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LIGHT MANAGEMENT IN SILICON NANOSTRUCTURES FOR

PHOTOVOLTAICS

Baomin Wang, PhD

University of Pittsburgh, 2016

The main challenge with the use of silicon for photovoltaics is that silicon is not a strong

absorber of sunlight in the near-infrared region. Conventional silicon photovoltaics are thus

typically of thicknesses 200 to 300 µm to ensure the absorption of most sunlight. However,

single crystalline silicon solar cells require expensive manufacturing methods. So current solar

cell technology is not as competitive as that of traditional energy sources. To promote and

increase the silicon solar cell capacity, costs need to drop below $1/W. Increasing absorption

of light in the absorber layers is critical issue for achieving high efficiency silicon solar cells.

Various light trapping methods have been developed, experimentally and computation-

ally. Light trapping with sub-wavelength nanostructures involves coupling light into local-

ized resonant modes and guided resonance modes in active region to increase absorption.

Nanophotonic light trapping strategies have used structuring of the silicon itself or pattern-

ing of dielectric materials on front and back of silicon.

In order to continue developing cheap and high efficiency silicon solar cells, we studied

several anti-reflection and light trapping structures with lower cost and higher absorption.

First of all, tapered nanocone structure was proposed and studied and then fabricated via

Bosch process. Secondly, high refractive index nanosphere scheme was investigated as a light

trapping strategy which does not create new surface or interface and is easy to fabricate.

Then inverse woodpile and woodpile photonic crystal structures were studied and proven to

have superior light trapping ability due to the ability to engineer the photonic density of

states.
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Finally, ultrathin silicon was fabricated via wet etching method, and then high refractive

index nanosphere layers were coated and the power conversion efficiency was increased by

26.5%. Furthermore, metal nanomesh was used as front contact to substitute traditional

indium tin oxide, and the power conversion efficiency was increased by 53% due to high haze

factor and lower sheet resistance of the metal nanomesh. More importantly, with the metal

nanomesh as front contact, the ultrathin silicon solar cells showed superior flexibility.
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1.0 INTRODUCTION

1.1 SOLAR ENERGY AND SOLAR CELLS

The population of the world is increasing rapidly over the past decades, as a result, there

has been a steep increase in global demand for energy. The demand was over 524 quadrillion

British thermal units (BTU) in 2010, and it is expected to increase to 630 BTU in 2020 and

820 BTU in 2040 [1] which is mostly obtained from fossil fuels. Thus, other problems coming

with extravagant energy consumption are environmental issues. The global energy related

CO2 emissions reached a historic high of 31.6 gigatonnes in 2012, regarded as a suspected

cause of serious climate change [2]. Renewable energy is an important approach to solve this

situation. Exploiting sustainable, environment friendly and cost-effective energy resource

becomes highest priority. Geothermal, wind, hydrowater, bioenergy and solar energy are all

renewable energy source. Solar energy is the most attractive one due to the omnipresence

and abundance across the whole globe. The sun delivers 23000 TW of energy to the earth

per year, which is much higher than annual global energy consumption. More importantly,

the energy conversion from solar light is free of pollution, noise and green house emission. As

shown in Figure 1, solar energy has much bigger potential than any other renewable energies

[3].

Solar energy can be transformed into electricity either thermodynamically [4] or electroni-

cally. The first method is indirect since the solar thermal energy, focused in specially designed

optical collectors, is used in steam turbines or other heat engines to produce electricity. The

other method instead converts the solar energy directly into electricity by opto-electronic

devices, called solar cells. Particularly, after decades of research after the first solar battery

developed at Bell Labs [5], so efficient production of electricity by different types of solar cells

1



Figure 1: Potential energy production per year of various types of renewable energies. The

horizontal line indicates the world energy consumption in 2010.

is current available. Even photovoltaic technologies might be applied anywhere needed, if

only the six black circles area in Figure 2 are covered in solar panels of only 8% efficiency, 18

TW of energy could be produced which probably could meet the global electricity demand

[6]. It should be noted that many solar cell designs which exceed 8% conversion efficiency

have been produced. So solar energy and solar cells technology is the best way to solve

energy crisis problem.

1.2 MILESTONES IN SOLAR CELLS

In 1839, Alexandre-Edmond Becquered discovered the photovoltaic effect [7]. His experi-

ments demonstrated that light could introduce current when the interfaces of two liquids

was illuminated by sunlight or ultraviolet light. After that, lots of other experiments were

setup, including solid equipments with copper or selenium as light sensitive materials [8–10],

as a result, plenty of patents were issued about how to set up photovoltaic devices. However,

the modern photovoltaic time began after Teal and Little [11] adapted the Czochralski pro-
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Figure 2: Total primary power density supply from sunlight. The colors show a three year

average of solar irradiance.

cess [12] to obtain germanium or silicon crystalline wafers in 1948. Based on lots of previous

work on photovoltaics, Fuller, Pearson and Chapin from Bell Labs fabricated the first p-n

homojunction silicon solar cell [13] in 1954. In the same year, Reynold et al [14]. fabri-

cated the first CdS based heterojunction photovoltaic device. In 1970, Zhores Alferovs team

made the first effective GaAs heterostructure solar cell for space applications. And the first

amorphous silicon solar cell with 2.4% conversion efficiency was reported in 1976 by Carlson

and Wronski [15]. Entering 1980s, the concept of tandem solar cells, quaternary compounds

and novel ternary were introduced to increase the conversion efficiency further. University

of Delarware made CuZnS/CdS solar cell with 10% conversion efficiency [16]. Greens team

[17] from University of New South Wales reported a solar cell based on silicon wafer breaking

20% conversion efficiency with application of passivation and light management in 1985. In

1990s, lots of different designs of tandem double and triple junctions devices were fabricated

based on amorphous silicon, nano-crystalline silicon and alloys [18]. The dye sensiteized

solar cell (DSSC) was invented by O’Regan and Gratzel [19] in 1991 aiming for low cost pho-

tochemical production. After 2000, solar cell techniques have been improved significantly

and lots of the techniques are commercial available. The total solar photovoltaic capacity is

approaching 100 GW milestone recently.
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Figure 3: Efficiency and cost projections for first (I), second (II), and third generation (III)

PV technologies (wafer-based, thin films, and advanced thin films, respectively).

1.3 CURRENT SOLAR CELLS RESEARCH AND STATUS IN QUO

For current solar cell research, the solar cell technology is typically classified in: first gen-

eration, second generation and third generation. Figure 3 shows the efficiency and cost

projections for all three generation solar cells [20].

The first generation includes cells consisting of Silicon or Germanium that are doped

with Phosphorus and Boron in a pn-junction. Typical examples are like passivated emitter

with rear locally diffused cell, panasonic HIT cell and multi-crystalline cell. This generation

is dominating the commercial market.

Second generation solar cells are usually called thin-film solar cells because when com-

pared to crystalline silicon based cells they are made from layers of semiconductor materials

only a few micrometers thick. The combination of using less material and lower cost manu-

facturing processes allow the manufacturers of solar panels made from this type of technology

to produce and sell panels at a much lower cost. There are basically three types of solar cells

that are considered into this category, amorphous silicon, and two that are made from non-

4



Figure 4: Reported timeline of solar cell energy conversion efficiencies (from National Re-

newable Energy Laboratory (USA)).

silicon materials namely cadmium telluride (CdTe), and copper indium gallium diselenide

(CIGS). And organic solar cells and DSSC solar cells are other alternative technologies for

low cost solar energy devices.

The third generation solar cells intend to combine the high efficiency and low costs. This

new generation of solar cells are being made from variety of new materials besides silicon,

including nanotubes, silicon wires, solar inks using conventional printing press technologies,

organic dyes, and conductive plastics. Enormous researches have been done on third gen-

eration solar cells, but it’s still in the lab stage. Solar cells have been developed rapidly

since invented, and various of types solar cells have been fabricated and made commercial

available, in Figure 4 the research record on solar cell efficiency since 1975 is shown.

1.4 SILICON THIN FILM SOLAR CELLS

Silicon is the second most abundant natural element on Earth but is rarely found in its ele-

mental form. Usually extracted from its oxides and silicate, it can be industrially prepared

in crystalline or amorphous form. While silicon has an almost-ideal band gap for single p-n

5



junction photovoltaics, its infrared absorption is poor. Silicon has absorption lengths > 6 µm

for photons in the infrared region (energy E < 1.7 eV) and absorption lengths > 200 µm for

photons with wavelength > 1000 nm (E < 1.2 eV). Typical single-crystalline silicon photo-

voltaics are thus usually several hundred microns thick to absorb sunlight effectively. These

silicon solar cells require costly manufacturing processes such as purification, crystallization,

and wafer slicing in order to ensure that generated carriers are collected efficiently.

The amorphous silicon (a-Si) is deposited on thin films with chemical vapor deposition

(CVD) or plasma assisted CVD methods. a-Si differs from crystalline silicon for its disordered

lattice with intrinsically imperfections which serve as recombination centers, thus decreasing

the electron and hole diffusion length compare to crystalline silicon. The introduction of

hydrogen atoms during the deposition can partially improve this problem. The hydrogenated

amorphous silicon (a-Si:H), behaves similarly to a direct band gap semiconductor with band

gap varying 1.6 eV to 1.9 eV depending on deposition recipes. The defects density is 2

or 3 orders of magnitude higher in doped a-Si:H due to the thermal equilibrium between

dopants and defect creation, so a higher recombination rate for charge carriers. Therefore a

conventional p-n junction, as used in c-Si solar cells will not work adequately because most

charge carrier are lost during the silicon layers before they can be extracted from solar cells.

However, a p-i-n junction can solve this problem. The sandwiched intrinsic layer between

doped layers serve as the main light absorber. The doped layers induce electric fields separate

and push carrier toward the terminals to be collected. Figure 5 shows typical p-i-n junction

and n-i-p junction solar cells with front transparent conductive oxide (TCO), junction, back

TCO and back reflector.

Diluting silane or disilane with increasing flows of hydrogen and spanning regimes of high

pressure and high power result in the formation of a crystalline phase within the amorphous

tissue called hydrogenated nano-crystalline silicon (nc-Si:H) with a band gap close to that

of crystalline silicon. Nc-Si:H shows higher absorption in infrared part of the spectrum

and higher electron mobility with fewer defects. It’s also less sensitive to the light induced

degradation. By now, the highest reported and certified nc-Si:H single junction cell efficiency

is 10.1% [21].

6



Figure 5: Schematics of thin-film silicon solar cells in the p-i-n and n-i-p configuration.
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2.0 COMPUTATION METHODOLOGY

2.1 SOLAR SPECTRUM

The solar spectral irradiance is shown as the green line in Figure 6 provides the power density

used to calculate the conversion efficiency of a solar cell. The emitted photon flux density

per unit area per unit solid angle per unit frequency which is derived later on from the

Bose-Einstein Distribution and the density of states is

bΩ(E)dEdΩ =
2n2

h3c2

E2

exp (E−µ
kT

)− 1
dEdΩ (2.1)

And irradiance or power flux density I(E) can be calcualted as,

I(E) = Ebs(E) (2.2)

where bs(E) is the photon flux density.
∫∞

0
I(E)dE = 1, 000 W/m2 for AM1.5 Global

which is used for testing flat panels.

2.2 OPTICAL PROPERTIES SIMULATION METHODS

Simulation methods are vital to the development of next-generation solar cells such as plas-

monic, organic, nanophotonic, and semiconductor nanostructure solar cells. Simulations are

predictive of material properties such that they may be used to rapidly screen new materials

and understand experimental results.

Most simulations have focused on analyzing and improving the solar absorption of the sil-

icon active region. Nanostructured solar cells have feature sizes smaller than the wavelengths

8



Figure 6: Solar spectrum, the green line is the AM1.5 Global.

of most of the solar spectrum. Geometrical optics is no longer applicable at these length

scales and ray-tracing methods are thus, inaccurate. Instead, simulation methods which cap-

ture the wave-like nature of light must be utilized such that effects such as interference and

diffraction are properly captured. The absorption, transmission, and reflection spectra of

most nanomaterials can be predicted from a completely classical theory of electromagnetism.

This involves solving Maxwell’s equations:

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B

∂t

∇×B = µ0J + µ0ε0
∂E

∂t

(2.3)

where E and B are the electric and magnetic fields, and ρ and J are the free charge and

current densities. The materials may be parameterized through phenomenological material

parameters such as the complex valued refractive index, n(ω) = nr(ω)+ni(ω) or the complex

permittivity ε(ω) = εr(ω) + εi(ω). Simulations agree well with experiments, and typically

semiclassical treatments (where light is treated classically and the material is treated quan-

tum mechanically) or full quantum treatments are unnecessary. For example, silicon has a
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Bohr exciton radius of about 2 nm, such that silicon nanostructure dielectric constants are

not modified by quantum mechanics.

A variety of electrodynamic simulation methods have been used in studying the in-

teractions of electromagnetic radiation with nanostructures including the transfer matrix

method (finite difference frequency domain),[22–24] finite element method,[25, 26] rigorous

coupled mode analysis (fourier modal method),[27, 28] and finite difference time domain

methods.[29, 30] Electrodynamic simulation methods can be generally classified into time-

domain simulations or frequency-domain response methods, and frequency-domain eigen-

solvers. Common discretization schemes are finite differences, finite elements, and spectral

methods.

Finite difference frequency domain methods such as the transfer matrix method comprise

of solving for the electric field E(r) exp−iωt in terms of the current source J(r) exp−iωt in

Maxwell equations: [
(∇×∇− ω2

c2
ε(r)

]
E(r) = iωµ0J(r). (2.4)

The finite difference or finite element method may be applied to this linear equation to

discretize it. These equations must be solved for at every frequency, where a table of exper-

imental dielectric constants may be used.

In time domain methods, the full time dependent Maxwell equations are solved for in both

space and time. The most common implementation for time-domain simulations is the finite-

difference time-domain method (FDTD technique) which divides space and time into a grid of

discrete points and approximate the derivatives in Maxwell equations by finite differences.[31]

A Yee grid is used in which the different field components are associated with different

locations on the grid.[32] Many frequencies can be computed with a single computation, by

taking the Fourier transform of the response to a short pulse. This is the method we use in

our research, and a commercial-grade simulator based on the finite-difference time-domain

method was used to perform the calculations, [33] capable of analyzing the interaction of UV,

visible, and IR radiation with complicated structures employing wavelength scale features.

Appropriate boundary conditions can be used to reduce the simulation cell. For example,

periodic boundary conditions are used to model semi-infinite arrays. Symmetric and anti-

symmetric boundary conditions may also be used to reduce the simulation size. Perfectly
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matched layers (PML) are typically used for certain boundaries of the computational region

to ensure that fields radiate to infinity instead of reflecting when they interact with the edge

of the simulation cell.[34] Simulations where the only absorbing material is the active region

may use A(E) = 1 − R(E) − T (E) to calculate the absorption spectra. In plasmonic solar

cells or other architectures which involve other parasitically-absorbing materials other than

the photoactive active region, the position-dependent absorption must be calculated. The

position dependent absorption per unit volume may be calculated from the divergence of the

Poynting vector ~P which will be discussed in details in next part.

2.3 SOLAR CELL PERFORMANCE CALCULATIONS

There are several important parameters to characterize the optical performance of a cell

solar, such as absorption and absorption length and ultimate efficiency. Meanwhile, electrical

properties such as short circuit current density, electrical field and generation rate are also

used to evaluate and analyze the performance of a solar cell. Here gives out the formulas

to calculate these parameters under the solar spectra AM1.5. The index of refraction is

n = nr − jni, where ni > 0 corresponds to loss. For non-magnetic media, the absorption

coefficient is defined as

α ≡ 1

I

d

dz
I. (2.5)

α =
2ω|ni|
c

=
4π

λ
|ni| . (2.6)

The time-averaged power flux varies from cross-section to cross-section as exp(−αz).

