
IMPROVING RELIABILITY AND PERFORMANCE

OF NAND FLASH BASED STORAGE SYSTEM

by

Jie Guo

B.S. in Electrical Engineering,

University of Electronic Science and Technology of China, China,

2005

M.S. in Electrical Engineering,

University of Electronic Science and Technology of China, China,

2008

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2016



UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Jie Guo

It was defended on

February 12th, 2016

and approved by

Yiran Chen, Ph.D., Associate Professor, Department of Electrical and Computer

Engineering

Panos K. Chrysanthis, Ph.D., Professor, Department of Computer Science

Amro El-Jaroudi, Ph.D., Associate Professor, Department of Electrical and Computer

Engineering

Hai Li, Ph.D., Associate Professor, Department of Electrical and Computer Engineering

Kartik Mohanram, Ph.D., Associate Professor, Department of Computer Science

Dissertation Director: Yiran Chen, Ph.D., Associate Professor, Department of Electrical

and Computer Engineering

ii



Copyright c© by Jie Guo

2016

iii



IMPROVING RELIABILITY AND PERFORMANCE OF NAND FLASH

BASED STORAGE SYSTEM

Jie Guo, PhD

University of Pittsburgh, 2016

High seek and rotation overhead of magnetic hard disk drive (HDD) motivates development

of storage devices, which can offer good random performance. As an alternative technol-

ogy, NAND flash memory demonstrates low power consumption, microsecond-order access

latency and good scalability. Thanks to these advantages, NAND flash based solid state

disks (SSD) show many promising applications in enterprise servers. With multi-level cell

(MLC) technique, the per-bit fabrication cost is reduced and low production cost enables

NAND flash memory to extend its application to the consumer electronics.

Despite these advantages, limited memory endurance, long data protection latency and

write amplification continue to be the major challenges in the designs of NAND flash storage

systems. The limited memory endurance and long data protection latency issue derive from

memory bit errors. High bit error rate (BER) severely impairs data integrity and reduces

memory durance. The limited endurance is a major obstacle to apply NAND flash memory

to the application with high reliability requirement. To protect data integrity, hard-decision

error correction codes (ECC) such as Bose-Chaudhuri-Hocquenghem (BCH) are employed.

However, the hardware cost becomes prohibitively with the increase of BER when the BCH

ECC is employed to extend system lifetime. To extend system lifespan without high hardware

cost, we has proposed data pattern aware (DPA) error prevention system design. DPA

realizes BER reduction by minimizing the occurrence of data patterns vulnerable to high

BER with simple linear feedback shift register circuits. Experimental results show that DPA

can increase the system lifetime by up to 4× with marginal hardware cost.

iv



With the technology node scaling down to 2Xnm, BER increases up to 10−2. Hard-

decision ECCs and DPA are no longer applicable to guarantee data integrity due to either

prohibitively high hardware cost or high storage overhead. Soft-decision ECC, such as low-

density parity-check (LDPC) code, has been introduced to provide more powerful error

correction capability. However, LDPC code demands extra memory sensing operations,

directly leading to long read latency. To reduce LDPC code induced read latency without

adverse impact on system reliability, we has proposed FlexLevel NAND flash storage system

design. The FlexLevel design reduces BER by broadening the noise margin via threshold

voltage (Vth) level reduction. Under relatively low BER, no extra sensing level is required and

therefore read performance can be improved. To balance Vth level reduction induced capacity

loss and the read speedup, the FlexLevel design identifies the data with high LDPC overhead

and only performs Vth reduction to these data. Experimental results show that compared

with the best existing works, the proposed design achieves up to 11% read speedup with

negligible capacity loss.

Write amplification is a major cause to performance and endurance degradation of the

NAND flash based storage system. In the object-based NAND flash device (ONFD), write

amplification partially results from onode partial update and cascading update. Onode

partial update only over-writes partial data of a NAND flash page and incurs unnecessary

data migration of the un-updated data. Cascading update is update to object metadata

in a cascading manner due to object data update or migration. Even through only several

bytes in the object metadata are updated, one or more page has to be re-written, significantly

degrading write performance. To minimize write operations incurred by onode partial update

and cascading update, we has proposed a Data Migration Minimizing (DMM) device design.

The DMM device incorporates 1) the multi-level garbage collection technique to minimize

the unnecessary data migration of onode partial update and 2) the virtual B+ tree and diff

cache to reduce the write operations incurred by cascading update. The experiment results

demonstrate that the DMM device can offer up to 20% write reduction compared with the

best state-of-art works.

v



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Challenge 1: Limited Device Endurance . . . . . . . . . . . . . . . . . 2

1.1.2 Challenge 2: High Data Protection Overhead . . . . . . . . . . . . . . 3

1.1.3 Challenge 3: Write Amplification . . . . . . . . . . . . . . . . . . . . . 4

1.2 Dissertation Contribution and Outline . . . . . . . . . . . . . . . . . . . . . 5

2.0 DPA: DATA PATTERN AWARE ERROR PREVENTION TECHNIQUE 9

2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 MLC NAND Flash Basics . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Program Disturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Read Disturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Retention Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Lifetime Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 DPA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 DPA-PPU: Pattern Probability Unbalance . . . . . . . . . . . . . . . . . . . 16

2.5 DPA-DRM: Data-Redundancy Management . . . . . . . . . . . . . . . . . . 19

2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 DPA Error Failure Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Overheads of DPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Chapter 2 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



3.0 FLEXLEVEL NAND FLASH STORAGE SYSTEM DESIGN TO RE-

DUCE LDPC LATENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 LDPC Code and Relative Works . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 FlexLevel NAND Flash Storage System Overview . . . . . . . . . . . . . . . 37

3.4 LevelAdjust: Vth Level Adjustment . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Basic LevelAdjust Technique . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 NUNMA Technique: Non-uniform Noise Margin Adjustment . . . . . 40

3.4.3 LevelAdjust Overhead Evaluation . . . . . . . . . . . . . . . . . . . . 42

3.5 AccessEval: Access Pattern Evaluation . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 AccessEval Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.2 IWFR Data Identification . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.3 AccessEval Overhead Discussion . . . . . . . . . . . . . . . . . . . . . 48

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.1 LevelAdjust Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.2 AccessEval Performance Evaluation . . . . . . . . . . . . . . . . . . . 52

3.7 Chapter 3 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.0 PERFORMANCE OF OBJECT BASED NAND FLASH STORAGE

SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Basics of NAND Flash Memory . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Basics of Object-based NAND Flash Device . . . . . . . . . . . . . . . 58

4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Optimization of Object-based NAND Flash Device . . . . . . . . . . . . . . 62

4.4.1 An Overview of Data Migration Minimizing (DMM) Device . . . . . . 63

4.4.2 Multi-level Garbage Collection (MLGC) . . . . . . . . . . . . . . . . . 64

4.4.3 Virtual B+ Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3.1 Overview of Virtual B+ Tree . . . . . . . . . . . . . . . . . . 67

4.4.3.2 Write overhead of virtual B+ tree . . . . . . . . . . . . . . . . 68

vii



4.4.3.3 Storage overhead of the virtual B+ tree . . . . . . . . . . . . . 69

4.4.4 Diff Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.5 Power Failure Handling Approach . . . . . . . . . . . . . . . . . . . . 73

4.4.5.1 Overview of DMM data recovery . . . . . . . . . . . . . . . . 73

4.4.5.2 Data recovery implementation . . . . . . . . . . . . . . . . . . 76

4.5 ObjNandSim: ONFD Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Simulation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.2 Overall Architecture of ObjNandSim . . . . . . . . . . . . . . . . . . . 78

4.5.3 Hardware Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.4 Software Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.4.1 Software component function . . . . . . . . . . . . . . . . . . 80

4.5.4.2 I/O operation flow of the ObjNandSim . . . . . . . . . . . . . 81

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.2 ObjNandSim Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.3 Evaluation of DMM Device Efficiency . . . . . . . . . . . . . . . . . . 93

4.6.3.1 Evaluation of MLGC . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.3.2 Evaluation of the virtual B+ tree . . . . . . . . . . . . . . . . 95

4.6.3.3 Evaluation of diff cache . . . . . . . . . . . . . . . . . . . . . . 95

4.6.3.4 The overall performance improvement . . . . . . . . . . . . . . 97

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.0 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 99

5.1 Dissertation Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

viii



LIST OF TABLES

1 File data characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Workload characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The parameters of MLC NAND flash . . . . . . . . . . . . . . . . . . . . . . 22

4 Sixty-four polynomials employed for scrambling . . . . . . . . . . . . . . . . . 23

5 The probability of each polynomial to reduce 1’s number . . . . . . . . . . . . 25

6 Required extra LDPC soft sensing levels . . . . . . . . . . . . . . . . . . . . . 36

7 Bit value mapping under ReduceCode . . . . . . . . . . . . . . . . . . . . . . 39

8 Vth transaction under 2-step programming operation . . . . . . . . . . . . . . 41

9 Workloads access pattern characterization . . . . . . . . . . . . . . . . . . . . 46

10 Non-uniform LevelAdjust configuration . . . . . . . . . . . . . . . . . . . . . 49

11 BER comparison under three NUNMA configurations . . . . . . . . . . . . . 51

12 MLC NAND flash specification . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13 Write Overhead of the Virtual B+ Tree . . . . . . . . . . . . . . . . . . . . . 68

14 The definition of the variables of the restoration procedure . . . . . . . . . . 76

15 The object operations implemented NandOsdSim . . . . . . . . . . . . . . . . 81

16 The default parameters of NAND flash memory . . . . . . . . . . . . . . . . . 87

17 Workload characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



LIST OF FIGURES

1 The block-based storage v.s. the object-based storage. . . . . . . . . . . . . . 5

2 MLC NAND flash memory circuit structure. . . . . . . . . . . . . . . . . . . 10

3 The program method and RTN noise of NAND flash memory. . . . . . . . . 11

4 The device noise in NAND flash memory. . . . . . . . . . . . . . . . . . . . . 12

5 The ECC failure rate of NAND flash based storage system . . . . . . . . . . 16

6 DPA Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Architecture of DPA-PPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Redundant pages & data pages . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 The ratio of 1’s before and after de-correlation. . . . . . . . . . . . . . . . . . 22

10 The efficiency of DPA-PPU to reduce 0’s ratio . . . . . . . . . . . . . . . . . 28

11 Vth distribution after DPA-PPU. . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 The ECC failure rates under different device noise. . . . . . . . . . . . . . . 30

13 Tradeoff between read count and P/E cycle count. . . . . . . . . . . . . . . . 30

14 The performance overhead of DPA-DRM. . . . . . . . . . . . . . . . . . . . . 32

15 NAND flash memory BER over P/E cycling . . . . . . . . . . . . . . . . . . . 36

16 FlexLevel NAND flash storage system overview . . . . . . . . . . . . . . . . . 37

17 ReduceCode bitline structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

18 Bit error occurrence probability at four Vth levels. . . . . . . . . . . . . . . . 42

19 NUNMA technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

20 AccessEval architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

21 IWFR identification flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

22 Program BER in reduced state cells. . . . . . . . . . . . . . . . . . . . . . . . 50

x



23 Average false identification rate of IWFR identification technique. . . . . . . 52

24 The performance improvement of the Flex-level design. . . . . . . . . . . . . 54

25 The lifetime cost of LevelAdjust+AccessEval technique. . . . . . . . . . . . . 56

26 The architecture of object-based storage system. . . . . . . . . . . . . . . . . 58

27 An example of cascading update. . . . . . . . . . . . . . . . . . . . . . . . . . 60

28 The overall architecture of the DMM device. . . . . . . . . . . . . . . . . . . 63

29 Multi-level garbage collection. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

30 The virtual B+ tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

31 Insertion operation of virtual B+ tree. . . . . . . . . . . . . . . . . . . . . . . 69

32 An example of the diff cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

33 An example of per-object index recovery. . . . . . . . . . . . . . . . . . . . . 75

34 The format of the page metadata. . . . . . . . . . . . . . . . . . . . . . . . . 75

35 The architecture of simulation platform. . . . . . . . . . . . . . . . . . . . . . 78

36 The architecture of ObjNandSim. . . . . . . . . . . . . . . . . . . . . . . . . 79

37 The data type and dependency in the ObjNandSim. . . . . . . . . . . . . . . 82

38 The ObjNandSim write I/O flows. . . . . . . . . . . . . . . . . . . . . . . . . 83

39 The sequential and random average response time under DMMbench. . . . . 88

40 The sequential and random performance under DMMbench. . . . . . . . . . . 92

41 The sequential write and read response time under 4, 8 and 16 channels. . . . 92

42 The performance of MLGC under different byte-level GC table sizes. . . . . . 93

43 The efficiency of the virtual B+ tree. . . . . . . . . . . . . . . . . . . . . . . . 94

44 The efficiency of the diff cache. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

45 The overall efficiency of the DMM device . . . . . . . . . . . . . . . . . . . . 97

46 The data layout of existing ONFD. . . . . . . . . . . . . . . . . . . . . . . . . 102

47 The biased chunk reclamation issue in ONFD. . . . . . . . . . . . . . . . . . 103

xi



PREFACE

This dissertation is submitted in partial fulfillment of the requirements for Jie Guo’s degree

of Doctor of Philosophy in Electrical and Computer Engineering. It contains the works done

from September 2011 to January 2016. My advisor is Yiran Chen, University of Pittsburgh,

2010 – present.

The work is original to the best of my knowledge, except where acknowledgement and

reference are made to the previous work. There is no similar dissertation that has been

submitted for any other degree at any other university.

Part of the work has been published in the following conferences:

1. DAC2015: J. Guo, W. Wen, J. Hu, D. Wang, H. Li and Y. Chen, “FlexLevel: a

Novel NAND Flash Storage System Design for LDPC Latency Reduction,” Design Automa-

tion Conference (DAC), Jun. 2015, pp. 1-6.

2. ASP-DAC2014: J. Guo, Z. Chen, D. Wang, Z. Shao and Y. Chen, “DPA: A Data

Pattern Aware Error Prevention Technique for NAND Flash Lifetime Extension,” 19th Asia

and South Pacific Design Automation Conference (ASP-DAC), Jan. 2014, pp. 592 - 597.

3. DATE2013: J. Guo, J. Yang, Y. Zhang and Y. Chen, “Low Cost Power Failure Protec-

tion for MLC NAND Flash Storage Systems with PRAM/DRAM Hybrid Buffer,” Design,

Automation & Test in Europe (DATE), Mar. 2013, pp. 859 - 864.

4. DATE2013: J. Guo, W. Wen, S. Li, H. Li and Y. Chen, “DA-RAID-5: A Disturb

Aware Data Protection Technique for NAND Flash Storage Systems,” Design, Automation

& Test in Europe (DATE), Mar. 2013, pp. 380-385.

xii



Part of the work has been submitted to the journals and conferences:

1. TCAD2016: J. Guo, W. Wen, J. Hu, D. Wang, H. Li and Y. Chen, “FlexLevel NAND

Flash Storage System Design to Reduce LDPC Latency,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), submitted on Jan. 31st.

2. MSST2016: J. Guo, C. Min, T. Cai and Y. Chen, “A Design to Reduce Write Amplifi-

cation in Object-based NAND Flash Devices,” International Conference on Massive Storage

Systems and Technology (MSST), submitted on Feb. 12th.

xiii



ACKNOWLEDGEMENTS

I would like to acknowledge the support of my advisor, Yiran Chen, whose support made

this work possible, and to National Science Foundation Project (NSF CCF-1217947, NSF

CNS-1116171, NSF CNS-1342566) for directly providing much of the financial support. I’d

like to thank Professor Yiran Chen and Professor Hai (Helen) Li for their excellent guidance

during the research. Professor Yiran Chen gives me guidance of NAND flash memory designs

from device modeling, circuit implementation to architecture simulations and validations.

