
 

UNDERSTANDING THE INTRINSIC WATER WETTABILITY OF GRAPHITE 
 
 
 
 
 
 
 
 

by 
 
 

Andrew Kozbial 
 
 

B.S. in Chemical Engineering, University of Toledo, 2010 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 
 

The Swanson School of Engineering in partial fulfillment 
 
 

of the requirements for the degree of 
 

Doctor of Philosophy in Chemical Engineering 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 
 

2016 



ii 
  

UNIVERSITY OF PITTSBURGH 
 
 

SWANSON SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 
 

This dissertation was presented 
 
 

by 
 
 
 

Andrew Kozbial 
 
 
 

It was defended on 
 
 

March 31, 2016 
 
 

and approved by 
 
 

Sachin Velankar, Ph.D., Associate Professor 
Department of Chemical & Petroleum Engineering 

 
Giannis Mpourmpakis, Ph.D., Assistant Professor 
Department of Chemical & Petroleum Engineering 

 
Haitao Liu, Ph.D., Assistant Professor 

Department of Chemistry 
 

Dissertation Director: Lei Li, Ph.D., Assistant Professor 
Department of Chemical & Petroleum Engineering 



iii 

  

Copyright © by Andrew Kozbial 

2016 



iv 

Decades of research since the 1940s has substantiated graphite as a low surface energy material.  

Its chemical structure led researchers to believe that airborne hydrocarbon contamination was 

inconsequential and contradictory reports were not convincing.  Graphite gained renewed interest 

when graphene was first isolated in 2004.  Being an atomically thin material, the surface 

properties of graphene are critical to its performance, thus elucidating surface properties of 

graphene and graphite became important topics in fundamental and applied research. 

This work began with the realization that fresh graphene and graphite are mildly 

hydrophilic and approach their established hydrophobicity upon exposure to ambient air.  

Hydrocarbons in ambient air adsorb onto the fresh surface and cause it to appear hydrophobic.  

This work was first published in 2013 (doi: 10.1038/nmat3709) and provided the basis for 

further exploration of the intrinsic chemical nature of graphene, graphite, and MoS2. 

Fresh graphite is shown to be mildly hydrophilic and becomes hydrophobic upon 

exposure to ambient air.  Similar behaviour was observed for graphene and MoS2.  Ellipsometry 

showed growth of an adsorptive layer on the fresh (clean) surface and ATR-FTIR indicated that 

the adsorptive layer was airborne hydrocarbon.  Theoretical calculation further confirmed that 

adsorption of only a monolayer of hydrocarbon is enough to reproduce the hydrophobic behavior 

previously observed on HOPG. 
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Surface energy of fresh CVD graphene was calculated to be 62.2 ± 3.1 mJ/m2 (Fowkes), 

53.0 ± 4.3 mJ/m2 (Owens-Wendt), and 63.8 ± 2.0 mJ/m2 (Neumann), which decreased to 45.6 ± 

3.9 mJ/m2, 37.5 ± 2.3 mJ/m2, and 57.4 ± 2.1 mJ/m2, respectively, after 24 hours of air exposure.  

Similar behaviour also occurred for HOPG and MoS2.  The fresh surface exhibits highest surface 

energy which decreases upon adsorption of airborne hydrocarbons.  Results also indicate that the 

fresh surface is mildly polar. 

Analysis based on defect density and dynamic contact angle measurements determine 

that the intrinsic WCA of fresh sp2-hybridized carbon is 70.0° ± 1.5°.  Current understanding of 

wetting models show that roughness and chemical heterogeneity do not cause the intrinsic 

hydrophilicity.  This work unequivocally shows that fresh graphitic surfaces are mildly 

hydrophilic. 
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learning about the real people who have developed these concepts that scientsts either still use – 

and debate – today or have become the foundation of newer scientific concepts.  My interest in 

the history of science first piqued when listening to a story about Fritz Haber on NPR while 

driving home to Ohio one afternoon a few years ago.* This made me realize that past scientists 

were not just people who worked tirelessly in a lab but were also interesting people whose 

livlihoods were often caught up in politics and wars of their time. 

Particularly interesting was the conncection I discovered of Robert Wenzel to the Mellon 

Institute of Industrial Research.  The Mellon Institute is now part of Carnegie Mellon University 

and is located adjacent to the main campus of the University of Pittsburgh, only a few blocks 

away from where I have worked the past five years.  I find captivating that scientists worked 

nearly a century ago where I and thousands of other students learn and work today.  While Dr. 

Wenzel performed neither his original work nor formulated the Wenzel model at the current 

Mellon Institue building (the current building was built in 1937 and Dr. Wenzel’s paper was 
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directly across the street from Benedum Hall, the engineering building at the University of 
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Eventhough most of the scientists we hear of today are ambiguous figures that most 

people don’t care about, I find it important for current and future scientists to be familiar with the 
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interesting stories about the struggles of the scientists and the causes for their work, such as the 
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1.0  INTRODUCTION 

1.1 WHAT IS GRAPHITE? 

Many people know graphite as being the black stuff in pencils that allow us to write, typically 

learning in grade school that “lead pencils” are actually made of graphite and use no actual lead 

(Pb).  Then most people never think of graphite again without realizing how prevalent its use is 

in our world with applications ranging from a simple writing utensil to being a very good solid 

lubricant to integration into battery electrodes.1, 2 As the most stable allotrope of carbon, graphite 

forms naturally in the Earth and is considered to be the highest grade of coal.   Placed under high 

temperature and extreme pressure (900-1300°C and 4.5-6 GPa), the crystallographic structure of 

graphite can rearrange to form diamond.3  Graphite and diamond are both carbon allotropes: 

graphite is sp2-hybridized and diamond is sp3-hybridized.   

High quality natural graphite can be found in the Earth and Sri Lanka is the only place in 

the world where a unique vein-type of natural graphite is found, called Ceylon graphite.  The 

metamorphic terrain of Sri Lanka (under British rule and known as Ceylon until 1972) was 

particularly ideal for forming the high quality graphite that was required during worldwide 

industrialization and demand peaked during the World Wars.  Ceylon graphite is mined at the 

Bogala mine in Sri Lanka and was used in many early investigations on the properties of 

graphitic materials.4 
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One of the first synthetic forms of graphite was Kish graphite which is made from molten 

waste produced during steelmaking.5  Over a half century ago, research and production demands 

led researchers to synthetically fabricate high quality graphitic samples.  This lead to a variety of 

sp2 carbon based materials of which the highest quality is known as highly oriented pyrolytic 

graphite (HOPG).  Pyrolysis (1000-2000°C) of precursor hydrocarbon gases produce a form of 

graphite known as pyrolytic carbon or pyrolytic graphite (PG), which is analogous to graphite 

aside from small amounts of covalent bonding between layers and often times larger interlayer 

distance due to the absence of high pressure during synthesis.6, 7  PG is also called turbostratic 

carbon.  Running the pyrolysis procedure under high tensile stress along the c-axis (0.05 

GPa/494 atm) will force alignment of crystallites forming HOPG through the “stress 

recrystallization” process described by Blackman and Ubbelohde in 1962.8 

1.2 GRAPHITE AND GRAPHENE 

Individual atomically thin layers of graphite are called graphene and graphite can be thought of 

as being many layers of stacked graphene.  In other words, imagine a stack of printer paper.  

Each piece of paper represents graphene; whereas, the entire stack of paper represents graphite.  

The amount of pressure applied during synthesis dictates the sample quality yet graphite is 

always sp2-hybridized carbon.  Each graphene layer maintains a six carbon hexagonal lattice, 

hence it is denoted as h-graphite, and has an ABAB stacking structure with interlayer spacing of 

ca. 3.35 Å which changes slightly with temperature.2, 9-11  Notably, graphite is a lamellar material 

with weak interlayer bonding due to van der Waals forces and strong intralayer bonding due to 

non-polar C-C bonds.  This classifies graphite as part of a larger class of materials known as 
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lamellar or van der Waals materials that have strong intralayer bonding and weak interlayer 

bonding where the uppermost surface can be removed through facile methods such as applying 

tape and pulling away, thus exposing a fresh or pristine surface.12, 13 

Mosaic spread (mosaicity) of the graphite crystallites is used to quantify the sample 

quality.14, ‡ There are three common grades of HOPG commercially available.  ZYA is the 

highest quality and has a mosaic spread of 0.4°± 0.1°.17  ZYB and ZYH are less ordered (i.e., 

lower quality) HOPG fabricated by applying less pressure during pyrolysis.  The lowest quality 

sp2-hybridzed carbon used in this study is PG which has mosaicity of 30°-60°.2  Table 1 shows 

graphite samples used in this study.  Optical and AFM scans of the samples are shown in Figure 

1.  Salient topographical differences between the samples indicate differences in quality with the 

highest grade (ZYA) having mostly basal plane surface with few step edges and PG taking a 

substantially bubbly appearance.  The number of defects typically correlates proportionally to the 

mosaicity of a sample, i.e., a low mosaicity sample will have fewer defects and larger grain sizes 

than a high mosaicity sample.2, 7 

It is worth noting that the optical and AFM images of SPI-1 were taken on a sample that 

had been cleaved numerous times, thus the surface shows substantially more “damage” than the 

surface of a brand new sample.  Images of the other samples were taken when the sample was 

relatively new.  An important observation made during the writing of this dissertation is that the 

wettability (fresh and aged surface) is similar on both the brand new surface (new from 

                                                

‡Interesting science history: Charles Galton (C.G.) Darwin worked alongside Henry Moseley, both English 
physicists, and wrote two seminal papers on the diffraction characteristics of x-rays in perfect crystals.  C.G. Darwin 
also introduced the concept of mosaicity in crystals.  He worked under the great physicists Ernest Rutherford and 
Niels Bohr at Victoria University of Manchester, which is now the University of Manchester, where Andre Geim 
and Konstantin Novoselov first isolated graphene nearly a century later.  C.G. Darwin is the grandson of the 
infamous naturalist Charles Darwin and wrote extensively on the concepts of genetics and eugenics (a popular 
British topic of the time) later in his life.15, 16 
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manufacturer) and the surface which has been exfoliated numerous times (see Section 4.2.2 on 

page 71).  During experiments over the past several years, I did not have the foresight to count 

the number of times each sample was exfoliated and characterize the surface damage along the 

way.  This would have been an interesting contribution when comparing performance of the 

different samples, especially differences between HOPG samples made by SPI Supplies and 

Momentive Performance Materials (both brands are purchased through SPI Supplies).  The SPI 

Supplies website states, “It is not a matter that one is better than the other, the quality of both is 

excellent. However, the two HOPG Brands are made using different processes, and therefore 

their physical characteristics are a bit different.”18  There is a substantial cost difference between 

the two manufacturers: ZYA HOPG manufactured by SPI Supplies and Momentive Performance 

Materials cost $350 (10x10x2 mm) and $994 (12x12x2 mm), respectively, for the same quality 

sample.  Some of this price difference can be due to sample size; however, the substantial price 

difference leads one to wonder if there are quality differences and, if so, how they affect sample 

performance. 

1.3 IMPLICATIONS OF SURFACE CONTAMINATION 

Atomically thin materials have inspired many new fields of research within the past decade, 

ranging from fundamental investigations into material properties to de novo research on ultrathin 

2D semiconductors, fabrication of ultrasensitive medical diagnostic devices, and low energy 

light emitting diodes (LEDs).  Graphene has championed research in this field since it was first 

fabricated; however, its zero bandgap creates many challenges.  Transition metal 

dichalcogenides (TMDCs), e.g., MoS2 and WS2, have a direct bandgap which alleviates the 
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challenge of creating a bandgap in graphene-based devices.  Graphite, graphene, TMDCs, and 

rare earth oxides (REOs) are well established as low energy materials that suffer little 

consequence from hydrocarbon contamination, i.e.,  the low energy surface has little tendency to 

adsorb hydrocarbon contaminants.  Decades of research on graphite since the 1940s19-31 has 

substantiated this belief and only a few researchers32-34 – until recently – have provided 

contradictory evidence.  Consequentially, research on 2D and bulk lamellar materials 

predominately excludes considerations based on hydrocarbon contamination although 

spontaneous hydrocarbon adsorption is well known to occur on high surface energy metals.35-40  

Taking into account a thin hydrocarbon layer may help explain prior results on carbon 

surfaces41 and contradictory electrochemical results on the basal plan of HOPG.42  McCreery et 

al. reported that electron transfer on the basal surface of HOPG is 1-3 orders of magnitude 

slower than electron transfer on glassy carbon.43-47  This difference was attributed to variations in 

the edge plane defect density.48  Within the past several years, work by Patel and Unwin et al. 

has shown that the basal surface of graphite is electrochemically active with electron transfer 

rates being independent of step edge density.49-55  Moreover, they showed that electron transfer 

rates significantly deteriorate when the graphitic surface is exposed to air;50 this has been 

corroborated through work by Velický and Dryfe et al.,56-58 Nioradze and Amemiya et al.,59-61 

and Li and Liu et al.62 These results have salient implications for graphene and graphite 

electrodes and batteries.  Taking into account a thin hydrocarbon layer, or controlling to restrict 

hydrocarbon adsorption, can substantially improve device performance.  

Water wettability of a material is an important parameter that describes the degree to 

which the surface interacts with water.  Wettability can then be used to estimate the surface 

energy of a material along with elucidating how different materials will interact with each other.  
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2D materials (i.e., a surface that is one atomic layer thick) have a very high surface-to-volume 

ratio and any surface changes can drastically affect intrinsic performance of the material, thus 

wettability of a 2D material is particularly critical.  This behaviour is becoming well established 

as several research groups have recently shown that contaminant-free surfaces behave 

fundamentally different than surfaces covered in (aqueous and carbonaceous) contaminants.50, 54, 

59, 61-65  Recent simulation studies corroborate experimental evidence.22, 66-69  Logically, this 

applies to many other materials such as REOs, TMDCs, and black phosphorous in both their 

bulk and 2D phase.70-74 

The following dissertation contains experiments and analysis of several years of work 

pertaining to the surface properties of graphite and graphene.  Specifically, my research group 

has sought to elucidate the effects of hydrocarbon contamination onto fresh graphitic surfaces 

and estimate the intrinsic water wettability of sp2-hybridized carbon.  To summarize, substantial 

evidence suggests that hydrocarbons significantly affect the surface properties of graphitic 

materials and the surface energy of fresh graphite and graphene is consequently reduced due to 

adsorption of contaminants.75, 76 This work was inspired by our report (Li et al., Nature 

Materials 2013, 12, 925-931; doi: 10.1038/nmat3709) which was the first to show that graphene 

and graphite are mildly hydrophilic and become hydrophobic upon exposure to ambient air and 

adsorption of airborne hydrocarbons.77 

Section 2 provides a thorough historical perspective of graphite hydrophobicity (low 

surface energy) followed by evidence from the past several years indicating that graphitic 

surfaces may not truly be so hydrophobic.  Section 3 expands the investigation to graphene and 

reviews contradictory experimental and theoretical reports on its hydrophobicity.  Then using 
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freshly fabricated graphene on copper, contact angle of four liquids was tested and surface free 

energy was calculated. 

The next two sections are new work that has not yet been published in which we seek to 

determine the influence defects have on wettability.  Section 4 investigates the defect density of 

high and low quality graphite which is then used to help elucidate the intrinsic WCA of fresh 

sp2-hybridized carbon.  Various experimental methods were used to compare graphite samples of 

varying quality and ultimately Raman spectra of the freshly exfoliated samples were used to 

calculate their defect density.  Section 5 reports our most recent contact angle data and analysis 

which describes the influence that defects have on wettability.  Moreover, the intrinsic water 

contact angle of fresh (clean) sp2-hybridized carbon is determined. 

Lastly, Section 6 reports experimental results on MoS2 which is an important TMDC with 

properties similar to graphite.  The surface energy of fresh and aged graphene, HOPG, and MoS2 

was calculated from contact angle data and shows that the fresh surface has higher surface 

energy and is more hydrophilic than the aged surface.  This shows that our findings on graphene 

and graphite may also be relevant for the myriad of other 2D and bulk materials. 

The four appendices detail supplemental experiments which are relevant to the 

conclusions in the main text of this dissertation.  Appendix A discusses details of ellipsometry 

and Appendix B reports x-ray diffraction data for the graphite samples.  Extensive x-ray 

photoelectron spectroscopy data is shown in Appendix C where the surface chemistry of graphite 

samples is investigated.  The original intention was to use XPS data to determine defect density; 

however, contamination and lack of surface sensitivity complicated analysis.  Additional XPS 

details for data acquisition and peak fitting are then shown in Appendix D. 
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Sections 2, 3, and 6 are taken from previously published material with minor modifications: 

• Section 2 and Appendix A is taken from Kozbial et al. Carbon 2014, 74, 218-225 
doi: 10.1016/j.carbon.2014.03.025 
 

• Section 3 is taken from Kozbial et al. Langmuir 2014, 30, 8598-8606 
doi: 10.1021/la5018328 
 

• Section 6 is taken from Kozbial et al. Langmuir 2015, 31, 8429-8435 
doi: 10.1021/acs.langmuir.5b02057 

 

 

 

Table 1.  Details of graphitic samples.  The SPI-1 HOPG sample used for experiments was 
10x10x1 mm; whereas, the thicker sample is cited above for a more direct cost comparison.  

Momentive Performance Materials was previously GE Advanced Ceramics and the samples are 
analogous. 

 

 

Sample Vendor Size.(mm) Mosaic.Spread Exfoliation Cost
ZYA Momentive 12.x.12.x.2 0.4°.±.0.1° tape $994
ZYH Momentive 12.x.12.x.2 3.5°.±.1.5° tape $119

SPI?1.(ZYA) SPI 10.x.10.x.1 0.4°.±.0.1° tape $256
SPI?2.(ZYB) SPI 20.x.20.x.2 0.8°.±.0.2° tape $680

Pyrolytic.(PG) Graphite.Store 25.4.x.25.4.x.3.2 N/A razor $109
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Figure 1.  Optical and AFM images of the graphite samples.  Optical images are taken at 5x 
magnification and the scale bar is 500 µm.  AFM images are 5x5 µm with color scale of 10 nm 

for HOPG (ZYA, ZYH, SPI-1, and SPI-2) and 500 nm for PG. 
  

Ra#(nm)
ZYA 0.353
ZYH 0.389
SPI51 1.42
SPI52 1.41
PG 30.1

SPI-2 SPI-1 

ZYH ZYA 

PG 
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2.0  UNDERSTANDING THE INTRINSIC WATER WETTABILITY OF GRAPHITE§  

2.1 HISTORY OF GRAPHITE HYDROPHOBICITY 

Graphite is an important material in the chemical industry with applications in catalyst support 

and catalysis,78, 79 gas adsorption,80-82 AFM tip calibration,83 electrochemistry,48, 50, 84 and battery 

technology85-88 among many others.12, 89, 90 Graphite is also one of the most often used models for 

studying wetting, interfacial structure of water, and related phenomena.91, 92 Controlling water 

wettability is important for product design because changes in water wettability can have 

significant consequences on adhesion, electrochemical activity, conductivity, and permeation.33, 

50, 93, 94 Understanding the water wettability of graphite is key for understanding surface 

properties of other graphitic materials, such as graphene, since it has important implications on 

applications in tribology95 and biodevices.96 

Since experiments by Fowkes and Harkins in 1940,21 extensive studies have concluded 

that graphitic surfaces are hydrophobic with WCA within the 75° - 95° range.19-31 Early 

experiments were conducted on natural graphite and later experiments utilized HOPG.  Fowkes 

and Harkins tested Ceylon graphite and reported WCA of 85.3° – 85.9° using the tilting plate 

method.21 Morcos reported WCA of 84.2° on exfoliated graphite determined by the indirect 

                                                

§ Published previously: Kozbial, A.; Li, Z.; Sun, J.; Gong, X.; Zhou, F.; Wang, Y.; Xu, H.; Liu, H.; Li, L. 
Understanding the Intrinsic Water Wettability of Graphite. Carbon 2014, 74, 218-225.76 



11 

meniscus height method where the sample was partially immersed in water.24 Morcos also 

reported WCA of 83.9° on highly oriented graphite by advancing meniscus method.25 More 

recently, WCAs determined by static sessile drop were reported as 91°,28 79°,30 and 75°31 on 

exfoliated HOPG, 98.3° on graphite,23 and 91.0° on HOPG aged in air for days.26 Adamson and 

Gast reported advancing WCA of 86° on graphite.29  Raj et al. recently reported advancing WCA 

on HOPG to be ca. 91°.27 Hydrophobicity has also been observed on other graphitic materials. 

Aligned carbon nanotubes have shown superhydrophobic behavior where WCAs of 163.4°97 and 

158.5°98 were observed. Additionally, as-grown carbon nanotube forests exhibit WCA of 161°.20 

Raj et al. reported advancing WCA of monolayer graphene on SiO2 substrate of ca. 90°, similar 

to that of graphite.27 

Despite the dominant view that graphite is hydrophobic, a few studies have reported 

evidence of a much more hydrophilic surface with WCA of 35° - 65°.32-34, 77, 99, 100 In 1975, 

Schrader reported that WCA of exfoliated graphite was 35° ± 4° under an ultrahigh vacuum 

(UHV) environment and ion bombardment of the surface decreased WCA to 0°.33 Subsequent 

experiments indicated that ion bombardment damaged the graphite surface; however, the 35° 

WCA was determined on a surface exposed only to bakeout temperature up to 750°C under 

UHV and the surface was verified by low energy electron diffraction to be clean and not 

damaged.33, 34 Schrader proposed that the “hydrophobicity” reported is due to the airborne 

hydrocarbon contamination.33 Additionally, Tadros et al. used the captive bubble method and 

reported advancing WCA of 63° - 65° on pyrolytic high-density isotropic carbon.32 Luna et al. 

also found WCA of ca. 30° on graphite utilizing scanning force microscopy techniques.100 Cao et 

al. discovered that water on HOPG adsorbs as nanodrops with WCA of less than 10° under 
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microscopic conditions.99  Very recently, three reports also suggested contamination of graphitic 

surfaces by airborne hydrocarbons.66, 77, 101 Li et al. reported WCA of HOPG to be 64.4° 

immediately after exfoliation,77 which again suggests that graphite is intrinsically more 

hydrophilic than previously believed. Using Kelvin probe microscopy and mass spectroscopy, 

Gomez-Herrero et al. showed that airborne hydrocarbons adsorb onto graphitic surfaces.101  

Furthermore, Wu and Aluru used MD simulations to model hydrocarbon contamination by 

ethane molecules and showed that graphitic surfaces are intrinsically hydrophilic and become 

hydrophobic after hydrocarbon contamination66. 

The concept that graphite is (mildly) hydrophilic has not been accepted by the scientific 

community; one of the reasons is likely due to the issues of earlier experimental procedures.33 

For example, a report has directly challenged the validity of Schrader’s results 92 since Schrader 

determined WCA in an UHV environment,33 which is known to result in lower WCA due to 

rapid water evaporation.102, 103  To address this issue, here we present a study focusing on 

temporal monitoring of exfoliated HOPG in ambient air by WCA and attenuated total 

reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), following the experimental 

procedure established in our previous work.77 

2.2 TIME EVOLUTION OF WCA AND HYDROCARBON ADSORPTION 

Static WCA measured on a freshly exfoliated (SPI-2) HOPG is shown in Figure 2a. Before 

exfoliation the WCA on HOPG exposed to air was 92.8° ± 2.7°.  Within 10 seconds after 

exfoliation the static WCA was measured to be 64.4° ± 2.9° and increased within the next ~15 

min to ca. 90° which remained constant for 60 min.  After 7 days of exposure to air, the static 
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WCA recovered to 97.0° ± 1.8°. This trend was consistently observed although the rate of WCA 

increase would change with lab location, HOPG sample, and time of year. 

ATR-FTIR was used to characterize the HOPG surface in order to identify the cause of 

WCA change.  The spectra indicate that hydrocarbon adsorption occurs when fresh HOPG is 

exposed to air. Shown in Figure 2b, peaks at 2850 cm-1 and 2930 cm-1 are observed on aged 

HOPG and are absent on freshly exfoliated HOPG.  These peaks correspond to symmetric and 

asymmetric stretching of the methylene group, respectively.104, 105 Presence of the methylene 

stretching peaks indicate hydrocarbon contamination of the surface. Since the initially fresh 

(clean) sample was exposed only to air during aging, the source of hydrocarbon contamination is 

expected to be airborne.33, 77, 106   

 

 

 
 

Figure 2.  WCA and ATR-FTIR of fresh and aged HOPG.  (a) Static WCA of exfoliated HOPG 
in air where the dotted line indicates exfoliation. (b) ATR-FTIR of aged and freshly exfoliated 
HOPG. s-CH2 at 2850 cm-1 indicates symmetric methylene stretching and as-CH2 at 2930 cm-1 

indicates asymmetric methylene stretching. 
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Ellipsometry was used to study the kinetics of hydrocarbon adsorption (details presented 

in Appendix A). Temporal in situ monitoring of exfoliated HOPG is shown in Figure 3a.  In 

ambient air, linear growth of an adsorbed hydrocarbon layer occurs within the first 30 minutes 

reaching a thickness ca. 0.45 nm and continues to slowly increase approaching 0.50 nm after 120 

minutes.  A previous report of organic deposition on SiO2 monitored by ellipsometry shows 

initial linear thickness increase followed by a significant decrease in adsorption kinetics, similar 

to our results on HOPG.105 Similar to WCA increase, this trend was consistently observed 

although the rate of increase could change with lab location, HOPG sample and time. When the 

WCA and ellipsometry tests were conducted on the same HOPG sample, in the same lab (room) 

and in the same day, the kinetics is quite similar, as shown in Figure 3b, indicating the WCA 

increase results from the airborne hydrocarbon contamination. 

To show that hydrocarbons do adsorb onto the graphite surface, freshly exfoliated HOPG 

was intentionally exposed to 1-octadecene vapor. Within 20 minutes, a hydrocarbon layer of ca. 

0.50 nm adsorbed onto the HOPG surface (Figure 3a).  The film thickness continues to increase 

to ca. 0.90 nm and remains constant after 80 minutes, indicating possible saturation of the 

exposed HOPG surface at the current conditions.  WCA of exfoliated HOPG exposed to a 

saturated 1-octadecene vapor exhibits kinetics similar to HOPG exposed to ambient air within 

the first 15 minutes and continues to increase approaching 104° after 24 hours. In comparison, 

HOPG aged in air for 7 days showed a WCA of 97.0° ± 1.8°.  These experiments provide further 

evidence that freshly exfoliated HOPG becomes contaminated by airborne hydrocarbons and the 

hydrophobic properties of HOPG are a consequence of adsorbed hydrocarbons. 
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Figure 3.  In situ ellipsometry of fresh HOPG.  (a) Ellipsometry of adsorbed hydrocarbon layer 
thickness on exfoliated HOPG after exposure to ambient air (blue) and 1-octadecene reservoir 

open to ambient air (red). (b) WCA and ellipsometry measurements of HOPG taken on the same 
sample, on the same day, and in the same lab.  The HOPG was exfoliated at time 0 before the 

first measurement. 

2.3 REMOVAL OF HYDROCARBON CONTAMINANTS 

Adsorbed hydrocarbons can be removed by ultra-high vacuum (UHV) treatment. To show this 

was the case, HOPG was exfoliated and exposed to ambient air for 2 weeks.  The sample was 

then placed into a UHV chamber (less than 1×10-9 torr) for 15 hours, after which the WCA 

decreased to 59° and recovered to ca.  85° after 10 minutes of exposure to ambient air (Figure 

4a).  The adsorbed hydrocarbons can also be removed by a brief UV/O3 treatment to recover the 

hydrophilicity of HOPG. In one experiment, HOPG was exfoliated and placed in a saturated 1-

octadecene environment for 1 hour before it was treated with UV/O3 for 5 minutes (Figure 4b).  

The WCA after 1-octadecene exposure was 101.2° ± 0.5°. WCA measured about 10 seconds 

after UV/O3 was 32° and increased to ca. 80° after 60 minutes.  These results indicate that 
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UV/O3 removes the original 1-octadecene hydrocarbon on HOPG and adsorption is reproducible 

when the UV/O3 cleaned HOPG is exposed to airborne hydrocarbons. 

We note that defects could form on the HOPG surface after UV/O3 exposure and may 

account for the much lower WCA observed here and also enhance hydrocarbon adsorption.107 To 

evaluate this possibility, micro-Raman spectra were taken to determine the effect of exfoliation 

and UV/O3 treatment on the surface quality of our HOPG. Spectra shown in Figure 5 indicate 

that high surface quality HOPG was maintained throughout our experiments.  The G and 2D 

peak intensity remain similar after UV/O3 treatment and the D peak at 1350 cm-1 is 

inconspicuous. Intensity ratio of the D peak to the G peak is 0.010.  It is important to note that 

Raman spectroscopy on HOPG is not surface sensitive: while the D peak presumably comes 

from only the top layer of graphene, the G peak will have contribution from many more sub-

layers. After correcting for this effect, the estimated surface defect density is less than (5.1 ± 

1.4)x1010 cm-2, or less than (1.3 ± 0.4)x10-5 defect per carbon atom. These results indicate that 

surface disorder was negligible108 and  that hydrocarbon adsorption can be reversed by UV/O3 

treatment. 

 

 



17 

 
 

Figure 4.  Removal of hydrocarbon contaminants.  (a) Static WCA of exfoliated HOPG exposed 
to ambient air for 2 weeks then ultra high vacuum (UHV) for 15 hours. (b) Static WCA of 
exfoliated HOPG exposed to UV/O3 for 5 min. Solid squares: exfoliated HOPG exposed to 

saturated 1-octadecene vapor for 1 hour then 5 min UV/O3 treatment. Open circles: exfoliated 
HOPG exposed to 5 min UV/O3 treatment. 

 

 

 

 
 

Figure 5.  Micro-Raman spectra of HOPG aged in ambient air for 2 hours, after 5 min UV/O3 
exposure, and after exfoliation. Data collected with a 30 second acquisition time. 
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2.4 INTRINSIC WCA OF GRAPHITE 

Our results show that the surface of freshly exfoliated HOPG is intrinsically more hydrophilic 

than previously believed and hydrocarbon adsorption results in surface contamination and 

hydrophobicity of HOPG.  We found that the WCA of HOPG was 64.4° ± 2.9° within 10 

seconds of exfoliation and increased to ca. 90° with aging time. Although previous work has 

suggested that hydrocarbon contamination could affect wettability of HOPG,33, 34, 77 our work is 

the first to provide direct evidence for the presence of such contamination and to correlate 

between wetting behavior and surface contamination of graphite. Our reported initial WCA on 

exfoliated HOPG of 64.4° is greater than the 35° value reported by Schrader,33 possibly caused 

by differences in experimental procedure.  Schrader measured WCA by introducing water vapor 

into an UHV chamber and using a cold finger to condense water and deliver it to the testing 

surface.33 It is known that WCA should be lower in UHV due to water evaporation.102, 103 

In contrast, our HOPG was exfoliated in ambient air and the first test was taken within 10 

seconds of exfoliation. Our ellipsometry data shows that the surface becomes saturated with a 

hydrocarbon film after ca. 30-90 min of air exposure. Assuming adsorption kinetics is linear 

immediately after exfoliation, we estimate the surface coverage of hydrocarbon was less than 

0.6% of the saturation coverage at 10 seconds after exfoliation, when the first WCA was taken. 

Therefore, our WCA data could reflect the intrinsic wettability of HOPG if the following two 

conditions can be excluded: (1) Within the first 10 seconds, the adsorption kinetics is nonlinear. 

(2) The 0.6% of the saturation coverage of adsorbed hydrocarbons could strongly affect WCA. 

