of GTO with SRAM based RF.

of the 1P and 2P designs because no practical layout design can be found for such irregular

array structures. Figure 17 shows that 4P RM design achieves the highest performance as

well as has the lowest energy consumption among all the options.

3.5.3 Exploration of Write Buffer Size

Figure 18 depicts the variations of the normalized performance and energy of RMWS over

different write buffer sizes. A write buffer with mere 16 entries, i.e., one WBDA entry per

bank, can achieve 95% of the baseline performance. Increasing the number of entries in

write buffer to 32 can approach over 99% of baseline. Continuing to increase the number of

entries in the write buffer, however, only gives us very marginal performance enhancement.

As expected, increasing the write buffer size generates some energy consumption overhead.

For example, the energy consumption of RF designs doubles when the number of entries in

the write buffer increases from 32 to 256. We note that the energy consumption of 32-entry

write buffer design is lower than that of 16 entry design because the 32-energy design filters

more RF access requests and encounters fewer write buffer overflows. Hence, the 32-entry

write buffer design achieves the best trade-off between performance and energy consumption.
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Figure 19: The performance of different multi-scheduler designs.

3.5.4 Results of Multi-scheduler

3.5.4.1 Performance Figure 19 shows the performance of different multi-scheduler de-

signs. Dual-RMWS design decreases the performance of 6.4% compared to Dual-GTO across

three types of applications; Dual-GTO is with SRAM based RF. As previously discussed, the

schedule hazard among multiple RMWS schedulers harms the potential performance. After

combining Dual-RMWS and warp-register remapping, the GPGPU performance is improved

by 4.7% over Dual-RMWS, within 1.9% of the performance of Dual-GTO. It implies that

warp-register remapping effectively suppresses the schedule hazard and reduces the number

of shifts performed by RF requests. Intuitively, as more RMWS schedules are introduced in

a SM, the possibility of scheduler hazard happening claims up. The Quad-RMWS further

downgrades the performance by 7.2% w.r.t. Quad-GTO. Again, warp-register remapping

salvages 5.1% performance on top of Quad-RMWS, within 97.8% of the performance of

Quad-GTO.
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Figure 20: The energy consumption of dual-RMWS (1st bar), warp-register remapping with

dual-RMWS (2nd bar), quad-RMWS (3rd bar), and warp-register remapping with quad-

RMWS(4th bar).

3.5.4.2 Energy Figure 20 shows the energy consumption of different multi-scheduler de-

signs. Compared to dual-RMWS, the energy consumption of RF with warp-register remap-

ping is saved by 3.9% mainly due to the saving of shifting energy. warp-register remapping

allows global optimized schedule decision made by individual RMWSs during every schedule

cycle, suppressing the shift operations of RM based RF. For the quad-schedule case, warp-

register remapping reduces the energy consumption by 5.1% compared to quad-RMWS.

3.6 SUMMARY

In this section we propose a RM based GPU RF design which can achieve significantly

improve energy and area efficiency of GPU RF compared to the conventional SRAM design.

In order to overcome the negative performance impact induced by the inherent sequential

access of RM, we also propose to dynamically recognize the register mapping to reduce

the shift delay in RM accesses. An efficient RM aware warp scheduling (RMWS) scheme,
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including a newly introduced write buffer is designed to hide the long RF access latency.

A warp-register reorganization scheme is developed to eliminate the schedule hazard among

multiple schedulers. After combining all the proposed technologies, we can achieve more than

48% RF energy saving w.r.t. the SRAM based RF design while keeping the performance

stale even with the introduction of long RF access delay.
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4.0 VERSATILE WARP SCHEDULER

In this chapter we introduce VWS which can explore diverse L1 data cache localities of

GPU application. First we analyze the various cache localities in GPU application. Then

we present the detailed design of VWS, followed by the our experimental setup and the

experimental results. At the end of this chapter we will summarize VWS.

4.1 ANALYSIS OF CACHE LOCALITY IN GPU

In GPU architecture, there are various causes for cache misses. The competition for cache

among the threads inside a warp could cause cache misses, which are known as intra-warp

misses. Different warps inside a thread block or cooperative thread array (CTA) competing

for cache usage induce intra-CTA misses. Different CTAs dispatched to the same SM may

also cause inter-CTA cache misses. In this subsection, we will analyze the contribution of

each type of misses to the overall L1 data cache misses.

We conducted experiments with 14 representative GPU applications. Figure 21 shows

the breakdown of L1 data cache accesses for these benchmarks. The experiments showed that

different applications have different sensitiveness to cache misses. Based on the observation,

we categorize the applications into two types by access per kilo instructions (APKI) of L1

data cache: 1) C1 is highly cache-sensitive with a APKI above 10 (Figure 21(a)); 2) C2 is

mildly cache-sensitive or cache-insensitive with a APKI below 10 (Figure 21(b)).

Our results show that intra-warp and inter-CTA misses dominate the cache misses in

C1. Intra-warp misses dominate 4 out of 7 applications in C1. Inter-CTA misses contribute

the most cache misses in MM, BFS and SS, successfully harvesting inter-CTA locality in those
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Figure 21: The L1 data cache APKI of (a) C1 and (b) C2 applications. The details of

applications and the simulation platform are given in Section 4.3.

applications is critical for the system throughput. Intra-CTA access, which reflects the inter-

warp data sharing within a CTA, generates considerable cache accesses in PVC. Intra-CTA

locality also commonly exists in C2. Preserving such type of locality in the warp scheduler

becomes necessary. Although the performance of the applications in C2 is not expected to be

highly sensitive to the usage of L1 data cache, some applications are mildly cache-sensitive

(e.g., PVR, HW and B+T).

From Figure 21, one can clearly see that in both C1 and C2, there are always more than

one type of cache misses contributing to a significant portions of the total misses.

4.2 VERSATILE WARP SCHEDULING

VWS is enable to explore diverse cache localities of GPU applications by locality-aware CTA

dispatching and warp scheduling. VWS consists of three main components: IWL, IntraCL,

and InterCL. When a kernel is offloaded for execution, InterCL dispatches CTAs into a
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SMs by considering the inter-CTA locality. In a SM, VWS samples the warp execution and

estimates the per-warp working set. According to the estimated result, IntraCL try to

maximize the inter- and intra-CTA locality when it decides which warps to be kept active.

In the meantime, by keeping a target number of active warps, IWL preserves the intra-warp

locality in each SM.

The combination of these three components leads to a complete VSW scheme that ex-

plores the intra-warp, intra-CTA and inter-CTA cache locality. The details of them will be

presented in Section 4.2.1, 4.2.2 and 4.2.3, respectively.

4.2.1 Intra-Warp Locality Aware Scheduling

Intra-warp locality aware scheduling (IWL) is designed to find a number of warps the total

working set of which can be fitted into the L1 data cache of a SM.

GPU programming model guarantees that the execution of each warp in a kernel proceeds

with almost the same phases, implying that the per-warp working set of the kernel can be

predicted by sampling a small subset of all the warps. Thus, we divide the kernel execution

into two periods: sampling and post-sampling. Once a kernel launches, it first enters the

sampling stage where IWL keeps the active warps as many as possible to estimate the

per-warp working set. According to the estimation result, IWL starts throttling warps at

the beginning of the post-sampling stage. During the post-sampling stage, IWL continues

estimating the per-warp working set by following the same way in sampling stage. Every

time the execution of a warp completes, IWL calculates and updates the estimation of the

per-warp working set. The estimated per-warp working set is updated in each SM throughout

the lifetime of a kernel as:

WSi =
1

2
WSi−1 +

1

2
WSnew. (4.1)

Here WSi−1 is the estimated working set based on the first i − 1 warps; WSnew is the

estimated working set of the ith warp that just finishes. Note that here Equation (4.1) gives

higher weight to the contribution of the recent finished warp to reflect the temporal trend

of kernel execution. The number of warps monitored in the sampling stage in a SM (Npred)

is empirically set to

Npred = dαNCTA ∗ SizeCTA

Sizewarp ∗NSM

e, 0 ≤ α ≤ 1. (4.2)
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Here NCTA is the number of CTAs in a kernel1. SizeCTA and Sizewarp are the numbers

of threads in a CTA and a warp, respectively. NSM is the number of SM in a GPU. α is

a constant that determines the length of the sampling stage, i.e., the sampling stage ends

when α of total warps finish their executions in a SM.

In order to obtain WSnew, we need to record the number of cache blocks that a warp

touches during its execution. Instead of directly recording the cache block accesses, in IWL

implementation, we propose to use a counter to monitor the L1 data cache misses generated

by a warp to approximately derive the WSnew: If a warp triggers a miss on L1 data cache,

its miss counter will increase by 1. Multiple misses on the same cache block, however, can

inflate the real number of cache blocks that a warp touches. For example, a warp misses on

a cache block that gets evicted later; a second miss on that cache block can happen if it is

revisited by the same warp or other warps after eviction. To avoid the duplicated counting of

cache misses, each SM is augmented with a binary table – address miss table (AMT), each

entry of which indicates whether there is already a cache miss happens to the associated

cache block. Once a miss on L1 data cache occurs, the miss address is used to index the

AMT. If the AMT entry is unset previously, the warp indexing the AMT increases one on its

miss counter and set the AMT entry; otherwise the warp does nothing for the miss counter

or AMT entry. By the end of the warp execution, WSnew is set to the value of the miss

counter and used to calculate WSi. Based on the estimated per-warp working set, the best

number of warps kept active in a SM can be calculated by:

Nact = dSizeL1D

WSi

e, (4.3)

where SizeL1D is the number of total cache blocks in the L1 data cache.