I(z) = |E|2 = I(0) exp(−αz) (2.7)

where I(0) is the intensity of the electromagnetic radiation at z = 0.

The absorption length is

Lα ≡
1

α
. (2.8)
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(a) (b)

Figure 7: (a) Absorption coefficient and (b) absorption length versus energy of different

semiconductor materials Si, Ge and GaAs.

Figure 7 plots the absorption coefficient and absorption length for three different semicon-

ductor materials Si, Ge and GaAs.

With the experimental or computational absorption spectra of a solar cell, the integrated

absorption may be calculated from

Ai =

∫
bs(E)A(E)dE∫
bs(E)dE

(2.9)

where Ai is the integrated absorption, and A(E) is the absorption as a function of energy

(E) or corresponding wavelength.

The ultimate efficiency is defined as

ηue =

∫ λg
0
I(λ)A(λ) λ

λg
dλ∫∞

0
I(λ)dλ

=

∫∞
Eg
I(E)A(E)Eg

E
dE∫∞

0
I(E)dE

(2.10)

where Eg is the band gap and λg is the wavelength corresponding to the band gap and A(λ)

or A(E) is the absorption at a particular wavelength or energy. Ultimate efficiency assumes

that the temperature of the cell Tc = 0 K such that there is no recombination. Under this
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Figure 8: Ultimate efficiency versus band gap energy with perfect absorption and no recom-

bination.

circumstance, if the solar cell is assumed to be perfectly absorbing, non-reflecting material

such that the (external) quantum efficiency is

QE(E) = A(E) =

1, E ≥ Eg

0, E < Eg

. (2.11)

Each photon with energy greater than the band gap produces one electron-hole pair, and

these carriers are collected without recombination. The ultimate efficiency can be plotted

depending on band gap of the material, as shwon in Figure 8.

For a solar cell, electric field intensity is

|E(r,E)|2 = |Ẽ(r, E)|2 I(E)Area

Pin(E)
. (2.12)

where |Ẽ(r, E)|2 is the electric field intensity of the simulation, Area is the area of the

simulation, and Pin is the power of the simulation.

The weighted electric field intensity is

|E(r)|2 =

∫ ∞
0

|E(r, E)|2 I(E)Area dE

Pin(E)
. (2.13)
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The position dependent absorption per unit volume may be calculated from the diver-

gence of the Poynting vector ~P :

Ã(r, E) =
1

2
real{~∇ · ~P} =

1

2
εi(E)

E

~

∣∣∣Ẽ(r, E)
∣∣∣2 (2.14)

Assuming the absorption of each photon results in one electron-hole pair, the generation

rate is calculated from

G̃(r, E) =
1

2E
real{~∇ · ~P} =

εi(E) |E(r, E)|2

2~
. (2.15)

The position-dependent generation is

G(r) =

∫ ∞
0

I(E)Area G̃(r, E)

Pin(E)
dE =

∫ ∞
0

bs(E)Area Ã(r, E)

Pin(E)
dE (2.16)

2.3.1 Efficiency limiting

Now we consider a solar cell under light,

0 = Js + Jth − Jrad − J (2.17)

where Js is the current from solar generation, Jth is generation from ambient temperature,

Jrad is from radiative recombination, and J is from the extraction of electrons and holes.

This equation may be reorganized as

J = Js − [Jrad − Jth] (2.18)

where the term in brackets is the current in the dark.

The total current is

J(V ) = Jsc − Jdark(V ) (2.19)

where Jsc = Js and Jdark(V ) = Jrad − Jth.

The short-circuit current density is

Jsc = q

∫ ∞
0

bs(E)A(E)dE. (2.20)
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Figure 9: Limiting Efficiency versus Band gap energy.

The dark current may be determined from

Jdark(V ) = q

∫ ∞
0

[be(E,∆µ)ε(E)− be(E, 0)A(E)] dE. (2.21)

where ε(E) is the emission. The emission out of the solar cell is equal to the absorption in

the dark, and can shown to be still equal under constant ∆µ. Thus,

Jdark(V ) = q

∫ ∞
0

[be(E,∆µ)− be(E, 0)]A(E)dE. (2.22)

The quasi Fermi level is assumed to be constant throughout the cell. The difference in quasi

Fermi level between the excited and ground states is ∆µ = qV .

The extracted power is calculated from

P = V J(V ) (2.23)

and the limiting efficiency as plotted in Figure 9 is

η =
max(V J(V ))

Ps
(2.24)

where Ps =
∫∞

0
I(E)dE. This is refered as Shockley-Queisser limit [35] considering radiative

recombination of electron-hole pairs through spontaneous emission.
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3.0 LIGHT MANAGEMENT IN SILICON THIN FILM SOLAR CELLS

Due to the silicon properties discussed above, the main challenge with the use of silicon

for photovoltaics is that silicon is not a strong absorber of sunlight in the near-infrared

region. Conventional silicon photovoltaics are thus typically of thicknesses 200 to 300 µm to

ensure the absorption of most sunlight. However, single crystalline silicon solar cells require

expensive manufacturing methods, such as the Siemens method for solar grade purification,

Czochralski method for crysallization, and wafer slicing. So current solar cell technology

is not as competitive as that of traditional energy sources. To promote and increase the

silicon solar cell capacity, costs need to drop below $1/W. Increasing absorption of light in

the absorber layers is critical issue for achieving high efficiency silicon solar cells. Different

light management strategies are thus important for increasing the photon optical length, the

distance a photon travels in silicon before escaping, in order to increase absorption for a

particular thickness of silicon.

In 1982 Yablonovitch and Cody [36] calculated the upper limit for light intensity in

a dielectric slab with refractive index n and sandviched in vacuo. With the application of

roughened surfaces which scatter or randomize the light upon reflection. Because Lambertian

surfaces may be utilized to randomize light [37]. The mean path length of light inside the

material may be increased from 2L to 4n2L where n is the index of refraction. The absorption

is

A(E) =
α(E)

α(E) + 1
4n2L

(3.1)
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3.1 LIGHT MANAGEMENT TECHNIQUES IN SILICON THIN FILM

SOLAR CELLS

Various of light trapping methods have been developed recently both experimentally and

computationally. Light trapping with sub-wavelength nanostructures involves coupling light

into localized resonant modes and guided resonance modes in the active region to increase

absorption. Nanophotonic light trapping strategies have used structuring of the silicon itself

or patterning of dielectric materials on the front and back of the silicon. Plasmonic light

trapping has involved using different metal nanostructures on the back and front of the active

region to increase absorption.

Many innovative silicon structures have been experimentally demonstrated for the active

region in solar cells, including ultrathin microcells[38], crystalline silicon nanowire arrays[39–

47], horizontal silicon nanowire arrays,[48] crystalline silicon single nanowires[49–51], amor-

phous nanopillar and nanocone arrays [52, 53], crystalline silicon nanoholes[54] and silicon

photonic crystals[55]. Photonic crystals have also been used next to the silicon active re-

gion to enhance absorption by coupling light into guided resonance modes. This has been

demonstrated in crystalline silicon[56], nanocrystalline[57], and amorphous silicon[58].

Plasmonic nanostructures have also been experimentally demonstrated as an effective

way to increase absorption in silicon. In thin-film silicon photovoltaic cells, metallic nanos-

tructures may utilize plasmons for light trapping by sub wavelength scatterering, coupling

to localized surface plasmons, or coupling into propagating surface plasmon polaritons[59].

Photonic crystals have been used to trap light through a variety of different strategies.

Several simulation studies involving structuring the silicon active region into a photonic

crystal [27, 28, 60–63]. Numerous simulation papers have studied photonic crystals as high-

quality back reflectors for light trapping [64–67]. A number of studies have evaluated plas-

monic solar cells. The shape, size, particle material, and dielectric environment of metal

nanoparticles have been systematically evaluated in determining the effect of light scattering

[68–70]. By modify the geometries of the nanoparticles, the surface plasmon resonances may

be tuned to couple light into the silicon active region.
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In summary, enhancing light absorption in the absorber layers of photovoltaic devices is

mainly performed in two ways: coating anti-reflection (AR) layers on the surface or confining

light inside the absorber layer.
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4.0 ANTI-REFLECTION NANOSTRUCTURE COATINGS

4.1 ANTI-REFLECTION METHODS

The concept of AR coatings (ARCs) was conceived in the 19th century by Lord Raileigh.

He found that glass with tarnished surfaces could increase the transmission of incident light

[71]. After long time of research, the most commonly used ArCs in the industry are the

quarter-wavelength-thick dielectric layer due to low cost and efficient fabrication. However,

it is very obvious that single quarter-wavelength ARCs has best performance only for a single

wavelength. Furthermore, if the incident light is oblique, the anti-reflection effect will also

be compromised. Thus, lots of research about multiple layered ARCs have been done, but

the anti-reflection effect is still not sufficient due to lack of materials with refractive index

close to that of air [72–74]. So nanostructures have become hot topic for anti-reflection, such

as nanowires have been studied thoroughly [75–77].

4.2 TIO2 PHOTONIC CRYSTAL AS ANTI-REFLECTION

In my work, I study the anti-reflection effect of a woodpile structure made of TiO2. The

geometries of the woodpile structure is investigated.

4.2.1 TiO2 optical properties

For the refractive index TiO2 has high n values ( 2.5) and low k values (near 0), which makes

it a good candidate for anti-reflection coatings without absorption of the light. The optical
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Figure 10: Plots of the (a) real n and (b) imaginary part k of the TiO2 refractive index.

Values from Palik Volume 1 [78] and FDTD fitted values are shown.

constants of TiO2 from Handbook of Optical Constants of Solids [78] and fitting values in

FDTD are both shown in Figure 10.

4.2.2 Calculated results

In my work we propose a TiO2 woodpile structure 2D photonic crystal made of TiO2 as

shown in Figure 11 which can be fabricate by our collaborator Dr. Kevin P. Chen from

Electrical Engineering department. The parameters of the structure are the thickness of the

silicon layer t, the diameter d of the TiO2 nanorod and the pitch a of lattice. The diameter

is equal or smaller than the lattice pitch d ≤ a. The pitch of the lattice varies from 100 to

1000 nm. The Ag layer serves as a back reflector and the thickness is 100 nm.

We evaluated the optical properties over the energy range of the solar spectrum from

1.24 eV to 3.1 eV (wavelengths from 1000 to 400 nm). A uniform mesh of 20 nm × 20

nm × 20 nm was utilized where the ultimate efficiency was found to have converged within

1%. Perfectly matched layer boundary conditions were used for the upper boundary of the

simulation cell [34], and Metal boundary condition was used for the lower boundary os the

simulation cell as a back reflector and appropriate boundary conditions were used for the

side boundaries to model the periodic nature of the arrays. We systematically optimized

the geometry for the greatest ultimate efficiency for 1000 nm and 2000 nm thick silicon thin

film.
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Figure 11: Schematic of the TiO2 anti-reflection structure on silicon thin film.

Figure 12(a) and (b) utilize contour plots to illustrate the dependence of ultimate effi-

ciency on the diameter and pitch of the TiO2 nanorod and pitch of the lattice for 1000 nm

and 2000 nm thick silicon, respectively. Silicon thin film with TiO2 thin film anti-reflection

layer structure is also simulated to optimize the thickness of TiO2 layer for different thick-

ness silicon films (a) 1000 nm and (b) 2000 nm as shown in Figure 13. The optimal TiO2

thickness for both thickness silicon is 40 nm.

For 1000 nm thick silicon, the optimal efficiency is 30.33% with d = 220nm and a =

600nm. For bare silicon thin film with same thickness the efficiency is only 14.44% and

18.09% with 40 nm thick TiO2 thin film as anti-reflection layer. So with the woodpile struc-

ture anti-reflection layer, the efficiency is increased by 67.66% compare with the traditional

thin film anti-reflection structure. Even compare with double pass of same thickness thin

film which is 20.78%, the efficiency is still increased by 46%, so the improvement is quite

significant.

For 2000 nm thick silicon, the optimal efficiency is 31.25% with d = 260nm and a =

600nm. For bare silicon thin film with same thickness the efficiency is only 18.08% and

22.59% with 40 nm thick TiO2 thin film as anti-reflection layer. So with the woodpile struc-

ture anti-reflection layer, the efficiency is increased by 38.33% compare with the traditional

thin film anti-reflection structure. Even compare with double pass of same thickness thin

film which is 26.46%, the efficiency is still increased by 16%, so the improvement is still
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Figure 12: Contour plots of ultimate efficiency against nanorod diameter d and lattice con-

stant a for (a) 1000 nm and (b) 2000 nm silicon thin film.

quite significant though the improvement is weakened by the increase of the thickness of the

silicon.

In order to show the optical performance advantages of woodpile structure anti-reflection

layers, the absorption and reflection spectra of three representative structures ( thin film

with woodpile anti-reflection, optimal with thin film anti-reflection layer and double pass)

are plotted in 14 for 1000nm thick silicon film and 15 for 2000 nm thick silicon film. From

the plots we can find that, the reflection of woodpile anti-reflection coating is much lower

than that of thin film anti-reflection coating almost in the entire wavelength range for both

thicknesses. And the absorption is higher than that of thin film ideal double pass when the

energy is smaller than 2.36 eV for 1000 nm thickness and 2.22 eV for 2000 nm thickness.
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Figure 13: Plots of ultimate efficiency against TiO2 thickness for (a) 1000 nm and (b) 2000

nm silicon thin film.
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thickness.
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thickness.
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5.0 LIGHT TRAPPING IN SILICON THIN FILM NANOSTRUCTURES

5.1 LIGHT TRAPPING METHODS

With the ARCs, we can induce more light into the solar cells, but the light need to be

absorbed more efficiently by the active layer. Light trapping is an important way to confine

light inside the active layer of the solar cells, as discussed above, lots of light trapping method

have been developed, mainly including light scattering and resonance. Increasing the optical

path length is pretty desirable for the solar cells, and light scattering can improve absorption

for wide range of wavelengths by enhancing the light medium interaction. Silicon nanowires

or similar nanostructures show significant light trapping effects due to collective resonances

and optical density of states change [44, 46, 76, 79].

The resonance modes have been found in dielectric microspheres and nanospheres struc-

tures. The dielectric nanospheres like silica [80] can induce whispering gallery modes and

thus the light absorption is significantly enhanced.

Photonic crystals can server as a absorber to confine light inside the structure, so it’s a

potential approach to control light propagation and localization in the solar cells. Photonic

crystals can achieve almost perfect reflectivity and light confining for range of wavelengths

within the photonic bandgap due to the spectral selectivity.

All of the three types of structures above are systematically studied in my research as

presented below.
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5.2 ENHANCED ABSORPTION IN SILICON TAPERED NANOCONES

STRUCTURES

Recently, silicon nanocones or tapered nanowires have been experimentally fabricated by

metal-assisted electroless etching [81] and a Langmuir-Blodgett assembly and etching tech-

nique [52, 53]. These structures have been suggested as candidates for solar cells due to

reduced reflection over a broad range of wavelengths through a graded effective refractive in-

dex. In this work, we perform detailed numerical investigations of the optical properties and

solar conversion efficiencies of nanocone solar cells for a variety of geometries and compare

them to nanowire arrays. We found significant enhancements to absorption and conversion

efficiencies in silicon nanocone arrays.

Figure 16 shows the schematic of the silicon nanocone arrays studied (©IOP Publishing.