Our results show that both UV/O3 and UHV remove hydrocarbon contaminants resulting 

in a hydrophilic HOPG surface.  UHV causes desorption of hydrocarbons from the HOPG 
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surface; whereas, UV/O3 treatment cleaves the C-C and C-H bonds of hydrocarbon into volatile 

components which are removed without further processing.33, 107  Both methods provide a more 

hydrophilic HOPG surface by removing hydrocarbons, yet UV/O3 treatment resulted in a WCA 

of ca. 30° (Figure 4b) while the WCA after UHV treatment was 59° (Figure 4a).  This difference 

could be explained by the hydrophilic moiety on the HOPG surface, which results from the 

chemical reaction between adsorbed hydrocarbons induced by UV/O3 treatment. 

2.4.1 Theoretical calculation 

Theoretical calculations were carried out to estimate the effect of a sub-nanometer thick 

hydrocarbon film on the wettability of HOPG. Our calculations assume that interactions between 

water and all substrates are van der Waals in nature and additive. We modeled graphite with a 

slab of 100 layers of graphene. Based on the WCA of clean graphite, 64.4°, and using the 

modified Young-Dupré equation,109, 110 we can calculate the interaction potential per unit area 

between a water drop and graphite following a previously reported procedure.111 From this 

potential, we can extract the van der Waals interaction parameter between one water molecule 

and one graphene layer. The calculation details can be found elsewhere.77 We carried out similar 

calculations to extract the van der Waals interaction parameter between one water molecule and 

one -CH2- using the experimental WCA on polyethylene (96o-105°),112-115 and crystal structure 

of polyethylene.116, 117 

The interaction potential per unit between one water molecule and one flat polyethylene 

film, 𝑤!", is given by: 
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𝑤!"(𝑧) =
!!"#
!!!

  Equation 1 

 

where (i) 𝜎 is the surface density of -CH2- units of single-crystal polyethylene with  𝜎 = 2/(𝑎 ∗

𝑏), where a =4.93 Å and b = 2.55 Å are the lattice constants of polyethylene,117 (ii) z is the 

shortest distance between water and polyethylene surface, and (iii) A is the van der Waals 

interaction parameter between one water molecule and one -CH2- group. 

For a water drop placed on an infinitely large polyethylene film, the total interaction 

potential per unit area between bulk water and N-layer polyethylene film, Φ!"#, is given by: 

 

Φ!"# = 𝜌 𝑧 𝑤!" 𝑧 𝑑𝑧
!
!! !!! !

!
!!!   Equation 2 

 

where 𝜌 𝑧  is the water molecule number density and satisfies Boltzmann distribution, 𝛿 is the 

shortest distance between water and polyethylene film (3.25 Å),118 and d is the interlayer 

distance between stacked polyethylene layers (3.7 Å).117 Using the literature reported WCA of 

polyethylene film (96°-105°),112-115 we calculated Φ!"# from the modified Young Dupré 

equation: 

 

𝛾 1+ cos𝜃 = −Φ!"#   Equation 3 

 

where γ is the surface tension of water (72.8 mJ/m2), and θ is the WCA. By fitting the calculated 

ΦNCL to Equation 2, the related van der Waals interaction parameter (A) can be determined to be 

18.96, 18.39, 17.80, 17.18 eV/Å6, corresponding to WCA of 96°,112 99°,113 102°,115 105°,114 

respectively. 
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With these two van der Waals interaction parameters, we calculated the interaction 

potential per unit area between a water drop and graphite contaminated by a thin layer of -CH2-. 

We introduced N-layer stacked polyethylene chains between the HOPG surface and water drop. 

To simplify the calculation, we define the layers of HOPG to be 100 and consider the total 

interaction potential between bulk water and the entire polyethylene covered HOPG 

surface,  Φ!"!#$, to be given by: 

 

Φ!"!#$ = Φ!"#$%   +   Φ!"# =

𝜌 𝑧 𝑤!" 𝑧 𝑑𝑧
!
!"#! !!! ∗!"

!""
!!! + 𝜌 𝑧 𝑤!"# 𝑧 𝑑𝑧

!
!"#! !!! ∗!"#

!
!!!  Equation 4 

 

where (i) 𝜌 𝑧  = 𝜌L0 exp[-𝑤!"!#$ 𝑧 /kBT], (ii) 𝑤!"!#$ 𝑧  = 𝑤!" 𝑧  + 𝑤!"# 𝑧 , (iii) 𝛿HL = 𝛿CL  + 

(N-1) * dNC +𝛿HC, (iv) 𝛿HC (3.7 Å) is the equilibrium contact separation between top layer of 

HOPG and bottom layer of polyethylene film,119 and (v) 𝛿CL (3.25 Å),118 dH (3.35 Å), and dNC 

(3.7 Å)117 is the shortest distance between water and polyethylene film, the interlayer distance 

between HOPG layers, and crystalline polyethylene layers, respectively. Combining with the 

modified Young-Dupré equation, the water contact angle (θ) on polyethylene covered HOPG 

surface was calculated as a function of number of polyethylene layers. Finally, we converted the 

calculated potential to WCA using the modified Young-Dupré equation.   

The calculation results are shown in Figure 6.  Theoretical model of WCA on 

polyethylene (PE) where the WCA on HOPG increases from 64.4° to 96-105° as the graphite 

surface becomes covered with an increasingly thick film of -CH2-.  Interestingly, only 2 

monolayers (~7 Å) of -CH2- are enough to induce this substantial WCA increase. Our 

experimental data shows a WCA of ca. 90° for a HOPG surface covered with a 0.45 nm thick of 
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airborne hydrocarbon contamination layer; in the case of 1-octadecene contaminated HOPG, a 

0.9 nm thick hydrocarbon layer results in WCA of 101°.  Both results are in excellent agreement 

with our theoretical estimation (see Figure 2a and Figure 3a). 

 

 

 
 

Figure 6.  Theoretical model of WCA on polyethylene (PE).  (a) Calculated WCA as a function 
of N layers of –CH2– on HOPG surface at different polyethylene (PE) WCAs.  The red circle is 
the experimental WCA of HOPG after 1 hour exposure to ambient air.  The blue triangle is the 

experimental WCA of HOPG at saturated conditions after 1-octadecene exposure.  (b) Schematic 
of model used to determine the interactions between a water drop and HOPG.  “C-H layer” refers 

to -CH2- hydrocarbon contamination. 

2.5 CONCLUSIONS 

In conclusion, we presented a detailed study on the wetting properties of HOPG exfoliated in air. 

Our results show that adsorbed airborne hydrocarbon has a profound impact on the wettability of 

graphite and indicate that a clean HOPG surface is intrinsically hydrophilic with a WCA of 64.4° 

± 2.9°. We provide direct experimental evidence and theoretical justification that the previously 
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reported hydrophobic behavior of HOPG is due to hydrocarbon contamination. Our finding is in 

line with recent reports49, 50, 52, 62 showing that electron transfer kinetics on the HOPG surface 

changes dramatically after exposure to the ambient environment, which is possibly due to the 

adsorption of the airborne contaminants. Given their widespread use in research and 

development, our results call for a reevaluation of the wetting and other fundamental surface 

properties of graphitic materials. 
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3.0  DETERMINING THE SURFACE ENERGY OF GRAPHENE** 

3.1 HISTORY OF GRAPHENE HYDROPHOBICITY 

Graphene exhibits interesting electrical, optical, mechanical, and chemical properties which 

make it a candidate material for many important applications, including transistors, sensors, 

transparent conductors, and clean energy devices.95, 120-124  Due to its atomic thinness, graphene 

must be bound to at least one substrate for most applications.  As a result, the adhesion between 

graphene and other materials is critical for device fabrication.23, 28, 125, 126 Since adhesion is 

largely dependent on surface energy, it is important to determine the surface energy of graphene. 

Moreover, surface energy is also critical to the adsorption process, which has been shown to 

affect the properties of graphene.127  

Although several research groups have conducted contact angle measurements on 

graphene, analysis was seldom extended to surface energy calculations.  Shin et al. studied 

epitaxial graphene grown on SiC and reported WCA on the graphene as 92°.28  Kim et al. 

reported WCA of CVD-grown graphene transferred to SiO2 as 90.4° and 93.8° for Ni-grown and 

Cu-grown graphene, respectively.128  Moreover, Rafiee et al. reported WCA of G/Cu to be 

86°.123  These results on single- and multi-layer graphene are generally consistent with 

                                                

** Reprinted with permission from Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, 
V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L. Study on the Surface Energy of Graphene by Contact Angle Measurements. 
Langmuir 2014, 30, 8598-8606.75  Copyright 2014 American Chemical Society. 
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hydrophobic WCA values of graphite.21, 23, 28, 29, 77  In 2013, Li et al. showed that WCA of CVD-

grown G/Cu tested within 10 seconds after synthesis was 44° and increased to 80° after 1 day 

exposure in ambient air.  The increase of hydrophobicity was attributed to the adsorption of 

airborne hydrocarbon contaminants onto the initially clean surface and this conclusion was 

supported by ATR-FTIR and x-ray photoelectron spectroscopy (XPS) experiments.77  A parallel 

study by Gomez-Herrero et al. also concluded that graphite is contaminated by hydrocarbons 

using Kelvin probe force microscopy and mass spectrometry techniques.101  Accordino  et al. 

used molecular dynamics simulations to show that the water density profile for graphene is 

consistent with a hydrophilic system.67 

Although WCA data provides valuable information on the wettability of a surface, many 

other surface properties are related to the surface free energy.  Surface energy (γ) is a key 

parameter characterizing a solid surface and its interaction with other materials.  It has been well 

recognized that this parameter is closely related to not only wettability but also other important 

properties at the surface interface, e.g., adhesion and friction.129, 130  Therefore, measuring the 

surface energy of graphene is important for both fundamental study and applications.131  

Although numerous studies on the electrical and optical properties of graphene have been 

reported in literature, to date only a few published reports have characterized the surface free 

energy of graphene.  Wang et al. produced graphene sheets through chemical exfoliation of a 

natural graphite flake and hydrazine conversion and then assembled graphene sheets into a film.  

They determined the surface energy of the graphene film by contact angle measurements using 

the Neumann model and concluded that surface energy of the graphene film and graphite was 

46.7 mJ/m2 and 54.8 mJ/m2, respectively.23  Based on the exfoliation experiments of graphite in 
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various solvents, Coleman et al. reported surface energy values of 65-90 mJ/m2 for graphene and 

graphite.132, 133   

Contact angle testing, schematically shown in Figure 7, is experimentally simpler than 

most other characterization methods.134, 135 Usually, several testing liquids with different polar 

and dispersive components are used for testing.136  Table 2 lists the polar and dispersive surface 

energy components of the four test liquids used in this study: water (W), diiodomethane (DIM), 

ethylene glycol (EG), and glycerol (G).125  Several models have been proposed to translate 

contact angle data to surface energy and the validity of these models is still a matter of debate.125, 

137  In this study, the surface free energy has been evaluated from contact angle data using the 

Neumann,138 Fowkes,139 and Owens-Wendt (extended Fowkes)129 models. 

 

 

 

 
Figure 7.  Schematic depicting the interfaces of a liquid drop on a solid surface.140 
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Table 2.  Polar and dispersive surface energy components of test liquids. 
 

 
γl  

(mJ/m2) 

γl
p 

 
(mJ/m2) 

γl
d 

 
(mJ/m2) 

Water 72.8 51.0 21.8 

Diiodomethane 50.8 0.0 50.8 

Ethylene glycol 48.0 19.0 29.0 

Glycerol 64.0 30.0 34.0 
 

3.2 SURFACE FREE ENERGY MODELS 

Calculating the surface free energy from contact angle measurements is a powerful technique for 

elucidating interfacial surface properties.  Thomas Young published An Essay on the Cohesion of 

Fluids in 1805 which related wettability to solid surface tension.141  Young’s equation states that 

solid surface energy (γs or γsv) is related to the solid-liquid surface energy (γsl), liquid surface 

energy (γl or γlv), and contact angle (θ): 

 

𝛾! = 𝛾!" + 𝛾! cos𝜃  Equation 5 

 

Liquid surface tension (γl) is easily evaluated using a tensiometer and reliable data can be 

found in literature for nearly every test liquid.  The contact angle (θ) is evaluated as shown in 

Figure 7.  This leaves two unknown quantities: γs and γsl.  There is no experimental method to 

directly evaluate γs and γsl, thus several models have been developed which solve for γsl then 
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allow γs to be calculated by Equation 5.  Further details can be found in several literature 

reviews.137, 142-145 

Kwok and Neumann presented general guidelines for calculating surface energy from 

contact angle data:146 

 

1. Assume Young’s equation is valid. 
2. Only pure liquids are to be used, no mixtures or surfactants. 
3. No chemical or physical reactions occurring.  γsv, γsl, and γlv are assumed to be 

constant during measurement. 
4. Surface tension of test liquid must be greater than surface energy of solid, else 

liquid will completely spread. 
5. γs is assumed to remain constant and independent of test liquid. 

 

The solid surface must be inert to the test liquids and not absorptive.  A variety of test 

liquids with a wide range of surface tension values should be used to obtain robust results; 

calculation results can be influenced by the choice of test liquids.137  This issue can be mitigated 

by directly comparing only data collected using (a) the same test liquids and (b) calculated using 

the same model, thus illustrating the importance of considering multiple models and a breadth of 

liquids when calculating surface energy.  The objective of this study was not to determine 

validity of the models, which has been a matter of debate for decades.  Instead, the intention is to 

utilize commonly accepted models, estimate surface energy of graphitic samples, and understand 

key factors controlling surface energy. 

In the current investigation, three models – Neumann,138 Fowkes,139 and Owens-Wendt 

(extended Fowkes),129 – were used to calculate surface energy of graphene from contact angle 

data. The Fowkes and Owen-Wendt models allow for dissociation of the total surface energy into 

polar and non-polar (dispersive) components which provides further insight into wetting 



29 

behaviour.129, 139  There is no scientific preference of one model over another as each is based on 

different underlying assumptions. 

3.2.1 Equation of state 

The equation of state approach was conceptualized by the French chemist Marcellin Berthelot†† 

in the late 1800s and describes γsl as being dependent on properties of both the solid and 

liquid.148  A consequence of this approach is that surface tension is evaluated as a single 

parameter and can not be dissociated into individual components: 

 

𝐹 = 𝛾!, 𝛾! , 𝛾!" = 0  Equation 6 

 

Berthelot postulated that the work of interfacial adhesion (Wsl) is equal to the geometric mean of 

the work of solid cohesion (Ws) and the work of liquid cohesion (Wl): 

 

𝑊!" = 𝑊!𝑊!  Equation 7 

 

French chemists Anthanase Dupré and Paul Dupré introduced the Dupré equation in 1869 

which relates Wsl and surface tension:149 

 

                                                

†† Marcellin Berthelot was a prominent French chemist during the middle and late 1800s.  He conducted 
many experiments investigating the concepts of chemistry and the relationships between work, heat, and chemical 
reactions.  He developed many theories explaining the state of chemical reactions during a time when not much 
about chemistry was properly understood.  He was awarded the Copley Medal in 1900 “for his brilliant services to 
chemical science” and is considered to be one of the greatest chemists of all time.147 
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𝑊!" = 𝛾! + 𝛾! − 𝛾!"  Equation 8 

 

Berthelot then combined his equation (Equation 7) with the Dupré equation (Equation 8) to 

obtain what became known as the Berthelot hypothesis:   

 

𝛾!" = 𝛾! + 𝛾! − 2 𝛾!𝛾!  Equation 9 

 

The Berthelot hypothesis is the basis for equation of state models.  Agnes Pockels‡‡ deduced the 

Young-Dupré equation in 1914 by combining the Young and Dupré equations:153-155 

	
  

𝑊 = 𝛾! 1+ cos𝜃 	
   	
   Equation 10 

 

In 1957, Girifalco and Good redeveloped the Dupré equation by including a parameter 

describing interfacial interactions (Φ):156 

	
  

                                                

‡‡ Agnes Pockels was born in Venice, Italy in 1862 to native German parents.  The family moved to 
Brunswick, Germany in 1871 where Agnes would live, take care of her parents, study alongside her younger 
brother, Fritz, and conduct experiments in her home.  Pockels is notable for her contributions to surface science 
when the field was just emerging in the last 1800s.  Agnes had an “enthusiastic interest in the natural sciences, 
especially physics” in high school but was unable to formally continue her education because she was female.  
Fortunately, her brother Fritz also enjoyed physics and became a professor of theoretical physics at the University of 
Heidelberg.  He provided Agnes with German literature on surface science and she conducted her own experiments 
at home.  “What millions of women see every day without pleasure and are anxious to clean away, i.e., the greasy 
washing-up water, encouraged this girl to make observations and eventually to…scientific investigation,” wrote her 
sister-in-law.150, 151 

Agnes Pockels wrote about her observations and quantitative analysis to Lord Rayleigh, a prominent 
English physicist.  Rayleigh then wrote Nature and Pockel’s work was first published in 1891.152  She is ultimately 
credited with 15 publications from 1891 to 1933.  She invented the original design for what would become the 
Langmuir trough designed by Irving Langmuir.  An interesting connection, Agnes Pockels translated a textbook by 
George Howard Darwin, the son of Charles Darwin and father of Charles Galton (C.G.) Darwin (subject of another 
footnote on page 3).150, 151 
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𝛾!" = 𝛾! + 𝛾! − 2Φ 𝛾!𝛾!  Equation 11 

 

where Φ=1 when interactions of the same type occur (thus, reducing to the Berthelot hypothesis). 

3.2.1.1 Neumann model 

A.W. Neumann et al. developed the Neumann model in 1974 which uses equation of state theory 

to describe the contact angle of a liquid on a solid surface:138  

 

  Equation 12 

 

where γs is the solid surface energy, γl is the liquid surface tension, and β is a parameter related to 

the solid surface.  Rearrangement of Equation 12 results in: 

 

  Equation 13 

 

The liquid surface energy is known and plotting the left side of Equation 13 against γl will 

produce a parabolic curve.  A second-order polynomial regression of the plotted data allows for 

determination of β and γs. 

Neumann’s equation is by far the most common equation of state method for evaluating 

surface energy from contact angles.  The salient drawback is the ambiguity surrounding β.  There 

is no consensus on the meaning of β and it has been postulated to be either a material specific 
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constant or simply a fitting parameter with no physical meaning.137  For this study, β was 

allowed to be fit and there was no discernable correlation between β and the raw data (see 

Section 3.7 on page 45). 

The Neumann equation was empirically derived by an iterative process using contact 

angle data on various polymers.137, 157, 158  Previous researchers have reported significant 

differences between the Neumann and Owens-Wendt models when surface free energy is 20-50 

mJ/m2, a range encompassing myriad common materials.125, 137, 159-161 

3.2.2 Dissociation into components 

Alternative to the equation of state approach, surface energy can be considered the sum of many 

individual and independent components, each associated with specific interfacial interactions: 

	
  

𝛾! = 𝛾!! + 𝛾!
! + 𝛾!! + 𝛾!! + 𝛾!!" + 𝛾!∘	
   	
   Equation 14	
  

	
  

where γs
d, γs

p, γs
h, γs

i, γs
ab, and γs

o refer to the dispersive, polar, hydrogen bonding, induction, 

acid-base, and all remaining components, respectively.  This approach was first reported by 

Frederick Fowkes in 1963.  Fowkes originally focused only on the dispersive component (γs
d) 

and developed the Berthelot hypothesis (Equation 9) for dispersive (London) forces:139, 162-165 

	
  

𝛾!" = 𝛾! + 𝛾! − 2 𝛾!!   𝛾!! 	
   	
   Equation 15 
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Fowkes then simplified Equation 14 to formulate the Fowkes model which considers only the 

dispersive (γs
d) and polar (γs

p) components and assumes all others are negligible.139  Della Volpe 

et al. recently made an interesting case in support of the multicomponent approach.166, 167 

3.2.2.1 Fowkes model 

Fowkes surface energy theory combines the Young and Young-Dupree equation (Equation 5 and 

Equation 10) and dissociates liquid and solid surface energy into its polar and non-polar 

(dispersive) components:139  

 

!! !!!"#!
!

= 𝛾!!
!/!(𝛾!!)!/! + 𝛾!

! !/! 𝛾!
! !/!

  Equation 16 

 

𝛾! = 𝛾!! + 𝛾!
!  Equation 17 

 

where γl
d and γl

p are the liquid dispersive and polar components, respectively, and γs
d and γs

p are 

the solid dispersive and polar components, respectively.  First, a nonpolar aprotic liquid, e.g., 

diiodomethane (γl
p = 0), is tested and the dispersive component of the solid surface energy, γs

d, is 

computed from Equation 16.  Second, a polar protic liquid, e.g., water, is tested and using γs
d and 

Equation 16 the polar component of the solid surface energy, γs
p, is computed.   

Fowkes theory assumes that (1) polar and dispersive components are independent of each 

other, (2) the other components (γs
h, γs

i, γs
ab, and γs

o) of Equation 14 are negligible, and (3) the 

surface energy terms are additive and do not interact in any other way (Equation 17).  Generally, 

these assumptions hold up to scientific reasoning and are applicable to most surfaces 

encountered.137, 139, 165 
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3.2.2.2 Owens-Wendt model 

Owens and Wendt assumed that all components in Equation 14, aside from the dispersive part 

(γs
d), were part of the polar component (γs

p).  Thus, Equation 14 is reduced to:129  

 

𝛾! = 𝛾!! + 𝛾!
!  Equation 18 

 

where γs
p = γs

p(γs
p, γs

h, γs
i, γs

ab, γs
o).  This is fundamentally different from Fowkes’ assumption 

that γs
h, γs

i, γs
ab, and γs

o are negligible.  Owens and Wendt generalized Equation 15 to account for 

both polar and dispersive forces:129, 137 

 

𝛾!" = 𝛾! + 𝛾! − 2 𝛾!!𝛾!! − 2 𝛾!
!𝛾!

!  Equation 19 

 

Combining Young’s equation (Equation 5) with Equation 19 yields the Owens-Wendt equation: 

 

1+ 𝑐𝑜𝑠𝜃 = 2 𝛾!!
!!
!

!!
+ 2 𝛾!

! !!
!

!!
  Equation 20 

 

Rearranging Equation 20 provides a graphical solution that requires at least two test liquids: 

 

  Equation 21 

 

!! !"#$ + 1
2 !!!

!/! = !!!
!/! !!!

!/!

!!!
!/! + !!! !/!!
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Plotting the left side of Equation 21 against (γl
p)1/2/(γl

d)1/2 will produce a linear line and 

regression of the data allows for determination of γs
p as the square of the slope and γs

d as the 

square of the y-intercept.  As mentioned previously, better fitting results are obtained when more 

than two liquids are used and the liquid surface tensions vary significantly.129, 137  

3.2.3 Remarks on the surface energy models 

The equation of state and component theories of surface energy are based on fundamentally 

different concepts.  The equation of state theory assumes that the interfacial solid-liquid surface 

energy (γsl) is dependent of both solid and liquid properties; whereas, the component theory 

assumes that the solid and liquid properties are independent and surface energy components can 

be dissociated into separate contributions which are additive.  Both methods have scientific basis 

and researchers have concomitantly used both to describe solid surface free energy.  Robust 

results are necessary for comparing data of different researchers; therefore, four test liquids with 

a wide range of surface tension properties were chosen for this investigation. 

3.3 GRAPHENE CHARACTERIZATION 

Figure 8 shows the Raman spectrum of G/Cu immediately after synthesis. The intensity of 

disorder-induced Raman D-peak at 1350 cm-1 is very low, indicating that the graphene film has 

very few defects.  The peaks at 1595 and 2695 cm-1 are identified as G and 2D peaks, 

respectively, and their presence agrees well with previous G/Cu spectra.168, 169 The 2D peak 

shows a sharp single Lorentzian profile, which is a clear indication of monolayer graphene.168 
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SEM and AFM data show that the surface of G/Cu is rough due to the polycrystalline copper foil 

substrate; however, no apparent particulate contaminant was observed (see Supporting Info of 

Reference 75). In a previous study, G/Cu samples prepared using the same protocol as we used 

here showed a minimum graphene coverage of >99.9% on Cu foil.77 

 

 

 
 

Figure 8.  Raman spectrum of graphene on copper (G/Cu).  The small peak at 2330 cm-1 is due to 
atmospheric N2.170 
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3.4 CONTACT ANGLE AND SURFACE ENERGY 

Contact angle data on G/Cu for the four test liquids is plotted in Figure 9.  Average values for 

G/Cu and HOPG are shown in Table 3 and Table 4, respectively.  Figure 10 shows the 

polynomial fitting of data by Neumann model and Figure 11 shows the linear fitting of data by 

Owens-Wendt (extended Fowkes) model for G/Cu.  Table 5 lists the calculated total surface 

energy and β parameter for the Neumann model and the total surface energy and its polar and 

dispersive components for the Fowkes and Owens-Wendt models.  Table 6 lists surface energy 

results on HOPG. 

The surface energy of G/Cu is highest immediately after synthesis and decreases with 

exposure time in air.  The surface energy of fresh G/Cu tested within 30 seconds of being 

removed from the CVD chamber was 53.0 ± 4.3 mJ/m2 (Owens-Wendt), 62.2 ± 3.1 mJ/m2 

(Fowkes), and 63.8 ± 2.0 mJ/m2 (Neumann).  The surface energy decreased after aging in 

ambient air for 1 h and further decreased after 2 h of aging.  G/Cu exposed to ambient air for 24 

h showed the lowest surface energy of 37.5 ± 2.3 mJ/m2 (Owens-Wendt), 45.6 ± 3.9 mJ/m2 

(Fowkes), and 57.4 ± 2.1 mJ/m2 (Neumann). According to results from Owens-Wendt model, the 

polar component of surface energy (γs
p) is the greatest on fresh G/Cu and decreases by 75% after 

24 h exposure to air while the dispersive component (γs
d) decreases 13%.  The results from 

Fowkes model show a similar trend, indicating that G/Cu surface is initially mildly polar and 

becomes increasingly non-polar upon exposure to air.  Similar trends are seen for HOPG. 
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Figure 9.  Contact angle data of G/Cu for (a) water, (b) diiodomethane, (c) ethylene glycol, and 
(d) glycerol. All data were taken at the time indicated on the x-axis and are shifted horizontally 

in the figures for clarity. 
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Table 3.  Contact angle data on G/Cu presented as average (standard deviation) of tests for water, 
diiodomethane, ethylene glycol, and glycerol. 

 

 Water Diiodomethane Ethylene 
glycol Glycerol 

Fresh 50.8 (1.9) 20.0 (2.1) 38.8 (3.5) 40.4 (5.8) 

1h air 57.8 (2.1) 29.8 (2.5) 44.4 (1.7) 47.8 (2.7) 

2h air 59.5 (1.5) 33.1 (0.7) 49.0 (2.1) 54.2 (2.5) 

24h air 77.6 (2.9) 35.7 (1.2) 65.0 (2.8) 71.7 (2.7) 
 

 

 

Table 4.  Contact angle data on SPI-2 HOPG presented as average (standard deviation) of tests 
for water, diiodomethane, ethylene glycol, and glycerol. 

 

 Water Diiodomethane Ethylene 
glycol Glycerol 

Fresh 64.63 (2.89) 20.60 (1.55) 43.25 (1.41) 35.75 (0.57) 

1h air 89.09 (1.39) 24.75 (5.09) 44.15 (0.14) 51.95 (0.78) 

24h air 97.01 (1.81) 38.15 (1.06) 60.25 (5.87) 74.45 (4.88) 
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Figure 10.  Neumann model surface energy plots of G/Cu.  (a) Fresh, (b) 1 hour aged, (c) 2 hour 
aged, and (d) 24 hour aged G/Cu. 
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Figure 11.  Owens-Wendt (extended Fowkes) surface energy plots of G/Cu.  (a) Fresh, (b) 1 hour 
aged, (c) 2 hour aged, and (d) 24 hour aged G/Cu. 
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Table 5.  Surface free energy calculation results of G/Cu determined by Neumann, Fowkes, and 
Owens-Wendt models.  Data presented as average (standard deviation). 

 

G/Cu 
Neumann Fowkes Owens-Wendt 

β γs 
(mJ/m2) 

γs
p 

(mJ/m2) 
γs

d 
(mJ/m2) 

γs 
(mJ/m2) 

γs
p 

(mJ/m2) 
γs

d 
(mJ/m2) 

γs 
(mJ/m2) 

Fresh 0.00048138 
(0.00023229) 

 

63.8 
(2.0) 

14.4 
(1.7) 

47.8 
(1.4) 

62.2 
(3.1) 

13.9 
(2.0) 

39.1 
(2.4) 

53.0 
(4.3) 

1h aged 0.00049506 
(0.00014586) 

 

62.7 
(0.4) 

12.0 
(1.7) 

44.3 
(1.8) 

56.3 
(3.5) 

11.6 
(1.8) 

36.8 
(1.7) 

48.4 
(3.5) 

2h aged 0.00031820 
(0.00004533) 

 

64.1 
(0.5) 

11.6 
(1.6) 

42.9 
(0.7) 

54.5 
(2.3) 

11.0 
(1.7) 

34.6 
(1.0) 

45.6 
(2.7) 

24h aged 0.00051500 
(0.00023892) 

57.4 
(2.1) 

3.9 
(2.8) 

41.7 
(1.1) 

45.6 
(3.9) 

3.5 
(2.5) 

34.0 
(0.2) 

37.5 
(2.3) 

 

 

 

Table 6.  Surface free energy calculation results of SPI-2 HOPG determined by Neumann, 
Fowkes, and Owens-Wendt models.  Data presented as average (standard deviation). 
 

HOPG 
Neumann Fowkes Owens-Wendt 

β γs 
(mJ/m2) 

γs
p 

(mJ/m2) 
γs

d 
(mJ/m2) 

γs 
(mJ/m2) 

γs
p 

(mJ/m2) 
γs

d 
(mJ/m2) 

γs 
(mJ/m2) 

Fresh 0.00133270 
(0.00029094) 

 

60.23 
(0.86) 

7.79 
(2.69) 

47.60 
(0.47) 

55.40 
(3.16) 

8.10 
(2.49) 

43.50 
(1.62) 

51.60 
(0.87) 

1h aged 0.00209292 
(0.00011710) 

 

57.13 
(0.09) 

0.54 
(0.17) 

46.24 
(1.57) 

46.78 
(1.75) 

0.76 
(0.18) 

50.40 
(0.41) 

51.15 
(0.60) 

24h aged 0.00152093 
(0.00005682) 

55.00 
(0.25) 

0.10 
(0.14) 

40.53 
(0.52) 

40.63 
(0.66) 

0.12 
(0.17) 

41.33 
(1.33) 

41.45 
(1.50) 

 



43 

3.5 ELLIPSOMETRY CHARACTERIZATION 

Figure 12 shows the evolution of phase shift on freshly-synthesized G/Cu surface as a function 

of air exposure time. The data was collected from the same spot on the G/Cu surface. All the x-

values are shifted by 5 minutes to reflect transfer time of the sample from CVD chamber to 

ellipsometer stage.  The increasing trend of phase shift shows clear evidence that a thin layer of 

adsorbate formed on G/Cu surface during the first 2 h of air exposure. Interestingly, our previous 

work demonstrated a similar WCA increasing trend on fresh G/Cu surface due to airborne 

hydrocarbon contamination,77 further corroborating that the phase shift increase is induced by the 

adsorption of airborne hydrocarbons.   

