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ABSTRACT 

Globally, silicosis is responsible for thousands of deaths each year and is a major public 

health concern in industries like mining.  Silicosis is caused by exposure to respirable crystalline 

silica, and while incidence of silicosis has declined in recent decades, its continued occurrence in 

young workers indicates that high crystalline silica exposures in the contemporary workforce 

persist despite monitoring efforts and regulatory enforcement. 

Crystalline silica exposure is monitored in the mining industry via collection of respirable dust 

samples, from which both dust and crystalline silica concentrations are determined. Accurate 

quantification of crystalline silica is vital to assessing workers’ exposure, and to limiting exposure 

through selection of appropriate engineering controls and personal protective equipment. To 

quantify crystalline silica in a sample, one of two analytic methods is used: X-ray diffraction and 

infrared spectroscopy.  Previously, confounding effects of mineral composition and size 

distribution of dust were assumed to have only minor impact on the accuracy of both methods; 

however, as mining technologies evolve, so do the characteristics of the dust generated in mines, 

and such effects may no longer be negligible. 

Evaluating the characteristics of mine dust with respect to particle size and crystalline silica 

content is imperative to understanding how crystalline silica analysis may be affected by these 

characteristics. To date, few studies have investigated particle size-related crystalline silica 

content in occupational dusts, and while some efforts have been made to characterize coal mine 

dusts, there has been no such effort to characterize metal/non-metal mine dusts.  This study 
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undertakes detailed characterization of dusts from three gold mine operations, via analysis of size 

distribution using particle sizers and a cascade impactor; crystalline silica content by infrared and 

X-ray diffraction methods; and single-particle composition via scanning electron microscopy.  

Results indicate that the size distribution of crystalline silica within a particular dust is not 

equivalent to the dust’s size distribution; the abundance of crystalline silica in a dust varies with 

particle size; the two methods of quantifying crystalline silica yield variable results depending on 

particle size; and, like crystalline silica, particle types of different elemental composition vary in 

abundance with respect to particle size. 
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NOMENCLATURE AND TERMS 

Crystalline silica Forms of silicon dioxide (SiO2) wherein molecules are arranged in 

a crystal lattice; used in this work to refer primarily to quartz 

IR    Infrared spectroscopy 

Metal/Non-metal Term referring to non-coal types of mining operations; includes 

metal, stone, sand and gravel mines, etc. 

Miner A person working, in any capacity, at a mining operation  

MMD    Mass Median Diameter 

MOUDI   Microorifice Uniform Deposit Impactor 

MSHA    Mine Safety and Health Administration 

NIOSH National Institute for Occupational Safety and Health 

Polymorph Any of several crystalline forms having the same chemical 

composition 

SEM-EDS   Scanning Electron Microscopy with Energy Dispersive X-ray  

Spectroscopy 

Size-fractionated Samples of dust particles separated into narrow size bins, or 

ranges, based on particle aerodynamic diameter  

XRD    X-ray Diffraction 
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1.0  INTRODUCTION 

In 2013, 46,300 deaths worldwide were attributed to silicosis (1).  The many colloquial names – 

Miners’ Phthisis, Masons’ Disease, Black Lung, Potters’ Rot, Stonecutters’ Disease, Grinders’ 

Asthma – by which silicosis (and its related ailments) has been known throughout history points 

to its pervasiveness.  From 1968 to 2002, silicosis was recorded as an underlying or contributing 

cause of death on a total of 16,300 death certificates in the United States (2), and between 2001 

and 2010, silicosis was attributed as an underlying or contributing cause of death for 1,437 

individuals in the United States (3), with 28 cases occurring in persons below the age of 44.  Over 

the past several decades, annual silicosis deaths have declined; however, recent data has 

indicated not only a slowing of the decline in silicosis mortality, but also the emergence of silicosis 

deaths in younger workers (aged 15-44) (3-5).  This trend indicates that although overall silicosis 

deaths have decreased, high level exposures to crystalline silica continue to occur in spite of 

monitoring and regulatory efforts, and that improvements to current protective measures are 

necessary to eliminate the occurrence of silicosis completely.  Silicosis mortality within the U.S. 

is also geographically variable, with areas of Nevada, Pennsylvania, and West Virginia, for 

instance, showing particularly elevated rates of silicosis mortality (Figure 1).   
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National Occupational Respiratory Mortality System, 1968-2002; image obtained from the Centers for 
Disease Control and Prevention’s Morbidity and Mortality Weekly Report (2) 
 
 

Figure 1 Distribution of age-adjusted silicosis mortality rates in the U.S., by county  
 
 
 
Although improved industrial hygiene practices, particularly in developed countries such 

as the U.S., have led to an overall decline in silicosis, silicosis has recently begun to emerge in 

new groups of workers, such as in the oil and gas industry (particularly hydraulic fracturing) (6), 

as well as in the textiles industry (7).  Concurrently, the disease remains strongly associated with 

particular occupations such as stonemasons, potters, construction workers, sand-blasters, 

foundry workers, and miners (8).   

Silicosis, a chronic respiratory disease, is the primary outcome of concern for exposure to 

respirable crystalline silica.  The Centers for Disease Control and Prevention estimates that, 

annually, 1.7 million people in the United States (8) are exposed to crystalline silica.  Silicosis is 

characterized by the development of fibrotic nodules in the lungs (9).  Simple silicosis typically 

becomes manifest after a long period of latency (two or more decades), at which point symptoms 
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such as shortness of breath and tightness in the chest may develop.  As the disease progresses, 

lung function becomes progressively impaired, and can eventually result in respiratory failure and 

death.  In cases of extreme exposure, disease progression may occur over just five to ten years 

(accelerated silicosis), or in just a few months to years (acute silicosis).  Silicosis may occur and 

progress even years after exposure to crystalline silica has ended.  While silicosis is incurable 

once it develops, it is also entirely preventable via prevention of exposure to crystalline silica. 

Crystalline silica exposure is also associated with the development of lung cancer, and 

while there is a lack of consensus on the mechanism for the carcinogenicity of crystalline silica in 

the absence of silicosis (or if there is indeed a causal relationship between crystalline silica and 

lung cancer in the absence of silicosis) (10-12), the International Agency for Research on Cancer 

has classified crystalline silica as a Group 1 agent (carcinogenic to humans) (13). Exposure to 

crystalline silica also increases risk of tuberculosis (TB) and mycobacterial disease (14); this is of 

particular concern in countries such as South Africa, where prevalence of TB in miners is high 

(15).  The relationship between crystalline silica exposure and TB is further complicated when an 

individual is immunocompromised, as with human immunodeficiency virus (HIV) (16-19).  

Crystalline silica exposure has also been implicated in other chronic conditions, such as renal 

disease (20) and connective tissue diseases such as rheumatoid arthritis, scleroderma, and 

antineutrophilic cytoplasmic antibody-positive vasculitis (21). 

The mechanistic development of silicosis has been studied for decades, yet to this day a 

comprehensive understanding of the pathologic progression from crystalline silica exposure to 

disease has not been reached.  What is apparent is that free radicals, which are either produced 

on the surface of crystalline silica or by the inflammatory processes that are initiated by the 

presence of crystalline silica particles in the lung, are strongly involved in the process (22).  This 

has been verified by the presence, at autopsy, of stable free radicals in lung tissue of coal miners 

exposed to crystalline silica (23). 
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The mineral silica (chemical composition SiO2) occurs as several crystalline polymorphs: 

quartz, cristobalite, and tridymite, keatite, coesite, stishovite, and moganite.  Of these, only quartz, 

cristobalite, and tridymite are considered relevant to human exposure assessments, as other 

forms are rarely encountered.  Quartz is the most abundant mineral in the earth’s crust and is by 

far the most commonly encountered form of crystalline silica.  Despite the abundance of naturally 

occurring crystalline silica, environmental exposures of appreciable magnitude are uncommon, 

as the crystalline silica encountered is generally in the form of solid rock, or as particles too large 

to contribute significantly to respiratory exposures.  In occupational settings, however, where solid 

crystalline silica-containing rock is mechanically fractured and produces crystalline silica-

containing dusts, exposures to respirable crystalline silica are a significant concern.  The 

presence of crystalline silica in the respirable fraction of dust has been documented in various 

mining environments globally (24-27).  In the U.S., crystalline silica can be found in the dust 

generated in coal mines, metal mines, and sand & gravel operations (28-30). In coal mines, the 

primary source of mineral dust, including crystalline silica dust, is the top strata above the coal 

seam that is being mined (31); in non-coal mining environments, crystalline silica is a component 

of the dust present in crushers and mills.   As a result, silicosis is a significant occupational health 

hazard encountered in mining (8). 

The causal relationship between exposure to crystalline silica and the development of 

silicosis has been recognized for decades and is well-accepted within the mining industry.  

Continued incidence of silicosis in young workers indicates that contemporary exposures to 

crystalline silica are sufficient to initiate the development of silicosis, but the underlying causes of 

these apparent overexposures are still subject to debate.  Several scenarios, or a combination 

thereof, offer possible explanation for the ongoing incidence of silicosis: 

1) Crystalline silica exposure continues to occur above and beyond current regulatory 

limits.  One possibility is that there is a lack of adherence to standards, due either to 

insufficient efforts to control exposure, or to lack of knowledge of the occurrence of over-
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exposures. It is ultimately in the best interest of the mine operator to protect employee 

health by preventing worker exposure to crystalline silica, as the occurrence of 

occupational injury and disease, including silicosis, leads to days away from work and loss 

of productivity. The more likely possibility is that limitations of laboratory methods for the 

analysis and quantification of crystalline silica (32) have resulted in “false negatives,”  due 

to systematic underestimation of the quantity of crystalline silica in respirable dust samples, 

and the subsequent misclassification of worker exposure. 

2) Current crystalline silica regulations may not be sufficiently conservative to prevent 

the development of silicosis.  High variability in crystalline silica content of respirable 

dust has been implicated in the continued incidence of silicosis in coal miners (28), and a 

similar degree of variability in crystalline silica content is observed in metal/non-metal 

mines (30).  Such variability makes it difficult to accurately predict crystalline silica 

concentrations in all areas of the mine, and overexposures can occur despite compliance 

with the dust standard. Alternatively, current exposure limits are based on mass-based 

measurement of crystalline silica, which assumes a dose-response relationship that is 

proportional to crystalline silica mass; however, while some toxicology studies have 

concluded that mass is indeed the relevant exposure metric (33), others have proposed 

that alternative metrics, such as surface area, would be more appropriate for exposure and 

dose determination (34, 35), though admittedly less convenient to measure. 

3) Evolution of mining practices and technologies has resulted in changes to the 

crystalline silica component of aerosolized dusts produced in mines, such that the 

crystalline silica component has become more potent in inducing biological damage 

leading to silicosis.  This could be due to higher exposure to freshly fractured crystalline 

silica (36), believed to be more potent in inducing reactive oxygen species (37); a shift in 

the size distribution of dusts towards particle sizes (either smaller or larger) which are more 

capable of inducing an inflammatory response (33, 34, 38, 39); or the increased presence 
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of co-toxicants, such as metallic contamination on the surface of crystalline silica particles 

(40, 41) or associated diesel particulate matter, which is present in most mining 

environments and has also been found to be carcinogenic (42). 

These proposed explanations for the continued incidence of silicosis in the United States 

highlight the multifaceted nature of the problem, and suggest that a multidisciplinary approach will 

be required to fully eradicate and prevent future incidence of silicosis.  Continued vigilance on the 

part of industry and government will be necessary to set regulatory limits for crystalline silica 

exposure that definitively protect the health of workers, and to ensure that regulations are followed 

and enforced with the utmost vigilance.  However, in light of concerns outlined above, adherence 

to regulations – based on compliance monitoring – is not sufficient if monitoring efforts are not 

consistently accurate in quantifying the concentration of crystalline silica that workers are exposed 

to, nor is it sufficient if compliance monitoring does not make use of the most appropriate metrics 

for crystalline silica exposure.   

Addressing these concerns requires contemplation of the theoretical limitations of 

quantitative methods with respect to real-world dusts encountered in mining environments.  

Aerosols of real mine dusts must be studied more extensively: the size distributions of numerous 

dusts must be characterized, as well as the size distributions of the crystalline silica component 

of each dust, and the size distribution of other mineral components.  Such characterization is 

particularly needed for silicate and aluminosilicate minerals, molecules of which may have 

chemical bonds or crystalline structure similar to that of silica, leading to confounding analytical 

effects that may adversely affect the accurate quantification of crystalline silica.  Exposure limits 

and vigilant monitoring will be inadequate in preventing silicosis if crystalline silica cannot be 

accurately quantified due to common attributes of mine dust. 

Assessment and re-evaluation of regulations for respirable dust and crystalline silica in 

the mining industry are ongoing, as is research concerning the toxicological mechanisms 

governing how crystalline silica exposure progresses to the development of silicosis.  If monitoring 
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strategies are not reliably accurate, or if they do not address all relevant factors of crystalline silica 

exposures, then even stringent regulations and strict compliance with regulatory limits may not 

be sufficient to prevent disease.  What is currently needed is a better understanding of the 

qualities of dusts that impact both measurement and the biological effects of crystalline silica – 

thus, it would benefit all efforts for more research energy to be directed to the characterization of 

mine dusts. 

One prominent aspect in which monitoring efforts could be enhanced is by more extensive 

efforts towards characterization of the mineral composition and the particle size-related qualities 

(such as morphology and elemental composition) of aerosolized dusts from which respirable 

samples are collected.  The size-distribution and mineral composition of dusts are characteristics 

which have important implications for the quantification of crystalline silica (43-57), yet very few 

attempts have been made to characterize occupational dusts containing crystalline silica, and still 

fewer attempts have been made to characterize mine dusts.  The characteristics of dusts 

produced in mining environments vary according to the mineral composition of the dust, the 

particle size distribution of each component, and the particle size distribution of the overall dust 

(e.g. the sum of all of the components).  These characteristics are influenced by the local geology 

– the materials present which are mechanically fractured in some way during the mining process 

– as well as the processes used in ore production, such as the types of machines that are used 

to break rock.  As a result, dusts from different mines or different areas of the same mine are not 

necessarily similar in their physical and chemical properties (28, 30, 58, 59); many different 

samples need to be analyzed in order to enhance understanding of the qualities of mine dusts. 
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1.1 REGULATION AND MONITORING OF CRYSTALLINE SILICA EXPOSURE 

The Mine Safety and Health Administration (MSHA), an agency of the U.S. Department of Labor, 

is responsible for enforcing the provisions of the Federal Mine Safety and Health Act of 1977 

(Mine Act) (as amended by the 2006 MINER Act) (60).  Its duties under the Act include 

establishing and enforcing regulations controlling the levels of respirable dust and crystalline silica 

to which workers may be exposed.  The coal mining sector and the metal/non-metal mining sector 

each have distinct (though similar) standards for respirable dust and respirable crystalline silica 

(61-64).  The dust standards for coal mines vary according to the percent of crystalline silica in 

the respirable dust of that particular mine, determined from previous respirable dust samples, 

while the dust standard for metal/non-metal mines varies sample by sample, according to the 

crystalline silica content of each individual sample.  Equation 1 defines the dust standard currently 

in effect for surface and underground coal mines (63, 64),  according to whether that particular 

mine has (a) crystalline silica content in the dust greater than 5% or (b) less than or equal to 5%. 

 

(a) Limit = 
10

% crystalline silica
 mg m-3 

(b) Limit = 2 mg m-3 

 

Equation 1 Dust standard for coal mines 
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Equation 2 defines the current standard for surface and underground metal/non-metal mines (61, 

62) where crystalline silica content is greater than 1%.  

 

 Limit = 
10

% crystalline silica+2
 mg m-3 

 

Equation 2 Dust standard for metal/non-metal mines 
 

 

These standards effectively set an exposure limit of 100 μg m-3 for crystalline silica.  

However, multiple studies have documented the wide variation in crystalline silica content of 

dusts, even within the same operation (29, 30, 65).  Such variation has important implications for 

preventing exposure to crystalline silica, in that high variability makes it difficult for industrial 

hygienists and workers to anticipate dust concentrations (and therefore, exposure levels) in 

certain areas of the mine, particularly in areas where no previous exposure data exists to provide 

guidance.  The well-documented variation in crystalline silica content of respirable dust suggests 

that there may be variation in other characteristics of respirable dust as well, and these 

characteristics may also impact efforts to monitor and prevent crystalline silica exposure. 

Currently, monitoring for respirable dust and crystalline silica is completed in several 

stages.  First, a dust sample is collected using a size-selective sampling device, so that only the 

respirable fraction of particles is collected on the sample filter.  After sample collection is complete 

(typically at the end of a full-shift of work, or upon completion of a specific task), it is sent to an 

accredited laboratory.  There, the filter is analyzed gravimetrically to determine the total mass of 

material collected.  Along with sampling time and flow rate, the net mass of collected particles is 

then used to calculate the average concentration of respirable dust to which the worker was 

exposed over the course of the sampling period.  This concentration is referred to as the time-

weighted average (TWA) concentration: at any given time during sampling, the actual dust 
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concentration experienced by the worker may have been higher or lower, but the integrated 

sample provides an average concentration for the entire sampling period.  Then, the laboratory 

quantifies crystalline silica in the sample.  From the mass of crystalline silica determined, the 

average concentration of crystalline silica exposure is calculated; using the net mass of dust 

determined gravimetrically, the overall percentage of crystalline silica in the dust sample can also 

be determined. 

For coal mine samples, crystalline silica is quantified using a transmission infrared (IR) 

method. The IR analysis of minerals was first described in 1950 by Hunt et al. (66).  In the United 

States, the MSHA P7 method (67) and the National Institute for Occupational Safety and Health 

(NIOSH) method 7603 (57), are the most commonly used IR methods.  In general, IR 

spectroscopy detects distinct polymorphs (different crystalline phases) of silica via the energy 

absorbed by the Si – O bond when light in the IR region of the spectrum passes through a sample.  

The intensity of the absorption signal is proportional to the quantity of crystalline silica present in 

the sample; this proportional response can be exploited to create a calibration curve by measuring 

known quantities of crystalline silica and observing the intensity of the resulting IR absorption.    

Once a calibration curve has been constructed, the equation of the curve can be used to 

determine the mass of crystalline silica present in a sample, based on the intensity of the IR 

response.  The IR spectrum for the quartz polymorph of crystalline silica is shown in Figure 2.  

The doublet peak between 800 cm-1 and 780 cm-1 is the accepted analytical peak for crystalline 

silica quantification.  The IR spectrum of crystalline silica also contains a peak at 1085 cm-1 that 

cannot be used for a reliable measurement due to its broadness, which makes reliable integration 

of the peak difficult.  Other, higher frequency, peaks are not used due to their commonality with 

numerous silicate minerals (50), which would preclude accurate quantification in all but pure 

samples of crystalline silica. 
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Figure 2 IR spectrum of crystalline silica on PVC filter media 

 
 

Sample preparation for IR methods used for coal mine samples begins with ashing – a 

thermal procedure used to remove carbonaceous material from the sample.  This procedure also 

destroys the polyvinyl chloride (PVC) filter media conventionally used for sample collection, while 

leaving the relevant mineral content of the sample undisturbed.  The ashed sample is then 

redeposited on a low-absorption filter medium (which does not absorb IR radiation in the region 

used to quantify crystalline silica, thus reducing interference effects from the filter itself) before 

being analyzed in the IR beam.  