Reproduced with permission. All rights reserved) [82]. The parameters of the structure are

the length L, the period a of the square lattice, and the top diameter dtop and the bottom

diameter dbot. We evaluated the optical properties over the entire energy range of the solar

spectrum from E = 0.3 to 4.4 eV (wavelengths from 4000 to 280 nm). The optical constants

for silicon were taken from experimental measurement results in Palik’s Handbook of Optical

Constants of Solids [78]. We utilized a uniform mesh of 20 nm × 20 nm × 20 nm where

the ultimate efficiency was found to have converged within 1%. Perfectly matched layer

boundary conditions were used for the upper and lower boundary of the simulation cell

[34], while appropriate boundary conditions were used for the side boundaries to model the

periodic nature of the arrays.

5.2.1 Calculated results

In our studies, we focused on a variety of different geometries for silicon nanocones with

fixed pitch a = 600 nm, since this pitch has been shown to be optimal for silicon nanowires

[26, 76]. The efficiencies of nanocones and nanowires were compared at a variety of lengths,

though we initially focused on nanocones and nanowires with length L = 2.33 µm. Figure 17

shows the results of these studies. Figure 17(a) shows the ultimate efficiency as a function
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Figure 16: (a) Schematic of the silicon nanocone array structure. (b) The parameters for the

array are the length L, the period a, the top diameter dtop, and the bottom diameter dbot.

of diameter d for vertical nanowire arrays. The optimal ultimate efficiency was found to be

29.8% when d = 560 nm or the fill fraction f = 0.68. The ultimate efficiency is > 27% when

d > 400 nm (or f > 0.35).

However, significant superior ultimate efficiencies may be achieved with silicon nanocones.

Figure 17(b) utilizes a contour plot to illustrate the dependence of ultimate efficiency on the

geometry of the silicon nanocone. The parameters dtop and dbot were varied from 40 to 600

nm in 40 nm increments and values between data points were obtained by triangle-based

linear interpolation. Nanowires are special instances of nanocones, where the diameter is

constant across the entire length of the structure or d = dtop = dbot, and a dotted line is plot-

ted in the contour plot to indicate this geometry. In our studies, we found that nanocones

with dtop < dbot may be utilized to achieve better ultimate efficiencies than nanowires. The

optimal ultimate efficiency was 36.2% for dtop = 200 nm and dbot = 600 nm, which is about

22% higher than that of the optimal single diameter nanowire array. One of the advantages

of nanocones that may be observed from the contour plot is that the ultimate efficiency is

not particularly sensitive to dtop. For example, ultimate efficiencies greater than 31% may be

achieved for nanowires with dbot = 600 nm and dtop < 520 nm. Optimal nanocone structures

are robust in deviations from idealized geometries and not particularly sensitive to variation

or imperfections in manufacturing techniques.
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(a) 

Using	  linear	  interpola.on	  

(b) 

Figure 17: Ultimate efficiency of silicon nanowires and nanocones where the length L = 2.33

µm and pitch a = 600 nm. (a) Ultimate efficiency as a function of the diameter d for nanowire

arrays. (b) Contour plot of ultimate efficiency for silicon nanocone arrays as a function of

dtop and dbot. The dotted line indicates dtop = dbot, which is the geometry of nanowire arrays.

Based on the results of our investigations into different nanocone and nanowire geome-

tries, we chose several representative nanowire and nanocone systems to compare their re-

flection, transmission, and absorption spectra. Figure 18 illustrates the (a) reflection, (b)

transmission and (c) absorption as a function of energy for three representative systems.

The optimum efficiency nanowire with d = 560 nm and optimum nanocone with dtop = 200

nm and dbot = 600 nm are shown. Furthermore, we plot the spectra of the nanowire with

d = 200 nm, since this is the top diameter of the optimal nanocone. In Figure 18(c), the

absorption was calculated from A(E) = 1−R(E)−T (E), and the global 37◦ tilt Air Mass 1.5

spectrum is shown on the right y-axis. Single diameter nanowire systems exhibit a tradeoff

between reflection and transmission. Smaller diameter nanowires such as the one illustrated

with d = 200 nm have less reflection because there is less fill factor or area for light to reflect

off the top of the nanowires. However, they also have higher transmission throughout the

entire solar spectrum because there is less silicon to absorb the light. On the other hand,

larger diameter nanowire arrays, such as the optimal single diameter system with d = 560

nm exhibit higher reflection due to higher fill factor and smaller transmission since there is

more material to absorb the light. Larger diameter nanowire arrays have better absorption

in the infrared range, but poorer absorption in the ultraviolet range.
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Silicon nanocone arrays address the tradeoff between reflection and transmission with a

smaller dtop and a larger dbot. The optimal silicon nanocone array, with dtop = 200 nm and

dbot = 600 nm, especially in the visible and ultraviolet range, has reflection about the same

of the small single diameter nanowire array with d = 200 nm. The larger base results in a

transmission that is almost zero in the visible and ultraviolet regime. In the infrared range,

the silicon nanocone array has absorption characteristics comparable to that of the best

single diameter nanowire array. However, in the visible and ultraviolet range, the absorption

is significantly improved with absorption from about 80% to 95% compared to 40% to 80%

for the best single diameter structures. Table 1 lists the fraction of photons absorbed in

different regions of the solar spectrum for these three representative nanowire and nanocone

systems. The visible region is from 380 to 740 nm (1.7 to 3.3 eV), the ultraviolet region is

from 280 to 400 nm (3.1 to 4.4 eV), and the infrared region (above the silicon band gap)

is from 740 nm to 1100 nm (1.1 to 1.7 eV). The total solar region shown only includes the

range above the silicon band gap energy from 280 to 1100 nm (1.1 to 4.4 eV). The silicon

nanocone arrays have enhanced absorption compared to silicon nanowire arrays over the

entire spectral range due to antireflection and low transmission in the visible and ultraviolet

ranges.
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Figure 18: Optical properties of three different silicon nanostructures: single diameter

nanowire (NW) arrays with d = 200 nm and d = 560 nm and nanocone (NC) arrays with

dtop = 200 nm and dbot = 600 nm. (a), (b), and (c) show the reflectance, transmittance, and

absorption respectively. The irradiance of the Air Mass 1.5 solar spectrum is shown in the

right y-axis of (c).

Table 1: Absorption in different wavelength regimes. The infrared and total solar regions

are calculated for those portions of the regions that are above the silicon band gap (E > 1.12

eV).

Spectrum NW, d = 200 nm NW, d = 560 nm NC, dtop = 200 nm
Region dbot = 600 nm

Infrared 21% 52% 54%
Ultraviolet 67% 46% 91%

Visible 45% 69% 93%

Total Solar 35% 61% 74%
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In order to understand the propagation of light in the nanowire and nanocone arrays, we

simulated the electrical field intensity |E(r, E)|2 and calculated the generation rate within

the arrays from

G(r, E) =
εi(E) |E(r, E)|2

2~
(5.1)

where εi(E) is the imaginary part of the dielectric constant, ~ is the reduced Planck constant,

and E(r, E) is the energy and position-dependent electric field. By normalizing this quantity

over the simulation power, and integrating over the the solar spectrum energies as weighted

by the solar irradiance I(E), we obtained the solar-spectrum-weighted generation rate. Fig-

ure 19 shows the cross-sectional (a) solar-spectrum-weighted electrical field intensity |E(r)|2

and (b) solar-spectrum-weighted generation rate G(r) of the three representative nanowire

and nanocone arrays for normal incident light integrated over photon energies E = 0.83 to

2.75 eV (or wavelengths λ = 1500 to 450 nm). This energy range encompasses about 86%

of the power density available for absorption by silicon. The electric field of the incoming

electromagnetic wave was out of the plane of the paper in these simulations. The left column

illustrates single diameter nanowire arrays with d = 200 nm, the middle column shows the

optimal single diameter nanowire arrays with d = 560 nm, and the right column illustrates

the optimal nanocone arrays with dtop = 200 nm and dbot = 600 nm. Dotted white lines

indicate the edges of these silicon nanostructures.

In the 200 nm diameter nanowire arrays, a large portion of the electromagnetic (EM)

waves propagates outside the Si nanowire. The EM waves decay in the radial direction, such

that a significant portion of the carrier generation is near the surface. While the reflection

is low in these nanowire arrays due to their small diameter, the transmission is also higher

since there is less silicon to absorb the light, and the intensity of the electric field can be

seen to be still significant near the bottom of the nanowire.

In the 560 nm diameter nanowire arrays, most of the carrier generation occurs in the

center of the nanowire away from the nanowire surface. There is more silicon in the larger

diameter nanowire arrays to absorb the EM waves, such that the electric field intensity is

close to 0 at the bottom of the nanowire. However, because of the large fill factor or the

large top of the nanowire, the reflection is substantial.
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In the nanocone array, the EM field is seen to propagate further into structure. The

small diameter dtop results in smaller reflection, while the larger base contains more silicon

to absorb the light. The electric field intensity is seen to decay to very small values near

the bottom of the nanocone array, indicative of small transmission. The nanocone arrays

have the advantage that the carrier generation, similar to the larger diameter nanowires,

occurs near the center of the nanocones, such that carriers are less likely to be affected

by surface recombination. Furthermore, the carrier generation is more uniform along the

length of the nanowire, such that photoexcited carriers are less likely to recombine, since the

recombination rate is directly proportional to the local excess concentration of electrons and

holes. Guided resonance modes (also called leaky-mode resonances) have been shown to play
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Figure 19: The (a) solar-spectrum-weighted electrical field intensity |E(r)|2 and (b) solar-

spectrum-weighted generation rate G(r) for three representative silicon nanowires and

nanocones. From left to right, the systems shown are nanowire arrays with d = 200 nm,

nanowire arrays with d = 560 nm, and nanocone arrays with dtop = 200 nm and dbot = 600

nm.

a significant role in light absorption by nanowires [76, 83]. Nanowire arrays exhibit a mirror-

symmetry plane at z = 0, such that modes must be either symmetric or antisymmetric
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about the plane. TE-like modes are odd with respect to z and TM-like modes are even with

respect to z. Distinct peaks may be seen in the absorption spectrum of nanowire arrays

corresponding to the coupling of incident light with these guided resonance modes. These

guided resonance modes may be tuned for the detection of particular energies or frequencies

in photodetectors for example [83]. In photovoltaics however, it is generally desirable for

absorption to occur over a broad range of energies. By tapering the nanowires or forming

nanocones, the mirror symmetry is removed and the absorption spectrum is broadened such

that the overall absorption may be enhanced over that of nanowire arrays.

In order to evaluate the performance of non-tracking photovoltaics, we simulated the

angle-dependent optical properties of the optimal silicon nanocone array as compared to

the optimal nanowire array. The integrated absorption averaged of TE and TM modes is

plotted as a function of the zenith angle θ from 0 to 60 degrees in Figure 20. We found little

variation in absorption with the azimuthal angle below 35 degrees for nanocone arrays. And

the performance of nanocone array was always better than that of nanowire array.

Figure 20: Relationship between integrated absorption and zenith angle θ of optimal

nanowire and nancone arrays for average of TE and TM modes.

Finally, we considered different geometries of nanocone and nanowire arrays for a wide

range of lengths. In addition to the length L = 2330 nm, we further compared nanocones
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and nanowires for L from 50 to 10000 nm for fixed pitch a = 600 nm. The optimal ultimate

efficiency and short circuit current for nanocone and nanowire arrays were obtained from

these simulations and plot in Figure 21. We found that nanocone arrays have better efficien-

cies and short circuit currents than nanowires across a wide range of lengths. The efficiency

enhancement (which is the same as the short circuit current enhancement for perfect carrier

extraiont) of the optimal nanocone array over the nanowire array is plot on the right y-axis

in Figure 21. The ultimate efficiency enhancement is greater than 20% for L > 500 nm. For

the smallest length L = 50 nm, the amount of silicon is little such that the best structure

is a nanowire with d = a = 600 nm. Most of the loss is through transmission, such that

nanocones do not have an advantage over nanowires. However, for longer lengths, nanocones

have significant advantages over nanowires when dtop is less than dbot.
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Figure 21: Optimal ultimate efficiency of silicon nanowires and nanocones with different

length L.

This novel tapered nanocones structure can obtain enhanced absorption due to anti-

reflection from the small tip and lower transmission due to the larger base. Nanocones may

be fabricated by well-developed techniques, and are not particularly sensitive to specific

geometry, which should facilitate their fabrication.
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5.2.2 Experimental fabrication of silicon tapered nanocones

To fabricate the tapered nanocone structure, we use PS nanospheres monolayer as the mask,

Bosch process (STS Multiplex ICP RIE in CMU) is employed to etch the silicon without

nanospheres mask cover. we can modify the diameter of the nanospheres with oxygen RIE

to control the final diameter of nanowires we get and the pitch of the nanocones or nanowires

array is decided by the original diameter of PS nanosphere. The bosch process cycle works

in two segments, at first SF6 is flowing in and etch the exposed silicon, and secondly C4F8

is flowing in as the passivation gas to smoothy the surface of the etched silicon. Through

controlling the number of cycles, we can control the length of nanowire or nanocones we

get. Samples with SF6 130 sccm for 6s and C4F8 85 sccm for 4s and 30 cycles are shown in

Figure 22. The surface of the nanowire is with spiral structure, it is because the separation of

the etching and passivation process. Thus we perform the two separated segments at the same

cycle which is called pseudo bosch process and get vertical nanowire or nanocones without

spiral structures as shown in Figure 23. Nanowires (Nanocones and tapered nanocones) with

different aspect ratio are shown in 24 which are fabricated according the etch rate table.

Figure 22: Side view of the silicon nanowires after 30 cycles etching.

In order to get tapered nanocones with different dtop and dbot, we investigate the effect

of gas ration between SF6 130 and C4F8 on the final shape of nanocones. We compare the

final dtop and dbot of nanocones with the diameter of nanospheres and get the undercutting
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Figure 23: Side view of the silicon nanocones fabricated with pseudo bosch process.

for both top and bottom of the nanocones. The vertical height is also calcuated in order to

get the etching ratio between etching ratio between horizontal and vertical orientations. The

calcuations of different gas ratios are listed in Table 2. With the increase of concentration of

passivation gas C4F8, the etch rate become smaller for both horizontal and vertical directions

due to smaller concentration of etching gas. And the etching rate ratio between horizontal

direciton and vertical direction (H/V) also becomes smaller which means the undercutting

becomes smaller. When the ratio is 33:110, the undercutting is nearly 0 for both top and

bottom, so the final shape will be vertical nanowires.

Table 2: Etch rate comparison of different gas ratio.

Orientation Horizontal Horizontal Vertical H/V
SF6:C4F8 top bottom ratio
33:57 0.8 0.4 2.56 0.3
33:66 0.48 0.2 2.22 0.2
33:82.5 0.19 0.06 1.81 0.1
33:110 0.06 0 1.43 0.04

More importantly, we also employed a self mask method to fabricate black silicon on both

bulk wafer and ultrathin substrate via the Bosch process as shown in Figure 25. Figure 25(a)
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is the comparison between the silicon wafer and the black silicon. Figure 25 (b) is the

reflection measurement of the bulk black silicon and ultrathin black silicon, and we can see

that both have reflection lower than 4% over from 400 nm to 100 nm, and the reflection of

the bulk black silicon is even lower than 2%. The morphology of the black silicon is shown

in Figure 25.

Figure 24: Nanowires with different aspect ration.
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1 µm

(a) (b)

(c)

Figure 25: (a) Optical pictures of bare silicon wafer and bulk black silicon. (b) Measured

reflection of bulk and ultrathin black silicon. (c) Side view SEM pictures of the black silicon.