 

 

 
 

Figure 12.  Ellipsometry correlations of G/Cu.  (a) Phase shift (δΔ) as a function of air exposure 
and (b) correlation between WCA (θ) and ellipsometry phase shift on fresh, 1h aged, and 2h 

aged G/Cu.  Accuracy of the phase shift (Δ) is 0.1%.171  The solid line is a linear fit of the data: 
y=-0.222*x+0.631 and r2=0.99. 
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3.6 EFFECT OF SURFACE ROUGHNESS 

The Wenzel equation allows comparison of the experimentally determined apparent CA (θapp) 

and the Young’s CA (θY) which is the contact angle determined on a smooth surface:172 

 

𝑐𝑜𝑠𝜃!"" = 𝑟  𝑐𝑜𝑠𝜃!  Equation 22 

 

𝑟 = !!
!!

    Equation 23 

 

where r is defined by the ratio of apparent surface area to projected surface area. The r value for 

our sample was determined by AFM to be in the range of 1.00095-1.0257 depending on scanning 

parameters.173, 174  Using the r value upper bound of 1.0257 and 50.9° measured WCA, the 

corresponding θY value was found to be 52.0° for fresh G/Cu. The difference between θapp and 

θY  in this case is only 1.1°. Noting that the uncertainty of WCA test is at least ±1°, we conclude 

that the error introduced by surface roughness is negligible on our G/Cu samples. 

In addition to the above analysis, we also prepared monolayer graphene on ultra-flat Cu 

substrates (flat G/Cu; r  = 1.00019) following a published procedure.175  The WCA of fresh flat 

G/Cu was 56.3° ± 3.9° and increased to 81.2° ± 1.4° after 24 h of air exposure.  The WCA on flat 

G/Cu is about 5° greater than that on G/Cu foil. Unfortunately, because the two types of samples 

were prepared and measured in different buildings, it is likely that local air quality contributes to 

the difference in the WCA;176 the 5° difference should be regarded as the upper limit of the 

roughness effect.  
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3.7 TIME DEPENDENCE 

The surface energy calculated by the Fowkes model matches the Neumann results very well on 

fresh graphene.  The difference between the two models on fresh and 24 h aged G/Cu is 3% and 

21%, respectively, and the Neumann model yields a higher surface energy.  The Owens-Wendt 

model extends upon the Fowkes model, makes different assumptions, and utilizes four test 

liquids with different surface energies; therefore, the Owens-Wendt model is expected to be less 

dependent upon chosen test liquids.  On fresh and 24 h aged G/Cu, the difference between the 

Fowkes and Owens-Wendt models are 15% and 18%, respectively, and the Fowkes model yields 

a higher surface energy.  Of all three models, Neumann’s provides the greatest γs and Owens-

Wendt’s provides the lowest γs for G/Cu and (generally) HOPG. 

The Neumann approach is based on equation of state theory and introduces the surface 

dependent β parameter.  Our calculations indicate that the Neumann surface energy is 

consistently higher than the Fowkes and Owens-Wendt models, although the Neumann and 

Fowkes results are similar on fresh G/Cu.  It has been proposed that β = 0.0001247 can be 

expressed as a universal constant that is independent of test solid.134  Neumann model fitting of 

our data indicates that β of G/Cu is ~4 times greater than the proposed universal constant and 

increases ~7% from fresh to aged surface.  Furthermore, the calculated surface energy was not 

sensitive to the value of β for graphene or HOPG in this study.  I.e., holding β constant and 

fitting the data did not affect calculated γs, which is consistent with previous reports.177, 178  

Surface energy of G/Cu always decreased with air exposure time regardless of the model used to 

calculate surface energy. This decrease can be attributed to hydrocarbon contamination. 
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Gomez-Herrero et al. reported aromatic hydrocarbon contamination on graphite by 

Kelvin probe force microscopy and suggested that the contaminants desorb near 50°C.101  

Additionally, Li et al. reported contamination of graphene surfaces by airborne hydrocarbons.77  

Once freshly synthesized G/Cu is exposed to ambient air, hydrocarbons adsorb onto the initially 

high energy surface and WCA concurrently decreases.  The hydrocarbon contamination theory 

was substantiated with ATR-FTIR and XPS experiments showing that hydrocarbon species were 

initially absent and appeared after exposure to air for a period of time.77 Moreover, recent 

theoretical work has suggested that graphitic surfaces are intrinsically hydrophilic.66, 67, 179  In the 

current work, spectroscopic ellipsometry results on fresh G/Cu further support this conclusion. 

As shown in Figure 12a, the phase shift change (δΔ) of fresh G/Cu sample increases with air 

exposure time, indicating adsorption of airborne hydrocarbon contaminants.180, 181  Putting all 

this information together, surface energy is highest on the fresh (uncontaminated) G/Cu surface 

and decreases as the G/Cu surface adsorbs airborne hydrocarbons.  Adsorbed contaminants 

“shield” the subjacent high energy surface and the sample appears hydrophobic. 

Change in WCA can be related to the extent of hydrocarbon contamination as shown in 

Figure 12b. The ellipsometric phase shift (Figure 12a) indicates hydrocarbon contamination of 

fresh G/Cu and its inverse linear relationship with cos(θ) of the WCA provides a correlation 

between extent of contamination and WCA measurement.  The linearity corroborates a Cassie-

Baxter relationship,125, 182 although the ellipsometry and WCA experiments were conducted in 

different laboratories, suggesting that a simple WCA measurement on G/Cu can indicate the 

degree of surface contamination. 

The surface energy of graphene reported by Coleman et al. is 65-90 mJ/m2,132 slightly 

higher than our results. However, since very different material system, experimental method and 
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theoretical model was involved in their work, direct comparison is difficult. In contrast, it makes 

more sense to compare our results to those of Wang et al. since they also determined the surface 

energy by contact angle testing using the Neumann model.23 They reported 46.7 mJ/m2 for the 

surface energy of graphene, which is significantly lower than 63.8 mJ/m2 as we found for the 

fresh G/Cu. There are three possible reasons for the difference. First, the hydrocarbon 

contamination was not considered at all in the work of Wang et al. and it is not clear how that 

will affect the calculated surface energy in their work. Second, our graphene sample is single-

layer CVD graphene on copper while their graphene is a “thick” film synthesized by the 

reduction of graphene oxide. As a result, the chemistry of the two graphene samples may not be 

exactly the same. Third, their analysis included a fifth test liquid, formamide, which will likely 

influence the calculated surface energy. 

3.8 ORIGIN OF INTRINSIC POLARITY 

According to results from both Fowkes model and Owen-Wendt model, the polar component of 

total surface energy (γs
p) of fresh G/Cu is significant, indicating G/Cu intrinsically has a mildly 

polar (hydrophilic) surface.  However, since it is generally accepted that, at atomic level, 

graphene has non-polar sp2 structure, why is G/Cu surface mildly polar?  We suggest that the 

mild polarity of G/Cu can be attributed to three factors: π-hydrogen bonding, surface defects, and 

partial wetting transparency.  

First, a few recent theoretical studies showed that the binding energy of a water molecule 

on graphite is higher than previously reported, mostly in the range of −10 kJ/mol to −13 

kJ/mol.183-185 Interestingly, these studies also concluded that the preferred orientation of an 
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adsorbed water molecule is with the hydrogen pointing to graphene, suggesting the presence of a 

H···π interaction,183-185 also known as π-hydrogen bonding. Such interaction has been previously 

observed for water interacting with small conjugated molecules, such as benzene, and could be 

significantly enhanced by the extended π system of graphene.183, 186 Although further 

investigation is required to fully understand this effect, π-hydrogen bonding could contribute to 

the observed intrinsic polarity of G/Cu. 

Second, the existence of defects on graphene and graphite surface could also contribute to 

its intrinsic polarity, as is evidenced theoretically187 and experimentally.28, 187 Also, such defect 

sites on graphene and graphite surfaces have been implicated as nucleation sites for adsorption of 

organic molecules due to their high surface energy.188 This hypothesis is supported by an 

increase of surface inhomogeneity indicated by increasing contact angle hysteresis upon 

exposure to air.77, 169 It is not clear at this point if these defects are chemical or topographical in 

nature. However, regardless of the exact nature, these defects with high surface energy could 

contribute to the observed polarity of G/Cu. 

Third, the copper substrate could contribute to the polarity as well. Since graphene is only 

one atom thick, the underlying substrate could interact with the liquid drop on top of the 

graphene and contribute to the observed surface energy of G/Cu.   Indeed, several recent reports 

did show that graphene is (at least partially) transparent regarding the interaction between water 

and the underlying substrate.77, 111, 123 Shih et al. showed partial wetting transparency on 

graphene through molecular dynamics (MD) simulations111 and WCA results of Li et al. 

supported the conclusion.77  Since copper is very hydrophilic,185 it can make the G/Cu surface 

more polar via partial transparency effect.  
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This transparency effect can be further elucidated by comparing the surface energy of 

G/Cu to that of HOPG, which can be considered as infinite layers of graphene.  Surface energies 

calculated by the Neumann, Fowkes, and Owens-Wendt models indicate that fresh HOPG 

exhibits surface energy of 60.2 ± 0.9 mJ/m2, 55.4 ± 3.2 mJ/m2, and 51.6 ± 0.9 mJ/m2, 

respectively. For both the Neumann and Owens-Wendt models, the surface energy of G/Cu is 

higher than HOPG. Moreover, according to Fowkes and Owens-Wendt models, the polar surface 

energy of G/Cu is higher than that of HOPG.  This observation is consistent with partial wetting 

transparency although we cannot exclude the possibility that the intrinsic defects of G/Cu and 

HOPG are slightly different and could play a role. Moreover, WCA data reported by Li et al. on 

G/Cu, G/Ni, and HOPG support the partial wetting transparency effect, which suggests that the 

substrate may contribute to graphene polarity.77 

Finally, it was recently reported that oxygen can intercalate between graphene and copper 

upon ambient air exposure.189, 190 Depending on the charge state of the oxygen, the intercalation 

could potentially increase the polarity of the G/Cu surface and contribute to the observed time 

evolution of WCA. Additional studies are needed to separate the effect of hydrocarbon 

contamination and oxygen intercalation on the wettability of supported graphene. 

3.9 CONCLUSIONS 

This study showed that the WCA of fresh G/Cu is 50.8° and its surface energy is 62.2 ± 3.1 

mJ/m2  (Fowkes), 53.0 ± 4.3 mJ/m2  (Owens− Wendt), and 63.8 ± 2.0 mJ/m2 (Neumann). Aging 

in air for 1 to 2 hours consequently increases contact angle and concurrently decreases surface 

energy. The initially high energy graphene attracts airborne hydrocarbons, which are adsorbed on 
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the graphene surface, “shield” polar surface sites, and decrease the overall surface energy. WCA 

of 24 h aged G/Cu is 77.6°, and its surface energy is 45.6 ± 3.9 mJ/m2  (Fowkes), 37.5 ± 2.3 

mJ/m2 (Owens−Wendt), and 57.4 ± 2.1 mJ/m2 (Neumann). The intrinsic mild polarity of G/Cu 

was explained in terms of high energy surface defects, π-hydrogen bonding, and partial wetting 

transparency. 
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4.0  QUANTIFYING THE DEFECT DENSITY OF GRAPHITE 

4.1 RAMAN SPECTROSCOPY 

Pioneering work by Tuinstra and Koenig identified the characteristic peaks in the Raman 

spectrum of graphite.191 They observed only a single peak at 1575 cm-1 for single crystal 

graphite; whereas, other graphitic materials had the same peak along with an additional peak at 

1355 cm-1.  The former peak (1575 cm-1) is most prominent and attributed to the E2g mode of the 

crystalline lattice.  The latter peak (1355 cm-1) appears upon introduction of defects to the C-C 

hexagonal lattice and is inversely proportional to crystallite size (La).191  Since 1970, this work 

has been greatly expanded upon by many researchers interested in better understanding the 

Raman signature of graphitic materials, primarily HOPG and diamond, then translating that 

knowledge to graphene, the 2D counterpart of graphite.   

The graphitic spectrum generally has three prominent peaks of interest: D, G, and 2D.  

The D peak originates from breathing modes of the six-carbon rings, the G peak originates from 

the E2g phonon at the Brillouin zone center, and the 2D peak is the second order of the D 

peak.192-194  Additionally, other satellite peaks such as the D’, D+D’ (2950 cm-1), and 2D’ (3240 

cm-1) peaks are often observed for carbon materials.  The D family of peaks originate from 

defects and require the presence of defects for activation (except for the 2D peak which is 

historically denoted as the second-order G’ peak and corresponds to the overtone of the D peak); 
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whereas, the G peak originates from phonon activity and is observed in all graphitic materials.195, 

196 Graphene and graphite provide a unique opportunity for elucidating the Raman response of 

sp2-hybridized carbon because experiments can be performed on the material from the bulk 

phase down to the atomic phase. 

Ferrari and Robertson provided an extensive investigation into the Raman spectra of 

carbon materials differentiating the signatures of sp2- and sp3-hybridized carbon.  Similar to the 

attributions by Tuinstra and Koenig, the D was attributed to breathing of the A1g symmetry 

phonons, i.e., breathing of the aromatic carbon rings.  The characteristic G peak was attributed to 

relative motion of sp2 carbon atoms.192 The attribution of the D peak to signify defects or 

disorder was further solidified through studies by Compagnini et al. where they investigated 

differences in the basal and edge planes of HOPG,197 Das et al. by comparing HOPG with single 

and multi layer graphene,193 and several other important studies which focused on the surfaces of 

HOPG and graphene.194, 198-202 

Defects are broadly defined as anything that disrupts the infinite lattice structure of a 

crystalline material.203  Point defects include vacancies, substitutional impurity atoms, self-

interstitial atoms, and interstitial impurity atoms as shown in Figure 13.  See Chapter 2 in 

Structure-Property Relations In Nonferrous Metals for a detailed discussion.204  Defects can be 

introduced intentionally to the graphite and graphene surface by irradiating with ions of a 

particular energy.  Collision events between the incident ions and carbon surface will damage the 

sp2 carbon lattice, effectively creating point defects with sp3-hybridized C-C bonding, vacancy-

like defects, and step edges.  The number and size of defects can be precisely tuned by 

controlling the ion (112Sn, 209Bi, Ar, Mn, etc.) along with its energy.194, 198, 199, 205  This level of 

control has allowed researchers to investigate the precise Raman response to a particular level of 
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defects, thus Raman provides the capability to quantitatively determine the defect density of 

graphitic surfaces.  This is because intensity of the G peak (IG) is independent of disorder while 

intensity of the D peak (ID) is directly proportional to disorder up to amporphization where the 

sp2 aromatic ring is destroyed.192, 194 Natural graphite and HOPG inherently have point defects on 

their surface while maintaining the sp2 C-C structure; therefore, the focus of this study is to 

elucidate the intrinsic defect density of graphitic samples using Raman spectroscopy. 

 

 

 
Figure 13.  Point defects that occur in a crystal lattice.  From Russell and Lee, Structure-
Property Relations In Nonferrous Metals.  Copyright © 2005 by John Wiley Sons, Inc.  

Reprinted by permission of John Wiley & Sons, Inc.204 
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4.1.1 Raman data acquisition and analysis 

Raman spectra of ZYA and PG were collected using a custom-built spectrometer with a 532 nm 

solid-state laser and 40x (NA: 0.60) optical objective.  Additional details can be found in 

Reference 77. The sample was cleaved either with tape (ZYA) or razor (PG) before data 

acquisition for 5 min.  Figure 14 shows the Raman spectra of ZYA and PG along with the 

corresponding peak attributions.  The G peak is most salient in the spectra of both materials, as 

expected for graphite.  Absence of the D’ peak for both samples indicates that the samples are of 

relatively low defect density because this peak would appear above a certain level of disorder.205  

The D peak is easily seen for PG but is absent for ZYA.  This indicates that a significantly 

greater level of Raman detectable defects (i.e., point defects, step edges, etc.) are present on PG. 

The 2D peak around 2700 cm-1 is observed for both samples, but with different line 

shapes.  The characteristic 2D peak for HOPG is observed in the spectra of ZYA with a sharp 

peak and a shoulder towards lower wavenumber.  Contrarily, the 2D peak for PG is a single 

sharp peak that is redshifted 13.5 cm-1 compared to ZYA.  The 2D peak lineshape classifies ZYA 

and PG as polycrystalline graphite.206  Lespade et al. showed that a single 2D peak occurs for 

turbostratic graphite (i.e., graphite without AB interlayer stacking).207  This result was confirmed 

through work by Ferrari et al. which demonstrated that the 2D peak lineshape is a function of the 

number of graphene layers approaching the lineshape of graphite at 5 layers.168 Further details of 

the 2D peak behaviour for HOPG and turbostratic graphite can be found in Raman Spectroscopy 

in Graphene Related Systems by Jorio et al.196  Single layer graphene has no interlayer coupling 

with adjacent graphene layers resulting in a single 2D peak; whereas, interlayer coupling in 

multilayer graphene resolves two 2D peaks (D1 and D2).208  Thus, the 2D peak lineshape of ZYA 

qualifies this sample as high quality graphite with ABAB graphene stacking.  The single 2D peak 
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of PG, along with its peak position nearer D2, indicates that PG is turbostratic graphite with less 

(or no) interlayer coupling.  This finding is corroborated by x-ray diffraction (Appendix B on 

page 143) which shows that interlayer spacing of PG is 3.43 Å which is larger than the typical 

3.35 Å interlayer spacing of HOPG.  ZYA has an interlayer spacing of 3.36 Å. 

 

 

 

Figure 14.  Raman spectra of graphite samples.  (a) Normalized spectra of ZYA of PG with peak 
attributions.  (b) ZYA spectrum with the D and G peaks each fit with a single Lorentzian and the 
2D peak fit with three Lorentzian curves.  (c) PG spectrum with the D, G, and 2D peaks each fit 

with a single Lorentzian.   
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Surface enhanced Raman scattering (SERS) is a Raman response which is a consequence 

of sample surface roughness among other factors.209, 210  In this study, SERS causes the raw 

intensity of the PG spectrum to be significantly greater than the ZYA spectrum, manifesting as 

greater peak intensity for PG because of its rougher surface.  Normalizing the data results in the 

spectrum of PG appearing smoother than the spectrum of ZYA although Raman data for both 

samples were taken on the same experimental setup using the same parameters.  The less noise 

apparent in the PG spectrum is due to SERS/normalizing and does not influence conclusions 

made from the spectra. 

4.1.2 Surface sensitivity 

Raman spectroscopy is not a surface sensitive technique and probes into the bulk of the sample, 

thus defects detected by Raman originate throughout the sample and not just at its surface.  

WCA, on the other hand, is a very surface sensitive technique and probes only the uppermost 

layers of the sample.211  Therefore, in order to quantify only surface defects through Raman 

spectroscopy and correlate to wettability, it is necessary to determine the contribution of surface 

defects compared to the total amount of Raman detectable defects.   

The Beer-Lambert equation can be used to calculate penetration depth of the Raman laser 

into graphite: 

 

!
!!
= e!!! = !

!
  Equation 24 

 



57 

where α=4πk/λ, k is the extinction coefficient of graphite (k=1.3), and λ is the laser wavelength 

(λ=532 nm).  The penetration depth (z) is calculated to be 32.6 nm which is equivalent to ca. 97 

graphene layers.  This means that Raman detectable defects originate from the uppermost 97 

graphene layers.  To estimate the ID/IG ratio of the uppermost layer of graphene, the following 

assumptions are made:76  

 

1. Only the top layer of graphene contributes to the D peak. 
2. Each graphene layer adsorbs 2.3% of incoming laser light as well as the Raman signal 

from the underlying graphene layers. 
3. The Raman emission from each graphene layer is proportional to the laser intensity it 

experiences. 
4. Exfoliation does not cause additional Raman detectable defects. 

 

With these assumptions, contribution of each graphene layer to the observed G peak 

intensity will decrease by (1-0.023)2 for each increase of layer depth; contribution from the top 

layer of graphene accounts for 4.5% of the observed G peak intensity.76  This is reflected in 

Table 7 where IG is 4.5% of the actual experimental peak height to correct for surface sensitivity. 

We assume that only the top layer of graphene contributes to the D peak because defects 

are concentrated on the sample surface and subjacent graphene layers are pristine and defect free.  

While this assumption may not perfectly describe the sample and subjacent graphene layers may 

have some defects, defects will be substantially restricted to the uppermost graphene layer.76, 192, 

212 
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4.1.3 Raman spectra peak fitting 

Ferrari and Robertson note the ambiguity of using peak heights or peak areas to calculate 

ID/IG.192  They state that the difference between using peak heights or areas is not significant for 

disordered graphite; the difference becomes salient for amorphous carbon where peak height 

correlates to aromatic ring distortion and peak width describes the order and dimension of 

aromatic clusters.  Moreover, peak height is typically used when Raman peaks are fit using the 

Breit-Wigner-Fano (BWF) and Lorentzian functions while peak area is used for Gaussian fits.192  

Cançado et al. also noted this distinction and used peak heights.194  Therefore, peak height will 

be used for subsequent analysis in accordance with this reasoning.  

The BWF and Lorentzian functions are commonly used to fit Raman spectra of carbon 

materials.  Typically the Lorentzian is used for the D and 2D peaks while BWF is used for the G 

peak due to its asymmetry in some materials.192  The G peak for ZYA and PG is very symmetric 

thus all three peaks (D, G, and 2D) were fit using the Lorentzian function.  A single Lorentzian 

was used for all peaks except for the 2D peak of ZYA which required deconvolution into three 

Lorentzian peaks.168, 192, 208  The D peak for ZYA was not resolved indicating very little to no 

Raman detectable defects.  Nonetheless, the peak center (xc=1362.0 cm-1) was held constant and 

the peak was fit to allow calculation of the defect density. 

Fitting results shown in Table 7 and Table 8 illustrate several differences between ZYA 

and PG.  FWHM of the G peak is 15 cm-1 for ZYA, corresponding to the literature value for 

HOPG, and 22 cm-1 for PG.192, 196, 213, 214  Since the G peak width is related to charge doping 

(e.g., intercalates, defects, etc.),215-217 PG is qualified as having more defects than ZYA based on 

(a) presence of the D peak, (b) wider G peak, and (c) redshifted 2D peak resolved as a single 
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peak.191, 206, 214  Moreover, Raman and XRD (Appendix B on page 143) spectra indicate that PG 

is turbostratic which is expected to have more defects than HOPG.  The intrinsic disorder in 

ZYA and PG is well within the first stage of disorder classification proposed by Ferrari et al. 

considering (a) the expected graphitic nature of the samples, (b) FWHM of the G peak, (c) 

position of the G peak, and (d) sharp well defined D, G, and 2D peaks.192  This validates the use 

of Equation 25, Equation 26, and Equation 27 to calculate defect density since these equations 

were derived from samples within the first stage of disorder (Section 4.1.4).194 

Equation 27 provides a quantitative method for determining the defects on the uppermost 

surface of graphite (1 graphene layer).  The top layer of graphene accounts for 4.5% of the 

observed G peak intensity (Section 4.1.2), thus IG was multiplied by 0.045 to obtain the 

contribution from the top layer of graphene and this is reflected in Table 7.   

 

 

Table 7.  Raman spectra fitting results of ZYA and PG.  Data fit using Lorentzian functions.  
Intensity (I) is determined from the peak height which is an extrinsic parameter of the Lorentzian 

function, thus there is no associated error.  I2D and FWHM2D for ZYA are taken from the 
cumulative fit of the three sub-peaks.  The fitting error of FWHMD for ZYA is unrealistically 

large because the peak was forced to fit yet no peak was conspicuously resolved. 
 

 ID IG I2D ID/IG IG/I2D FWHMD FWHMG FWHM2D 

ZYA 0.05 4.59 42.31 0.01090 0.11 0.42 
(± 889.00) 

15.34 
(± 0.79) 

40.02 
(± 5.58) 

PG 3.78 4.64 32.84 0.81506 0.14 34.17 
(± 1.64) 

22.34 
(± 0.69) 

44.04 
(± 5.75) 
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Table 8.  Raman spectra peak centers of ZYA and PG.  xc of the D peak for ZYA was held 
constant to allow fit to converge. 

 
 D G 2D1 2D2 2D3 

ZYA 1362.0 cm-1 1588.5 
(± 0.3) cm-1 

2680.3 
(± 1.3) cm-1 

2725.4 
(± 0.3) cm-1 

2727.7 
(± 6.7) cm-1 

PG 1362.0 
(± 0.4) cm-1 

1590.4 
(± 0.2) cm-1 -- 2707.7 

(± 2.0) cm-1 -- 

 

4.1.4 Calculating defect density 

There are several different types of defects that occur on graphite: primarily step edges, 

dislocations, cracks, vacancies, and point defects.192-194  Raman spectroscopy is very good at 

detecting point defects which are the smallest type of defect and unable to be detected by 

traditional AFM;194  whereas, well-defined zigzag edge defects are not detectable by Raman.200-

202  The ability to detect intrinsic point defects on graphite and characterize surface quality both 

quantitatively and qualitatively is invaluable for comparing samples of varying quality, 

especially for samples with relatively low defect density that have not been intentionally 

damaged. 

Cançado et al. showed that ID  ∝ (LL/Ld)2 where LL is the Raman laser spot size and Ld is 

the average distance between defects.194  This qualitatively makes sense because ID increases 

with defect density (i.e., less distance between defects means greater defect density and larger 

ID).  Additionally, IG is independent of defect density: IG ∝ LL
2.194 Combining these equations 

yields ID/IG ∝ 1/Ld
2.192, 194, 199  The distance between defects (Ld) can be calculated from ID/IG by 

Equation 25 and defect density can be calculated from Equation 26 where EL is the laser energy 

(λ=532 nm; EL=2.33 eV):194 
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L!! nm! = !"##  ±!"##
!!
!

!!
!!

!!
  Equation 25 

 

n! defects
cm! = !"!"

!  !!
!   Equation 26 

 

Therefore, combining Equation 25 and Equation 26 allows for the defect density to be 

calculated: 

 

n! defects
cm! = 7.4e9  ± 2.5e9   E!!

!!
!!

  Equation 27 

 

The previous equations (Equation 25, Equation 26, and Equation 27) were empirically 

determined for single layer graphene on SiO2, thus they are relevant only for the uppermost 

graphite surface (see Section 4.1.2 on page 56 for calculations pertaining to Raman sensitivity), 

which is also the area of interest in WCA analysis.194, 199  These equations have also been used to 

calculate defect density on HOPG.198 

An important consideration for graphite samples is the size of crystalline domains (i.e., 

crystallite size).214  Knight and White showed that the crystallite size (La) is inversely related to 

the ratio ID/IG (La ∝ 1/(ID/IG)) for 2.5 < La < 300 nm.191, 192, 206  The average crystallite size for 

ZYA and PG are unknown but La is proportional to the distance between defects (Ld) so one can 

roughly estimate that the actual crystalline domain is roughly equivalent to the distance between 

defects; therefore, La ∝ Ld ∝ 1/(ID/IG).   

Calculation results using Raman spectra are shown in Table 9.  Distance between defects 

is substantially larger for ZYA than PG, roughly 116 nm and 13 nm, respectively.  Defect 
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density of ZYA and PG is ca. 24 and 1778 defects/µm2.  Assuming that the domains are square, 

the domain area for ZYA and PG is calculated to be 13,380 nm2 and 179 nm2, respectively.  The 

domains are ca. 75x larger on ZYA.  Likewise, ZYA has substantially fewer defects per carbon 

atom than PG.  In fact, ZYA has about an order of magnitude less defects than CVD synthesized 

graphene on copper (see Table S1 of Reference 77): the defect density of G/Cu and ZYA is ca. 

4.5 x 1010 defects/cm2 and 0.24 x 1010 defects/cm2, respectively.77  For comparison, SPI-2 has 

5.1 x 1010 defects/cm2 and less than 13 x 10-6 defects/carbon atom, which is a greater defect 

density than ZYA.76 

Interestingly, tip-enhanced Raman spectroscopy (TERS) can be used to probe individual 

point defects on graphitic surfaces.  This technique can be used to directly elucidate distance 

between defects (Ld).218  Raman spectroscopy has also been shown to be useful in analyzing 

defects on MoS2.219  Using Raman, Cho et al. showed that initial defects on graphene field effect 

transistors (FETs) substantially influence its electronic properties and decreasing surface defects 

is critical for improving device performance.220  Further information on Raman characterization 

of graphene defects can be found in a 2015 review by Beams, Cançado, and Novotny.221  

Scanning tunneling microscopy (STM) may be an alternative technique for imaging point defects 

in graphite in order to verify Raman data.222-224 

Using the defect density in Table 9, percentage of defects on the graphite surface can be 

calculated assuming that defects are circular with radius of 73 pm.  These calculations are 

discussed in detail in Section 5.3.2 (page 104) pertaining to the Cassie-Baxter model.  

Interestingly, the defect density of both graphite samples is extremely low:  ZYA and PG have 

defect density of 0.00004% and 0.00298%, respectively (rd = 73 pm).  Considering that PG is 
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low quality graphite and ZYA is high quality graphite, it is reasonable to expect PG to have more 

defects. 

 

 

Table 9.  Defect calculations for graphite samples.  Ld is the distance between defects and nd is 
the defect density.  Domain size is calculated assuming the defect free area is a square.  The 

number density of carbon atoms is 3.85 x 1015/cm2. 
 

 Ld 
(nm) 

Defect Density 
nd (defects/µm2) 

Domain area: La 
(nm2) 

Defects per 
carbon atom 

(x10-6) 

ZYA 116 
(± 16) 

24 
(± 16) 

13,380 
(± 3778) 

0.6 
(± 0.4) 

PG 13 
(± 2) 

1778 
(± 1187) 

179 
(± 51) 

46.2 
(± 30.8) 

 

 

Diameter of the Raman laser spot can be calculated by Equation 28: 

 

laser  spot  diameter = 1.22   !
!"

  Equation 28 

 

where λ is laser wavelength (532 nm) and NA is the numerical aperture of the optical objective 

(0.60).225  Therefore, the laser spot diameter is 1.08 µm and the spot area is 0.92 µm2, assuming a 

circular spot.  Knowing the laser spot area and the defect density, the number of defects detected 

by the Raman experiment can be calculated:  
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!.!"  !!!  !"#$%  !"#!
!",!"#  !"!  !"#"$%  !"##  !"#!

!"""!!"!

!!!!! = 69  defects  on  ZYA  Equation 29 

 

!.!"  !!!  !"#$%  !"#!
!"#  !"!  !"#"$%  !"##  !"#!

!"""!!"!

!!!!! = 5,140  defects  on  PG  Equation 30 

 

The Raman laser detects ca. 69 and 5,140 defects on ZYA and PG, respectively.  These 

values are lower limit estimates because Equation 28 is valid when the aperture and laser are 

equal in diameter.  Our Raman setup uses a laser diameter smaller than the back aperture 

diameter, thus the actual laser spot size incident on the sample is larger than that calculated by 

Equation 28.  Nonetheless, the number of defects are proportional to laser spot size and PG has 

significantly more surface defects than ZYA. 

AFM images (Figure 15 on page 70) of ZYA show that the surface is primarily smooth 

basal plane with few line defects (i.e., edges or ridges between basal planes; essentially a 

graphene step edge).  The lack of D peak for ZYA indicates that these defects are either not 

resolvable by Raman or the Raman laser does not contact enough defects because ZYA is 

primarily pristine basal plane.  In fact, the latter is most likely because the Raman laser detected 

ca. 69 defects on ZYA.  Contrarily, AFM images of PG show a bubbly surface without any well 

defined step edges; however, defects are clearly observed in the spectrum and the laser detected 

ca. 5,140 defects on PG. 

Pollard et al. presented an alternative method of relating ID/IG to the defect density: 

 

!!
!!
= C!

!!
!!!!

!

!!
!!!!!

! e!!!!
! !!

! − e!! !!
!!!!

! !!
!