Certain advantages and disadvantages of the IR method have been discussed.  Lorberau 

and Abell (68) noted that the costliness of IR methods is intermediate (due to the wide range of 

instrumentation available) and that sensitivity to crystalline silica is superior compared to other 

methods, but that interfering absorption bands from other silicate materials are a significant 

concern.  Ferg et al. (69) demonstrated that the IR method demonstrates improved sensitivity 

over the X-ray diffraction method and is less subject to influence by sample preparation.  

Importantly, Toffolo and Lockington (54) have made the distinction that while the IR method is 

capable of identifying all three of the common crystalline silica polymorphs (e.g. quartz, 
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cristobalite, tridymite) in the presence of any of the others, it cannot accurately quantify any of the 

three polymorphs in the presence of others.  The authors note that this is due to the lack of 

universally accepted standards for any of the three polymorphs, and while there are currently 

several materials commonly used as quartz standards (including materials certified and 

distributed by the National Institute of Standards and Technology), there remains no widely used 

standard for either of the other common crystalline forms. 

For metal/non-metal samples in the U.S., crystalline silica is measured via X-ray diffraction 

(XRD), using NIOSH method 7500 (56) or MSHA method P2 (70).  This method was first 

described for crystalline silica analysis by Clark and Reynolds in 1936 (71) and identifies 

crystalline silica based on the crystal lattice of the silica molecule.  Because the various crystalline 

polymorphs of silica have distinct crystalline structures, XRD is capable of distinguishing one 

polymorph from another.  When an X-ray of known incident angle is directed onto the sample (see 

Figure 3), the beam is diffracted (scattered) by the silicon atom at the center of the lattice.  The 

angle of the diffracted beam is characteristic of the molecules that compose the crystalline silica 

lattice, as described in by Bragg’s Law (Equation 3).  

 

 

Equation 3 Bragg's Law 

 
 
 
 

The intensity of the signal from the diffracted beam is proportional to the mass of crystalline 

silica present, allowing quantification of unknown masses of crystalline silica in samples.  In 

addition to the primary diffraction angle, there are also secondary and tertiary diffraction angles 

for crystalline silica which can be used for quantification in the event of primary angle interference 

2dsin(θ)=λ0 
 

where d is the interplanar spacing of the crystal lattice, θ is the angle of 
incidence, and λ0 is the wavelength of the characteristics X-rays 
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due to confounding minerals; however, these peaks are not as sensitive.  The XRD diffractogram 

for the quartz polymorph of crystalline silica is shown in Figure 4. 

 

 

 

Figure adapted from U.S. Geological Survey, “A Laboratory Manual for X-Ray Powder Diffraction” (72) 
 

 
 

Figure 3 Scattering of X-rays 
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Figure 4 XRD diffractogram for crystalline silica 
 
 

Sample preparation begins with filter removal by either a thermal method (e.g. ashing, as 

in IR methods) or by chemical dissolution (via a solvent such as tetrahydrofuran), and the sample 

is redeposited onto a silver membrane filter, which contributes little interference to the XRD 

diffractogram and thus allows more accurate quantification of crystalline silica.  Once redeposition 

is complete, the sample is ready to undergo XRD analysis.  Lorberau and Abell (68) noted that 

while XRD methods tend to be less prone to the effects of mineral interferences, the procedure is 

costlier due to complex instrumentation and the cost of silver membrane filters.   

Both the IR and XRD methods are regarded as appropriate for crystalline silica analysis 

in exposure monitoring (56, 57, 67, 70).  Dodgson and Whittaker (44) noted excellent correlation 

between the two methods, documenting less than 1% difference in quantity of crystalline silica 

determined.  However, in this investigation both methods were carried out by the same 
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researchers and within the same laboratory, which may have contributed to the strong correlation.  

Inter-laboratory comparisons have historically been used to assess variability in crystalline silica 

analyses (73-75), both within and between methods.  Recently, Cox et al. (32) documented 

concerns that inter-laboratory measurements of crystalline silica dust concentrations using XRD 

methods are neither precise nor accurate, particularly for samples with low crystalline silica 

loadings.  This concern is particularly salient, as low sample loadings generally correspond to 

environmental concentrations that are near the action level – the threshold crystalline silica 

concentration (below the regulatory limit) for which a mine will take action to decrease dust and 

crystalline silica concentrations in order to prevent the limit from being exceeded in the future.  

Accurate quantification of crystalline silica at these levels is vital to protecting workers from 

crystalline silica exposures, before exposures can occur.  While a discussion of the implications 

of the lack of confidence in the method is beyond the scope of this work, the observation of 

inconsistency points to an area ripe for improvement that could possibly be stimulated by detailed 

characterization of dusts. 

While inter-laboratory variability certainly impacts the reliability of quantitative methods for 

crystalline silica, variability within the respirable dust samples can also impact the quality of 

crystalline silica monitoring efforts.  Sirianni et al. (76) noted that particle size distributions vary 

both between workplaces and within workplaces, such as by specific work task, and that, likewise, 

the crystalline silica content of dusts has been demonstrated to vary widely according to the 

manner in which the dust is generated.  Page (77) proposed that changes to the frequency of 

milling and grinding, as well as a shift towards more powerful machinery in mining, has resulted 

in a change in the size distribution of crystalline silica and other respirable mineral particles within 

coal mine dust.  Furthermore, Cauda et al. (30) found that the crystalline silica content in 

respirable dusts from metal and sand and gravel mines is both higher and more variable than in 

dusts from other types of non-coal mining operations, and that control technologies may have 

selective efficiency for specific particle sizes. 
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Research characterizing mine dusts with regard to qualities such as mineral content 

(including crystalline silica content) and particle size distribution can provide a better 

understanding of factors that influence the observed variation (such as mine type or geographic 

region).  Such research can also offer guidance on how to improve current monitoring strategies 

to offer more accurate assessments of crystalline silica exposure. 

1.2 RELEVANCE OF PARTICLE SIZE TO DUST CONTROL AND EXPOSURE 

ASSESSMENT 

The crystalline silica content of respirable dust samples used for exposure assessment is most 

often thought of as a “lump sum” (e.g. as the total mass of crystalline silica measured) – and 

indeed, even regulatory limits are based on the total quantified mass of crystalline silica in a 

sample.  While this is a convenient and practical means to measure exposure, it fails to consider 

the individual particles that comprise the total mass of crystalline silica, and whether some of 

those particles may more efficiently initiate the development of silicosis.  While all crystalline silica 

particles have the same chemical composition, the physical size of the particles in an aerosol 

often follows a lognormal distribution (78).  Despite the fact that, currently, the particle size 

distribution of crystalline silica particles is not routinely measured, there are some considerations 

with respect to particle size that are worth noting. 

 There are several mechanisms that influence the deposition of particles from the air onto 

a surface, including gravitational settling, inertial impaction, and diffusion (78).  These 

mechanisms are governed largely by the size of particles.  For instance, larger particles have 

greater mass than smaller particles of the same composition and as a result settle (fall from the 

air) at a faster rate than the smaller particles.  When large particles are entrained in an air stream, 

they are prone to impact, or collide, onto obstacles in their path, because the greater inertia of a 
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large particle prevents it from quickly changing direction when the direction of the air flow changes.  

Alternatively, the primary mechanism of movement for very small particles is diffusion (the random 

motion of particles due to their thermal energy), which does not influence large particles 

considerably.  These mechanisms of particle movement are relevant to human exposure, as well 

as to the controls and protections that are used to prevent human exposure to particles. 

 Inertial impaction plays an important role for particles in the human respiratory tract, which 

is non-linear and requires directional change in both airflow and particle movement.  This 

complexity causes particles of certain sizes to deposit in specific regions of the respiratory system.  

An international convention (79) has been defined for particles of inhalable, thoracic, and 

respirable particle sizes.  The convention for each particle size is based on the cut-point diameter 

(d50) at which point collection efficiency is 50% for that particular particle size, and the three size 

ranges defined by the convention correspond to the portion of the respiratory tract in which those 

particles are likely to deposit. 

Particles smaller than 100 μm in diameter can enter the respiratory tract via the mouth or 

nasal passages; these particles are called inhalable.  This fraction is defined below by Equation 

4. 

 
Equation 4 Inhalable definition 

 

 

 

 

I(d)=0.5�1+e-0.06d� 
 

where I(d) is the collection efficiency of inhaled particles as a function of 
particle diameter d 
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Of the particles that are inhaled, those 10 μm and smaller can enter the airways (e.g. the trachea 

and bronchial region) and are referred to as thoracic, defined by Equation 5. 

 

Equation 5 Thoracic definition 

 

Finally, particles 4 μm and smaller are called the respirable fraction (defined by Equation 6) and 

can penetrate deep into the lungs, including deposition in the alveolar region. 

 

 
Equation 6 Respirable definition 

 

As the foremost health outcomes of exposure to crystalline silica are respiratory diseases 

such as silicosis and lung cancer, it is important to consider how mechanisms of respiratory 

exposure and response might be affected by particle size.  As discussed above, smaller particles 

are capable of penetrating more deeply into the lungs.  However, there is also evidence that 

crystalline silica particles of different sizes induce varying degrees of inflammatory and fibrotic 

response in lung tissue, which affects the threshold dose of crystalline silica required for the 

development of an outcome like silicosis or lung cancer.  Thus far, no consensus has been 

reached regarding the particle size characteristics which initiate the most potent inflammatory 

T(d)=I(d)[1-F(x)] 
 

where T(d) is the collection efficiency of thoracic particles as a function of 

particle diameter d, x=
ln(d (μm)

11.64 )

ln(1.5)
 , and F(x) is a lognormal function with 

median particle diameter 11.64 μm and GSD 1.5 

R(d)=I(d)[1-F(x)] 
 

where R(d) is the collection efficiency of respirable particles as a function 

of particle diameter d, x=
ln(d (μm)

4.25 )

ln(1.5)
 , and F(x) is a lognormal function with 

median particle diameter 4.25 μm and GSD 1.5 
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response; however, it is clear that size and surface area are significant variables that should be 

considered and measured in exposure assessments.  

The published data on health impact of specific size particles of crystalline silica is 

incomplete; the work that has been done is somewhat contradictory, with some studies indicating 

that toxicity may be dependent on dose by surface area (34) and others indicating that toxicity is 

dependent on particle size (39), mass concentration (33), or surface activity (80); likewise, some 

studies indicate that smaller particles induce more damage (34, 38) and others indicate that larger 

particles do (33, 39, 81). Therefore, the idea of differential toxicity on the basis of particle size is 

somewhat controversial.  While there is no strong indication of a specific trend regarding particle 

size and inflammatory response, in general there is a demonstration that particle size does play 

a meaningful role in physiological response to crystalline silica. 

Goldstein and Webster (33) exposed rats to surface-area equivalent doses of crystalline 

silica particles segregated into three size ranges (2-5 μm, 1-3 μm, and less than 1 μm).  Sacrifice 

was performed at four months post-exposure, and lung tissue was histologically analyzed for 

degree of fibrosis. Chemical analysis was undertaken to determine crystalline silica content 

present in the lung tissue.  The authors found that the two larger particle size ranges (2-5 μm and 

1-3 μm) produced more fibrosis than the smallest size class (<1 μm), and that the degree of 

fibrosis was related to the mass of crystalline silica exposure rather than the surface area.  

Alternatively, Wiessner et al. (34) prepared crystalline silica particle solutions with average particle 

diameters of 11.2 μm, 7.8 μm, 5 μm, and 1 μm, and found that with exposures of equivalent 

surface area, the 1 μm particles induced more hemolysis than the larger fractions.  However, the 

larger crystal preparations induced more inflammation and fibrosis 6 weeks post exposure.  All 

three of the larger fractions elicited equivalent responses for both hemolysis and 

inflammation/fibrosis. 

More recently, Mischler’s 2013 (38) findings on the effects of submicron crystalline silica 

particles are an example of how knowledge of crystalline silica size distribution would be 
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beneficial.  He evaluated particles of four mean diameters (4.1 μm, 2.1 μm, 0.7 μm, and 0.3 μm) 

and found that particles with a geometric mean of 0.3 μm generated mitochondrial reactive oxygen 

species (ROS) and resulted in cytokine expression that was significantly increased compared to 

ROS generation and cytokine expression from larger crystalline silica particles.  This study is 

especially notable in that it considered nanoparticles separately, whereas most previous studies 

only considered particles down to 1-2 μm but did not separately evaluate smaller particles. 

Ohyama et al. (39) compared the induction of lucigenin-chemiluminescence (CL) of four 

crystalline silica particle preparations with distinct median diameter (3.79 μm, 2.89 μm, 0.99 μm, 

0.68 μm).   They found that the larger crystalline silica particles were more active in inducing CL 

than were small particles.  Similarly, Kajiwara et al. (81) compared the effects of two particle sizes 

instilled intratracheally, and found that 6 months post-exposure, inflammatory markers in 

pulmonary tissues and bronchoalveolar lavage fluid were more pronounced for rats exposed to 

1.8 μm particles than for rats exposed to 0.74 μm particles. 

The relevance of particle size to the health effect of crystalline silica is not limited to 

biological impacts alone, but also extends to engineering controls and personal protective 

equipment, which are used to limit exposure to crystalline silica.  Engineering controls are 

employed by mines in areas where dust concentrations are elevated to unsafe levels, and include 

both prevention strategies (stopping dust from being generated) and suppression strategies 

(removing dust that has been generated).  As complete prevention is often difficult to achieve, 

dust suppression is widely utilized and is crucial to protecting workers from exposure.  Examples 

of dust suppression techniques include water sprays, ventilation, and air filtration systems; how 

each technique is used varies with the type of operation and the type of ore being mined.  The 

effectiveness of these techniques is dependent on a number of factors, among which is particle 

size.  For instance, water sprays tend to be more effective when the water droplet size is 

comparable to the size of the dust particles (82).  For this reason, it is helpful to have knowledge 

of the size distribution of the dust that is generated by a particular task and within a particular 
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operation, so that the droplet size in the water spray can be adjusted to achieve maximum effect 

of dust reduction.  In order to evaluate the efficacy of engineering controls in reducing dust and 

crystalline silica, additional respirable dust samples are collected and analyzed for dust and 

crystalline silica.  Even the cyclone samplers used to collect such samples can have variable 

performance with regard to particle size (83) (though this effect would be expected to be minor 

for the respirable size range), making discrepancy in dust and crystalline silica size distribution 

even more important to consider. 

Personal protective equipment such as half-mask respirators are commonly worn by 

workers in mines in areas where engineering controls have not successfully reduced dust 

concentration to safe levels.  For protection against respirable crystalline silica, NIOSH 

recommends half-face particulate respirators with N95 filters or higher (84); previous 

recommendations (now superseded) also included dust and mist filter masks, which are known 

to have decreased filtering efficiency for particles smaller than 2 μm.  Respirators of the 

appropriate type that are well-maintained and worn properly are quite effective in reducing dust 

exposure in areas of moderate dust concentration, yet even they are not uniformly effective for 

particles of all sizes (85).  For example, Vo et al. (86) evaluated the performance of eight different 

respirator types, and for certain types found superior protection against 10-100 nm particles 

versus 100-400 nm particles.  Again, knowledge of the dust size distribution in a mining 

environment is beneficial to workers by allowing them to select appropriate protective equipment 

when a more protective choice exists, and also permits workers and supervisors to make more 

informed judgements concerning the practical limitations of controls and protective equipment, in 

order to better protect workers against crystalline silica exposure.  
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1.3 PARTICLE SIZE EFFECTS IN ANALYTICAL METHODS FOR THE QUANTIFICATION 

OF CRYSTALLINE SILICA 

The accuracy of spectroscopic analysis of particulate samples – including the analysis of 

crystalline silica in respirable dust – can be affected by the physical characteristics of individual 

particles that comprise respirable dust samples. Characteristics such as porosity (53), surface 

topography (87), refractive index (87), and particle morphology (45) have been discussed in the 

literature.  The amorphous layer phenomenon (discussed in more detail below) has also been 

raised as a relevant factor.  While these are all distinct concerns, many of these factors ultimately 

relate to the size of a specific particle (53, 87). 

The so-called particle size effect is of concern for samples of mine dusts, as well as for 

the standard crystalline silica materials that are used to calibrate these methods in order to 

quantify crystalline silica.  Both IR and XRD methods are susceptible to particle size effects and 

the resulting analytical bias, although the nature and causal mechanisms of this bias is distinct 

for each method.  Gordon and Harris (46) outlined two distinct trends observed in XRD methods:  

1) Decreasing XRD intensity for larger particles results from extinction, wherein none of 

the incident light (of any wavelength) is transmitted through the particle, whereas  

2) Decreasing XRD intensity for smaller particles results from a greater proportional 

contribution of the amorphous surface layer of crystalline silica, which is present on 

crystalline silica particles and does not diffract X-rays in the same manner as 

crystalline silica. 

The amorphous silica layer was first postulated by Nagelschmidt, Gordon and Griffin in 

1952 (88), though it had been previously described less precisely by others (89).  It has since 

been verified by numerous groups using a variety of techniques, and it is now well-accepted that 

a crystalline silica particle consists of an insoluble (crystalline) core surrounded by a layer of 

(amorphous) silica with a higher solubility.   Nagelschmidt, Gordon, and Griffin concluded that this 
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layer has a maximum thickness of 0.3 μm.  The phenomenon only becomes significant for small 

particles due to their large surface area to volume ratio; effects are negligible for larger particles.  

In partial support of this idea, Gordon and Harris (46) also found that when crystalline silica 

particles are leached with hydrofluoric acid to remove the amorphous layer, with the lower-

solubility crystalline core left intact, the diffraction maximum occurs for particles 3 μm in diameter.  

Particles 1 μm in diameter achieved only 70% of the maximum intensity, while particles 0.5 and 

0.4 μm achieved just 50% and 40% of the maximum intensity, respectively.  Based on these 

findings, the authors asserted that the amorphous layer is not a true layer, per se, with clearly 

defined margins, but rather that a gradual and consistent increase in crystalline character occurs 

as the center of the particle is approached.  For small particles, full crystallinity never occurs, even 

at the particle’s core.  As the crystalline structure of the silica molecule defines the characteristic 

signal for crystalline silica in both the IR and XRD methods, loss of crystalline character affects 

intensity of the analytical signal, and impacts the apparent mass of crystalline silica present.  