5.3 APPLICATION OF TAPERED NANOCONE TECHNIQUE

5.3.1 GaAs tapered nanocones structures

Based on the advantage of tapered nanocone we find in silicon, we also apply this superior

structure on GaAs [84]. Gallium is a rare and expensive material and the processing costs

associated with GaAs are high, so light trapping is particularly important for GaAs solar

cells. In this work, the schematics of the structures are the same with those of silicon,

however, instead of fixing the pitch a, this time we also optimized the pitch. We studied

GaAs nanocones and nanowires for a wide variety of lengths from L = 100 to 1000 nm. GaAs

is a direct band gap material with absorption lengths > 1 µm for photons with wavelength
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& 840 nm (E . 1.47 eV). Thus, the lengths studied were smaller than 1000 nm, where light

trapping may have significant benefit.

5.3.2 Enhanced absorption in GaAs tapered nanocones structures

Figure 26(a) plots the optimal ultimate efficiency for GaAs nanocone, nanowire, and thin

films as a function of active region length L. The GaAs thin films consist of a GaAs layer

without any antireflection coatings. For reference, we also plot the ultimate efficiency of

single pass thin films. The absorption for single pass thin films under normal incidence light

is

A(E) = 1− exp[−α(E)L] (5.2)

where α(E) is the energy dependent absorption coefficient of GaAs. The single pass thin film

assumes perfect antireflection where the light passes through the material only once with no

light trapping. The short circuit current is shown on the right y-axis of Figure 26(a). The

short circuit current is linearly proportion to the ultimate efficiency under the assumption

of perfect collection. Figure 26(b) plots the efficiency and short circuit current density

enhancement of the nanowires and nanocones for each length compared to the single pass

thin film. We found that while GaAs nanocones exhibit enhanced efficiencies and short circuit

current densities over single pass thin films over all the lengths studied, GaAs nanowire arrays

only have enhancements for lengths L ≤ 400.
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Figure 26: (a) Optimal ultimate efficiency of GaAs nanowires and nanocones as compared

with thin film and ideal single pass thin film. The short-circuit (SC) current density is

shown on the right y-axis. (b) The ultimate efficiency enhancement from GaAs nanowires

and nanocones compared to ideal single pass thin film.

Figures 27(a) and 27(b) plot the parameters for optimal nanowire and nanocone arrays

at different lengths L respectively. For nanowire arrays, the optimal pitch varied between

500 nm and 700 nm, and the optimal diameter was between 400 and 600. These optimal

parameters for vertical GaAs nanowire arrays are similar to those determined in Huang et.

al for L ≤ 1000 nm [85]. The volume filling factor (FF) of the nanowire arrays is πd2

4a2
, and

for the nanocone arrays FF =
π(d2top+dtop∗dbot+d2top)

4a2
.

For nanocone structures, the optimal pitch was a = 600 nm for all lengths except when

L = 100 nm. For L = 100 nm, the optimal nanocone array was the same as the nanowire

array with dtop = dbot = d = 520 nm. However, for lengths L > 100 nm, the optimal dtop was

a small value between 200 nm and 400 nm and dbot = a.
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Figure 27: Optimal parameters for GaAs (a) nanowire and (b) nanocone for each length L,

respectively. The volume filling factor of the optimal structure is shown on the right y-axis

of both plots.

We chose several representative nanowire and nanocone systems with L = 300 nm to

compare their reflection, transmission, and absorption spectra. Figure 28 plots the (a)

reflection R(E), (b) transmission T (E), and (c) absorption A(E) spectra as a function

of energy E for a small diameter nanowire array (d = 200 nm and a = 600 nm), the

optimal nanowire array (d = 520 nm and a = 600 nm) , and the optimal nanocone array

(dtop = 200 nm, dbot = 600 nm, and a = 600 nm). The absorption was calculated by

A(E) = 1−R(E)−T (E). The absorption of an ideal single pass thin film with L = 300 nm

is also plot in Figure 28(c) as calculated from Eq. (5.2). The reflection and transmission data

shown for E < Eg = 1.43 eV were obtained through an additional FDTD simulation, where

the imaginary part of the GaAs refractive index was set to 0 to account for the numerical

error in the FDTD fit.

The ultimate efficiency for the single pass thin film is 30.0%. The optimal nanowire and

nanocone arrays exhibit ultimate efficiencies of 31.4% and 36.6% respectively or enhance-

ments of 4.7% and 22.0% respectively compared to that of the single pass thin film. The

ultimate efficiency of the nanocone array is 16.5% higher than that of the nanowire array.

The reflection, transmission, and absorption spectra of the nanowire system with d = 200

nm and a = 600 nm is also plotted, since this is the dtop of the optimal nanocone system.
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Figure 28: Optical properties of three different GaAs nanostructures: nanowire (NW) arrays

with d = 200 nm and d = 520 nm and nanocone (NC) arrays with dtop = 200 nm and

dbot = 600 nm. a = 600nm in all three systems. (a), (b), and (c) show the reflectance,

transmittance, and absorption spectra respectively. The absorption spectrum of the ideal

single pass thin film is also plot in (c). The irradiance of the Air Mass 1.5 global solar

spectrum is shown in right y-axis of (c).

Nanowire systems exhibit a tradeoff between reflection and transmission. Smaller diam-

eter nanowire arrays such as the one illustrated with d = 200 nm have less reflection because

there is less filling factor for light to reflect off the top of the nanowires. FF = 0.09 in

these nanowire arrays. However, they also have higher transmission throughout the entire

solar spectrum because there is less GaAs to absorb the light. Smaller diameter nanowires

have better absorption in the infrared regime (< 1.67 eV), but poorer absorption in the

ultraviolet regime (> 3.1 eV). On the other hand, larger diameter nanowire arrays, such as

the optimal single diameter system with d = 520 nm exhibit higher reflection due to higher

filling factor (FF = 0.59) and smaller transmission since there is more material to absorb
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the light. Larger diameter nanowire arrays have better absorption in the ultraviolet range,

but slightly poorer absorption in the infrared range.

GaAs nanocone arrays address the tradeoff between reflection and transmission with a

smaller dtop and a larger dbot. The optimal GaAs nanocone array, with dtop = 200 nm and

dbot = 600 nm has reflection about the same of the small single diameter nanowire array

with d = 200 nm, particularly in the visible and ultraviolet range. The larger base results

in a transmission that is also low in the visible and ultraviolet regime. The GaAs nanocone

array has absorption characteristics comparable to that of the best single diameter nanowire

array in the ultraviolet range. However, in the visible and infrared range, the absorption is

significantly improved. Table 3 lists the fraction of photons absorbed in different regions of

the solar spectrum for these three representative nanowire and nanocone systems as well as

the ideal single pass thin film. The ultraviolet region is from 3.1 to 4.4 eV (280 to 400 nm),

the visible region is from 1.67 to 3.1 eV (400 to 740 nm), and the infrared region (above the

GaAs band gap) is from 1.43 to 1.67 eV (740 to 867 nm). The total solar region shown only

includes the range above the GaAs band gap energy from 1.43 to 4.4 eV (280 to 867 nm).

The GaAs nanocone arrays have enhanced absorption compared to GaAs nanowire arrays

over the entire spectral range due to anti-reflection and low transmission in the visible and

ultraviolet ranges. Compared to the single pass thin film, the GaAs nanocones arrays have

higher absorption except in the ultraviolet range.

In order to understand the propagation of light in the nanowire and nanocone arrays,

we simulated the electric field intensity |E(r, E)|2 and calculated the generation rate within

the arrays. Figure 29 shows the (a) solar-spectrum-weighted electric field intensity |E(r)|2

and (b) solar-spectrum-weighted generation rate G(r) of the three representative nanowire

and nanocone arrays for normal incident light integrated over photon energies E = 1.43 to

2.75 eV (or wavelengths λ = 867 to 450 nm). This energy range encompasses about 83%

of the power density available for absorption by GaAs. The contour plots show a cross-

section through the center of the nanowire or nanocone. The electric field of the incoming

electromagnetic wave was out of the plane of the paper in these simulations. The left column

illustrates the optimal nanowire arrays with d = 520 nm, the middle column shows nanowire

arrays with d = 200 nm, and the right column illustrates the optimal nanocone arrays with
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dtop = 200 nm and dbot = 600 nm. a = 600 nm in all three systems. Dotted white lines

indicate the edges of these GaAs nanostructures.

Table 3: Absorption in different wavelength regimes. a = 600 nm in all three systems. The

infrared and total solar regions are calculated for those portions that are above the GaAs

band gap (E > 1.43 eV).

Spectrum NW NW NC, dtop = 200 nm Single

Region d = 200 nm d = 520 nm dbot = 600 nm Pass

Ultraviolet (%) 23 68 73 100

Visible (%) 27 71 81 77

Infrared (%) 35 67 83 32

Total Solar (%) 29 70 81 66
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Figure 29: The (a) electric field intensity |E(r)|2 and (b) solar-spectrum-weighted generation

rate G(r) for three representative GaAs nanowires and nanocones. From left to right, they

are nanowire arrays with d = 520 nm, nanowire arrays with d = 200 nm, and nanocone

arrays with dtop = 200 nm and dbot = 600 nm. a = 600 nm in all three systems.

In the 200 nm diameter nanowire arrays, a large portion of the electromagnetic (EM)

waves propagates outside the GaAs nanowire. The EM waves decay in the radial direction,

such that a significant portion of the carrier generation is near the surface. While the

reflection is low in these nanowire arrays due to their small diameter, the transmission is

also higher since there is less GaAs to absorb the light, and the intensity of the electric field

can be seen to be still significant near the bottom of the nanowire. In the 520 nm diameter

nanowire arrays, most of the carrier generation occurs in the center of the nanowire away

from the nanowire surface. There is more GaAs in the larger diameter nanowire arrays to

absorb the EM waves, such that the electric field intensity is close to 0 at the bottom of the

nanowire. However, because of the large filling factor or the large top of the nanowire, the

reflection is substantial. In the nanocone array, the EM field is seen to propagate further

into structure. The small diameter dtop results in smaller reflection, while the larger base

contains more GaAs to absorb the light. The electric field intensity is seen to decay to very
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small values near the bottom of the nanocone array, indicative of small transmission. The

nanocone arrays have the advantage that the carrier generation occurs near the center of

the nanocones, such that carriers are less likely to be affected by surface recombination.

The carrier generation is still significant at the bottom of the nanocone. Furthermore, the

carrier generation is more uniform along the length of the nanocone, such that photo-excited

carriers are less likely to recombine, since the recombination rate is directly proportional to

the local excess concentration of electrons and holes.

By tapering the nanowires or forming nanocones, the mirror symmetry is removed and

the photonics crystal properties are lost. The absorption spectrum is broadened such that

the overall absorption may be enhanced over that of nanowire arrays. This mechanism works

the same in the silicon structures.

Finally, we simulated the angular dependence of the absorption spectrum of the optimal

GaAs nanocone array as compared to the optimal nanowire array. Figure 30 plots the

integrated absorption as a function of the zenith angle θ from 0 to 35 degrees for both

TE and TM illumination. We found little variation in absorption with the azimuthal angle.

The results show that for both transverse-electric (TE) polarization and transverse-magnetic

(TM) polarization, the absorption of GaAs nanocone arrays and nanowire arrays increase

a little bit and then decrease slightly, but that generally the absorption variation is small.

The variation is about 5% for the nanocone array and about 8% for the nanowire array. In

the low angle range (0 to 35 degrees), the absorption of both nanowire and nanocone arrays

are not affected much by the angle of the incident light. With higher incidence angles, the

difference in absorption between nanowires and nanocones become smaller as the vertical

symmetry of nanowires is also broken at nonnormal incidence angles. Nanocone arrays are

slightly less sensitive than nanowire arrays to variation of incident light angle.
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Figure 30: Relationship between absorption and zenith angle θ of optimal nanowire and

nancone arrays for TM and TE illumination.

5.3.3 Conclusions

In summary, we have studied the optical performances of silicon and GaAs nanocone arrays

for photovoltaic application, and compared them with nanowire arrays across different diam-

eters and lengths. This novel structure can obtain enhanced absorption due to anti-reflection

from the small tip and lower transmission due to the larger base. Nanocones may be fabri-

cated by well-developed techniques, and are not particularly sensitive to specific geometry,

which should facilitate their fabrication. We have also evaluated the solar-spectrum-weighted

electric field intensity and generation rate in nanocone arrays and determined advantages of

nanocone arrays over nanowire arrays in where carriers are photoexcited. Breaking the ver-

tical mirror symmetry of nanowires results in broader absorption spectrum such that overall

efficiencies may be enhanced. These efficiencies are also superior over a broad range of inci-

dent angles. We proved that tapered nanocone structures worked for different materials solar

cells, so we can promote this structures to other similar semiconductor materials for solar

cells. Compared to the anti-reflection coatings like sol-gel method, the nanostructures have

several advantages. First of all, we do not need to synthesis new solutions to fabricate the

coatings. Secondly, the fabrication process is faster. Last but not least, the nanostructures

are cheaper to fabricate than other anti-reflection coatings.
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5.4 TUNABLE ABSORPTION IN SILICON NANOWIRES STRUCTURE

In our previous work, we demonstrate that leaky modes resonances in horizontal silicon

nanowires may be used to manage spectral absorption. The nanowire acts as an optical

antenna such that when incident light couples to a leaky mode resonance, there is an en-

hanced electromagnetic field in the nanowire and thus, increased absorption. In this work,

we demonstrate that vertical nanowires exhibit tunable resonant absorption features that

may be useful for photodetectors or sensors where high absorption and high spectral selec-

tivity are desired. While single horizontal nanowire photodetectors have been demonstrated

to absorb light at several resonant wavelengths, the horizontal device geometry suffers from

poor quantum efficiency and responsivity due to weak absorption. Vertical nanowires may

overcome the poor absorption in horizontal nanowires because the direction of incident light

wave propagation is along the axis of the nanowire as opposed to in the radial direction.

5.4.1 Calculated results

The square vertical nanowire arrays are illustrated in Figure 31(a) and defined by pitch a,

diameter d, and length L. We considered vertical nanowires with length L = 3800 nm and

pitch a = 700 nm [86].
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Figure 31: (a) Vertical nanowires array schematic. (b) Contour plot of absorption as a

function of photon wavelength and nanowire diameter for vertical Si nanowire arrays. The

dash-dotted white lines indicate nanowires illustrated in (c). (c) Absorption spectrum of

nanowires with d = 70, 85, and 120 nm for blue, green, and red photodetectors.

Figure 31(b) utilizes a contour plot to illustrate the dependence of optical absorption on

the diameter of the silicon nanowires and the photon wavelength. Due to the sub-wavelength

size of the nanowires, only a few leaky modes are supported. Leaky modes in step-index

optical fibers satisfy the following dispersion relation[87]:
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0. n1 and n0 are the index of fraction inside

and outside the cylinder. β is the propagation constant in the cylinder along the axis and k0

is the wavenumber in air. Generally, u, w, and β are complex. Jv and Kv are the vth-order

Bessel function of the first kind and modified Bessel function of the second kind and the

prime denotes derivative with respect to its argument. n0 = 1 for air and n1 is a function

of λ and complex for absorbing media. For silicon, the optical constants n1 were taken from

experimental results in Palik et. al [78]. The leaky modes of optical fibers are generally

hybrid with both Hz and Ez components. The solutions to Eqn. 5.3 result in two classes

of equations that are designated HE and EH for when the mode is TM and TE-dominant

respectively. Each mode is labelled with the integer subscripts v and m where v is the order

and m is the mth root of the eigenvalue equation, which also corresponds to the radial mode

number. The distinct peaks in the absorption spectra correspond to particular leaky mode

resonances. We find that the strongest absorptions peaks in our simulations correspond to

HEvm transverse resonance modes with v = 1.