Equation (4.3) roughly takes the distinct cache blocks demanded by a warp as the per-

warp working set. In some kernels, the level of cache block re-reference can be very low.

One extreme case is when a warp streamlines its large working set that can occupy the

whole L1 data cache without any re-reference of cache block. So IWL possibly keeps only

1NCTA is actually not available until a kernel finishes its execution because CTAs are dynamically dispatched to SMs. Here
we estimate it before the execution by using total number of CTAs of a grid divided by the number of SMs.
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one warp active, which sacrifices the thread-level parallelism without any payback of locality

enhancement. To solve this problem, we introduce cache re-reference degree of a warp as:

RRDegri =
1

2
RRDegri−1 +

1

2
RRDegrnew, (4.4)

where

RRDegrnew =
NL1D acc

WSnew

. (4.5)

Here NL1D acc is the number of L1 data cache accesses generated by a warp during its

execution. Similar to Equation (4.1), Equation (4.4) gives higher weight to the contribution

of the newest cache re-reference degree. Equation (4.3) is then modified by considering the

cache re-reference degree as:

Nact = dβ SizeL1D

WSi ∗RRDegri
e, β > 1, (4.6)

where β is an empirical coefficient that controls the aggressiveness of IWL in making the

throttling decision on warps.

Implementation Overhead: The major overhead of IWL is the calculations of WSi

and RRDegri. Each running warp is associated with two 10-bit counters – one to monitor

the number of cache misses and the other to count total accesses to the L1 data cache.

These counters consumes negligible hardware overhead since only dozens of warps (e.g., 48

in Fermi [13]) can concurrently run on a SM. We found that an AMT of 8192 entries, or

total 1KB is sufficient to identify the overlap of the cache misses on the same cache block.

As a comparison, cache conscious wavefront scheduler (CCWS) requires another tag

cache that implements all the functions of a normal L1 data cache. Furthermore, CCWS

needs to sort-then-sum all the running warps based on their lost locality scores in every

scheduling cycle. IWL brings in substantially smaller hardware and operation costs than

CCWS.
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4.2.2 Intra-CTA Locality Aware Scheduling

IWL only decides how many warps that need to be activated in a SM. To preserve intra-CTA

locality, we also need to properly identify which warps that shall be activated in a SM.

An illustrative example is given in Figure 22, which has two CTAs – CTA0 and CTA1 –

running on a SM. Each CTA contains two warps – W0 and W1. We assume both warps in a

CTA share two memory segments (M0 and M1) with the same capacity and L1 data cache

can simultaneously hold at most two memory segments. Following the algorithm in IWL,

no more than two warps will be activated in a SM. Figure 22(a) shows two warps activated

from different CTAs periodically compete the L1 data cache. Consequently, the memory

segments of two warps are frequently evicted and re-visited, thrashing the L1 data cache.

Because of unawareness of intra-CTA locality, the intra-warp locality is destroyed and the

effort paid by IWL is offset.

To simultaneously preserve the intra-warp locality and maximize the intra-CTA locality,

a simple yet effective scheme, intra-CTA locality aware scheduling (IntraCL) is proposed.

Once IWL determines the number of the warps to be activated (i.e.,Nact), IntraCL will

select Nact warps from as few CTAs as possible. In GPUs, every SM maintains an array

of warp slots. A CTA is assigned to a set of continuous warp slots when it is dispatched

to a SM. Therefore, InterCL can select the warps residing in the continuous warp slots to

minimize the total active CTAs. Figure 22(b) shows the effect after applying IntraCL on top

of IWL: two warps from the same CTA are activated so that the total working set of both

warps can be fitted into the L1 data cache; the thrashing on L1 data cache is eliminated.

4.2.3 Inter-CTA Locality Aware Scheduling

Inter-CTA locality is another important type of locality that needs to be considered in our

scheme. Unlike the global locality defined as the data sharing among all the CTAs of a

grid, here inter-CTA locality denotes the data sharing among a subset CTAs of a grid. We

observe two types of inter-CTA data sharing by running application profiling: cache blocks

are shared by 1) multiple consecutive CTAs or 2) multiple CTAs with random sequence.
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Figure 22: The warp execution (a) before and (b) after applying IntraCL.
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Figure 23: The execution (a) before and (b) after applying InterCL.

The first type of inter-CTA data sharing can cause inefficient usage of L1 data cache

under traditional CTA dispatching mechanism in GPU. Figure 23(a) shows four CTAs are

interleaved between two SMs, and each two consecutive CTAs share one cache block. From

the figure we can see that the contents of the L1 data cache in SM1 is a complete mirror

of that in SM0 and half of the L1 data cache capacity is wasted. Moveover, such a CTA

dispatching mechanism also increases the compulsory misses and reduces the inter-CTA hits

on the two L1 data caches. If the CTAs are serially dispatched to the SMs, four compulsory

misses in Figure 22(a) become two compulsory misses and two inter-CTA hits in Figure 22(b).

The required cache capacity is accordingly reduced by half, as shown in Figure 23(b).

The second type of inter-CTA data sharing in contrast is purely random and the cache

blocks shared by the CTAs are mainly determined by the application inputs. For exam-

ple, during GPU executions, every CTA is assigned with an independent query in B+ tree

(B+T). All the threads in a CTA simultaneously search for the key value associated with the

query [52]. Since the key value is randomly assigned to each CTA, the cache blocks shared

by the CTAs are random. So it is very difficult to capture such inter-CTA locality.

Based on the above observations, we propose inter-CTA locality aware scheduling (In-

terCL) to explore the first type of inter-CTA data sharing. InterCL consists of two parts.

The first part is to ensure consecutive CTAs are dispatched into every SM. Each SM is

augmented with a dispatch queue to hold the pending CTAs. When a kernel is launched,
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all the CTAs are serially assigned to the dispatch queues of the SMs. The second part of

InterCL is a two-level scheduler [4]. The first level includes certain number of warps which

are ready for scheduling. These warps may come from one or multiple consecutive CTAs.

The second level includes the warps from the rest CTAs. When a warp from the first level

is suspended due to pipeline stall, it will be demoted to the second level. At the same time,

InterCL promotes a warp from the second level to the first level by following such a priority

order (from high to low): the CTA that the warp belongs to is 1) currently retained in the

first level (e.g., the warp is originally demoted from the first level); 2) the precursor or 3)

the successor of the CTA(s) whose warps are in the first level. This policy ensures the warps

in the first level always belong to the consecutive CTAs so as to increase the hit rate of the

inter-CTA shared cache blocks.

The dispatch queue of each SM can be implemented virtually in runtime which is re-

sponsible to generate the thread blocks. Thus, the hardware cost of InterCL is neglectable.

The combination of IWL, IntraCL and InterCL forms a complete VWS scheme.

4.3 EXPERIMENT METHODOLOGY

GPU simulation is also performed on a modified GPGPU-Sim [1] augmented with the spe-

cific warps schedulers. Table 4 summarizes the configuration of the simulator. Fermi-liked

architecture [13] is adopted and simulated by GPGPU-Sim.

A combined GPU application set from [10, 19, 9] is used in our evaluations. Most of the

applications are fully simulated except the applications from MapReduce [53], of which only

the first two billion instructions are simulated. Table 5 lists all the applications evaluated in

this work.

The configuration with loose round-robin (LRR) is used as the baseline. Besides VWS,

we also evaluated CCWS for comparison purpose. The configuration of CCWS used in the

experiments is the same as [15] except the maximum number of warps supported by a SM

is increased to 48. The configuration details of VWS include: 1) The default value of α in

Equation (4.2) is set to 0.1; 2) AMT is periodically cleared after every Npred (Equation (4.2))
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Table 4: Simulation configuration.

Number of SMs 15

SM(core) Clock 700MHz

SIMD width 16

L1 Data Cache 32KB, 128B line, 4-way, LRU

Warp Size 32

Max Number of Threads 1536/SM

Max Thread Blocks 8/SM

Scheduler LRR, CCWS, VWS

# of Memory Channels 6

L2 Cache
128B line, 8-way associated,

128KB/channel, total 768KB

Memory Controller (MC)
6 MCs, FR-FCFS, open-page,

16-entry request queue/MC

Interconnection 2D Mesh

DRAM GDDR5, 924MHz, 177.4GB/s
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Table 5: GPU applications.

Cache-sensitive (C1)

Description Abbr. Description Abbr.

Inverted Index II Matrix Multiply MM

Page View Count PVC Breath-First Search BFS

Similarity Score SS MUMmerGPU MUM

Kmeans Clustering KM

Mild or not cache-sensitive (C2)

PageViewRank PVR Heartwall HW

B+ Tree B+T Lattice-Boltzmann Method LBM

MRI-Gridding MRIG Back Propagation BP

Pathfinder PF

warps finished the execution; 3) The default value of β in Equation (4.6) is set to 4; 4) At

most 16 warps are kept in the first level of InterCL and scheduled in greedy-than-oldest [15]

fashion.