Although both IR and XRD are affected by the amorphous layer, the effect in IR analysis 

is greater for larger particles (55), and the effect in XRD is greater for smaller particles (43).  For 

a sample of very small particles (for instance, particles smaller than 500 nm), IR would provide a 

more accurate measure of crystalline silica mass, while for a sample of large particles (for 

example, particles between 6 and 10 μm), XRD would be more accurate.  In occupational 

samples, a narrow range of particle size is rarely encountered, and even particles in the respirable 

size fraction range from nanometers to microns – a thousand-fold difference in magnitude.  The 

effect of particle size on IR and XRD analysis is discussed in greater detail in the following 

sections. 
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1.3.1 Effect of Particle Size in IR Spectroscopy 

The effects of particle size on IR analytical techniques have been well-documented (44, 49, 51-

55).  Generally, transmission IR techniques are subject to increasing signal attenuation with 

increasing particles size.   The cause of this phenomenon has been widely studied, particularly 

with regard to analysis of crystalline silica.   

Tuddenham and Lyon (55) found that increased absorbance and resolution in the region 

of the crystalline silica doublet (approximately 800 cm-1) corresponded to decreasing particle size 

when they considered four size ranges of particle (less than 2 μm, 5-6 μm, 6-8 μm, and 14-16 

μm), but they did not reach any conclusions for particles smaller than 1 μm in diameter.  Lorberau 

(49) remarked upon particle size-related error of  up to 30% in the quantification of crystalline 

silica,  and also observed that the ratio of the two doublet peak heights varies with particle size.  

Reut et al. (52) estimated that the IR response is lowered 50-60% for particles between 2.2 and 

7.2 μm. 

Lorberau also noted that while ratio of the doublet the peak heights is variable, it is less 

so than the integrated peak area of the doublet and thus could be a useful tool for correcting 

effects of particle size.  Toffolo and Lockington (54) noted that an alternative absorption band for 

crystalline silica at 694 cm-1 demonstrates almost no size dependency for particles less than 10 

μm.  While this would be ideal for analysis of respirable dust, this particular band is less intense 

than the preferred analytical peaks for crystalline silica, and thus its use would result in a decrease 

in method sensitivity for crystalline silica. The authors also remarked that laboratory determination 

of the percentage of crystalline silica in non-respirable and bulk dusts should not be undertaken 

without knowledge of the particle size distribution and the application of appropriate correction 

factors (discussed further below).  

Otvos et al. (51) noted that anomalous effects of particle size are expected to be most 

significant when wavelength and particle size are similar, which is the case for respirable particles 
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that are evaluated at the analytical peak (doublet) for crystalline silica (occurring at 800 cm-1, or 

12.5 μm).  Likewise, Dodgson and Whittaker (44) found an inverse relationship between particle 

size and absorption of IR energy, with the precise relationship dependent on the wavelength of 

incident energy.  The same investigation also found that methods accounting for particle size 

using absorbance ratios are affected by interfering IR absorbance from the presence of other 

minerals in the dust; this complicates the use of simple correction factors to adjust for particle size 

effects.  The researchers ultimately concluded that it would not be worthwhile to apply particle 

size corrections to respirable dust samples as “these aerodynamically selected dusts are 

generally similar in size to the quartz standard.” 

Alternatively, Salisbury and Eastes (53) presented the argument that it is not truly particle 

size that affects IR measurements of crystalline silica, but rather the porosity of the particles.  

Increased porosity of the surface of fine particles results in increased absorption by allowing 

photons to pass between grains.  This results in deeper light penetration in to the layer, 

maximizing the chance of absorption and increasing the intensity of the analytical response. 

1.3.2 Effect of Particle Size in X-ray Diffraction Spectroscopy 

Effects of particle size on XRD analysis have likewise been well-studied (43, 45-47).  Gordon and 

Harris (46) found that the intensity of the analytical diffraction line from crystalline silica was at a 

maximum intensity for particles 2 μm in diameter, and decreased for both larger and smaller 

particles, though the decrease was more substantial for decreasing particle size.  Brindley and 

Udagawa (43) found that extinction in XRD analysis of crystalline silica is only of concern for 

particles larger than 40 μm; thus, while this phenomenon is not relevant to the study of respirable 

dusts, it could be relevant when considering bulk mine dusts and the crystalline silica content 

therein.  Hurst, Schroede, and Styron (47) observed an optimal size range for coherent diffraction 

domains of 200 nm to 5 μm, but this does not include any portion of the particle that may not have 
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fully crystalline character, such as the amorphous layer.  These authors also outline an extensive 

list of factors that should be considered in the process of interpreting XRD data in order to ensure 

accurate quantitative determination, including the size distribution of the coherent diffraction 

domain. 

Edmonds, Henslee, and Guerra (45) attributed increased XRD sensitivity to crystalline 

silica in the larger particle size ranges to the greater relative volume of these particles, rather than 

the diameter of the particles.  This echoes the theory of an amorphous surface layer that 

contributes disproportionately in the analysis of smaller particles, which have a larger ratio of 

surface area to volume.  The authors also noted that analytical sensitivity is enhanced when 

smooth surface substrates, such as silver membrane filters, are used during analysis, in contrast 

to rougher surface of PVC filters. This is due to orientation effects (related to effects of particle 

size and morphology), wherein a substrate with rough surface features might “hide” or obscure 

particles from incident X-ray beams.  While it is very common for samples to be collected on PVC 

filters (which are both inexpensive and easy to handle), the NIOSH 7500 XRD method does 

specify the use of silver membrane filters for sample redeposition.  The analytical advantages of 

smooth substrate material are important to consider in the event that different filter materials are 

ever explored. 

1.3.3 Significance of the Size Distribution of Calibration Material 

For two dust samples having equivalent crystalline silica content but distinct size distributions, an 

IR method will quantify a greater mass of crystalline silica for the sample with the smaller size 

distribution, and an XRD method will quantify a greater mass for the sample with the larger size 

distribution, due to the effects of particle size on either method.  This assumes that both methods 

are calibrated using material with equivalent size distributions.  Typically, a crystalline silica 

reference material such as NIST SRM 1878a (respirable alpha quartz) would be used to complete 
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method calibration, by correlating known masses of the reference material (assumed to have 

100% purity) to analytical signal intensity, and by subsequently constructing a calibration curve 

from which the mass of crystalline silica in a sample can be determined, based on the measured 

signal intensity from that sample.  Because of the particle size effects discussed above and the 

resulting variability in signal intensity, the sample and the reference material should ideally have 

equivalent (or, at the very least, comparable) particle size distributions in order for the calibration 

to be valid.  Unfortunately but perhaps understandably, evaluation of the particle size distribution 

of samples, much less comparison to the size distribution of the reference material, is not routine 

practice.  To best knowledge, no such comparisons have been published for dusts from 

metal/non-metal mining operations, and only a few published works reference such comparisons 

for dusts from coal mines (77, 90).   Importantly, Page (77) has published size information for 

several crystalline silica materials, which could be used for comparison to the size distribution of 

sample dusts.  He found a median aerodynamic diameter of 2.23 μm for SRM 1878a, as well as 

for Min-U-Sil 5, the material from which SRM 1878a is derived and which is more readily available.  

A lack of equivalency between size distribution of sample and reference material can result 

in inaccurate quantification of the mass of crystalline silica in a sample, and thus to exposure 

misclassifications.  The importance of verifying agreement between the particle size distribution 

of a sample and that of the crystalline silica reference material is noted by numerous authors (45, 

91, 92).  Huggins et al. reported that the U.S. Bureau of Mines and MSHA estimated that 

discrepancies in measured crystalline silica values may be as high as 30% when the particle size 

distribution of the crystalline silica standard material differs significantly from the size distribution 

of the mine dust.  It is worth noting that most investigations, to date, did not consider the size 

distribution of crystalline silica particles separately from the size distribution of dust particles, but 

rather assumed that the size distribution of respirable dust is equivalent to the size distribution of 

the crystalline silica component.  This assumption has not been thoroughly evaluated and could 

have analytical implications, if the two size distributions are not in fact equivalent.  Reut et al. (52) 
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determined that for a reference material with an approximate mass median diameter (MMD) of    

2 μm and a sample with approximate MMD of 1.6 μm, crystalline silica is overestimated by 6%, 

but for the same reference material and a sample with MMD of approximately 8 μm, crystalline 

silica will be underestimated in the sample by 50%.  Edmonds, Henslee, and Guerra observed 

that when the size distribution of a dust diverges from that of the crystalline silica standard, errors 

of up to 300% of the quantity of crystalline silica may occur.  The authors also remarked that 

selecting a crystalline silica standard material based on its purity rather than its size distribution 

would lead to misrepresentative results that are nonetheless internally consistent, which may 

prevent the bias from being detected. Thus, determination of sample particle distribution, and 

selection of an appropriate standard is essential to ensure validity.  Bhaskar et al. (93) remarked 

that in the case of dust samples that have been ashed, particle size distribution should be 

assessed after the ashing procedure, as the particle size distribution can change markedly as a 

result of the loss of carbonaceous particles in the sample.   

1.4 MINERAL INTERFERENCE IN ANALYTICAL METHODS FOR THE 

QUANTIFICATION OF CRYSTALLINE SILICA 

Dust samples rarely contain only a single species, and the presence of multiple species or a 

matrix can result in interference in analytical methods (56, 57).  Spectroscopic interference occurs 

when other mineral species present in a sample contribute a signal in the analytical region for 

crystalline silica; such interference can be either positive (resulting in an overestimation of the 

quantity of crystalline silica) or negative (resulting in an underestimation of the quantity of 

crystalline silica).  The potential effects of interfering signals from other minerals present in 

samples are well documented (48, 50, 56, 57)  
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In IR spectroscopy, there are two general type of interferences: broadband interferences 

(such as from particles of coal) absorb in a wide range of the spectrum and can distort the baseline 

of the spectrum such that accurate integration of the crystalline silica doublet becomes 

complicated; alternatively, structural interferents for crystalline silica (such as from particles of 

kaolinite and other silicates/aluminosilicates) contain similar bond structures, and therefore 

absorb IR wavelengths in a similar fashion despite being structurally distinct molecules.  The 

presence of coal dust in samples is recognized as a source of interference, and can be addressed 

by removal of coal during sample preparation (94).  Structural interferents must be corrected for 

mathematically, by identifying their presence in the sample spectrum and using other 

characteristic bands for that particular compound to adjust the signal intensity observed at          

800 cm-1 (50).  However, while kaolinite, an aluminosilicate clay, is considered to be the only 

mineral confounder of appreciable concern in respirable dust samples from coal mines (95), 

similar determinations have not been made for dust samples from other types of mining 

operations, which would be expected to contain a more diverse set of confounding minerals.  

Furthermore, it is unknown if generalizations of a similar degree can be made for dusts of other 

mine types, or if more specific determinations would need to be made for each set of samples. 

Fortunately, while there is only a cursory knowledge of the most relevant confounders 

within each of the various types of mine dust, there is a much clearer understanding of the specific 

groups of minerals likely to be significant confounders for each method of analysis (56, 57).  

NIOSH Method 7500 (56) for XRD analysis of crystalline silica cites “barite, micas (muscovite, 

biotite), potash, feldspars (microcline, plagioclase), montmorillonite, sillimanite, zircon, graphite, 

iron carbide, clinoferrosillite, wollastonite, sanidine, leucite, orthoclase, and lead sulfide” as the 

most relevant interferences for crystalline silica, and suggests use of the secondary or tertiary 

angles (which are less sensitive for crystalline silica, thus increasing the limit of detection) if 

interference from other minerals is found for the primary angle. 
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NIOSH Method 7603 (57) (nearly identical to MSHA P7, which does not offer guidance on 

mineral interference) for IR analysis of crystalline silica cites kaolinite and calcite as the most 

relevant minerals to consider in dust samples from coal mines. The method also notes that while 

cristobalite and tridymite both produce interfering peaks in the region of the 800 cm-1 crystalline 

silica doublet, neither has been found to occur in coal mine dust (although they may occur in the 

dusts from other types of mines).  Ojima (50) referenced IR spectral interference from clays and 

micas which have absorption peaks in the region of the analytical peak for crystalline silica        

(800 cm-1) and contribute to an apparent increase in crystalline silica concentration. Among the 

most often cited minerals creating interferences of this type are kaolinite, mullite, muscovite, 

pyrophyllite, montmorillonite and amorphous silica.  Additionally, clinoenstatite, nontronite, 

antlerite, and chloritoid can also contribute to interference in the 800 cm-1 absorption band.  Ojima 

also noted that other substances can contribute broadband interference in the quantification of 

crystalline silica by significantly affecting the baseline of the sample spectrum.  Such minerals 

include graphite, silicon carbide, and iron oxide, among other highly absorbing mineral phases.   

Dodgson and Whittaker (44) discussed common composition of coal mine dusts, which 

include the presence of interfering minerals such as calcite, mica, carbonates, montmorillonite, 

chlorite, feldspar, pyrite, iron oxides, anhydrite, gypsum, and kaolinite; they note that of these, 

only kaolinite is present in significant quantities in coal mine dusts.  Toffolo and Lockington (54) 

echoed the finding that only kaolin clays and samples with significant amounts of muscovite are 

subject to significant interference in the 800 cm-1 region.  Dodgson and Whittaker also cited 

previous work by Dixon and Fretwell (96) which determined that only minor errors were introduced 

by the presence of mineral interference – however, this study provides an upper limit of 30 μg for 

error in the quantification of crystalline silica.  In 1968 when this study was published, dust and 

crystalline silica standards were significantly higher than they are today, and while 30 μg would 

have indeed been just a small contribution at that time, it represents a significant proportion of the 

current maximum allowable exposure.  Furthermore, this paper cites the diluting effect of coal 
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dust as reducing the apparent error; the current P7 method developed by MSHA for analysis of 

crystalline silica in coal dust eliminates the contribution of carbonaceous materials via ashing of 

the sample prior to analysis. 

 There are two strategies used to correct for the interference resulting from confounding 

minerals.  First, the spectrum of a pure sample of each interfering mineral can be subtracted from 

the IR spectrum of the sample.  In theory, after spectrum subtraction is performed, the integrated 

peak area in the 800 cm-1 band is attributable entirely to the crystalline silica present in the sample 

and can be used to accurately quantify the mass of crystalline silica in the sample.  Alternatively, 

the absorbance ratio method can be used to correct for mineral interference by using proportional 

peak heights in the spectrum of the interfering mineral.  The integrated area of a distinct peak for 

the interfering mineral can be measured in the sample spectrum, and from the known ratio of the 

distinct peak to the interfering peak, the interference contributed by that mineral in the 800 cm-1 

can be corrected.  Lorberau (48) maintained that both the spectral subtraction method and the 

estimation of interferent concentration via calibration curves overcorrect for the interference and 

result in an overall underestimation of crystalline silica.  On the contrary, Ojima (50) found that 

spectral subtraction (difference spectrum method) resulted in nearly complete correction of bias 

due to interference, while the absorbance ratio method resulted negative bias.  What is most 

important to consider is that any strategy to address or correct mineral interference first requires 

a thorough understanding of the mineral components of which a dust is comprised. 

1.5 PREVIOUS CHARACTERIZATION OF OCCUPATIONAL DUSTS CONTAINING 

CRYSTALLINE SILICA 

To date, very few studies have undertaken detailed size and compositional characterization of 

any sort of occupational aerosol containing crystalline silica. Furthermore, the majority of the 
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research that does exist has focused on dust samples from coal mines, while little focus has been 

given to the mineral characteristics of dust from metal/non-metal mines, where variability could 

be expected due to the wide range of mined commodities represented by this group.   

Though coal mine dust has been better characterized compared to other types of mine 

dusts, there is still relatively little published data concerning the size-related crystalline silica 

content of coal mine dusts.  Huggins et al. (91) used scanning electron microscopy to size 

particles from underground and surface coal mines, and did the same for particles from four pure 

crystalline silica materials; no appreciable difference in size distribution between the mine dust 

particles and the pure crystalline silica materials was found.  More recently, Page (77) completed 

a similar evaluation, making reference to changing mining technologies, machine power, and 

control technologies as contributing to a potential shift in the size distribution of coal mine dust.  

His work evaluated and compared the size distribution of dusts from 13 coal mines and four 

standard crystalline silica materials used in the IR and XRD methods.  With regard to single 

particle analysis, DeNee (97) described a method for the characterization of mine dust using the 

scanning electron microscope; the analysis characterized morphological characteristics and 

particle agglomeration as well as elemental composition of particles.  More recently, Sellaro et al. 

(98, 99) have described a standardized methodology for the analysis of respirable dust from coal 

mines using scanning electron microscopy with energy dispersive X-ray. 

Apart from the study of coal mine dusts, only a few studies have endeavored to 

characterize the size distribution of occupational dusts specifically with regard to crystalline silica.  

Sirianni et al. (76) have characterized dust from a granite quarry with regard to the size distribution 

of the dust and the particle size-related crystalline silica content.  They found that crystalline silica 

content varied with particle size and generally increased as particle size increased, but that this 

trend was somewhat variable.  Qi et al. (100) have evaluated dust from the cutting of fiber cement 

siding with regard to particle size-related crystalline silica content and observed trends similar to 

the findings of Sirianni et al. Notably, the authors also remarked upon the complex nature of dust 
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characterization: namely, that reliable methods for characterization have not been developed 

(presumably, that there is no standardized approach for dust characterization), and that a diverse 

range of processes can generate respirable crystalline silica particles. This calls further attention 

for the need to characterize occupational dusts with regard to their crystalline silica (and mineral) 

content. 

1.6 TOWARDS A MORE ACCURATE QUANTIFICATION OF CRYSTALLINE SILICA 

When the mineral composition of a sample dust is known, quantitative results for crystalline silica 

determined from the IR or XRD methods can be corrected based on the known interferences 

contributed by other mineral components of the dust; likewise, adjustments may be made for 

particle size-related bias if the size distribution of that particular dust has been characterized.  

Such corrections can account for both positive (when interfering factors result in an overestimation 

of the quantity of crystalline silica in a sample) and negative (resulting in an underestimation of 

the quantity of crystalline silica) bias.  While limiting the effects of negative bias are clearly 

important in protecting worker health against unsafe exposures to crystalline silica, avoiding 

positive bias is also important in order to prevent burdensome regulations that unfairly impact the 

mining operator while not offering additional protection to workers.  To mitigate both types of bias 

and achieve a result that is as accurate as possible, it is important to have a thorough 

understanding of the characteristics of a particular dust that may impact the quantification of 

crystalline silica. 

To minimize bias due to the effects of particle size in either the IR or the XRD method, the 

crystalline silica material used for calibration of the method should be matched to the sample 

material with regard to size distribution.  Where this is not possible, adjustments should be made 

based on differences in the size distributions of the two materials.  Both of these strategies require 
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a thorough understanding of the size characteristics of both the dust and the crystalline silica 

component; even for dusts which have previously been characterized, it may be necessary to re-

evaluate size distribution when the mining process undergoes changes, such as equipment 

upgrades, exploration of new ore formations, or revisions in the control technologies that are used. 

Most dusts will contain other minerals in addition to crystalline silica, and therefore 

corrections will be necessary in order to address signal interference from these minerals.  When 

only one or two other minerals are present in a sample, this is a straightforward process, but it 

can become more complicated as the complexity of the mineral matrix of the dust increases.  