Special thanks go to Professor Panos K. Chrysanthis, Professor Amro El-Jaroudi, Professor

Hai (Helen) Li and Professor Kartik Mohanram for being my committee members. I also

would like to thank Professor Jingtong Hu from Oklahoma State University and Professor

Tao Cai from Jiangsu University, for their guidance and encouragement during my Ph.D.

study.

In addition, I’d like to express my gratitude to the members from Evolutional Intelligent

(EI) lab at Swanson School of Engineering, especially Wujie Wen and Chuhan Min, for their

consistent supports during my research. Finally, I’d like to thank my husband, Zhigang

Wang, an associate professor in University of Electronic Science and Technology of China

(UESTC) and my parents in China for their great encouragement during the whole Ph.D.

research.

xiv



1.0 INTRODUCTION

1.1 MOTIVATION

Magnetic hard disk drives (HDD) have been the dominant second storage medium for sev-

eral decades. However, time-consuming seek and rotation process rooted in HDD operating

mechanism has been a major performance bottleneck for the random-write intensive appli-

cations. This performance concern motivates many research efforts on NAND flash memory

technology. NAND flash memory can offer fast access time, good scalability and low power

consumption. Thanks to these advantages, NAND flash memory is applied to various storage

systems ranging from low-power embedded systems to high-end servers.

A NAND flash cell is a floating gate transistor with programmable threshold voltage

(Vth). The stored values are represented by different Vth levels. For example, in a single-level

cell (SLC), one bit is stored, which is represented by two Vth levels. In a multi-level cell

(MLC), four Vth levels are employed to represent two bits. To store the data into the NAND

flash cell, electrons are injected to the floating gate by the program operation. Before the cell

is re-programmed, an erase operation has to be performed to remove the electrons from the

floating gate. The program and erase operations cause the major reliability and performance

problems in NAND flash based storage system which are summarized as follows:

1. Limited device endurance. The program/erase (P/E) operations wear out the NAND

flash cells and introduce bit error rate (BER). BER gradually increases with P/E cycling

and eventually results in cell failure. Due to high BER, NAND flash memory has short

endurance: 5000 P/E cycles under 3Xns technology node [1]. Such a limited endurance

cannot meet the reliability requirement of enterprise application.

1



2. High data protection overhead. To prevent data corruption under high BER, error

correction codes (ECCs) are usually employed in NAND flash based storage systems.

Typically, low-density parity-check (LDPC) code is adopted to provide powerful error

correction capacity. However, the LDPC code incurs high read overhead, which hinders

its application in the read-critical applications.

3. Write amplification. The erase-before-write (i.e., out-of-place update) memory char-

acteristic introduces more data migration or write operations than requested, which is

called write amplification. Write amplification shortens system endurance and incurs

write performance degradation.

These three reliability and performance issues are discussed below in Sections 1.1.1, 1.1.2

and 1.1.3, respectively.

1.1.1 Challenge 1: Limited Device Endurance

The endurance issue of NAND flash memory is rooted from the intrinsic device noises. As

mentioned above, the stored data is represented by different Vth levels. However, in reality,

Vth levels are not clearly separated: Intrinsic device noise easily fluctuates Vth, resulting in

overlapping of neighboring Vth levels. Previous works identify random telegraph noise (RTN),

cell-to-cell interference and retention time limit as three major noise sources in NAND flash

cells [2, 3, 4, 5]. RTN causes Vth fluctuation by electron capture and emission events at

a charge trap site near interfaces. Cell-to-cell interference noise stems from capacitance-

coupling. It results in Vth increase of one floating gate transistor when its neighboring cells

are programmed. Retention time noise causes charges to leak away from the floating gate,

leading to Vth decrease. Among these three type of noise, RTN and retention time noise rise

up as P/E cycle increases, resulting in more severe Vth shift.

A direct result of the device noise is bit errors. Due to noise augmentation, these bit

errors increase with P/E cycling. To prevent data corruption from bit errors, error correc-

tion code (ECC), such as Bose-Chaudhuri-Hocquenghem (BCH) code is usually deployed

in NAND flash based storage system. The ECC controls the uncorrectable bit error rate

(UBER) of the storage system under an acceptable level, e.g., 10−14. The acceptable P/E

2



cycles of NAND flash memory, i.e., device endurance, is limited by maximum allowed UBER.

Under 3Xnm technology node, the MLC NAND flash memory endurance is reduced to 5000

P/E cycles [1]. The limited endurance of MLC NAND flash memory is acceptable for con-

sumer application but cannot meet the requirement of highly reliable enterprise application.

Therefore, increasing device endurance is critical to expand the MLC NAND flash memory

to the application with high reliability requirement. One way to extend device endurance is

to increase the error correction capacity of BCH ECC. However, enhancement of BCH ECC

error correction capacity incurs prohibitively high hardware cost [6].

1.1.2 Challenge 2: High Data Protection Overhead

As mentioned in the previous section above, ECC is employed in the NAND flash based

storage system to protect data integrity. The selection of ECC is based on error correction

capability. The qualified ECC should guarantee that the UBER of the storage system is

under an acceptable level. A widely applied ECC in the NAND flash based storage system is

BCH ECC. BCH ECC is hard-decision in nature. It can fast correct bit errors by decoding

binary information. However, as the technology node scales down to 2Xnm, BER can reach

up to 10−2 [7]. Under such a high BER, BCH ECC is no longer applicable since realization

of stronger error correction capability requires prohibitively high hardware cost.

To offer more powerful error correction capacity, low-density parity-check (LDPC) code is

adopted. LDPC code adopts a sparse M×N parity-check matrix. The matrix is represented

by a bipartite graph with N variable nodes and M check nodes. Error correction is realized

by iteratively computing error messages, which are exchanged between variable nodes and

check nodes [8]. Under low BER, LDPC can work in the similar manner as hard-decision

ECC without introducing extra overhead. When BER is high, LDPC needs to work in a

soft-decision fashion, which demands log-likelihood-ratio (LLR) information [9] to achieve

better error correction capability. In NAND flash memories, the LLR information can only

be acquired by extra fine-grain memory sensing operations. More memory sensing levels

offer more accurate LLR information and therefore, provide more powerful error correction

performance. However, more memory sensing levels cause longer read latency, which severely

degraded the system read performance.

3



1.1.3 Challenge 3: Write Amplification

Write amplification results from the out-of-place update of NAND flash memory [10][11].

With more data being written than requested, write amplification directly results in system

endurance reduction and write performance degradation. As the technology node scales

down, the memory performance and endurance are continuously degrading: The program

latency under 2Xns technology node increases to 3ms [12]; under the sub-20ns technology

node, rated memory endurance decreases to 3000 P/E cycles [13]. Hence, reducing write

amplification become critical to improve system performance and reliability.

One way to minimize write amplification is to reduce data migration of garbage collection

by optimizing the layout of hot and cold data [14][15]. Unfortunately, under the existing

block-based storage model, hot and cold data cannot be accurately identified. As shown in

Fig. 1, in the block-based model, the file system manages logical blocks and allocates them

to the stored file data. The logical block address (LBA) is the only data identifier in the

underlying NAND flash device. Unaware of block allocation policies at the file system layer,

LBA cannot accurately identify data access patterns [16]. In addition, due to out-of-place

update, an indirection table is needed in the NAND flash device to map LBAs to physical

addresses, which significantly increases memory consumption [17].

To eliminate this architectural limitation, an object-based storage model is proposed [18].

In this model, the storage management layer is offloaded to the underlying object-based

NAND flash device (ONFD) [18, 19]. The ONFD manages data by unit of object instead

of by logical blocks. Understanding the object semantics, the ONFD can utilize the object

attributes to improve accuracy of data pattern identification [19, 20]. In addition, the ONFD

eliminates adoption of the indirection table, simplifying system design and reducing memory

consumption.

With object semantics, two causes to write amplification in the ONFD have been iden-

tified. One cause is onode partial update. Onode is a data structure in the ONFD to store

object attributes [19]. Due to small size, more than one onode is stored in a physical page to

reduce internal fragmentation [19]. Update to an onode incurs partial update to a physical

page, i.e., onode partial update. Due to the page-unit write in the ONFD [10], onode partial

4



LBA0

File 
data

LBA1 LBA2 ...
Block allocation 

Block-based model

Flash Translation Layer (FTL)

PA0 PA1 PA2 ...
LBA0 LBA1 LBA2

Block-based interface <LBA,length>

PP0

PP1

PP2

PP3…
… 

PP0

PP1

PP2

PP3…
… 

PP0

PP1

PP2

PP3…
… 

…
… 

Block 0 Block 1 Block 2

…… …… 
File data

Object-based model

-offset
-length
PA0

<offset,length,
object ID, attributes>

PP0
PP1

PP2

PP3…
… 

PP0

PP1
PP2

PP3…
… 

PP0

PP1

PP2

PP3…
… 

…
… 

Block 0 Block 1 Block 2

-offset
-length
PA1

-offset
-length
PA2

……
-offset
-length
PAN

Fi
le

sy
st

em
N

A
N

D
 fl

as
h

de
vi

ce
fi

rm
w

ar
e

R
aw

N
A

N
D

 F
la

sh
m

em
or

ie
s

Fi
le

sy
st

em
N

A
N

D
 fl

as
h

de
vi

ce
fi

rm
w

ar
e

R
aw

N
A

N
D

 F
la

sh
m

em
or

ie
s

Object-based 
interface

PP: physical page PA: physical address LBA: logic block address

… 
…… 

Figure 1: The block-based storage v.s. the object-based storage.

update invokes unnecessary migration of the un-updated data. Another write amplification

cause is cascading update. In the ONFD, the physical addresses of object data are main-

tained in per-object indices; the address of the per-object index root node page is stored in

the onode [19]. The per-object index is implemented with extent-based B+ tree [21]. When

object data is updated, due to out-of-place update, the wandering tree issue causes the cas-

cading update within a per-object index [22]. In addition, the cascading update changes

the address of per-object index root node page. Hence, the corresponding onode are also

updated. Despite several bytes update to the object metadata, one or more page have to

migrate entirely, causing significant write amplification.

1.2 DISSERTATION CONTRIBUTION AND OUTLINE

In this dissertation, we propose three technologies to handle the design challenges from

limited endurance, high data protection overhead and write amplification. The proposed

technologies are decoupled into three main research scopes: 1) A system-level solution to

5



achieve system lifetime extension, 2) a novel hardware and software co-design to minimize

LDPC incurred read overhead and 3) an architectural solution at the firmware level to reduce

write amplification in ONFD.

For Research Scope 1, we propose a novel technique to extend lifetime of MLC NAND

flash based storage system. Previous works reveal that BER heavily depends on Vth levels.

For example, [2, 4] identify that most retention time errors occur in Vth level 2 and Vth level

3. [23] reveals that programming to Vth level 1 and level 3 incurs most cell-to-cell interference

bit errors. If the vulnerable Vth levels can be avoided, BER can be effectively reduced and

therefore the device endurance can be extended. Inspired by this idea, we propose Data

Pattern Aware (DPA) error protection technique which utilizes a data pattern unbalancing

technique combining the existing BCH ECC to protect data integrity [24]. Our contribution

of this scope is summarized as follows:

• We propose Pattern Probability Unbalance (DPA-PPU) to reduce the probability of

data patterns that are sensitive to bit errors. DPA-PPU identifies the data correlation

and adopts de-correlation and scrambling accordingly to unbalance the number of 1’s

and 0’s in the stored data. By increasing the ratios of 1’s, fewer cells are placed on

the vulnerable Vth levels and therefore the BER of NAND flash memories is effectively

reduced.

• We propose Data-Redundancy Management (DPA-DRM) to mitigate DPA-PPU in-

duced performance degradation and provide protection to the redundant bits. DPA-PPU

with different unbalancing efficiencies is adopted at different P/E cycle counts to avoid

unnecessary redundancy write. Due to random data patterns, we also provide stronger

protection to the redundant bits.

The simulation result shows that DPA technique can increase NAND flash storage sys-

tem lifetime by 4× with marginal hardware and power overhead, offering a complementing

solution to other NAND flash lifetime enhancement techniques like wear-leveling.

For Research Scope 2, we propose a novel design FlexLevel to achieve read speed-up

in the LDPC code applied NAND flash storage system [25]. The FlexLevel is motivated

by the fact that LDPC read overhead heavily depends on BER and that BER is partially

6



determined by the noise margin. Hence, LDPC read overhead reduction can be realized by

noise margin increase. In FlexLevel, to diminish BER, we increase the noise margin of the

NAND flash cell by Vth level reduction. Thereby, adoption of soft-decision LDPC can be

avoided and read performance is improved. The contribution of this scope is summarized as

follows:

• We propose LevelAdjust technique to reduce BER at the device level. It first decreases

the number of Vth levels in the NAND flash cell to extend the noise margin of each Vth

level. To further inhibit BER increase in the post cycling stage, we adopt NUNMA

technique to increase retention time noise margin. By minimizing device BER, no extra

memory sensing is needed for LDPC code and therefore read latency can be reduced.

• LevelAdjust technique enhances device reliability at the cost of memory capacity loss. To

balance storage space reduction and performance improvement, we propose FlexLevel-

AccessEval scheme (referred to AccessEval hereafter) at the system level. To maximize

the efficiency of LevelAdjust technique, we only apply LevelAdjust techniques to the

stored data with high soft-decision cost. Here, soft-decision cost denotes soft-decision

LDPC induced performance degradation. By adopting AccessEval scheme, our FlexLevel

design can achieve 11% read speedup with only 6.25% density loss.

For Research Scope 3, we propose a novel architectural design to reduce write amplifi-

cation in ONFD. As mentioned in Section 1.1, two major causes to write amplification in

ONFD are onode partial update and cascading update. To minimize onode partial update

and cascading update induced data migration, the Data Migration Minimization (DMM)

device design is proposed. Our contribution of this scope is summarized as follows:

• A multi-level garbage collection (MLGC) technique is proposed to reduce writes of on-

ode partial update. MLGC adopts both page-level and byte-level garbage collection:

When onode partial update occurs, instead of moving the un-updated bytes immedi-

ately, MLGC records the information of invalid bytes temporarily. By grouping invalid

bytes incurred by multiple onode partial updates, the amount of moved data can be

reduced.

7



• A virtual B+ tree is proposed to reduce cascading update within the per-object index.

Each node page of the virtual B+ tree is assigned with a virtual address. The parent

node page records the virtual addresses of the child node pages. A page table is used to

map the virtual addresses to the physical addresses. Migration of the child node pages

is only reflected in the page table without update to the parent node page. As such,

cascading update induced data migration can be effectively reduced.

• The diff cache is proposed to further minimize cascading update. The diff cache lever-

ages DRAM to reduce the writes to NAND flash memory. Due to the limited size, the

diff cache selectively buffers data depending on the data type. To maximize the cache

utilization, a diff cache replacement policy is proposed.

We evaluate the efficiency of the DMM device design under four workloads. The exper-

imental results show that compared with the best art-of-state works, the DMM device can

achieve up to 20% write reduction and extend the system lifetime by 76%. For future work

directions, we will to explore the optimization space in the ONFD to improve wear-level

efficiency.