4.4 PERFORMANCE EVALUATION

Figure 24 compares the IPC of the GPU for different benchmarks under different warp

schedulers. All IPCs are normalized to LRR. Figure 25 depicts the detailed analysis of the

L1 data cache access.

For the cache-sensitive applications in C1, CCWS achieves 53.9% geometric mean per-

formance improvement compared to LRR, which is consistent with the results in [15]. From

Figure 25 we can see that, the performance speedup of C1 achieved by CCWS mainly comes

from the improved intra-warp locality: the intra-warp misses of the L1 data cache are sig-

nificantly reduced by 66% compared to that in LRR. On the other hand, the performance
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Figure 24: The performance of (a) C1 and (b) C2 with CCWS, IWL, IWL+IntraCL and

VWS, normalized to LRR’s performance.

of C2 slightly degrades by 1.4% under CCWS. This is because CCWS does not consider the

intra-CTA locality during its warps scheduling. The intra-CTA misses increase noticeably

in PVR, HW and MRIG when CCWS is applied, causing the performance degradation in C2.

Like CCWS, IWL alone also boosts the system performance of C1 by 57.3% (3.4% higher

than CCWS). IWL estimates the per-warp working set with higher accuracy as well as much

less hardware overhead, efficiently preserving intra-warp locality. However, IWL does not

help on preserving the intra-CTA locality, resulting in an on average 1.6% performance

degradation in C2.

The combination of IWL and IntraCL (IWL+IntraCL) improves the performance of C1

by 60.5% w.r.t. the LRR baseline. Compared to only IWL, the addtional 3.2% performance

improvement comes from the exploration of intra-CTA locality. More important, the success-

ful exploration of intra-CTA locality in IWL+IntraCL achieves 3.8% average performance

improvement in C2.

The integration of IWL, IntraCL and InterCL, i.e., VWS, results in 80.7% and 6.0%

system performance improvements in C1 and C2, respectively. Compared to LRR, VWS
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improves the GPU performance by 38.4% over total 14 applications and outperforms CCWS

by 9.3%. Because of InterCL, the CTAs that share cache blocks are dispatched to the same

SM so that the inter-CTA misses across the SM boundaries are reduced substantially. Our

detailed analysis found that most of inter-CTA shared cache blocks in MM, SS and PVR are

shared by consecutive CTAs while those of II, BFS and B+T are shared by random CTAs.

Thus, InterCL is anticipated to perform better in the former three applications than the

latter three.

There are two more interesting abstractions that need to be pointed out here:

• MM enjoys an astonishing speedup (2×) when InterCL is employed without obvious re-

duction in inter-CTA misses on L1 data cache. As shown in Figure 26, after InterCL

is applied, the majority of the inter-CTA locality in MM is preserved by L2 cache that is

shared among SMs: Here the inter-CTA locality is composed of two types of L2 cache

access localities – inter-CTA locality within a SM (intra-core) and inter-CTA locality

across SMs (inter-core). Both intra- and inter-core hits on the L2 cache of MM dramat-

ically rise after InterCL is applied. It is possibly because in a SM, InterCL prioritizes

only a subset of warps, of which the working set can be fit into L2 cache and hit by other

subsets of warps in remote SMs.

• The performance of II in C2 is considerably improved by InterCL i.e., 7.9% w.r.t.

IWL+IntraCL. We find that the CTAs that sharing cache blocks in II are often in

close proximity. These CTAs are very likely assigned to the same SMs by the serial CTA

dispatching mechanism in InterCL, resulting in partially enhanced inter-CTA locality in

a single SM.

The APKI of L2 cache reduces along with the decrease in misses per kilo instructions

(MPKI) of L1 data cache2. The congestion on the interconnection network between SMs

and memory partitions are also alleviated accordingly due to the less traffic between SMs

and L2 caches. Figure 27 shows the reserved APKI of L1 data cache where the reserved

accesses include all the accesses that fail to generate a complete list of transactions when

accessing L1 data cache, e.g., an access misses on L1 data cache, but fails to deploy a L2

2The APKI of L2 is not necessarily equal to the MPKI of L1, because L1’s MHSR can coalesce considerable amount of L2
accesses.
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Figure 27: The reserved APKI of L1 data cache in (a) C1 and (b) C2, normalized to LRR.

access request on interconnection network due to network congestion. Results show that the

reserved accesses can be greatly reduced in all benchmarks. The reduction of reserved APKI

leads to less contentions on the shared resources and consequently, a better performance.

4.5 DESIGN EXPLORATION

Figure 28(a) depicts the impacts of changing the sampling stage period on the GPU perfor-

mance. The peak performance is obtained when α is set to 0.1 in Equation (4.2).Note that

α = 1 means IWL is excluded and only IntraCL and InterCL take effect. In such a case, the

system performance is significantly harmed. Figure 28(b) depicts the system performance

at various warp throttling aggressiveness of IWL in VWS. On one hand, if the β in Equa-

tion (4.6) is too small, the thread-level parallelism will be hurt as IWL may overestimate

the per-work working set. One the other hand, a larger β allows more warps to be active;

it will lose the intra-warp locality and harm the performance speedup. The best selection of

β = 4. From Figure 28 we can see that when β = 4 the performance of VWS is best.
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Figure 28: Performance of VWS at various IWL settings: (a) α in Equation (4.2) and (b) β

in Equation (4.6), both of which normalized to the performance of LRR.

4.6 SUMMARY

In this chapter, we proposed VWS to explore multiple levels of cache locality in GPU execu-

tions. VWS consists of three components, each of which aims at capturing a particular type

of cache locality. Firstly, IWL preserves the intra-warp locality by throttling the number of

warps in a SM with dynamic per-warp working set estimation. Secondly, IntraCL keeps the

intra-CTA locality by activating the warps from as few CTAs as possible. Finally, InterCL

enhances the inter-CTA locality by introducing a serial CTA dispatching mechanism and a

CTA-aware two-level schedule policy. The experimental results show that VWS can reduce

more than half of L1 data cache misses. Across seven cache-sensitive GPGPU applications,

VWS improves the average GPU performance by 80.7% and 17.4%, compared to the classic

LRR scheme and the state-of-the-art CCWS scheme, respectively.
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5.0 GPU DEVICE MEMORY OPTIMIZATION

In this chapter we introduce TEMP and TBAS to improve both the performance and energy-

efficient of GPU. We first provide the background of the heterogeneous CPU-GPU integrated

system and DRAM based GPU device memory. Then we detail the design of TEMP and

TBAS, followed by the experiment methodology and results. At last we will summary our

proposed techniques.

5.1 BACKGROUND

5.1.1 Heterogeneous CC-NUMA

The heterogeneous CPU-GPU integrated systems are evolving towards unified memory ad-

dress space [54]. As the discrepant bandwidth requirements, most likely GPU is still physi-

cally attached with bandwidth-optimized DRAM while CPU is attached with capacity- and

cost-optimized DRAM, and both DRAMs form a unified memory address space [55]. In such

heterogeneous cache coherent non-uniform memory access (CC-NUMA) system, a comput-

ing unit has different access delays to local and remote memories even it sees a unified address

space. Figure 29 shows a heterogeneous CC-NUMA system including CPUs and a GPU. The

system interconnection networks bridge two memories and maintain the coherence between

the caches of CPUs and GPU.

Heterogeneous CC-NUMA allows better programmability and fine-grained memory man-

agement of GPU. OS can allocate the GPU pages in all memories. In this work, we use the

default NUMA page placement policy in Linux, i.e., local, which places as many pages as

57



Instruction $

Warp scheduler

Register file

Shader cores

L2 cache

Memory controller

DDR3/DDR4/LPDDR
DRAM chipsM

em
or
y 
pa
rt
iti
on

s

Stream multiprocessors (SM)

L1 data $/shared memory

GPU

Instruction $

Fetch/Decode

Register file

L1 data $

CPUs

 L2 cache

Memory controller

HBM/GDDR5/WIO2
DRAM chipsM

em
or
y 
pa
rt
iti
on

s

System interconnection networks

Figure 29: Organization of a heterogeneous CC-NUMA system.
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possible in the local memory. By using local policy we can avoid most bandwidth con-

tentions between GPUs and CPUs in heterogeneous CC-NUMA. The L2 caches of CPUs

and GPU are separated and placed in memory partitions, each of which has its own memory

channel. The on-chip caches, including L1 data and instruction caches in CPUs and GPU,

are connected to the L2 caches via an mesh network. In such design GPU can take page

faults and is no longer restricted to page locked memory [56] or non-pageable memory [13].

5.1.2 DRAM Basics

A modern JEDEC compliant DDRx DRAM system consists of one or more channels, each of

which has its own buses for data, command, and address transferring. Figure 30(a) depicts

the basic organization of a DRAM channel, which is affiliated with a memory controller

(MC) to control the operations on the channel. A channel may be comprised of multiple

DIMMs. Within each DIMM, there are several ranks each of which consists of multiple

DRAM devices. In DDR3, a DRAM device contains 8 banks. The data of each bank are

always pre-loaded to its private row buffer before being accessed.

DRAM address mapping complies with the DRAM organization. The address mapping

in [1] is used as the baseline DRAM address mapping scheme in the heterogeneous architec-

ture adopted in our work, as shown in Figure 30(b). We use the address mapping shown in

Figure 30(c) for the page coloring mechanism utilized in our work. If the number of page

offset bits is no greater than the sum of column and byte offset bits, by using page coloring,

a GPGPU page can be mapped to any arbitrary channel, rank, bank or row in a bank.