Madsen et al. (75) recommend that a multivariate approach to crystalline silica analysis be 

undertaken, which would require the component matrix of specific dust types to be well-defined.  

The authors note that it is unknown how rigorous this approach may be in the face of unknown 

matrices – thus, it is important to characterize a broad range of dusts, which contain a variety of 

other mineral species in assorted combinations. 

Dodgson and Whittaker (44) note that mineral interferences tend to have a more 

substantial impact on quantification than do effects of particle size, and that mineral corrections 

should be carried out before adjustment for particle size effects.  Furthermore, collection of 

respirable dust samples (including those for crystalline silica analysis) utilize size-selective 

sampling devices to separate respirable particles from larger particles, thus decreasing 

discrepancies between the particle size distributions of sample and calibration material; in some 

cases, this may make a size correction factor unnecessary.  Nevertheless, Page (77) estimated 

that particle size effects in XRD quantification of crystalline silica are likely to result in a bias of   

5-10%, up to as much as 18%, and Huggins (91) estimates a bias of up to 30% for IR.  Lorberau 

and Abell (68) noted discrepancies that arose during proficiency analytical testing for the 

quantification of crystalline silica via XRD and IR methods, and speculated that discrepancies 

observed between two methods arose from the size distribution of the dust analyzed.  Together, 



35 

these findings demonstrate that the possibility of effects due to particle size should not be 

assumed to be minimal, and should not be ignored. 

Unfortunately, characteristics of mine dusts are not consistent from mine to mine, or even 

from task to task in the same mine: it is impossible to apply a uniform correction for all dusts.  In 

order to develop correction factors for dusts of different types (and indeed, to determine what 

factors may constitute a “type of dust”), these dusts must first be characterized.  Knowledge of 

qualities such as the size distribution of the dust particles generated, the crystalline silica content 

of the dust and the size distribution of crystalline silica particles, and the other mineral species 

present in the dust are of great value, as these factors have implications for the analytical methods 

discussed above.  These qualities may vary according to: the type of mine commodity, the geology 

in the region of the mine, the locations within the mine (i.e. underground vs. surface vs. mill 

locations), and the types of equipment and processes employed in a specific air and for a 

particular task.  While geology is expected to impact primarily the mineral composition of dust, it 

can also affect dust size distribution according to the hardness or brittleness of rock material and 

the mining equipment used to cut through the rock.  In particular, as mining technologies evolve 

and equipment innovations result in new capabilities and higher production efficiency, changes to 

mining processes may result in changes to the size distribution of dusts generated.  This 

phenomenon has been raised as a potential concern to crystalline silica monitoring efforts (30, 

77), as the characteristics of dust could become even more dynamic in the future. A dedicated 

effort will be required to first achieve a comprehensive understanding of dust characteristics, and 

to then maintain that body of knowledge to ensure that accurate and appropriate correction 

methods are applied to analyses for crystalline silica.   

In conjunction with these analytical considerations, detailed characterization of mine dusts 

would be beneficial for application toward exposure assessments, specifically with regard to 

quantitative metrics for crystalline silica based on properties other than mass.  As more is learned 

about the role of particle size in crystalline silica-initiated inflammatory processes, it becomes 
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clear that respirable crystalline silica particles may not all be equivalent in terms of their impact 

on human health.  This possibility increases the importance of understanding the size distribution 

of crystalline silica as a component of a dust, rather than understanding the size distribution of 

the whole dust alone. 

Mass-based methods for the quantification of respirable crystalline silica consider all 

respirable crystalline silica particles together as an integrated sample.  While mass-based 

measurements are convenient and have long been the standard, these methods are vulnerable 

to the lack of knowledge of particle size-related composition of mine dusts, for several reasons.  

First, lack of knowledge of the size distribution of crystalline silica particles relative to the size 

distribution of dust particles in general essentially necessitates the assumption that crystalline 

silica particles are distributed equally throughout all particle sizes, e.g. that each size fraction of 

dust has a comparable percentage of crystalline silica.  While this may certainly be the case for 

some mine dusts, it may also be untrue for other mine dusts.  As discussed above, 

uncharacterized particle size effects create the potential for analytical bias, as well as for exposure 

misclassification.  Additionally, even within respirable dusts, some sizes of particles are more 

respirable than others – that is, their aerodynamic diameter allows them to penetrate deep into 

the lung before embedding in tissues.  Furthermore, smaller particles may be more efficient in 

inducing fibrogenic response, either due to deeper lung penetration or increased surface area 

relative to larger particles.  Dose response may be proportional to number concentration or 

surface area concentration rather than mass concentration, and this also has implications as far 

as the potential health effects of crystalline silica.   

Clark and Reynolds (71) remarked that “exact quantitative knowledge concerning the 

chemical composition of the materials entering the lungs of workers” is necessary to the 

epidemiological study of respiratory disease such as silicosis.  To achieve exact quantitative 

knowledge, the characterization of both the composition and the particle size characteristics of a 

mine dust must be undertaken. 
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1.7 SCOPE OF DISSERTATION AND STATEMENT OF HYPOTHESIS 

While a few studies have investigated properties of aerosols of occupational dust with regard to 

crystalline silica, more research is necessary in order to understand properties of crystalline silica 

particles within a diverse range of dusts, relative to properties of the dust particles in general. 

A considerable obstacle to improving exposure assessment for crystalline silica and 

therefore to limiting worker exposure is the lack of comprehensive efforts to characterize 

properties of mine dusts, specifically with regard to particle size and crystalline silica content.  Few 

dusts from mining environments have been characterized, and no standardized method exists by 

which to characterize mine dusts with regard to their composition as well as with regard to particle 

size.  Numerous works have focused on one or the other but none have combined the two 

aspects.  Further, while recent works have begun to investigate factors such as particle size that 

may contribute to increased toxicity, and past works have addressed, in general, particle size-

related factors that may contribute to measurement bias, little work to date has been done to 

characterize the qualities of mine dusts that might contribute significantly to measurement 

uncertainty in the quantification of crystalline silica. 

The lack of investigation of particle size-related crystalline silica and mineral content of 

metal/non-metal mine dusts represents a serious gap in knowledge that must be addressed.  

Without a better understanding of particle size-related characteristics of dusts, it is not possible 

to assess the accuracy of current monitoring methods, which leaves workers vulnerable to 

excessive exposures to crystalline silica that may, inadvertently, go undetected.  The lack of 

knowledge regarding size distribution of crystalline silica, specifically, also precludes monitoring 

and toxicological assessment based on dosing metrics other than mass – such as particle number 

or surface area.  This study describes a method by which to achieve detailed characterization of 

mine dusts, and illustrates why future and continued efforts towards such characterization are 

required. This method is used to characterize three different dusts, all from gold mining 
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operations, and will illustrate that the qualities of mine dusts are varied, even within dusts from 

similar types of mines.  Based on the premise that the particle size-related crystalline silica and 

mineral composition of mine dusts is variable, impacting the accuracy of monitoring methods for 

crystalline silica, this work seeks to explore three hypotheses, outlined below. 

First, the size distributions of three gold mine dusts are measured and the crystalline silica 

content of each particle size fraction is quantified, in order to test the hypothesis that the size 

distribution of a particular dust is not equivalent to the size distribution of the crystalline silica 

component of that dust, and that crystalline silica is not uniformly distributed through all particle 

size ranges of dust.   

Secondly, two distinct analytical methods for the quantification of crystalline silica are used 

to characterize specific size fractions of dust for their crystalline silica content.  Comparisons are 

made between the crystalline silica determined by each method, in order to test the hypothesis 

that the particle size distribution of crystalline silica affects accuracy of analytical methods for the 

quantification of crystalline silica, and that this effect is not constant from dust to dust.   

Finally, single-particle analysis is undertaken via electron microscopy to identify silica and 

non-silica particle classes.  The relative abundance of these particle classes are determined for 

specific size ranges of the three dusts, in order to test the hypothesis that, like crystalline silica, 

other particle classes vary in abundance by particle size, and that such variation is not constant 

from dust to dust. 
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2.0  DETERMINATION OF THE SIZE DISTRIBUTION OF CRYSTALLINE SILICA IN GOLD 

MINE DUST 

Exposure to crystalline silica and the development of silicosis are important health concerns in 

the mining industry.  Exposure monitoring is used to address and prevent overexposures to 

respirable crystalline silica in the workplace.  Current monitoring methods use gravimetric analysis 

to assess total respirable dust concentrations, and infrared (IR) or X-ray diffraction (XRD) 

methods to quantify crystalline silica within the dust.  From these two analyses, the proportional 

crystalline silica content of the dust is calculated.  An implicit assumption of this method is that 

size distributions of respirable dust (particles smaller than 4 μm) dust and of the crystalline silica 

component of respirable dust are equivalent, but to best knowledge this assumption has never 

been evaluated.   

Understanding the particle size distribution of crystalline silica, in addition to the size 

distribution of the overall dust, is important for several reasons.  First, accurate knowledge of the 

size distribution of crystalline silica is important to the quantification of crystalline silica.  Analytical 

methods for the quantification of crystalline silica must be correctly calibrated in order to 

accurately quantify the mass of crystalline silica present in a sample; calibrations are established 

using known standard materials.  However, both analytical methods are affected by particle size, 

requiring a close match between the size distributions of sample material and the calibration 

material.  Lack of comparability between the two materials will result in a method calibration that 

either over- or under-estimates the crystalline silica present in samples.  Without knowledge of 

the size distribution of the crystalline silica component, a good match cannot be guaranteed, and 

accurate results cannot be assured.   

Secondly, both personal protective equipment (such as commonly employed half-face 

filtering respirators) and control technologies (such as water sprays and ventilation systems) have 



40 

variable efficiency with respect to particle size.  More appropriate controls and protections can be 

chosen with knowledge of the size distribution of crystalline silica particles present in the 

environment; alternatively, with the knowledge that the controls in place may not be adequate for 

the particle sizes present, administrative controls such as shift rotation may be implemented to 

keep worker exposures to a minimum. 

Finally, biological activity of crystalline silica particles does not appear to be consistent 

across all particle sizes.  While this aspect of the mechanism of crystalline silica toxicity is not well 

understood, it is clear that there is some effect of either particle size or particle surface area that 

contributes to both inflammatory and fibrotic processes involving crystalline silica particles.  In 

order to further explore the dose response relationship of crystalline silica exposure (as for 

development of new permissible exposure levels), it is important to understand the particle size 

distribution of crystalline silica within various mine dusts; it is not sufficient to understand solely 

the size distribution of the overall dust, which may be largely comprised of inert, so-called 

nuisance dust particles, which may be substantially different in size from crystalline silica particles. 

Crystalline silica particle size is also significant in that specific health outcomes and relevant 

toxicological dose may ultimately be demonstrated to be related to particle size or surface area 

rather than simply particle mass.  Furthermore, since current exposure metrics rely on mass-

based assessments, which are inherently biased towards larger, more massive particles, 

exposure assessments are likely underestimating exposure to smaller particles that contribute 

less significantly to mass-based measurements, but which could have greater impact on human 

health (38). 

When the particle size distributions of samples have been evaluated in the literature, it 

has typically been for the whole dust, rather than for the crystalline silica component of the dust.  

Presumably, this is because it is relatively straightforward to evaluate the size distribution of a 

dust, as it can be performed gravimetrically.  However, to evaluate the size distribution of 

crystalline silica particles, additional steps must be taken to quantify crystalline silica mass 
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spectroscopically.  These steps do require some extra effort, but they are not unduly time-

consuming, labor intensive, or cost-prohibitive.  While is it not practical to evaluate the crystalline 

silica size distribution for each and every dust sample collected, it does seem more feasible to 

put forth such effort for a number of mine dusts with similarities and difference in relevant qualities, 

so that potential patterns may be unveiled. 

2.1 METHODS 

Three gold mine dusts were selected from samples previously collected at a mine in Alaska, a 

mine in Nevada, and a mine in South Africa.  In general, these samples of bulk dust have been 

collected at mine sites by NIOSH researchers (or by other researchers or health and safety 

personnel at a mine on behalf of NIOSH researchers) from settled dust that has accumulated on 

surfaces near the production areas of the mine.  Such samples often represent a composite of 

dust from various areas and processes around the mining operation; thus, they are not 

necessarily representative of any particular source of exposure, but are rather an approximate 

“average” of potential exposures throughout the mine.  Once brought to the lab, bulk dusts are 

stored in glass vials and kept in a cool, dry environment.  Prior to being aerosolized in a laboratory 

aerosol chamber, samples are sieved to remove particles larger than 32 μm (leaving smaller 

particles undisturbed), which are difficult to re-aerosolize in a consistent manner and are of little 

interest for worker exposure. 

 Independently of one another, each dust was re-aerosolized in a calm-air Marple aerosol 

chamber (101), using a TSI 3400A fluidized bed aerosol generator (TSI, Shoreview, MN) and 

neutralized through a TSI 3012A NRC Aerosol Neutralizer (TSI, Shoreview, MN).  The aerosol 

chamber is 2.44 m in height with hexagonal cross section (inside diameter 1.19 m).  The 

aerosolized dust is introduced from the top of the chamber and there is mixed by an air jet that 
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enters the chamber from the side.  The thoroughly mixed aerosol flows downward through a        

10-cm thick honeycomb structure where turbulence is reduced, providing a low-velocity downward 

flow through the portion of the chamber where sampling occurs.  This chamber has been used 

extensively in recent years for evaluation of dust monitors (102, 103), and conditions inside the 

chamber can be controlled such that spatial variability is less than 5% (101).  Respirable dust 

concentration within the chamber was monitored by Tapered Element Oscillating Microbalance 

(TEOM 1400, Thermo Scientific, Waltham, MA). 

2.1.1 Characterization of Size Distribution: APS + SMPS 

As the respirable portion of mine dust is expected to include particles as large as 10 μm and as 

small as several nanometers, the aerosol of each dust was characterized by two different 

spectrometers in order to characterize this complete size range.  A TSI 3321 aerodynamic particle 

sizer (APS; TSI, Shoreview, MN) measured particles from 0.5 μm to 20 μm, while a TSI scanning 

mobility particle sizer (SMPS; EAD 3080; CPC 3010; TSI, Shoreview, MN) measured particles 

from 14 nm to 673 nm.  The SMPS was operated with sheath air of 3 liters per minute (lpm) and 

aerosol flow rate of 0.3 lpm.  The two instruments simultaneously extracted aerosol from the mid-

section of the Marple chamber via conductive tubing (OD 6 mm).  Aerosols were evaluated under 

a variety of chamber conditions (relative humidity; air flow; dust concentration) to ensure that size 

distributions remained consistent, independent of chamber conditions.  Resulting APS 

aerodynamic and SMPS electromobility size distributions were merged using the Data Merge 

Module (TSI, Shoreview, MN), applying a lognormal fit for the composite distribution.  To optimize 

the merged data, specific settings and corrections were applied: the density of each dust was 

estimated and assumed constant, and a shape factor of 1.2 was selected (104, 105).  For the 

SMPS data, the multiple charge correction was selected, and for the APS data, the efficiency 

counting correction was selected. The merged distribution was exported as a function of the 
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aerodynamic size of the particles, as this metric is more germane to the objectives of this study 

than the electromobility size. 

2.1.2 Characterization of Size Distribution: Gravimetric Inversion 

Size distributions can also be determined by inversion of gravimetric data, wherein discrete bins 

of a range of particle size are measured by the mass of material collected; this data is then 

converted into a continuous distribution by considering the stage efficiency and particle loss 

functions for each particle size and for each collection stage.  Stage efficiency functions and 

mathematical representations can be developed empirically, or, for well-documented 

instrumentation, can be estimated from functions reported in the literature (106), with the 

assumption that both the calibration instrument and the experimental instrument were operated 

under the same conditions during sampling, and that the calibration aerosols and sample aerosol 

had sufficiently similar properties. 

A cascade impactor is used to collect particles in specific ranges of aerodynamic diameter.  

An aerosol enters the inlet of the impactor and flows over a plate or stage; particles must move 

around the plate in order to continue in the airflow, but larger particles cannot move quickly 

enough and are deposited on the stage via impaction.  Smaller particles continue to the next stage 

where the process is repeated, and so on until the air reaches an after-filter, where all particles 

still entrained in the airstream are collected.  A greased substrate is often used to increase the 

collection efficiency of a stage by preventing particles from bouncing off the stage and becoming 

re-entrained.  The sharpness of a stage indicates how precisely the stage separates particles, 

and the d50 or cut-point of the stage indicates the particle size that is collected by the stage with 

50% efficiency. The Micro-orifice Uniform Deposit Impactor (MOUDI) (107) is one type of cascade 

impactor; it employs stage rotation and precisely oriented stage nozzles (where airflow enters the 

stage) to achieve a more uniform sample deposit that other types of impactors.  In addition, the 
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sharp cuts of each stage of the MOUDI achieves better particle separation than other types of 

impactors.  Stage cut-points and approximate sharpness are shown in Table 1. 

 
 

Table 1 MOUDI stage cut-points 

Stage d50 (µm) Approximate 
Sharpness 

Inlet 18 1.35 
Stage 1 9.9 1.18 
Stage 2 6.2 1.10 
Stage 3 3.1 1.05 
Stage 4 1.8 1.11 
Stage 5 1.00 1.07 
Stage 6 0.56 1.08 
Stage 7 0.32 1.16 
Stage 8 0.18 1.13 
Stage 9 0.097 1.20 
Stage 10 0.057 1.33 

Final Filter - - 
 
 
 

A MOUDI (model 110-R, MSP Corporation Minneapolis, MN), positioned outside of the 

sampling chamber, extracted dust from the chamber via conductive tubing (OD 30 mm) and  was 

used to fractionate and collect dust on pre-weighed, greased 47-mm foil substrates (MSP 

Corporation, Shoreview, MN).  Sample substrates and after-filter were post-weighed to determine 

the net mass of dust collected on each stage.  An inversion of gravimetric data (108) was 

performed using estimates of stage efficiency functions and particle losses for the MOUDI, and a 

size distribution of the dust was constructed, including MMD and GSD for each dust. 

2.1.3 Characterization of Particle Size-related Crystalline Silica Content 

While greased substrates are useful for reducing particle bounce, the grease interferes with 

chemical analyses and is difficult to remove from dust particles post-collection.  To characterize 

crystalline silica content, samples were collected with the MOUDI on 47 mm PVC filters.  As PVC 
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filters are subject to increased particle bounce compared to greased substrates, a mechanism 

was devised to limit the effects of bounce while still maintaining chemical integrity of the samples.  

Sampling was completed in two phases: in the first, greased foil substrates (as described in the 

previous section) were placed on the inlet and even numbered stages of the MOUDI, and PVC 

filters were placed on odd numbered stages; in the second, the arrangement was reversed so 

that PVC filters were on even numbered stages (shown in Figure 5).  By alternating greased foils 

with PVC filters, the effects of large particles bouncing onto a sample (positive bias) are greatly 

decreased, as the majority of large particles will adhere to the greased stage above the sample.  