To understand why only HE1m leaky modes result in absorption enhancements, we con-

sider the symmetry of the different modes. For incident light polarized with electric field in

the x-direction, the electric field is antisymmetric under reflection about the yz plane. Only

modes that are antisymmetric under mirror reflection about the yz plane can couple to this

incident light. The electric fields must satisfy ÔMxE(r) = MxE(Mxr) = −E(r)[88]. ÔMx is

a mirror reflection operator about the yz plane, which operates on a vector field by applying

Mx to both the input and output vector. Mx flips the x-unit vector x̂ to −x̂, while leaving ŷ

and ẑ alone. Ex must be symmetric about the yz plane or equivalently, the mode must have

no azimuthal symmetry. HE modes have azimuthal number l = v− 1, while EH modes have

l = v+1[87]. Thus, the only modes with no azimuthal variation or the proper antisymmetry

50



are the HE1m modes. These are doubly degenerate modes that are antisymmetric about the

yz or the xz plane, where one of the modes satisfies the required symmetry condition.

In Figure 31(b), additional weaker resonant modes begin to appear for nanowires larger

than 120 nm diameter for λ > 670 nm. These are longitudinal resonances associated with

the HE1m modes and the finite length of the nanowire. Hybrid leaky modes in nanowires are

characterized by propagation constant β as defined by Eqn. 5.3. Longitudinal resonances

form when the guided wave picks up a round-trip phase change, βr = qπ
L

where βr is the

real part of β and q is a positive integer. At shorter wavelengths, the absorption length of

silicon is small enough such that the electromagnetic field intensity decays completely by

the time it reaches the end of the nanowire. The long length of the nanowires is also why

the absorption enhancement from these resonances are much weaker than the transverse

resonances, These longitudinal resonance modes can also couple to transverse resonance

modes leading to interference between the modal fields as can be seen in the absorption

spectra at larger wavelengths. since the light can make a fewer number of round trips before

attenuating away.

The HE11 transverse resonance mode can be continuously tuned across the visible and

near-infrared wavelengths and is separated from that of the HE12 mode by a large spectral

gap. Three different nanowires indicated by the dashed white lines in Figure 31(b) are

highlighted in (c) to illustrate the tunability of the HE11 transverse resonance mode. The

blue and green resonances at 470 and 530 nm are characterized by the Lorentzian function,

but the red peak at 670 nm is characterized by some small additional peaks from longitudinal

resonances. Due to the large spectral gap between the HE11 and HE12 transverse resonances,

the nanowires also exhibit high wavelength-selectivity. For example, the wavelength spacing

between these two neighboring resonant peaks, called the free spectral range, is about 270

nm for the 120 nm diameter nanowires. The red, green, and blue photodetectors thus have

minimal spectral cross talk.

In Figure 32, we plot the electric field intensity |E( r)|2 for the 120 nm diameter vertical

silicon nanowire at their tranverse resonant wavelengths. The HE1m modes are dipole-like

and primarily dominated by the Ex component. The HE11 mode shown here has distinct

maxima along the length of the nanowire. On the other hand, for the HE12 state,the ab-
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sorption length for silicon at λ = 400 nm is only about 80 nm such that the guided wave

attenuates rapidly and does not reach the bottom of the nanowire. While we have simulated

square arrays of nanowires of a particular pitch, the HE11 and HE12 leaky modes are concen-

trated in and around the nanowire and thus, should not be affected by the order or position of

vertical nanowires, as long as the nanowires are not too close together. When the nanowires

are close, the modes couple together and the absorption peaks begin to broaden. We found

that down to pitch a ≈ 500 nm, the absorption resonances do not shift or split much. This

is approximately the radial extent of the HE11 and HE12 guided resonance modes.

Figure 32: Electric field intensity plots of leaky mode resonances for d = 120 vertical

nanowires at (a) λ = 670 and (b) 400 nm which correspond to the HE11 and HE12 modes

respectively. The top row illustrates the top view of |E( r)|2 at z = 0 nm, while the bottom

row shows a side view at y = 0. White lines indicate the edges of the nanowire.

We plot the angular dependence of the 120 nm diameter vertical nanowires for both

TE and TM-polarized light for incident angle θ from 0 to 25◦ in Figure 33. For θ ≤ 5◦,
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the nanowires still primarily couple the to the HE1m leaky modes. However, for θ > 5◦,

other absorption peaks can be seen for both polarizations of incident light. Additional leaky

modes with azimuthal mode number l > 0 in addition to the l = 0 modes are excited

and thus, the absorption spectra no longer has a large free spectral range. We recently

also demonstrated that tapering vertical nanowires breaks their symmetry, resulting in more

broadband absorption, which is advantageous for photovoltaics [86].

Figure 33: Angular dependence of absorption for (a) TE- and (b) TM-polarized light.

5.4.2 Conclusions

We have utilized waveguide theory to explain the spectral tunability and selectivity of ab-

sorption resonances in vertical nanowires. In particular, incident light can only couple into

HEvm modes where v = 1, resulting in distinct absorption peaks separated by a large spectral

gap. This demonstrates the use of leaky mode resonances and their symmetry for engineer-

ing spectral selectivity in vertical nanowires. These mechanisms may be useful for a variety

of optoelectronic applications such as photodiodes, photodetectors, phototransistors, optical

modulators, optical amplifiers, light emitting diodes, and lasers.
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5.5 DIELETRIC NANOSPHERE RESONANCES ENHANCEMENT

Dielectric nanospheres have emerged as a promising candidate for enhancing absorption

in thin film photovoltaics. In this paper, we utilize numerical electrodynamic simulations

to investigate the absorption enhancements achievable in crystalline Si (c-Si) thin films of

thicknesses from 100 to 2000 nm from 2-dimensional close-packed silica (SiO2), silicon ni-

tride (Si3N4), and titania (TiO2) nanosphere array coatings. We demonstrate that dielectric

nanospheres can enhance the absorption in c-Si thin films by coupling incident light to TE

waveguide modes in the c-Si thin film. While SiO2 nanosphere arrays may achieve en-

hancements of less than 10% compared to ideal double pass c-Si thin films, higher index

of refraction nanospheres confine light more strongly such that more nanosphere resonances

may couple to waveguide modes in the c-Si.

5.5.1 Enhanced absorption with nanospheres monolayer

Two of the main approaches to wave-optics light trapping in c-Si thin film solar cells has

involved (1) structuring the active region and (2) using metal nanostructures. The first

approach of structuring the photoactive region may be used to tune guided mode profiles

to allow for greater field concentration inside the c-Si. New c-Si structures which use this

approach have been demonstrated including nanowire arrays [39–47], nanocone arrays [53,

82], nanohole arrays [54], and photonic crystals [55]. The second major approach involves

the use of metal nanostructures for plasmonic light trapping through high near-fields, surface

plasmon polaritons, and/or plasmonic scattering. Metal nanoparticles have been utilized to

enhance optical absorption in single-crystalline silicon [89] and silicon-on-insulator [90] solar

cells.

Structures such as metal gratings [91, 92], nanoparticle arrays [93], and nanogrooves

[94] have also been shown to exhibit light trapping through simulations. However, both

approaches to light trapping involve the use of additional manufacturing processes that

may not be scalable. Metal nanostructures introduce additional reflection and parasitic

absorption losses.
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We demonstrate significant efficiency enhancements in c-Si thin films with high index of

refraction nanosphere arrays. The nanosphere arrays allow light to couple to TE waveguide

modes in the silicon. We perform simulations on close-packed silica (SiO2), silicon nitride

(Si3N4), and titania (TiO2) nanosphere arrays to demonstrate that higher index of refraction

nanospheres may achieve better light trapping. The higher index of reftaction nanospheres

exhibit stronger optical confinement and thus, more resonance modes may couple to TE

waveguide modes in the c-Si. The periodicity and nanosphere resonances introduce wave

vector components along the in-plane directions, which allow light to couple to waveguide

modes. We show that SiO2 nanosphere arrays may achieve enhancements of less than 10%

compared to an ideal double pass c-Si thin film. In contrast, higher index of refraction

nanospheres such as Si3N4 may improve efficiency enhancements over 40% for c-Si thicknesses

t ≤ 800 nm and TiO2 by over 50% for t ≤ 700 nm. Si3N4 and TiO2 nanospheres improve

efficiencies by about 50% and over 100% respectively for c-Si thin films with t = 100 nm.

Figure 34(a) shows a schematic of our simulated structure. A close packed monolayer of

nanospheres with diameters d sits on top of a crystalline silicon (c-Si) thin film of thickness

t. The nanosphere monolayer forms a hexagonal lattice. The lattice vectors are defined by

|a1| = |a2| = a, and the angle between the two lattice vectors ϕ = 60◦. We assume the

nanospheres are close-packed or d = a. We study a range of c-Si thicknesses t from 100

to 2000 nm (in increments of 100 nm) and nanosphere diameters d from 200 to 2000 nm

(in increments of 20 nm). The c-Si sits on top of a perfectly electric conductor (PEC). We

studied SiO2, Si3N4, and TiO2 nanospheres and the real part of the index of refraction n

is shown in Figure 34(b). The optical constants for c-Si, SiO2, and Si3N4 are taken from

data in Palik’s Handbook of Optical Constants of Solids [78]. The optical constants for TiO2

were also taken from the same source, though the optical constants are extrapolated out

to 280 nm. SiO2, Si3N4, and TiO2 have indices of refraction of approximately 1.4, 2, and

3 respectively. The SiO2 and Si3N4 are amorphous, while the TiO2 is the rutile crystal

structure. The imaginary part of the index of refraction for these three materials is 0, so

that the nanospheres do not absorb any light. While TiO2 does exhibit some absorption

below 440 nm, the imaginary part of the index of refraction of TiO2 was assumed to be 0 to

simplify the analysis and focus the study on the effect of index of refraction change.
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Figure 34: (a) Schematic of the dielectric nanosphere solar cell. The crystalline silicon (c-

Si) thin film has thickness t and sits on top of a perfectly electrical conductor (PEC). A

hexagonal close packed-monolayer of nanospheres lie on top of this thin film. The diameter

of the nanospheres equals the pitch d = a. (b) Real part of the index of refraction n for the

three nanospheres studied.

Appropriate symmetric and anti-symmetric boundary conditions were used to ensure

the periodicity of the unit cell. From the simulations, we obtained the energy dependent

reflection R(E) and the absorption spectra was calculated from A(E) = 1−R(E). In order

to evaluate the absorption performance of silicon solar cells across the solar spectrum, we

calculated the ultimate efficiency from

η =

∫∞
Eg
I(E)A(E)Eg

E
dE∫∞

0
I(E)dE

(5.4)

where Eg = 1.12 eV is the band gap of c-Si and I(E) is the solar irradiance under the

global 37◦ tilt Air Mass 1.5 spectrum [95]. We investigated the optical properties over the

wavelength range from 280 to 1200 nm.

To begin with, we focused on simulating t = 200 nm thick c-Si thin films and SiO2

nanosphere arrays. In these simulations, we used a uniform grid size of 5 × 5 × 5 nm. Figure

35(a) illustrates the absorption spectra for a 200 nm thick c-Si film. Resonant absorption

peaks are found in the c-Si thin film on metal when the following condition is satisfied

tan(nkt) = −ni (5.5)
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where k is the free space wave number and n is the silicon index of refraction. The leaky

modes of planar films are TEM modes labelled with mode number m as TEMm. Interference

leads to a resonant Fabry-Perot cavity effect within the film. These resonant modes are

characterized by m/2 + 1/4 wavelengths in the transverse direction of the planar film, where

the electric field intensity is at a maximum at the front surface and 0 at the back metal

interface. The thin film absorption resonances for m = 1 to 4 are shown and marked with

the white dotted lines. Then, we introduced SiO2 nanospheres on top of this c-Si thin film.

Figure 35(b) plots the absorption contour for the close-packed SiO2 nanospheres as a function

of diameter on top of the 200 nm thick c-Si film. Several additional absorption peaks that

increase in wavelength with increasing nanosphere diameter can be seen. The best efficiency

enhancement for the silica nanospheres on top of 200 nm thick c-Si is with d = a = 900

nm, which is indicated with the black dashed line in Figure 35(b). Figure 35(c) plots the

absorption spectra for these optimized SiO2 nanospheres in blue. The green curve shows the

absorption spectra for the 200 thick c-Si film without the nanospheres. The best efficiency

enhancement occurs where there are many resonances just above the Si band gap, Eg = 1.12

eV (or wavelengths slightly below λg = 1110 nm).

Figure 35: Absorption of (a) 200 nm thick c-Si and (b) 200 nm thick c-Si with different

diameter close-packed SiO2 nanosphere arrays on top. Thin film TEMm modes are marked

with white dashed lines. The optimal ultimate efficiency occurs for d = a = 900 nm, marked

with the black dash-dotted line. (c) Absorption spectra of the optimal SiO2 nanosphere

array in blue compared with the absorption spectra of 200 nm thick bare c-Si.
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The nanosphere coatings result in several additional resonance peaks in the absorption

spectra. These resonance peaks are marked in Figure 35(c) with vertical light gray dotted

lines. In order to understand the absorption enhancement at these thin films, we performed

additional electric field intensity simulations. Figure 36 plots the real part of the electric

field in the x−direction at the wavelengths associated with these modes. The incident light

is polarized with electric field in the x−direction, and the real part of the electric field in the

x−direction is plot at λ = (a) 814, (b) 868, (c) 902, (d) 975, (e) 1008, and (f) 1067 nm. The

top row plots a cross-section in the x − z plane through the center of a nanosphere (y = 0

nm). The edges of the nanosphere and c-Si thin film are shown with black dashed lines. The

bottom row plots a cross-section in the x−y plane through the center of the silicon (z = 100

nm). The edges of the close-packed nanosphere array are shown with black dashed lines

as well in these plots. The introduction of nanosphere arrays on the front of the c-Si thin

film allows for the excitation of TE waveguide modes. In particular, the waveguide modes

shown here are TE1 waveguide modes, which are characterized by 3/4 wavelengths along the

thickness of the c-Si, and Ex is a minimum at the back metal surface. Higher order TEm

waveguide modes are also excited at λ = 545 and 460 nm for m = 2 and 3 respectively, as

can be seen in Figure 35(c) though these peaks are relatively small. Dielectric nanospheres

may excite TEm waveguide modes only, in contrast with metallic nanostructures, which can

excite both TEm and TMm waveguide modes [92, 93]. When the reciprocal lattice vector of

the nanosphere array or the k-vector of the nanosphere resonances matches the k-vector of

the c-Si waveguide mode, incoming radiation may be coupled into these waveguide modes,

which enables light trapping.
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Figure 36: Real part of Ex for λ = (a) 814, (b) 868, (c) 902, (d) 975, (e) 1008, and (f) 1067

nm. The top row plots a cross-section in the x− z plane through the center of a nanosphere

(y = 0 nm). The bottom row plots a cross-section in the x− y plane through the center of

the silicon (z = 100 nm). The edges of the close-packed nanosphere array and c-Si thin film

are shown with black dashed lines. The modes shown are TE1 waveguide modes.

Higher index of refraction nanospheres more strongly confine light so that there are more

whispering gallery modes for a particular nanosphere diameter. Thus, we next investigate the

absorption enhancement with silicon nitride (Si3N4) and titanium oxide (TiO2) nanospheres.