DRAM usage efficiency is mainly determined by bank-level parallelism (BLP) [25] and

row locality measured by row buffer hit rate (RBHR). All the banks in a rank can be accessed

concurrently as each bank has its own address decoder and sensing logic. However, only one

bank can put/receive the data on/from the shared bus at a time and all memory accesses

(read and write) need to perform through the row buffer. Memory access latency and energy

can be reduced when the access hits on the row buffer as no row activation is needed. In

multi-core systems, many memory schedulers [24, 25] have been proposed to improve the

BLP and row locality as well as maximize the access fairness. However, these designs are
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generally insufficient to handle the massive parallel applications of GPU [27]. In this work,

we propose TEMP and TBAS that can improve the DRAM efficiency in GPU by minimizing

the inter-SM interference of memory accesses, which is the root reason of low BLP and low

row locality of DRAM accesses [29].

5.2 THREAD BATCH ENABLED MEMORY PARTITIONING

A naive GPU memory partitioning may bind each SM to one or more banks. All the

pages touched by a thread block can be placed to the banks bound to the SM where the

thread block is executed. Ideally, if no page is shared by different thread blocks, the banks

can be exclusively accessed by the associated SM. Unfortunately, page sharing between

thread blocks commonly exists in GPU kernels. Simple page placement mentioned above

is not able to separate the memory access streams raised from different SMs. To address

the issue, we propose TEMP which identifies and forms the thread blocks sharing pages

(Section 5.2.1) and dispatches them to the same SM (Section 5.2.2) so as to minimize the

inter-SM interference of memory accesses. We call the group of these thread blocks sharing

pages as a thread batch. The rest of this section will detail the design and implementation

of TEMP.

5.2.1 Thread Batch Formation

By profiling the prevalent GPU benchmark suites, we find two major types of thread-data

mappings with some page sharing patterns in thread blocks1 The first major type of thread-

data mappings is: the data accessed by each thread block is clustered over a sequential

address space. Figure 31 shows the skeleton of the Mapper kernel in MapReduce engine of

Mars [53]. This kernel employs fixed 1D thread blocks and scatters them to 1D or 2D grid.

Generally, consecutive thread blocks sequentially access the 1D vector inputKeys, and each

thread block accesses a linear address space ranging from recordBase to terminate within

inputKeys.

1In this work, we only consider the kernels constructed with 1D or 2D thread block/grid because none of the profiled
benchmarks employs 3D thread block/grid (see Table ??).

61



__global__ void Mapper(char* inputKeys, char* inputVals, int4* 
inputOffsetSizes, int recordsPerThread ...) {

// calculate the global block and thread ID
int bid = gridDim.y * blockIdx.x + blockIdx.y;
int tid = threadIdx.x;
int index = bid * blockDim.x + threadIdx.x;
// a linear, contiguous data piece is assigned to this thread block 
int recordBase = bid * recordsPerThread * blockDim.x;
int terminate = (bid + 1) * recordsPerThread * blockDim.x;
// each thread retrieves its workloads from the data piece  
for (int i = recordBase + tid; i < terminate; i+=blockDim.x) {

char *key = inputKeys + /*const offset*/;
char *val = inputVals + /*const offset*/;
map(key, val ...);

}
}

Figure 31: Annotated code snippet of Mapper kernel in Mars library.

Figure 32 simplifies and visualizes the first type of thread-data mapping. In this example

we assume the grid of the kernel contains four thread blocks, each of which consists of four

threads. The 1D thread blocks are arranged in a 2D grid. Their accessed data matrix is

shown in Figure 32(b). In this example, the first row of the data matrix is accessed by

thread block (0,0,0), the second row is accessed by thread block (1,0,0), and so on. If the

row address of the matrix aligns to page, SM-level page coloring can perfectly places the

pages accessed by a SM to its bound banks, as depicted in Figure 32(c). Here a page is equal

to a matrix row. However, if a page is comprised of multiple matrix rows, say, two matrix

rows, conventional thread block dispatching which interleaves thread blocks across SMs will

generate interweaved memory accesses, as shown in Figure 32(d). In order to address the

situation, we can pack those thread blocks accessing the same set of pages into a thread

batch and then dispatch the thread batch as a whole to a SM. For the example shown in

Figure 32(d), we can group the 4 thread blocks into 2 thread batches, each of which goes

to a SM. The memory accesses to banks 0 and 1 are successfully separated, as illustrated in

Figure 32(e).
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__global__ void cenergy(int numatoms, float * energygrid ...) {
// assign a point from the energygrid to this thread
// PointsPerThread == 2, so each thread works on two points
int xindex  = blockIdx.x *  blockDim.x * PointsPerThread + threadIdx.x;

  int yindex  = blockIdx.y * blockDim.y + threadIdx.y;
  int outaddr = gridDim.x * blockDim.x * PointsPerThread * yindex + xindex;

// calculate the energy of two points based on xindex and yindex
for (atomid=0; atomid<numatoms; atomid++) {

energyvalx1 += /*simple math on xindex and yindex*/;
energyvalx2 += /*simple math on xindex and yindex*/;

}
// Update two points on the energygrid  
energygrid[outaddr]   += energyvalx1;

  energygrid[outaddr + blockDim.x] += energyvalx2;
}

Figure 33: Annotated code snippet of cenergy kernel in CUTCP.

The second major type of thread-data mappings is that the data accessed by consecutive

thread blocks are interleaved over a linear address space. Figure 33 shows the code snippet

of the cenergy kernel in the CUTCP benchmark [9]. CUTCP computes the coulombic potential

at a molecular grid energygrid. A point in energygrid is indexed by xindex and yindex

generated from a thread’s indies. All threads form a 2D grid which is further tiled with 2D

thread blocks. Figure 34 demonstrates a simplified thread-data mapping in this 2D grid.

The thread organization and accessed data matrix can be found in Figure 34(a) and (b),

respectively. Here we again assume one grid with four thread blocks and each thread block

has four threads. In this example, every thread block has two active dimensions (x-axis and

y-axis). Each matrix row is accessed by two thread blocks while each thread block accesses

two rows. In such a situation, it is very likely that the consecutive thread blocks access the

same set of pages. Similarly, we can pack those thread blocks sharing the same set of pages

into a thread batch. Figure 34(c) gives an thread batching example where every matrix row

in Figure 34(b) exactly forms one page. Thread block (0,0,0) and (1,0,0) share pages 0 and

1 while thread block (0,1,0) and (1,1,0) share pages 2 and 3. Consequently, we can group

thread block (0,0,0) and (1,0,0) into thread batch 0 and group thread block (0,1,0) and

(1,1,0) into thread batch 1. By allocating pages 0 and 1 into bank 0 and pages 2 and 3 into

bank 1, the memory accesses from SM 0 to bank 0 and from SM 1 to bank 1 are separated.
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The two major thread-data mappings indicate consecutive thread blocks probably share

pages. Accordingly, we introduce thread block stride to indicate the number of the consec-

utive thread blocks that belong to the same thread batch. In the examples in Figure 32(c)

and 34(c), thread block stride is 1 and 2, respectively. To find the thread block stride of

a GPU kernel, one approach is to profile a kernel given a page size. This profiling can be

done during the compile time since the programmer already determined the thread hierarchy

and how the threads access the data matrices. In profiling stage, the beginning addresses

of the data matrices are set to zero. Therefore, during dynamic memory allocation, the

starting memory address of a data matrix shall align to the beginning of pages to guarantee

the thread block stride found in compile time. Figure 35 shows the optimal thread block

stride of some GPU applications. Optimal thread block stride is the one suppressing most

cross-batch page sharing. Here the page size is set to 4KB supported by most machines. 89%

of kernels achieve the minimum inter-thread batch page sharing through a batch formation

with a fixed thread block stride. There are also 6% of kernels where the batch formation can

be realized using modulation. Some kernels in MUM and LBM cannot fitted with a formula for

the batch formation.

The static compile time profile, however, may be sub-optimal since it cannot proactively

remove the cross-batch page sharing. In the next section we will introduce a simple dynamic

hardware approach which can better support thread batching without paying heavy effort

on static profile.

5.2.2 Serial Thread Block Dispatching

Thread batching cannot completely eliminate the cross-batch page sharing in some GPU

kernels. For example, the last thread block in a thread batch may share a page with the

first thread block in its following thread batch, if those thread batches are formed with

fixed thread block stride. We further analyze some GPU applications which form thread

batch with fixed thread block stride. The accumulated percentage of the pages shared by

different sizes of consecutive thread batches is shown in Figure 36. Horizontal axis shows

the maximal distance of the thread batches sharing pages. Among all the accessed pages,
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Figure 35: The distribution of thread block stride.

nearly 75% on average is exclusively accessed by a single thread batch and 22% is accessed

by two consecutive thread batches. These two cases dominate the page access patterns of

thread batches (> 97%). There are more than 2% of pages are globally shared by almost all

thread batches in a kernel, such as program text pages.