Negative bias due to particles bouncing off of the filter is still possible; however, crystalline silica 

and non-crystalline silica particles will bounce off the filter with approximately the same frequency, 

and the proportionate crystalline silica content measured in the sample will be unaffected. 

 
 

 
 

 
Figure 5 Arrangement of PVC filters and foil substrates on MOUDI stages 

 
 
 
PVC filters and greased substrates were pre-weighed prior to sample collection.  Dusts 

were aerosolized in the manner described above.  Though the MOUDI 110-R is capable of 
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segregating aerosols into 10 defined size fractions, plus the inlet stage and after-filter, dusts were 

segregated into either 6 or 8 (plus inlet and after-filter) fractions for this phase of the study.  The 

lowest stages (representing the smallest particles) were eliminated due to the size distributions 

of the dusts, where negligible particle concentrations in the smallest size ranges would have 

required prohibitive sampling times in order to collect at least 5 μg of crystalline silica.  Particles 

that would have been collected on these stages were instead collected on the after-filter.  

Chamber concentrations of respirable dust and sampling times by stage are listed for each of the 

three dusts in Appendix A.  Where allowed by time constraint and sufficient material, two samples 

per stage were collected.  Sampling times varied by stage, according to the proportion of particle 

mass in the particular size range and the estimated percent of crystalline silica in the dust, such 

that crystalline silica mass in collected samples was expected to fall within the analytical range 

for the method (e.g. 5 μg – 500 μg).  Typical sampling times ranged from 30 minutes to 12 hours. 

Following sample collection, PVC filters and greased substrates were post-weighed to 

determine net mass collected on each sample.  PVC filters were designated for analysis by an IR 

method (P7) or an XRD method (NIOSH 7500).  Where two samples had been collected for a 

stage, one sample was analyzed by each method; where only one sample could be collected, 

that sample was analyzed by the optimum method for that range of particle size.  P7 and NIOSH 

7500 analysis was completed by RJ Lee Group, Inc., Monroeville, PA.  Due to limited commercial 

availability of the filter medium required for P7 analysis (109), P7 samples for two of the dusts 

(Nevada, Alaska) were analyzed by Mine Safety and Health Administration (MSHA) analytical 

laboratories in Pittsburgh, Pennsylvania.  Since both laboratories are accredited and follow the 

published P7 method, no significant bias is expected as a result of this change.  From the net 

mass of the sample (determined gravimetrically) and the mass of crystalline silica in the sample 

(determined by IR or XRD), the proportion of crystalline silica was determined for each sample.   
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2.1.4 Construction of a Crystalline Silica Size Distribution 

Particle size-related crystalline silica content was calculated for each MOUDI stage, as well as 

the inlet and after filter.  For the inlet, Stage 1, and Stage 2, XRD data was used to determination 

percent crystalline silica (by mass); for Stages 3-8 and the after filter, IR data was used to 

determine percent crystalline silica.  Percent crystalline silica for each stage was applied to raw 

gravimetric data that was used to determine size distributions of whole dust; the same inversion 

procedures was applied to the resultant quantities in order to obtain a size distribution of 

crystalline silica particles within the dust.  To validate the unimodal or near-unimodal nature of the 

crystalline silica size distribution, data bins were also plotted as column charts. 

2.2 RESULTS 

2.2.1 Size Distributions: APS + SMPS 

The particle number size distribution of each dust, as a function of particle aerodynamic diameter, 

are shown in Figure 6. Each plot displays the composite particle size distribution from the merged 

SMPS and APS data, as well as the proposed fit distribution. For all three dusts, a unimodal 

distribution was selected as the best fit to the composite data.  The count median diameter (CMD) 

and geometric standard deviation (GSD) of each dust were determined from the fit distributions.  

The CMDs were determined to be 1680 nm (GSD=1.96), 498 nm (GSD=1.72), and 590 nm 

(GSD=1.94), for the dust from Alaska, Nevada and South Africa, respectively. 
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Figure 6 Particle number size distributions from merged SMPS-APS data 
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2.2.2 Size Distributions (Total Dust, Crystalline Silica): Gravimetric Inversion 

The particle size distribution of each dust and the crystalline silica component thereof was 

constructed, based on mass, from inversion of gravimetric data collected with the MOUDI.  The 

gravimetric inversion method is based upon the methods described by O’Shaughnessy and 

Raabe (108) and Roberts et al. (106).  Figure 7 (top) shows the particle mass size distributions of 

the three total dusts generated by inversion of gravimetric data from the MOUDI; as the particle 

mass size distribution of the Nevada and South Africa dusts are quite similar, these two plots 

overlap one another.  Figure 7 (bottom) shows the particle mass size distribution of the crystalline 

silica component of the three dusts, generated by applying the size-related proportional crystalline 

silica content to gravimetric data from the MOUDI and subsequent inversion of these values.  The 

size distribution of each dust is normalized to the largest fraction, and thus reaches unity.  Figure 

8 shows the respirable particle mass size distribution of total dust and crystalline silica, generated 

by applying the respirable particle convention (79) to Figure 7 (top)  and (bottom), respectively.  

By applying the respirable convention, large particles that are not relevant to worker exposure are 

no longer considered; as these plots represent only a specific fraction of the size distributions 

shown in Figure 7, they do not reach unity.    MMD and GSD for each size distribution are 

summarized in Table 2. 

For all three dusts, the MMD was determined to be larger for crystalline silica than for the 

total dust.  This difference was fairly small for the dusts from Alaska and South Africa, but was 

quite pronounced for the dust from Nevada, where the MMD of crystalline silica particles was  

2.76 μm larger than for dust particles overall.  Additionally, the GSD of the three crystalline silica 

size distributions was smaller than the overall distributions, indicating a more narrow range of 

particle sizes for crystalline silica than for the overall dust.   
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Figure 7 Particle mass size distributions: particles <32 μm 
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*respirable fraction calculated using the respirable convention described in Chapter 1 (79) 

 
 

Figure 8 Particle mass size distributions: respirable fraction 
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Table 2 MMD and GSD of the size distributions of total dust and total crystalline silica 
 

Dust Stages MMD GSD 
Alaska: total dust 6 5.1656 1.72 
Alaska:            total silica 6 5.8324 1.69 
Nevada: total dust 6 3.8845 2.36 
Nevada total silica 6 6.6486 2.09 
South Africa: total dust 8 3.9206 2.39 
 total silica 8 4.3609 2.07 

 
 

2.2.3 Characterization of Particle Size-related Crystalline Silica Content 

Although it is useful to compare the size distributions of crystalline silica and the overall dust, such 

comparisons do not directly provide information about the relative amount of crystalline silica 

associated with a particular particle size in a specific dust.   

Using the kernel functions for each stage of the MOUDI – which incorporate the collection 

efficiency function of a stage as well as a function approximating particle losses to the interior wall 

surfaces of the impactor – and the proportional crystalline silica content determined for each stage 

of the MOUDI (shown in Table 3), a continuous curve was determined for the proportional 

crystalline silica content of each particle size of the dust, shown along with the size distribution of 

each total dust in  

Figure 9.  It is necessary to consider that this curve depicts proportional crystalline silica 

content by mass within each particle size range: determination of proportional crystalline silica 

content by particle count within particle size ranges is beyond the capabilities of the current 

methods.  Such determinations are possible with more sophisticated methods and is discussed 

further in Chapter 4. 
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Figure 9 Proportional crystalline silica content, by particle size 
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The IR and XRD data used to construct the plots in Figures 7-9 is shown below in Table 

3.  The crystalline silica masses shown represent the composite of quantification by XRD (for 

Inlet, Stage 1, and Stage 2 samples) and IR (for Stages 3-8 and final samples). 

 

Table 3 Proportional crystalline silica content (%) from IR and XRD data 

MOUDI Stage d50 Alaska Nevada South Africa 
Inlet 18 μm 8.17 41.25 17.80 

Stage 1 10 μm 5.31 42.86 27.66 
Stage 2 5.6 μm 3.99 26.58 28.70 
Stage 3 3.2 μm 3.63 15.71 27.37 
Stage 4 1.8 μm 2.91 9.88 27.54 
Stage5 1.0 μm 1.37 5.00 20.20 
Stage 6 560 nm 0.72 4.26 13.87 
Stage 7 320 nm - - 30.83 
Stage 8 180 nm - - 46.84 

Final - 0.98 4.07 11.30 

2.3 DISCUSSION 

With respect to both count and mass distribution, the dusts from Nevada and South Africa are 

similar to one another and have compositions that include appreciable amounts of small particles, 

while the dust from Alaska is composed of somewhat larger particles.  The GSDs of both the 

particle count and particle mass size distributions of dust from Nevada and South Africa are also 

quite similar; they indicate that a broader range of particle sizes comprises these two dusts than 

the dust from Alaska.  One explanation for this is that the crystalline silica component of the dust 

represents particles produced by one type of source: the fracturing of rock.  Alternatively, the total 

dust contains particles produced by a variety of sources, including emissions from vehicles and 

mining equipment, re-suspended soil particles, and particles from long-range atmospheric 

transport.  The size distributions of particles from these sources are likely to be somewhat smaller 
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(in the case of vehicle emissions) or somewhat larger (as for re-suspended particles) than from 

the fracture of rock, thus the broader size distribution of total dust relative to crystalline silica. 

 NIOSH has previously documented high variability in the overall crystalline silica content 

of dust samples collected from mining operations (30), and these findings are in agreement with 

such variability.  Within distinct size fractions of a particular dust, the proportional crystalline silica 

content was also quite variable.  Fractions of each dust with the least and greatest proportion of 

crystalline silica differed by a factor of approximately four for the dust from Nevada, and by a 

factor of greater than ten for the dusts from Alaska and from South Africa.  The mass distribution 

of crystalline silica for all three of the dusts was similar to the mass distribution of the 

corresponding total dust, and the MMD for crystalline silica was slightly larger than the MMD for 

the corresponding dust. While it is not possible to assess the statistical significance of this 

difference using the current data set, it is telling that the same trend is apparent in all three of the 

dusts.  Additionally, the same trend is observed for a dust of fairly low crystalline silica content 

(5%) as well as for a dust of moderately high crystalline silica content (20%), which suggests that 

the trend is not dependent on the relative abundance of crystalline silica within the dust. 

That the size distribution of crystalline silica generally trends towards larger particles and 

is narrow than the distribution of the overall dust is encouraging for exposure controls used within 

these three mines.  The effectiveness of a control technology is typically evaluated based on 

reductions in total respirable dust concentration, as respirable dust can be assessed in a 

straightforward manner via gravimetric analysis.  These findings indicate that a control technology 

that is effective in reducing respirable dust concentrations should, in theory, be as effective in 

reducing concentrations of crystalline silica particles.  However, all three dusts and their crystalline 

silica components contain substantial quantities of submicron particles, which have longer settling 

times and are capable of deeper penetration into the lungs, relative to particles larger than one 

micron.  Any control technology used to reduced overall respirable dust concentrations should be 

evaluated for its effectiveness in reducing concentrations of submicron particles as well. 
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 From a monitoring perspective, it is also encouraging that, for two of the three dusts 

characterized, the size distribution of crystalline silica was extremely comparable to the size 

distribution of the total dusts.  It has been previously documented that appreciable differences 

between the size distribution of a sample dust and the size distribution of the crystalline silica 

reference material used for calibration of the analytical method can result in a significant bias in 

the quantification of crystalline silica in samples (91).  While it is not common practice to assess 

the size distribution of either a dust sample or the crystalline silica component thereof, it is more 

likely that the size distribution of the whole dust would be known or could be estimated, and 

substantially less likely that the size distribution of crystalline silica would be.  It seems that the 

size distribution of the total dust may, in some instances, be an appropriate proxy for the size 

distribution of crystalline silica.  However, it is necessary to characterize the size distribution of 

many other types of dust, and the crystalline silica component of each, before such a 

generalization could be made with confidence; it should also be determined for which types of 

dusts such an assumption would not be appropriate.  In this study, the dust from Nevada showed 

a size distribution of the crystalline silica component that differed more appreciably from the size 

distribution of the dust.  It is possible that this is common within that geographic region, or perhaps 

with the technologies and equipment used in that particular mine.  Further studies can shed 

additional light and data upon such speculations. 

 In summary, this study has demonstrated that crystalline silica is not present in uniform 

proportion throughout the entire size range of a mine dust, and while the size distribution of 

crystalline silica is sometimes very similar to the size distribution of the dust, at other times it 

differs more appreciably.  This is a strong demonstration that further study is needed, both to 

characterize the size distributions of dust produced in mines, as well as to characterize the 

crystalline silica content of those dusts.  This work presents a replicable method by which to do 

so. 
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3.0  COMPARISON OF PARTICLE SIZE-RELATED ANALYSIS OF CRYSTALLINE SILICA 

BY IR AND XRD METHODS 

Infrared (IR) and X-ray diffraction (XRD) methods are both widely utilized for quantifying 

crystalline silica in respirable dust samples.  Outside of the United States, XRD is the predominant 

method used for analysis of crystalline silica in dust samples from all types of mines (75), while in 

the United States, each of the two methods is utilized in specific mining sectors.  For largely 

historical reasons, the IR method is used in the coal mining industry in the form of  the Mine Safety 

and Health Administration (MSHA) P7 method (67) (analogous to NIOSH method 7603 (57)), 

while XRD (MSHA P2 (70), analogous to NIOSH method 7500 (56)) is used in the metal/non-

metal mining industry.    Both methods have comparable limits of detection (5-10 μg per sample) 

(56, 57), and are considered to be approximately equivalent to one another for quantification of 

crystalline silica in respirable dust (68, 92, 94).  However, these validations have only assessed 

integrated respirable samples of crystalline silica standard materials; as the accuracy of each 

method can be affected by the size of the particles present in the sample, it is prudent to verify 

the inter-method reliability for specific particle sizes of real-world occupational dust samples. 

Given variability in the size distributions of mine dusts, as well as in the size distribution of 

the crystalline silica component of those dusts, it is essential to evaluate how particle size can 

contribute to discrepancies between the IR and XRD methods, and how such discrepancies are 

likely to affect exposure assessments for respirable crystalline silica.  Understanding such 

variability and the discrepancies that can result is essential to efforts towards improvement of 

occupational monitoring for crystalline silica exposure.   
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3.1 METHODS 

The selection of dusts and collection of samples was completed as described in Chapter 2.   

Briefly, three previously selected and prepared gold mine dusts from Alaska, Nevada, and South 

Africa were each aerosolized in a calm-air chamber at 25°C and 40%RH, using a fluidized bed 

dust generator.   

3.1.1 Collection of Size-fractionated Samples  

Size-segregation of particles was completed using the Microorifice Uniform Deposit Impactor 

(MOUDI).  Samples for crystalline silica analysis were collected on pre-weighed 47 mm PVC 

filters, which were alternated with pre-weighed 47 mm greased foil substrates to limit particle 

bounce, as described in Chapter 2.  Duplicate samples were collected for each dust and size 

fraction and analyzed by both IR and XRD methods, so that the results of the two methods could 

be compared for all particle size ranges.  Following sample collection, samples were post-weighed 

to determine the net mass of dust collected, and were sent to analytical laboratories for crystalline 

silica quantification via P7 and NIOSH 7500.    While the ideal method of conducting such a 

comparison is to collect simultaneous samples of exactly the same mass, this was not possible 

to accomplish using the MOUDI; sequential samples were collected, keeping chamber and 

sampler conditions constant so that overall sample mass would be comparable. Sampling times 

were varied according to dust and size fraction, as described in Chapter 2 and summarized in 

Appendix A. 

 Additionally, samples of respirable dust were collected for each type of dust using the size-

selective Dorr-Oliver cyclone, which is used to collect samples for respirable dust monitoring in 

both coal and metal/non-metal mines.  The cyclones were operated at a flow rate of 1.7 liters per 

minute (lpm), and samples were collected on pre-weighed 37 mm PVC filters. 
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3.1.2 Comparison of IR and XRD Methods 

Using data from the gravimetric analysis of filters and crystalline silica quantification from the IR 

and XRD methods, percent crystalline silica by mass was determined for each sample.  Data was 

then organized according to origin of dust (Alaska, Nevada, South Africa), particle size range 

(Inlet through Stage 8, see Table 1), and analytical method (IR, XRD) for the quantification of 

crystalline silica.  To facilitate comparison between IR and XRD methods, the proportional 

crystalline silica content of each sample was determined from gravimetric data and crystalline 

silica quantification.   This was necessary because MOUDI sample pairs were collected 

sequentially rather than simultaneously, and the total mass collected was similar but not identical 

for the two samples.  Cyclone sample pairs were collected simultaneously but were treated the 

same as MOUDI samples, for consistency. 

For each pair of particle size-fractionated samples, the ratio of the IR-determined 

proportional crystalline silica content and the XRD-determined proportional crystalline silica 

content was calculated.  The same calculations were performed for respirable dust samples 

collected via cyclone.   

3.2 RESULTS 

To facilitate comparison between methods, results are presented in Table 4 as mass percent 

crystalline silica determined by either method, for each size fraction of the three dusts.  Two 

samples (both analyzed by XRD) yielded crystalline silica results below the limit of detection (5 

μg); a value of one half the limit of detection was used to determine the approximate mass percent 

crystalline silica content in those samples.  
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Figure 10 shows the ratio of crystalline silica results from the two methods.  To enable comparison 

between all three dusts, the ratios shown for the <0.56 μm fraction of the South Africa dust 

represents the sum of crystalline silica quantified in the three smallest particle fractions (0.32, 

0.18, <0.18 μm) by the two methods, divided by the sum of the total dust collected for the same 

three samples.  This was necessary because the 0.32 μm and 0.18 μm fractions were not 

collected separately for the Alaska and Nevada dusts, but instead were collected as part of the 

<0.18 μm fraction. 

 
 
 

Table 4 Crystalline silica composition (mass %) by IR and XRD 
 

 Alaska Nevada South Africa 
d50 (μm) IR XRD IR XRD IR XRD 

18 1.05 8.17 6.67 41.25 11.16 17.80 
9.9 2.31 5.31 14.54 42.86 18.18 27.66 
6.2 3.44 3.99 19.16 26.58 20.29 28.70 
3.1 3.63 5.43 15.71 22.13 27.37 20.48 
1.8 2.91 4.75 9.88 13.72 27.54 25.96 
1.00 1.37 3.71 5.00 6.77 20.20 15.84 
0.56 0.72 2.54 4.26 4.60 13.87 9.57 
0.32 - - - - 30.83 9.68 
0.18 - - - - 46.84 6.10%‡ 

<0.56*, <0.18§ 0.98 1.79 4.07 3.50 11.30 8.93%‡ 
respirable 2.99 4.49 12.00 15.55 16.45 20.48 

 
* For the Nevada, Alaska dusts 
§ For the South Africa dust 
‡ Results below XRD method LOD (5 μg); crystalline silica percentage calculated using 0.5*LOD 
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Figure 10 Ratio of IR to XRD quantification of crystalline silica, by particle size 

 
 
 
For all three dusts, considerable differences were observed between the proportion of 

crystalline silica determined by the IR and XRD methods of analysis.  Generally, these differences 

were the most pronounced for the largest particle size fractions (9.9 μm, 18 μm and larger) and 

for the smallest particle size fractions (<0.5 μm, 0.56 μm).  Differences between the two methods 

were also observed in the mid-particle size ranges, as well as for samples of respirable dust, but 

these differences were more moderate.  For most samples, the XRD analysis determined a 

greater proportion of crystalline silica than the IR method, though the IR method quantified a 

greater proportion of crystalline silica in 7 (of 11) fractions of the South Africa dust. 
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3.3 DISCUSSION 

Differences between the IR and XRD methods were most pronounced in the smallest and largest 

particle size fractions.  This observation was as expected due to the inverse relationship between 

the impacts of particle size effects in IR analysis versus those in XRD analysis.  This is also 

supported by good agreement between the two methods (for all three dusts) for crystalline silica 

in respirable dust samples, which contain particles ranging from the smallest fraction to the largest 

fraction but are composed largely of particles in the mid-range size fractions (approximately 3-6  

μm). 