The outline of this dissertation is summarized as follows: Chapter 1 presents the overall

picture of this dissertation, including the research motivations, scopes and contributions;

Chapter 2 introduces the proposed data pattern aware (DPA) data protection scheme and

discusses its efficiency and overhead in detail; Chapter 3 analyzes NAND flash memory er-

ror patterns and describes the details of our proposed FlexLevel system design; Chapter 4

demonstrates the benefits of the proposed architectural solution – data migration minimiza-

tion (DMM), in improving system performance and extending system lifetime of the ONFD.

Chapter 5 finally summarizes the research work and presents the potential future research

directions.

8



2.0 DPA: DATA PATTERN AWARE ERROR PREVENTION TECHNIQUE

In this chapter, we will present our Data Pattern Aware (DPA) error prevention technique.

The structure of this chapter is organized as the follows: Section 2.1 presents the preliminary

knowledge of NAND flash memories; Section 2.2 quantitatively characterizes bit error rate

and error patterns of NAND flash memories; Section 2.3, 2.4 and 2.5 present DPA archi-

tecture and discuss DPA-PPU and DPA-DRM details, respectively; Section 2.6 presents the

experimental results; Section 2.7 summarizes this chapter.

2.1 PRELIMINARY

2.1.1 MLC NAND Flash Basics

MLC NAND flash memory is composed of a number of blocks. A block is an array of NAND

flash cells, or floating gate transistors, which can be sub-divided into a number of pages.

Usually, a MLC NAND flash block has an even/odd bit-line structure, which is depicted in

Fig. 2(a) [4]. Under the even/odd bit-line structure, a wordline stores two page groups, an

even and an odd page group. Operations to each page group are realized by selecting the

corresponding wordline and bitline. Each page group contains two pages: a lower page and

an upper page. The most significant bit (MSB) and least significant bit (LSB) in the same

cell belong to the lower page and the upper page in one page group, respectively. Each MLC

NAND flash cell stores 2 bits by four Vth levels. L0 (the lowest level) ∼ L3 (the highest

level) represent 11,10,01,00, respectively as shown in Fig. 2(b). Each page consists a data

area and a Out-Of-Band (OOB) zone for ECC parity redundancy.

9



SGD

Wordline 32

SGS
0
4
2
8

118
124

122
126

even odd even odd

1
5
3
9

119
125

123
127

0
4
2
8

118
124

122
126

1
5
3
9

119
125

123
127

0V 2V 0V 2V

0V
LSB

MSB Vinhibit (10V)

Vinhibit   (10V)

Vpgm  (20V)

Vinhibit  (10V)

2V

Page number

Program page 
123/127

Lower page

Upper page

bitline

Wordline 31

Wordline 0

Wordline 1

(a) MLC NAND flash even/odd bit-line structure.

SGD
Data zone

WL0

WL1

WL2

SGS

WLn

OOB zone
a page

Store data

Store ECC parity

Vth

11 10 01 00

L0 L2 L3L1

v0 v1 v2

v0~v2: verify voltage

(b) MLC NAND flash device structure and the Vth

distribution.

Figure 2: MLC NAND flash memory circuit structure.

MLC NAND flash supports three operations: program, read and erase. Program op-

eration realizes injection of pre-defined amount of electrons to configure Vth. A two-step

program operation can be performed to each cell as shown in Fig. 3(a) [2, 26]. The first

program operation stores data in MSB and the second program operation stores LSB data.

Program is performed by unit of page and all the pages within a block should be programmed

sequentially. The logic bits are read out by comparing cell’s Vth with a series of read ref-

erence voltages [4]. Erase operation removes electrons from floating gate to reduce NAND

flash to a ready state (Vth level 0) for incoming program operations. Unfortunately, these

operations cannot achieve ideal Vth distribution due to intrinsic noises. These noises lead

to high BER and severely impair data integrity. There are three major contributors to Vth

distortion which are identified by previous work: program disturb, retention time limit and

read disturb [3, 4, 2].

2.1.2 Program Disturb

Program disturb stems from the combinative effect of random telegraph noise (RTN) and

cell-to-cell interference. RTN develops from electrons capture and emission at charge trap

sites. As shown in Fig. 3(b), RTN can either increase or reduce the Vth of the programmed

10



0 Erase state

0

2nd program: program LSB

2

1st program: program MSB

0 21 3

11 10 00 01

Vth

Vth

Vth

(a) 2-step program to MLC NAND
flash memory.

Vth

L0 L1 L2 L3

Read voltage 0 Read voltage 1 Read voltage 2

Vth under retention 
time noise

Retention time 
noise margin

Vth

L0 L1 L2 L3

Read voltage 0 Read voltage 1 Read voltage 2

Vth under cell-to-
cell interference

Cell-to-cell 
interference margin

Vth after 
programming

Vth under 
RTN

(b) RTN-induced Vth distribution.

Figure 3: The program method and RTN noise of NAND flash memory.

cell and results in wider threshold voltage distribution. [3] reveals that the effect of RTN is

aggregated over P/E cycling. Assume that λ is the mean value of Vth shift. RTN induced

Vth shift ∆Vrtn is modeled by [3]

p∆Vrtn =
1

2λ
exp(−|∆Vrtn|

λ
). (2.1)

Programming one cell provokes the Vth shift of the neighboring cells via parasitic capacitance-

coupling. This is cell-to-cell interference. The Vth shift of the victim cell ∆Vc2c can be

modeled by [3]

∆Vc2c =
∑
k=0

∆V (k)
p × γ(k). (2.2)

∆V
(k)
p and γ(k) denote the Vth shift of the interfering cell after programming and coupling

ratio, respectively. In the even/odd bit structure, there exists coupling ratios on three

directions: γy, γx and γxy [27]. Cell-to-cell interference noise margin is shown in Fig. 4(a).

Each Vth level is confined by lower and/or upper read reference voltages (Vrd−ref ). Since cell-

to-cell interference noise incurs Vth increase, cell-to-cell interference noise margin is defined as

the voltage difference between Vth after RTN and the upper read reference voltage. [23] shows

that the effect of cell-to-cell interference is Vth level dependent. The largest Vth transition of

the victim cell occurs when the interfering cell is programmed to level L1 and L3.

11



Vth

L0 L1 L2 L3

Read voltage 0 Read voltage 1 Read voltage 2

Vth under retention 
time noise

Retention time 
noise margin

Vth

L0 L1 L2 L3

Read voltage 0 Read voltage 1 Read voltage 2

Vth under cell-to-
cell interference

Cell-to-cell 
interference margin

Vth after 
programming

Vth under 
RTN

(a) Illustration of cell-to-cell interference.

VPASS

VREAD

VPASS
Read 
page

VPASS = 6V   VREAD = 0V~4V

Vth
L0 L1 L2 L3

before read 
disturb

after read disturb

(b) Description of read disturb. Both the read and
unread cells are exposed to risk of read disturb.

Figure 4: The device noise in NAND flash memory.

2.1.3 Read Disturb

Read disturb is originated from both Fowler-Nordheim tunneling mechanism and stress in-

duced leakage current (SILC). The read operation is shown in Fig. 4(b). The verify voltage

VREAD (0∼4V) is applied to the wordline of the read page while VPASS (6V) is applied to

the unread pages in the same block. Both VPASS and VREAD cause electrons to transmit

to the floating gate, directly leading to Vth increase. The BER resulting from read disturb

increases with P/E cycling and read count. The research of [28] shows the lowest level L0 is

most susceptible to read disturb.

2.1.4 Retention Time

Retention time limitation results from electron detrapping and SILC. Electrons are trapped

in transistor tunnel oxide through P/E cycling [3]. These trapped electrons gradually leak

away and assist charges stored on floating gates to escape, leading to Vth decrease (Fig. 4(b)).

12



It is shown that retention time error dominates the post-cycling error [2]. According to [3],

Vth shift distribution due to retention time limitation is modeled by N(µd, σ
2
d). µd and σ2

d

can be expressed by

{
µd = Ks(x− x0)KdN

0.3ln(1 + t/t0), (2.3)

σ2
d = Ks(x− x0)KmN

0.4ln(1 + t/t0). (2.4)

Here, Ks, Kd, Km and t0 are constants. N is P/E cycle count. x0 is Vth of level 0. x is the

initial Vth after programming and t is storage time. As shown in Fig. 4(a), retention time

noise margin is defined as the voltage difference between the lower read reference voltage

and the Vth after programming (under the effect of both RTN and cell-to-cell interference).

Eq. 2.3 and 2.4 shows that higher initial Vth incurs larger threshold voltage shift. Vth level

L3 is most vulnerable to retention time error.

2.2 MOTIVATIONS

2.2.1 Lifetime Model

BCH ECC code is prevalently employed in NAND flash based storage system to prevent data

from bit error. A NAND flash block lifetime is defined as P/E cycle count when ECC failure

rate reaches a threshold Tuber. ECC failure rate for a NAND flash block can be expressed by

F = max(fprog, frd, frt). (2.5)

fprog,frd and frt are error rate induced by program disturb, read disturb and retention time

limitation, respectively. Assume n-bit BCH ECC (m,l,n) is performed to l-bit data block.

m denotes the total codeword length. The yield Yber(n) can be expressed by

uber(k) =

1−
k∑
i=0

Ci
mp

i
c(1− pc)(m−i)

n
. (2.6)

13



Here, pc is BER of a single NAND flash cell. Assume the probability that each flash cell be

programmed to threshold voltage (Vth) level Li is pi (i = 0, 1, 2, 3). The error rate of each

level is represented by pli. pc can be calculated by

pc =
3∑
i=0

pli × pi. (2.7)

pi is determined by the ratio of 1’s and 0’s in the data stored in flash cells. p(0) and p(1)

denote the probability of 1’s and 0’s. p0 ∼ p3 can be represented by p(1)p(1), p(0)p(1),

p(1)p(0) and p(0)p(0).

Based on Eq. 3.1,2.7, to estimate uber(k), we need to first calculate value of pli as well as

the probability of 1’s and 0’s p(0) and p(1). We employ reliability models in Section 2.1 to

evaluate the error rate of each Vth level pli. The flash model proposed in Eq. 2.1,2.2,2.3,2.4

is used to estimate the program disturb and retention time error rate. Based on the research

of [29, 28, 30], we set Vth fluctuation led by read disturb as random variables with Gaussian

distribution. The mean µrd and variation σrd are expressed byµrd =
1

γ
In[1 + γβtse

γ(VCG−VT,0)N0.3Kr] (2.8)

σrd =
√
α(1− eγµrd) (2.9)

γ, β, Kr and α are coefficients. VCG and VT,0 represent the voltage applied to the wordline

and the voltage in floating gate. ts and N denote read pulse duration and P/E cycle count,

respectively.

To evaluate probability of 1’s and 0’s, we investigate 1’s and 0’s distribution in seven

types of data listed in Table 1. Fig. 5(a) shows that 1’s ratio in system metadata files is

around 45% while others are approximately 50%. Hence, it is safe to assume that p(0) =

p(1) = 0.5. For the evaluation purpose, we perform 8-bit BCH ECC to a 512B data block

and Tuber is set 10−13 [2]. The L0 Vth is modeled by Gaussian distribution N(1.1, 0.35). The

ISPP verify voltages and the incremental program step voltage are 2.55, 3.15, 3.75 and 0.3,

respectively [27]. λ is set 2.8 × 10−4N0.4 based on [31]. We adopt the emerging all-bit-line

structure. The coupling ratios γy and γxy are set 0.08 and 0.0048 [27]. By fitting the data

in [5], Kd and Km are 4 × 10−5 and 3 × 10−6. For the read disturb model, γ, β, and ts are

set 1.1, 8.8 × 105, 8 × 10−2 respectively. By fitting the data in [29, 28], α and Kr are set

14



Table 1. File data characteristics

file type number file size

mp3 file 2 7.5MB, 6.3MB

mp4 file 1 101MB

compressed file(tar.gz) 2 5.3MB,4.2MB

pictures (.jpg) 2 1.42MB, 1.37MB

pdf file 2 8.6MB,4.2MB

office files(.ppt) 2 797KB, 1.2MB

system matadata file 6 total 0.5MB

5.3×10−2 and 11.9. Read disturb is evaluated under 10K read count and retention time error

rate is estimated with 1 year elapsed time. The ECC failure rate under different P/E cycle

count is shown in Fig. 5(b). Data integrity cannot be guaranteed after 7.5K P/E cycling.

2.3 DPA OVERVIEW

Our DPA error prevention scheme aims to minimize the error rate of a single cell. Our

scheme is based on the following pattern-dependent bit error features:

• Program disturb bit error is prone to occur when the interfering cell is programmed to

Vth L1 and L3.

• It is highest probability that retention time error occur at Vth level L3.

To minimize the effect of program disturb and retention time noise, DPA scheme increases

the probability of Vth level L0 by maximizing the ratio of 1’s in the stored data. The DPA

15



0

0.1

0.2

0.3

0.4

0.5

0.6

compress pdf mp3 metadata mp4 pictures ppt

R
a
ti

o
 o

f 
1
's

 

(a) The distribution of 1’s number in 8-bytes data
block.

1.E-25

1.E-22

1.E-19

1.E-16

1.E-13

1.E-10

1.E-07

1.E-04

1.E-01

1.E-19

1.E-17

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

5K 10K 15K 20K 25K

P/E cycle count

Retention time ECC failure rate

Read disturb ECC failure rate

Program Disturb ECC failure rate

(b) The 8-bit ECC failure rate under different P/E cy-
cling.

Figure 5: The ECC failure rate of NAND flash based storage system

error prevention system is illustrated in Fig. 6. DPA incorporates DPA-PPU and DPA-DRM.

DPA-PPU implements data pattern conversion and DPA-DRM performs data management

to mitigate DPA-PPU induced performance overhead. In our system, we employs a data

buffer with simple LRU replacement cache policy. A array of flash chips are deployed to

increase the access throughout. The write data from the host is first stored in the data

buffer and data pattern conversion is performed to the evicted data before it is flushed to

flash memory. For the read requests, the data is read out from flash and is recovered by

DPA-PPU and sent back to the host.

2.4 DPA-PPU: PATTERN PROBABILITY UNBALANCE

To place more cell in Vth level L0, DPA-PPU performs data pattern conversion to increase

the number of 1’s. Since it is easier to decrease the number of 1’s, we choose to reduce the

number of 1’s first and then inverts the whole data page. Our DPA-PPU investigates data

correlation of the stored data. For the strong correlated data, de-correlator proposed in [32]

is adopted to decrease the number of 1’s. It performs simple XOR operation to neighboring

data and reduction of 1’s number can be realized by incurring negligible redundant overhead.

16



Write 
Requests

Flash Chip 0

Flash array

Data Buffer

DPA-DRM

DPA-PPU

Pattern Conversion

Data & Redundancy 
Management

Read 
Requests 

Flash Chip 1

Flash Chip 2

Flash Chip 3

Host

Figure 6: DPA Architecture Overview

Recently, many signal processing techniques are employed in the flash memory storage sys-

tem [33, 34, 27, 35, 36]. In this work, we utilize a scheme based on scrambling coding to

unbalance the number of 0’s and 1’s for the weakly correlated data. Basically, scrambling

implements modulo 2 operation in Galois Field via cyclic XORing the data stream with a

polynomial. If we can choose a appropriate polynomial whose pattern overlaps with the

data to the maximum degree, 1-to-0 ratio can be effectively un-equalized. DPA-PPU per-

forms data pattern conversion to increase the ratio of 1’s in the stored data by performing

de-correlation or scrambling, followed by bit inversion operation. If the data demonstrates a

strong correlation, the de-correlation scheme in [32] can be adopted to decrease the number

of 1’s in the data by applying XOR operations between neighboring bytes. If the data is

weakly correlated, we propose a scheme based on scrambling coding to skew the ratio of

1’s and 0’s. After the de-correlation or scrambling, all data bits are flipped to obtain the

codeword of which the majority are 1’s.