Given the stride thread batching and cross-batch page sharing dominating the GPU

applications, we propose serial thread block dispatching. The consecutive thread blocks,

which are very likely enclosed by the consecutive thread batches, are emitted to a SM. As

such most thread batches are formed implicitly by the serial thread block dispatching, and

most cross-batch page sharing are constrained within a SM. Now the cross-batch page sharing

only happens when some thread blocks of a thread batch is distributed to more than one

SMs. This would happen in the first or last thread batch in a SM.

Traditional interleaved thread block dispatching, e.g., GigaThread engine in NVIDIA

GPU [13], generates and dispatches a new thread block to a SM once a SM has an idle slot.

Typically, the dispatching unit only passes the id of the new thread block to the SM, and

the SM will construct the whole thread block according to the received thread block id. The
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Figure 36: The accumulated percentage of page sharing between thread batches.

dispatching unit generates the thread block ids sequentially and the thread block ids are

dispatched to SMs randomly. To implement deterministic, serial thread block dispatching,

we introduce a dispatch queue in every SM. The content, i.e., the thread block ids, in

the dispatch queue are pre-inserted before launching a kernel. Each SM receives similar

amount of thread block ids for workload balance, which can be determined at the compile

time. During the kernel execution, thread block ids are popped from the dispatch queue and

pushed to the associated SM.

Compared to traditional thread block dispatching, serial thread block dispatching does

not delay the launch of thread blocks, because a SM can always pop a thread block id from

its dispatch queue when it has an idle slot. The implementation of the dispatch queue can be

highly efficient since only two extra registers are required in each SM, to record the head and

the tail of thread ids, respectively. The head register is increased by one once a new thread

block id (the head register itself) is popped. The dispatching of thread block ends when the

head register meets the tail of thread block id. Thus, the serial thread block dispatching

incurs marginal timing and hardware overheads.
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Figure 37: (a) The thread organization, data matrix, thread batches and memory access

footprint of a kernel running on SM0; (b) The execution sequence of warps generated by

CCWS; (c)∼(e) The progressive improvement of TBAS.

5.3 THREAD BATCH-AWARE SCHEDULING

TEMP constrains the memory accesses from a SM within the associated memory banks,

offering an opportunity of scheduling the execution of the threads for intra-bank/row lo-

cality enhancement. Our proposed TBAS can be explained by an example in Figure 37:

Figure 37(a) shows the thread organization and data matrix in the example. In a GPU,

there is only one SM (i.e., SM0) associated with its own DRAM bank. Four thread batches,

each of which consists of only one thread block, are formed and dispatched to SM0. Every

thread batch exclusively accesses its own page while the page layout of SM0’s bank is also

shown in Figure 37(a). We assume two pages are included in one row in the bank2. Every

two threads in a thread block forms a warp. Since there are 4 threads in one thread block,

each thread block has 2 warps and total 8 warps (or 4 thread blocks) are running on SM0.

Figure 37(b) shows the execution of SM0 with CCWS [15]. Typically, CCWS only keeps

a subset of warps running and throttles the rest of warps pending in SM, if a GPU application

suffering from cache thrashing is detected. Once a warp in the running set triggers a long

operation and encounters a stall, it will be demoted to pending set. Simultaneously, another

warp in pending set will be promoted to running set. Here we assume the size of running

2Generally the row size of a DRAM is multiple times greater than the smallest page size that the OS can support.
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set is two warps. It is very likely that the two warps in running set come from different

thread batches. Hence, they may compete for different rows in the bank and degrade the

row locality.

We can propose a better CCWS design to improve the row locality, as shown in Fig-

ure 37(c): the running set always tries to gather active warps from the same thread batch

as they normally access the same page (obviously also the same row). If the thread batch

in running set does not have sufficient active warps, all the warps of this thread batch are

demoted to pending set and a new thread batch that has sufficient active warps will be

promoted to running set.

In such a design, promoting warps may still harm the row locality if the row accessed by

the previously active warps in running set is not the same as the one accessed by the newly

promoted ones. It happens only when the thread batch which the previously active warps

belong to is different from that of the promoted ones. Hence, as shown in Figure 37(d),

a better promotion scheme can be promoting a thread batch that is the successor of the

demoted thread batch, e.g., promoting (1,0,0) (or (1,1,0)) after demoting (0,0,0) (or (0,1,0)).

As the result of page allocation, it is very likely that the adjacent thread batch will access

the same row in the bank.

The above sequential thread batch switching often results in round-robin execution se-

quence, potentially incurring the burst of memory accesses in a short time window. As

illustrated in Figure 37(d), all memory accesses are evoked in the first four scheduling cycles.

Consequently, there are two situations that may deteriorate the efficiency: 1) A thread batch

demoted from pending set due to the long operation could access the same page again in

the near future. However, it may not be scheduled again in time to detain such locality.

2) When generated by the thread batches which are continuously promoted to running set,

the burst of memory accesses is coupled with the lost locality. The prolonged queuing delay

in memory controller may overwhelm the reply network connecting memory controllers and

SMs [57].

To overcome the above drawbacks, we assign higher promotion priority to older thread

batches in the pending set. Assume the priority of the thread batches in Figure 37(a) de-

scends from left to right and then from top to bottom. Figure 37(e) shows the scheduling
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sequence of the thread batches considering our proposed promotion priority. The improve-

ment of row locality, especially the decreasing of memory access burst, leads to significant

reduction in average memroy access latency. We named the scheduling method corresponding

to the example presented in Figure 37(e) as TBAS.

Besides the maintenance of intra-/inter-thread batch row locality and alleviation on

congestion of reply network, TBAS also reduces the stretch of memory access footprint by

limiting the active thread batches in a particular time window. Such limitation on thread-

level parallelism can bring in an implicit positive side effect on the cache locality [15] as we

shall explain in Section 5.5.1.

The hardware overhead of TBAS is similar to that of CCWS except for the promotion

priority arbitrator. Fortunately, the number of concurrent thread batches in a SM is usually

small: A SM of Fermi GPU, for example, supports only 8 concurrent thread blocks (or

at most 8 thread batches). Therefore, the implementation overhead of the arbitrator is

negligible.

5.3.1 Comparison between TBAS and VWS

TBAS targets the DRAM locality and does not explicitly perceive cache locality, while VWS

only captures the cache locality. However, we find TBAS also implicitly preserves the cache

locality which was not included in its original design goal. In fact, as shown in Figure 37(e),

the thread-level parallelism is throttled since only a subset of thread batches are active in a

particular time span, keeping the working set with limited size in a capacity-bounded L1 data

cache. Such implicit throttling is similar to the IWL component in VWS. In Figure 37(c),

the warps from the same batch are prioritized beyond the warps from the other batch.

Because a thread batch usually contains a list of continuous thread blocks, TBAS partially

implements intraCL when a thread batch only contains single thread block. TBAS also

explore inter-CTA cache locality, as shown in Figure 37(d). We examined the execution

statistic when running TBAS with TEMP and found that it is comparable to CCWS in

terms of the L1 cache misses. Synergistic combination of VWS and TBAS may potentially

provide a comprehensive solution covering both L1 data cache and DRAM locality. We will

further discuss such possibility in Chapter 7.
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Table 6: The characteristics of GPU applications: the category an application belongs to;

the used thread organizations labeled as (grid dimension, block dimension).

Application Abbreviate Category Thread organizations MPKI

InvertedIndex II C1 (1D, 1D) 45.23

Kmeans Clustering KM C1 (1D/2D, 1D) 11.91

PageViewCount PVC C1 (1D, 1D) 5.52

PageViewRank PVR C1 (1D, 1D) 2.10

Fast Walsh Transform FWT C1 (1D, 1D) 1.01

Seven Point Stencil STEN C1 (2D, 2D) 0.85

Back Propagation BP C1 (1D, 2D) 0.75

Merge Sort MS C1 (1D, 1D) 0.53

Discrete Cosine Transform DCT C1 (2D, 2D) 0.37

Scalar Products SP C1 (1D, 1D) 0.17

Reduction RD C1 (1D, 1D) 0.04

Coulombic Potential CUTCP C1 (2D, 2D) 0.03

Neural Network NN C2 (1D/2D, 1D) 1.21

Hotspot HOT C2 (2D, 2D) 0.75

Sorting Networks SN C2 (1D, 1D) 0.27

Angular Correlation TPACF C3 (1D, 1D) 0.89

MUMmerGPU MUM C3 (1D, 1D) 5.85

Lattice-Boltzmann Method LBM C3 (2D, 1D) 5.82

CFD Solver CFD C3 (1D, 1D) 0.85

LIBOR Monte Carlo LIB C3 (1D, 1D) 0.62
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Table 7: The characteristics of CPU applications.

Application MPKI Application MPKI

mcf 52.28 bzip2 4.14

omnetpp 34.67 h264ref 1.95

xalancbmk 27.52 gcc 0.58

lbm 20.23 perlbench 0.21

5.4 EXPERIMENT METHODOLOGY

5.4.1 Application Selection

We adopt a diverse GPU application set from [11, 1, 10, 19, 9] in our evaluations. Most of

the applications are fully simulated except for the applications from [19] of which only the

first two billion instructions are simulated. The detailed characteristics of each application

are summarized in Table 6. All GPU applications are profiled to generate the optimal thread

batches before execution.

To evaluate the effectiveness of the integrated TEMP and TBAS (TEMP+TBAS) for

heterogeneous workloads, we choose eight CPU applications from SPEC CPU 2006, as shown

in Table 7. PinPoint [58] is used to extract the execution phases for all CPU applictions.