   Equation 31 
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where CA ≈ 160/EL
4, rs is the lateral radius of the vacancy defect, Lσ is the relaxation length 

which equals 2.4 ± 0.6 nm, and rA=rs+Lσ.205  The vacancy defect radius can be determined by 

scanning tunneling microscopy (STM) and is 0.6 ± 0.1 nm for Mn+ ion bombardment.  While 

ZYA and PG are expected to have little to no vacancy defects, Equation 31 can still be used to 

roughly estimate LD and compare the value to that obtained by Equation 25.  When ID/IG 

=0.01090 (Table 7), LD is calculated to be 116.2 nm, which perfectly matches the value 

calculated using Equation 25.  Decreasing the vacancy defect radius (rs) to 0.1 nm, which is 

reasonable for a sample that has undergone no ion bombardment, results in LD=98.7 nm.  

Qualitatively, this still provides a reasonable value for ZYA; therefore, the defect density 

calculated by Equation 27 matches well with alternative empirical equations currently available 

in literature. 

The D and D’ peaks are defect activated and their ratio can be used to elucidate the nature 

of defects.  Eckmann et al. showed that the ID/ID’ is ~13 for sp3 defects, ~7 for vacancy-like 

defects, and ~3.5 for graphitic boundaries.203  Using this relationship and Figure 14, both ZYA 

and PG have no D’ peak resolved, thus a very large ID/ID’ can be estimated, indicating that the 

defects on both graphitic samples are primarily point defects.  Moreover, lack of a D’ peak 

indicates that both samples have a relatively low intrinsic defect density since density of these 

Raman detectable defects are too low to be resolved.195  Analysis of Raman spectra 

unequivocally show that PG has many more defects and substantially smaller crystallite domains 

than ZYA.  This further qualifies Raman spectroscopy as a quick, easy, and nondestructive 

method for quantitatively and qualitatively determining defect density in graphite. 

Mallet-Ladeira et al. recently proposed an alternative method which is more accurate 

when La ≤ 10 nm.  Using coke and pyrocarbons, they showed that the relationships derived by 
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Tuinstra and Koenig fail at small crystallite sizes (≤ 10 nm).  Furthermore, they report that the 

relationship between EL and Raman signal becomes increasingly uncertain as crystallite size 

increases above 10 nm regardless of the model used.226  This caveat is important to note and may 

impact calculations; however, absent an improved model for large crystalline graphite, the 

currently available relationships between laser excitation energy and crystallite size were still 

used. 

4.1.5 Number of defects in WCA experiments 

The water drop forms a perfect hemisphere on the sample surface when its WCA is 90° and 

deviation increases as WCA either increases or decreases, yet assuming a hemisphere shape 

remains a valid approximation for estimating the area of water contacting the sample.  The 

volume of a hemisphere is calculated using V = !
!
  πr! and solving for radius (r) gives: 

r = 3V
2π

!
.  The volume of water used in experiments was 2 µL which gives a drop radius of 

0.99 mm.  Physically measuring the actual water drop diameter yields a value near 2 mm which 

is in agreement with the calculation. 

The area of the hemisphere base is analogous to the area of a circle, thus the area of the 

water drop contacting the sample is calculated using A=πr2 which gives an area of 3.05 mm2.  

Physically, this means that the area of water contacting the graphite surface is 3.05 mm2.  Using 

the defect density in Table 9, the calculated number of defects contacted by each water drop in 

the WCA experiments was 72.5 million and 5.4 billion for ZYA and PG, respectively: 
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Defects  on  aged  ZYA = 23.8  
defects
µμm!

1000!µμm!

1!mm! x  3.05  mm!  drop  area = 7.25e7  defects 
 

Equation 32 

 

The water drop is a hemisphere only when its contact angle is 90°.  The fresh and aged 

WCA for ZYA is 65.6° and 91.0°, respectively; whereas the fresh and aged WCA for PG is 47.4° 

and 91.0°, respectively (see Table 11 on page 78).  In this case, the water drop can be modeled as 

a spherical cap where Equation 33 is used when WCA < 60° and Equation 34 is used when 

WCA ≥ 60°.227  Equation 33 was used for the fresh PG surface and Equation 34 was used for the 

others; the water drop was assumed to be axially symmetric.228  Table 10 summarizes the 

calculated number of defects that the water drop contacts on the graphitic surface.  

Unsurprisingly, the water contacts more surface defects when it spreads (i.e., more hydrophilic 

fresh surface) compared to the contaminated hydrophobic surface.  Based solely on drop radius, 

water placed on fresh ZYA and PG contacts ca. 50% and 150% more defects than water placed 

on aged ZYA and PG, respectively. 

 

 

r!"#$%&!'(') =
!" !"# !"

! !!!"#! !!"#!!! !!!"#! !

!/!
  Equation 33 

 

r!"#$%&!%'() =
!!"!"#!!

! !!!"#! ! !!!"#! !!

!/!
  where  β = 180°− θ  Equation 34 
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Table 10.  Number of surface defects contacted by water drop.  A 2 µL water drop was used in 
experiments and calculations. 

 

 
Fresh surface Aged surface 

WCA r (mm) Defects C atoms 
(x1014) WCA r 

(mm) Defects C atoms 
(x1014) 

ZYA 65.4° 1.204 108 million 
(± 72 million) 1.8 91.0° 0.976 71 million 

(± 48 million) 1.2 

PG 48.0° 1.566 13.7 billion 
(± 9.2 billion) 3.0 91.0° 0.976 5.3 billion 

(±3.6 billion) 1.2 

 

4.2 AFM: SURFACE TOPOGRAPHY 

In order to determine the defect density of graphitic samples in these experiments, AFM was first 

utilized to replicate the process used by Patrick Unwin’s group at the University of Warwick.49, 

50, 229  While results were obtainable on ZYA, there was no method to discern defects on PG 

because the surface is substantially rougher than the length scale of defects: Ra for PG was 30.1 

nm (Figure 1) and a single graphene step edge is 0.335 nm, thus defects become washed out due 

to surface roughness. A roughness threshold of defects was postulated where roughness above 

e.g., 1 nm would be due to sample surface topography and roughness below 1 nm would be due 

to defects; however, this threshold would be arbitrary and not based on any sound reasoning.  

Furthermore, the necessary AFM resolution was not possible considering the sample surface 

topography.  Therefore, it was decided to forego AFM and base defect density calculations on 

Raman spectroscopy data.  This highlights the necessity for complimentary methods when 
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performing scientific analysis such as quantifying the quality of graphite via defects: certain 

defects detectable by Raman are not detectable by AFM and vice versa. 

Atomic force microscopy (AFM) was used to investigate topography of the graphite 

samples.  This data was used to first understand the influence of surface roughness on wettability 

and then to calculate defect density of ZYA.  Figure 15 shows AFM height and phase images for 

ZYA, PG, SPI-1, and SPI-2.  As mentioned in Section 1.2 (page 2), there are salient differences 

between the samples.  Phase images show that the surface is predominately graphite and other 

material, presumably contaminants, accumulate along the step edges and defect sites.42, 99 

4.2.1 Step edge density 

AFM is able to detect surface defects that cause a topographical change in the surface, thus step 

edges are predominately seen on smooth HOPG.  The step edges are clearly observed on ZYA, 

SPI-1, and SPI-2 in Figure 15.  ZYA is the highest quality sample and its surface is mostly basal 

plane with few edge defects; whereas the SPI samples have substantially more edge defects.  

This difference in number of step edges between ZYA and SPI samples has been previously 

reported by Patel et al.50 and AFM on SPI-1 presented by Ashraf et al. looks similar.230   PG has 

a bubbly surface – corroborating Raman and XRD data that this sample is turbostratic with poor 

ABAB layer stacking – and step edges are not clearly defined. 

 

 



70 

 
 
Figure 15.  AFM height and phase images of ZYA, PG, SPI-1, and SPI-2.  The scan size is 5x5 
µm for all images.  The height and phase color scale is 10 nm and 20° for ZYA, SPI-1, and SPI-
2.  The height and phase color scale is 500 nm and 50° for PG.  Resolution for ZYA and PG is 

256 pixels while the resolution for SPI-1 and SPI-2 is 512 pixels. 
 

 

Patel et al. calculated the step edge density of HOPG by measuring the length of defects 

and dividing by the total surface area:49, 50, 52 

 

𝑆𝑡𝑒𝑝  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = !"#$%!  !"  !"#"$%&
!"#!  !"  !"#$%&'

  Equation 35 

 

They calculated the mean step density of ZYA (GE Advanced Ceramics) to be 0.5 ± 0.1 

µm/µm2. Moreover, they showed that SPI-1 has nearly 3x as many step edges as ZYA, even 

though the samples are considered to be comparable (see Section 1.2 on page 2).18, 50  SPI-1 has a 

step density of 1.5 ± 0.2 µm/µm2 and SPI-2 has a step density of 2.1 ± 0.9 µm/µm2.  They also 

show that the basal surface of HOPG is electrochemically active and that the samples with fewer 

ZYA 

SPI-1 SPI-2 

PG 
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step edges (i.e., ZYA) have better electron transfer activity, behaviour that goes against prior 

evidence that the basal plane is inert.50-52  The aforementioned work by Patel et al.49-52 along with 

Figure 15 and Figure 16 clearly show that ZYA and SPI-1 are not of comparable quality in terms 

of surface topography and electrochemical activity: SPI-1 has more surface defects.  Therefore, 

further experimental work was performed on ZYA in an effort to elucidate the wettability of 

pristine sp2 carbon. 

The step edge density of freshly exfoliated ZYA was calculated using Equation 35 from 

20 different AFM scans.  The average step edge density was measured to be 0.78 ± 0.29 µm/µm2 

(range: 0.29 to 1.31 µm/µm2).  This matches well to the result of Patel et al.50  Similar analysis 

can not be performed for PG because of its surface topography, thus AFM is not applicable for 

quantitatively comparing the defect density of ZYA and PG.  Moreover, AFM does not detect 

point defects.  Including point defects in the analysis is important since they are the primary type 

of intrinsic defect within the graphite samples. 

4.2.2 Defects caused by exfoliation 

Graphite is extremely stable in air and does not degrade under ambient conditions.  Exfoliating 

the sample with adhesive tape causes strain which can cause artificially produced defects.46, 222  

A single exfoliation event is not expected to contribute substantially to sample degradation, thus 

the subjacent surface (or the freshly exfoliated surface) can be considered as pristine graphite 

with comparable defect density to neighboring layers.  Moreover, physical exfoliation is the only 

method to cleave the sample without introducing other chemicals as in liquid-phase exfoliation 

and sonication.  Uncertainty of sample quality arises once it has been exfoliated numerous times 
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to only a fraction of its original thickness.  A single exfoliation event may not change the surface 

but many exfoliation events (>100) can cause the surface to appear substantially different. 

It is generally advisable that an HOPG sample should be relatively new when used in 

experiments and should not be used once exfoliated “too many” times; however, the threshold is 

arbitrary.  Most researchers likely are not exfoliating the same sample hundreds of times but the 

nature of the experiments (in this dissertation) necessitate robust repeatability.  It is important to 

note that all experiments conducted by myself and my co-workers were taken on samples that 

were purchased new and once the sample got substantially thin it was replaced and no longer 

used for experiments.62, 70, 75-77  ZYA is the highest quality of HOPG and exfoliates nearly 

perfectly.  Visually, there were no flakes or exfoliation-induced defects noticeable and all 

experimental testing was performed only on the visually pristine basal surface.  Nevertheless, 

nanoscopic defects – both intrinsic and caused by exfoliation – are present on the graphite 

surface which are invisible to the eye. 

An interesting observation made recently was that the surface quality of ZYA changed 

considerably with the number of exfoliations. Figure 16 shows AFM scans of ZYA taken when 

the sample was new (exfoliated only several times) and when the sample was less than half of its 

original thickness (exfoliated >100 times).  There is a substantial difference between the surfaces 

and many more step edge defects can be identified on the surface which has been exfoliated 

many times.   

This result is important for several reasons.  First, there is direct evidence that exfoliating 

HOPG causes surface degradation.  This is not entirely surprising because physical exfoliation 

using adhesive tape causes curvature of the graphite layers and this strain results in an uneven 

exfoliation and the creation of non-intrinsic surface defects.46, 47  This behavior has been 



73 

documented indirectly when studying electron transfer kinetics on HOPG.46  Moreover, Chang 

and Bard used scanning tunneling microscopy (STM) to image the various features caused by 

exfoliation of HOPG, which can cover up to 10% of the surface.222  The influence that these 

exfoliation-induced defects have on wettability of graphite has not been explored. 

Second, the history of the sample can have implications on its performance, e.g., slower 

electron transfer as defect density increases,50 diminished electrochemical performance,52 poor 

performance as an ion beam detector,231 etc., thus history should be taken into account in 

experiments.  Third, in situ degradation of graphitic electrodes, sensors, scaffolds, etc. can 

diminish the device performance over time and result in eventual failure or reduced sensitivity.  

Taking degradation into consideration is essential for device reliability and Figure 16 

unequivocally shows that even the highest quality HOPG commercially available is subject to 

exfoliation induced surface degradation. 

4.2.3 Number of defects to carbon atoms 

Pertaining to this study, the WCA of ZYA was taken when the sample was new from the vendor 

(Figure 16a) and after being exfoliated >100 times (Figure 16b).  Both fresh and aged WCA 

were the same on both surfaces indicating that the increased amount of step edge defects, caused 

by exfoliation, does not have an impact on macroscale surface wettability.  The WCA on freshly 

exfoliated ZYA (a) new from the vendor and (b) after being exfoliated many times was 65.7° ± 

1.2° (N=7) and 65.6° ± 1.4° (N=22). 

This result is interesting because I initially hypothesized that the surface with more 

defects would have a lower WCA; however, this was not the case.  The most likely explanation 

takes into account the number of surface defects that the water drop contacts.  Raman data (Table 
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10 on page 68) shows that the drop contacts 108 million defects on freshly exfoliated ZYA 

which was tested new from the vendor.  Using the defects per carbon atom, the water drop 

contacted ca. 1.8 x 1014 carbon atoms for every defect.  Therefore, even with a seemingly large 

amount of defects, the water drop sees mostly C-C bonds and relatively few defects.  This 

remains true even if the number of defects doubles or triples as what may happen when ZYA is 

exfoliated many times; therefore, there is no macroscopic change to surface wettability although 

microscopic wetting may change at local defect sites (see Section 5.3 on page 98). 

Applying this result to a nanoscale water drop (opposed to a 2 µL drop) may lead to 

interesting behaviour as the relative number of defects per carbon atom increases.  In fact, there 

are reports showing that nanoscale wetting is more hydrophilic than macroscale wetting.42, 99, 232-

234  For graphite, this behaviour may be due to the greater concentration of hydrophilic defects 

relative to carbon atoms. 

 

 

 
 

Figure 16.  AFM height and phase images of ZYA.  (a) Sample was new from the vendor and 
only exfoliated a few times.  (b) The same sample after being exfoliated numerous times.  The 

number of exfoliation events was not counted. 

ZYA 
new 

ZYA 
old 

ZYA 
new 

ZYA 
old 
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5.0  INTRINSIC WATER WETTABILITY OF GRAPHITE 

5.1 STATIC WATER CONTACT ANGLE 

The water contact angle of freshly exfoliated graphite was evaluated using a 2 µL water drop.  1-

inch scotch tape was used to exfoliate the HOPG samples as detailed in our previous work.62, 70, 

75-77  PG was exfoliated by carefully cleaving with a razor blade.  Section 5.4 (page 114) 

discusses the effect that method of exfoliation – adhesive tape versus razor – has on the graphite 

surface.  WCA on fresh ZYA is the same whether the sample is exfoliated by adhesive tape or 

razor; therefore, method of exfoliation has no influence on the intrinsic WCA and data obtained 

by either method can be directly compared. 

WCA data on fresh HOPG and PG samples is shown in Figure 17 and Table 11.  The first 

observation is that all four HOPG samples, regardless of quality, have similar WCA on the fresh 

surface: average WCA of the four HOPG samples is 65.3° ± 1.3° (N=71).  This is analogous to 

WCA on freshly exfoliated SPI-2 HOPG previously reported by our group (see Section 2.4 on 

page 18).76, 77  Interestingly, wettability is not affected by HOPG quality even though the lower 

quality samples (ZYH and SPI-2) have more step edges, and likely more point defects, than the 

highest quality samples (ZYA and SPI-1).  Figure 1 (page 9) shows optical and AFM images of 

the graphite samples.  This supports the concept that all four HOPG samples are high quality and 

vary only in the number of step edges and size of crystallite domains.  Furthermore, sample 
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quality is quantified by mosaicity, which is a bulk parameter, while wetting is only sensitive to 

the sample surface.  This data shows that wetting is not a function of mosaicity and is affected by 

surface chemistry at the uppermost layers. 

WCA of freshly exfoliated PG is 47.4° ± 2.7° which is substantially lower than HOPG.  

Wenzel and Cassie-Baxter analysis was performed to elucidate the effects of surface roughness 

and chemical heterogeneity on the observed WCA.  The influence of surface defects was 

investigated to determine if the observed mild hydrophilicity of fresh graphite is intrinsic to sp2-

hybridized carbon or if the hydrophilic behaviour is due to surface defects.  The subsequent 

analysis seeks to clarify the relationship between defect density and water wettability. 

WCA for all of the graphite samples was ca. 90° after aging in ambient air for 1-2 days.  

Increase of WCA is attributed to adsorption of adventitious hydrocarbons in the surrounding air.  

The graphite surface is initially mildly hydrophilic with high surface energy and attracts 

hydrocarbons which adsorb onto the fresh surface, “shield” the graphite, and cause the sample to 

appear hydrophobic with a WCA about 90°.  Essentially, the WCA test is probing the 

hydrophobic hydrocarbon layer opposed to the subjacent graphite.71, 235  This mechanism is 

described in Section 2.2 (page 12) and in our previous work on graphene and HOPG.75-77 

Mangolini et al. used near-edge x-ray absorption fine structure (NEXAFS) spectroscopy 

and XPS to investigate the thickness and chemical nature of the adsorbed contamination layer on 

diamond and amorphous carbon.  They reported that the contaminant layer has a thickness of 0.6 

± 0.2 nm and consists of 19 ± 3% sp2 carbon.  Moreover, they report the ratio of adsorbed 

oxygen-to-carbon to be 0.11 ± 0.02.236  These findings are significant because they probe the 

contaminant layer and begin to elucidate the type of hydrocarbons adsorbing onto the graphite 

surface.  Our previous work showed the hydrocarbon thickness on HOPG to be ca. 0.50 nm 
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(Figure 3 on page 15) using ellipsometry which is similar to the 0.6 nm obtained by Mangolini.76, 

236  

This temporal dependence of WCA has been well documented since 2013 with numerous 

studies showing that fresh graphite, graphene, TMDC, and REO surfaces are intrinsically more 

hydrophilic than expected.62, 70, 71, 76  The concept of adventitious hydrocarbon contamination is 

well documented on metals35-40 but only recently has been applied to graphitic surfaces.  Table 

12 shows published data (as of March 31, 2016) which experimentally report that fresh graphite 

is mildly hydrophilic.  No researchers have yet published data refuting the intrinsic 

hydrophilicity of these materials since 2013.  The ongoing debate includes the wetting 

transparency effect for 2D materials,111, 123, 237-239 the cause of intrinsic mild hydrophilicity,76, 77 

and the degree in which hydrocarbon and water adsorption influence wettability.63, 64 

Importantly, this concept is becoming better understood as more researchers realize the 

importance of hydrocarbon contamination on graphitic surfaces and take into account exposure 

time in air when conducting experiments and fabricating devices.  Work by Tadros, Hu, and 

Adamson in 1974 was the first to suggest that isotropic carbon (polished, cleaned with toluene 

and acetone, then degassed for 10-15 hours at room temperature) had a WCA of 63°.32  

Subsequent studies reported by Malcolm Schrader published in 1975 and 1980 further show that 

the WCA of graphite may be 35°;33, 34 however, experimental concerns were presented as 

discussed in Section 2.1.92  Nevertheless, until 2013, only two reports published in 1999 and 

2011 mentioned the hydrophilicity of graphite although they did not explicitly study the 

wettability of the fresh surface.99, 100  Within the past two years, researchers have begun taking 

hydrocarbon contamination into consideration and the WCA of fresh surfaces is being used for 

computer simulations and modeling.  Most recently, Ramos-Alvarado et al. used the water 
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contact angle of clean graphitic carbon for calibrating the water-carbon interaction potential for 

molecular dynamic simulations investigating wetting transparency on silicon.240 

 

 

Figure 17.  Static WCA of freshly exfoliated graphite. 
 

 

Table 11.  Static WCA of fresh graphitic surface exfoliated with tape and razor.  N indicates 
number of tests. 

 

Tape Exfoliated Razor Exfoliated 

WCA N WCA N 

ZYA 65.6° ± 1.4° 22 66.4° ± 1.9° 20 

SPI-1 65.3° ± 1.8° 11 -- -- 

SPI-2 65.1° ± 1.1° 21 -- -- 

SPI-2 Ref. 76 64.4° ± 2.9° 7 -- -- 

ZYH 65.0° ± 1.2° 17 -- -- 

PG -- -- 47.4° ± 2.7° 45 
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Table 12.  Literature data on the intrinsic hydrophilicity of graphite.  Data published as of March 
31, 2016. 

 
Author Fresh WCA Sample Method Notes 

Tadros 197432 63° - 65° Pyrolytic carbon Captive bubble -- 

Schrader 197533 50°-80° a 

35° b Oriented graphite 
a, b Sessile drop 

b Cold finger 
a Air 

b Heated vacuum 

Schrader 198034 65° a 

38° 
ZYB graphite Sessile drop by cold 

finger 
a RT vacuum 

b Heated vacuum 

Luna 1999100 30° Graphite Scanning force 
microscopy Nanoscale drop 

Cao 201199 10° HOPG Nanodrops Graphene 
templating 

Li 201377 64.4° SPI-2 Sessile drop -- 

Ashraf 2014230 53° SPI-1 Sessile drop 45° cleaved in UHP 
argon 

Kozbial 201476 64.4° SPI-2 Sessile drop -- 

Kozbial 201475 64.6° SPI-2 Sessile drop -- 

Amadei 201464 68° HOPG Sessile drop -- 

Wei 2015241 61° ZYH 
(Mikro Masch) Sessile drop 

Edge surface is 
more hydrophilic 
than basal plane 

Marbou 2015242 
a 50° 
b 35° 

ZYB (Ted Pella) a, b Microscopic; ESEM 
a Fresh; vacuum 

b Heated vacuum 

Li 201562 65° SPI-2 Sessile drop -- 

Aria 2016243 69° HOPG Sessile drop Tested after 30 min 
in air 

 

  



80 

5.2 DYNAMIC WCA AND HYSTERESIS 

5.2.1 Theory and background of hysteresis 

Static contact angles, e.g., sessile drop, measure equilibrium between the solid surface and 

liquid.  Dynamic contact angles provide further information on surface wettability as the liquid 

drop advances onto an unwet surface (advancing water contact angle; WCAa) and recedes onto a 

wet surface (receding water contact angle; WCAr).   

Contact angle hysteresis (θH) is the difference between advancing and receding contact 

angle and has traditionally been used to describe the barrier to contact line movement, i.e., 

surface roughness and heterogeneity:244 

 

𝜃! = 𝜃! − 𝜃!  Equation 36 

 

𝑊𝐶𝐴! =𝑊𝐶𝐴! −𝑊𝐶𝐴!  Equation 37 

 

Hysteresis was originally thought to indicate roughness and chemical heterogeneity of a 

solid surface.  The Young’s contact angle (θY) was theorized to be the unobtainable contact angle 

on a perfectly smooth and homogeneous surface and any deviation from θY is due to roughness 

and chemical heterogeneity.29, 141, 172  The theory explains that a surface consisting of two (or 

more) individually homogeneous surfaces can be thought of as a composite surface of the two 

individual surfaces.  In other words, surface 1 having islands of surface 2 can be modeled as the 

average of the two surfaces: 
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𝜃!"#$"%&'( =
!
!

𝜃!!
!   Equation 38 

 

where θ1 is the contact angle of surface 1, θ2 is the contact angle of surface 2, etc.   

An ideal perfectly smooth homogeneous surface would have θH of 0° and θH increases 

with roughness and heterogeneity.29  While this theory of hysteresis has generally been well 

accepted, various phenomena surrounding the dynamics of advancing and receding contact angle 

behaviour have remained unsatisfactorily explained and several researchers have postulated 

alternative causes of hysteresis.245-248 

Substantial information is obtained from dynamic WCA measurements which allow for 

elucidation of wetting behaviour.  WCAa reflects the tendency of a previously unwet (dry) 

surface to attract water; whereas, WCAr reflects the tendency of the surface to remain wetted.  

The static WCA can theoretically take any value between WCAa and WCAr, although it often 

falls at a particular value that is repeatable for the same material (with the same amount of 

roughness and chemical heterogeneity).  A small difference between WCAs and WCAa (or 

WCAr) indicates that the surface is mostly uniform and wettability of the composite surface (e.g., 

basal plane and defects) is similar to the pristine surface.  Contrarily, a large difference between 

WCAs and WCAa (or WCAr) indicates that chemical heterogeneity (e.g., defects) has a salient 

impact on wettability.246, 248-252  The Wenzel and Cassie-Baxter models are used to help elucidate 

the influence of surface roughness and chemical heterogeneity on measuring the intrinsic WCA.  

This is discussed in Section 5.3 (page 98). 

Nearly all of the most recent work done to elucidate the causes of hysteresis have sought 

to explain phenomena surrounding superhydrophobic surfaces; therefore, they use 

micropatterned surfaces with a repetitive pillar array.251, 253-256  The pillars are typically on the 
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micron scale and range from a few to several microns in height, width, and spacing.  When a 

water drop is placed on this micropatterned surface, it will interact with a composite surface of 

(1) the pillars and (2) air pockets trapped between the pillars.  This situation has led researchers 

to propose alternative models – to the Wenzel and Cassie-Baxter models – in order to explain 

wetting behaviour on superhydrophobic surfaces.  The Wenzel model is discussed in Section 

5.3.1 (page 102) and the Cassie-Baxter model is discussed in Section 5.3.2 (page 104). 

Defects on graphite are different from micropatterned arrays in many ways.  The most 

salient difference is the size scale: defects are on the scale of nanometers (or fractions of a 

nanometer) whereas micropatterned pillars are micrometer sized (1000s of nanometers).  This 

creates questions surrounding the applicability of theory formulated using micropatterned 

surfaces.  Moreover, air pockets are very unlikely to reside between the graphite surface and 

liquid because the graphite surface (with defects) is significantly smoother than a micropatterned 

array of pillars.  This leaves the possibility that equations formulated for micropatterned pillar 

arrays are (a) not relevant for graphite, (b) relevant for graphite, or (c) need amended for 

graphite.  The subsequent analysis shows that currently available models – specifically the model 

proposed by Cassie and Baxter in 1944 – adequately describes wetting phenomena when contact 

line pinning is negligible due to low defect density; however, the model fails when pinning 

distorts the contact line. 

Larsen and Taboryski studied the behaviour of hysteresis on chemically heterogeneous 

surfaces and showed that the contact line is distorted by defects and behaviour of the advancing 

and receding contact angle is dependent on surface wetting compared to defect wetting.  Their 

2009 report investigated the wetting mechanism using a patterned hydrophilic substrate with 

hydrophobic defects (Figure 18).253  This situation is opposite that encountered on fresh graphite 
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(mildly hydrophilic surface with defects that are more hydrophilic) although the wetting 

mechanism remains similar for both situations.  A quick glance at Figure 18a shows that the 

water contact line is irregular and not symmetrical.  Hydrophobic pillars repel water while the 

hydrophilic substrate attracts water.  This creates competing interactions between water-substrate 

and water-pillars which manifest as pinning of the contact line.  Pinning is more clearly observed 

in Figure 18b where water advances onto the substrate between pillars but is pinned from 

advancing by the pillars.  This mechanism of pinning also occurs for hydrophilic defects on a  

more hydrophobic surface (e.g., graphite) and is critical for explaining wetting behaviour of 

chemically heterogeneous surfaces such as graphite. 

 

 

 

Figure 18.  Schematic of contact line pinning for a water drop on a hydrophilic surface with 
hydrophobic defects (circles).  Pinning of the contact line is conspicuously observed.  Adapted 

with permission from Larsen, S. T.; Taboryski, R. A Cassie-Like Law Using Triple Phase 
Boundary Line Fractions for Faceted Drops on Chemically Heterogeneous Surfaces. Langmuir 

2009, 25, 1282-1284.  Copyright 2009 American Chemical Society.253 
  

(a) (b) 



84 

Raj et al. followed up on this wetting behaviour and published a report on the mechanism 

of chemically heterogeneous wetting in 2012.  They showed that the contact line is distorted 

along defect sites and behaviour of the advancing and receding contact angle is dependent upon 

hydrophobicity/hydrophilicity of the surface compared to the defects.251  Results of their 

investigation are shown in Figure 19.  First, they compare the pinning theory to the Cassie-

Baxter model and show that ignoring pinning effects will cause the model to inadequately 

describe real wetting behaviour.  The lower left images depict contact line pinning of a receding 

drop on SiO2 with defects that are more hydrophilic than the substrate.251  The data shows that as 

the difference between defect and substrate hydrophobicity/hydrophilicity increase, the effect of 

pinning becomes more significant.  I.e., a slightly chemically heterogeneous will behave more 

like a homogeneous surface than a significantly chemically heterogeneous surface.251, 253 

In relation to the model, graphite can be considered to be mildly hydrophilic with defects 

that are more hydrophilic.  Thus it can be modeled as in Figure 19 (top right) where the white 

area is graphite and the black circles are defects.  The fraction of the contact line on hydrophilic 

defects (f) and the area fraction of hydrophilic defects (sf) can be calculated where D is the 

defect diameter and L is the pitch.251: 

 

𝐿 = 𝐿! + 2 𝑟𝑎𝑑𝑖𝑢𝑠  𝑜𝑓  𝑑𝑒𝑓𝑒𝑐𝑡   Equation 39 

 

𝑓 = !
!
  Equation 40 

 

𝑠𝑓 = !!!

!!!
  Equation 41 
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Figure 19.  Theory of contact angle hysteresis for a liquid on a hydrophobic surface with 
hydrophilic defects.  The upper left image shows the effect of contact line pinning at defect sites 
(circles) in relation to the Cassie-Baxter model which does not take pinning into consideration.  

The lower left shows time-lapse microscope images of a receding drop on SiO2 with more 
hydrophilic defects (black dots).  Pinning of the contact line is conspicuously observed.  The 

right image shows how the advancing and receding contact angle behaves as a function of defect 
density.  Adapted with permission from Raj, R.; Enright, R.; Zhu, Y.; Adera, S.; Wang, E. N. 

Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces. 
Langmuir 2012, 28, 15777-15788.  Copyright 2012 American Chemical Society.251 
 

 

The size of an individual defect is proportionally related to the surface defect density 

(i.e., larger defects increase defect density and decrease basal surface).  The radius of a single 

defect (rd) can be estimated as the covalent radius of a carbon atom (73 ± 2 pm), 257, 258 which is 

the lower limit of rd.  In order to not underestimate the size of point defects, rd will be estimated 

to be 1 nm (see Section 5.3.2.1 on page 109) and the defect diameter (D) equals 2 nm.  The pitch 

(L) can then be calculated using the distance between defects (Ld) from Raman (Table 9 on page 
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63); therefore, the area fraction of defects (sf) can be calculated and results are shown in Table 

13. 

 

 

Table 13.  Defect characterization for exfoliated ZYA and PG.  Data is based on the distance 
between defects (Ld) determined from the graphite Raman spectra and an assumption of the 

defect radius (rd). 
 