The architecture of DPA-PPU is presented in Fig. 7. A data page is divided into multiple

data chunks. The data chunks are processed by de-correlation and scrambling circuits in

parallel. Scrambling circuit performs modulo 2 division, i.e., cyclic XOR, on the data by

using a polynomial as divider. If the pattern of the polynomial overlaps with the data much,

the number of 1’s can be effectively reduced. DPA-PPU implements n different scrambling

17



C
on

ve
te

d 
da

ta
 

C
om

pa
ra

to
r

P
ol

yn
om

ia
l 

ta
g

Data
Scrambling 

Polynomial 0 M
in

 N
o.

 (
1'

s)
  S

E
L

E
C

T
IO

N
De-correlation

Scrambling 
Polynomial 1

Scrambling 
Polynomial n

…
…

…
…

…

In
ve

rt
er

C
or

re
la

ti
on

 
bi

t

De-Scrambling

Recorrelation

Recovered 
data

Configure

2:1

Figure 7: Architecture of DPA-PPU.

circuits which are differentiated by the polynomial tags from 0 to n−1. The data is scrambled

by different polynomials and the result that has the fewest 1’s will be selected as the output

of scrambling circuit. Then the number of 1’s in the output data from de-correlation and

scrambling circuits are checked by a comparator. The one with the fewer 1’s is selected and

inverted before being flushed into the flash chips. If the de-correlated data is selected then

the correlation bit is set to 1. Otherwise, the correlation bit is set to 0. The corresponding

polynomial tag (if applicable) and the correlation bit must be also stored in the flash chip

as they are required when re-correlation or descrambling is performed for data recovery at

read operations.

The scrambling circuit efficiency is determined by the polynomial pattern, the data chunk

size, the number of polynomials and the polynomial order. For example, the number of 1’s

can be effectively reduced by maximizing the overlapping bits between the data and the poly-

nomial. In normal applications, the occurrence probabilities of 1’s and 0’s in the stored data

are approximately equal [32]. Hence, the polynomials with a 1-to-0 ratio of 1:1 are generally

18



preferred. The increases of data chunk size diversifies the data pattern and thus poten-

tially decreases the overlapping area between the data chunk and the polynomial. Hence,

the scrambling efficiency degrades when the data chunk size rises. Similarly, increasing the

number of polynomials may enhance the scrambling efficiency by maximizing pattern over-

lapping probability. Polynomial order itself does not directly affect the scrambling efficiency.

However, the polynomial with a higher order can offer more available polynomials which

may improve the pattern overlapping probability.

The scrambling-descrambling circuits can be implemented with simple linear feedback

shift registers (LFSRs) with very marginal hardware cost. At 65nm technology node, the

power of the scrambling-descrambling circuit is around 9mW, which is negligible compared to

the large power consumption of the read and write operations of NAND flash based storage

system (which is at ≥ 5W for a 256GB system). Since only one correlation bit is required

by one data page, the incurred hardware cost is negligible. Similarly, the hardware overhead

of polynomial tags is also marginal: assume the data chunk size is 8B and total 64 16-order

polynomials are included in the scrambling-descrambling circuits, the extra space required

to store the polynomial tags in a 256GB NAND flash based storage system is only 16GB

(6%) because one third of the tags can be stored in OOB zone.

2.5 DPA-DRM: DATA-REDUNDANCY MANAGEMENT

DPA-PPU converts the data page into the pattern with more 1’s to reduce the error rate

resulting from retention time limitation and program disturb. To reduce DPA-PPU induced

redundancy overhead, we employ a chunk-size-adaptive DPA-PPU scheme. The error rate

resulting from retention time increases with P/E cycle count. Therefore, at the early post

cycling stage, we adopt a large chunk to achieve a moderate un-equalization rate due to

relatively low error rate. As the error rate increases with P/E cycling, a small chunk size is

adopted to maximize the probability the flash cell be placed on level L0. However, smaller

chunk size incurs more redundancy. There are two problems with the redundant bits: (1)

19



data OOB 

data OOB 

…... …...

P0

P1

Block0: Block 
for data

Poly. Tags 1

data OOB 

data OOB 

…... …...

P0

P1

Block40: Block for 
redundant bits

data page 0

Poly. Tags 0

Poly. Tags 3data page 1

Poly. Tags 2 tag for 
block0

block 40 
page1

tag for 
block1

block 40 
page3

…… …...

Mapping table

Parity page

Form a stripe

Stored in the 
same block

Figure 8: Redundant pages & data pages

They are characteristics of more random patterns than the converted data; (2)They introduce

extra write operations and therefore accelerate the wear-out of flash memory and incur

performance degradation.

Due to the random patterns, the redundant page is vulnerable to retention time error

than the converted data. Therefore, we differentially deal with the converted data and the

redundant bits. Each data page consists of multiple data chunks with multiple polynomial

tags. We store a part of the polynomial tags in the OOB area of the data page and the rest

is stored in a redundant page. Redundant pages and data pages are stored in different

blocks. A mapping table is utilized to track the redundant pages. Since the redundant page

is vulnerable to retention time error, we perform RAID-5 to the redundant pages. Instead

of grouping the stripe by logic page number of conventional RAID-5 [37], we form the stripe

by the physical page number and the parity page is stored in the same block to eliminate the

necessity of extra mapping table. An example is shown in Fig. 8. Assume data page 0 have

two polynomial tags: tag 0 and tag 1. OOB space can hold only one tag and ECC parity.

The data page 0 and data page 1 store the tag 0 and tag 2 in the OOB space of the data

page with the tag 1 and tag 3 in a redundant page. Redundant pages are stored in flash

block 40 and 2 redundant pages form a stripe. A parity page is calculated and stored back

to block 40.

20



To minimize redundancy-induced performance degradation, we adopt a delay write sim-

ilar to [37]. When a redundant page is ready, it stays in the data buffer and is flushed to

NAND flash only due to system idle time. For the read operation, the redundant page are

read out with the data page to configure the de-scrambling circuit for data recovery. There-

fore, to reduce read response time, we store the redundant pages and the data page to two

different chip so that data page and the redundant page can be accessed in parallel. The

performance overhead of DPA-DRM is evaluated in Section 2.6. Our DPA-DRM introduces

a mapping table. A block of data pages only consume one or two redundant pages and

therefore, mapping table is small. For 256GB storage system, it only consumes several mega

bytes. The mapping table resides in data buffer for fast access. DPA-PPU places more cells

on Vth level L0 and exposes them to higher risk of read disturb. However, increase of the

cell Vth level L0 also mitigates the cell-to-cell interference and provide larger noise margin

to read disturb. The effect of DPA scheme on read disturb will be evaluated in Section 2.6.

2.6 EXPERIMENTAL RESULTS

Flashsim [38] is adopted as our simulation platform. We modify the simulator by adding

multi-chip access capability and incorporate our DPA error prevention scheme in it. The

benchmarks representing five applications are selected to evaluating our scheme. The work-

load characteristics are listed in Table 2. The specification of MLC NAND flash memory

used for our experiment is summarized in Table 3. The storage system capacity is set 256GB.

A 8-bit BCH ECC (4200,4096,104) is applied to every 512-byte data block. We first study

the efficiency of the de-correlation and scrambling circuits on reducing the ratio of 1’s in the

data (or reducing the ratio of 0’s in the data after the bit inversion in Fig. 7) for the seven

data types listed in TABLE 1, Fig. 9 shows the ratio of 1’s in the data before and after pro-

cessed by de-correlation circuit. Among all data types, only system metadata exhibits good

correlation where the ratio of 1’s decreases from 0.45 to 0.27. Other data types, however,

display a more random pattern and the reduction of the ratio of 1’s is very small after the

de-correlation.

21



Table 2. Workload characteristics.

Disk trace Write ratio Seq.wr. Application

WIN 7 42% 15.2% p2p, office and web serfing

RHEL 93% 2.3% Server access

TPC-C 99% 0.9% OLTP application

financial [39] 98% 1.9% OLTP application

web search [39] 0.02% 0 Access to search engines

Table 3. The parameters of MLC NAND flash

Capacity
Block Size Block Number Page Size

512KB 4096 4KB+218Bytes

Timing

Program Latency Read Latency Erase Latency

900 µs 50µs 3.5ms

0

0.1

0.2

0.3

0.4

0.5

0.6

compress pdf mp3 metadata mp4 pictures ppt

R
a
ti

o
 o

f 
1
's

Data before de-correlation

Data after de-correlation

Figure 9: The ratio of 1’s before and after de-correlation.

22



In the evaluations of different scrambling schemes, the default values of data chunk

size, polynomial number and polynomial order are set to 8B, 64 and 16, respectively. The

64 polynomials we use are listed in Table 4. We only change the value of one parameter

each time to evaluate its impact on scrambling efficiency. We show the probability of each

scrambling polynomials to reduce the number of 1’s in Table 5. The scrambling is inefficient

to reduce 1’s number in the system metadata file: The total probability of the sixty-four

polynomials to reduce 1’s is only 10%. This is because the system metadata file has fewer

1’s than 0’s. Scrambling (or OXRing) these data with the polynomials with equal 1’s and

0’s generates more 1’s. For other type of data, the scrambling demonstrates good efficiency:

Each polynomial has approximately 50% probability to reduce 1’s numbers.

Table 4. Sixty-four polynomials employed for scrambling

poly. no polynomial poly. no polynomial

0 x16 + x15 + x14 + x7 + x5 + x4 + 1 1 x16 + x12 + x11 + x9 + x2 + x1 + 1

2 x16 + x10 + x8 + x7 + x6 + x5 + x3 + x1 + 1 3 x16 + x11 + x7 + x6 + x4 + x3 + x2 + x1 + 1

4 x16 + x12 + x6 + x5 + x4 + x3 + x2 + x1 + 1 5 x16 + x12 + x10 + x9 + x7 + x4 + x3 + x1 + 1

6 x16 + x12 + x10 + x9 + x8 + x6 + x2 + x1 + 1 7 x16 + x13 + x12 + x9 + x8 + x7 + x6 + x4 + 1

8 x16 + x12 + x11 + x8 + x6 + x5 + x3 + x1 + 1 9 x16 + x15 + x14 + x9 + x8 + x6 + x5 + x4 + 1

10 x16 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + 1 11 x16 + x15 + x14 + x11 + x10 + x9 + x8 + x5 + 1

12 x16 + x15 + x12 + x11 + x10 + x9 + x6 + x5 + 1 13 x16 + x15 + x13 + x12 + x8 + x7 + x6 + x5 + 1

14 x16 + x12 + x8 + x7 + x6 + x4 + x3 + x1 + 1 15 x16 + x15 + x14 + x12 + x11 + x10 + x7 + x4 + 1

16 x16 + x12 + x11 + x10 + x7 + x2 + 1 17 x16 + x13 + x11 + x6 + x5 + x4 + 1

18 x16 + x13 + x8 + x7 + x5 + x4 + 1 19 x16 + x13 + x9 + x7 + x5 + x4 + 1

20 x16 + x8 + x7 + x5 + x4 + x3 + x2 + x1 + 1 21 x16 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1

22 x16 + x14 + x11 + x8 + x5 + x4 + 1 23 x16 + x15 + x11 + x8 + x5 + x4 + 1

24 x16 + x12 + x11 + x8 + x5 + x1 + 1 25 x16 + x12 + x11 + x7 + x4 + x1 + 1

26 x16 + x12 + x11 + x7 + x3 + x2 + 1 27 x16 + x15 + x10 + x7 + x6 + x4 + 1

28 x16 + x12 + x10 + x9 + x6 + x1 + 1 29 x16 + x12 + x11 + x7 + x4 + x1 + 1

23



Table 4 (continued)

poly. no polynomial poly. no polynomial

30 x16 + x15 + x10 + x7 + x6 + x4 + 1 31 x16 + x15 + x14 + x8 + x6 + x4 + 1

32 x16 + x5 + x3 + x2 + 1 33 x16 + x14 + x13 + x11 + 1

34 x16 + x5 + x4 + x3 + 1 35 x16 + x13 + x12 + x11 + 1

36 x16 + x6 + x4 + x1 + 1 37 x16 + x15 + x12 + x10 + 1

38 x16 + x8 + x7 + x5 + 1 39 x16 + x11 + x9 + x8 + 1

40 x16 + x9 + x4 + x2 + 1 41 x16 + x14 + x12 + x7 + 1

42 x16 + x9 + x4 + x3 + 1 43 x16 + x13 + x12 + x7 + 1

44 x16 + x9 + x5 + x2 + 1 45 x16 + x14 + x11 + x7 + 1

46 x16 + x9 + x7 + x2 + 1 47 x16 + x14 + x9 + x7 + 1

48 x16 + x12 + x11 + x10 + x8+ 49 x16 + x15 + x14 + x13 + x12 + x11+

x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1 x10 + x9 + x8 + x6 + x5 + x4 + 1

50 x16 + x12 + x11 + x10 + x9+ 51 x16 + x15 + x14 + x13 + x12+

x8 + x7 + x5 + x4 + x3 + x2 + x1 + 1 x11 + x9 + x8 + x7 + x6 + x5 + x4 + 1

52 x16 + x13 + x11 + x10 + x9+ 53 x16 + x15 + x14 + x13 + x12 + x11+

x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1 x10 + x9 + x7 + x6 + x5 + x3 + 1

54 x16 + x13 + x12 + x11 + x8+ 55 x16 + x15 + x14 + x13 + x12 + x11+

x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1 x10 + x9 + x8 + x5 + x4 + x3 + 1

56 x16 + x13 + x12 + x11 + x9+ 57 x16 + x15 + x14 + x13 + x11+

x8 + x7 + x6 + x5 + x3 + x2 + x1 + 1 x10 + x9 + x8 + x7 + x5 + x4 + x3 + 1

58 x16 + x13 + x12 + x11 + x10+ 59 x16 + x15 + x14 + x13 + x12 + x10+

x9 + x7 + x6 + x4 + x3 + x2 + x1 + 1 x9 + x7 + x6 + x5 + x4 + x3 + 1

60 x16 + x13 + x12 + x11 + x10+ 61 x16 + x15 + x13 + x12 + x11 + x10+

x9 + x7 + x6 + x5 + x4 + x3 + x1 + 1 x9 + x7 + x6 + x5 + x4 + x3 + 1

62 x16 + x14 + x11 + x9 + x8+ 63 x16 + x15 + x14 + x13 + x12 + x11+

x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1 x10 + x9 + x8 + x7 + x5 + x2 + 1