The CPU applications are divided into two types: memory intensive where L2 cache misses

per kilo instructions (MPKI) is higher than 20; and memory non-intensive where L2 cache

MPKI is lower than 20. The GPU applications can be also divided into two types based on

L2 cache MPKI – memory intensive (MPKI>2) and non-intensive (MPKI<2). Although the

L2 cache MPKI of most GPU applications are lower than that of CPU applications, within

an arbitrary time window, GPU applications possibly generate L2 cache misses two orders of

magnitude greater than that of CPU applications due to their high instruction throughput

(i.e., IPC).
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We permute the combination of different types of CPU and GPU applications, coming

up twelve heterogeneous workloads. Each workload consists of two CPU applications and

one GPU application, as shown in Table 8. The performance of C1 is highly sensitive to

TEMP+TBAS (shall be explained in Section 5.5.1), we construct ten workloads (WL0∼WL9

in Table 8) where the GPU applications are picked up from C1. Half of GPU applications

in WL0∼WL9 are memory intensive while the rest are memory non-intensive. For the CPU

workloads in WL0∼WL9, we can have three combination types (i.e., NN, IN, and II) of the

dual-application. The generated ten heterogeneous workloads cover most cases where EMU

may act variably. We also construct two extra workloads, each of which includes an GPU

application from C2 and C3, respectively.

5.4.2 Simulation Platform

Since the CPU-GPU CC-NUMA has not been shipped by any industry vendors, we simulate

a GPU system attached with heterogeneous GDDR5-DDR3 DRAM subsystem. System

simulation is performed on gem5-gpu [61], and its simulation parameters are listed in Table 9.

Table 9 summarizes the configuration of the simulator.

The GPU subsystem includes 8 SMs, each of which has the similar computational ca-

pability as the SM in Fermi, except we lower the SM frequency to 600MHz. The memory

bandwidth per shared-core-clock is comparable and even higher than that of real high-end

heterogeneous processors integrating similar GPU unit [62]. Such setting ensures our simu-

lation platform resemble real product and rules out the concern that our simulation config-

uration favors the proposed techniques.

The page size is set to 4KB, a typical size adopted widely. To avoid the bottleneck of

GPGPU TLB and expose the limitations of DRAM bandwidth in heterogeneous shared mem-

ory systems, we also optimize the GPU TLB design in our heterogeneous system including

per-SM TLB, highly-threaded PTW and shared L2 TLB [63]. We choose the configuration

with CCWS in [15] as our baseline.

We estimate the GDDR5 DRAM energy consumption through a modified MICRON

DRAM power calculator [64] based on the datasheet [22]; the DDR3 DRAM energy con-

sumption is directly obtained from MICRON DRAM power calculator by feeding the runtime

statistic generated from gem5-gpu.
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Table 8: The characteristics of heterogeneous workloads.

Workloads Type∗ Applications

WL0 NN-N perlbench, bzip2, FWT

WL1 NN-N gcc, h264ref, BP

WL2 NN-I gcc, bzip2, II

WL3 NN-I perlbench, h264ref, KM

WL4 IN-N omnetpp, gcc, STEN

WL5 IN-I xalancbmk, h264ref, PVC

WL6 II-N mcf, lbm, DCT

WL7 II-N omnetpp, xalancbmk, FWT

WL8 II-I mcf, xalancbmk, PVR

WL9 II-I omnetpp, lbm, II

WL10 IN-N lbm, bzip2, NN

WL11 IN-I mcf, perlbench, MUM
∗Each workload type is denoted by the types of combined applications, e.g., NN-I means

two memory non-intensive CPU applications run with a memory intensive GPU

application.
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Table 9: Simulation configuration.

CPU

Number of Cores 2

Execution 3 GHz, OOO 4 issues, 256-entry ROB

L1 Data Cache 32KB 4-way, 2-cycle hit, write back, 64B

L2 Cache 2MB 8-way, write back, 64B

GPU

Number of SMs 8

SM Clock 600MHz

SIMD width 16

L1 Data Cache 32KB 4-way, write through, 128B

Warp Size 32

Max Number of Threads 1536/SM

Max Thread Blocks 8/SM

Scheduler CCWS, OWL, TBAS

TLB
64-entry L1, 8KB page walk cache,

512-entry shared L2

L2 Cache
128B line, 8-way associated,

2 banks, 512KB/bank, total 1MB

Shared resources

# of memory channels 2 for GDDR5, 1 for DDR3

Memory controller
FR-FCFS [59], open-page,

64-entry request queue/MC

Interconnection 2D Mesh

GDDR5 Banks 16

Timing from [22]

DDR3 Banks 8

Timing from [60]
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5.5 RESULT

5.5.1 Evaluation for Pure GPU Workloads

5.5.1.1 Performance We first analyze the performance of different configurations em-

ploying various schedulers and/or combinations of schedules and TEMP, only pure GPU

workloads are evaluated. The results are normalized to CCWS that does not have any op-

timization on DRAM system, as shown in Figure 38. Applying TEMP on top of CCWS

introduces 5.7% GM speedup, while replacing CCWS with TBAS can further raise the

speedup to 10.3%. We also compare to OWL [19]. OWL targets on cache performance

through intelligent warp scheduling. It also tries to improve the BLP of memory accesses

by prioritizing different-numbered thread blocks in consecutive SMs. From our evaluation,

OWL is 93.6% within the performance of CCWS across the application set. We observe that

CCWS has higher cache hit rate compared to OWL, and the BLP improvement of OWL

is limited because only a small subset of thread blocks which share pages are considered.

As a result, TEMP on top of CCWS is 12.9% better than OWL. Figure 39 shows the local

access ratio to each memory bank. Here local access denotes the memory access from the

SM associated to the banks while remote access denotes the access from other SMs.

To better understand the respective efficacy of TEMP and TBAS, we partition all the

GPU applications into three categories, by considering both the local access ratio and the

speedup under TEMP:

• C1: These applications have very high local access ratio (on average >99%) and obtain

substantial performance improvement, in all the configurations employing TEMP.

• C2: Similar to C1, the applications in C2 also demonstrate high local access rate (>93%).

Compared to CCWS, however, introducing TEMP to these applications results in slight

performance degradation (∼1%) except TEMP+TBAS can still effectively boost the GM

speedup to 2.4%.

• C3: Even applying the best thread batch formation, the applications in C3 cannot

obtain very high local access ratio due to intrinsic thread-data mapping and memory

access pattern. Compared to CCWS, we cannot see any performance speedup but an

overall degradation.
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Figure 38: The performance of different schemes, all of which are normalized to that of

CCWS.

We summarize the DRAM usage statistic as well as the stall on reply network from memory

controllers to SMs in Figure 40. All the data are normalized to those in CCWS. The BLP of

TEMP is significantly improved by 58.3% in C1, while the RBHR is increased by 17.8%. As

expected, by suppressing the inter-SM interference of memory accesses, TEMP unveils the

intrinsic locality and access parallelism of thread batches. On the other hand, OWL obtains

16.3% BLP and 8.6% RBHR improvement. OWL adopts opportunistic prefetching to burst

the RBHR while TEMP does not introduce any prefetching. We also investigate the network

congestion between the SMs and GDDR5 DRAM partitions. The network congestion of

OWL is 33.6% more than that of CCWS. This value quantitatively demonstrates that CCWS

has higher L1 cache hit rate, less L2 accesses, most likely less DRAM accesses compared to

OWL. All the above factors together lead to 17.3% reduction in DRAM access delay with

TEMP in C1. Consequently, TEMP bursts 11.1% performance, 24.0% higher than OWL

in C1. For TEMP+TBAS, C1’s BLP is 9.1% smaller than that of TEMP. This is because

the number of active thread batches is intentionally limited for row locality enhancement.

On the other hand, C1’s RBHR in TEMP+TBAS is further raised by 33.1% and its DRAM

access delay is drastically reduced by 29.9%. More importantly, a considerable reduction in

congestion of reply network (18.7%) is observed. As a result, more than 15% performance

speedup is achieved in C1 with TEMP+TBAS.
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Figure 39: The local access ratio of memory accesses of different schemes.
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Figure 40: The statistic of DRAM system and congestion on reply network.
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With TEMP, C2 achieves a high local access rate. However, it is hard to increase its

BLP since it already approaches the theoretical upper bound. For instance, some kernels in

NN have only a few thread blocks: the number is even lower than the bank count. Applying

TEMP on those kernels possibly limit the BLP. Fortunately, TBAS takes effect in terms

of row locality enhancement and network congestion reduction, resulting in slight speedup

(∼2%). On average, the performance of C3 in TEMP/TEMP+TBAS is reduce/improvement

by 2.5%/2.3%. Note that it is difficult to formalize the thread-data mapping of the applica-

tions in C3. Thus, applying TEMP aggravates DRAM access delay.

We also consider a synergistic page placement policy, bandwidth-aware (BW-AWARE) [55]

which places the GPU pages across GDDR5-DDR3 DRAM. The memory footprint of each

GPU application we evaluate completely fits within the GDDR5 DRAM, so local page place-

ment policy places all the GPU pages in GDDR5 DRAM. BW-AWARE, on the other hand,

keeps a page placement ratio the same as the bandwidth ratio between GDDR5 and DDR3,

by which BW-AWARE can fully utilize the combined bandwidth of both memories. From

Figure 38 we can see BW-AWARE gains 5.1% extra performance on top of CCWS. The per-

formance gain is compliance to the value reported in [55] given the similar bandwidth ratio.