Figure 37(b) and (c) plot the absorption contour for close-packed Si3N4 and TiO2 nanospheres

respectively as a function of pitch on top of the 200 nm thick c-Si film. A larger number

of optical dispersion lines corresponding to a larger number of modes appear for Si3N4 and

TiO2. The best efficiency enhancement for the Si3N4 nanospheres on top of 200 nm c-Si film

is with d = a = 720 nm. The absorption spectrum for this structure is shown in Figure

37(c) in blue, where the green curve again shows the absorption spectrum for the 200 nm

c-Si film. The best efficiency enhancement for the TiO2 nanospheres is with d = a = 1040

nm. The absorption spectrum for this structure is shown in Figure 37(d) in blue, where

the green curve again shows the absorption spectrum for the 200 nm c-Si film. The overall

absorption is enhanced with the Si3N4 and even more with the TiO2 nanospheres due to
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larger number of modes present. Table 4 shows the ultimate efficiency η, short circuit

current Jsc, and solar absorption Asolar of the 200 nm c-Si thin film on back metal, ideal

double pass c-Si, and 200 nm c-Si with optimized SiO2, Si3N4, and TiO2 nanospheres. The

short circuit current is calculated from Jsc = q
∫∞
Eg
bs(E)A(E)dE and the solar absorption

from Asolar =
∫∞
Eg
bs(E)A(E)dE where bs(E) is the photon flux density of the global Air

Mass 1.5 spectrum [95].

The absorption of the ideal double pass thin film is

A(E) = 1− exp[2α(E)t] (5.6)

where α(E) is the energy dependent absorption coefficient of c-Si. The ideal double pass

thin film assumes perfect antireflection at the front surface, R(E) = 0, and perfect reflection

at the back surface, R(E) = 1. All nanosphere coatings exhibit light trapping properties

with better absorption and ultimate efficiency than the ideal double pass and thin film Si.

We also show in Table 4 the efficiency enhancements G1 and G2 of the various structures to

thin film c-Si and ideal double pass c-Si respectively. Efficiency enhancements of over 50%

or more are possible with Si3N4 and TiO2 nanospheres compared to the ideal double pass

c-Si thin film.
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Figure 37: Absorption of 200 nm thick c-Si with different diameter close-packed (a) Si3N4 and

(b) TiO2 nanosphere arrays on top. The optimal ultimate efficiency occurs for d = a = 700

nm and for d = a = 1040 nm for the Si3N4 and TiO2 nanospheres respectively, which is

marked with the black dash-dotted lines. Absorption spectra of the optimal (c) Si3N4 and

(d) TiO2 nanosphere arrays in blue compared with the absorption spectra of 200 nm thick

bare c-Si.

Table 4: Comparison of the performance of 200 nm c-Si film on metal under different photon

management schemes. η (%), Jsc (mA/cm2), Asolar (%), and G1, G2.

Structure η Jsc Asolar G1 G2

Thin Film 8.0 7.2 10.4 1.00 0.80
Ideal Double Pass 10.0 9.0 13.0 1.25 1.00

With SiO2 Nanospheres 11.1 9.9 14.2 1.38 1.10
With Si3N4 Nanospheres 15.1 13.5 19.4 1.88 1.50
With TiO2 Nanospheres 17.5 15.6 22.1 2.18 1.74
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Finally, we evaluated the efficiency enhancements possible with nanosphere coatings over

a range of c-Si thicknesses from t = 100 to 2000 nm. These simulations were performed with

a uniform grid size of 20 × 20 × 20 nm, due to the large number of simulations that were

performed. The ultimate efficiency was found to have converged within 2% with this grid

size. Figure 38(a), (b), and (c) utilize contour plots to illustrate the dependence of ultimate

efficiency on the thickness of the c-Si and nanosphere diameter (which equals the pitch) of the

SiO2, Si3N4, and TiO2 nanosphere arrays respectively. The optimal ultimate efficiencies for

each thickness of c-Si are marked with black circles in the contour plots. Figure 38(d) plots

the optimum diameter for each c-Si thickness for the three different types of nanospheres.

The best diameter for the SiO2 nanospheres is about 900 nm and TiO2 nanospheres is about

800 nm across the different thicknesses evaluated, while for for Si3N4, the best diameter

tends to increase with increasing c-Si thickness. In addition, based on the contour plots,

we note that the efficiency is not that sensitive to the nanosphere diameter so long as the

nanospheres are larger than some minimum diameter (about 700 nm).

In Figure 38(e), we plot the best ultimate efficiencies of the c-Si thin film, ideal double

pass c-Si, and the best nanosphere coatings as a function of c-Si thickness. The short-circuit

current is plot on the right y-axis. The optimal ultimate efficiency enhancement G2 of the

different types of nanosphere coatings compared to the ideal double pass c-Si thin film are

plot in Figure 38(f) for different c-Si film thicknesses. While the efficiency enhancement for

SiO2 is under 10% for all c-Si thicknesses, Si3N4 nanospheres may improve efficiencies by

over 40% for c-Si thicknesses t ≤ 800 nm and TiO2 nanospheres by over 50% for t ≤ 700

nm. The efficiency improvements decrease for larger c-Si thicknesses and are 1%, 23%, and

24% for SiO2, Si3N4, and TiO2 respectively for t = 2000 nm. These simulations suggest

that high index of refraction nanospheres may exhibit better light trapping properties than

metal nanostructures, which have demonstrated enhancements of 43% in 50 nm [92] and

22% in 100 nm [93] thick c-Si. While metal nanostructures may enhance absorption by

coupling incoming light into both TEm and TMm waveguide modes as well as the excitation

of localized surface plasmon resonances, they also exhibit parasitic absorption and enhanced

reflection.
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Figure 38: Ultimate efficiency η of c-Si thin film with (a) SiO2, (b) Si3N4, and (c) TiO2

close-packed nanospheres as a function of the c-Si thickness t and diameter d (which equals

the pitch a). The maximum efficiency of the solar cells for each thickness is shown with black

circles. (d) Optimum diameter for different thicknesses of c-Si. (e) The maximum ultimate

efficiency of various thickness c-Si solar cells as compared to an ideal double pass c-Si thin

film and thin film c-Si on top of a perfect reflector. The short circuit current is shown on

the right y-axis. (f) The ultimate efficiency enhancement G2 from nanosphere coatings as

compared to the ideal double pass thin film.
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5.5.2 Fabrication of nanosphers layers

We developed a new self-assembly method shown in Figure 39, whereby we can coat different

layers of nanospheres onto large area solar cells. This slide shows our self-assembly method.

The n anospheres with methanol and deposit the solution into water. The nanospheres float

on top of the water and form a close packed monolayer. By dipping our silicon substrate

into the nanospheres and than gently pulling the wafer out of the solution, we can form a

monolayer of nanospheres over large areas. This self assembly method can be applied on

different nanospheres and microspheres such as polystyrene (PS) and silica.

Figure 39: Self-assembly method.

Figure 40 shows monolayer SEM pictures of (a) PS and(b) silica. The results are with

good uniformity and the nanosphere coating is close packed with some point defects, which

are missing nanospheres, and some grain boundaries.
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(a)

(b)

Figure 40: Monaolyer coatings of different nanosphers, (a) PS nanospheres and (b) silica

nanospheres.

By repeating the process multiple times, we can obtain multiple layers with good re-
peatability and uniformity. The left side shows 3 layers and the right side shows 5 layers as
shown in Figure 41

Figure 41: Multiple layers of nanosphere coatings. 2 layers (left) and 5 layers (right).
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More importantly, we can also coat flexible substrates with the nanospheres. Here, in

Figure 42 we present our results on plastic polyethylene terephthalate (PET) substrates.

This result means we can do the self assembly process on ultrathin silicon film which is

usually flexible.

Figure 42: Nanospheres coated onto flexible PET substrates.

5.5.3 Conclusions

We investigated 2-dimensional periodic closed-packed SiO2, Si3N4, and TiO2 nanosphere ar-

rays on c-Si thin films for enhancing the absorption in the c-Si photoactive region. By evalu-

ating the electric field of absorption peaks in the nanosphere coated systems, we demonstrate

that enhanced light trapping is due to the coupling of incident light to waveguide modes. We

demonstrate that higher index of refraction nanospheres may achieve better light trapping

since they have more resonant modes due to stronger optical confinement. Enhancements

over 100% can be obtained on 100 nm thick c-Si films with TiO2 nanospheres, though the

enhancements decrease with thicker cells. This light trapping mechanism improves efficien-

cies without introducing new surfaces or interfaces that increase surface recombination as

exhibited by other nanophotonic or plasmonic light trapping strategies. And the monolayer

structures can be fabricated with facile and scalable methods.
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5.6 LIGHT TRAPPING IN PHOTONIC CRYSTAL

Recently, the author Chen’s group has demonstrated the ability to fabricate photonic crystal

templates through interference lithography and one or two laser exposures, akin to tradi-

tional photolithography processes [96–98]. These templates may be used to form woodpile

(WP) or inverse woodpile (IWP) photonic crystals by infiltrating the polymer with nanocrys-

talline silicon (nc-Si) which has a similar band gap and higher effective absorption coefficient

compared with crystalline Si [99]. Therefore, we present detailed numerical electrodynamic

investigations of WP and IWP photonic crystal nc-Si solar cells for a variety of geometries

and compare them to thin film structures. We analyze the achievable absorption enhance-

ment across the solar spectrum and found these structures exhibit improved light trapping

over thin film structures.

5.6.1 Inverse woodpile and woodpile structures

Figure 43 shows schematics of the (a) IWP and (b) WP photonic crystal structures studied.

The active layer consists of nanocrystalline silicon (nc-Si) placed on top of a perfectly electric

conductor (PEC). The IWP photonic crystal is formed by stacking N layers of air cylinders

in nc-Si, where each layer is rotated by 90◦ from the layer below. N is constrained to be

an integer. The stacking pattern is a four layer sequence where the third and fourth layers

have the same orientation as the first and second layers respectively, but are offset by half

of the horizontal lattice constant. The WP photonic crystal has the same stacking pattern,

but consists of a lattice of nc-Si cylinders surrounded by air.
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Figure 43: Schematic of the (a) inverse woodpile photonic crystal structure and (b) woodpile

photonic crystal structure. (c) Optical constants of nanocrystalline silicon.

The parameters of the structures are the horizontal period a of the lattice, the diameter

d of the cylinders, and the total thickness t. t = Nd. The diameters of the cylinders are

smaller than or equal to the horizontal lattice period, d ≤ a. The thickness L of a thin film

with the same amount of nc-Si (or equivalent thickness) as the IWP and WP structures are

L = Nd− N

a

πd2

4
(5.7)

and

L =
N

a

πd2

4
, (5.8)

respectively.

We employed the finite difference time domain method for solving Maxwell’s equations.

The optical constants of the nc-Si used in this work are shown in Figure 43(c) [100]. The

solar absorption, ultimate efficiency, and short circuit current density were evaluated under

the global 37◦ tilt Air Mass 1.5 spectrum [95] using the same formulas as those we have

previously used. The ultimate efficiency describes the cell efficiency when each photon ab-

sorbed produces one electron-hole pair, and these photoexcited carriers are collected without

recombination such as when the temperature of the cell is 0 K. The short circuit current is

calculated under the same assumptions. The band gap of nc-Si is Eg = 1.12 eV.

We evaluated the optical properties of the IWP and WP structures over the energy range

of the solar spectrum from 1.12 to 4.4 eV (wavelengths from 1100 to 280 nm). A uniform

mesh of 10 nm × 10 nm × 10 nm was utilized where the ultimate efficiency was found
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to have converged within 1%. Perfectly matched layer and PEC boundary conditions were

used for the upper and lower boundary of the simulation cell, respectively [34]. Appropriate

boundary conditions were used for the side boundaries to model the periodic nature of the

arrays. The optical spectra of the photonic crystals were averaged for light polarized in the

x− and y−directions.

For this study, we first focused on the equivalent thickness L = 200 nm and optimized the

number of layers N , pitch a, and diameter d of the IWP and WP structures for the maximum

solar absorption or equivalently, ultimate efficiency. The constraint of comparing structures

with the same equivalent thickness (as defined by Equations 5.7 and 5.8 for the IWP and

WP structures, respectively) result in a series of contour lines as shown in Figure 44. The

ultimate efficiency of the simulated structures is plotted on these contour lines for various

number of layers N , diameters d, pitches a. The region of the parameter space that does

not satisfy the constraint d ≤ a is shaded with gray. Figure 44(a) shows the results for the

IWP structure for N = 1 to 4. The optimal IWP structure is N = 2, a = 390 nm, and

d = 140 nm where the ultimate efficiency is 25.8%. Figure 44(b) shows the results for the

WP structure, where the optimal structure is N = 6, a = 1600 nm, and d = 260 nm, where

the ultimate efficiency is 30.1%. The IWP structure is very sensitive to number of layers

and morphology, whereas the WP structure has a broad range of layers and morphologies

which perform close to the optimum. The WP structures have ultimate efficiencies > 27.0%

for N = 2 to 7 with a broad range of pitches and diameters. The ultimate efficiency is not

very strongly dependent on pitch when the pitch is large as the cylinders are far from each

other horizontally.

69



Figure 44: Scatter plots of ultimate efficiency for different (a) IWP and (b) WP structures

subject to the constraint that L = 200 nm and d < a.

Figure 45 plots the absorption spectra as a function of energy, A(E), for the (a) optimal

IWP structure, (b) optimal WP structure, and (c) 200 nm nc-Si thin film. The absorption

spectra was calculated by A(E) = 1 − R(E). The IWP structure may be approximated as

a thin film waveguide of thickness t = Nd = 280 nm on metal with an effective index of

refraction. The effective index of refraction is the volumetric averaged index of refraction.

For a thin film on metal, the leaky TE modes satisfy

k2x cot(k2xt) = ik1x (5.9)

and the leaky TM modes satisfy

ik2x tan(k2xt) = n2
2k1x (5.10)

where k1x = [k2
0 − β2]

1/2
and k2x =

[
(n2k0)2 − β2

]1/2
. k1x is the transverse component of

the wavevector outside the semiconductor, while k2x is the transverse part of the wavevector

inside the semiconductor. n2 is the effective index of refraction of the nanocrystalline silicon

based on its volumetric fill factor. k0 is the free space wave number. The dispersion relation

of various TE and TM leaky (or quasi-guided) modes are shown in Fig 45(a)(ii). The light

lines for the air and the effective index of refraction material are also shown. The horizontal
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gray dashed lines correspond to the magnitude of the reciprocal lattice vectors of the photonic

crystal square lattice

k =

√(
2πm

a

)2

+

(
2πp

a

)2

(5.11)

where m and p are integers. When the wavevector of a leaky mode β is equal to the

reciprocal lattice vector, normally incident light can couple into the leaky mode and there is

an absorption peak. The photon energies where this occurs at for energies below 2.1 eV are

shown with the green dashed lines at the bottom of Figure 45(a)(i).

Figure 45: Absorption spectra of three different nc-Si structures: (a) IWP with N = 2,

a = 390 nm, and d = 140 nm, (b) WP with N = 6, a = 1600 nm, and d = 260 nm, and

(c) thin film with L = 200 nm. The dispersion relation of the leaky or quasiguided modes

of a thin film with volumetric averaged index of refraction is shown in (a)(ii). (d) The three

absorption spectra are plotted together with the irradiance of the Air Mass 1.5 global solar

spectrum shown on the right y-axis.

In contrast, for the WP photonic crystal, the absorption peaks are related to the leaky

resonant modes in a cylinder. The leaky TE modes may be calculated from

J ′m(n2k0d/2)

n2Jm(n2k0d/2)
=
H ′m(k0d/2)

Hm(k0d/2)
(5.12)
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and the leaky TM modes may be calculated from

n2
J ′m(n2k0d/2)

Jm(n2k0d/2)
=
H ′m(k0d/2)

Hm(k0d/2)
(5.13)

where Jm andHm are the mth order Bessel and Hankel functions of the first kind, respectively

[83]. The prime denotes differentiation with respect to the arguments. The location of the

TE and TM modes below 2.1 eV are shown with blue dashed lines at the bottom of Fig 45(b).