24



Table 5. The probability of each polynomial to reduce 1’s number

poly. no metadata pdf compress ppt mp3 mp4 picture

0 0.000015 0.438711 0.471996 0.417557 0.440888 0.440549 0.534002

1 0 0.441995 0.472435 0.421484 0.448484 0.442699 0.541311

2 0 0.441939 0.475722 0.421859 0.447419 0.444703 0.542909

3 0.000021 0.440033 0.472821 0.419434 0.441828 0.441283 0.535894

4 0.000498 0.438511 0.471682 0.416916 0.439944 0.439712 0.530911

5 0.003138 0.443568 0.476516 0.423597 0.446503 0.445241 0.548343

6 0.00036 0.440135 0.474084 0.421106 0.445015 0.442773 0.546743

7 0.009584 0.439273 0.47067 0.419279 0.450382 0.441269 0.535987

8 0.000904 0.440829 0.475366 0.422825 0.44839 0.444916 0.54392

9 0.000072 0.440239 0.471414 0.420736 0.448248 0.441094 0.537634

10 0 0.433379 0.465882 0.415668 0.444976 0.438262 0.52978

11 0.000082 0.438736 0.469896 0.418377 0.448772 0.440774 0.53904

12 0.00396 0.438495 0.469067 0.420166 0.444459 0.440136 0.537302

13 0 0.439279 0.469607 0.418782 0.44554 0.440156 0.536442

14 0.020626 0.444134 0.476009 0.422674 0.443483 0.44471 0.544833

15 0 0.438562 0.471534 0.420231 0.452096 0.441536 0.534617

16 0.004699 0.440247 0.473177 0.420474 0.448235 0.442807 0.545585

17 0.02232 0.432267 0.460016 0.413064 0.440436 0.433806 0.51866

18 0.001125 0.442318 0.473832 0.422917 0.448515 0.443491 0.542439

19 0 0.435023 0.46326 0.41667 0.444034 0.436332 0.521316

20 0.000144 0.442425 0.476081 0.420478 0.444676 0.443124 0.539964

21 0.000005 0.436087 0.463277 0.413615 0.443698 0.436131 0.523366

22 0.00001 0.44069 0.473147 0.420055 0.442139 0.442136 0.542116

23 0 0.437115 0.464452 0.416242 0.446398 0.437421 0.525261

24 0 0.440651 0.473223 0.421484 0.448845 0.442935 0.54197

25



Table 5 (continued)

poly. no metadata pdf compress ppt mp3 mp4 picture

25 0 0.436435 0.465094 0.415462 0.44855 0.437481 0.525322

26 0.003343 0.440164 0.47173 0.419896 0.441298 0.441608 0.539524

27 0.000185 0.43668 0.465181 0.414801 0.447648 0.437535 0.526578

28 0.000005 0.442247 0.474702 0.42222 0.448543 0.443607 0.54371

29 0 0.43625 0.464912 0.416166 0.450187 0.43754 0.527631

30 0.000257 0.443861 0.477076 0.421856 0.444209 0.443435 0.541014

31 0 0.436375 0.463546 0.415226 0.443077 0.437117 0.526386

32 0.00169 0.44151 0.473586 0.41996 0.447599 0.442491 0.542267

33 0.020215 0.433343 0.460023 0.412842 0.442338 0.433617 0.517418

34 0.009106 0.440225 0.470997 0.419154 0.448194 0.441919 0.539684

35 0.014971 0.433186 0.459926 0.412919 0.441133 0.433608 0.519018

36 0.000955 0.444899 0.475905 0.42331 0.448923 0.445061 0.546133

37 0 0.433029 0.461257 0.415673 0.440956 0.435036 0.521418

38 0.000272 0.439374 0.47022 0.418455 0.447588 0.440331 0.537422

39 0 0.435306 0.46454 0.4144 0.44497 0.43723 0.528459

40 0.000575 0.439338 0.470926 0.418815 0.446566 0.441134 0.541256

41 0 0.436811 0.46576 0.415142 0.443259 0.438342 0.529789

42 0.000021 0.439517 0.471394 0.421001 0.447655 0.442378 0.54276

43 0 0.438367 0.466656 0.414496 0.447086 0.438388 0.528789

44 0.000026 0.443264 0.47431 0.421401 0.44757 0.443815 0.543008

45 0 0.435302 0.465885 0.415209 0.441262 0.438547 0.528529

46 0 0.443567 0.476831 0.424812 0.449777 0.445766 0.544746

47 0 0.434661 0.465893 0.417268 0.440229 0.438003 0.530022

48 0.007658 0.43774 0.470313 0.415336 0.436354 0.43882 0.52801

49 0.00037 0.438954 0.471142 0.419517 0.448708 0.441169 0.53715

50 0.004001 0.439752 0.472526 0.419452 0.441584 0.441125 0.535459

51 0 0.439336 0.470785 0.418509 0.44948 0.441376 0.537395

52 0.000026 0.436671 0.471413 0.417003 0.438932 0.439507 0.529943

26



Table 5 (continued)

poly. no metadata pdf compress ppt mp3 mp4 picture

53 0.009676 0.440834 0.471516 0.419007 0.448926 0.442098 0.540658

54 0.000021 0.435268 0.47043 0.414848 0.435516 0.438059 0.527065

55 0.000437 0.439448 0.471522 0.419285 0.446475 0.442177 0.539935

56 0.004746 0.441804 0.472875 0.419781 0.443671 0.44236 0.542425

57 0.009835 0.44219 0.471141 0.421075 0.448039 0.442399 0.539407

58 0 0.442474 0.472383 0.419839 0.441966 0.441578 0.536879

59 0 0.442562 0.471749 0.421147 0.448386 0.442328 0.540393

60 0.001705 0.443609 0.476583 0.421987 0.448994 0.445104 0.547865

61 0.002624 0.440573 0.471773 0.420737 0.448184 0.442375 0.540288

62 0.000914 0.435672 0.46928 0.414176 0.433102 0.437578 0.527946

63 0.003765 0.443383 0.4741 0.421855 0.447927 0.444083 0.543792

As shown in Fig. 10(a), the average ratio of 1’s decreases from 0.42 to 0.34 in the

scrambling scheme as the polynomial order rises from 4 to 16. Such improvement is due

to increase of the available polynomials. Fig. 10(b) shows that the average ratio of 1’s

decreases by 11.5% as the polynomial number changes from 32 to 256. Fig. 10(c) shows that

the ratio of 1’s increases from 0.27 to 0.42 on average by increasing the chunk size from 4B

to 32B due to the reduced overlap pattern between the data chunk and the polynomial.

Finally, we compare the ratios of 0’s in the outputs of the DPA-PPU’s with a data chunk

size of 4B and 8B, respectively. Note that the data from the DPA-PPU is the inversion of

one output from the de-correlation or scrambling circuits. All other parameters are set to

the default values. As shown in Fig. 10(d), the efficiency of DPA-PPU is generally better

when the data chunk size is small. The only exception is system metadata under 8B data

chunk size where the data is mainly processed by de-correlation circuit.

27



(a) The efficiency of scrambling under 4,8 and 16-order
polynomials.

(b) The efficiency of scrambling when the polynomial
number changes from 32 to 256.

(c) The efficiency of scrambling when the data
chunk size changes from 4B to 32B.

0

0.1

0.2

0.3

0.4

0.5

compress pdf mp3 metadata mp4 pictures ppt

R
a
ti

o
n

 o
f 

0
's

8B DPA-PPU 4B DPA-PPU

(d) Ratio of 0’s under DPA-PPU.

Figure 10: The efficiency of DPA-PPU to reduce 0’s ratio

2.6.1 DPA Error Failure Rate

Fig. 11 shows the simulated Vth programming probability of NAND flash cells under WIN 7

workload before and after applying DPA-PPU. The results of different data chunk sizes, i.e.,

4B and 8B, are also simulated. The probability of L0 increases from 24.5% to 48% when

the DPA-PPU with a data chunk size of 8B is applied. When reducing the data chunk sizes

down to 4B, the probability of L0 further raises to 59%.

We also simulated the ECC failure rates of NAND flash generating from program disturb,

read disturb and retention time limit, respectively, by using the model in Section 2.2.1. DPA

applies 8-bit BCH ECC (4312,4208,8) to every 526-byte data block. Fig. 12(a) shows that

the ECC failure rate induced by program disturb keeps below 2× 10−18 when the P/E cycle

28



0%

20%

40%

60%

80%

100%

120%

No DPA-PPU 8B DPA-PPU 4B DPA-PPU

P
ro

b
a

b
il

it
y

 o
f 

V
th

 l
e

v
e

ls

L3 ratio L2 ratio L1 ratio L0 ratio

Figure 11: Vth distribution after DPA-PPU.

count increases from 5K to 40K as the cell-to-cell interference is significantly minimized by

DPA-PPU. Similarly, Fig. 12(b) shows that the ECC failure rate induced by retention time

limit is also substantially suppressed by DPA-PPU compared to the system without DPA-

PPU. Fig. 12(c) depicts the ECC failure rate induced by read disturb at the read count of

5K. ECC failure rate reduction is still achieved by DPA-PPU even though more cells are

placed on L0. It is because the minimization of cell-to-cell interference improves the cell

noise margin and more reads can be tolerated. We note that the ECC failure incurred by

retention time limit dominates all errors and primarily determines the NAND flash lifetime.

When a 8B data chunk size is applied, ECC failure rate reaches the reliability threshold

Tuber = 10−13 when P/E cycle count = 23K; when a 4B data chunk size is applied, the ECC

failure rate reaches the Tuber when P/E cycle count = 30K. Compared to the system without

DPA-PPU where the maximum P/E cycle count = 7.5K (see Fig. 5(b)), the NAND flash

lifetime is improved by 3× and 4×, respectively. In all scenarios, reducing the data chunk

size always improves the NAND flash reliability.

Fig. 13 demonstrates the relationship between the maximum tolerable read count and

P/E cycle count when the Tuber is fixed, say, 10−13. The maximum read count of the system

without DPA-PPU quickly drops down to zero when the P/E cycle count raises above 18K.

By applying DPA-PPU scheme, however, the working range of flash cells is dramatically

expanded.

29



1.E-30

1.E-27

1.E-24

1.E-21

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

5K 10K 15K 20K 25K 30K 35K 40K

P/E cycle count

No DPA-PPU
8B DPA-PPU
4B DPA-PPU

(a) DPA-PPU program disturb ECC failure
rate.

1.E-28

1.E-25

1.E-22

1.E-19

1.E-16

1.E-13

1.E-10

1.E-07

1.E-04

1.E-01

5K 10K 15K 20K 25K 30K 35K 40K

P/E cycle count

No DPA-PPU

8B DPA-PPU

4B DPA-PPU

23K

(b) DPA-PPU retention time ECC failure rate.

1.E-21

1.E-19

1.E-17

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

5K 10K 15K 20K 25K 30K 35K 40K

P/E cycle count

NO DPA-PPU

8B DPA-PPU

4B DPA-PPU

(c) DPA-PPU read disturb ECC failure rate.

Figure 12: The ECC failure rates under different device noise.

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

5K 10K 15K 20K 25K 30K 35K 40K

max read count with DAP-PPU

max read count without DAP-PPU

Figure 13: Tradeoff between read count and P/E cycle count.

30



2.6.2 Overheads of DPA

We also evaluate the impact of DPA scheme on system performance under the data chunk

size of 4B and 8B. The data chunk size is switched from 8B to 4B when the P/E cycle count

reaches 23K (the reliability limit for 8B data chunk size). When the data chunk size is 8B,

one third of the redundant bits can be stored in the OOB zone. When the data chunk size

changes to 4B, the redundant bits increase and only one seventh of them can be stored in

the OOB zone, inducing more page access overhead. 8-bit ECC is applied to each 170-byte

data block in the redundant pages and four redundant pages form one RAID-5 stripe.

Fig. 14(a) shows that after 23K P/E cycle, compared with the system without DPA, the

response time of DPA+DRM with 8B and 4B data chunk size degrades by ∼ 7% and ∼ 10%

on average, respectively. The maximum performance degradation ∼ 20% occurs at Web

workload. One reason for the high overhead is that DPA incurs a considerable amount of

redundant page reads. The other reason is that most reads in web workload are large-sized

and sequential, where the hit rate of redundant page cache is low. Fig. 14(b) and Fig. 14(c)

show the write counts and erase counts of two DPA schemes, respectively. Averagely, under

4B data chunk, DPA+DRM increases the write count and erase count by ∼ 6% and ∼ 4%,

respectively.

2.7 CHAPTER 2 SUMMARY

In this chpater, we propose a data pattern aware error prevention technique named DPA

to extend the lifespan of NAND flash storage systems. We propose Pattern Probability

Unbalance (DPA-PPU) scheme to skew the ratio of 1’s and 0’s in the stored data so as

to place more cells on L0. We also employ Data Redundancy Management (DPA-DRM)

scheme to mitigate the performance overhead induced by DPA-PPU. Experimental results

show that DPA can prolong NAND flash lifetime by up to 3×.

31



(a) Write counts of DPA-DRM. (b) The average response time of DPA-DRM.

(c) Erase counts of DPA-DRM.

Figure 14: The performance overhead of DPA-DRM.

32



3.0 FLEXLEVEL NAND FLASH STORAGE SYSTEM DESIGN TO

REDUCE LDPC LATENCY

In this chapter, we will present FlexLevel technique which reduces Low Density Parity Check

(LDPC) incurred read latency. The structure of this chapter is organized as the follows: Sec-

tion 3.1 presents the preliminary knowledge of LDPC code and related works; Section 3.2

quantitatively estimates LDPC overhead with increase of P/E cycles; Section 3.3 illustrates

FlexLevel system architecture. Section 3.4 and Section 3.5 present LevelAdjust at the de-

vice level and AccessEval design at the system level, respectively; Section 3.6 presents the

experimental results; Section 3.7 summarizes this chapter.

3.1 LDPC CODE AND RELATIVE WORKS

With technology node scaling down, MLC NAND flash BER significantly increases. When

technology node is down to 2Xnm, the MLC NAND flash BER reaches up to 10−2 [40].

Under such a high BER, traditional hard-decision ECC, e.g., BCH code, cannot meet system

reliability requirement any more. Our DPA scheme cannot be applied under 10−2 BER either

due to high storage overhead of the redundant pages. To enhance error correction capability

with reasonable redundancy overhead, LDPC code is introduced. LDPC has a sparse M×N

parity-check matrix. The matrix is represented by a bipartite graph with N variable nodes

and M check nodes. Error correction is realized by belief-propagation (BP) algorithm [41]:

the decoding messages are iteratively computed and exchanged between variable nodes and

check nodes. There are two types of LDPC codes: hard-decision and soft-decision LDPC.

Hard-decision LDPC uses binary bits as the decoding message while soft-decision LDPC

33



employs LLR information. Soft-decision LDPC can achieve better error correction strength

than hard-decision LDPC and the error correction capability of the soft-decision LDPC

heavily depends on accuracy of LLR information.

In NAND flash memory, only binary information is provided, which severely deteriorates

LDPC performance. To enable adoption of soft-decision LDPC, read retry is employed. With

this technique, LLR information can be collected by sensing Vth with extra reference voltages

or soft sensing levels. More extra soft sensing levels generate more accurate LLR information.

However, increasing soft sensing levels also increases memory sensing overhead and data

transfer time, directly leading to longer read latency: read latency under soft-decision LDPC

with extra six soft sensing levels is seven times that of hard-decision LDPC [40]. Long read

latency is the major obstacle that excludes LDPC from high performance application.

To address the long read latency issue of LDPC code, several research works are proposed.

From the perspective of signal processing, G. Dong et al. proposed entropy coding to reduce

data transfer time [42]. However, entropy decoding induces high hardware cost. [41] adopted

a nonuniform memory sensing strategy to reduce soft sensing levels. S. Tanakamaru proposed

error prediction scheme which substitutes partial programming and partial erase for soft-

decision LDPC code [40]. K. Zhao et al. proposed fine-grained progressive and look-ahead

sensing scheme to reduce LDPC data transfer overhead [12]. Our work FlexLevel NAND

flash storage system design can incorporate these previous works to further reduce LDPC

overhead. Our work is inspired by [43], which minimizes BER in phase change memory by

Vth level reduction. Due to different memory structure and device models, we device an

encoding scheme and noise margin adjustment scheme different from [43] to minimize BER.