It is interesting that the XRD method determined a greater quantity of crystalline silica in 

nearly all samples of the Alaska and Nevada dusts (with the exception of the <0.56 μm fraction 

of the Nevada dust).  If particle size effects alone are considered, the XRD method would be 

expected to determine a greater quantity of crystalline silica (than the IR method) in the 6.2 μm, 

9.9 μm, and 18 μm fractions, but would be expected to determine a lesser quantity in the <0.56 

μm and 1.0 μm samples.  The discrepancy observed between the expected trend and the results 

for these samples indicates that other factors, in addition to particle size effects, impact the 

quantity of crystalline silica measured in these samples.  The most likely explanation is that other 

minerals present in the samples contribute to the intensity of the absorption peak at 800 cm-1 that 

is used to quantify crystalline silica in the IR method.  These contributions may be positive 

(increasing the apparent amount of crystalline silica in the sample) or negative (decreasing the 

apparent amount of crystalline silica in the sample), depending on the particular mineral.  The 

XRD method is susceptible to positive and negative interference from mineral confounders as 

well, although the two methods may be affected differently by the same mineral.   

More detailed study of the dust compositions, would be necessary to completely 

disentangle the effects of interfering minerals coupled with effects of particle size.  Such an 

examination would likely include a thorough characterization of the minerals that compose each 
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dust.  For each mineral identified, the effect of particle size on the quantification of that mineral 

by itself (for both the IR and XRD methods) should then be evaluated.  Evaluation of the particle-

size related effects when crystalline silica and only one other mineral are combined would also 

be useful.  It would be helpful to reach an understanding of how such effects change when the 

distribution of crystalline silica is 1) larger than, 2) smaller than, or 3) approximately equivalent to 

the distribution of the interfering mineral.  This degree of characterization would involve an 

enormous effort and would be quite time consuming, making it impractical to attempt to parse 

these effects for specific individual dusts.  However, it would be more feasible to determine 

common dust compositions (for example, crystalline silica, calcite, and dolomite; or crystalline 

silica, feldspar, and muscovite) and to then undertake detailed characterization of these dust 

types.  Mathematical modeling, such as the partial least squares method (110-112), has been 

previously used to understand and correct for the effects of confounding minerals on the IR 

spectrum on crystalline silica; such a method would also be useful here to understand the effects 

of mineralogy and particle size on both the IR and XRD methods of analysis. 

Due to the time and materials necessary to collect a single sample of a specific particle 

size range, multiple samples were not collected, which would have enabled a statistical analysis 

of the significance of differences between the two methods.  Again, the continued evaluation of 

IR and XRD analysis for crystalline silica specific to particle size would eventually yield enough 

aggregate data for such a statistical analysis to be completed. 

Formal evaluation of the magnitude of analytical discrepancy (between the IR and XRD 

methods) that may be observed in real-world samples is beyond the scope of the study, but it 

should be noted that, assuming the discrepancy is uniform across all size fractions, differences in 

quantity of crystalline silica determined in the mid-size ranges (between approximately 1 and 6 

μm) of particles are likely to have the most impact, because these particles comprise the majority 

of the size distribution (by mass).  Conversely, even large differences in quantification of 

crystalline silica in the smallest particle size fractions are unlikely to have an appreciable impact 
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when measurements are made on the basis of mass, because these particles typically (though 

not necessarily) have a negligible impact on the total mass of a respirable dust sample, despite 

possibly contributing significantly in terms of particle number.  However, the mid-range particle 

sizes are generally where the two methods show the most agreement.  Presumably, this is due 

to the opposing effects of particle size with the two methods: accuracy of the IR method is poor 

for large particles and improves as particle size decreases, and accuracy of the XRD method is 

poor for small particles and improves as particle size increases (within the respirable size range), 

and so results for both methods are fairly consistent in this region of overlap. 

It should be noted that the magnitude of discrepancy between the two methods for a given 

size fraction is not constant among the three dusts.  A likely explanation for this is that each dust 

has a distinct mineral composition (see Table 5 in Chapter 4), and the other minerals present may 

also affect the mass of crystalline silica that is quantified in each sample.  As discussed previously, 

the IR and XRD methods are both susceptible to mineral interference, and the magnitude of such 

effects may vary according to the method, to the particular mineral, and to the size of particles in 

the sample (both crystalline silica and non-silica particles).  While this matter complicates the 

determination of crystalline silica, it illustrates the point that the size distribution of a particular 

dust, with regard to the crystalline silica component of that dust as well as with regard to the total 

dust (which includes the other mineral components of the dust), contributes to the accuracy of 

crystalline silica quantification.  Thus, an understanding of the size distribution is important to the 

understanding of the accuracy and limitations of the exposure assessment.  Even if current 

methods and corrections cannot fully account for the discrepancy in order to provide a completely 

accurate quantification of crystalline silica, it is important to understand whether the qualities of a 

particular dust may lead to an overestimation of crystalline silica or to an underestimation of 

crystalline silica; only then can appropriately conservative precautions be taken.  When there is 

doubt, the higher estimation of crystalline silica content in a sample should always be used for 
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exposure monitoring purposes, in order to protect workers from unacceptably high crystalline 

silica exposures. 
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4.0  CHARACTERIZATION OF PARTICLE SIZE-RELATED COMPOSITION OF 

GOLD MINE DUST 

In dusts generated in mines, pure crystalline silica is rarely present on its own. Rather, crystalline 

silica exists within a matrix of other materials such as vehicle exhaust, smoke, and dusts from 

other mineral components of solid rock.  This mineral material is particularly relevant to exposure 

assessments for crystalline silica, as numerous minerals – including other silicates and 

aluminosilicates which occur commonly with crystalline silica – can contribute to analytical 

interference that impacts the accuracy of monitoring methods.  Typically, if the presence of such 

interfering materials are known, and if the nature of the interference is sufficiently well-

characterized (i.e. the magnitude of the bias and whether it is positive or negative), it is possible 

to apply correction factors in order to reach a more accurate determination of crystalline silica.  

However, given the known effects of particle size on the signal intensity of both IR and XRD 

methods, it would also be useful to have an approximate knowledge of the particle size 

distributions of the non-silica minerals that occur in a particular mine dust, to compare to the size 

distribution of crystalline silica within that same dust. 

Additionally, toxicological evidence suggests that contamination on the surface of 

crystalline silica particles by metallic species such as iron may impact the inflammatory effect of 

crystalline silica particles by promoting release of free radicals (36, 40, 41, 113).  To that effect, it 

would be beneficial to have a more thorough understanding of how crystalline silica particles exist 

within a mine dust: are crystalline silica particles generally standalone, not associated with other 

chemical species; do they exist as components of multi-mineral aggregates; or, are they 

associated with metallic species? 

One method frequently employed (114-117) to characterize single particles is scanning 

electron microscopy with energy dispersive spectroscopy (SEM-EDS).  While the electron 
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microscopy portion of the analysis constructs an “image” of the particle that can be used to 

qualitatively and quantitatively assess morphological characteristics of the particles, the energy 

dispersive component uses X-ray fluorescence to characterize the elemental composition of the 

particle.  These methods have traditionally relied on time-consuming manual analysis by an 

experienced spectroscopist, thus limiting the number of particles that could be analyzed in a 

practical time frame.  More recently, automated computer-controlled methods have been 

developed (118-120), capable of analyzing in a few minutes what would have previously taken 

several hours of human analysis.  By facilitating analysis of a greater number of particles, 

automated analysis produces a large data set that offers a more comprehensive representation 

of the sample. 

4.1 METHODS 

The selection of dusts and the collection of samples was completed as described in Chapter 2.   

The three previously selected and prepared gold mine dusts were again aerosolized in a calm-air 

chamber at 25°C and 40% RH, using a fluidized bed dust generator.  Size-segregation of particles 

was completed using the MOUDI. 

 Respirable samples of each dust were also collected using Dorr-Oliver cyclones operated 

at 1.7 lpm.  Respirable dust samples were analyzed by X-ray diffraction (XRD) using the Rietveld 

refinement (121) to ascertain the specific mineral composition of the respirable fraction of each 

dust. 
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4.1.1 Collection of Size-fractionated Samples for Single Particle Analysis 

Size-fractionated samples were collected one stage at a time; greased foil substrates were used 

on all non-sample stages to minimize the possibility of positive bias via particle bounce.  Samples 

were collected from all eleven MOUDI size-fractions, unlike in the analysis of Chapters 2 and 3, 

as SEM-EDS is not mass dependent and rather focuses on individual particles, such that sufficient 

sample loadings could be achieved in a reasonable period of time, even for those dusts which 

contained very little material in the ultrafine size range. Respirable dust concentration in the 

aerosol chamber was kept low (0.5 mg·m-3) in order to maintain better control of particle loading 

on collected samples; sampling time was varied by stage depending on the relative particle 

concentration of each size fraction.  For the six size fractions with the largest particles (collected 

on the Inlet stage through Stage 5), samples were collected on 47 mm polycarbonate filters (0.2 

μm pore, Whatman, Pittsburgh, PA).  For the five size fractions with the smallest particles 

(collected on Stages 6 through 100, samples were collected on Formvar film 200 mesh copper 

TEM grids (Electron Microscopy Sciences, Hatfield, PA) to facilitate analysis of particles smaller 

than 1 μm (122). Due to the small size (approximately 3 mm diameter) of the TEM grids and the 

difficulty in predicting particle deposition, 5 grids were arranged on the stage as shown in Figure 

11, in order to maximize the probability of collecting a sample with optimal particle density for 

microscopy analysis.  Grids were lightly affixed to the stage using a spray adhesive diluted in 

isopropanol; this achieved a slightly tacky surface on the sampling stage, to which the grid could 

adhere (to prevent loss in the air flow during sampling) without becoming permanently attached 

to the stage.  Sampling times for SEM-EDS sample collection are shown in Appendix A.   
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Figure 11 Arrangement of TEM grids on MOUDI stage 

 

4.1.2 Size-fractionated Single Particle Analysis via SEM-EDS 

Using a computer-controlled SEM-EDS method, up to 1,500 particles per size fraction were 

analyzed in order to yield approximately 200 silicon-containing particles per sample.  A prescribed 

set of rules was used to classify particles according to their elemental composition, as determined 

by EDS X-ray counts.  Briefly, the X-ray spectrum for each particle was compared to each rule 

sequentially to determine if the conditions of the rule were met (“TRUE” versus “FALSE”).  If the 

conditions of a rule were met (“TRUE”) by a particle, the particle was assigned to the particle class 

defined by that rule; if the conditions were not met (“FALSE”), the conditions of the next rule were 

evaluated, and so on until the particle was successfully assigned to a class.  This procedure was 

completed for all particles. Examples of particle classification rules are included in Appendix C.   

To evaluate single-particle data, each MOUDI stage was considered separately for each 

dust.  The composition as number percent and mass percent of total particles was determined for 

each particle class.  Based on number percent and mass percent data over all size fractions, the 

four most abundant particle classes were identified for each dust. 
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4.2 RESULTS 

XRD results of mineral composition of each respirable dust are shown in Table 5.  In addition to 

crystalline silica (in the form of quartz), the respirable fractions of the three dusts each contain 

five to seven mineral species, including silicate and aluminosilicate minerals (chlorite, feldspar, 

muscovite, and pyrophyllite).  Importantly, none of the dusts were found to contain amorphous 

material, thus all silica present can be assumed to be crystalline.   

 
 
 

Table 5 Mass percent mineral composition of respirable dust 
 

  South Africa Nevada Alaska 
SiO2 Quartz 36.9 19.3 8.9 

KAl3(SO4)2(OH)6 Alunite - 55.2 - 
CaCO3 Calcite - - 17.9 

(Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6 Chlorite 8.2 8.4 - 
CaMg(CO3)2 Dolomite - - 51 

KAlSi3O3 K-Feldspar 4.2 - - 
CaSO4·2H2O Gypsum 0.9 3.5 2.5 

KFe3(OH)6(SO4)2 Jarosite - 7.8 - 
KAl3Si3O10(OH)2 Muscovite 23.6 5.7 5.7 

FeS2 Pyrite - - 6.6 
Al2Si4O10(OH)2 Pyrophyllite 26.3 - - 

(Zn,Fe)S Sphalerite - - 2.4 
(Zn,Fe)S Wurtzite - - 0.8 

 
 

For the nine samples collected and analyzed via electron microscopy for each dust, a total of 

approximately 10,000 particles per dust was analyzed.  The total number of particles evaluated 

for each dust and size fraction are shown below in Table 6.  Grid samples of the Alaska and South 

Africa dust contained appreciable numbers of salt particles, mostly composed of sodium chloride.  

The origin of these particles is not known definitively but they may have been generated in the 

sampling process; as they are not salient to the original objectives of this analysis, they were 

rejected from the particle analysis and are not included in the total particle counts of Table 6.  
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Additionally, although samples were collected for the Stages 9 and 10 size ranges, analysis was 

complicated by extremely light particle loadings; these size ranges are excluded from the following 

results. 

 
 

Table 6 Total particles analyzed by CCSEM 
 

d50 (μm) Alaska Nevada South Africa 
0.18 988 704 684 
0.32 1751 800 1182 
0.56 744 664 566 
1.0 1423 1441 1958 
1.8 1371 1486 1826 
3.1 1243 1682 1186 
6.2 841 1360 558 
9.9 565 1362 675 
18 799 1438 1398 

Total 9725 10937 10033 
 
 
 

Tables 7-9 show the relative abundance, by count and by weight, of all particle classes 

determined for the three dusts (n= 24 particle classes), over nine particle size ranges; not all 

particle classes are observed in all three dusts.  The Si-rich particle class was observed in each 

size range of the three dusts.  Of all the minerals detected by XRD in the three dusts, crystalline 

silica is the only mineral containing silicon alone (oxygen is not included in the EDS analysis); 

therefore, the Si-rich class represents standalone crystalline silica particles.  Particle classes 

containing silicon and/or aluminum (e.g. Si-Al-K, Si-Al-Ca, Si-Al-Mg, Si-Al-Fe, Si-Al-Na, Si-Al-S, 

Si-Al, and Si-Al (mixed)) are abundant across the size fractions of each of the three dusts.  The 

Si-Al (mixed) class includes particles that do not fall strictly into one of the Si-Al-__ particle 

classes, but are nonetheless similar to these particles types (i.e. such a particle may contain 

silicon, aluminum, iron, and magnesium).  Particles in the Miscellaneous and C-rich classes tend 

to be abundant in most size fractions of the three dusts; however, since these classes are less 

likely to describe specific mineral types than other particle classes – i.e. the Miscellaneous class 

contains all particles which were not rejected but do not adhere to any of the prescribed rule; the 



72 

C-rich class may contain carbonaceous minerals but may also contain carbonaceous non-mineral 

material, or the strong contribution of carbon may be an artifact from the substrate materials, 

which contain carbon (this effect is stronger in smaller particles due to increased penetration of 

X-rays) –  they are excluded from the remainder of the analysis.  



73 

Table 7 Particle class relative abundance (% count and weight): Alaska 

Stage d50 (μm) 0.18 0.32 0.56 1.0 1.8 3.1 6.2 9.9 18 
Particle Class C W C W C W C W C W C W C W C W C W 

Si-rich 1.1 0.6 1.4 0.7 1.6 0.1 2.6 1.1 4.2 2.4 3.7 2.9 3.6 1.8 16.6 7.1 16.4 5.9 
Si-Al-K 1.4 6.1 5.3 14.8 12.6 24.4 7.4 18.7 7.7 26.5 8.3 27.4 7.1 20.4 13.8 29.8 19.9 26.3 

Si-Al-Ca 0.4 1.3 1.1 2.2 0.4 0.3 0.1 0.6 0.0 0.0 0.1 0.1 0.0 0.0 0.4 0.8 0.3 0.3 
Si-Al-Mg 0.6 4.8 2.3 5.4 1.5 2.2 0.4 0.5 0.1 0.1 0.1 0.6 0.0 0.0 0.7 2.0 1.0 1.0 
Si-Al-Fe 0.3 1.1 0.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.4 0.4 
Si-Al-Na 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.1 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.1 
Si-Al-S 1.9 5.6 1.9 2.7 1.2 1.3 0.3 1.7 0.1 0.3 0.0 0.0 0.5 1.6 0.2 0.0 0.1 0.0 
Si-Al 5.5 21.1 1.0 2.7 0.4 1.5 2.2 2.5 0.7 0.6 0.6 0.1 0.5 0.4 47.3 47.5 44.2 43.7 

Si-Al (mixed) 4.4 15.0 19.4 49.8 27.4 59.5 9.3 24.8 8.8 24.5 6.4 15.4 5.5 9.5 7.8 9.7 10.3 18.9 
Ca-Si 0.3 0.1 0.9 0.7 0.4 0.1 0.1 0.0 0.4 0.2 0.5 1.9 0.4 0.4 0.2 0.0 0.5 0.0 
Ca-Mg 28.5 9.3 36.4 7.4 27.6 4.3 44.1 22.9 35.9 21.0 36.5 27.6 39.4 34.8 0.4 0.1 0.0 0.0 
Ca-S 5.9 1.5 4.2 0.9 3.9 0.4 1.1 2.4 0.9 1.1 1.0 0.5 0.5 0.3 1.4 2.0 1.3 2.1 
Al-S 0.1 0.0 0.4 0.3 0.8 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 
Fe-S 2.3 0.4 3.3 1.2 3.4 0.4 7.2 4.9 11.5 3.2 11.2 5.9 10.8 7.1 1.4 0.0 0.5 0.0 
Si-S 0.3 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fe-rich 0.4 0.1 0.1 0.0 1.9 0.1 0.6 0.5 0.7 1.0 2.4 2.8 3.7 2.2 1.8 0.0 1.5 0.2 
S-rich 0.9 0.1 4.7 0.4 1.6 0.1 0.1 0.0 1.0 0.6 1.5 1.8 3.4 3.3 0.0 0.0 0.0 0.0 