 ZYA PG 

L (nm) 118 15 

D (nm) 2 2 

f 0.0169 0.1333 

sf 0.0002 0.0140 
 

 

The graph in Figure 19 shows the relationship between advancing/receding WCA and 

area fraction of defects (sf).251  Both ZYA and PG are at the very leftmost part of the graph (even 

when defect size is quite large) indicating that defects have no effect on the advancing WCA and 

the receding WCA is near its maximum.  Thus, increasing the amount of defects – up to its 

packing limit – would have negligible effect on advancing WCA and cause receding WCA to 

decrease.   

Several studies unequivocally show that receding WCA is a manifestation of liquid 

pinning due to defects, i.e., the liquid prefers to remain in contact with hydrophilic defect sites 

instead of retract towards the hydrophobic surface, thus WCA decreases as water is withdrawn 

until intermolecular forces within the liquid are strong enough to overcome the hydrophilic 

attraction (and the contact line is pulled inward).  Conversely, advancing WCA is a manifestation 
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of liquid interaction with the interconnected hydrophobic surface, i.e., the liquid prefers to 

remain in contact with hydrophilic defects at its current position instead of advance onto the 

hydrophobic surface, thus contact angle increases as water is added until intermolecular forces 

within the liquid are strong enough to overcome the hydrophilic attraction (and the contact line is 

pushed outward).  Furthermore, the advancing contact angle is independent of defects until the 

packing maximum (sfmax) is reached.  Essentially, the advancing contact line mechanism is 

opposite the receding contact line mechanism and this behaviour reverses when the surface is 

hydrophilic and the defects are hydrophobic.27, 250, 251, 253, 259   

5.2.2 Current understanding of static and dynamic contact angles 

Theory of surface wetting has significantly advanced since Thomas Young first wrote about 

interfacial surface tension in 1805.141  While the concept of wetting may initially seem rather 

facile, its mechanism has proven complicated and a thorough understanding is still not available.  

Nevertheless, previous studies have provided valuable insight into wetting behaviour and recent 

technology advances have allowed fabrication of micropatterned arrays which has substantially 

advanced understanding of the mechanisms behind advancing and receding contact angles.  

Wetting is a function of the contact line as shown by Extrand260 and Gao and McCarthy;261 

therefore, the mechanism for static and advancing/receding contact angle will be analyzed based 

only on the contact line and not contact area (see Figure 24 on page 99). 

Advancing or receding contact angle can not be evaluated unless a static drop is first 

placed on the sample.  Therefore, analysis of wetting begins with phenomena of the static water 

drop followed by the advancing then receding water drop.  The sample surface is initially unwet 

(dry).  When the water drop is placed onto the surface, the water will contact both surface and 
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defects indiscriminately.  The water has no choice but to interact with both the surface and 

defects.  This situation will look like Figure 20a.  The experimentally observed WCA can now be 

defined as the thermodynamic equilibrium of water, defects, and substrate along the contact 

line.251, 253, 262 

Adding liquid to the water drop will cause WCA to increase while maintaining a constant 

diameter.  This is due to pinning of the contact line as shown in in Figure 20b.  For the case of 

graphite, the graphite surface restricts water from advancing further onto the hydrophobic 

surface.  As liquid is continually added to the drop, a critical point will be reached where 

advancing onto the hydrophobic surface is more energetically favorable than further increasing 

WCA.  At this advancing critical point, the drop is at quasi-equilibrium where further adding 

liquid will cause the drop to reconfigure.  This point is taken as θa, the WCA immediately before 

drop diameter increases.  This situation is depicted in Figure 20c. 

For a hydrophobic surface with hydrophilic defects, Raj et al. showed that advancing 

WCA is not a function of defect density up to the defect packing limit.251  This is consistent with 

the aforementioned mechanism since water maximizes its interaction with hydrophilic defects 

and minimizes its interaction with the hydrophobic surface.  Increasing defect density – up to its 

packing limit – will not cause WCAa to change because the advancing motion is restricted by the 

hydrophobic surface.  Therefore, WCAa represents the surface wettability sans defects. 
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Figure 20.  Advancing contact angle mechanism.  The upper figures are a side view and the 
lower figures are an overhead view.  The colored lines represent the water contact line. The black 
area represents the hydrophobic surface and the circles represent hydrophilic defects.  (a) Static 

water drop placed on the sample surface.  The contact line interacts with both surface and 
defects.  (b) Intermediate state: the drop begins to advance onto the defects as liquid is added.  

The contact line becomes pinned and contact angle increases.  (c) Advancing contact angle:  the 
contact line remains pinned by the hydrophobic surface and does not advance as water is added 

to the drop.  The drop advances onto the unwet surface once the advancing critical point is 
reached. 

 

 

Receding contact angle is exactly the opposite mechanism of advancing contact angle.  

Removing liquid from the water drop will cause the WCA to first decrease while maintaining a 

constant diameter.  This is due to pinning of the contact line by defect sites as shown in Figure 

21b.  For the case of graphite, hydrophilic defects restrict water from receding onto the 

hydrophobic graphite.  As liquid is continually removed from the drop, a critical point will be 

reached where receding onto the hydrophobic surface is more energetically favorable than 

further decreasing WCA.  At this receding critical point, the drop is at quasi-equilibrium where 

further removing liquid will cause the drop to reconfigure.  This point is taken as θr, the WCA 

immediately before drop diameter decreases.  This situation is depicted in Figure 21c.   

(a) (c) (b) 
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For a hydrophobic surface with hydrophilic defects, Raj et al. shows that receding WCA 

is a strong function of defect density up to the defect packing limit.251  This is consistent with the 

aforementioned theory since water maximizes its interaction with hydrophilic defects and 

minimizes its interaction with the hydrophobic surface.  Increasing defect density – up to its 

packing limit – will cause WCAr to asymptotically decrease because the receding motion is 

restricted by the hydrophilic defects.  Therefore, WCAr represents the defect wettability when 

defects are at or above their packing limit (which is not the case for fresh graphite). 

 

 

 

Figure 21.  Receding contact angle mechanism.  The upper figures are a side view and the lower 
figures are an overhead view.  The colored lines represent the water contact line. The black area 
represents the hydrophobic surface and the circles represent hydrophilic defects.  (a) Static water 
drop placed on the sample surface.  (b) Intermediate state: the drop begins to recede towards the 
defects as liquid is withdrawn.  The contact line becomes pinned and contact angle decreases.  

(c) Receding contact angle: the contact line remains pinned by hydrophilic defects and does not 
recede as water is withdrawn from the drop.  Pinning causes the tortuous contact line.  The drop 

recedes onto the wet surface once the receding critical point is reached. 
 

 

(a) (b) (c) 
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The aforementioned dynamic contact angle mechanisms allow for the wettability of sp2-

hybridized carbon to be evaluated based on the advancing WCA and the wettability of defects to 

be estimated based on the receding WCA.  Because defect density is very low (below its packing 

limit) for both ZYA and PG, the advancing WCA corresponds to WCA of the sample surface 

(i.e., sp2 carbon sans defects); whereas the receding WCA corresponds to the WCA of defects at 

the present defect density.  Increasing defect density (up to its packing limit) will asymptotically 

decrease receding WCA and reflect wettability of the defects as shown in Figure 19. 

5.2.3 Dynamic WCA on graphite 

Advancing WCA measurements were taken by recording continuous addition of water to a 

sessile drop (2 µL) for 5-8 seconds.  Receding WCA measurements were taken by withdrawing 

liquid from the same sessile drop for 8 seconds.  The moment when the contact angle is 

maximum (minimum) is taken as the advancing (receding) contact angle:  WCAa is the moment 

right before the drop width increases and WCAr is the moment right before the drop width 

decreases.  Advancing and receding WCA was taken on freshly exfoliated HOPG and PG 

samples to elucidate how wetting behaviour changes as the water drop is moved to a previously 

wet and unwet surface.  Figure 22 shows dynamic WCA data for the graphite samples and Figure 

23 shows hysteresis. The data is tabulated in Table 14. 
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Figure 22.  Dynamic WCA of freshly exfoliated graphite.  Data is tabulated in Table 14 and  
presented as average (± standard deviation). 

 

 

 

 

Figure 23.  Hysteresis of freshly exfoliated graphite.  Data presented as average (± standard 
deviation). 
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Table 14.  Dynamic WCA and hysteresis of graphite samples.  Data presented as average (± 
standard deviation).  N indicates the number of tests. 

 

 Advancing 
WCA (θa) 

Static WCA 

(θs) 
Receding 
WCA (θr) 

Hysteresis 
(θH) 

N 

ZYA 66.3° (± 2.2°) 65.7° (± 1.2°) 56.3° (± 2.2°) 10.1° (± 3.2°) 7 

SPI-1 (ZYA) 70.7° (±1.7°) 66.1° (± 1.9°) 46.2° (± 3.4°) 24.5° (± 3.4°) 7 

SPI-2 (ZYB) 61.7° (± 3.2°) 62.7° (± 2.1°) 47.0° (± 6.2°) 13.5° (± 8.2°) 28 

ZYH 66.0° (± 3.0°) 65.4° (± 1.6°) 50.2° (± 2.6°) 15.8° (± 3.8°) 7 

PG 74.9° (± 4.3°) 46.0° (± 3.6°) 25.6° (± 4.5°) 49.3° (± 4.5°) 7 

 

 

Static WCA for all five samples agree with the static WCA data in Figure 17 (page 78): 

static WCA for HOPG and PG is ca. 65° and ca. 45°, respectively.  Moreover, there is no salient 

difference between HOPG samples.  For HOPG, WCAa is very near the static WCA indicating 

that the liquid contact line interacts mostly with the graphitic surface and not with defects; 

whereas, WCAr is lower than static WCA showing the tendency of water to pin at defects.251  PG 

has substantially different WCA values and dynamic contact angles deviate significantly from 

the static WCA, a consequence of greater defect density.  WCAa for ZYA and PG is 66.3° and 

74.9°, respectively.  Taking error into consideration, the range of WCAa is 68.5°-64.1° and 79.2°-

70.6°, respectively.  This provides an error range of 15.1°-2.1° for the two samples.  Taking the 

upper limit of 15.1° still yields an WCAa lower than the expected value (90°); however, the high 

error for PG is due to its lower quality.  A more realistic sp2 carbon surface is ZYA.  The error of 

2.1° is relatively small compared to the absolute contact angle values and the advancing WCA of 

high and low quality graphite samples are quite similar. 
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Receding contact angles provide very different information, giving insight into the role of 

defects on the surface.  The HOPG samples all have receding contact angles 10-20° below the 

static WCA and hysteresis in the same range except for SPI-1 which shows greater hysteresis.  

Interestingly, the SPI samples appear to have greater hysteresis than the ZYA and ZYH samples.  

This may be a consequence of their manufacturing processes and provide insight into the sample 

quality since SPI and Momentive have different fabrication processes (see Section 1.2 on page 

2).  Moreover, error is generally greater for the SPI samples – especially for SPI-2 – which in 

addition to AFM may indicate that these samples have more defects than the Momentive 

samples.  However, once experimental error is considered, there is little difference between the 

four samples and they generally behave similarly.  These experiments were not intended to 

investigate the difference in quality between various HOPG samples and further analysis should 

be performed before conclusions can be drawn.  Nevertheless, there are slight differences 

between samples of the two manufacturers which can have consequences for their use in 

research. 

Receding WCA of PG is substantially lower than that of HOPG: ca. 25° and 50°, 

respectively.  This result emphasizes the pinning effect of defects on the receding WCA.  PG has 

many more defects than HOPG (Table 9 on page 63).  Water is attracted to the hydrophilic 

defects, maximizes its interaction with defects, and minimizes its interaction with the 

hydrophobic graphite.  As defect density increases, θr will decrease asymptotically as shown by 

Raj et al. (Figure 19 on page 85).251  This behaviour is clearly observed for the graphite sample 

with higher defect density (PG) when compared to the graphite sample with lower defect density 

(ZYA). 
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The data unequivocally shows a substantial difference between high quality and low 

quality graphite samples.  Hysteresis for ZYA and PG is 10° and 49°, respectively, and their 

advancing WCAs are similar.  This indicates defects have an effect on the tendency of the 

surface to retain water (receding WCA) but very little to no influence on its ability to wet 

(advancing WCA).  This is consistent with the findings of Raj et al. (see 5.2.1 on page 80).251 

Therefore, with significant certainty and using currently available models to explain 

wettability of chemically heterogeneous surfaces, one can conclude that the experimentally 

measured advancing WCA on a surface is a measure of its intrinsic wettability.  Neither the 

roughness nor chemical heterogeneity (due to defects) of ZYA and PG are significant enough to 

affect advancing wettability to a conspicuous degree.  This means that the advancing WCA of 

graphite as shown in Figure 22 and Table 14 is the intrinsic WCA:  WCAa is 66.3° and 74.9° for 

ZYA and PG, respectively.  Considering error, the difference between WCAa for the two 

samples is 2.1° and the intrinsic WCA of fresh sp2-hybridized carbon is determined to be 70.0° ± 

1.5°. 
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5.2.4 Calculating surface free energy from hysteresis 

Chibowski et al. presented a method in 2002 which seeks to calculate solid surface energy (γs) 

from advancing and receding contact angle data:245 

 

𝛾! = 𝛾! cos𝜃! − cos𝜃!
!!!"#!! !

!!!"#!! !! !!!"#!! !  Equation 42 

 

Simplifying Equation 42 yields: 

 

𝛾! =
!! !!!"#!! !

!!!"#!!!!"#!!
  Equation 43 

 

Using the data in Table 14, the surface energy on freshly exfoliated ZYA and PG was 

calculated to be 48.4 ± 2.6 mJ/m2 and 36.6 ± 6.0 mJ/m2, respectively.  Data for all graphitic 

samples is shown in Table 15.  The calculated surface energy generally correlates inversely to 

hysteresis, i.e., a small hysteresis results in a higher surface energy and vice versa.  Compared to 

the Neumann, Fowkes, and Owens-Wendt models (Table 6 on page 42) the surface energy 

calculated using hysteresis is smaller, especially for PG where hysteresis is greatest.  Using 

solidified sulfur samples, Chibowski and Terpilowski observed that the Neumann equation of 

state model yielded the lowest surface energy which is opposite to the result on HOPG (i.e., 

Neumann model yields greatest γs).  This may indicate a material dependence although not 

nearly enough information has been collected on a variety of samples to make any 

conclusions.177 



97 

Since data in Table 6 was taken on SPI-2, this material provides the fairest comparison of 

models.  Surface energy calculated using hysteresis is analogous to that using the Owens-Wendt 

model: 50.1 mJ/m2 and 51.6 mJ/m2, respectively.  This may indicate that the model proposed by 

Chibowski et al. is similar to the Owens-Wendt model and provide analogous results; however, 

this must be verified using materials other than graphite.  If the models do prove to provide 

analogous results, they can be used interchangeably depending on user preference:  The Owens-

Wendt model uses multiple different liquids and provides dispersive and polar components; 

whereas, the hysteresis model uses dynamic contact angle of a single liquid and does not provide 

dispersive and polar components.  Chibowski et al. even state that the calculated surface energy 

will be dependent upon test liquid.245, 263  Most importantly, Equation 42 was derived using the 

Young-Dupré equation (Equation 10 on page 30) and film pressure assuming that a liquid film is 

present behind the receding contact line.  This alleviates ambiguity surrounding equation of state 

and component models (see Section 3.2 on page 27). 

 

 

Table 15.  Surface energy of fresh graphite using various models.  Neumann, Fowkes, and 
Owens-Wendt data was presented in Table 6 (page 42).  Data is total surface energy (γs) with 

units mJ/m2 and is presented as average (± standard deviation). 
 

 Neumann Fowkes Owens-Wendt Chibowski 
(hysteresis) 

ZYA -- -- -- 48.37 (± 2.60) 

SPI-1 (ZYA) -- -- -- 42.66 (± 1.66) 

SPI-2 (ZYB) 60.23 (± 0.86) 55.40 (± 3.16) 51.60 (± 0.87) 50.10 (± 2.68) 

ZYH -- -- -- 47.30 (± 3.90) 

PG -- -- -- 36.60 (± 5.99) 
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5.3 WENZEL AND CASSIE-BAXTER WETTING MODELS 

In 1936, Robert Wenzel published his work relating contact angle measurements to surface 

roughness.§§  His now famous Wenzel equation was the first to quantify the effect of surface 

roughness on contact angle measurements.  Interestingly, this work was performed on waxes, 

metallic soaps, and gums in an effort to determine how water interacts with surfaces, specifically 

to better understand the behaviour of waterproofing agents on woven and knitted fabrics.  

Remarkably, the Wenzel equation has proved to be incredibly robust for predicting wettability of 

nearly every conceivable solid surface over the past 80 years.172 

Cassie and Baxter sought to expand upon the work of Wenzel and published their 

investigation – Wettability of Porous Surfaces – in 1944.182  Similar to Wenzel, Cassie and 

Baxter formulated their theory to explain wetting behaviour of waterproofing agents and improve 

design of rain resistant fabrics.  They also showed that hydrophobicity of duck feathers is due to 

surface structure,182 a concept that has recently become important with the desire to engineer 

ultrahydrophobic surfaces.  Cassie and Baxter studied porous surfaces; whereas, Wenzel studied 

solid surfaces.  This is a critical difference in the application of their equations:  the Wenzel 

equation relates surface roughness to contact angle and the Cassie-Baxter equation relates 

surface heterogeneity (i.e., chemical heterogeneity) to contact angle.   

Using water and hexadecane drops on a well characterized heterogeneous surface, 

Extrand showed that the apparent contact angle is dependent only on interactions along the 
                                                

§§ Robert Wenzel was an esteemed research chemist who was originally from Wilkinsburg, a suburb east of 
Pittsburgh, and earned his doctorate at Stanford University where he also taught before coming back to Pittsburgh.  
His original work on waterproof materials was performed at the Mellon Institute of Industrial Research which is 
now part of Carnegie Mellon University and adjacent to the main campus of the University of Pittsburgh.  He later 
was research head at Westinghouse Research in East Pittsburgh.  A prominent member of the Pittsburgh Chemists 
Club and the local ACS chapter, Dr. Wenzel died February 5, 1979 which is nearly 37 years ago.  Dr. Wenzel first 
published his eponymous Wenzel theory in 1936, exactly 80 years ago.264   



99 

contact line and not the entire area under the drop.260  Figure 24 shows this concept from a view 

looking down on the drop: the shaded blue area is the surface area underneath the drop and the 

red line is the perimeter of the drop.  Previous to 2003, researchers (aside from Daniel Pease265) 

believed that the area under the drop controlled wetting, i.e., the contact angle of a heterogeneous 

surface is the average of the entire wetted area.  Contrarily, Extrand systematically showed that 

wetting is only a function of interactions at the contact line and independent of the surface 

underneath the drop.260 

 

 

 
 

Figure 24.  Illustration of water drop on a substrate (overhead view).  The contact area is 
considered to be the entire area between the water drop and substrate (blue region).  The contact 

line is the interface between the substrate, water, and air (red line). 
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The Wenzel and Cassie-Baxter models were (mostly) generally accepted as valid until 

2007 when Gao and McCarthy published their perspective explaining that the equations are 

inadequate for describing wetting of real surfaces.261  This arose largely because of discrepancies 

between experimental contact angles and those predicted using the Cassie-Baxter model.  Gao 

and McCarthy used their own data along with already published data of Bartell266 and Extrand260 

to make the case that Wenzel and Cassie-Baxter were wrong.261 

In fact, Daniel Pease published a report in 1949 suggesting that the air-liquid interface is 

one-dimensional in regards to wetting, meaning that area under the drop has no influence on 

wettability.265  Bartell and Shepard published in 1953 their findings which show inconsistencies 

between the Wenzel model and real data:  drops of water, calcium chloride, and glycerol behave 

similarly on both smooth paraffin surfaces and paraffin surfaces with roughness within the 

contact line.266  The reports by Pease265 and Bartell266 were generally ignored in relation to their 

questioning of the Wenzel model.261  In 2007, McHale poignantly argued that the Wenzel and 

Cassie-Baxter equations are valid when used appropriately and Gao and McCarthy 

misinterpreted assumptions of the original model.  Specifically, McHale shows that the equations 

are valid when the roughness parameter (r) and surface fraction (fi) are global parameters 

describing the entire surface and not local parameters describing isolated defects.228 

Since 2007, there has been substantial debate within literature on the validity of Wenzel 

and Cassie-Baxter models with researchers debating their limits of applicability and accuracy of 

assumptions.228, 251, 253, 260-262, 267-269  Erbil published in 2014 a lengthy review of this debate on 

how to interpret contact angles on rough and heterogeneous surfaces.250  Artificially 

micropatterned surfaces have provided researchers the ability to systematically investigate the 

influence of hydrophilic defects on a hydrophobic surface and vice versa.251, 253, 254  See Section 
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5.2.1 (page 80) for discussion on how hysteresis has been interpreted using micropatterned 

surfaces.  Several contradictory reports have recently been published on validity of the Cassie-

Baxter equation and various approaches have been suggested for rectifying discrepancies 

between experimental and predicted contact angles.251, 270-275  Nevertheless, both Wenzel and 

Cassie-Baxter models are relatively simple methods for determining the relationship between 

contact angle and surface roughness/heterogeneity. 

Liquid on a solid surface can take two different configurations: (a) complete contact 

characterized by the Wenzel state and (b) heterogeneous contact characterized by the Cassie-

Baxter state.  Figure 25 schematically shows these wetting configurations.276  An extreme case of 

wetting behaviour occurs on superhydrophobic surfaces, in which superhydrophobicity manifests 

because of multiscale roughness.  This situation is commonly modeled by the Cassie-Baxter 

equation because there is clear heterogeneity in which the (non)wetting liquid interacts with both 

the solid and trapped air pockets as in Figure 25b-d.  Topographical roughness on mechanically 

exfoliated graphite is not rough enough trap air between surface asperities and the liquid, thus the 

situation for graphite is more similar to the Wenzel state shown in Figure 25a but with a 

chemically heterogeneous surface due to defects.   

Chemically heterogeneous surfaces are generally believed to have various microscopic 

contact angles which are a function of the microscopic homogeneous areas.  The macroscopic 

contact angle experimentally observed is an average of the microscopic contact angles, thus the 

observed behaviour is an average of the microscopic behaviour.  The Cassie-Baxter equation 

remains valid for this wetting state,228, 253, 260, 268, 277-279 although an alternative has been proposed 

for atomic scale defects.270  
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Figure 25.  Wetting states of a liquid on a solid surface.  Adapted with permission from Zheng, 
Q. S.; Yu, Y.; Zhao, Z. H. Effects of Hydraulic Pressure on the Stability and Transition of 

Wetting Modes of Superhydrophobic Surfaces. Langmuir 2005, 21, 12207-12212.  Copyright 
2005 American Chemical Society.276 

5.3.1 Wenzel analysis 

Section 3.6 (page 44) discusses the influence of surface roughness on wettability of graphene.  

The conclusion was that nanoscale roughness does not affect wettability according to the Wenzel 

equation (Equation 22 and Equation 23 on page 44).  Using the data from MoS2 (Section 6.5 on 

page 128),70 r would have to be 20.5 for the WCA on fresh MoS2 to be 89° (its generally 

accepted value).  The projected surface area of the image was 2500 µm2 (50x50 µm AFM scan).  

To achieve an r value of 20.5 the actual surface area due to roughness would need to be 51,250 

µm2 or the equivalent of a 226x226 µm scan.  This is definitely not the case for graphene, 

graphite, or MoS2 and it is reasonable to conclude that the surface roughness of our MoS2 

samples does not influence the observed wettability. 

Influence of surface roughness was analyzed for graphite samples according to the 

Wenzel equation.  Young’s WCA (θY) was calculated to be 65.6° and 50.9° for ZYA and PG, 

respectively, as shown in Table 16.  Roughness has no effect on wettability for any of the HOPG 

samples and decreases the WCA by 3.5° for PG.  This is consistent with data already reported in 

(a) (b) 

(c) (d) 
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Reference 70 and Reference 75.  The surface would need to be extremely rough for roughness 

affect wettability according to the Wenzel equation. 

Advancing WCA for ZYA and PG is 66.3° and 74.9°, respectively (Table 14 on page 93).  

Applying these values to the Wenzel equation, θY for ZYA is 66.3° and θY for PG is 75.9°.  This 

indicates that surface roughness has no influence for ZYA and decreases WCA by 1.4% for PG.  

Considering experimental uncertainty for water contact angle measurements is ±1°, the effect of 

surface roughness is negligible.  Therefore, Wenzel analysis concludes that surface roughness 

has a negligible effect on wettability of fresh graphite. 

 

Table 16.  Wenzel analysis of graphite samples.  Data presented as average (± standard 
deviation).  Ra is the surface roughness from AFM scans.  

 
 ZYA SPI-1 SPI-2 PG 

# of AFM scans 20 11 10 20 

Ra (nm) 0.257 (± 0.103) 1.536 (± 0.401) 1.181 (± 0.249) 41.4 (± 8.0) 

Projected Surface 
Area (µm) 25.0 (± 0.0) 25.0 (± 0.0) 25.0 (± 0.0) 26.8 (± 0.8) 

r 1.000 (± 0.000) 1.000 (± 0.000) 1.000 (± 0.000) 1.073 (± 0.032) 

     
Experimental Static 

WCA (θs) 
65.6° 65.3° 65.1° 47.4° 

Young’s WCA (θY) 65.6° (± 0.0°) 65.3° (± 0.0°) 65.2° (± 0.0°) 50.9° (± 1.3°) 

     
Experimental 

Advancing WCA (θa) 
66.3° -- -- 74.9° 

Young’s WCA (θY) 66.3° (± 0.0°) -- -- 75.9° (± 0.4°) 
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5.3.2 Cassie-Baxter analysis 

The Cassie-Baxter equation relates chemical heterogeneity of the sample surface to its 

wettability: 

 

cos𝜃!" = 𝑓! cos𝜃! + 𝑓! cos𝜃!  Equation 44 

 

where θCB is the Cassie-Baxter contact angle, f1 is the fraction of defects, f2 is the fraction of 

basal plane, θ1 is the CA corresponding to f1, and θ2 is the CA corresponding to f2. 

Defect density quantitatively reflects the number of point defects in the carbon lattice.  A 

point defect is defined as a vacancy, self-interstitial atom, substitutional impurity atom, or an 

interstitial impurity atom as shown in Figure 13 (page 53).204  The fraction of defects (f1) on 

graphite can be calculated using the defect density calculated from Raman spectra (Table 9 on 

page 63).  Assuming that a point defect is at least the size of a single carbon atom (rd), the area 

of a single defect can be calculated assuming the defects are circular: 

 

𝐴𝑟𝑒𝑎  𝑝𝑒𝑟  𝑑𝑒𝑓𝑒𝑐𝑡 = 𝜋   73  𝑝𝑚 ! !  !"!

!"!"!"! = 1.67𝑒!!  𝜇𝑚!  Equation 45 

 

where the radius of the defect is estimated to be equivalent to the covalent radius of a carbon 

atom (73 ± 2 pm).257, 258  The following calculations are solved for ZYA.  Total area of all 

defects on graphite surface can be calculated using the number of defects (Table 10 on page 68) 

and the area per defect.: 
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𝑇𝑜𝑡𝑎𝑙  𝑎𝑟𝑒𝑎  𝑜𝑓  𝑑𝑒𝑓𝑒𝑐𝑡𝑠 = 1.67𝑒!!  𝜇𝑚! ∗ 1.08𝑒!  𝑑𝑒𝑓𝑒𝑐𝑡𝑠
1  𝑚𝑚!

10!𝜇𝑚! = 1.81𝑒!!  𝑚𝑚! 
 

Equation 46 

 

The water drop contacts an area of 4.55 mm2 (assuming axial symmetry; r = 1.204 mm 

from Table 10), thus the area of basal plane is calculated by subtracting the defect area: 

 

𝑇𝑜𝑡𝑎𝑙  𝑎𝑟𝑒𝑎  𝑜𝑓  𝑏𝑎𝑠𝑎𝑙  𝑝𝑙𝑎𝑛𝑒 = 4.55128356  m𝑚! − 0.00000181  𝑚𝑚! = 4.55128174  𝑚𝑚! 

 

Equation 47 

 

Using the preceding equations (Equation 45, Equation 46, and Equation 47) the defect density – 

and basal plane percentage – can be calculated and results are shown in Table 17. 

In order to calculate θCB using Equation 44, the fraction of defects and basal plane must 

be calculated using total area of defects and total area of basal plane in Table 17 (taking f1 to be 

defects and f2 to be pristine basal surface): 

 

𝑓! =
!.!"!!!  !!!

!.!"!!!  !!!!!.!!"#$"%&  !!! = 0.00000040  Equation 48 

 

𝑓! =
!.!!"#$"%&  !!!

!.!"!!!  !!!!!.!!"#$"%&  !!! = 99.99999960  Equation 49 

 

To solve Equation 44, θ1 is taken to be WCA of defects and θ2 is taken to be advancing 

WCA (WCAa in Table 14 on page 93).  Cao et al. reported the WCA on edge defects of graphene 

to be 10°;99 therefore, this value was used for θ1 to reflect the defect wettability.  In fact, the 
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actual choice of θ1 does not change the end result because the defect area (f1) is  extraordinarily 

small relative to basal area (f2) and the defect terms are effectively negligible.  Now all terms 

needed to solve Equation 44 have been obtained. 

The Cassie-Baxter equation yields θCB of 66.3° and 74.9° for ZYA and PG, respectively, 

which are analogous to the advancing WCA.  This result is a consequence of the extremely small 

amount of point defects relative to basal plane and the data in Table 17 shows that chemical 

heterogeneity due to defects has no influence on the wettability of fresh graphite (according to 

the Cassie-Baxter model). 

Patel et al. showed that the defect density of ZYA using AFM is 0.3%50 which is 

negligible for causing a change in θCB.  Unfortunately, similar data is not obtainable for PG 

because step edges can not be defined on its bubbly surface.  Nevertheless, it is interesting to 

calculate the number of defects necessary to cause a 5% change in θCB.  This entails using 

Equation 44 and solving for f1 to determine the f1 value that results in θCB decreasing 5% from its 

original value shown in Table 17 (using rd = 1000 pm).  The calculation shows that defect 

density would need to be 9.0% and 9.2% for ZYA and PG, respectively.  This means that 

100,000x more defects is required for ZYA to cause a 5% change in wettability; whereas, 1,000x 

more defects is required for PG to cause a 5% change in wettability.  The graphite surface was 

manually exfoliated before Raman testing so any defects caused by exfoliation would be 

reflected in the defect density calculated in Table 10.  Raman does not detect perfect zig-zag 

edges and including these type of defects will increase the calculated defect density;200, 201 

however, it is unlikely that concentration of zig-zag edges will be great enough to cause defect 

density to increase by 1,000x for either sample.  Therefore one can conclude that the intrinsic 
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level of defects on the graphite samples is too low by at least a factor of 1000 to significantly 

influence wettability according to the Cassie-Baxter model. 

 

 

Table 17.  Cassie-Baxter WCA for ZYA and PG.  The total area of defects and basal plane is 
calculated using the defects contacting the water drop in Table 10 and defect radius (rd) of 73 

pm.  Calculations using rd=1000 pm are shown in Section 5.3.2.1. 
 

 ZYA PG 

Drop area (mm2) 4.55128356 7.70621705 

Total area of defects (µm2) 1.81 229.64 

Total area of basal plane (mm2) 4.55128174 7.70598741 

% defects 0.00004 0.00298 

% basal plane 99.99996 99.99702 
   

f1 (defects) 0.00000040 0.00002980 

f2 (basal plane) 0.99999960 0.99997020 
   

θ1 (WCAdefects) 10.0° 10.0° 

θ2 (WCAa) 66.3° 74.9° 

Cassie-Baxter θ 66.3° 74.9° 
 
Note: The number of significant digits is to show the magnitude of change because the total area 
of defects for ZYA and PG is so small.  This is not to reflect any particular amount of certainty.  