Unlike [43], simple Vth level reduction at the device level incurs higher storage overhead.

Therefore, we selectively apply Vth level reduction to the frequently read data with high

BER to maximize the design efficiency.

3.2 MOTIVATIONS

In this section, simulations are conducted to show that soft-decision LDPC overhead is closely

related to BER. Therefore, LDPC overhead will be reduced if BER can be minimized. Our

34



estimation of LDPC overhead is based on the reliability index uncorrectable bit error rate

(UBER). Assume a rate-n/m ECC is employed in NAND flash storage system. n and

m represent information length and total codeword length, respectively. UBER can be

estimated by [2]:

uber(k) =

1−
k∑
i=0

Ci
mp

i
c(1− pc)(m−i)

n
. (3.1)

Here, pc denotes BER of a single NAND flash cell. k is the correctable bit number. Here,

pc denotes BER of a single NAND flash cell. k is the correctable bit number. MLC NAND

flash memory BER can be simulated based on the reliability models Eq. 2.1∼2.4 in by Monte

Carlo simulation. The simulation is based on the mathematical models of RTN, cell-to-cell

interference and retention time noises. These models are expressed in Eq. 2.1∼2.4. For

RTN simulation, λ is calculated by 4.0 × 10−4N0.5 [31]. We adopt the even/odd bit-line

structure to simulate the effect of cell-to-cell interference. In the even/odd bit structure

NAND flash memory, capacitance coupling exists in three directions. Coupling ratios in

the three directions can be denoted by γx, γy and γxy. They are set 0.07, 0.09 and 0.005,

respectively [44]. The retention time noise parameters are obtained by fitting the data in [5].

Ks, Kd and Km are 0.333, 4× 10−4 and 2× 10−6, respectively. t0 is set one hour. x0 is Vth

level 0 and is modeled by Gaussian distribution N(1.1, 0.35) [27]. x is the initial Vth after

programming and t is storage time. The ISPP verify voltages and the programming step

voltages are set 2.55, 3.15, 3.75 and 0.15, respectively [27].

MLC NAND flash BER over P/E cycling is shown in Fig. 15. BER increases with

both P/E cycling and storage time. BER immediate after program operation (referred as

program BER) increases from 6.72 × 10−4 to 2.29 × 10−3 when P/E cycle count reaches

6000. Based on simulated NAND flash BER, we estimate overhead of qualified LDPC code.

The targeted UBER is set 10−15 [45]. A rate-8/9 LDPC code is performed to each 4KB

data block. According to LDPC performance in [12], we list the required LDPC extra soft

memory sensing levels under specific P/E cycle and storage time in Table. 6. 0 means hard-

decision LDPC which has no extra soft memory sensing. It is shown that soft-decision LDPC

with extra soft memory sensing levels is required after 4000 P/E cycles. Under 6000 P/E

cycle count and 1-month storage time, six extra soft memory sensing levels are necessary

35



1.0E-04

1.0E-03

1.0E-02

1.0E-01

2000 3000 4000 5000 6000
P/E cycle count

BER over P/E cycling

1-month retention time BER

1-week retention time BER

2-day retention time BER

1-day retention time BER

program BER

Figure 15: NAND flash memory BER over P/E cycling

to guarantee system reliability. Soft-decision LDPC overhead mainly results from retention

time error and increases with storage time and P/E cycles. Intuitively, if we can minimize

retention time BER, the incurred read latency can be reduced. In this work, we propose

FlexLevel technique to minimize the BER in NAND flash storage system and consequently,

reduce the LDPC latency and improve the read performance.

Table 6. Required extra LDPC soft sensing levels

P/E cycles 0 day 1 day 2 day 1 week 1 month

2000 0 0 0 0 0

3000 0 0 0 0 1

4000 0 0 0 1 4

5000 0 0 1 2 4

6000 0 1 2 4 6

36



Traditional FTL func: 
address mapping, 

garbage collection and 
wear-leveling, etc.

Access 
Eval

NAND FLASH INTERFACE

Flash Transaction Layer (FTL)

File System

Normal state

Reduced state

0 21

0 21 3
Level Adjust Level Adjust Level Adjust

LDPC 
decorder

Figure 16: FlexLevel NAND flash storage system overview

3.3 FLEXLEVEL NAND FLASH STORAGE SYSTEM OVERVIEW

Fig. 16 shows the overview of FlexLevel design, including two major components: LevelAd-

just and AccessEval. LevelAdjust technique is proposed to reduce BER at device level, i.e.,

adjusting cell noise margin by changing the number of Vth levels of floating gate transistors.

This technique allows one MLC NAND flash cell to have two states: normal state and re-

duced state. In normal state, the cell has four Vth levels, working as regular MLC NAND

flash cell. In reduced state, the cell has only three Vth levels. However, the BER of the cell

in reduced state is reduced by allocating a larger noise margin to each Vth level. At early

P/E cycling stage, BER is low and all NAND flash cells are in normal state. Following the

increase of P/E cycle and storage time, cells may switch to reduced state to control the BER

below a threshold. Note that gray code will not be applicable to reduced state as the half

of the capacity will be lost. Hence, we developed new coding scheme and bitline structure

to maximize the information storage density of the cells in reduced state. What is more,

37



based on the observation that different Vth levels may be associated with different BER, we

proposed the non-uniform noise margin adjustment (NUNMA) technique to further reduce

the maximum BER that needs to be handled in the design. The reduction of BER results

in fewer soft sensing levels needed by LDPC and consequently, improves the system read

performance. The LevelAdjust technique details will be discussed in Section 3.4. However,

even applying our newly developed coding scheme, Vth level reduction introduced by Lev-

elAdjust still cause up to 1
4

storage capacity loss. To maximize performance improvement

with minimized storage capacity loss, we propose AccessEval technique to selectively apply

LevelAdjust to the NAND flash cells based on need. AccessEval module is implemented in

FTL (Flash Translation Layer), which is a software layer emulating NAND flash as a block

device [6]. AccessEval evaluates LDPC overhead for stored data based on their access pat-

terns. For data with access patterns leading to high LDPC overhead, AccessEval manages

to store the data in reduced state cells. On the contrary, data with access patterns that lead

to low LDPC overhead will be stored in normal state cells. Thereby, soft-decision LDPC

induced read latency can be effectively reduced by paying minimum storage loss.

3.4 LEVELADJUST: VTH LEVEL ADJUSTMENT

3.4.1 Basic LevelAdjust Technique

LevelAdjust minimizes BER of a NAND flash cell through Vth levels reduction. Two states

are introduced to the operations of the cell. In normal state, the cell has four Vth levels. It

adopts the same even/odd bitline structure and program/erase operation as in regular MLC

NAND flash device. Standard gray code is still deployed to map two bits to the four Vth

levels. In reduced state, the cell has only three Vth levels: Vth level 0, 1 and 2. Compared

with normal state, the cell in reduced state has enlarged noise margin at each Vth level and

therefore can bear higher noise magnitude.

However, if gray code is still used to map the bits in reduced state cells, each cell can

only store one bit. Hence, ReduceCode technique is proposed to maximize the information

38



storage density of each reduced state cell. We observed that each reduced state cell has three

Vth levels and two cells indeed can represent nine Vth combinations. Therefore, ReduceCode

uses eight out of nine Vth combinations to represent 3 bits. In this way, two cells can represent

3 bits instead of just 2 bits with gray code.

Table 7. Bit value mapping under ReduceCode

3-bit value Vth I Vth II 3-bit value Vth I Vth II

000 0 0 100 2 2

001 0 1 101 0 2

010 1 0 110 2 0

011 1 1 111 2 1

A mapping scheme between 3-bit value and Vth level combinations in a reduced state cell

is shown in Table 7. Vth I and Vth II represent the Vth levels of the 1st cell and 2nd cell,

respectively. Similar to gray code, ReduceCode aims to minimize BER when Vth distortion

occurs. Take 3-bit value 101 as an example. It is mapped to Vth level 0 in the 1st cell and

Vth level 2 in the 2nd cell. In case of Vth distortion, e.g., the Vth level of the 2nd cell changes

from level 2 to level 1, the 3-bit value 101 will change to 001, causing only one-bit error. In

summary, one level distortion in any of the two cells will cause only one bit error. Thus, bit

error is effectively minimized.

A dedicated ReduceCode bitline structure is also designed, as shown in Fig. 17(a). Two

neighboring even or odd cells are combined to represent 3 bits and a pair of even cells or odd

cells have one MSB and two LSBs totally. Two LSBs from all even cells on one wordline form

a “lower page” while two LSBs from all odd cells on the same wordline form a “middle page”.

Also, the MSBs from all cells on the same word line form “upper page”. In NAND flash,

program operation is performed in unit of page. Thus, in ReduceCode bitline structure, we

propose a new two-step program algorithm to program each page as in Fig. 17(b): in the 1st

step, two LSBs, i.e., the lower or middle page is programmed; in the 2nd step, the MSBs,

i.e., the upper page is programmed.

39



SGD

WL3

WL2

WL1

WL0

SGS
0
4
2
7
5
10

8
13

Bitline 0

1
4
3
7
6
10

9
13

0V

2 LSBs

MSB

2V

2 cells for 3-
bit value

0
4
2
7
5
10

8
13

1
4
3
7
6
10
9
13

Lower page middle page
upper page

0 1

1st Program operation

Bitline 1 Bitline 2 Bitline 3

Even cell Even cellOdd cell Odd cell

0 1

2nd Program Operation (MSB = 0)

0 21

2nd Program Operation (MSB = 1)

Two step programming in 
ReduceCode bitline structure

(a) (b)

2 cells for 3-
bit value

Figure 17: ReduceCode bitline structure.

The Vth transitions under two program steps are summarized in Table 8. Here, ∆Vth I

and ∆Vth II denote the Vth level transition of the 1st and 2nd cells, respectively. Targeted

Vth I and targeted Vth II denote the Vth levels that the cells are programmed to. Before

programming, erase operation resets the reduced state cell to Vth level 0. During the 1st

program step, depending on whether the lower or the middle page needs to be programmed,

the even or the odd bitlines will be selected accordingly. The Vth level either increases to Vth

level 1 or remains in Vth level 0 based on the stored bit value. During the 2nd program step,

all bitlines will be selected. Since the MSBs of all cells form the upper page, the MSBs of

all pairs of cells will be programmed. Note that the Vth level transition during 2nd program

step depends on the least two significant bit values mapped in the 1st program step and

MSB. If MSB is 0, Vth level transition stops and Vth levels remain the same as that after the

1st program step. If MSB is 1, Vth level transition follows Table 8. In read operations of

ReduceCode bitline structure, Vth will be compared with the new read reference voltages.

3.4.2 NUNMA Technique: Non-uniform Noise Margin Adjustment

Besides by reducing Vth level number, our LevelAdjust also adopts non-uniform noise margin

adjustment (NUNMA) technique to maximize BER reduction efficiency. When NAND flash

cells enter post-cycling stage, retention time error starts to dominate the overall BER [2].

40



Table 8. Vth transaction under 2-step programming operation

MSB two LSBs
targeted

Vth I

targeted

Vth II
∆Vth I ∆Vth II program seq.

- 00 0 0 – – 1st program

- 01 0 1 – 0→1 1st program

- 10 1 0 0→1 – 1st program

- 11 1 1 0→1 0→1 1st program

1 00 2 2 0→2 0→2 2nd program

1 01 0 2 – 1→2 2nd program

1 10 2 0 1→2 – 2nd program

1 11 2 1 1→2 – 2nd program

Simple Vth level reduction, however, is not adequate to inhibit retention time error. To

further reduce cell BER, we first analyze the error patterns of MLC NAND flash cells. The

error pattern, i.e., bit error occurrence probability, under 1-week/1-month storage time and

different P/E cycle counts is shown in Fig. 18. Here, simulation method and NAND flash

parameters keep the same as that in Section 3.2. X-axis shows combinations of P/E cycle

count and storage time and Y-axis displays bit error occurrence probability breakdown at

each Vth level. The results clearly show that higher Vth levels have larger retention time error

occurrence probability: 51% and 30% bit errors occur at Vth level 3 and 2 on average. This

implies that Vth in high levels decreases faster than that in low levels. Therefore, allocating

Vth noise margins uniformly among all Vth levels may not an optimal solution as system

reliability is only limited by the maximum BER.

Based on this observation, we propose NUNMA technique to maximize BER reduction

efficiency. The main idea of NUNMA is to optimize the noise margins of different Vth levels

globally. A Vth level region is confined by its lower and upper read reference voltages.

Originally, program verify voltage is set to close to lower read reference voltage and the

41



0%

20%

40%

60%

80%

100%

P/E 4000

1-week
BER

P/E 4000

1-month
BER

P/E 5000

1-week
BER

P/E 5000

1-month
BER

P/E 6000

1-week
BER

P/E 6000

1-month
BER

Vth level 3 Vth level 2 Vth level 1 Vth level 0

Figure 18: Bit error occurrence probability at four Vth levels.

Vth distribution is placed in the center of its Vth level region, as shown in Fig. 19(a). The

decrease in Vth with storage time increase results in retention time errors. In order to improve

retention time noise margin, the programmed Vth distribution should be shifted to right by

increasing the verify voltage while maintaining the read reference voltages unchanged. As a

result, the programmed Vth will be much higher than lower reference voltage, allowing the

enhanced noise margin and better tolerance to charge loss, as shown in Fig. 19(b). However,

increasing verify voltage may cause the level 1 Vth to exceed its upper read reference voltage,

introducing cell-to-cell interference errors. As shown in Fig. 18, the retention time BER at

low Vth levels is lower than that at high Vth levels. Hence, it is safe to allocate relatively

small retention time noise margin to low level Vth’s and large retention time noise margin to

high level Vth’s. A low verify voltage in Vth level 1 together with a high verify voltage in Vth

level 2 can be employed, as shown in Fig. 19(c). Both cell-to-cell interference and retention

time BER are reduced. NUNMA technique can be easily implemented in NAND flash as

programming verifying and read reference voltages are all adjustable [46].

3.4.3 LevelAdjust Overhead Evaluation

This section, the hardware and storage overhead of LevelAdjust is evaluated. The hardware

overhead introduced by LevelAdjust is the logic gates that are needed to implement Reduce-

42



More cell-to-cell 
interferencce error

0 1 2

Non-uniform noise 
margin adjustment 

higher retention 
time noise margin

0 1 2

verify voltage
read reference voltage

(a) (b)

0 1 2

better cell-to-cell 
interferencce noise margin

Non-uniform retention 
time noise margin

(c)

same noise 
margin

Figure 19: NUNMA technique.

Code circuit. We assume that V11V10 and V21V20 represent Vth levels of two neighboring cells.

b2b1b0 denote 3-bit value. The logic expression of encoding circuit is listed in Eq. 3.2∼3.5.

V11 = b2b1 + b2b̄0. (3.2)

V10 = b̄2b1. (3.3)

V21 = b2b̄1. (3.4)

V20 = b̄2b0 + b1b0. (3.5)

The logic expression of decoding circuit is listed in Eq. 3.6∼3.8.

b2 = V11V̄10V̄21 + V̄10V21V̄20. (3.6)

b1 = (V11

⊕
V10)V̄21. (3.7)

b0 = V̄11V̄21V20 + V̄10V̄21V20 + V̄11V̄10V21V̄20. (3.8)

43



The circuit only employs less than 100 gates. ReduceCode encoding and decoding overhead

is only one clock cycle, e.g., 5ns for a 200MHz clock frequency. The induced overheads

on data transfer and sensing latency (normally tens of microseconds) can be also ignored.