Ca-rich 4.5 1.0 3.7 1.1 5.0 1.8 8.9 5.4 9.2 6.3 7.5 6.3 10.7 12.5 1.2 0.0 0.4 0.0 
Zn-rich 0.2 0.3 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ti-rich 1.2 0.3 0.7 0.1 1.9 0.1 1.7 1.1 0.8 0.3 0.6 0.1 0.5 0.1 0.7 0.4 0.3 0.0 
Pb-rich 3.3 3.9 3.8 0.8 1.3 0.1 1.6 2.5 1.3 0.9 2.2 2.0 3.8 2.9 0.0 0.0 0.0 0.0 
C-rich 18.3 22.5 0.7 1.3 1.2 0.5 5.3 6.3 11.9 3.8 13.0 3.3 5.5 1.1 4.1 0.3 2.4 0.2 
Misc. 18.1 4.8 8.2 6.3 5.8 2.6 6.8 3.4 4.8 7.0 4.4 1.3 4.2 1.4 0.7 0.2 0.4 1.0 
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Table 8 Particle class relative abundance (% count and weight): Nevada 

Stage d50 (μm) 0.18 0.32 0.56 1.0 1.8 3.1 6.2 9.9 18 
Particle Class C W C W C W C W C W C W C W C W C W 

Si-rich 4.8 2.5 3.3 2.3 5.3 3.4 9.9 4.8 8.2 3.5 11.1 7.2 19.9 14.2 16.9 19.7 13.6 14.6 
Si-Al-K 0.3 1.0 1.9 8.3 3.9 18.1 6.6 16.4 7.8 20.8 7.4 20.0 3.5 15.0 4.6 14.8 4.4 19.5 

Si-Al-Ca 0.0 0.0 0.0 0.0 0.2 0.0 0.3 1.2 0.4 0.5 0.2 0.1 0.1 0.0 0.0 0.0 0.1 0.2 
Si-Al-Mg 0.1 0.2 0.1 0.6 0.0 0.0 0.6 0.3 0.1 0.0 0.2 0.1 0.1 0.5 0.1 0.0 0.1 0.1 
Si-Al-Fe 0.4 0.2 0.3 0.4 0.0 0.0 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.3 0.1 0.1 
Si-Al-Na 0.3 1.5 0.3 0.2 0.5 0.2 0.3 0.4 0.7 3.3 0.1 0.0 0.3 0.1 0.3 0.2 0.1 0.0 
Al-Si-S 7.8 5.6 14.9 12.6 11.6 5.0 2.2 1.7 1.5 2.4 1.7 1.6 0.4 0.8 0.4 2.1 0.4 1.6 
Si-Al-S 3.8 2.1 5.9 5.0 10.5 9.1 4.9 3.0 2.4 2.0 1.1 0.7 0.7 1.7 0.9 1.5 0.6 1.3 
Si-Al 13.8 19.2 17.6 22.0 13.4 8.5 20.7 20.4 16.3 14.3 14.3 11.5 9.9 9.1 11.5 12.2 9.5 16.5 

Si-Al (mixed) 15.6 12.0 21.5 20.8 22.0 34.9 3.3 4.1 5.5 10.3 5.1 7.5 5.3 6.0 6.8 14.0 5.4 11.4 
Ca-Si 0.0 0.0 0.3 0.3 0.6 0.2 0.2 0.4 0.5 0.9 0.1 0.2 0.1 0.2 0.1 0.0 0.3 2.3 
Ca-Mg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 2.5 
Ca-S 0.0 0.0 0.1 0.0 0.3 1.2 0.6 0.5 0.3 0.0 0.3 0.1 0.4 0.2 0.3 0.4 0.2 0.0 
Al-S 23.2 14.8 19.4 17.4 21.8 13.2 39.8 24.5 38.9 28.8 42.6 32.0 29.4 29.3 28.2 23.2 19.1 18.9 
Fe-S 8.7 7.5 7.4 6.0 0.0 0.0 5.8 4.2 6.5 3.6 8.6 9.4 10.4 11.7 7.0 8.3 4.5 5.4 

Ca-rich 0.3 0.3 0.1 0.3 0.0 0.0 0.3 0.1 0.6 0.5 0.5 0.2 0.5 0.0 0.2 0.3 0.8 1.6 
Ti-rich 1.7 1.3 1.8 0.5 3.5 0.4 0.2 0.0 0.4 0.0 0.3 0.1 0.1 0.0 0.2 0.1 0.1 0.2 
Pb-rich 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.2 0.1 7.3 0.0 0.0 0.0 0.0 0.1 0.2 

rich 1.0 19.7 0.0 0.0 0.6 4.2 2.3 13.7 7.2 7.1 4.5 1.3 12.0 6.3 18.0 0.3 38.3 2.9 
Misc. 18.2 12.4 5.4 3.4 5.9 1.7 1.9 4.3 2.2 0.7 1.7 1.0 6.8 4.7 4.3 2.6 1.6 0.7 
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Table 9 Particle class relative abundance (% count and weight): South Africa 

Stage d50 (μm) 0.18 0.32 0.56 1.0 1.8 3.1 6.2 9.9 18 
Particle Class C W C W C W C W C W C W C W C W C W 

Si-rich 7.7 1.2 4.6 1.2 6.4 2.1 5.0 1.5 3.6 1.3 10.9 3.0 12.2 6.4 11.9 6.7 5.6 6.0 
Si-Al-K 2.5 8.1 5.3 9.9 5.3 12.0 8.6 28.5 12.0 31.9 11.4 38.1 7.9 21.6 10.1 31.8 8.7 28.8 

Si-Al-Ca 0.3 0.1 0.7 0.5 1.9 0.2 1.2 1.0 1.3 3.0 0.1 0.0 0.0 0.0 0.3 0.2 0.2 0.7 
Si-Al-Mg 0.1 0.1 1.4 2.0 0.9 0.3 2.1 3.0 1.9 0.9 0.3 0.7 0.4 0.4 0.6 0.1 0.1 0.1 
Si-Al-Fe 2.3 1.3 1.6 0.9 2.1 0.5 0.6 0.7 0.8 0.1 0.4 0.6 0.0 0.0 0.2 0.1 0.3 0.0 
Si-Al-Na 0.9 1.0 0.6 0.4 0.2 0.0 1.6 2.0 1.3 0.3 0.2 0.3 0.0 0.0 0.2 0.0 0.0 0.0 
Si-Al-S 0.7 0.5 0.7 0.8 0.9 0.2 1.4 1.7 1.6 0.7 0.0 .00 0.0 0.0 0.2 0.0 0.0 0.0 
Si-Al 20.2 34.9 29.6 37.4 27.2 40.8 30.5 24.5 26.5 17.9 40.8 38.3 34.4 51.4 35.1 43.2 20.2 36.4 

Si-Al (mixed) 12.4 13.8 22.9 31.2 17.5 32.1 31.9 29.7 28.5 37.3 12.3 14.7 8.1 16.9 8.7 14.5 3.2 5.3 
Ca-Si 0.6 1.5 0.8 0.2 0.2 0.0 0.2 0.0 0.5 0.1 0.1 0.1 0.2 0.0 0.2 0.3 0.2 1.0 
Ca-Mg 0.0 0.0 0.3 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.5 
Ca-S 0.1 0.2 0.2 0.2 0.0 0.0 0.3 0.1 0.4 0.1 0.5 1.1 1.1 1.4 0.4 0.3 0.5 3.6 
Al-S 0.4 0.1 0.2 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
Fe-S 3.4 2.6 6.4 2.6 2.8 1.1 0.9 0.2 2.5 0.4 0.7 0.2 0.9 0.1 0.4 0.1 0.6 0.9 

Ca-rich 0.7 7.0 0.7 0.1 0.2 0.1 0.3 0.1 0.5 0.1 0.7 0.2 0.7 0.1 0.7 0.1 0.7 0.1 
Fe-rich 5.6 4.0 3.6 2.8 2.5 0.2 0.4 0.1 0.6 0.2 0.8 0.2 1.8 0.0 0.9 0.4 0.9 1.1 
S-rich 6.9 1.4 1.0 0.2 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Zn-rich 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ti-rich 12.9 3.7 14 4.4 3.7 0.4 0.8 0.1 1.0 0.2 1.0 0.3 0.4 0.0 0.3 0.1 0.4 0.0 
Pb-rich 1.5 0.5 0.3 0.1 0.0 0.0 0.1 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
C-rich 6.0 11.8 1.4 4.2 23.7 9.4 10.1 5.6 12.2 5.0 18.0 2.0 31.7 1.8 29.0 1.7 57.2 14.9 
Misc. 14.6 6.5 3.6 0.7 4.4 0.6 4.0 1.3 4.0 0.3 1.8 0.1 0.4 0.0 0.9 0.4 1.0 0.7 
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Figure 12 displays examples of SEM images of three particle classes, as well as the 

corresponding EDS spectra which were used to classify the particles. 

 
 

     
     

     

  b) Si-rich c) Si-Al d) Al-S   
   

 
Figure 12 SEM particle images and corresponding EDS spectra 

 

  

 
 

Figures 13-15 show plots of the four most abundant classes (of total particles counted) for 

each dust, by count and weight, across nine particle size ranges.  The Si-rich particle class, 

representing standalone silica particles, is included in all plots, even if it was not among the four 

most abundant particle classes.  Finally, the relative abundance of Si-rich/silica particles is shown 

by count (determined by EDS) in Figure 16, and by weight (as determined by EDS) and mass 

percent (as determined by IR and XRD; see Chapter 3) in Figure 17. 
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Figure 13 Particle size-related trends in most abundant particle classes: Alaska 
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Figure 14 Particle size-related trends in most abundant particle classes: Nevada 
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Figure 15 Particle size-related trends in most abundant particle classes: South Africa 



80 

 

Figure 16 Particle size-related trends in silica, determined by EDS (count) 
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Figure 17 Particle size-related trends in silica, determined by EDS (weight) and IR/XRD 
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4.3 DISCUSSION 

Figures 13-15 show the four most abundant particle types (excluding C-rich and Miscellaneous 

classes) for each of the three dusts, with respect to both particle number and particle weight.  

Particle classes that are abundant in terms of particle number are generally abundant in terms of 

particle weight as well, although this is not uniformly true.  The discrepancy between the particle 

classes that are more abundant with respect to particle number and those that are more abundant 

with respect to particle weight is largely due to differences in particle density among different 

particle types.  For example, Fe-rich particles may only contribute moderately to the total number 

of particles, but contribute more significantly to the total particle weight, due to the relatively high 

density of the iron atom and the resulting greater mass of these particles.  Together the four most 

abundant classes encompassed an average of 61.6% of the total particle number, or 74.5% of 

total particle weight; each of the three dusts also contains approximately 15 additional particle 

classes, which each comprise only a minor proportion of the dust particle number (average 1.3%, 

excluding C-rich and miscellaneous particles) or total particle weight (average 1.2%, not excluding 

C-rich and miscellaneous particles).   

For the Nevada and South Africa dust, Si-rich particles are among the four most abundant 

particle classes with regard to count; Si-rich particles are also among the four most abundant 

particle classes by weight for the South Africa dust.  It is unsurprising that the Si-rich class is so 

prominent in these two dusts but not in the Alaska dust, as the South Africa dust contains the 

most silica of the three, followed by Nevada, while the dust from Alaska contains the least (when 

IR and XRD results for crystalline silica are considered).  Particles containing both silicon and 

aluminum (Si-Al-K, Si-Al-Mg, Si-Al-Ca, Si-Al-Fe, Si-Al-Na, Si-Al-S Si-Al, and Si-Al (mixed)) are 

also quite abundant throughout all three dusts  This finding has particular significance as these 

particle classes likely correspond to silicate minerals which may have chemical or crystalline 

structures analogous to that of silica, such that they are more likely to contribute confounding 
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effects to the analysis of crystalline silica by methods such as IR or XRD.  This finding is also not 

surprising, as silicate minerals (chlorite, feldspar, muscovite, and pyrophyllite) are observed in the 

Rietveld XRD refinement analysis of all three dusts. Figure 17 shows a comparison of size-related 

trends in silica abundance determined by IR / XRD and by EDS (particle weight) methods.  It is 

readily apparent that the crystalline silica quantification results from XRD and IR methods are not 

equivalent in magnitude to the abundance of Si-rich particles determined EDS.  There are several 

potential reasons for this, first and foremost among which is that crystalline silica may not always 

exist as a standalone particle, but rather may joined with one or more particles of other minerals 

to form an aggregate.  In this case, the EDS analysis would not identify such an aggregate as a 

Si-rich particle but would instead classify it as another particle type. 

Additionally, it should be considered that EDS is not measuring crystalline silica directly, 

but rather detects elemental silicon, which is used here as a proxy for silica.  Relative abundance 

is shown for EDS data based on particle count (a direct measurement) as well as particle weight 

(an indirect measurement, calculated from particle count and corresponding estimates of particle 

volume and density).  It is important to recognize that because these analytical techniques each 

use distinct metrics to determine the abundance of silica in each sample, they will not necessarily 

yield results of comparable magnitude; however, for each dust, the overall trends in abundance 

of silica with progression of particle size are similar across analytical methods. 

The presence of co-toxicants, such as iron particulates and diesel particulate matter, have 

been suggested as a mechanism for the increased toxicity of certain dusts (40-42), and size-

related trends in the abundance of either of these species would be salient to discussion of the 

health impacts.  The above analysis did not indicate appreciable abundance of particles rich in 

both silicon and iron (which could indicate a silica particle with iron inclusion) however, these 

particles may be low in abundance to begin with, and this analysis was not optimized with this 

particular purpose in mind, which may contribute to the apparent absence (or near-absence).  

Likewise, this analysis was not intended to look at diesel particulates specifically; since diesel 
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particles are largely submicron (123) and have distinct morphology (124-126), a dedicated 

approach would be required to identify and accurately measure these particles.  Such an analysis 

would have impeded the primary objectives of this study but would be interesting to pursue in a 

standalone investigation. 

 In each dust, there were several particle classes that were particularly high in abundance 

with respect to particle count or particle weight; the same particle classes were often fairly 

abundant with respect to both.  For the Alaska dust, such particle classes included Si-Al-K, Si-Al 

(mixed), Si-Al, Fe-S, and Ca-Mg particle.  Based on results from Rietveld XRD refinement, these 

classes most likely correspond to muscovite (for Si-Al-K, Si-Al-mixed, and Si-Al; the variability in 

apparent elemental composition may be related to variation in particle size as well as in particle 

orientation), pyrite or possibly sphalerite/wurtzite (for Fe-S), and dolomite (Ca-Mg).  For the 

Nevada dust, abundant particle classes included Si-Al, Si-Al (mixed), Si-Al-K, Si-rich, and Al-S, 

which most likely correspond to chlorite (again, for Si-Al-K, Si-Al, and Si-Al (mixed)), silica (Si-

rich), and alunite (Al-S).  Finally, for the South Africa dust, abundant particle classes include Si-

rich, Si-Al (mixed), Si-Al-K, and Si-Al, most likely corresponding to silica (Si-rich), chlorite (Si-Al 

(mixed); also Si-Al-K and Si-Al) and pyrophyllite (Si-Al), also feldspar and muscovite (Si-Al-K). 

 Because the EDS technique does not measure specific crystalline structures but rather 

detects individual elements and determines the proportional intensity of the fluorescent signal for 

each element, the abundance of individual particle classes can be used to approximate 

abundance of specific minerals, but shouldn’t be considered an absolute measurement of these 

minerals.  As discussed in Chapter 3, mineral confounders specific to a particular type of dust 

may influence the accuracy of IR and XRD methods, especially when particle size is also 

considered as a factor.  In order to reconcile these effects, detailed size-related characterization 

of multiple mineral species is required, and this is a time-consuming process.  Single-particle data 

from EDS can be used to prioritize the minerals for which size-related characterization is required, 

based on which minerals are most abundant and therefore may have effects of the greatest 
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magnitude.  While certain minerals may have a large relative effect on the accuracy of crystalline 

silica quantification, a particular mineral would not necessarily be a concern if it comprised only 

1-2% of the total mineral composition of a dust. 
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5.0  DISCUSSION AND CONCLUSIONS 

While other authors have emphasized the importance of well-characterized aerosols (76, 100, 

127) to the accurate measurement and evaluation of exposure to crystalline silica, there remains 

a stark lack of data characterizing mine dusts, particularly from non-coal mines.  This work takes 

a step towards addressing that need, by proposing a method by which such characterization can 

be accomplished, by characterizing the particle size-related crystalline silica content of three gold 

mine dusts, and by evaluating particle size-related elemental composition of mine dust particles.  

The variability in particle size-related qualities observed in these three dusts further demonstrates 

the need to characterize additional aerosols from a variety of types of mines. 

5.1 IMPLICATIONS OF THE PARTICLE SIZE DISTRIBUTION OF CRYSTALLINE SILICA 

This study determined that, for the three dusts evaluated, the particle size distributions of the total 

dust and of the crystalline silica component of dust are not identical, and demonstrated that the 

size distribution of crystalline silica particles was generally somewhat larger than the size 

distribution of the overall particles.  When only the respirable fraction of particles was considered 

for each dust, the difference in size distribution was even more pronounced.  Thus, it should not 

be assumed that the crystalline silica component of a dust will have the same size distribution as 

the whole dust.  Personal protective equipment and control technologies utilized to suppress dust 

in mines should be chosen with the size distribution of crystalline silica in mind, rather than the 

respirable dust alone, so that respirable crystalline silica concentrations are always decreased 

equivalently or greater than respirable dust concentrations.  In certain situations where the 

difference in size distribution is especially pronounced, or where total dust concentration or 
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crystalline silica percentage in the dust is especially high, to select and evaluate protections and 

controls based reduction of the respirable dust alone may result in a false sense of security, where 

workers are being overexposed to crystalline silica while exposure estimates suggest otherwise.  

Shepherd et al. (128) assessed reductions in crystalline silica and dust concentrations in 

construction environments using local exhaust ventilation.  They used four-stage personal 

cascade impactors to measure crystalline silica exposure and found that while ventilation 

decreased exposure to all three health-relevant size fractions (inhalable, thoracic, respirable), 

there was a slightly smaller reduction in inhalable crystalline silica relative to thoracic crystalline 

silica.  The authors also emphasized that the majority of crystalline silica exposure for these 

workers was due to inhalable crystalline silica particles rather respirable particles, underlining 

once again the value of understanding the size distribution of crystalline silica within the dust in 

question.   