The WCA experiment is accurate to ±1°, thus θCB is given to this accuracy.  θCB equals the 
experimental advancing WCA shown in Table 14 (page 93). 
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An alternative approach to solving the Cassie-Baxter equation is to substitute the 

experimental static WCA (θs) for θCB and solve for θ2: 

 

𝜃! = 𝑓! cos𝜃! + 𝑓! cos𝜃!  Equation 50 

 

The Cassie-Baxter model is verified to work for graphite if the calculated θ2 is equal to the 

advancing WCA; however, if θ2 ≠ θa then the Cassie-Baxter model fails to accurately represent 

graphite wetting.  Using the f1 and f2 values in Table 17 where θ1 = 10° and θCB = θs, θ2 can be 

solved.  The result for ZYA shows that θ2 is similar to θa; however, θ2 = 47.5° for PG yet θa = 

74.9°.  Because of the relatively low defect density, the Cassie-Baxter model fails to accurately 

predict the WCA of freshly exfoliated graphite. 

This analysis highlights limitations of the Cassie-Baxter model.  The model does not 

account for contact line pinning and assumes that the contact line interacts indiscriminately with 

defects and the surface.  This is shown in Figure 19 (page 85) and Figure 20a (page 89).  Real 

wetting is characterized by contact line pinning which will change the values of f1 and f2, thus 

the model does not account for dynamic wetting state which is why the approach to use the 

Cassie-Baxter model to solve for θa failed (Equation 50).  Data on graphite shows that the 

Cassie-Baxter model does accurately predict static contact angle when defect density is low 

enough to not have an influence on wettability.  Increasing defect density will change f1 and f2 

and these changes due to pinning must be accounted for or else the predicted value will 

increasingly deviate from the experimental value.  This is supported by the data of Raj et al. 

(Figure 19 on page 85).251 
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5.3.2.1 Comments on Cassie-Baxter analysis 

Several assumptions were made in calculating the defect density and this section seeks to 

validate the reasoning behind the assumptions. 

First, defects are assumed to be circular which is reasonable since carbon atoms are 

circular and any point defect will take a circular geometry.204  

Second, the defect radius is assumed to be equivalent to the covalent bonding radius of 

carbon.  Calculations where defect radius (rd) is varied up to 1000 pm show that the defect 

density is not sensitive to the chosen rd value.  Assuming a radius smaller than 73 pm will only 

decrease the defect density and have no effect on wettability.  When rd is increased to 1000 pm 

the defect density increases from 0.00004% to 0.00748% for ZYA and from 0.00298% to 

0.55920% for PG.  Calculating the Cassie-Baxter WCA (θCB) for the greater defect density 

yields no change for ZYA and a change of 0.2° for PG.  This means that a surface with 0.5% 

defects will only cause a 0.2° decrease in WCA.  Therefore, defect size is not a critical parameter 

and the calculated θCB essentially remains unaffected. 

Third, defects are only point defects.  The graphite samples were only mechanically 

exfoliated and underwent no further processing that would cause artificial defects on the surface.  

Thus, it is reasonable to assume that only point defects are present on the pristine graphite 

surface. 

Fourth, uniform distribution of defects on the graphite surface is assumed.  This is 

important because reports by Extrand260 and Gao and McCarthy261 have noted the importance of 

differentiating between contact area and contact line as shown in Figure 24 (page 99).  McHale 

pointed out that local defect density should be used (i.e., defect density at the contact line).228, 279  

Contact line can be modeled as an annulus with “x” thickness; however, defect density within the 
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contact area and at the contact line are equivalent when surface defects are uniformly distributed.  

This means that a particular area on the sample can not be discerned from another area based on 

its defect density, thus local and global defect density are equivalent and defect density within 

the contact area equals defect density at the contact line.  Assuming uniformly distributed defects 

on graphite is reasonable since the sample was only mechanically exfoliated and underwent no 

further processing.  Uniform distribution is also important for interpreting Raman data and 

allows the conclusion to be made that acquired data is a function of the entire sample surface and 

not dependent on the specific area tested. 

5.3.3 Israelachvili equation 

Jacob Israelachvili and Michelle Gee proposed an alternative form of the Cassie-Baxter equation 

that should be used when chemical heterogeneity is of atomic (molecular) dimensions:270 

 

1+ cos𝜃 ! = 𝑓! 1+ cos𝜃! ! + 𝑓! 1+ cos𝜃! !  Equation 51 

 

This model is based on averaging the polarizability of surface charges; whereas the Cassie-

Baxter model averages cohesion energies.  The atomic scale assumption is reasonable for point 

defects on graphite and Equation 51 has been used for chemically grafted monolayers.280   

Applying the Israelachvili equation to the wetting and Raman data on graphite, θ on PG 

decreases by 0.5° when the defect radius is 1 nm (second row of Table 18), otherwise the data 

remains unchanged.  Fitting the defect density (f1) to 95% of θ (5% change) requires ca. 9% of 

defects on ZYA for both Cassie-Baxter and Israelachvili models; PG requires ca. 21% and 11% 

of defects, respectively.  Ultimately, the conclusion is that point defects on the graphite surface 



111 

do not affect the intrinsic WCA of ZYA or PG because there are too few defects.  9% defects 

would be required on ZYA to cause a substantial change of wetting and either 21% or 11% 

defects – depending on model – would be required on PG.  The high quality samples used in 

experiments has defect density much lower than this as shown by Raman, AFM, and XRD. 

 

 

Table 18.  Cassie-Baxter and Israelachvili wetting model results. 
 

 ZYA PG 
θCB & θIs 

* 66.3° 74.9° 

f1 1.8e-6 2.3e-4 

f2 0.99 0.99 

θCB & θIs  
** 66.3°/66.3° 73.0°/72.5° 

f1 3.4e-4 0.04 

f2 0.99 0.96 

95% θCB 
** 63.0° 65.7° 

f1 0.09 0.21 

f2 0.91 0.79 

95% θIs 
** 63.0° 68.9° 

f1 0.08 0.11 

f2 0.92 0.89 
 

Note: f1 represents defects and f2 represents basal plane.  θ1=10° and θ2=θa.  *r=73 pm; **r=1000 
pm.  θ of the first and second row were calculated by keeping f1 and f2 constant.  For the third 
and fourth row, θ was constant at 95% of its respective value and f1 and f2 were fit to solve the 

equation. 
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5.3.4 Line energy of the triple phase contact line 

The concept of line energy has been proposed to better describe wetting behavior and 

quantitatively explain the relationship between advancing, receding, and thermodynamic 

equilibrium contact angles.  The equilibrium contact angle is understood to be the Young’s 

contact angle (θY) of a liquid on a perfect surface (i.e., no defects, heterogeneity, or roughness).  

Real surfaces do not exhibit θY and the observed contact angle is always a function of intrinsic 

surface properties, e.g., roughness and heterogeneity.  Moreover, real surfaces have an advancing 

and receding contact angle which describes the tendency of the surface to wet or remain wetted, 

respectively.  Therefore, the observed static contact angle can take any position between θa and 

θr and approaches θY as the surface becomes more perfect: θa > θs ≈ θY > θr.141, 252, 281-284 A 

mathematical relationship using line energy was proposed by Rafael Tadmor in 2004 to rectify 

the difference between θs and θY by relating equilibrium contact angle to dynamic contact 

angles:252 

 

θ! = cos!! !! !"#!!!!! !"#!!
!!!!!

  Equation 52 

 

Γ! =
!"#!!!

!!! !"#!!!!"#!!!

!/!
  Equation 53 

 

Γ! =
!"#!!!

!!! !"#!!!!"#!!!

!/!
  Equation 54 

 

where θ0 is the thermodynamic equilibrium contact angle which is equivalent to θY. 
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The physical explanation of line tension is rather ambiguous and not clearly based on any 

physical parameters.  Equation 52 is mathematically derived using Young’s equation (Equation 5 

on page 27) by incorporating line tension as an additional term to compensate for surface non-

ideality.252  Line tension is associated with the energy necessary to overcome surface roughness 

and heterogeneity.  Several investigations have sought to further this understanding;281-284 

however, it is still not clearly understood.  Nevertheless, θ0 was calculated using dynamic WCA 

data (Table 14 on page 93) on fresh graphite. 

Table 19 lists the experimental WCA (θs) and the equilibrium WCA (θ0) calculated from 

Equation 52.  There is agreement between θs and θ0 for all of the graphite samples.  ZYA and PG 

have the best agreement with percent difference being 6.7% and 3.8%, respectively.  While the 

physical phenomena behind the line tension is unclear, the data remain important for showing 

that the equation proposed by Tadmor does generally reflect the equilibrium contact angle – at 

least for the graphite surfaces studied – and the experimental static contact angle is similar, but 

not analogous, to the thermodynamic equilibrium contact angle. 

 

 

Table 19.  Equilibrium WCA using the Tadmor equation. 
 

 Advancing 
WCA (θa) 

Receding 
WCA (θr) 

 Static 
WCA (θs) 

Equilibrium 
WCA (θ0) 

ZYA 66.3° (± 2.2°) 56.3° (± 2.2°)  65.7° (± 1.2°) 61.2° (± 2.2°) 

SPI-1 (ZYA) 70.7° (±1.7°) 46.2° (± 3.4°)  66.1° (± 1.9°) 58.0° (± 2.6°) 

SPI-2 (ZYB) 61.7° (± 3.2°) 47.0° (± 6.2°)  62.7° (± 2.1°) 54.2° (± 4.7°) 

ZYH 66.0° (± 3.0°) 50.2° (± 2.6°)  65.4° (± 1.6°) 57.9° (± 2.8°) 

PG 74.9° (± 4.3°) 25.6° (± 4.5°)  46.0° (± 3.6°) 49.2° (± 4.0°) 
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5.4 HOW METHOD OF EXFOLIATION AFFECTS WETTABILITY 

The adhesive tape method is well established for exfoliating lamellar materials such as HOPG.  

An alternative method of exfoliation is using a razor to physically separate the layers orthogonal 

to its c-axis.  The adhesive tape method was used for all HOPG samples (ZYA, SPI-1, SPI-2, 

ZYH) used in this investigation; however, PG was not able to be exfoliated using adhesive tape 

and was exfoliated using a razor. 

Uncertainty arose pertaining to the influence of exfoliation method on wettability.  This is 

especially a concern since the WCA of razor exfoliated PG is substantially lower than tape 

exfoliated HOPG (Figure 17  and Table 11 on page 78).  WCA of tape and razor exfoliated ZYA 

is nearly analogous.  WCA for razor exfoliated ZYA aged in air overnight was 92.9° ± 5° (N=5).  

This shows that exfoliation method does not influence WCA on the fresh or aged surface.  PG 

could not be exfoliated with tape, thus no data was taken using the tape method.  This data 

illustrates that exfoliating with razor does not affect wettability and the lower WCA observed for 

PG is intrinsic to the sample and not a consequence of exfoliation method. 

5.5 CONCLUSIONS 

Freshly exfoliated high and low quality graphite samples were studied in order to elucidate the 

intrinsic water contact angle of sp2-hybridized carbon.  Quantitative analysis of Raman spectra 

showed that the defect density of ZYA and PG is 24 ± 16 and 1778 ± 1187 defects/µm2, 

respectively.  Knowing the graphite defect density allowed for the influence of surface defects on 

wettability to be quantified.  Wenzel analysis showed that surface roughness has negligible effect 
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on the measured contact angles for all the graphite samples tested.  Moreover, Cassie-Baxter 

analysis showed that chemical heterogeneity caused by high energy defects have little to no 

effect on the advancing WCA. 

Current hysteresis theory says that advancing WCA is attributed to interactions between 

water and pristine sample surface; whereas, receding WCA is attributed to interactions between 

water and surface defects.  Advancing WCA of ZYA and PG was 66.3° and 74.9°, respectively.  

Considering error, the advancing WCA of graphite was determined to be 70.0° ± 1.5°.  The 

receding WCA of ZYA and PG was 56.3° and 25.6°, respectively.  The higher defect density of 

PG causes the receding WCA to be lower compared to ZYA.  Since the advancing WCA can be 

considered the wettability of sp2-hybridized carbon sans defects, this analysis indicates that fresh 

(clean) graphite is intrinsically mildly hydrophilic with a WCA of 70° ± 1.5°. 
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6.0  UNDERSTANDING THE INTRINSIC WATER WETTABILITY OF MoS2
*** 

6.1 HISTORY OF 2D MATERIAL WETTABILITY 

Molybdenum disulfide (MoS2) has generated significant interest in the past several years as 

limitations of graphene become apparent due to its zero bandgap.133, 285-291 Weak interlayer van 

der Waals forces allow MoS2 to be easily exfoliated to form atomic layers which, like graphene, 

can be used in electronic and optoelectronic devices for environmental, biological, and clinical 

applications.285, 286, 289 MoS2 and other 2D transition metal dichalcogenides (TMDCs) such as 

MoSe2, WS2, and WSe2 are semiconductors that have an intrinsic bandgap which enhances 

device sensitivity and allows for fabrication of unique field-effect transistors (FETs), biosensors, 

solar cells, and light-emitting diodes (LEDs).133, 287, 289, 290 Additionally, the atomic thinness of 

TMDCs allow for flexible devices not possible with traditional organic semiconductors.133, 287, 

288, 291 Sarkar et al. demonstrated that MoS2-based FET biosensors are over 74 times more 

sensitive than a graphene-based device and can be utilized for ultrasensitive protein sensing at 

extremely low concentrations of 100 femtomolar.292 Moreover, Lee et al. demonstrated efficacy 

of a MoS2 biosensor for detection of prostate antigens in order to diagnose prostate cancer.  The 

minimum antigen concentration detected by their MoS2-based biosensor was 1 pg/mL which is 

                                                

*** Reprinted with permission from Kozbial, A.; Gong, X.; Liu, H.; Li, L. Understanding the Intrinsic Water 
Wettability of Molybdenum Disulfide (MoS2). Langmuir 2015, 31, 8429-8435.70 Copyright 2015 American 
Chemical Society. 
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4000 times more sensitive than the current clinical cut-off level.289 Jiang et al. created a MoS2-

based FET with a Hg+2 detection limit of 30 pM useful for monitoring anthropogenic mercury in 

drinking water.293 These studies show proof-of-concept that incredible, ultrasensitive devices, 

which are not possible with atomically thin graphene, can be realized using TMDCs. 

Understanding wettability of surfaces is critical for fabricating ultrasensitive devices 

because small changes in wettability can significantly influence adhesion in heterostructures and 

impact overall device performance.  In 1988, Kelebek reported molybdenite to be hydrophobic 

with a critical surface tension of 29 mJ/m2.294  Meanwhile, Zhang  et al. reported WCA of 

sputtered MoS2 as 85°.295  More recent work has corroborated the hydrophobicity of MoS2: 

WCA of bulk MoS2 was reported as 88.37° and 75.8°.289, 296 Gaur et al. showed that increasing 

synthesis temperature of MoS2 thin films from 550°C to 900°C allowed for controlled diffusion 

of sulfur atoms through the Mo film to create a well ordered surface with a high degree of 

crystallinity, resulting in a WCA change from 23.8° (550°C) to 91.6° (900°C) for 2D MoS2 

films.  The low WCA surface was attributed to high energy vertically aligned edge sites due to 

low synthesis temperature.  Moreover, they reported that WCA decreases with number of MoS2 

monolayers to approach that of the bulk (88.37°),296 behaviour also reported on graphene.237  

Strano et al. reported MoS2 and other TMDCs to have surface energy of 65-75 mJ/m2 while Gaur 

et al. reported surface energy of few layer MoS2 as 44.5 mJ/m2 (Neumann method) and 40.47 

mJ/m2 (Fowkes method).133, 296 The discrepancy between surface energy values could be due to 

different methods used to calculate surface energy along with spontaneous contamination by 

ambient hydrocarbons.77, 297 However, MoS2 has been believed to be hydrophobic in all the 

aforementioned articles with WCA of 76-92°.133, 289, 294-296  Interestingly, Chow et al. recently 

reported on the wetting behavior of monolayer and few-layer MoS2 and WS2 supported on silica.  
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They showed that WCA of fresh monolayer WS2 increases from 70° to 83° upon exposure to 

ambient air.297 

Surface contamination is a serious concern for any solid surface, especially atomically 

thin materials, since contaminants can affect water wettability.  A classic example is the 

adsorption of airborne contaminants onto gold rendering the hydrophilic surface to appear 

hydrophobic.  It took the surface science community more than forty years to conclude that 

observed hydrophobicity of gold is due to airborne hydrocarbon contaminants and that gold is 

intrinsically hydrophilic.38-40 Graphite has been traditionally believed to be hydrophobic with 

WCA of ca. 90°; however, recent studies indicate graphite is intrinsically mildly hydrophilic 

with a WCA of ca. 53-65° and it adsorbs airborne hydrocarbons in the ambient air to minimize 

surface energy, i.e., appear more hydrophobic.76, 230, 241 Similar results were also reported for 

monolayer graphene on copper and multilayer graphene on nickel75, 77  and the surface energy 

and wettability of freshly synthesized graphene on copper was found to be dependent upon 

exposure time to ambient air.75 Lai et al. attributed the change in graphene wettability to 

adsorption of both water molecules and hydrocarbons63  and Nioradze et al. demonstrated that 

HOPG electroactivity is significantly affected by organic impurities in water and air.59, 62 

Boinovich et al. also showed that hydrocarbon contaminants spontaneously adsorb onto boron 

nitride nanotubes (BNNTs) and render the BNNTs to be hydrophobic, suggesting that other 2D 

materials are susceptible to spontaneous hydrocarbon contamination.65  Similar results have also 

been reported in several other studies.49, 50, 52, 55, 62, 64, 239  In light of these observations, there is 

great importance in investigating how airborne contamination affects the wettability of MoS2 due 

to its salience as a 2D material beyond graphene.   
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Herein, we investigate bulk MoS2 to elucidate its intrinsic water wettability, which is 

likely similar to the wettability of 2D MoS2.  WCA shows temporal evolution with an intrinsic 

value of 69.0° ± 3.8° that increases to 89.0° ± 3.1° after 1 day exposure to ambient air. Surface 

energy of fresh and aged MoS2 was calculated from contact angle measurements with data 

indicating that surface energy is a strong function of exposure time to ambient air. ATR-FTIR 

and ellipsometry indicate that hydrocarbon contaminants adsorb onto freshly exfoliated MoS2, 

rendering the intrinsically mildly hydrophilic surface hydrophobic.  Investigating wettability of 

bulk MoS2, opposed to monolayer MoS2, provides valuable insight to the true material properties 

without interfering effects from sample synthesis, processing, and substrate interactions. 

6.2 WATER WETTABILITY AND SURFACE ENERGY 

WCA of freshly exfoliated MoS2 was 69.0° ± 3.8° tested within 10 seconds of exfoliation and 

increased to 89.0° ± 3.1° after 1 day of ambient air exposure as shown in Table 20.  Seven day 

exposure to ambient air yielded a WCA of 91° indicating that most, if not all, of the adsorption 

activity occurred within the first 24 hours; however, diiodomethane contact angle (DCA) 

increased from 27° to 44° between day 1 and day 7.  This dramatic increase of DCA may show 

dynamic adsorption activity beyond what can be deduced from observing WCA.  Since the WCA 

shows negligible change after day 1 and DCA shows significant change, we hypothesize that a 

competing adsorption process occurs between smaller (volatile) and larger (less volatile) 

hydrocarbons present in the ambient environment.  WCA does not capture changes in 

hydrocarbon composition while DCA is sensitive to the chemical nature of adsorbed 

hydrocarbons.  In essence, smaller hydrocarbons initially adsorb leading to the ~90° WCA then 
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larger hydrocarbons displace (or supplement) the hydrocarbons already adsorbed leading to 

further DCA increase.  This hypothesis of dynamic adsorption is supported by ATR-FTIR 

showing continued increase of methylene stretching peaks between day 1 and day 7 (Figure 26). 

Advancing and receding WCA follows the same qualitative trend as static WCA further 

demonstrating the effect of contamination on wettability (see Supporting Info of Reference 70). 

Surface energy of fresh and aged MoS2 was calculated by the Fowkes model using 

contact angles of water and diiodomethane.162  Additional details of the calculation procedure 

can be found in Reference 162. The surface energy of fresh MoS2 was 54.5 mJ/m2 and decreased 

to 46.0 mJ/m2 after 24 hours as shown in Table 20.  Moreover, the fresh surface had a significant 

polar component that accounted for 10% of the total surface energy of fresh MoS2.  Both polar 

and dispersive components decreased upon exposure to ambient air with the polar component 

approaching ≤1 mJ/m2.  Surface energy continued to decrease approaching 38.6 mJ/m2 after 7 

days exposure to ambient air.  The decrease from 46.0 to 38.6 mJ/m2 between day 1 and day 7 

can be attributed to the change in DCA which is a function of the type of adsorbed hydrocarbons.  

This result signifies that bulk MoS2 has a polar component that contributes to the mildly 

hydrophilic surface and these polar sites become “shielded” as contaminants adsorb.  Moreover, 

the adsorbed contaminants have surface energy much lower than MoS2, indicated by the overall 

surface energy decrease. These results indicate that MoS2 surface energy can be controlled by the 

degree of contamination and potentially by the type of hydrocarbon contaminants adsorbed onto 

the fresh surface. 

The 29 mJ/m2 surface tension of molybdenite reported by Kelebek is significantly lower 

than our value.294 Moreover, Gaur et al. reported the surface energy of few layer CVD-grown 

MoS2 as 40.47 mJ/m2 (Fowkes method) without considering ambient air exposure while our 
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value on 7-day aged bulk MoS2 is 38.6 mJ/m2.296 These values are reasonably similar and the 

discrepancy can be attributed to several factors: (1) fabrication process, (2) aging time, (3) type 

of contaminants, and (4) material differences between bulk and few-layer MoS2.    

 

 

Table 20.  Contact angle and surface energy calculation results on MoS2 as a function of 
exposure time in ambient air. 
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   69.0	
   15.2	
   5.5	
   49.0	
   54.5	
  

1h	
  aged	
   72.5	
   19.6	
   3.5	
   47.9	
   51.4	
  

24h	
  aged	
   89.0	
   27.1	
   0.6	
   45.4	
   46.0	
  

7day	
  aged	
   90.8	
   44.0	
   1.0	
   37.6	
   38.6	
  

 

6.3 SURFACE CONTAMINATION 

ATR-FTIR was performed to elucidate the nature of change on MoS2 surface after ambient 

exposure.  As shown in Figure 26, the first test taken two minutes after exfoliation showed slight 

methylene stretching indicative of carbon containing compounds.  The methylene peaks continue 

to increase with sustained exposure to ambient air showing significant change up to 24 hours.  

After one day of exposure, ATR-FTIR shows further growth of methylene peaks, although WCA 

and ellipsometry (Figure 27) remain constant.  This potentially shows rearrangement of 
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originally adsorbed hydrocarbons and displacement by larger, less volatile contaminants.  WCA 

and ellipsometry are not sensitive to these changes because the chemistry and thickness of the 

contaminants remain relatively constant. 

Small amounts of hydrocarbons are present on the “2 min” exfoliated sample which 

could be explained by (1) initially fast adsorption and (2) the physical structure of MoS2.  

Surface energy will be greatest on the pristine, freshly exfoliated surface and airborne 

hydrocarbons will be most attracted to this surface.  This adsorption will be extremely fast and 

initial contamination is likely on the time scale of seconds.76  Considering that the ATR-FTIR 

acquisition time is 2.2 min, there is sufficient time for adsorption of contaminants leading to the 

small methylene peaks observed in Figure 26.   

A second hypothesis assumes that after sample synthesis, hydrocarbon contaminants can 

adsorb onto the MoS2 surface and slowly intercalate in the van der Waals gaps between sulfur 

atoms.  Hydrogen has been shown to diffuse through MoS2 monolayers under certain 

circumstances and lithium intercalation is commonly used to exfoliate bulk MoS2.298, 299 

Moreover, intercalation with various alkali and transition metals is being explored as a strategy 

for tuning and manipulating electronic, optical, and thermal properties of TMDCs.300-302 On this 

basis, it is possible for small aliphatic hydrocarbons to intercalate between sulfur atoms.  When 

the sample is exfoliated, surface contaminants will be removed while sub-surface contaminants 

will remain intercalated thus being detected by the ATR crystal.  The probing depth of our 

instrument is about 0.50 µm, which is 3 orders of magnitude larger than the surface hydrocarbon 

thickness.  This will result in detection of adsorbed contaminants on the surface as well as 

intercalated hydrocarbons.  The influence of these sub-surface contaminants on wettability is 

negligible since intercalation will not affect surface properties; however, this may explain why 
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contaminants are detected on the fresh surface by ATR-FTIR.  The difference in the adsorption 

kinetics among contact angle, ellipsometry, and ATR-FTIR experiments can additionally be 

attributed to different contaminants in the ambient, which results from different lab locations and 

environmental conditions, as reported previously.76, 303  

Ellipsometry in Figure 27 shows fast adsorption of airborne contaminants within the first 

~1 hour after exfoliation followed by an abrupt slowing of adsorption kinetics.  Once a plateau is 

reached the adsorptive layer is ca. 0.40 nm and slowly increases to ca. 0.50 nm after 2 hours.  

ATR-FTIR and ellipsometry results provide experimental evidence that MoS2 is susceptible to 

contamination by airborne hydrocarbons.  As a result, wettability and surface energy 

concurrently decrease upon exposure to ambient air. 

Atmospheric concentration of contaminants is strongly affected by local environmental 

conditions and seasonal changes between summer and winter months can change concentration 

by a factor of two.76, 101, 303, 304   In practical terms, this means that increasing concentration of 

contaminants in the environment will concurrently affect both the adsorption rate of 

contaminants onto a surface and the total thickness of adsorbed contaminants.  Our previous 

work on HOPG alluded to this phenomenon showing that degree of contamination was affected 

by lab location, i.e., local environmental conditions which influence concentration and type of 

contaminants in the atmosphere.76  Moreover, polycyclic aromatic hydrocarbons (PAHs) have 

been identified as adsorbing onto graphitic surfaces;101 therefore, it is reasonable to believe that 

MoS2 contamination kinetics suffer consequences similar to graphite.   

Considering this, ellipsometry data was taken on four different MoS2 samples at different 

seasons over two years.  Shown in Figure 27a, the data indicates slight changes in both the time 

scale of adsorption and the maximum film thickness once a plateau is reached.  Data obtained in 
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October 2013 (samples 1 and 2) generally plateaued by 30 minutes with a total thickness near 

0.40 nm, while data obtained in February 2015 (sample 3) plateaued by 40 minutes, although it 

slowly increased afterwards to a total thickness ca. 0.50 nm.  Interestingly, data taken in April 

2015 (sample 4) showed much slower initial adsorption kinetics yet the final thickness remained 

similar to the other samples.  This may indicate that different contaminants were adsorbed in 

different months; however, local chemistry of the four MoS2 samples may vary significantly 

(e.g., number of step edges, point defects, etc.) and may additionally contribute to the observed 

differences.  After 24 hours (Figure 27b), the final thickness remains ca. 0.55 nm which is 

similar to HOPG.76  The inset of Figure 27b shows the first 2 hours of data taken in April 2015 

(sample 4).  There are slight differences between the adsorption kinetics and final thickness.  

This combined with data from Figure 27a indicates that a complex adsorption process occurs on 

the fresh MoS2 surface that is likely a strong function of local surface chemistry and current 

ambient conditions (e.g., temperature, pressure, concentration and type of hydrocarbons in air). 

These results corroborate several previous reports indicating that higher concentrations of 

polycyclic aromatic hydrocarbons (PAHs) were detected in air during cold winter months when 

anthropogenic emissions increased.303-311 Indeed, the total contaminant thickness in our 

experiments was greater during the winter (February) than the fall (October), 0.50 nm and 0.40 

nm, respectively.  Interestingly, the time scale of the initially fast adsorption after exfoliation was 

longer in the winter.  This may indicate that different contaminants preferentially adsorb 

depending on their concentration in the atmosphere, which changes throughout the year. Gomez-

Herrero et al. postulated that PAHs adsorb as islands rather than a homogeneous 2D film onto 

HOPG.  Reasonably, contaminant islands may also form on MoS2 which will additionally 

influence ellipsometry results because the polarized light will simultaneously interact with 
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contaminant islands and bare substrate.101 Most significantly, our results conclusively show that 

freshly exfoliated MoS2 spontaneously adsorbs airborne hydrocarbon contaminants to minimize 

overall surface energy.  These conclusions can be extended to HOPG and other TMDCs as well 

based on their congruent experimental results.75, 76, 297 

 

 

 

Figure 26.  ATR-FTIR of MoS2.  Sample was exfoliated and aged in air for specified time.  2 
min data takes acquisition time (2.2 minutes) into consideration.  Symmetric methylene 

stretching occurs at 2850 cm-1 and asymmetric methylene stretching occurs at 2920 cm-1.  Area 
of the curve (2830-2980 cm-1) is indicated for each spectrum along the right side of the figure.  

Data shifted on y-axis for clarity.   
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Figure 27.  Ellipsometry of freshly exfoliated MoS2.  (a) Data collected for 2 hours in October 
2013 (samples 1 and 2), February 2015 (sample 3), and April 2015 (sample 4).  (b) Data 

collected for 24 hours in April 2015 (sample 4).  Inset: Comparison of first 2 hours of data taken 
on different days in April 2015 (sample 4) corresponding to same data shown in (a) and (b). 

6.4 CONSEQUENCES OF CONTAMINATION 

Spontaneous contamination of fresh MoS2 results in a film ca. 0.50 nm thick that shields the true 

surface wettability.  This can have significant implications for applications that rely on the 

hydrophobicity of MoS2 as well as provides opportunity for tuning the wettability based on 

controlled contamination.  The data shows that the 0.50 nm thick contaminant layer concurrently 

results in a 20° increase of WCA (69° to 89°) and an 8.5 mJ/m2 decrease in surface energy.  

Figure 28a shows the correlation between WCA and surface energy as a function of surface 

contamination on MoS2.  This relationship can act as a guide for determining extent of 

contamination of MoS2 as well as understanding how surface energy is affected by contaminants. 

Assuming van der Waals interaction between water and substrate, Shih et al. showed 

through theoretical study that a single graphene layer blocks 70% of the van der Waals forces 
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transmitting from the substrate to the water molecules.237  Applying this concept to MoS2 and 

assuming van der Waals interactions dominate, it is reasonable to conclude that a contaminant 

layer 0.50 nm thick will block a significant amount of the attractive forces originating from the 

substrate (i.e., bulk MoS2).  Therefore, 30% would likely be the upper limit for the contribution 

of forces originating from MoS2 (or HOPG) and experienced by the water molecules assuming 

that the hydrocarbons have similar translucency to graphene.    

Polarized charge distribution is a salient feature of TMDCs that differentiate them from 

single atom thick van der Waals materials such as graphene that does not have a natural dipole.  