Another hardware overhead is interface command decoding circuit. Since one cell can have

two states, some logic is needed to configure cells into normal state or reduced state. However,

the incurred hardware overhead is also very marginal.

The major overhead of LevelAdjust is the capacity loss incurred by Vth level reduction.

In reduced state, two MLC NAND flash cells are combined to represent 3 bits, leading to

25% storage density reduction compared to normal state cell. This capacity loss has to be

compensated since storage system capacity must be consistent to file system. Although over-

provision space [47] may be used to compensate the capacity loss, it may cause severe write

performance degradation. In order to minimize such capacity loss, AccessEval technique is

introduced at system level, as we present in next section.

3.5 ACCESSEVAL: ACCESS PATTERN EVALUATION

3.5.1 AccessEval Overview

LevelAdjust introduces inevitable storage capacity loss of NAND flash cells. To reduce the

storage overhead, AccessEval restricts the application of LevelAdjust to a minimum number

of NAND flash cells that really need. In reality, not every data contributes equally to the

overall LDPC overhead. Therefore, if we can identify the data which contribute to the

majority of the LDPC overhead and apply LevelAdjust to only these data, i.e., storing them

in reduced state pages, the impacts of LevelAdjust will be limited to a small scale. The LDPC

overhead can be still reduced while the incurred system storage capacity loss is minimized.

For this purpose, we propose AccessEval technique that can selectively apply LevelAdjust

to the data based on their needs.

The architecture of AccessEval design is shown in Fig. 20. An AccessEval module con-

sists of three components: IWFR identifier, ReducedCell pool and AccessEval controller.

44



NAND flash Contoller

LDPC 
decorder

NAND Flash memory Interface

File system

FTL

Traditional 
FTL 

components
Access Eval

ReduceCell Pool

AccessEval 
Controller

IWFR identifier

Figure 20: AccessEval architecture

ReducedCell pool is a data structure recording the data stored in reduced state pages. The

size of ReducedCell pool limits the maximum number of reduced state pages. AccessEval

controller manages the data allocation between reduced state pages and normal state pages.

During read operations, once a data is identified as IWFR data, it will be stored in a reduced

state page. If all reduced state pages are used, ReducedCell pool will first evict the least-

recently-accessed data from the reduced state pages to normal state pages, and upcoming

IWFR data is stored in the reduced state pages.

Note that in AccessEval, data migration between reduced state pages and normal stage

pages incurs extra program and erase operations. Improving the identification accuracy of

IWFR data becomes essential to enhance the AccessEval efficiency. More details on the

design of IWFR identifier will be discussed in following subsections.

3.5.2 IWFR Data Identification

One of the main challenges in AccessEval is how to identify data that will contribute to the

majority of overall LDPC overhead. The LDPC overhead contributed by a data depends on

the LDPC overhead per read and the read frequency of this data. Here the LDPC overhead

per read is determined by the number of extra sensing levels needed to decode this data

correctly. Based on Table 6, the number of extra sensing levels is mainly decided by the

45



retention time BER of this data. When the write frequency of a data is infrequent, the

storage time of the data becomes long, causing a high retention time BER. Hence, we can

conclude that a data with low write frequency and high read frequency will contribute more

to the overall LDPC overhead. Accordingly, such a type of the data is defined as IWFR

(infrequently-write-and-frequently-read) data, which shall be identified by IWFR identifier

and intuitively stored in reduced state pages.

Table 9. Workloads access pattern characterization

Workload Application Read rt.
IWFR rt.

in read data

fin-2 OLTP 78.46% 0%

websearch-1 web server 99.9% 100%

websearch-2 web server 99.98% 100%

prj-1
research

project
72.3% 69.23%

prj-2
research

project
62.3% 59.73%

user-1
p2p client,

office
43.7% 41.5%

user-2
p2p client,

office
52.03% 44%

Many techniques have been invented to recognize the frequently read and write data

in [48, 49, 50]. All these techniques adopt only one constraint (e.g., frequently-read or

frequently-write) in data identification process. However, our initial analysis shows that

IWFR data are not necessarily frequently-read data. To reveal the difference between IWFR

and frequently read data, access patterns under eight workloads are investigated. The work-

load statistics data is collected up to 4 days. Statistics about fin-2 workload is collected

within 1 day. Websearch-1 and websearch-2 workload data is collected within 4 days. Other

46



Write request

Yes

No

Record the block number 

in IWFR pool

Start

Is the block 

number in IWFR 

pool

Yes

Record the block number 

in  FWFR pool

Remove the block number 

from IWFR pool

Write request or 

read request ?

Is the block 

number in FWFR 

pool?

Read request

Are extra sensing 

levels incurred?

Migrate the block number 

to IWFR pool

Yes

1

1

No

No

1

Figure 21: IWFR identification flow.

workload data is collected within 2 days. We define frequently read data as the read data

with 20% highest count [48]. Here, the collected IWFR data includes write-once-multiple-

read and read-only data. The read patterns are shown in Table 9. The third column shows

the ratio of frequently read data among all data. The fourth column shows the ratio of

IWFR data among all read frequently data. From the table, we can see that frequently read

data is not necessarily IWFR. IWFR data ratio varies a lot with workloads. In fin-1 and

fin-2 workload, there is less than 5% IWFR data in frequently read data. Except workload

websearch-1 and websearch-2, less than 70% frequently read data is IWFR. Based on the

analysis above, we can conclude that the previous techniques cannot be directly incorporated

in AccessEval to identify IWFR data.

To achieve high identification accuracy, we design our own IWFR identifier. Two pools

are used to facilitate the identification of IWFR data, including 1) IWFR pool, which records

the block number of IWFR data; and 2) FWFR (frequently-write-frequently-read) pool,

which records the block number of FWFR data. Here, FWFR pool is employed to improve

the IWFR identification accuracy by preventing FWFR data from entering IWFR pool.

IWFR identification flow is depicted in Fig. 21. When a write request is received, the block

number of the data to be programmed is stored in FWFR pool. If this new block number

already exists in FWFR pool, no action will be taken. Otherwise, this block number will

47



be inserted to FWFR pool. If there is no space in FWFR pool for the newly inserted block

number, the least recently and least frequently accessed block number is evicted from the

pool to reserve the space for this block number. IWFR pool is then searched for this block

number. If this block number is also in IWFR pool, it will be removed from the IWFR pool.

The hypothesis is that a newly written data is relatively “fresh” and less likely to have error.

Thus, it does not need to be stored in a reduced state page. When a read request is received,

we first check whether the block number of the data to be read has been recorded in FWFR

pool. If it is in FWFR pool, then we will continue to check whether extra sensing levels are

needed to correctly decode this data. If so, the block number will migrate from FWFR pool

to IWFR pool. Otherwise, no action will be taken since the data still has low error rate.

The hypothesis is that a data in FWFR that needs extra sensing levels is likely has been

stored for long time and been read for many times. Therefore, it should be categorized as

a IWFR data. If the data is not in FWFR pool, its block number needs to be recorded in

IWFR pool if we have not done so. Again, if there is no free space in IWFR pool, the least

recently and least frequently accessed block number need to be evicted to reserve the space

for this new block number.

To further improve IWFR data identification accuracy, we must take into account sensing

levels of the data. In IWFR pool, the data may have been stored for different time periods.

The longer the data have been stored for, the higher extra sensing levels they may need. By

considering both access patterns and sensing levels, a modified LDPC overhead estimation

rule can be created as follows: in IWFR pool, the access frequency of a data is divided

into N levels (Lf ) while its soft sensing levels are divided into M buckets (Lsensing). LDPC

overhead is measured by Lf×Lsensing. If the LDPC overhead of a data exceeds a pre-defined

threshold, this data will be stored in reduced state pages.

3.5.3 AccessEval Overhead Discussion

Although the capacity loss incurred by LevelAdjust at device level is 25%, applying AccessE-

val can successfully reduce the capacity loss down to 6% at system level, as we shall show in

Section 3.6. The application of LevelAdjust is constrained to only 25% of total NAND flash

48



Table 10. Non-uniform LevelAdjust configuration

Scheme Vpp Vverify1 Vverify2 Vread−ref1 Vread−ref2

NUNMA 1 0.15 2.71 3.61 2.65 3.55

NUNMA 2 0.15 2.70 3.65 2.65 3.55

NUNMA 3 0.15 2.75 3.70 2.65 3.55

pages. The write overheads caused by the reduced over-provisioning space is very marginal.

More details on the relevant experiments can be found in Section 3.6. In AccessEval, Re-

ducedCell pool is stored in data buffer (DRAM) of NAND flash storage system [47] for fast

access. Assume that each entry in ReducedCell pool is 4 bytes. The required storage size

is equal to 4×Srs

Spage
. here Srs and Spage represent the size of the data stored in reduced state

pages and the size of a NAND flash page, respectively. Assume up to 32GB data needs to

be stored in reduced state pages and the page size is 16KB, ReducedCell pool only occupies

8MB.

3.6 EXPERIMENTAL RESULTS

3.6.1 LevelAdjust Efficiency

Experiments were performed to evaluate the effectiveness of LevelAdjust in LDPC overhead

reduction. The values of BER are obtained from Monte-Carlo simulations. Three NUNMA

configurations are explored to find out the optimal device parameters for BER reduction.

The program verify and read reference voltages of three NUNMA configurations are listed

in Table 10. Regular MLC NAND flash cell (i.e., the normal state cell) is used as the

baseline in our comparison. Parameters adopted in the experiments keep the same as that

in Section 3.2. We first simulate program BERs and retention time BERs before and after

applying LevelAdjust and then evaluate the corresponding LDPC overheads based on the

simulated BERs.

49



1.E-04

1.E-03

1.E-02

2K 3K 4K 5K 6K

Program BER
Baseline NUNMA 3

NUNMA 2 NUNMA 1

Figure 22: Program BER in reduced state cells.

Program BERs of reduced state cells under different configurations are shown in Fig. 22.

We found that compared with the baseline, program BERs can be reduced by up to 6× in

NUNMA 1 due to enhanced noise margin. The program BER of NUNMA 3 is 50% and

20% higher than NUNMA 1 and 2, respectively. This is because that the verify voltage

in NUNMA 3 is higher than that in NUNMA 1 and 2, causing more prominent cell-to-cell

interference. Based on the result in [12], the BER limit that triggers extra sensing levels

is 4 × 10−3. Nonetheless, the program BERs of three NUNMA configurations are all lower

than the limit so that none of them incurs extra sensing levels during programming.

The simulated retention time BERs of reduced state cells under three NUNMA configu-

rations are shown in Table 11. On average, BERs are reduced by 2×, 5× and 9× under the

three NUNMA configurations, respectively. NUNMA 3 achieves the lowest retention time

BER because high verify voltage provides more retention time noise margin. The highest

retention time BER of NUNMA 3, i.e., 1.51 × 10−3, occurs after 1 month and 6000 P/E

cycles. Again, it is lower than the BER limit that incurs extra sensing levels. Among all

NUNMA configurations, NUNMA 3 achieves the lowest combined program and retention

time BERs, which correspond to the minimum LDPC overhead. No extra sensing levels will

be required.

50



Table 11. BER comparison under three NUNMA configurations

P/E cycles scheme 1 day 2 days 1 week 1 month

2000

Baseline 0.000638 0.000715 0.00103 0.00184

NUNMA 1 0.000370 0.000453 0.000827 0.00149

NUNMA 2 0.000167 0.000173 0.000243 0.000330

NUNMA 3 0.000120 0.000133 0.000167 0.000181

3000

Baseline 0.00146 0.00169 0.00260 0.00459

NUNMA 1 0.000677 0.000860 0.00143 0.00249

NUNMA 2 0.000343 0.000367 0.000570 0.000807

NUNMA 3 0.000237 0.000257 0.000293 0.000390

4000

Baseline 0.00229 0.00284 0.00456 0.00778

NUNMA 1 0.00117 0.00149 0.00240 0.00402

NUNMA 2 0.000443 0.000633 0.000820 0.00150

NUNMA 3 0.000327 0.000343 0.000457 0.000633

5000

Baseline 0.00359 0.00457 0.00699 0.0120

NUNMA 1 0.00177 0.00233 0.00349 0.00545

NUNMA 2 0.000690 0.000853 0.00123 0.00227

NUNMA 3 0.000460 0.000540 0.000713 0.00109

6000

Baseline 0.00484 0.00613 0.00961 0.0161

NUNMA 1 0.00218 0.00288 0.00446 0.00672

NUNMA 2 0.00100 0.00131 0.00192 0.00324

NUNMA 3 0.000623 0.000627 0.000973 0.00151

51



0%

20%

40%

60%

80%

100%

fin-2 web-1 web-2 prj-1 prj-2 win-1 win-2

Avg. false identification rate

MBF IWFR Identification

Figure 23: Average false identification rate of IWFR identification technique.

3.6.2 AccessEval Performance Evaluation

In this section, we will evaluate the effectiveness of the proposed AccessEval design. We

will first evaluate the accuracy of IWFR identification technique since AccessEval efficiency

heavily depends on IWFR identification. We will compare read and overall performance

gain under the systems with and without AccessEval design. In the experiments, we will

also investigate how P/E cycle affect AccessEval efficiency. Finally, we will evaluate Acces-

sEval’s impact on flash memory endurance. We assume that the target UBER is 10−15. In

the simulated system, a 8/9-rate LDPC (512B coding redundancy per 4KB user data) is

employed to protect data integrity. The storage system requires that NAND flash be used

under 6000 P/E cycle count.

First we show the IWFR identification technique efficiency by evaluating false identifi-

cation rate. We adopt MBF [48] to identify IWFR data in read-only pool. We set two Lf

and two Lsensing, respectively. In IWFR identification experiment, sensing levels of 1-2 and

4-6 belong to Lsensing level 1 and level 2. We set two Lf levels 3 and 4. The pre-defined

soft-decision cost threshold is 4. The simulation result is shown in Fig. 23. The false iden-

tification rate of the proposed IWFR identification technique is only 10% and decreases by

4.5× compared with MBF. The maximum improvement occurs in fin-2 workload since most

52



frequently read data is FRFW in this workload. Compared with MBF, the average false

identification rate is reduced by 4.5×. Under read-only intensive workload web-1 and web-2,

false identification rate also remains unchanged.

Table 12. MLC NAND flash specification

Capacity
Block Size Block Number Page Size

1MB 4096 16KB

Timing

Program Latency Read Latency Erase Latency

900 µs
44µs(normal state)

36µs(reduced state)
3.5ms

The achieved performance gain can be obtained by comparing the read and overall av-

erage response time of the system before and after LevelAdjust and AccessEval are applied.

The simulations on AccessEval performance are performed on the simulator Flashsim [51].

The proposed AccessEval design is incorporated into the simulator and a 256GB NAND flash

storage system is emulated. Parameters of regular MLC NAND flash and normal state cells

are summarized in Table 12. Extra sensing levels can be obtained based on the simulation

results in Table 6. The P/E cycle of NAND flash memory is set to 6000. The timing overhead

of each sensing level is set to 8 µs and data transfer time is set to 20 µs [12]. In reduced state

cells, NUNMA 3 configuration is adopted and no extra sensing overhead is introduced. The

LDPC-SSD scheme [12] is employed as our LDPC design baseline and the UBER and LDPC

configuration listed in Section 3.2 is used. Two storage system configurations are tested: 1)

the one only has LevelAdjust design (LevelAdjust-only) and 2) the one incorporates both

LevelAdjust and AccessEval (LevelAdjust+AccessEval). We assume the storage system has

30% over-provisioning portion. In AccessEval, the size of storage space that can be used for

LevelAdjust is limited to 64GB. After LevelAdjust, the capacity of this portion is reduced

to 48GB with 16GB capacity loss. The benchmarks in Table 9 are used in the experiments.