The discrepancy between the size distribution of the complete dust and the size 

distribution of crystalline silica also suggests that periodic evaluation of the size distribution of the 

crystalline silica component of dusts is necessary in order to ensure comparability to the 

crystalline silica standards used for calibrations of laboratory methods.  Conducting these 

comparisons based on the size distribution of the total dust would be insufficient.  As discrepancy 

between sample and crystalline silica standard size distribution has been shown to result in 

appreciable bias in the quantification of crystalline silica, this check of validity should not be 

neglected. 
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5.2 IMPLICATIONS OF PARTICLE SIZE-RELATED DISCREPANCY IN CRYSTALLINE 

SILICA ANALYSES 

Results reported in Chapter 3 indicated that there is a particle size-related lack of agreement in 

crystalline silica quantified by the IR and XRD methods, but that mineral composition is also likely 

to contribute to the discrepancy.  Clearly this inconsistency must be addressed, as both methods 

are used for industrial hygiene as well as for regulatory compliance purposes.  Unfortunately, the 

solution is not immediately clear.  What can be said with confidence is that knowledge of the size 

and compositional characteristics of a dust can be informative of the potential limitations of either 

method with regard to the quantification of crystalline silica.  For instance, the crystalline silica 

content of a dust with MMD of 1.5 μm and a high percentage of feldspar minerals (a known XRD 

interference) is likely to be underestimated by the XRD method.  It may or may not be possible to 

apply corrections – either general adjustments or corrections that apply if certain conditions are 

met – in order to arrive at a more accurate quantity of crystalline silica.  Regardless, with 

knowledge of the methods limitations, appropriately conservative measures can be taken: for 

instance, assuming that the crystalline silica content has been underestimated by a certain factor, 

and taking subsequent corrective actions based on the higher concentration value.  

5.3 IMPLICATIONS OF SINGLE-PARTICLE ANALYSIS OF SIZE-FRACTIONATED 

SAMPLES 

This study determined that, like crystalline silica, other particle classes (used as a proxy for other 

mineral types) vary in abundance according to particle size and are not uniformly consistent 

throughout the dust.  This variation does not appear to be constant between different dusts for 

the same particle class, but it should be considered that the three dusts do not have equivalent 
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mineral composition, and this is likely to impact the particle-size related trends observed for each 

dust with regard to particle class.  Though this study did not undertake mathematical modeling to 

correlate the assigned particle classes with specific mineral species, such an effort would be an 

interesting and possibly useful addition to future studies of this kind.  Such a method would likely 

require analysis of a greater number of particles than what was analyzed in this study. 

As discussed in Chapter 3, particle size effects coupled with mineral interference may 

impact the comparability of crystalline silica measurements by the IR and XRD methods.  Further 

investigation of this possibility is warranted based on the above observations that particles of 

different types vary in abundance by particle size.  The findings of this investigation could be 

confirmed by collection of size-segregated samples of dust for spectroscopic analysis (as 

described in Chapter 2) of different minerals.  Given the findings of Chapter 3, it would be 

advisable to use multiple methods (including but not necessarily limited to IR and XRD) to 

evaluate mineral composition, as there may also be discrepancy in measurements of minerals 

other than crystalline silica. 

Finally, the conclusion that the relative abundance of crystalline silica particles determined 

by EDS is not equivalent to the mass percent of crystalline silica determined by IR / XRD suggests 

that crystalline silica may not always exist as a standalone particle, but rather may be physically 

associated with one or more particles of distinct mineral composition (for example, an 

agglomerated particle of crystalline silica, chlorite, and muscovite).  As this study was not 

specifically designed to investigate such particle-particle associations in detail, more specific 

conclusions cannot be reached, but this topic would be an interesting and potentially important 

area for future studies. 
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5.4 EVALUATION OF STUDY LIMITATIONS AND STRENGTHS 

This investigation of the particle size-related characteristics of gold mine dusts incorporated 

several different techniques to achieve a detailed characterization of each dust.  The use of 

multiple techniques allowed for methods that were complementary to one another, in order to 

optimize the data collected, while also incorporating a level of redundancy, so that results of one 

method could be compared to and validated by another.  Notable limitations and strengths of the 

study design are discussed below. 

5.4.1 Limitations 

One limitation of this study arises from the use of re-aerosolized bulk material, collected from 

settled dust.  Allowing dust to settle naturally can skew the size distribution towards larger 

particles, which have greater mass and settle more quickly, and “cleans” the dust of submicron 

material which takes longer to settle.  However, given sufficient time, most submicron particles 

will still settle from the air and can be collected with other settled particles, and two of the three 

dusts studied did indeed contain substantial numbers of submicron particles.  Another 

consideration is raised by Hicks and Yager (129), who found, in a study of coal fly ash at a power 

plant, that bulk dust had diminished crystalline silica content relative to airborne dust; the authors 

noted that this is important for occupational hygiene assessments that use the crystalline silica 

content of settled material as a proxy for crystalline silica exposure.  However, the study of coal 

fly ash considered the total crystalline silica content of bulk material against the total crystalline 

silica content of respirable airborne dust.  Within any given size fraction of dust, crystalline silica 

particles are very likely to have density – and thus, mass – similar to particles of other mineral 

composition in that size class, and they will settle at a similar rate.  This means that while the 

overall size distributions of dust and of crystalline silica may be impacted by the practice of using 
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settled material, the relationship between the two size distributions (e.g. the proportional 

crystalline silica content in each size fraction) should not be impacted.  Likewise, it is important to 

note that the methods using in this study – particularly the sieving of dusts to remove large 

particles, and aerosolization via the fluidized bed aerosol generator – do not create new particles 

(i.e. by breaking larger particles) and thus do not affect the size distribution in the particle size 

range that is of interest to human health. 

Another disadvantage of studies utilizing bulk dust is that such dust is not necessarily 

representative of the dust in a particular area of the mine or from a specific mining task.  As 

Sirianni et al. (76) have observed, different tasks produce dust with variable size distributions both 

for total dust and for crystalline silica.  While it may not always be practical to characterize multiple 

dusts from a single operation, such an endeavor would be worthy of consideration in certain 

situations, such as when a particular task or area is producing respirable dust with 

uncharacteristically high crystalline silica content, or if respirable dust and/or crystalline silica in a 

particular area proves difficult to control. 

While the methods used in this study provide a straightforward and thorough method for 

laboratory characterization of mine dusts and dusts from other occupational settings, these 

methods require cumbersome equipment setups that may not always be practical for in-field use, 

though not entirely impossible depending on the mine environment.  In-field use of the MOUDI 

would require a sampling pump capable of supporting the required 30 lpm flow rate; a mechanism 

by which to remove and replace sample filters and substrates without exposing them to 

contamination and without moving the MOUDI; and sufficiently high dust concentrations (or 

sufficiently long sampling times, possibly on the order of days) to ensure that enough material is 

collected.  Such dust concentrations would likely require the use of respiratory protection for 

anyone attending to the sampling setup. 

Small modifications to the basic premise of this method could make it more feasible for 

those who desire to characterize dusts in the field rather than in the laboratory.  Smaller cascade 
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impactors are available, including models small enough to be worn by workers for exposure 

assessments (130-132).  A smaller, less cumbersome impactor would also facilitate multiple days 

of sampling, which could allow for sampling in a lower dust concentration environment; however, 

multiple samples may need to be combined to have sufficient material for crystalline silica 

analysis. 

The generalizations available from this summary are limited by the sample size of this 

study, as only three mine dusts from one commodity type (gold) were considered.  The three 

dusts were all from different geographic regions, so no generalizations can be drawn regarding 

the characteristics of dust with respect to location, except to say that the observed differences 

could be related to geographical trends in the general characteristics of dust; this avenue warrants 

further exploration.  Future analyses should compare the characteristics of dusts from the same 

general region (i.e. the American Southwest) as well as the same commodity type. 

This study investigated physical and chemical attributes of mine dusts but did not explore 

differences in the biological effects of exposure to these dusts, thus there are a number of points 

regarding the toxicity of crystalline silica that are not addressed.  In particular, freshly fractured 

crystalline silica has recently been implicated as a more efficient producer of reactive oxygen 

species than aged crystalline silica particles (37).  Because this current study utilized settled 

material that had been stored in the laboratory prior to use, it can provide no information on the 

size distribution of freshly fractured crystalline silica relative to aged crystalline silica; this would 

be a useful area for further study and would be especially interesting in conjunction with 

toxicological work.  Additionally, size and surface area have both been implicated as more potent 

indicators of dose than mass, but such metrics have a tendency to be overlooked because it is 

much more convenient to assess the mass of a sample of particles than it is to assess other 

physical characteristics.  This study indicated that the count and mass distributions of whole dusts 

and of the crystalline silica component are unique, and that perhaps additional attention should 

be devoted to developing practical means of assessing exposures based on particle number or 
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surface area concentrations, rather than mass concentrations alone.  In addition to providing 

incomplete information about exposures, mass-based exposure metrics have the added 

disadvantage of skewing dose assessment towards larger particles, which have greater mass but 

smaller ratios of surface area to volume, and may not be as biologically active as smaller particles 

in the fibrogenic mechanisms that lead to silicosis (38). Comparison of mass-, diameter-, and 

surface area-based dose assessments from real-world dusts are beyond the scope of this work, 

but would certainly be a valuable contribution to the field.   

5.4.2 Strengths 

The foremost advantage of this series of evaluations is that, while somewhat labor intensive, the 

methods are basic in principle and are easily replicated using commercially available 

instrumentation and techniques.  This is vital towards encouraging more research in this field and 

towards facilitating the characterization of a broad range of aerosols.  Furthermore, while the cost 

of SEM-EDS may be prohibitive and difficult to justify for an individual mine, size-segregated 

crystalline silica analysis using a cascade impactor is not far beyond the scope of routine sampling 

performed for industrial hygiene and exposure assessment purposes.  Using standardized 

gravimetric and spectroscopy methods (services available from accredited occupational hygiene 

laboratories), industrial hygienists can assess the size distribution of dust and of crystalline silica 

in a specific mine, or in several tasks across a mine.  Assuming similar and well-documented 

methodologies, such as the one described here, are used, results from both researchers and 

health and safety professionals would be readily comparable, allowing the collective evaluation 

of a wide range of mine dusts that will enhance understanding of these dusts in general. 

Though the use of re-aerosolized bulk material does have certain drawbacks (discussed 

above), this practice facilitated high dust concentrations in a laboratory chamber, whereas such 

concentrations would have been unsafe (and hopefully never encountered) in the mining 
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workplace.  High dust concentrations permitted the collection of multiple samples over the course 

of just a few days, whereas weeks of sampling may have been required to collect sufficient 

material at lower concentrations.  Additionally, better control over sampling time, dust 

concentration, and other ambient conditions resulted in less censored data due to samples below 

the method limits of detection for crystalline silica.  Elimination of variables such as wind, 

precipitation, ventilation, work practices and rate of dust generation avoids any bias due to 

dynamic field sampling conditions. 

This study employs numerous techniques that validate each other through partial 

redundancy, while enhancing each other with complementary capabilities.  Size distributions were 

determined using two explicit approaches: combined use of APS and SMPS capability enabled 

construction of count distributions for particles, while gravimetric data collected with the MOUDI 

enabled construction of mass distributions.  With some degree of data manipulation, either 

method can provide both types of distribution, but this requires a precise understanding of the 

density of the dust, and any error in estimating dust parameters can significantly skew the results.  

Combined use of both methods provides accurate and straightforward determination of both types 

of size distribution.  Though these two types of particle size distribution are distinct and cannot 

directly be compared to one another, similarities in general size trends are consistent within each 

dust.  These same trends are observed in the pseudo-“count distributions” constructed using silica 

data from the single-particle analysis. 

5.5 IMPLICATIONS OF THE OVERALL FINDINGS OF THIS STUDY 

This work, using gold mine dusts, has demonstrated that the crystalline silica component of a dust 

cannot be assumed to have a size distribution equivalent to that of the complete dust, and that 

other mineral components of a dust are also likely to have unique size distributions.  Additionally, 
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dusts from these three mines are not consistent with regard to the size distribution of the total 

dust, the overall crystalline silica content, the size distribution of the crystalline silica component, 

or the mineral composition, despite originating from mines of the same type.  

Accurate quantification of the crystalline silica content of samples is a complex 

undertaking and is subject not only to the particle size distribution of the sample but also to its 

mineral composition and the analytical method that is used.  Currently it is not certain how the 

discrepancies in this area can best be addressed or corrected.  Nevertheless, it is crucial to 

recognize these impediments, to estimate if they are likely to result in an overestimation or 

underestimation of crystalline silica within a sample, and to take action accordingly to limit worker 

exposure to respirable crystalline silica.  It is also necessary to expand this field of study so that 

a comprehensive understanding of the salient characteristics of mine dusts can be reached, and 

to eventually successfully address analytical discrepancies in the measurement of crystalline 

silica. 

This work raises several additional questions, for which continued efforts will be necessary 

to arrive at answers: 

1) Is the composition of dust from other metal mine-commodity types (i.e. copper, 

iron) and from non-metal commodity types (i.e. stone, sand, gravel) also variable 

with respect to crystalline silica and minerals?  Evaluations of the particle size-

related crystalline silica composition of granite quarry dust (76) indicated that crystalline 

silica composition varies according to the size range of particles sampled, which would 

seem to indicate that this trend is not isolated to gold mine dust and that researchers 

could reasonably expect other types of dust to exhibit similar trends.  Further study is 

needed to confirm this. 

1) Dusts from mines of the same commodity type do not exhibit the same 

compositional characteristics; what other relationships might predict similarities 

between different dusts?  A logical place to start would be to compare dusts according 
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to region of origin, as close geographic areas may have similar geological features which 

would strongly impact the composition of dusts generated.  Further study may indicate 

that the combination of commodity type and geographical region is a better indicator of 

dust characteristics, or it may indicate that factors other than commodity or location are 

more relevant. 

Ultimately, further research is required to gain a more comprehensive study of variation in these 

characteristics among different mine dusts, as well as to understand how to more accurately 

assess exposures to crystalline silica. 

Geochemist Paul Anderson remarked in a 1975 publication (133) that “[F]or accurate 

results there is no general or routine method [for the quantification of crystalline silica].  Each 

sample must be evaluated and handled specifically to minimize analytical errors.  Each sample is 

a minor research effort.”  This work demonstrates the feasibility of such a research effort for an 

individual dust and provides a method by which to accomplish it, while also underlining that this 

need still exists.  More recently, Cauda, Miller, and Drake (127) have outlined a method for the 

in-field analysis of crystalline silica in mine dust samples, such that exposure monitoring can be 

conducted on-site at the end of a shift, rather than waiting the days or weeks required for 

laboratory analysis to be completed.  Such a method would allow results of exposure monitoring 

to be communicated almost immediately to site management and the affected workers, so that 

interventions could be implemented quickly and further exposures prevented.  Such a technique 

would have an enormous impact on efforts to reduce silicosis, but as the authors note, specific 

knowledge of the mineral matrices of a dust is necessary in order to develop a method that is 

accurate and reliable in quantifying crystalline silica, even in the presence of confounders.   

Detailed characterization of mine dusts, such as has been accomplished by the methods 

presented in this study, will build a body of knowledge that can improve control of dust and 

crystalline silica in occupational environments, as well as improve the accuracy of exposure 

monitoring for crystalline silica.  Both of these accomplishments will contribute to decreasing 
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occupational exposures to crystalline silica.  Given the millions of people in the U.S. and globally 

who are exposed to crystalline silica – and who are thus susceptible to silicosis – the prevention 

of such exposures would have profound public health implications. 
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APPENDIX A: SUMMARY OF SAMPLING CONDITIONS AND TIMES 

Table 10 Collection times of size-fractionated samples for crystalline silica analysis  
 
 

 
Chamber concentration 

Alaska Nevada South 
Africa 

8.5 mg·m-3 2.5 mg·m-3 3 mg·m-3 
Sampling Times (min)  

Inlet 360 180 60 
Stage 1 180 90 60 
Stage 2 60 90 30 
Stage 3 60 60 30 
Stage 4 60 60 30 
Stage 5 360 60 30 
Stage 6 660 180 60 
Stage 7 - - 60 
Stage 8 - - 120 

Final 1020 240 240 
 
 
 

Table 11 Collection times of size-fractionated samples for SEM-EDS analysis 
 
 

 
Chamber concentration 

Alaska Nevada South 
Africa 

0.5 mg·m-3 0.5 mg·m-3 0.5 mg·m-3 
Sampling Times (min)  

Inlet 30 30 30 
Stage 1 30 30 30 
Stage 2 3 5 5 
Stage 3 2 2 2 
Stage 4 2 2 2 
Stage 5 10 2 2 
Stage 6 10 3 5 
Stage 7 10 3 5 
Stage 8 15 3 5 
Stage 9 30 25 5 
Stage 10 30 30 5 

Final N/A N/A N/A 
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APPENDIX B: PARTICLE SIZE DISTRIBUTION OF A CRYSTALLINE SILICA REFERENCE 

MATERIAL 

 

 

 
Figure 18 Particle mass size distribution of Min-U-Sil 5 
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APPENDIX C: EXAMPLES OF RULES FOR PARTICLE CLASSIFICATION BY EDS 

Table 12 Particle classification rules for Nevada dust 

Particle Class Rule 
Si-Al-K Si>20 and Al≥5 and K≥5 and K>2*Mg and K>2*Fe and K>2*Ca and K>2*Na and K>2*S 
Si-Al-Ca Si>20 and Al≥5 and Ca≥5 and Ca>2*Mg and Ca>2*Fe and Ca>2*K and Ca>2*Na and 

Si≥Ca and Ca>2*S 
Si-Al-Mg Si>20 and Al≥5 and Mg≥5 and Mg>2*Ca and Mg>2*Fe and Mg>2*K and Mg>2*Na and 

Mg>2*S 
Si-Al-Fe Si>20 and Al≥5 and Fe≥5 and Fe>2*Mg and Fe>2*K and Fe>2*Ca and Fe>2*Na and 

Si≥Fe and Fe>Ti and Fe>2*S 
Si-Al-Na Si>20 and Al≥5 and Na≥5 and Na≥2*Mg and Na>2*Fe and Na>2*K and Na>2*Ca and 

Na>2*S 
Al-Si-S Al>20 and Si>10 and S>10 and Al>1.5*Si 
Si-Al-S Si>20 and Al≥5 and S≥5 and S≥2*Mg and S>2*Fe and S>2*K and S>2*Ca and S>2*Na 
Si-Al Si>20 and Al≥3 and Si+Al+C>90 and K<3 and Ca<3 and Mg<3 and Fe<3 and Na<3 

and S<3 
Si-Al (mixed) (Si>20 and Al≥3 and Si>Ca and Si>Fe) or (Si>10 and Al≥3 and Si+Al+C>75) 
Ca-Si Ca≥15 and Ci≥10 and Si>Mg and Si>s and Si>Al and Si>Mg 
Ca-Mg Ca≥10 and Mg≥10 and Mg≥S 
Ca-S Ca≥10 and S≥10 and Ca>Al and Ca>Fe 
Al-S Al>15 and S>10 and Al>Zn and Al>Fe 
Fe-S Fe>10 and S>10 
Si-rich Si≥75 or [Si≥10 and C+Si>90 and Ca<3] 
Ca-rich Ca>40 or [Ca>20 and Ca+C>75] 
Zn-rich Zn>40 or [Zn>20 and C+Zn>75] 
Ti-rich Ti>40 or [Ti>20 and C+Ti>75] 
Pb-rich Pb>25 
C-rich C>75 
Miscellaneous true 
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