Exploitation of the charge polarization in MoS2, and other TMDCs, may allow researchers to 

create next-generation transistors with promising results reported recently.  Nguyen et al. showed 

that MoS2 can be grown preferentially onto ferroelectrically polarized lithium niobate in a 

process scalable for fabrication of low power transistors.312  Moreover, Santos and Kaxiras 

manipulated the dielectric constant of MoS2 by an external electric field indicating viability for 

use in uniquely tuned electronic devices.  Interestingly, they also propose exfoliation of 

monolayers using the induced interlayer charge imbalance.313 Charge dipoles in self-assembled 

monolayers impact wettability;314 however, the implication for a bulk van der Waals material 

remains unclear.  Reasonably, the observed WCA may be somewhat affected by a surface dipole 

but its effect may be insignificant for a bulk material; however, an investigation into this topic is 

necessary.  The influence of a surface dipole will subsequently be masked by adsorbed 

contaminants. 
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Figure 28.  Correlation between surface contamination and WCA/surface energy on (a) MoS2 
and (b) HOPG.  Solid lines are a visual guide.  Data from MoS2 is taken from this study.  WCA 
and contaminant thickness data for HOPG is taken from Reference 76 and surface energy data 
for HOPG is taken from Reference 75.  The leftmost data was taken on fresh surface at 0 min, 

the center data was taken on surface aged for 1 hour, and the rightmost data was taken on surface 
aged for 24 hours. 

6.5 MoS2 QUALITY 

Quality of the MoS2 sample was verified by XPS where the sample was exfoliated and 

immediately placed in the XPS vacuum chamber.  Data shown in Figure S1 of Reference 70 

indicates that the sample is pure MoS2 and no additional peaks were discerned.315-317 Fitting the 

survey spectrum for Mo 3d and S 2p peaks indicated that the results were nearly stoichiometric 

with atomic percentages of 37.4% and 62.6%, respectively.  The difference from stoichiometry 

may be due to defects (e.g., point defects, ridges, step edges) on the MoS2 surface and 

attenuation of sulfur atoms by molybdenum atoms.  Additionally, Wenzel analysis shows that 

surface roughness has a negligible effect on wettability with the Young’s contact angle (θY) of 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
60

70

80

90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6
60

70

80

90

100
W

C
A 

(o )

Contaminant thickness (nm)

40

42

44

46

48

50

52

54

56

58

24 hours

1 hour

 

Su
rfa

ce
 e

ne
rg

y 
(m

J/
m

2 )

0 min

(a) MoS2

W
C

A 
(o )

Contaminant thickness (nm)

40

42

44

46

48

50

52

54

56

58
(b) HOPG

24 hours

1 hour

0 min

 

Su
rfa

ce
 e

ne
rg

y 
(m

J/
m

2 )



129 

perfectly smooth MoS2 being 69.002° (see Supporting Info of Reference 70 for calculation 

details and Figure S2 for AFM images pertaining to Wenzel analysis).172, 173 

6.6 COMPARISON OF MOS2 TO HOPG 

These results on bulk MoS2 should be contrasted to similar studies performed on bulk graphite 

(Section 2.2 on page 12).  Highly ordered pyrolytic graphite (HOPG) has a WCA of 64.4° ± 2.9° 

within 10 seconds of exfoliation.  Upon exposure to ambient air WCA increases to ca. 90° after 

60 minutes and 97.0° ± 1.8° after 7 days.76 This WCA data on HOPG shows a trend very similar 

to MoS2 in the current study.  Moreover, ATR-FTIR and ellipsometry data provide nearly 

analogous results.  The methylene stretching peaks are very small or negligible on fresh MoS2 

and HOPG, respectively, and increase upon exposure time in ambient air.  Ellipsometry further 

indicates temporal dependence upon exposure of a fresh surface to ambient air.  The 

hydrocarbon contaminant layer was ca. 0.50 nm on the two surfaces. Similarity between results 

on HOPG and MoS2 indicate that both materials are intrinsically mildly hydrophilic and adsorb 

contaminants to reduce surface energy and exhibit their traditionally reported hydrophobicity. 

Figure 28 summarizes the consequences of surface contamination on wettability and 

surface energy for MoS2 and HOPG.75, 76  Three distinct observations can be made from this 

data:  (1) the overall WCA change of MoS2 is smaller than the WCA change of HOPG,  (2) the 

contaminant layer is thicker on HOPG after 1 hour and the total contaminant thickness for both 

materials is ca. 0.55 nm after 24 hours, and (3) the largest WCA change for MoS2 occurs after 1 

hour whereas the largest WCA change for HOPG occurs within the first hour.  These 

observations may provide qualitative insight into the nature of the adsorbed contaminants. 
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Assuming the same contaminants are adsorbed onto both MoS2 and HOPG, it can be possible to 

elucidate qualitative information on the type of contaminants based on their size (~0.50 nm) and 

affinity for the fresh substrate (adsorption occurs faster on HOPG). 

6.7 CONCLUSIONS 

Limitations of graphene, namely its zero bandgap, severely limit its usage in many applications 

ranging from biosensors for cancer detection, ultrasensitive detection of environmental gases, 

flexible devices, and low-energy LEDs.  Fabrication of these devices will require either 

functionalization of graphene to create a bandgap or other materials.  TMDCs have an intrinsic 

direct and indirect bandgap in their 2D and bulk phases, respectively.  This article has provided 

experimental evidence that bulk MoS2 is intrinsically mildly hydrophilic with a WCA of 69.0° 

and surface energy of 54.5 mJ/m2.  Upon exposure to ambient air, the high surface energy 

adsorbs hydrocarbons from the surrounding environment and becomes contaminated with a ca. 

0.55 nm film, thereby reducing apparent surface energy. 

Because properties of 2D material-based devices rely strongly on wettability and surface 

energy, which are fundamental surface properties that are important for understanding how a 

particular surface will interact with another surface such as in heterostructures, airborne 

hydrocarbon contamination is a serious concern that should be taken into consideration during 

device design. These results potentially extend to all TMDCs – as well as graphene, graphite, 

black phosphorus, and REOs – and can open new opportunities for these materials when 

spontaneous hydrocarbon contamination is considered. 
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7.0  RESEARCH DESIGN 

7.1 SAMPLE PREPARATION 

7.1.1 HOPG and pyrolytic graphite 

Details of each graphite sample are listed in Table 1 and surface images are shown in Figure 1.  

Data in Section 2 and Section 3 was collected on SPI-2.  Data in Section 4 and Section 5 was 

collected using primarily ZYA and PG; the sample is appropriately labeled throughout.  All 

samples were used as received with no further cleaning or processing.  Exfoliation was 

performed by the well-established tape method (Scotch brand 1-inch tape) where a piece of 

adhesive tape (Scotch brand 1-inch) was placed on the sample surface and gently rubbed to 

ensure contact between the tape and sample.12 The tape was then carefully pulled back, removing 

the upper surface layer, thereby exposing a fresh HOPG surface. Care was taken to ensure that a 

complete layer of HOPG was removed in each exfoliation.  Testing was performed away from 

HOPG flakes formed by exfoliation.  Pyrolytic graphite (PG) was exfoliated by carefully 

cleaving with a razor blade.  This sample was purchased from Graphite Store and used as 

received.318 
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7.1.2 MoS2 

Bulk MoS2 (2D Semiconductors; ca. 10x5x2 mm) was exfoliated with adhesive tape (Scotch 

brand 1-inch) to expose a fresh surface.12  The tape was applied to the upper sample surface and 

gently pressed to remove air bubbles and ensure contact between the tape and MoS2.  The tape 

was then gently pulled away causing the upper MoS2 layer to be removed, thereby revealing a 

fresh surface on the bulk sample.  The fresh surface was used for experiments only when 

exfoliation was clean with no flakes and the tape had a uniform coverage of removed material.  

This ensured that (1) the sample was actually exfoliated exposing a fresh surface and (2) tape 

residue did not remain on the bulk sample.  The fresh MoS2 was tested within 10 seconds to 

obtain results on the pristine surface.70 

7.1.3 Synthesis of CVD graphene 

Four copper foil samples (Alfa Aesar, 99.8%, 25 µm thick) each ∼4 cm2 in size were placed at 

the center of a 1 inch diameter fused quartz tube. The tube was evacuated and heated to 1000 °C 

under a 2.0 sccm H2 gas flow at a pressure of 100−110 mTorr for 30 min, followed by CH4 

(carbon source) gas flow of 20 sccm at 1000 °C for another 30 min at a total pressure of 500 

mTorr. Then the copper foil was cooled to room temperature under H2 and CH4 gas flow and 

taken out from the tube furnace. One G/Cu sample was tested immediately and referenced to as 

“fresh” surface. This sample was exposed to air only during transfer from the CVD chamber to 

the contact angle instrument (∼30 seconds until first contact angle test). The remaining samples 

were placed in a fume hood to ensure a consistent airborne hydrocarbon contamination level.  
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One liquid was used to test the same batch of samples, and testing using different liquids (water, 

diiodomethane, ethylene glycol, and glycerol) was conducted on different batches of samples.75 

7.2 WATER CONTACT ANGLE (WCA) 

Contact angle measurements were taken using a VCA Optima XE goniometer (AST Products) in 

ambient air at 22-25°C and 20-40% relative humidity with deionized (DI) water supplied from a 

Millipore Academic A10 with total organic carbon below 40 ppb.  Contact angles were recorded 

by a charge coupled device (CCD) camera and analysis was performed using vendor supplied 

software.  Static contact angles were conducted using 2 µL water drops, unless otherwise noted.  

CAs of the fresh surface were taken within 10 seconds of exfoliation.  All drops were placed on 

sample surface not previously exposed to water, thereby alleviating any influence from wetting 

history.  90° is generally considered the critical value between hydrophilic (CA<90°) and 

hydrophobic (CA>90°) behavior. Here we define CAs close to 90° are “hydrophobic” and lower 

CAs are more hydrophilic.  Diiodomethane (99%), ethylene glycol (99.8%), and glycerol (99%) 

were purchased from Sigma-Aldrich and used as received.75, 76 

7.2.1 Graphene 

A separate testing syringe was dedicated for each test liquid to avoid cross-contamination.  A 

liquid drop of 2 µL was formed at the end of the syringe and carefully deposited onto the sample 

surface. The syringe was withdrawn and the image of static contact angle was taken within 3 

seconds. The reported contact angle values are based on 5−8 repeats.75  
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7.2.2 MoS2 

Static contact angles were conducted using 2 µL water drops and 1 µL diiodomethane drops.70 

7.2.3 Saturated 1-octadecene vapor bath for HOPG 

A saturated 1-octadecene environment was created by thoroughly washing a glass petri dish with 

acetone and stacking glass microscope slides in the middle to create a plateau to set the HOPG 

sample without coming into direct contact with the liquid hydrocarbon.  Then ~10 mL of 1-

octadecene was added to create a reservoir.  The petri dish lid was put in place to create a closed 

environment where HOPG can be exposed to 1-octadecene at a greater partial pressure than in 

ambient air.  The HOPG was removed from the closed petri dish for testing at the indicated time 

and replaced back into the closed environment immediately after testing.  Aside from transfer 

and testing time, about 20 seconds total, the sample remained within the closed petri dish.76 

7.3 ATR-FTIR 

Measurements were conducted using a Bruker VERTEX-70LS FTIR and a Bruker Hyperion 

2000 FTIR microscope in reflectance mode.  A germanium 20x ATR objective was used along 

with a MCT A detector (7000 – 600 cm-1) cooled by liquid nitrogen.  The system was purged for 

20 minutes with nitrogen gas before the instruments were powered “ON.”  This purging allowed 

for removal of water and ambient gases within the instrument tubing; however, residual water 

and gases still remained because the system was only purged and not under vacuum. Peaks of 
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water and CO2 are outside the wavenumber region of interest in this study and do not affect 

results.  The nitrogen gas purge flowed throughout all experimentation and was only turned off at 

instrument shutdown.  The instruments were powered “ON” and the liquid nitrogen reservoirs 

filled until the detectors were appropriately cooled.  A background scan was taken of the 

surrounding air with the ATR objective set to pressure setting 1; the germanium crystal was not 

in contact with the sample during the background scan.  The germanium ATR crystal was 

contacted with the HOPG sample at pressure setting 1 and spectra were collected for 150 scans at 

4 cm-1 resolution with an acquisition time of 2.2 minutes.  Vendor supplied software was used to 

analyze spectra with corrections applied for atmospheric H2O and CO2.  HOPG was exfoliated 

using the tape method and the first test after exfoliation was taken within 10 seconds.  The 

instrument was located in an analytical characterization laboratory.70, 76 

7.4 SPECTROSCOPIC ELLIPSOMETRY 

Measurements were conducted with an Alpha-SE (J.A. Woollam Co.) spectroscopic ellipsometer 

with a wavelength range of 380 nm to 900 nm and an incident angle of 70°.  Data was collected 

in situ with an acquisition time of 10 seconds at 10 second intervals.  Modeling and analysis of 

data was performed using vendor-supplied software, CompleteEASE. The instrument was 

located in a wet chemistry laboratory. The effective optical constants of HOPG and MoS2 were 

determined using the b-spline model.70, 76  See Appendix A for details pertaining to the 

ellipsometry measurements. 
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7.4.1 Graphene 

Ellipsometry measures the change in Ψ and Δ of polarized light after interacting with a surface. 

Here Ψ represents the shift in amplitude and Δ represents the shift in phase of the polarized 

light.105, 180, 319, 320 Previous studies have showed that the change in phase shift (δΔ) is 

proportional to the film thickness.180, 181  The organic contamination on SiO2 has been 

characterized with ellipsometry and an increase of Δ with exposure time to organic contaminants 

was reported.105  In the current study, ellipsometry characterization was conducted on G/Cu 

samples with respect to the aging time in ambient air to monitor the possible airborne 

hydrocarbon contamination. Since Δ is most sensitive to thickness changes at low wavelength,321 

we monitored Δ at 501 nm and compared initial Δ on fresh G/Cu to the Δ value obtained on the 

aged surface.  The difference [Δfresh - Δaged(time)]wavelength = 501nm was taken as δΔ and plotted 

against the time exposed to ambient air.75 

7.5 RAMAN SPECTROSCOPY 

Micro-Raman spectra were obtained on a custom built setup using a 532 nm solid-state laser.  

The spot size was less than ~1 µm with laser power below 2 mW (HOPG)76 or 1 mW 

(graphene)75 to avoid any thermal damage to the sample surface. A detailed description of this 

micro-Raman setup can be found in previous literature.77, 108, 322  The integration time was 30 

seconds (HOPG) or 60 seconds (graphene) and the spectra have been shifted along the y-axis for 

clarity.75, 76 
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7.6 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 

Chemical analysis will be performed using a Thermo Scientific ESCALAB 250Xi X-ray 

Photoelectron Spectrometer (XPS) Microprobe with monochromated Al Kα x-ray source and 

200 µm spot size.  Charge compensation is supplied by a low-energy electron source.  The 

sample is inserted into the analysis chamber and the centre of rotation calibrated for angle-

resolved (AR) testing.  Then the charge compensation flood gun and x-ray gun are turned on, 

respectively, and a survey spectrum collected using 10 scans and a pass energy of 150 eV.  Next 

a high-resolution C1s scan is collected from 279-298 binding energy (eV) using 10 scans and a 

pass energy of 50 eV.  Spectra analysis is performed using Thermo Avantage software.  Data is 

collected at 0° where the photoelectron emission and the surface normal are equal and at 60° to 

increase surface sensitivity. 

7.7 ATOMIC FORCE MICROSCOPY (AFM) 

AFM imaging was performed in tapping mode on a Veeco Dimension V instrument using 

NSC15 Al-backside (MikroMasch; 40 N/m; 325 kHz) and NSC14 Al-backside (MikroMasch; 

5.0 N/m; 160 kHz) cantilever probes. 
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7.8 X-RAY DIFFRACTION (XRD) 

XRD experiments will be conducted with a high-sensitivity modular x-ray diffraction system 

(D8 DISCOVER with GADDS) with a Cu x-ray source. 

7.9 ULTRA HIGH VACUUM (UHV) TREATMENT OF HOPG 

UHV experiments were conducted at a base pressure less than 1×10-9 torr.  The HOPG sample 

was exfoliated and aged in ambient air for 2 weeks.  The sample was then placed in the vacuum 

chamber of a custom built XPS instrument and was evacuated to the appropriate pressure for 15 

hours.76 

7.10 ULTRAVIOLET/OZONE (UV/O3) 

UV/O3 treatment was performed with a Bioforce Nanosciences UV/Ozone Procleaner.  The 

HOPG sample was placed on the borosilicate glass platform inside the loading tray and treated 

for 5 minutes.76 
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APPENDIX A 

DETAILS OF ELLIPSOMETRY DATA ANALYSIS††† 

Ellipsometry measures the polarization state change of light upon reflection from a sample and 

has been widely used in real time to monitor film growth with data collected within seconds.319, 

320 In this study, we monitored hydrocarbon adsorption onto freshly exfoliated HOPG.  The high 

sensitivity of ellipsometry to sub-nanometer (nm) film is crucial to observe the temporal surface 

change.  Two measured quantities,  Ψ and Δ, represent the ratio of Fresnel reflection coefficients 

between parallel (p) and perpendicular (s) polarized light.  Δ, which reflects phase differences of 

the p- and s-polarized light, is very sensitive to small surface changes.  Measured values of Ψ 

and Δ are shown in Figure 29 at specific wavelengths.  As expected, Δ is more sensitive to 

surface changes and sensitivity is greater at lower wavelengths for both Ψ and Δ.321  

An optical model is necessary to determine material dielectric functions (ε = ε1 - iε2) and 

film thickness.  The dielectric functions of the HOPG substrate were extracted from the first data 

point, considered uncontaminated HOPG, after exfoliation using a Kramers-Kronig consistent b-

spline layer.323 Optical constants of HOPG ~10 seconds after exfoliation are shown in Table 21 
                                                

††† Published previously in the Supplementary data of Kozbial, A.; Li, Z.; Sun, J.; Gong, X.; Zhou, F.; 
Wang, Y.; Xu, H.; Liu, H.; Li, L. Understanding the Intrinsic Water Wettability of Graphite. Carbon 2014, 74, 218-
225.76 
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and Figure 30a.  n is the index of refraction and k is the extinction coefficient related by the 

complex refractive index, N = n – ik, which is related to the complex dielectric function (ε). At 

1.996 eV, our measured n and k are 3.202 ± 0.030 and 1.836 ± 0.027, respectively, matching 

well with literature values.324 Surface adsorption of hydrocarbons does not affect the optical 

constants of HOPG (Table 21).  The HOPG optical constants were then fixed during modeling of 

the adsorbed hydrocarbon layer. 

Simultaneous measurement of thickness and optical constants are difficult using 

ellipsometry;325 therefore, the adsorbed hydrocarbon layer on HOPG was modeled using a 

Cauchy dispersion equation with fixed index of refraction: 

 

n λ = A+ !
!!
= 1.45+ !.!"

!!
  Equation 55 

 

where n is the refractive index and λ is the wavelength in microns.  The Cauchy model is 

appropriate for transparent and dielectric thin films and assumes no absorption of light (i.e., 

k=0),321, 325 correlating well to the thinly adsorbed hydrocarbon film on HOPG.  Selection of the 

“A” constant in Equation 55 depends on the nature of material being adsorbed.  For this study, 

A=1.45 is an appropriate estimate for airborne hydrocarbon contamination of sub-nm 

thickness.326, 327 The effect of varying “A” is shown in Figure 30b.  The “one-film” model 

approach is well documented and applicable to systems with a constant substrate (e.g., HOPG) 

and a film over-layer (e.g., hydrocarbon).324 See Figure 30c for the a schematic of the “one-film” 

model. 
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Table 21.  Index of refraction (n) and extinction coefficient (k) of SPI-2 HOPG.  Data collected 
at 1.996 eV.  Optical constants are determined from the b-spline model.  Data presented as the 

average (standard deviation) of 11 experiments.  Exfoliated data taken ~10 seconds after 
exfoliation of upper HOPG surface.  Aged data taken ~60 min after exfoliation. 

 
 n k 

Exfoliated 3.202 (0.030) 1.836 (0.027) 

Aged 3.169 (0.029) 1.852 (0.031) 
 

 

 

 

Figure 29.  Temporal monitoring of ellipsometric quantities.  (a) Psi (Ψ) and (b) Delta (Δ) after 
HOPG exfoliation. 
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Figure 30.  Details of ellipsometry data for HOPG.  (a) Index of refraction (n) and extinction 
coefficient (k) of exfoliated HOPG ~10 seconds after exfoliation.  (b) Effect of varying value of 
the “A” constant in Cauchy model for determining thickness of adsorbed hydrocarbon layer on 
exfoliated HOPG.  A=1.450 is an appropriate estimate for the refractive index of hydrocarbon 

mixtures.326, 327  (c) “One-film” model used for ellipsometric measurement of adsorbed 
hydrocarbon film thickness. 
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APPENDIX B 

ELUCIDATING THE CRYSTAL STRUCTURE OF GRAPHITE 

X-ray diffraction (XRD) is an analytical technique for determining the crystallographic structure 

of materials.328  The layers of graphite are stacked in an organized ABAB manner and show only 

a single rocking curve at ca. 26.5 2θ which originates from the (002) plane.11, 329  Cu Kα 

radiation is generated at wavelengths of 1.541 Å (Kα 1) and 1.544 Å (Kα 2), thus a auxiliary 

peak at slightly higher 2θ, due to the Kα 2 radiation, must be stripped from the spectrum (the 

small peaks toward higher 2θ are artifacts of the Kα 2 stripping).  The only other peaks observed 

in the spectra were satellite peaks of the (002) rocking curve which are shown in Figure 31c.  

Data was collected using a Bruker D8 DISCOVER x-ray diffractometer.  

Pristine HOPG will have a single, well defined peak around 26.5°; however, Figure 31 

shows two peaks resolved for all the HOPG samples (after Kα 2 stripping).  This indicates that 

either (a) the sample has two different crystal structures, (b) there is a difference of interlayer 

spacing – d – throughout the sample, or (c) the two peaks are an artifact of Kα 2 stripping.  The 

second and third case is most reasonable considering that both peaks are very near the expected 

2θ for graphite.  XRD data on these samples were collected after being exfoliated numerous 

times for other experiments, thus slight damage to the sample may have occurred (see Section 
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4.2.2 for further analysis on surface damage caused by exfoliation).  Moreover, Raman 

spectroscopy shows that the HOPG samples have interlayer coupling of the graphene layers 

(ABAB stacking) indicated by resolution of two 2D peaks (Figure 14).208  Nevertheless, the data 

unequivocally shows a strong (002) rocking curve and the calculated d value is reasonable (Table 

22). 

Spectra of the different HOPG samples are nearly analogous and consistent with previous 

reports (Figure 31; peak fitting parameters are shown in Table 22).2, 7, 11, 329  The salient 

difference between samples is that PG shows a broad peak at 26.0° 2θ with a FWHM much 

larger than HOPG.  The peak position for PG is shifted ca. 0.50° towards lower diffraction angle 

(2θ) which is a consequence of increased disorder within the sample.  Li et al. showed through 

simulations that rotation, translation, curvature, and changes in interlayer spacing of the 

graphene layers cause the diffraction angle to decrease and the FWHM to increase.  XRD, 

however, does not provide decoupled information on the type of disorientation that causes 

changes in rocking curve lineshape; therefore, further information can not be deduced.11 

XRD is not a surface sensitive technique and provides information from the bulk material 

only; therefore, imperfections on the sample surface may be washed out because their 

contribution to the overall spectrum is very small.  The x-ray penetration depth for graphite was 

calculated using an Excel routine provided for free download by the Industrial Group of the 

British Crystallographic Association (xrdpenetr).330  The calculated x-ray penetration depth to 

attain 99% maximum intensity was 508 µm (762 µm to attain 99.9% maximum intensity; 

2θ=26.5; ρ=2.26 g/cm2).  Considering the thickness of a single graphene layer is 3.35Å, the x-

ray sampling depth was >1.5 million graphene layers.331 
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Professor William Henry Bragg and his son, William Lawrence Bragg, won the Nobel 

prize in 1915 for determining the crystal structures of NaCl, ZnS, and diamond.332  This work 

was made possible by their observations that the constructive interference of x-rays occurs at 

phase shift multiples of 2π and is strongest when θ satisfies the Bragg equation: 

 

2d sin θ = nλ  Equation 56 

 

where d is the interlayer spacing between atoms, θ is the scattering angle, n is a positive integer 

(which will be taken as 1), and λ is the wavelength of incident x-rays.333, 334 

Applying the Bragg equation to the XRD data (Table 22), the interlayer spacing for ZYA 

and PG is 3.36 Å and 3.43 Å, respectively.  The calculated d value for the HOPG samples, 

perfectly match the expected value for graphite.9, 11, 331, 335  The d value for PG is slightly larger 

because the sample is not highly oriented.11  The XRD data provides evidence that the HOPG 

and PG samples are sp2-hybridized carbon since the only response is from the (002) plane.11  

Furthermore, there are no detectable differences between the HOPG samples and PG can be 

classified as turbostratic carbon which corroborates Raman results (Section 4.1.1 on page 54). 
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Table 22.  XRD fitting parameters and interlayer spacing.  Data fit using the PsdVoigt1 function 
where xc was held constant and A, FWHM, and µ were allowed to fit (see Table 27 and Table 28 

in Appendix D).  Fitting data is for the leftmost (green dashed line) data.  The calculated 
interlayer spacing (d) is calculated from the Bragg equation. 

 
 ZYA SPI-2 ZYH PG 

xc (2θ) 26.48 26.45 26.44 25.99 

A 8.88 19.09 20.61 59.61 

FWHM 0.058 0.091 0.085 0.426 

µ 1.04 1.57 1.48 0.43 

d (Å) 3.36 3.37 3.37 3.43 
     

R2 0.95 0.92 0.90 0.99 

X2 8.11 11.57 23.44 2.32 
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Figure 31.  XRD spectra of freshly exfoliated graphite.  (002) rocking curve for (a) ZYA and PG 
and (b) SPI-2 and ZYH.  (c) Entire spectrum for ZYA and PG; spectrum for SPI-2 and ZYH is 
similar to the spectrum of ZYA.  High resolution spectra were collected from 23°-30° 2θ with 

0.002 increments and 0.3 sec/increment.  Kα 2 stripping was performed before peak fitting and 
dotted lines indicate peak fitting (parameters shown in Table 22). 
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APPENDIX C 

ELUCIDATING SURFACE CHEMISTRY BY XPS 

C.1 SURFACE CHEMISTRY 

XPS was performed on the graphite samples to determine surface chemistry and verify sp2 

carbon hybridization.  The focus of these experiments was to elucidate any chemical differences 

between the highest and lowest quality graphite samples.  ZYA was cleaved in air using 1-inch 

Scotch tape, mounted to the sample holder, and placed into the sample preparation chamber 

within 30 seconds of exfoliation.  PG was prepared similarly except the sample was cleaved with 

a razor blade to create a fresh surface.  Testing was performed using a Thermo Scientific 

ESCALAB 250Xi X-ray Photoelectron Spectrometer (XPS) Microprobe with monochromated 

Al Kα x-ray source (1486.6 eV) and 200 µm spot size (Appendix D discusses data collected at 

900 µm spot size).  A low-energy electron source supplied charge compensation. 

The following procedure was followed for all XPS experiments: (1) The survey spectrum 

was collected for 10 scans (pass=150 eV) followed by high resolution (2) valence spectrum for 

20 scans (pass=50 eV), (3) C1s spectrum for 10 scans (pass=50 eV), (4) O1s spectrum for 20 

scans (pass=50 eV), and (5) C KLL Auger spectrum for 10 scans (pass=50 eV).  Thermo 
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Avantage software was used for spectra acquisition and peak fitting was performed using 

OriginPro.  Data was collected at 0° where the photoelectron emission and surface normal are 

equal (90° takeoff angle).  Angle Resolved-XPS (AR-XPS) was used to identify surface and bulk 

components.  AR-XPS data were collected at 0° (more bulk sensitive) and 60° (more surface 

sensitive).336  Each spectrum is the average of separate experiments as indicated.  The standard 

deviation of spectra from different experiments was very small and the average spectra is 

representative of the individual experiment.  The only exception is O1s due to the very small 

amount of oxygen present on the sample.  All data are normalized to the highest peak. 

Figure 32 shows XPS data of ZYA and PG. Survey spectra show no discernible 

differences.  There is a strong carbon peak at 284.3 eV and a slight oxygen peak at 532.0 eV.  

Additionally there are valence peaks near 0 eV and C KLL Auger peaks near 1200 eV.  Peak 

fitting of the survey spectrum shows that carbon accounts for ca. 99.6 atomic percent (at%) and 

oxygen accounts for ca. 0.4 at% for ZYA.  Ashraf et al. reported a similar oxygen value, 0.60 

at%, for SPI-1 (comparable quality to ZYA) HOPG cleaved in air.230  In comparison, carbon 

accounts for ca. 99.1 at% and oxygen accounts for ca. 0.9 at% for PG.  High resolution valence 

(Figure 32b) and C1s (Figure 32c) scans appear to show no significant difference between the 

two samples.  The valence spectra have a peak stretching from 15-20 eV with a slight shoulder at 

12.5 eV.  The featureless peak is indicative of a defect free graphitic surface.337  The flat, broad 

peak at 15-20 eV is distinctly characteristic of graphite; whereas, sp3-hybridized carbon produces 

a sharp peak as first characterized by Shirley et al.338, 339 and confirmed through DFT 

calculations.340 Deconvolution of the C1s spectra is rigorous and will be explored in detail (vide 

infra). 
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Interestingly, the high resolution O1s spectra (Figure 33) are distinctly different.  The 

peaks were fit with a single symmetric Gaussian function to quantify the peak area and amount 

of oxygen in each sample.  The background was taken as a constant value from the average of 

endpoints and subtracted from the spectrum.  The calculated peak area of ZYA and PG is 0.110 

± 0.004 and 0.191 ± 0.004, respectively, indicating that there is ca. 75% more oxygen on the PG 

sample.  This difference appears significant, however, the large error of the spectra when 

averaged from the six experiments (Figure 33a) indicates that there is variability between 

different surface sites.  The variability is unsurprising since oxygen is not intrinsic to graphite 

and adsorbs at both defect sites and on the basal plane.230, 241, 317, 341, 342  Investigations on 

graphene doping show that molecular oxygen, organic molecules, and water vapor adsorb at 

edge sites, surface defects, and the basal plane in a manner which can also occur on graphite.343-

345  The amount of oxygen detected in the survey scan (Figure 32a) is ca. 0.4-0.9 at% indicating 

that the overall contribution of oxygen to the spectrum is small.  Nevertheless, both survey and 

O1s scans show that PG has about twice the amount of surface oxygen as ZYA. 

C KLL Auger peaks acquired through XPS are shown in Figure 34.  Following the 

spectra from low to high binding energy, both curves begin to increase at 1202 eV and peak at 

1218.6 eV.  At this point, ZYA takes a slight dip then increases to peak at 1227.4 eV while PG 

continues to decrease.  Both spectra then follow the same path towards increasing binding 

energy.  The only difference between the spectra is the peak location at 1227.4 eV for ZYA and 

1218.6 eV for PG.  Presence of these peaks, opposed to a featureless, rounded curve, indicates 

that the samples have very low defect density.346  These features become less pronounced as  



151 

defects and disorder are introduced to the sample as shown by Speranza and Laidani in which 

they irradiated HOPG surface with Ar+ ions for increasing amount of time and observed that the 

features disappeared with increasing exposure to damaging Ar+ ions.346 

 

 

 

Figure 32.  XPS spectra of graphite samples.  (a) Survey, (b) valence, and (c) high resolution C1s 
spectra of ZYA and PG.  Each spectrum is the average of six separate experiments. 
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Figure 33.  High resolution O1s spectra of ZYA and PG.  Each spectrum is the average of six 
separate experiments and error bars indicate standard deviation.  Inset of Figure 33b shows 

Gaussian function fitting results. 
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This result indicates unambiguously that both samples are sp2-hybridized carbon.  Considering 

this XPS data along with Raman and XRD results, we can conclude that both samples are high 

quality sp2-hybridized graphite with relatively little surface defects. 