The lowest energy modes are the TE11 and TM01 modes at 1.45 and 1.54 eV, respectively.

These modes couple to one another since the n-Si cylinders are stacked on top of one another,

resulting in resonance modes that are closer to the band gap. This mode coupling is also

mostly independent of pitch, as long as the cylinders are not that close to one another, since

this is a horizontal pitch, and thus the absorption spectrum and ultimate efficiency is thus

also largely independent of pitch, as shown in Figure 44(b).

Figure 45(c) plots the absorption spectrum for the 200 nm thick c-Si thin film. The

absorption peaks are Fabry-Perot TEM modes which satisfy Eqs. 5.9 and 5.10 when β = 0.

The location of the TEM are shown with cyan dashed lines at the bottom of Fig 45(c). The

numerically simulated resonances correspond well to the analytical solution, but are slightly

red-shifted due to numerical error. Figure 45(d) plots all the absorption spectra together for

comparison. The irradiance of the Air Mass 1.5 global solar spectrum is shown in the right

y-axis.

Table 5 lists the fraction of photons absorbed in different regions of the solar spectrum

for the three structures shown in Figure 45. The infrared (IR) region (above the nc-Si band

gap) is from 1.12 to 1.67 eV (1107 to 740 nm), the visible (Vis) region is from 1.67 to 3.1

eV (740 to 400 nm), and the ultraviolet (UV) region is from 3.1 to 4.43 eV (400 to 280 nm).

The total absorption shown only includes the range above the nc-Si band gap energy from

1.12 to 4.43 eV (1100 to 280 nm). The IWP and WP structures have significantly improved

performance in the IR region compared with the nc-Si thin film due to better light trapping.

The photonic crystals also both have a lower effective index of refraction such that reflection

is decreased. The WP structure also has almost double the absorption of the thin film in

the ultraviolet region region due to better antireflection properties.
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Table 5: % of absorption in different regions of the solar spectrum. The infrared and total

solar regions are calculated only for energies above the nc-Si band gap (E > 1.12 eV).

Structure IR Vis UV Total
IWP 30.1 72.5 69.9 52.6
WP 44.6 75.3 88.0 61.3

Thin Film 11.3 66.9 44.5 29.7

Table 6 lists the total solar absorption, Asol (%), short circuit current density Jsc (mA/cm2),

and the ultimate efficiency η (%) of these structures. The total solar absorption shown in

this table is over the entire solar spectrum and not just over energies above the silicon band

gap as shown in Table 5. The solar absorption of the silicon thin film ideal single pass is

18.8%. The best IWP structure has a solar absorption of 33.3%, which is a 77.1% enhance-

ment over the thin film structure. The absorption of the WP is 106% higher than that of

thin film structure.

Table 6: The total solar absorption, Asol (%), short circuit current density Jsc (mA/cm2),

and the ultimate efficiency η (%).

Structure Asol Jsc η
IWP 33.4 23.1 25.8
WP 39.0 26.9 30.1

Thin Film 18.8 13.0 14.6

And then we investigated other equivalent thicknesses, L = 400 nm, 600 nm and 800 nm

on inverse woodpile, woodpile and thin film structures. The optimal results of three different

structures against thickness is plotted in Figure 46

We next investigate the loss associated with a real back reflector metal by replacing

the PEC boundary condition with a flat silver layer on the bottom of the inverse woodpile
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structure. A real metal will introduce additional parasitic losses due to absorption in the

metal as compared to a PEC. The position dependent absorption per unit volume was

calculated from divergence of the Poynting vector normalized over the incoming radiation

power, and the absorption in the nc-Si active region was obtained by integrating the position

dependent absorption per unit volume over the Si volume. The absorption spectrum of the

structure with the silver back contact is shown in Figure 47 along with that with the PEC

boundary condition. The absorption is the average for light polarized in the x- and y-

direction. As can be seen in this Figure, the absorption in the silicon photonic crystal with

the silver back contact is similar to that with a PEC, except for some additional loss in the

high energy (short wavelength) range. We observe only a small reduction in solar absorption

from 20.9 to 19.1% with the utilization of silver.

(a)

(b) (c)

Figure 46: (a) Integrated absorption and (b)(c) optimal geometries of three different struc-

tures against equivalent thicknesses.
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Figure 47: (a) Comparison of absorption in the inverse woodpile structure with antireflection

coating with PEC and silver back contact. The solar absorption in the structure with PEC

back contact is 20.9%. When the Ag back contact, the solar absorption is reduced to 19.1%.

Finally, we simulated the angular dependence of the absorption spectrum for the optimal

thin film and inverse woodpile structure. Figure 48 plots the solar absorption for TE and TM

polarized incident light for these two structures. For the inverse woodpile structure, the TE

results are the average for the electric field fixed along the x-direction and the y-direction.

Similarly, the TM results are the average for the magnetic field fixed along the x-direction

and y-direction. It can be seen that there is little variation in absorption with zenith angle

up to about 40◦. The TM results are slightly better than the TE results except for very high

incidence angles. The short circuit current density is shown on the right y-axis.
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Figure 48: Solar absorption as a function of zenith angle θ for thin film and inverse woodpile

structure with Si3N4 layer. The short circuit current density is shown on the right y-axis.

The scatter plots of ultimate efficiency for IWP and WP with other different equivalent

thicknesses L = 400 nm, 600 nm and 800 nm are shown in Figure 49. It shows that IWP

and WP strutures always have better performance than thin film structure.
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Figure 49: Scatter plots of ultimate efficiency for (i) IWP and (ii) WP structures subject to

constraint that (a) L = 400 nm, (b), L = 600 nm, and (c) L = 800 nm.

In summary, we report that the solar absorption in nanocrystalline silicon may be im-

proved by structuring the active region into an inverse woodpile photonic crystal. The

photonic density of states may be engineered such that there is a strong absorption en-

hancement in the infrared range, where the absorption is about 3 times that in the thin

film. We demonstrate that the performance with a real metal as opposed to a PEC is about

the same and that the enhancement is over a broad range of incidence angles. This study

demonstrates a new structure for light trapping over a broad range of photon energies and

incidence angles.
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6.0 PERFORMANCE ENHANCEMENT IN ULTRATHIN SILCON SOLAR

CELLS

6.1 ULTRATHIN SILICON FILM FABRICATION

KOH etching is an approach to get ultrathin silicon films, with this method we can get

large area silicon thin films with different thicknesses. Etch rate of KOH on (1 0 0) or (1

1 0) directions silicon is quite well studied. In my experiments, we use 45% KOH solution,

and the etch rate is mainly dependent on temperature as shown in Figure 50, so through

controlling the temperate of KOH solution, we can control the final thickness of silicon film

by changing the etch time. The etch rate can be as slow as several nanometers per minute,

so controlling the thickness of silicon thin film in nanometer scale is quite possible.

(a) (b)

Figure 50: 45% KOH etch rate on (a) (1 0 0) and (b) (1 1 0) directions.

And Figure 51 shows the results from KOH etching. We get different thicknesses silicon

thin film and the surface quality after etch is also shown.
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(a) (b)

(c) (d)

Figure 51: Etched silicon films with different thickness (a) 26.4 µm and (b) 5 µm. (c)Shows

the good surface quality after KOH etch. (d) is the optical photo of silicon thin film with 5

µm thickness.

6.2 BROADBAND LIGHT ABSORPTION ENHANCEMENT IN

ULTRATHIN FILM CRYSTALLINE SILICON SOLAR CELLS WITH

HIGH INDEX OF REFRACTION NANOSPHERE ARRAYS

Based on what we have demonstrated through simulations that high index of refraction

dielectric nanospheres (NSs) on the frontside of c-Si thin film structures can improve ef-

ficiencies substantially by coupling incident light into the underlying absorber layer [101].

This approach of light trapping differs from other approaches such as structuring the active

material or using metal nanostructures in that no new surfaces or interfaces are created. Di-

electric nanosphere arrays can be scalably coated onto large area solar cells with a variety of

nanosphere lithography approaches as shown previously. Finally, we demonstrate significant
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efficiency and external quantum efficiency (EQE) enhancement on ultrathin c-Si solar cells

of 15 µm thickness via nanosphere coatings [102].

Figure 52: (a) Schematic of the dielectric nanosphere solar cell. A hexagonal close packed-

monolayer of PS NSs lies on top of this solar cell. (b) Top view SEM image of the PS NSs

on Si solar cell. (c) Cross section view of the solar cell with PS NSs monolayer on top. The

inset shows a high magnification view of of the NSs at 80◦.

Figure 52(a) shows a schematic of our ultrathin film c-Si solar cell structure which consists

of a c-Si film between an indium tin oxide (ITO) front transparent electrode and a Ti/Ag

back contact. The c-Si layer is doped n+, p, and p+ from top to bottom. In order to

demonstrate the advantages of nanosphere arrays, a close packed hexagonal lattice monolayer

of polystyrene (PS) NSs is coated on top of the c-Si thin film solar cell. Figure 52(b) shows

a scanning electron microscope (SEM) image of the the top view of the PS NS hexagonal

array. The NS layer is close packed and uniform over the solar cell. Figure 52(c) shows a

cross section SEM image of the solar cell. The c-Si film is about 15 µm thick and the ITO

thin film is about 200 nm thick. The ITO has about 85% transparency with sheet resistance

Rs ≈ 30− 40 Ω/sq.
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Figure 53: Simulated ultimate efficiencies of c-Si solar cells as a function of PS NS diameter.

We studied the effect of different diameter PS NS arrays from 280 nm to 2000 nm by

simulations. The back contact is modeled with a perfectly electric conductor boundary

condition and the PS NS array sits on top of the c-Si. We ignore the effect of the ITO thin

film, which exhibits parasitic absorption, to simplify the simulations. The absorption spectra

was calculated from A(E) = 1− R(E) where R(E) is the energy dependent reflection. The

ultimate efficiency is calculated from from

η =

∫∞
Eg
I(E)A(E)Eg

E
dE∫∞

0
I(E)dE

(6.1)

where Eg = 1.12 eV is the band gap of c-Si and I(E) is the solar irradiance under the global

37◦ tilt Air Mass 1.5 spectrum [95]. Figure 53 plots the simulated ultimate efficiency versus

PS NS array diameter. The ultimate efficiency is near the maximum for NS diameter and

largely independent of NS diameter above about 700 nm. So we used 800 nm diameter PS

NSs on top of the ultrathin Si solar cell. Larger diameter NSs are difficult to coat uniformly

on substrates and may also exhibit higher parasitic absorption from impurities.

81



The ultrathin c-Si film was fabricated from double-side polished p-type (100) Si wafers

(100 mm diameter, 10 - 20 Ω-cm, 475 - 525 µm thickness). The wafer was immersed in 25%

KOH solution at 90 ◦C for about 2.5 hours to obtain about 15 µm thick Si films [103]. The

free standing ultrathin Si film was mounted onto a bulk Si wafer via heat release tape. To

dope the substrate n+, phosphorus spin-on dopant (SOD) (P8545, Honeywell Accuspin) was

spin coated onto the wafer at 4000 rpm for 1 min and then baked for 1 min at 150 ◦C. Then

the Si film was released, flipped over and mounted on another bulk Si wafer. Boron SOD

(B40, Honeywell Accuspin) was spin coated at 4000 rpm for 1 min and then baked for 1 min

at 150 ◦C. The dopants were diffused into the ultrathin Si film by rapid thermal annealing

at 900 ◦C for 15 min. After doping, the Si film was immersed in 7:1 BOE solution for 3 min

to remove SOD residue on both sides of the film, and then washed with deionized water

thoroughly. 200 nm of ITO was deposited on the n+ side of the Si film via radio frequency

(RF) sputtering at 50 watts power and 16 mTorr pressure condition. Then 8 nm of Ti

followed by 200 nm of Ag was evaporated on the back side of the Si film as back contact.

For the PS monolayer fabrication, 4 wt% aqueous suspension (Life Technologies) of 800 nm

diameter PS NSs was diluted with equal volume of anhydrous ethanol. A close-packed PS

monolayer was fabricated on a water surface via self assembly method [104], transferred on

top of the Si film solar cell, and then dried in air.

Figure 54 plots the current density versus voltage (J-V ) curves of the solar cells mea-

sured under the illumination of an AM1.5 global solar simulator. The solar cell without the

nanospheres (plain Si) has a short circuit current density Jsc of 16.2 mA/cm2. After coating

with PS NSs, the Jsc increased to 18.6 mA/cm2. The short circuit current density increases

by about 15%, which indicates an enhancement of incident light absorption in the Si film

layer. Table 7 lists the Jsc, open circuit voltage (Voc), fill factor (FF ), and PCE of the solar

cells consisting of plain c-Si and with PS NSs on top. Along with the increase in Jsc, the

Voc and FF both improve slightly as well. As a result, the PCE of Si solar cell with PS NSs

coating increased from 4.9% for the plain Si film solar cell to 6.2%. This is an improvement

of about 26.5%.
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Figure 54: J-V characteristics measured on c-Si solar cells without and with PS NSs coating.

Table 7: Photovoltaic properties of the ultrathin c-Si solar cells without and with PS NSs.

Jsc Voc FF PCE
(mA/cm2) (v) (%) (%)

Plain Si 16.2 0.47 64 4.9
With PS NSs 18.6 0.48 70 6.2

Based on our experiments, we found the best efficiency enhancements with nanospheres

made of PS, which has an index of refraction of about 1.6 [105]. In our previous simulation

paper, we found that higher index of refraction NSs exhibit better efficiency improvements

[101]. Higher index of refraction NSs have an increased number of whispering gallery modes

that can couple incident light to Fabry-Pérot-like resonances and higher order photonic

waveguide modes in the Si thin film. However, TiO2, which has an index of refraction of about

3 [78], also exhibits parasitic absorption in the ultraviolet [106]. Current synthesis methods

for Si3N4 NSs, which have an index of refraction of about 2, result in very nonuniform
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diameter NSs. Future improvements in the synthesis of high index of refraction nanospheres

may enable further improvements in efficiency for NS coated solar cells.

Figure 55(a) plots the EQE for both the plain c-Si solar cell and c-Si solar cells with

PS NSs on top. This EQE measurement is carried out under monochromatic illumination

by a halogen lamp coupled to a monochromator. The ratio between the EQE of PS NS Si

solar cells compared with plain Si solar cells is plotted as in Figure 55(b). There is an EQE

enhancement in most of the spectrum measured. Furthermore, there are several distinct

peaks for the PS NS coated solar cell EQE. Most notably, at the wavelengths of 470 nm and

1003 nm, the EQE enhancement is almost double that of the plain c-Si solar cell.

Figure 55: (a) EQE measured on flat silicon solar cells without and with PS NSs coating.

(b) Ratio between EQE of plain Si and Si with PS NSs solar cells versus wavelength.

In order to better understand the results, we performed finite difference time domain

(FDTD) simulations to investigate the absorption in c-Si layer. The simulated structure was

like the experimental structure and consisted of 15 µm c-Si with a 200 nm layer of ITO on

the front. The back contact was modeled as a perfect electric conductor boundary condition

and appropriate symmetric and anti-symmetric boundary conditions are used to model the

periodic nature of the NS array.
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Figure 56: (a) Refractive index n and extinction coefficient k of ITO obtained from ex-

periments that were subsequently used in simulations. (b) Parasitic absorption in the ITO

film.