TEMP and TBAS is orthogonal to BW-AWARE. To combine TEMP and BW-AWARE: 1)

we assign a DDR3 DARM bank to a SM. 2) BW-AWARE decides which memory to place

a new page. 3) TEMP then places the page in the bank bound to the SM from which this

page is raised. 4) And TBAS scheduler the warps as if a homogeneous DRAM is employed.

As a result, combing TEMP, TBAS, and BW-AWARE (Batching+BW) has better BLP and

RBHR compared to BW-AWARE, and further improve the performance by 11.2% compared

to CCWS.

5.5.1.2 Energy The normalized DRAM energy consumption of all configurations is

shown in Figure 41. Generally, the DRAM energy savings come from two main sources:

1) the saving of activate energy that dominates DRAM energy consumption because of the

increased RBHR and 2) the saving of the background energy which is proportional to the

reduction of the execution time. Therefore, the DRAM energy reduction is determined by

its access locality as well as the overall performance improvement. Our results show that
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Figure 41: The normalized DRAM energy consumption of different schemes.

compared to CCWS, the DRAM energy savings of TEMP is 11.2%. TEMP+TBAS is 20.7%

better than CCWS because the significant improvement of RBHR. OWL saves less DRAM

energy, 5.9% because the higher row activation plus inferior performance. Batching+BW

achieves the most energy saving by 14.2%.

5.5.2 Evaluation for Heterogeneous Workloads

Figure 42 shows the performance of CPU (WS-C) and GPU (IPC-G) applications in each

heterogeneous workload when TEMP+TBAS is applied. The performance of CPU appli-

cations in a workload is measured by the weighted speedup [65], and normalized to the

weighted speedup of the same CPU applications running exclusively on the heterogeneous

system. The IPC of a GPU application is also normalized to the IPC obtained by running

with TEMP+TBAS exclusively. The memory intensive applications, no matter CPU or

GPU applications in the workloads, experience non-trivial performance slowdown due to the

contention in shared resources, e.g., interconnection network and DRAM. On the contrary,

the performance slowdown of memory non-intensive applications is much less. The weighted
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Figure 42: The performance of heterogeneous workloads.

speedup of CPU applications across twelve workloads is reduced by 11.9%; correspondingly,

the IPC of GPU applications is 9.2% lower than that obtained by TEMP+TBAS running

alone.

The effectiveness of TEMP or TBAS is constrained and the performance of CPU appli-

cations is degraded as both TEMP and TBAS bias the GPU applications: 1) TBAS expects

consecutive thread blocks to access their physical pages in a limited span of rows. The phys-

ical addresses of the pages accessed by CPU applications, however, can mix with those of the

pages accessed by GPU applications, breaking the expectation of TBAS and consequently,

deteriorating the row locality of GPU applications. 2) On the other hand, even if TBAS

successfully keeps the row locality of GPU applications, due to the high volume of memory

accesses from GPU, the memory controller probably always prioritizes the memory accesses

issued from GPU, suspending the memory accesses from CPU.

To address above problems, we can first divide each bank into two portions – one for CPU

and the other for GPU. We reserve the rows with higher addresses in a bank for CPU and

the ones with lower addresses for GPU. CPU or GPU are assigned with the new pages from

corresponding address space. By doing so most pages of CPU and GPU can be physically
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separated in a bank, allowing TBAS to keep the row locality of GPU applications when CPU

applications are running simultaneously. Secondly, the memory controller is always set to

promote the memory accesses from CPU, as proposed in [26]. CPU applications are usually

delay-sensitive, unconditionally promoting the memory accesses from CPU against the ones

from GPU can eliminate the risk of CPU-side memory access starvation. The combined two

solutions reduce the performance loss by 6.1%/3.5% in CPU/GPU applications, denoted by

Comb-C and Comb-G in Figure 42. And we can see that some workloads (e.g., WL8 and WL9)

including both CPU and GPU intensive applications benefit significantly from the integrated

heterogeneous-aware thread batching.

The solution mentioned above are simple yet capable to keep the effectiveness of TeMP

and TBAS for GPU applications while preventing considerable performance loss of CPU

applications. We believe more sophisticated techniques can further well balance the CPU

and GPU throughput [66], which however is beyond the interests of this paper and left in

the future work.

5.6 SUMMARY

GPU suffers from the mismatching between thread-level parallelism and DRAM bandwidth.

To improve the DRAM usage efficiency of GPU applications, we propose an integrated thread

batching which is composed of TEMP and TBAS techniques: TEMP improves GPU memory

access parallelism for massive multi-threaded applications by minimizing the memory access

interweaving across SMs; and TBAS maximizes the row locality by elaborately prioritizing

the execution of the threads. Heterogeneous-aware thread batching is also introduced to

promise the effectiveness of thread batching when running heterogeneous workloads. Our

results show that TEMP+TBAS can achieve up to 9.3% system performance improvement

and 11.3% DRAM energy saving compared to the baseline employing CCWS. By using sim-

ple, existing solutions, heterogeneous-aware thread batching can still maintain 94.2% CPU

and 93.5% GPU throughput, respectively, across twelve diverse heterogeneous workloads.
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6.0 RELATED WORKS

6.1 POWER-EFFICIENT GPU REGISTER FILE

Improving power efficiency is one of the main focuses of the research and development of

GPU in both industry and academia. For example, NVIDIA Kepler architecture triples the

number of cores for lower shader frequency and includes the compilation support of energy-

efficient warp scheduling for better performance per watt [46]. The traditional low-power

techniques, e.g., DVFS [2] and power gating [2, 67], have been also utilized to reduce both

dynamic and leakage power consumption of GPU. Special efforts [68, 69, 70] on hacking

the microarchitecture or pipeline, e.g., exploiting value structures during execution, are

also proposed to address the power issue. Nonetheless, the systematic analysis [71, 2] on

GPU power consumption showed that RF is one of the major factors affecting GPU power

efficiency.

The power efficiency improvement on GPU RF can be also achieved through architecture

optimizations. Gebhart et al. proposed RFC to minimize the RF accesses with two-level

scheduling [4, 51] for both leakage and dynamic energy consumption reduction. The authors

further introduced an unified on-chip memory combining L1 cache, shared memory and

RF with significantly enhanced power-efficiency and performance [72]. Unlike RFC, our

write buffer design piggybacks on the temporal locality within the pipeline execution (i.e.,

WAW/RAW) and does not require any special scheduling policies.

Yu et al. first proposed using new memory technology, eDRAM to build GPU RF [73].

The authors designed a RF context aware scheduler to maintain the issue fairness of warps [73].

In our design, RMWS aims to minimize the shift delay of RM without putting special fo-

cus on the fairness. Very interesting, our simulations show that RMWS naturally carries
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a good issue fairness so that its performance very close to GTO, a fair scheduler design.

In [74] and [75], Jing et al. developed an opportunistic/compiler-assisted refreshing scheme

to retain the data in volatile eDRAM cells. Due to the non-volatility of RM, such costly

refreshing scheme can be safely removed in our proposed RF design to achieve significant

standby power reduction.

Goswami et al. exploited the application of nonvolatile STT-RAM in GPU architecture

as on-chip memory [76]. STT-RAM possesses near-zero leakage power as well as very high

dynamic power, which is actually the main challenge in GPU RF designs. Hence, early write

termination [77] is utilized to minimize the dynamic power consumption of STT-RAM based

on-chip memory [76]. In our proposed RF design, the dynamic power is naturally reduced by

the energy-efficient write mechanism of RM while the write buffer also filters the unnecessary

RF accesses.

We note that traditional memory power management schemes can be also applied to

reduce the RF power consumption. In [78], Abdel-Majeed et al. introduced drowsy RF

design to save the leakage power consumed over a long time period between two successive

accesses. The dynamic power of RF can be also minimized by masking the RF accesses from

inactive threads within a warp. The architectural motivation of these solutions is orthogonal

to our proposed techniques and can be incorporated together to further improve the energy

efficiency of the GPU RF and its peripheral circuits.

6.2 DOMAIN WALL MOTION AND ITS APPLICATIONS

Domain wall motion is predicted by [79] and has drawn increasing attentions as a promising

candidate for future storage [80] and logic devices technology [81]. The storage practice

utilizing current driven domain wall motion, i.e., racetrack memory [82], has been fabricated

with IBM 90nm technology [83] and widely studied as on-/off-chip memory components.

Venkatesan et al. [45] first demonstrated using racetrack memory to build the last-level

cache (LLC) on CPU. They also proposed several scheduling policies to process the cache

requests. Sun et al. [34] proposed a very dense racetrack memory based LLC design where
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multiple tracks are placed on top of each access port and the access ports are carefully placed

to minimize the wasted area. Venkatesan et al. [33] further proposed domain-wall-shift-write

based RM that has lower programming power; they then also introduced RM based cache

hierarchy for GPU [84]. Following the similar design motivation, we use RM to build the

GPU RF in our work. In a GPU, the generation of RF requests can be controlled by switching

warps, leaving a natural optimization space of warp scheduling for shift overhead reduction

in RMWS. Due to its low power and small area, RM has been continuously investigated

in various platforms or application domains [85, 86, 87, 88, 89], demonstrating its potential

being a rival replacement candidate of traditional memory technologies.