 

 

 

Figure 34.  C KLL Auger spectra of graphite samples.  (a) High resolution spectra of ZYA and 
PG.  Each spectrum is the average of six separate experiments. First derivative of the (b) ZYA 
and (c) PG spectra in Figure 34a.  The vertical lines indicate the maximum and minimum peak 

position and the binding energy difference between these two points is the D-parameter.  
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C.2 C1s PEAK FITTING METHODOLOGY 

There is no standard method for fitting the C1s spectra of graphitic materials and researchers 

have developed numerous methods to describe the asymmetric peak.  Methods have ranged from 

(a) deconvoluting the main peak into nine separate symmetric peaks,356 (b) describing the peak at 

284.4 eV with a single Doniach-Sunjic function,357-360 and (c) fitting the surface and bulk 

components separately.335, 358, 361  Each method has inherent complexity and provides different 

information.  For example, the Doniach-Sunjic function describes the asymmetry (α) of the main 

peak by using convoluted Gaussian/Lorentzian functions.  Satellite and other peaks are 

concomitantly fit as a Gaussian/Lorentzian mix.  Contrarily, deconvoluting into nine separate 

peaks allows for a more precise fit although several of the peaks become very small and there is 

risk of overfitting the spectrum. 

Several researchers have investigated the physical meaning of the asymmetry parameter 

(α) by comparing graphite samples with varying degree of ion induced defects and fitting the 

resulting spectra.346, 360, 362-364  Peak asymmetry (and asymmetry parameter (α) in the Doniach-

Sunjic equation) correlates to the degree of defects within the sample where perfect sp2 carbon 

would have a single symmetric peak and α increases with amount of defects.360 That is, 

asymmetry correlates to the amount of surface defects. This approach is beneficial for 

understanding how the degree of surface defects affect the spectra.  α provides quantitative 

defect information but does not provide information on the type of defects or constituent peaks 

of the main asymmetric peak.   

ZYA and PG spectra were fit using the Doniach-Sunjic function for C1-C3 and 80% 

Gaussian PsdVoigt1 for C4-C5 (vide infra).  Section A.4 on page 178 has further details along 
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with fitting results.  Foremost, the Doniach-Sunjic asymmetry parameter (α) was similar for both 

ZYA and PG: 0.07 and 0.08, respectively, which is similar to previously reported values for 

HOPG and natural graphite.358, 365-367  Considering that previous work intentionally irradiated the 

HOPG surface with ions to induce asymmetry of the C1 peak (284.3 eV),360 the results of this 

study conclude that intrinsic defects of high quality samples do not manifest with significant 

asymmetry; therefore, quantifying intrinsic defects by α is not possible. 

Accurately fitting the C1s spectra of ZYA and PG is critical for elucidating any possible 

chemical differences between the two samples; therefore, five peak fitting functions were tried 

which deconvolute the main peak into five symmetric peaks.  The background was first removed 

by the Shirley method followed by fitting each of the five peaks (C1-C5; Table 23) with the 

Gaussian, Gauss, Lorentzian, PsdVoigt1, or PsdVoigt2 function in OriginPro. Appendix D.2 

(page 170) provides details of each function along with fitting results.  Literature suggests that 

the peaks are primarily Gaussian and partially Lorentzian and the peaks were systematically fit to 

determine which model provided the best results.357, 358, 363, 364 

After methodically fitting the spectra by the different functions, this study ultimately 

relies on the PsdVoigt1 function: 

 

𝑦 = 𝑦! + 𝐴 𝜇 !
!

!"#$
! !!!! !!!"#$! + 1− 𝜇 !

!!"# ! !!!! !

!"#$!

!"#$ !
!!" !

  Equation 57 

 

PsdVoigt1 is a linear combination of the Lorentzian and Gaussian functions where both terms 

have the same full width at half maximum (FWHM) value.368  The peak center (xc) was fixed  
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according to Table 23 and µ=0 for C1-C2 and µ=0.2 for C3-C5, where the function is 100% 

Gaussian when µ=0 and 100% Lorentzian when µ=1.  The peak amplitude (A; area) and FWHM 

were fit while the y-offset (y0) was fixed at 0. 

C.2.1 Fitting the C1s spectra 

The C1s spectra shown in Figure 35 has a prominent peak at 284.3 eV characteristic of sp2-

hybridized carbon.338, 339, 356, 360, 369, 370  This peak is asymmetric and becomes more asymmetric 

towards higher binding energy.  This asymmetry originates from surface defects on the sp2 

carbon lattice357, 360, 370 and necessitates deconvolution by several individual, symmetric peaks.  

The C1s spectra also has a satellite peak at 291 eV.  Yang and Sacher presented a method to fit 

the C1s spectra using five constituent peaks whose attributes are shown in Table 23.360, 363, 364  

This method was chosen because it provided an appropriate level of detail into the chemical 

nature of the C1s peak allowing for differentiation between sp2 carbon and surface defects 

without overfitting the spectrum.  The final results of fitting the ZYA and PG spectra are shown 

in Figure 35c and Figure 35d, respectively.  See Section A.3 on page 177 for comments on fitting 

error. 

Delocalized sp2 carbon (C1) accounts for 60-65% of the C1s spectrum with the remainder 

being (C2) localized sp2 carbon indicating defects and damage, (C3) free radical sp3 and C-O-C, 

(C4) π⇒π* shakeup of C2, and (C5) π⇒π* shakeup of C1.360, 363  The data in Table 23 shows 

that there are slight differences between ZYA and PG.  The delocalized sp2 carbon indicative of 

graphite has an at% of 65.6 and 59.1 for ZYA and PG, respectively.  Asymmetry of the large 

peak centered at 284.3 eV is caused by C2 and C3:  ZYA has a smaller amount of defects 
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resulting in 16.8 at%; whereas, PG has more defects resulting in 25.7 at%.  C4-C5 are similar for 

both samples.   

Since C4-C5 are shakeup satellites and do not directly contribute to the main peak 

asymmetry, they were subtracted from the C1s spectra then C1-C3 were refit to determine their 

relative contribution.  Figure 36 shows the C1s spectra with only C1-C3 fit using the parameters 

in Table 23.  The two peaks appear similar (Figure 36a) yet they result in different peak fits.  

Fitting PG to the exact same parameters as ZYA yielded a poor fit with large error.  PG required 

shift of the C2 peak center (xc) by 0.1 eV to provide a good fit.  The error of the fit shown in 

Figure 36b is 1-3% with greatest error around the C1 peak.  C2 contributes the most to 

asymmetry with 13.6 at% and 23.7 at% in ZYA and PG, respectively.  PG has about 75% more 

C2 contribution than ZYA.  Moreover, C3 plays a more significant role in ZYA.  This can be 

because O2 adsorbs at both defect sites and on the basal plane.230, 241, 317, 341, 342  ZYA has more 

basal surface while PG has more defect sites.  Part of this difference may also be due to peak 

fitting since there is some inherent variability when fitting small peaks.  Additionally, adsorbed 

contaminants can contribute to this behaviour since the sample is exfoliated in ambient air and 

transferred to the XPS preparation chamber which is then pumped down to UHV (~20 min).  

Contaminants will inevitably adsorb to the graphite surface upon exfoliation in air and 

subsequent pumpdown (see Section C.4 on page 165).  Overall, the data indicates that ZYA has 

more pristine sp2 carbon and less defects. 

Mangolini et al. used near-edge x-ray absorption fine structure (NEXAFS) spectroscopy 

and XPS to investigate the thickness and chemical nature of the adsorbed contamination layer on 

diamond and amorphous carbon.  They reported that the contaminant layer has a thickness of 0.6 

± 0.2 nm and consists of 19 ± 3% sp2 carbon.  Moreover, they report the ratio of adsorbed 
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oxygen-to-carbon to be 0.11 ± 0.02.236  Localized sp2 carbon is indicative of contamination and 

was determined to be 13.6 at% and 23.7 at% on ZYA and PG, respectively (Figure 36c).  These 

values agree fairly well to the value reported by Mangolini et al. claiming that the contaminant 

layer consists of 19 at% sp2 carbon.  Furthermore, ZYA had 7.5 at% of C-O-C (and sp3) bonding 

which is fairly similar to the 11% oxygen-to-carbon ratio.  These results show agreement 

between two complimentary methods and may further be refined for investigating what exactly 

adsorbs onto fresh graphitic surfaces. 

 

 

Table 23.  Peak attribution and fitting results for the C1s spectra of ZYA and PG.  Spectra are the 
average of eleven separate experiments (Figure 35) and fitting results are presented as the 

average at% (standard deviation) using the PsdVoigt1 function.  Reduced-χ2 of ZYA and PG fit 
is 3.23 x 10-5 and 4.27 x 10-5, respectively. 

 

Peak 

Peak Center 
(xc)360, 363 

 
(ZYA/PG) 

µ 
 

0=100% 
Gaussian 

 
1=100% 

Lorentzian 

Attribute360, 363 

ZYA PG 

atomic% FWHM atomic% FWHM 

C1 284.3 eV 0 delocalized sp2 
carbon 

65.6 
(3.0) 

0.997 
(0.004) 

59.1 
(1.9) 

1.000 
(0.005) 

C2 285.1/285.0 eV 0 
localized sp2 carbon 

(defects, damage, 
and contamination) 

11.3 
(4.1) 

1.385 
(0.075) 

18.4 
(2.0) 

2.813 
(0.331) 

C3 286.3 eV 0.2 
 

free radical sp3 & 
C-O-C 

5.5 
(2.2) 

1.606 
(0.204) 

7.3 
(2.1) 

6.010 
(1.010) 

C4 287.7/287.5 eV 0.2 π⇒π* shakeup of C2 3.0 
(1.6) 

2.666 
(0.651) 

1.6 
(1.8) 

6.001 
(2.934) 

C5 291.0/290.9 eV 0.2 π⇒π* shakeup of C1 14.7 
(1.7) 

5.219 
(0.253) 

13.7 
(0.7) 

5.474 
(0.543) 
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Figure 35.  High resolution C1s spectra of ZYA and PG.  (a) Each spectrum is the average of 
eleven separate experiments and error bars indicate standard deviation. (b) Residual/Error of 

PsdVoigt1 model. (c) ZYA and (d) PG spectrum fit with five symmetric peaks.  Shirley 
background was subtracted from raw data and peaks were fit with PsdVoigt1 function with µ=0 

for C1-C2 and µ=0.2 for C3-C5. 
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Figure 36.  High resolution C1s spectra where only peaks C1-C3 are fit.  (a) The data is taken 
from Figure 35 and the C4-C5 peaks are subtracted from the spectrum then C1-C3 are fit.  (b) 

Residual/Error of PsdVoigt1 model.  (c) ZYA spectrum with inset showing fitting results and (d) 
PG spectrum.  Reduced-χ2 for ZYA and PG is 6.21 x 10-5 and 7.28 x 10-5, respectively. 

C.3 ANGLE RESOLVED XPS (AR-XPS) 

AR-XPS data was obtained at 0° and 60° (grazing angle) to determine differences in the bulk and 

surface components of ZYA and PG.  Figure 37 shows the spectra along with fitting results for 

O1s.  ZYA showed an 87% increase of oxygen at grazing angle while PG showed a 50% 

increase.  This indicates that the oxygen contaminants are located primarily at the uppermost 
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graphite surface which is in contact with air.  It is important to note that the oxygen increase for 

ZYA is substantially greater than the oxygen increase for PG.  If oxygen were solely on the 

surface for both ZYA and PG, the increase would be similar, i.e., closer to the value for ZYA.  

The diminished oxygen increase for PG indicates that oxygen resides both at the sample surface 

and within the sample, possibly intercalated during storage or residual from sample synthesis.  

This hypothesis is further supported by Raman spectroscopy which indicates that PG is 

turbostratic with no (or weak) interlayer coupling and XRD data (Appendix B) indicating that the 

interlayer spacing of PG is 3.43 Å which is greater than the interlayer spacing of graphite (3.35 

Å).9, 11  This may allow for oxygen to intercalate and reside between individual graphene layers; 

whereas, strong interlayer coupling in ZYA minimizes opportunity for oxygen to intercalate.  

Moreover, PG has 44% and 15% more oxygen than ZYA at 0° and 60°, respectively.  After 

cleaving, adventitious carbon/oxygen compounds will rapidly adsorb onto the surface, 76, 77, 230, 

241 and these compounds, along with atmospheric oxygen, adhere at graphite surface sites.230, 241, 

317, 341-345  This is qualitatively consistent with Figure 33 showing that PG has greater oxygen 

content, thus more defects. 

The C1s spectra were fit using the PsdVoigt1 function with peaks attributed according to 

Table 23 and the at% for ZYA and PG are shown in Table 24.  When error is considered in the 

data, there is no significant change in at% for any of the peaks as the test becomes more surface 

sensitive.  Based on the origin of photoelectrons, the original hypothesis was that C1 would 

decrease and C2-C3 would increase with grazing angle; however, this clearly was not the case.  

C1 occurs within each layer of graphene, thus it is a bulk property and its contribution is 

expected to decrease with grazing angle.  C2 is localized sp2 carbon due to defects.  These 

defects are present within each layer of the sample but are more prominent on the surface due to 
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exfoliation (see Section 4.2.2 on page 71), thus it is more surface sensitive and should increase.  

Similarly, C3 is sp3 carbon radical or C-O bonding.  Since the bulk graphite is considered to be 

pristine and oxygen adsorbs at the surface, the C3 peak results from surface electrons and should 

increase with grazing angle.  C4-C5 are π⇒π* shakeup satellites and the electrons originate 

throughout the entire sample; therefore, their change should be related to C1 and C2. 

AR-XPS can not provide any quantitative information on defect density because the 

surface sensitivity of the test is not high enough (see Section C.4 on page 165).  Also, the surface 

is not homogeneous because defects are randomly distributed and contaminant adsorption occurs 

at both the basal plane and defect sites.  The adsorption can not be well controlled because it is a 

function of the specific surface being tested and the amount of hydrocarbons in air.  This leads to 

a relatively large error as shown in Table 24.  The variability is emblematic of AR-XPS data in 

general. 

A feature of the AR-XPS data is the C1 peak shift towards higher binding energy as angle 

increases.  As the test becomes more surface sensitive, surface defects become more prominent 

and cause a shift in the electron localization which manifests as a shift towards higher binding 

energy.358, 360  Peak asymmetry also increases with grazing angle since surface defects have a 

greater contribution to the spectrum.358, 361  In conclusion, ZYA and PG are sp2-hybridized 

carbon (C1 peak centered at 284.3 eV) with few surface defects and a small amount of adsorbed 

oxygen on the surface.  Similar to previous results at 0° (Figure 36 and Table 23), ZYA has a 

greater amount of pristine sp2 carbon (C1), less defects (C2-C3), and less adsorbed oxygen 

(O1s). 
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Table 24.  Fitting results of AR-XPS C1s spectra.  Spectra is average of three separate 
experiments (Figure 37) and fitting results are presented as the average at% (standard deviation) 

using the PsdVoigt1 function. 
 

 
ZYA PG 

0° 60° 0° 60° 

C1 66.3 
(5.1) 

63.4 
(4.3) 

62.4 
(0.6) 

60.0 
(2.5) 

C2 12.7 
(8.8) 

11.9 
(7.8) 

16.6 
(4.0) 

14.1 
(0.8) 

C3 3.9 
(3.4) 

4.4 
(3.1) 

2.4 
(1.3) 

4.2 
(0.5) 

C4 2.0 
(1.8) 

3.1 
(1.3) 

4.1 
(1.1) 

9.9 
(8.5) 

C5 15.1 
(1.5) 

17.1 
(7.9) 

14.5 
(3.3) 

11.8 
(6.3) 

R-χ2 2.27e-4 8.37e-5 5.32e-5 4.53e-5 
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Figure 37.  AR-XPS spectra of ZYA and PG.  Each spectrum is the average of two separate 
experiments.  O1s spectra were fit using a Gaussian function and inset shows peak area. 
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C.4 ATTENUATION AND EFFECTS OF CONTAMINATION  

XPS is a quasi-surface sensitive technique with a penetration depth ca. 8.7 nm in HOPG (at 90° 

takeoff angle).335  The number of sampled graphene layers (NGL) can be calculated using the 

interlayer spacing (d) of HOPG: 

 

𝑁!" =
!.!  !"
!.!!"  !"

= 25.9  Equation 58 

 

where d=0.336 nm for ZYA as determined by x-ray diffraction (Table 22 on page 146).  The 

relative intensity of photoelectrons detected from the surface (IS) is equal to 1/NGL, thus the 

surface contribution to the overall XPS signal is 3.9% and the bulk contribution (IB) is 96.1%.335 

An alternative approach is to calculate IS using the exponential decay equation: 

 

!!
!!
= 𝑒

!
!  !"#$ − 1  Equation 59 

 

where λ is the inelastic mean free path (IMFP) which equals 28-29 Å for HOPG and θ is the 

takeoff angle (90° when the penetration depth is 8.7 nm and least surface sensitive).335, 358, 371  

This yields a surface contribution (IS) of 6.0%.  Similar calculations can be made for PG and 

results are shown in Table 25. 

The surface contribution (IS) for both graphite samples at 0° is 4% and 6% depending on 

the calculation method.  This means that the XPS data presented above (specifically Table 23) 

has only ca. 5% contribution from the surface layer.  At 60°, there is ca. 50% difference between 

the two calculation methods: IS nearly doubles when the experiment becomes more surface 
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sensitive yet almost 13 graphene layers are still probed.  The sample would need to be tilted 85° 

(5° takeoff angle) for only 2 graphene layers to be probed;335 however, data could not be 

acquired above 60° tilt for the instrument and set-up used. 

 

 

Table 25.  Contribution of surface layer to XPS spectrum. 
 

 ZYA PG 

d (Å) 3.36 3.43 

 0° 60° 0° 60° 

NGL 25.9 12.8 25.4 12.5 

IS (Equation 58) 3.9% 7.8% 3.9% 8.0% 

IS (Equation 59) 6.0% 12.3% 6.1% 12.6% 
 

Note: See Appendix B for calculation of interlayer spacing (d).  The penetration depth at 60° 
(30° takeoff angle) is 4.3 nm. 

 

 

Hydrocarbon contamination occurs at the surface and does not diffuse or intercalate 

below the uppermost graphene layer; therefore, contributions from contamination originate on 

the surface.  Moreover, contamination is expected to be small since the sample is exposed to 

ambient air for <30 seconds before being placed in the XPS preparation chamber.  Once in the 

chamber, however, pumping down to UHV takes 20-30 minutes, in which time contaminants can 

still adsorb onto the surface although kinetics is significantly restricted.  There is likely sub-

monolayer coverage of hydrocarbon contaminants on the graphitic surface which adsorb to high 

energy defect sites. 
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C-C photoelectrons originate throughout the entire sample and the contribution of surface 

carbons are only ca. 8-12% even when the sample is tilted 60°.  This means that ca. 90% of the 

signal originates from bulk electrons and makes elucidating the surface defect density extremely 

difficult.  Future investigations should strongly consider testing at the highest angle possible 

where the sample is tilted 80° (10° takeoff angle) as demonstrated by Smith et al.358 and 

Speranza et al.335  This will significantly increase surface sensitivity and allow for the spectra to 

be fit using the Doniach-Sunjic asymmetry parameter for surface and bulk components.335, 358, 371 

C.5 XPS CONCLUSIONS 

XPS was used to elucidate the chemical nature of high and low quality graphite samples.  

Originally, we postulated that the defect density could be calculated by comparing the at% of 

photoelectrons originating from delocalized sp2-hybridized carbon; however, this proved 

unobtainable for several reasons illustrated above.  Nevertheless, valuable information pertaining 

to the quality of graphite samples and its hybridization was obtained through XPS and AR-XPS 

analysis.  Survey spectra on freshly exfoliated samples show that ZYA consists of 99.6% carbon 

(0.4% oxygen) and PG consists of 99.1% carbon (0.9% oxygen).  High resolution C1s spectra 

indicate the graphite chemistry is more nuanced: ZYA has 5% more sp2-hybridized carbon than 

PG. 

C1s spectra show that the pristine sp2 carbon content of ZYA and PG is 79% and 74%, 

respectively.  Defect sites and adsorbed oxygen contribute to the remaining 21% and 26%.  

Unequivocally, ZYA is a higher quality sample with less defects and more adsorbed oxygen.  

The latter phenomena may be a consequence of oxygen preferentially adsorbing to the basal 
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plane.  In conclusion, ZYA and PG are sp2-hybridized carbon (C1 peak centered at 284.3 eV) 

with few surface defects and a small amount of adsorbed oxygen on the surface.  ZYA has a 

greater amount of pristine sp2 carbon and less defects. 

While this XPS data is very informative and provides information on sample quality, it 

does not provide direct evidence of defect density.  High resolution C1s scans do show the 

relative contribution of sp2-hybridized carbon to other adsorbed species; however, the data does 

not provide a quantitative value for the amount of defects present on the sample surface.  The 

amount of defects can only be estimated by analyzing the amount of delocalized and non-sp2-

hybridized carbon and assuming that this contaminant contribution is proportional to the amount 

of defects (i.e., defect density) on the sample surface.  Although reasonable, this method is 

convoluted and does not provide direct quantitative defect data; therefore, Raman spectroscopy 

was used to determine defect density on graphite samples instead of XPS. 
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APPENDIX D 

DETAILS OF XPS DATA ACQUISITION AND ANALYSIS 

D.1 X-RAY SPOT SIZE: 200 µm vs. 900 µm 

The ESCALAB 250Xi allows for the x-ray size to be adjusted between 200 µm and 900 µm.  All 

XPS experiments presented in the main document were conducted at 200 µm; however, this 

parameter was decided by first testing ZYA at both spot sizes.  Figure 38 shows C1s spectra at 

both 200 µm and 900 µm spot size.  The shape of both spectra are similar.  The 900 µm spot size 

has more asymmetry towards higher binding energy indicating more defects.357, 360, 370  This 

makes sense because 4.5x more surface is being tested at 900 µm compared to 200 µm, thus 

more defects are detected.  The spectra were fit using the PsdVoigt1 function and fitting results 

are shown in Table 26. 

The most significant difference between the two spot sizes is the C2 and C3 at%.  C2 is 

greater at 900 µm and C3 is greater at 200 µm.  This could be due to the type of defects being 

detected.  C2 is localized electrons due to defects and adsorbed oxygen.  C3 is free radicals and 

C-O-C bonding.  At smaller spot size the amount of free radicals and localized defects are 

similar.  At larger spot size, more localized defects are detected indicating that free radical and 
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C-O-C sites are less common.  The overall amount of defects are similar: 15.1 at% for 200 µm 

and 17.1 at% for 900 µm.  Additionally, C1 at% is similar at both spot sizes.  This indicates that 

x-ray spot size does not have an impact on the drawn conclusions. 

 

 

Table 26.  XPS fitting results of ZYA C1s spectra for different x-ray spot sizes.  Data is 
presented as the average atomic% (standard deviation). 

 

 200 µm 900 µm 

C1 68.3 
(7.4) 

66.6 
(5.8) 

C2 7.7 
(0.8) 

14.3 
(2.9) 

C3 7.4 
(4.5) 

2.8 
(1.9) 

C4 2.3 
(2.4) 

1.3 
(1.1) 

C5 14.2 
(0.4) 

14.9 
(0.1) 

R-χ2 3.15e-5 8.08e-5 

 

D.2 C1s FITTING PROCEDURE 

Fitting the C1s spectrum can be done either by a Doniach-Sunjic function which accounts for 

asymmetry towards higher binding energy or deconvoluting the peak into several asymmetric 

peaks.360, 363  The Doniach-Sunjic approach provides information on the relative amount of 
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defects (since asymmetry increases with defects) but not the type of defects.  Deconvoluting into 

several peaks will provide more detailed information on the type of defects and their contribution 

to the overall spectra.  Therefore, it was chosen to deconvolute the C1s spectra of ZYA and PG 

into five peaks.  The five peaks were chosen according to data presented by Yang and Sacher.360, 

363  The peak attribution and peak center (xc) are shown in Table 23. 

Five peak fitting functions were selected based on data found in literature for fitting C1s 

spectra and functions available in OriginPro.  Factors influencing the fit of each peak are: peak 

position (xc), area (A), full width at half maximum (FWHM), and % Gaussian-Lorentzian (µ).  

Table 27 and Table 28 show details of each function and their fitting parameters. The PsdVoigt 

functions are controlled by a profile shape factor (µ) which dictates weight of the Lorentzian and 

Gaussian terms.  The peak is 100% Gaussian when µ=0 and the peak is 100% Lorentzian when 

µ=1.  Therefore, µ=0.2 means that the peak is 20% Lorentzian and  80% Gaussian.368 
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Figure 38.  High resolution C1s spectra for different x-ray spot sizes.  (a) 200 µm spectrum is the 
average of  five separate experiments and 900 µm spectrum is the average of three separate 

experiments.  (b) Residual/Error of PsdVoigt1 model.  (c) 200 µm and (d) 900 µm spectrum fit 
with five symmetric peaks.  Shirley background was subtracted from raw data and peaks were fit 

with PsdVoigt1 function with µ=0 for C1-C2 and µ=0.2 for C3-C5. 
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Table 27.  Details of functions used for fitting the C1s spectrum.368 
 
Function Equation 

Gaussian 

 

Gauss 

 

Lorentzian 
 

PsdVoigt1 

 

PsdVoigt2 

 

Doniach-Sunjic 
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Table 28.  Parameters of functions used for fitting the C1s spectrum.368 
 
Function Notes Fit Constant Calculated 

Gaussian FWHM version of Gaussian A 
FWHM 

yo 
xc 

--- 

Gauss Area version of Gaussian A 
w 

yo 
xc 

σ 
FWHM 

H 

Lorentzian --- A 
FWHM 

yo 
xc 

H 

PsdVoigt1 
Linear combination of 

Gaussian and Lorentzian 
with same FWHM 

A 
FWHM 

yo 
xc 

µ 
--- 

PsdVoigt2 
Linear combination of 

Gaussian and Lorentzian 
with separate FWHM 

A 
FWHMG 
FWHML 

yo 
xc 

µ 
--- 

Doniach-Sunjic --- 
H 
w 
α 

yo 
xc 

--- 

 
Note: A=peak area; w=width; FWHM=full width at half maximum; FWHML=FWHM of 

Lorentzian term; FWHMG=FWHM of Gaussian term; H=peak height; yo=y-offset=0; xc=peak 
center; µ=% Gaussian-Lorentzian; α=asymmetry parameter. 

 

 

Several combinations of the functions in Table 27 were used to determine which resulted 

in the best fit.  Figure 40 shows some examples of spectra fit by various models and Figure 39 

shows quantitative fitting data.  Lorentzian and PsdVoigt2 fits were always the worst and 

removed from consideration.  This left Gaussian, Gauss, and PsdVoigt1.  Previous researchers 

have commonly settled on a mixture of Gaussian and Lorentzian curves,357, 358, 363, 364 so several 

combinations were tried. Ultimately, PsdVoigt1 resulted in the best fitting with the lowest 

reduced-χ2.  To determine the best %G-L (µ), the peaks were fit by (a) µ=0.2 (80% Gaussian) as 

shown in Figure 40c and (b) µ=0 (100% Gaussian) for C1-C2 and µ=0.2 (20% Lorentzian) for 
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C3-C5 as shown in Figure 40d.  The second scheme (b) was chosen because it included a 

Lorentzian term for peaks C3-C5, which is supported by previous work.357, 358, 363, 364  Table 29 

includes notes on each model.  Conclusion: The PsdVoigt1 model was chosen where µ=0 for C1-

C2 and µ=0.2 for C3-C5. 

 

 

 

Figure 39.  Fitting results of C1s spectra by various models.   (a) Area% of peaks C1-C5 fit by 
Gaussian, Gauss, and PsdVoigt functions and reduced-χ2 for models. (b-f) Calculated area for 

the modeled spectra.  Gaussian: All peaks are fit by Gaussian function.  Gauss: All peaks are fit 
by Gauss function.  PVa: PsdVoigt1 function where µ=0.20 for all peaks.  PVb: PsdVoigt1 

function where µ=0 for C1-C2 and µ=0.2 for C3-C5. 
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Figure 40.  Peak fitting the C1s spectra using various models.  Spectrum fit using (a) the 
Gaussian function, (b) the Gauss function, (c) 80% Gaussian function, (d) mixed 100%/80% 

Gaussian function.  (e) Residual/Error of models. 
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D.3 COMMENTS ON ERROR OF C1s FIT 

The C1s fitting data presented in Figure 35 and Table 23 clearly show differences in the 

chemical composition of ZYA and PG.  ZYA has a greater amount of pristine sp2 carbon (C1); 

however, this difference is reduced from 6.5 at% to 1.6 at% when error is considered.  Even at 

the limit of experimental error, ZYA exhibits greater pristine surface than PG.  Additionally, C2 

at% is greater on PG than ZYA by 1% when considering error.  There is no difference in the C3 

peak of the two samples.   

Peak fitting is an iterative process which converges when the error between the raw data 

and model is at a minimum.  The error is quantitatively depicted as reduced χ2 which was 3.23e-

5 and 4.27e-5 for ZYA and PG, respectively, and the R2 value was 0.999 for both samples.  

While the overall fitting is very good, the fitting of each peak (C1-C5) has some degree of 

associated variability because the fitting is dependent on the other peaks within the model.  In 

other words, C1 is dependent on C2-C5 and so forth.  This results in intrinsic error of the model 

itself which is realistically estimated to be 1-3% (Figure 35b).  This error is included in the 

standard deviation shown in Table 23. 

To conclude, error has an effect on the quantitative conclusions pertaining to the defects 

of ZYA and PG.  The data clearly shows that ZYA has greater amount of pristine carbon and less 

amount of defects.  This qualitative conclusion remains true when error is considered, even 

though the quantitative values change.   
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D.4 DONIACH-SUNJIC C1s FIT 

Figure 41 shows the C1s fitting result for ZYA and PG using the Doniach-Sunjic function for 

peaks C1-C3 and the PsdVoigt1 function (µ=0.2) for peaks C4-C5.  This provided a better fit 

than using the Doniach-Sunjic function for C1-C2 and the PsdVoigt1 function for C3-C5.  Either 

way, the asymmetry parameter (α) was ca. 0.07 for ZYA and 0.08 for PG, suggesting that 

intrinsic defects can not be quantified by the Doniach-Sunjic function.  Intentional defects, 

however, caused by irradiating with ions can be quantified by this function.360 

 

 

Table 29.  Observations and notes of peak fitting models. 
 

Function Notes 

Gaussian 
• All peaks able to be fit. 
• Similar result to other models. 
• Lower χ2 than Gauss. 

Gauss 
• All peaks able to be fit. 
• Similar results to other models. 
• Same result as Gaussian with slightly higher χ2. 

Lorentzian • Always fails to fit C4.  Peak area becomes negative. 
• Higher χ2 than other models. 

PsdVoigt1 

• All peaks able to be fit with result similar to Gaussian and Gauss. 
• PVa: Fit all peaks with µ=0.2 (80% Gaussian). 
• PVb: Fit C1-C2 with µ=0 (100% Gaussian) and C3-C5 with µ=0.2 (80% Gaussian) 
• Allowing µ to be fit (opposed to constant) does not provide realistic results. 

PsdVoigt2 • Always fails to fit C2.  FWHML is unrealistic for C2 and C4. 
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Figure 41.  Doniach-Sunjic fitting results of the C1s spectrum.  C1-C3 were fit using the 
Doniach-Sunjic function and C4-C5 were fit using the PsdVoigt (µ=0.2) function for (a) ZYA 

and (b) PG. 
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