The refractive index n and extinction coefficient k of ITO used in simulations was ac-

quired from the ellipsometry and displayed in Figure 56(a). An ITO film thickness of about

200 nm was sputtered and the optical constants were fitted by ellipsometry. The position

dependent absorption per unit volume may be calculated from the divergence of the Poynt-

ing vector ~P : A(r, E) = 1
2
real{~∇ · ~P} = 1

2
εi(E)E~ |E(r, E)|2, where εi(E) is the imaginary

part of the dielectric constant, ~ is the reduced Planck constant, and E(r, E) is the energy

and position-dependent electric field. The parasitic absorption in the ITO thin film was

calculated by integrating the position dependent absorption per unit volume over the ITO

and is plotted in Figure 56(b). The monolayer coating of PS NSs does not affect the amount

of parasitic absorption.

The optical constants of PS [105] and the refractive index of c-Si [78] were both obtained

from the literature. In the simulations, we obtained the absorption in the c-Si layers for both

the plain c-Si and Si with PS NSs solar cells by integrating the position dependent absorption

per unit volume over the Si volume. This omits the parasitic absorption that occurs in the

ITO thin film, which is based on the ITO extinction coefficient. The addition of the PS NSs

only changes the parasitic absorption in the ITO thin film negligibly. Figure 57 plots the

absorption of the c-Si from the simulation. Similar to the our experimental EQE results, we
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find that the absorption in the c-Si layer with PS NSs is higher than that of the plain Si

over a broad wavelength range. Furthermore, there are several extra peaks in the absorption

spectrum for the structure with PS array.

Figure 57: Simulated absorption spectra in c-Si thin film without and with PS nanospheres

coating.

To understand the extra peaks in EQE and absorption for the structure with PS mono-

layer, we then investigated the electric field profile at these specific wavelengths for both

structures. Figure 58 plots the electric field intensity |E|2 at the wavelengths (a) 481 and (b)

756 nm. The c-Si absorption of the plain Si solar cell is 0.57 and 0.46 at these wavelengths,

respectively. In contrast, the c-Si absorption of the Si with PS NSs solar cell is 0.78 and

0.57 at these wavelengths, respectively. In Figure 58, part (i) and (ii) plot the electric field

intensity for the plain Si solar cell, while part (iii) and (iv) plot the electric field intensity

for the solar cell with PS NSs. Part (i) and (iii) plot the electric field intensity in the x-y

plane at z = −500 nm. This is 500 nm below the top surface of the Si. Part (ii) and (iv)

plot the electric field intensity in the x-z plane at x = 0. The edges of the nanospheres

are shown with white solid lines and the edges of ITO are indicated by white dashed lines.
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The ultrathin c-Si is underneath the ITO layer and only the top 1000 nm is shown. From

part (iii), we can observe the modes of NSs couple to each other because the spheres are

touching. These resonant modes exhibit high field intensity in the NSs and allow incident

light to couple into the underlying Si across a broader range of wavelengths. The NSs also

facilitates the lateral propagation of light due to its 2-dimensional structure.

Figure 58: The electric field intensity |E|2 at λ = (a) 481 and (b) 756 nm. At each wavelength,

the electric field intensity for the (i, ii) plain Si and (iii, iv) Si with PS NS solar cell structures

are plotted. Dashed lines show the boundary of the ITO and white lines show the boundaries

of the PS NSs. The plain Si solar cell is plotted in (i) the x-y plane at z = −500 nm and (ii)

the x-z plane cross section view. The Si solar cell with NSs is plotted in (iii) the x-y plane

at z = −500 nm and (iv) the x-z plane cross section view at x = 0.

87



6.2.1 Conclusions

In conclusion, we demonstrate that with a monolayer of 800 nm diameter PS NSs, the light

absorption can be enhanced over a broad wavelength range for 15 µm thickness ultrathin

c-Si solar cells both in experiments and simulations. This light harvesting scheme results in a

26.5% PCE enhancement and an EQE enhancement of almost 2 times at several wavelengths.

The NS array couples incident light into the underlying Si and facilitates wave propagation

in lateral direction. The fabrication technique for this reported light harvesting structure is

facile and easy to integrate with other light trapping and anti-reflection techniques. This

light harvesting mechanism should be a promising path toward high efficiency and low cost

solar cells and may be beneficial to other optoelectronic devices.

6.3 FLEXIBLE ULTRATHIN SILICON SOLAR CELLS WITH

INTEGRATED METAL NANOMESH AND NANOSPHERES

In our previous work, [102] we showed that the PCE of 15 µm thick ultrathin c-Si solar cells

can be improved by 26.5% by introducing a monolayer of 800 nm polystyrene (PS) NSs with

indium tin oxide (ITO) as front contact. In this work, we use a metal nanomesh as front

contact which is fabricated by microsphere lithography. [107] The metal nanomesh demon-

strates lower sheet resistance than ITO while maintaining a comparable optical transmission.

In addition, this type of metal nanomesh has a tunable haze factor which will be discussed

in detail later. As a result, the PCE of c-Si solar cell with metal nanomesh is improved by

53% compared to that of c-Si solar cell with ITO. More importantly, the metal nanomesh

has superior flexibility to ITO, which significantly enhances the flexibility and durability of

the c-Si thin film solar cells. With the introduction of a dielectric nanosphere monolayer

array on top of the metal nanomesh, the scattering of light is further enhanced, and as a

result, the PCE of the c-Si solar cell can be increased by an additional 10.6%.
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Figure 59: (a) Schematic of the integrated solar cell with the metal nanomesh and dielectric

NSs. A hexagonal close packed-monolayer of 800 nm diameter PS NSs lies on top of this

solar cell. (b) Top view SEM image of the PS NSs on c-Si solar cell. (c) Cross section view

of the solar cell with PS NSs monolayer on top.

Figure 59(a) shows a schematic of our ultrathin film c-Si solar cell structure which consists

of a c-Si film between a metal nanomesh front transparent electrode and a Ti/Ag back

contact. The c-Si layer is doped n+, p, and p+ from top to bottom. A close packed

hexagonal lattice monolayer of 800 nm diameter PS NSs is coated on top of the c-Si thin

film solar cell. Figure 59(b) shows a scanning electron microscope (SEM) image of the the

top view of the PS NS hexagonal array. The NS layer is close packed and uniform over the

solar cell. Figure 59(c) shows a cross section SEM image of the solar cell. The c-Si film has

thickness 14.7 µm slightly thinner than that in the previous work. [102] We used 800 nm

diameter PS NSs on top of the ultrathin c-Si solar cell, because our simulation results [102]

indicate that the ultimate efficiency is relatively insensitive to PS NS diameters higher than

800 nm. Larger diameter NSs are difficult to coat uniformly on substrates and may also

exhibit higher parasitic absorption from impurities.

The ultrathin c-Si film was fabricated from double-side polished p-type (100) c-Si wafers

(100 mm diameter, 10 - 20 Ω-cm, 475 - 525 µm thickness). The wafer was immersed in 25%
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KOH solution at 90 ◦C for about 2.5 hours to obtain about 14.7 µm thick c-Si films. [108]

The top side of the free standing ultrathin c-Si film was doped to n+ via phosphorus spin-on

dopant (SOD) (P8545, Honeywell Accuspin) and the back side of the c-Si film was doped to

p+ via boron SOD (B40, Honeywell Accuspin). The dopants were diffused into the ultrathin

c-Si film by rapid thermal annealing at 900 ◦C for 15 min. After doping, the dopant reside

was removed by buffered oxide enchant (BOE) solution, and then the sample was washed

with deionized water thoroughly.

Figure 60(a) plots the current density versus voltage (J-V) curves of the solar cells mea-

sured under the illumination of an AM1.5 global solar simulator. The short circuit current

density Jsc of the solar cell with ITO as front contact but without nanospheres (Si/ITO) is

16.2 mA/cm2. The Jsc increased to 18.6 mA/cm2 with the PS NSs coating (Si/ITO/PS).

After the front contact was changed from ITO to metal nanomesh, Jsc increased to 21.2

mA/cm2 and 23.4 mA/cm2 for the solar cells without (Si/Nanomesh) and with PS NSs

(Si/Nanomesh/PS) coating. Table 8 lists Jsc, open circuit voltage (Voc), fill factor (FF), and

PCE of the four different structures solar cells. As a result of the lower sheet resistance of the

metal nanomesh, the fill factor of solar cell with metal nanomesh as front contact improved

to 75% compared to 70% with ITO as front contact. For the plain Si solar cells, the power

conversion efficiency improved from 4.9% with ITO to 7.5% with metal nanomesh, and it is

improved by 53%. Figure 60(b) shows the external quantum efficiency (EQE) for solar cells

with both types front contacts with and without PS NS on top. This EQE measurement is

carried out under monochromatic illumination by a halogen lamp coupled to a monochro-

mator. We can see, with metal nanomesh with contact, there is an EQE enhancement,

especially in the short wavelength range.
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Figure 60: (a) J-V characteristics and (b) EQE measured on c-Si solar cells with different

front contacts without and with PS NSs coating.

Table 8: Photovoltaic properties of the ultrathin c-Si solar cells without and with PS NSs

with different types of contacts.

Jsc Voc FF PCE
(mA/cm2) (v) (%) (%)

Plain Si 16.2 0.47 64 4.9
With PS NSs 18.6 0.48 70 6.2

Plain Si with nanomesh 21.2 0.47 75 7.5
Nanomesh with PS NSs 23.4 0.47 75 8.3

The metal nanomesh is about 35 nm thick with a pitch of 1300 nm and hole diameter 1200

nm which is fabricated by the microsphere lithography method. [107] The metal nanomesh

has a sheet resistance Rs ≈ 10 Ω/sq compared to 30 - 40 Ω/sq for ITO. In order to understand

the results, we measured both of the diffusive and specular transmission of three different

structures using a spectrophotometer with and without integrating sphere, respectively. As

shown in Figure 61(a), from which we can see the transmission of the metal nanomesh is just

slightly below that of ITO. Table 9 lists the solar transmission, Tsol for the different types of

front contacts, calculated from

Tsol =

∫
b(λ)T (λ)dλ∫
b(λ)dλ

, (6.2)
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where λ is the free space wavelength, b(λ) is the photo flux density, and T (λ) is the

optical transmission at wavelength λ, and the solar absorption, Asolar and solar haze factor,

Hsol as discussed later are also caluclated with the same way. The Tsol for ITO is 77.1%

while it is 70.6% for the metal nanomesh, which is 8.43% lower. Haze factor, in addition

to transparency and sheet resistance, is another crucial factor for flat panel displays and

solar cells. The haze factor is determined by the diffusive transmission (Tdiff ) and specular

transmission (Tspec),

H =
Tdiff − Tspec

Tdiff
(6.3)

Thus, the haze factor can be tuned by the diffusive and specular transmissions which

can be tuned by controlling the geometries of the metal nanomeshes. Higher haze factor

means higher diffusive transmission percentage, so light have longer optical path. Thus, a

low haze factor is required for displays to avoid blurry imaging, while a high haze factor

is desirable for solar cells to increase the optical path length in the absorber. The metal

nanomesh used as front contact in this work is designed to have higher haze factor up to 0.4

over most of the spectrum as shown in Figure 61(d) while the haze factor of ITO is very

small, nearly negligible. As shown in table 9, Hsol for metal nanomesh is 38.5%, 5.75 times

higher than that of ITO. So combining the comparable transmission and much higher haze

factor compared to ITO, the Jsc of solar cell with metal nanomesh is 31% higher than that

of solar cell with ITO. By introducing the PS NS on top of metal nanomesh, the Tsol is

dropped to around 63%, however, the Hsol is increased to 70%, thus, the Jsc could be further

improved by 10.6% with PS NS on top. We also measured the reflection of the three different

front structures as shown in Figure 61(b) and the absorption in Figure 61(c) is calculated

from A(λ) = 1− R(λ)− T (λ) where R(λ) is the wavelength dependent reflection and T (λ)

is the wavelength dependent transmission. Asol is listed in table 9, and we can see that

the absorption of metal nanomesh itself is very small, almost negligible, while when PS is

introduced, the solar absorption increased to about 13.6%. As a result, the transmission with

PS on top of metal nanomesh is decreased. However, due to the high haze factor resulting

from strong scattering effect, the PS monolayer on top of metal nanomesh can still improve

the PCE by 10.6% despite stronger parasitic absorption.
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Figure 61: Measured (a) transmissions (b) reflection of three different transparent conduc-

tors, ITO, metal nanomesh, and metal nanomesh with PS on top. Calculated (c) absorption

and (d) haze factor of three different transparent conductors.

Table 9: The total solar transmission, Tsol (%), solar absorption, Asol (%), and solar haze

factor, Hsol (%) of three different types of contacts.

Tsol (%) Asol (%) Hsol (%)

ITO 77.1 8.9 5.7
Nanomesh 70.6 2.3 38.5

Nanomesh with PS 63.0 13.6 70.0
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To show the flexibility, we performed the bending a 10 µm thick c-Si solar cell with the

Ag metal nanomesh with a geometry of t = 35 nm, a = 1300 nm and w = 10nm around a

steel rod with 1 cm diameter. As shown in Figure 62, the efficiency almost does not change

after 1200 cycles of bending while the resistivity of ITO will increase by up to 30 times after

25 cycles of bending. [109]

Xin He, et, al. J. Mater. Chem. C, 2, 9737 (2015).

Figure 62: Power conversion efficiency against the number of bending cycles on a 10 µm c-Si

thin film solar cell with metal nanomesh with a geometry of t = 35 nm, a = 1300 nm and w

= 100 nm.

6.3.1 Conclusions

In conclusion, the metal nanomesh front contacts not only enhance the short circuit current

of the solar cells due to the high haze factor but also increase the fill factor because of

the low sheet resistance compared to ITO. As a result, the power conversion efficiency is

improved by 53% compared to bare c-Si solar cell with ITO. Furthermore, we show that

dielectric nanosphere arrays can further enhance the efficiency by 10.6% of ultrathin film

crystalline silicon by scattering incident light into the underlying silicon layer. The 14.7 µm

thick silicon solar cells exhibit an 8.3% power conversion efficiency and are robust under
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repeated bending. So this strategy not only enhances the PCE of the solar cells which helps

to reduce the material cost with higher energy but also opens up new applications due to

the significantly flexibility property improvement.
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7.0 CONCLUSIONS AND PROSPECTS

Nanostructures open up exciting opportunities for optoelectronic devices performance en-

hancement due to the light manipulation ability. In my work, I focused on two schemes of

light management at the nanoscale: active layer texture and high refractive index nanospheres

coupling. We showed that tapered nanocone structures combine the abilities of antireflec-

tion and light trapping across a broad band wavelength and a wide angle range numerically.

We successfully fabricated wafer scale nanocone structures with different geometries and

demonstrated the performance on black silicon solar cells with a metal network transparent

electrode. Dielectric nanospheres have emerged as a promising candidate for enhancing ab-

sorption in thin film photovoltaics. We numerically and experimentally demonstrated that

nanospheres can enhance the absorption in thin silicon solar cells by coupling incident light

into waveguide modes without introducing new interfaces or surfaces. With metal nanomesh

instead of indium tin oxide as front contact, this kind of device showed superior flexibility.

So this strategy not only enhances the PCE of the solar cells which helps to reduce the

material cost with higher energy but also opens up new applications due to the significantly

flexibility property improvement.

So, there are new opportunities for low cost and high efficiency solar cells based these

two schemes. However, there are still challenges. The fabrication of large scale ultrathin

silicon with facile methods still needs more effort and research. And there is still room for

the solar cells efficiency improvement.
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