6.3 CACHE LOCALITY AWARE WARP SCHEDULING

There are many cache locality aware warp scheduling algorithms have been developed based

on throttling warps or thread blocks/CTA in a SM [19, 20, 15, 21]. They usually keep a

proper number of warps active to balance the thread-level parallelism and cache locality.

Most of them, however, target only a single type of cache locality and lack a comprehensive

consideration of diverse cache localities in GPUs.

For example, CCWS aims reducing the intra-warp L1 data cache misses. Generally,

CCWS tries to keep a proper number of warps running without stressing the L1 data cache

while fully using the capacity of it. It uses a lost locality detector to monitor the L1 data

cache thrashing of each running warp. If a warp is detected as “losing locality”, which means

its cache blocks are frequently revisited and evicted by other warps, then the warp will be

prioritized over all the other warps. The warps without losing locality will be suspended by

the warp scheduler until the thrashing on L1 data cache is alleviated. Therefore, in CCWS,

the thread-level parallelism is sacrificed for better intra-warp locality and higher system

throughput.

CCWS requires non-trivial modifications of the caching system and introduces run-time

computation cost, i.e., sorting all the running warps based on their lost locality scores in

each schedule cycle. Hence, such types of locality-aware warp scheduling schemes are facing

scalability challenges as the total number of the warps concurrently supported by a SM keeps

ascending [13, 23].
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Some other works [19, 20] have partially exploited inter-CTA locality in GPU appli-

cations, although the primary goal of them is to alleviate shared resources contention for

better performance. As we have shown earlier, there are always more than one type of

cache miss contributing to the total misses. Unfortunately, none of them, including CCWS,

comprehensively takes into account the diverse cache localities in GPU application.

In this dissertation, we propose VWS that is capable of retaining intra-warp, intra-CTA,

and inter-CTA localities to achieve a significantly improved system throughput. Moreover,

in VWS, the decision making is much more computation and hardware efficient than existing

works. As we already showed in Section 4.4, the lost cache locality is the main reason for

the shared resources (e.g., interconnection network) contention. VWS can greatly mitigate

the contention by enhancing diverse cache localities in GPU applications.

6.4 MEMORY PARTITIONING IN MULTI-CORE SYSTEMS

In multi-core systems, memory bank partitioning (MBP) binds a thread to one or more

memory banks. Every thread accesses its own private banks to avoid the interference from

other threads. Mi et al. [30] first proposed MBP and used modified bank permutation to

compensate the degraded BLP. Jeong et al. [29] used sub-ranking to overcome the BLP

degradation on single thread after applying MBP. Liu et al. [28] designed a purely software

MBP based on OS page allocation. They also explored the utilization of MBP in a multi-

threaded application but the result was not very promising because of the inter-thread data

sharing. Xie et al. [31] pointed out that unbalanced memory requirements across the threads

is the main reason of the BLP degradation and then proposed a dynamic bank partitioning

approach to solve this problem. In TBMP, BLP is guaranteed by workload balancing across

the SMs while the memory access fairness is guaranteed by the homogeneity of the GPU

threads in a kernel. Thread batching in TEMP also alleviates the negative impact of inter-

thread data sharing on system performance in multi-threaded applications.
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6.5 DRAM EFFICIENCY IN GPU

Compiler-assisted data layout transformation [90, 91] proactively prevents unbalanced ac-

cesses to DRAM components by carefully reorganizing the array or thread block index.

However, this method is not aware of any hardware implementation details, e.g., thread

scheduling and DRAM address mapping, both of which may offset the efforts at compiler

level. Some examples of hardware approaches for DRAM usage efficiency enhancement in

GPU or CPU-GPU systems include:

Enhanced memory schedulers Jeong et al. [92] designed a QoS-aware memory sched-

uler for MPSoC with CPUs and GPUs. The DRAM bandwidth allocation between the CPUs

and GPUs is dynamically adjusted to meet the frame rate requirement of GPUs and maxi-

mize the overall system throughput. Ausavarungnirun et al. [26] proposed a staged memory

scheduling framework with affordable hardware cost for heterogeneous systems. We adopt

the memory scheduling policy from [26] to customize our proposed heterogeneous-aware

thread batching.

Enhanced thread scheduler Jog et al. [19] revealed that serial thread block data lay-

out and sequential thread block dispatching can cause BLP degradation of GPU applications.

A scheduler is then designed to improve the BLP by prioritizing different-numbered thread

blocks in consecutive SMs. The authors also utilized prefetching to compensate the degra-

dation of row locality. However, if the memory of GPU is pageable, the effect of prioritized

thread scheduling will become uncertainty, because the pages of consecutive thread blocks

can be nonconsecutive or not concentrated a DRAM row. In our scheme, TEMP relies on

thread batching and page coloring to improve the BLP and TBAS enhances the row locality,

targeting a heterogeneous system design supporting pageable GPU memory.
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7.0 CONCLUSION

As the scaling of GPU towards to higher thread-level parallelism, the gap between the

computational capability and memory subsystem will continuously enlarge. This dissertation

focuses on the optimization on memory subsystem of GPU to alleviate the discrepancy

between computation and memory. We investigate the inefficiency of the GPU memory

subsystem vertically ranging from on-chip RF and L1 data cache to off-chip DRAM device

memory, and come up with three solutions, each of which tackles one particular memory

component. The components as well as the contributions of this dissertation are summarized

as following:

• A RM based RF is introduced to replace the SRAM based RF in GPU. The traditional

SRAM based RF digests a considerable amount of power budget of the whole GPU

system because a large RF is dispensable for fast thread switching. RM is much better

than SRAM in terms of power and area; however the location-related access mechanism

of RM is the major impedance preventing the adoption of RM based RF. We first explain

the bank-level design of RM and quantify its advantages compared to SRAM. We then

propose two architecture-level optimizations, register remapping and RMWS, to address

the drawback of prolonged access latency. We also consider the execution scenario where

multiple warp schedulers are presented, for which we propose warp register remapping to

ensure the applicability of RMWS. Experiment results show that, after employing RM

based RF, the RF energy consumption is drastically reduced by 48.5% while the system

performance is kept stable.

• VWS is designed to explore diverse localities in GPU. VWS is capable of preserving

intra-warp, intra-CTA and inter-CTA L1 data cache locality. By limiting the number of
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warp running on a SM, IWL tries to keep the aggregated working set in L1 data cache.

IntraCL picks the warps from as less CTAs as possible to make sure the warps coming

from the same CTA hit the intra-CTA shared data on cache. InterCL leverages serial

thread block dispatching and sequential CTA switching to guarantee sequential CTA hit

the inter-CTA shared data on cache. VWS improve the GPU performance by more than

9% w.r.t. the CCWS.

• A architecture substrate – TEMP and TBAS – is proposed to reduce the performance and

energy bottleneck raised from device DRAM memory. The DRAM bandwidth is subject

to the less rapid development of device manufacture compared to computing component,

especially for GPU. Consequently, the DRAM subsystem becomes a key factor affecting

the overall throughput of GPU. TEMP and TBAS can improve the efficient utilization of

the pressure DRAM bandwidth by increasing the memory access parallelism and locality.

Particularly, TEMP resolves the memory access inter-weaving between SMs and banks

by batching thread blocks and page coloring; on top of TEMP, TBAS maximums the

DRAM row buffer hit rate. The combined substrate improves the GPU performance by

10.3% and reduces the DRAM energy consumption by 11.3%.

To combine the above optimizations together for an integrated solution for high per-

formance and energy-efficient GPU, one issue needs to be addressed is how to orchestra

different goals which are optimizable via warp scheduling. Currently, each memory compo-

nent optimization relies on a warp scheduler design which is tailored for a specific purpose:

RMWS is designed for minimal RM shifting; VWS is for less L1 cache thrashing; and TBAS

is for maximal DRAM locality. Fortunately, there do exist overlaps between different warp

scheduler designs. For example, given the fact that TBAS also covers the DRAM locality,

we may potentially combine both VWS and TBAS for both L1 data cache and DRAM lo-

cality enhancement: IWL in VWS provides the number of warps which must kept active

in a SM, and TBAS operates on those warps accordingly. We leave the combination of the

optimization techniques proposed here to the future works.

Another possible future work is automatic deployment of the GPU workload beyond

a single GPU by further detailed investigation of thread-data mapping. Automatic GPU

scaling is a problem that hinders GPU adoption in the real HPC domain, because a kernel
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is assumed a uniform memory layout in a single device memory, arbitrarily distributing the

workloads of a kernel to multiple GPUs, i.e., multiple device memories may incur intolerable

data synchronization. In this dissertation we already demonstrate that it is possible to

separate the data sharing between thread blocks through the analysis of two major thread-

data mappings in kernels. Therefore, we can use thread batch, but not thread block as the

basic distributed element among the GPU pool. Since most data sharing is restricted within

the thread batch, we may potentially restrict most of the data synchronization between

GPUs. More detailed thread-data mapping analysis needs to be done and a profiler is

wanted for automatic and accurate thread batch generation.
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