Fig. 24(a) shows the read response time reduction achieved in our simulated two config-

urations. Compared with baseline, LevelAdjust can reduce read latency by 14% on average

53



with 25% capacity loss. The maximum response time reduction occurs at two read-intensive

workloads: web-1 and web-2. As a comparison, the average read response time reduction

in AccessEval+LevelAdjust is 10%. Although it is slightly lower than that achieved in Lev-

elAdjust, AccessEval+LevelAdjust successfully reduces the capacity loss down to 16GB, or

6.25% of the total NAND flash storage system capacity.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

fin-2 web-1 web-2 prj-1 prj-2 win-1 win-2

Normalized read resp. time reduction 

LevelAdjust-only LevelAdjust+AccessEval

(a) Normalized read average response time under
the Flex-level design.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

fin-2 web-1 web-2 prj-1 prj-2 win-1 win-2

Normalized overall resp. time reduction 

LevelAdjust-only

LevelAdjust+AccessEval

(b) Normalized overall average response time un-
der the Flex-level design.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

fin-2 web-1 web-2 prj-1 prj-2 win-1 win-2

Normalized overall resp. time under 

different P/E cycle counts
3K P/E cycles 4K P/E cycles 5K P/E cycles 6K P/E cycles

(c) Normalized average response time under different
P/E cycle counts.

Figure 24: The performance improvement of the Flex-level design.

The reduction of the overall response time in different configurations, including both

read and write latencies, is summarized in Fig. 24(b). In order to compensate the capac-

ity loss, part of the over-provisioning space is used as the normal storage capacity in both

configurations. In LevelAdjust, if the 25% capacity loss is fully compensated, the remain-

ing over-provisioning space is only 5% of the normal system storage capacity. The signif-

54



icantly reduced over-provisioning space dramatically increases garbage collection frequency

and therefore prolongs write latency. In the last 4 benchmarks, for example, the overall

system response time of LevelAdjust is even longer than the baseline. It indicates that the

incurred write latency increase even exceeds the read latency reduction achieved by Leve-

lAdjust. In AccessEval+LevelAdjust, however, the capacity of over-provisioning space only

slightly decreases (i.e., 30%→ 23.75%). The impact on garbage collection and write latency

is small. The overall system response time indeed reduces by 8% on average. Experiment

results also show that the performance gain of AccessEval+LevelAdjust increases with P/E

cycle count compared to the baseline system. As shown in Fig. 24(c), the average response

time reduction achieved by AccessEval+LevelAdjust w.r.t. baseline system increases from

2% to 11% on average when the P/E cycle increases from 3000 to 6000.

Finally, we evaluate the impact of our techniques on system endurance. Simulation

is carried out at a P/E cycle of 6000. Fig. 25(a) shows the write count increases with

LevelAdjust+AccessEval, which is only 6% on average. The write count increase comes from

the data migration between normal state cells and reduced state cells. The maximum relative

write increase happens in web-1 and web-2 workloads simply because their original write

numbers are low. Fig. 25(b) shows the erase count increases with LevelAdjust+AccessEval.

On average, the erase count increases by 19% across all the simulated workloads. Although

web-1 and web-2 has high relative increase in write count, their erase counts almost unchange.

This is because the actual write count number is too small to invoke considerably large volume

of garbage collections. Since LevelAdjust+AccessEval only applies when the system BER is

high enough to incur extra sensing levels, its impact on system lifetime is quite marginal:

Table 6 shows that LevelAdjust+AccessEval is needed only when the P/E cycle exceeds

4000. Hence, the average lifetime reduction across all the workloads is only 7%, as depicted

in Fig. 25(c).

3.7 CHAPTER 3 SUMMARY

In this work, we propose FlexLevel technique to reduce LDPC-induced read latency. We pro-

pose device-level LevelAdjust technique to reduce BER via Vth level reduction. By minimiz-

55



ing BER, extra sensing levels can be effectively reduced and read performance is improved.

To balance performance improvement and density loss, we propose AccessEval technique.

Simulation results show that compared with the best prior works, the proposed design can

achieve read speedup by up to 11% with negligible capacity loss.

1.00E+00

2.00E+01

4.00E+02

8.00E+03

1.60E+05

3.20E+06

6.40E+07

1.28E+09

fin-2 web-1 web-2 prj-1 prj-2 win-1 win-2

Wrt. count at 6K P/E cycles

Baseline AccessEval-48GB

(a) The write count increase under LevelAd-
just+AccessEval technique.

1.00E+00

2.00E+01

4.00E+02

8.00E+03

1.60E+05

3.20E+06

fin-2 web-1 web-2 prj-1 prj-2 win-1 win-2

Erase count at 6K P/E cycles

Baseline AccessEval-48GB

(b) The erase count increase under LevelAd-
just+AccessEval technique.

60%

80%

100%

120%

fin-2 web-1 web-2 prj-1 prj-2 win-1 win-2

System lifetime Reduction

(c) The lifetime reduction under LevelAd-
just+AccessEval technique.

Figure 25: The lifetime cost of LevelAdjust+AccessEval technique.

56



4.0 PERFORMANCE OF OBJECT BASED NAND FLASH STORAGE

SYSTEM

In Chapter 4, we will present our works on optimization of object-based NAND flash storage

system. This chapter is organized as follows: Section 4.1 presents the basics of NAND flash

memory and object-based NAND flash device; Section 4.2 and Section 4.3 introduce the mo-

tivation for our research and related works, respectively; Section 4.4 describes the proposed

MLGC, virtual B+ tree and diff cache in detail; Section 4.5 introduces our implemented

simulation platform; Section 4.6 presents the experimental results; Section 4.7 summarizes

this chapter.

4.1 BACKGROUND

4.1.1 Basics of NAND Flash Memory

The NAND flash memory adopts a block-page structure. A NAND flash memory is divided

into a number of blocks. Each block is divided into a number of pages, whose size ranges from

512B to 16KB [52]. The erase operation is conducted by unit of block while the program

operation is performed by the unit of page. A NAND flash memory page (i.e., a physical page)

consists of a data area and out-of-band (OOB) area. The data area stores the page data;

the OOB area stores page metadata such as page data information and ECC parity [10][53].

The page metadata and the page data are written together to a NAND flash page. Due to

the block-page structure and out-of-place update, write amplification is introduced. In the

NAND flash memory based storage system, garbage collection is employed to reclaim dirty

57



NAND flash memory controller 

On-device DRAM

Global index

Object ID

Per-object index

Object data pages

Onodes

Object attributes

Index addr

Onode pages

File system 
namespace

object object object object

Firmware

Object file system

Object based NAND 
flash device

Raw NAND flash 
memory

Figure 26: The architecture of object-based storage system.

blocks for upcoming write requests. Usually, a dirty block has both valid and invalid pages.

The valid pages have to migrate to a clean block before erase operation. Hence, more data is

written than the requested, which is called write amplification. Write amplification reduces

system endurance and degrades write performance.

4.1.2 Basics of Object-based NAND Flash Device

To improve garbage collection efficiency and reduce write amplification, an object-based

NAND flash storage model is proposed in the previous works [19]. The architecture of the

object-based NAND flash storage model is shown in Fig. 26. In this model, the object is the

basic storage unit. An object denotes a variable-sized data container, e.g., a file, which can

be uniquely identified by an 64-bit object ID. Each object includes data and attributes [54].

The object data contains file data with variable-length. The object attributes, stored in

inode describe file metadata such as ownership and access control.

The object-based model contains an object file system and an object-based NAND flash

device (ONFD). The object file system only maintains the name space. The ONFD manages

object storage. The ONFD consists of raw NAND flash memories, a NAND flash mem-

58



ory controller, an on-device DRAM and a firmware. The NAND flash memory controller

provides datapath and applies data protection, e.g., ECC. DRAM is deployed to buffer

the frequently accessed data. The firmware handles object management and NAND flash

memory management.

In the ONFD, the object data is accessed via object metadata – per-object indices and

onodes. Like the object data, per-object indices and onodes are also stored in the NAND

flash memories. The per-object maintains the physical addresses of the object data. To

maximize the space efficiency, the per-object index is implemented with the extent based

B+ tree [21]. The onode contains the inode and the address of the per-object index root

node page. The physical addresses of onodes are maintained in a global index. The global

index, with a B+ tree data structure, is stored in DRAM for fast access.

Besides object management, ONFD also manages NAND flash memory via physical page

allocation, garbage collection and wear-leveling. The ONFD adopts the log-structured page

allocation method [55]. The physical storage space is divided into a number of chunks. A

chunk contains one or more NAND flash blocks. Each chunk has a chunk metadata. The

chunk metadata includes chunk states, valid page count and page bitmap table [10]. The

chunk is the basic garbage collection unit. When the number of clean chunks is under

a threshold, garbage collection is invoked to reclaim the dirty chunks. Usually, a greedy

algorithm is adopted [56]: the chunk with the fewest valid pages is selected for reclamation.

During chunk reclamation, the pages which are marked valid in the page bitmap table

migrate to a clean chunk before the dirty chunk is erased. To reduce data migration of

garbage collection, object data and object metadata are stored in different chunks due to

different data access patterns [19].

4.2 MOTIVATION

In this section, we introduce the design challenges in the ONFD architecture mentioned in

Section 4.1. In the ONFD, two write amplification causes, onode partial update and cascading

update, are identified by leveraging object semantics. The onode size, about one hundred

59



bytes, is smaller than the physical page size. To reduce internal fragmentation, more than

one onode is stored in a physical page [19]. Update to an onode causes partial page update:

The old onode in the physical page is invalidated while the un-updated onodes in the same

page remains valid. The existing ONFD only allows page-unit invalidation since valid status

is maintained at the page and block granularity [10]. Hence, to invalidate the entire page,

the remaining valid bytes have to migrate, directly increasing write overhead [47]. The

performance degradation is aggravated with increase of physical page size.

Global index

Obj 2

Object ID

Per-object index pages

Onode pagesOnodes

Object attributes

Index addr

Object data pages

Global index

Obj 2

Object ID

Per-object index pages

Onode pagesOnodes

Object attributes

Index addr

Object data pages

Before updating object data A

Object data A

Invalid page Valid page Clean page

Object data A

Root and internal node page

Root and internal node page

Internal node pages

Leaf node pages

Leaf node pages

Internal node pages

After updating object data A

Figure 27: An example of cascading update.

Another write amplification cause is cascading update. When an object data is updated,

the new address is updated in the corresponding per-object index. The cascading update

occurs within the per-object index due to the wandering tree issue [22]. The per-object index

is implemented with the extent-based B+ tree [21]. The leaf node page records the physical

addresses of object data. The internal node page maintains the physical addresses of the

60



child node pages. When a child node page is updated, the new address will be updated in the

parent node page in a cascading manner until the root node page is reached. In addition,

updating the root node page also incurs onode update. Although update to the object

metadata is only several bytes, two or more pages have to migrate entirely, significantly

degrading write performance. An example of the cascading update is shown in Fig. 27.

Updating object data page A of object 2 incurs update to three per-object index pages. The

new address of the per-object index root node page is updated in the corresponding onode.

Therefore, total four object metadata page writes are induced.

The cascading update also increases the overhead of garbage collection. During garbage

collection, moving a object data page induces write operations to the corresponding object

metadata pages; migration of a per-object index node page involves update to the associated

parent node pages and the corresponding onode.

4.3 RELATED WORKS

To reduce partial page update and cascading update induced data migration, several works

were proposed. [47] proposed to merge partial page updates by byte-addressable emerging

non-volatile memory such as ReRAM, STT-MRAM and phase change memory. However,

the emerging non-volatile memories are either expensive or not under mass production. [10]

identifies object data induced partial page update under the byte-unit access interface. To

mitigate the partial page update, [10] proposed to compact partial object data updates in

diff-pages before merging them with the un-updated object data. However, this scheme is

not applicable to onode partial update.

[22] proposed µ tree to mitigate cascading update of the B+ tree. The µ tree realizes

write operation reduction by compacting the most recently updated nodes in one page.

However, with the reduced node size, µ tree increases internal fragmentation. The search

overhead of µ tree also increases due to increase of the tree height. [10][57] proposed to delay

and merge updates to B+ tree with a cache in main memory. However, this lazy update

scheme significantly increases main memory consumption. To mitigate the data migration

61



of onode partial update and cascading update, we propose the Data Migration Minimization

(DMM) device design. Compared with the previous works, our DMM device design can

more effectively mitigate the write amplification with only marginal memory consumption.

To evaluate the efficiency of the proposed DMM device, a simulation infrastructure needs

to be setup. There are several simulators for NAND flash storage systems and object storage

device. However, none of them can be immediately applicable to the experiments of our

proposed scheme. Flashsim [51] is one of the most popular NAND flash based solid disk drive

simulator used in academia research. However, Falshsim is developed based on the block-

level interface and therefore cannot be directly adopted to simulate the object-based device.

Moreover, Flashsim only stores the accessed LBA without the requested data. Such an

approach simplifies system design and speeds up simulation. However, it prevents adoption

of Flashsim from evaluation of algorithms based data access patterns.

Several object-based device softwares are commercially available. A typical example is

the open-source software OSC-OSD developed by Ohio Supercomputer Center [58]. It is

implemented as the middleware on top of local file system, e.g., ext4. Object storage in

the underlying storage medium is handled by local file system, which is hidden from the

user. Hence, the OSC-OSD software cannot be directly applied to simulation of the ONFD,

either. Some works such as [19] uses NANDsim, a built-in linux kernel module for simulation.

However, NANDsim does not support multiple-chip parallelism. In addition, modifying and

debugging kernel modules are time-consuming. To provide a simulation infrastructure to

evaluate and analyze the ONFD performance, we develop a simulator ObjNandSim which is

introduced in Section 4.5.

4.4 OPTIMIZATION OF OBJECT-BASED NAND FLASH DEVICE

In this section, the data migration minimizing (DMM) device design is illustrated. First, an

overview of our DMM device architecture is described in Section 4.4.1. Multi-level garbage

collection (MLGC) which handles onode partial update are depicted in Section 4.4.2. After

62



Raw NAND flash memories 

NAND flash memory controller 

On-device DRAM

Global index

Object ID

Object data pages

Byte-level GC table

Object attributes

Index addr

Onode page Per-object index pages

Object data pages

Diff cache

Virtual address Physical address

Virtual B+ tree page table

Figure 28: The overall architecture of the DMM device.

that, virtual B+ tree and diff cache are presented to handle cascading update in Section 4.4.3

and Section 4.4.4, respectively. Finally, a power failure handling approach is illustrated in

Section 4.4.5.

4.4.1 An Overview of Data Migration Minimizing (DMM) Device

The overall architecture of the proposed DMM device is shown in Fig. 28. The DMM device

is based on the ONFD architecture introduced in Section 4.1. Like [19], multiple onodes

are compacted in one physical page to reduce internal fragmentation. The per-object index

and object data are stored by unit of physical page. The object metadata and object data

are stored in separate chunks to improve garbage collection efficiency. The DMM device

optimizes the system architecture with following techniques:

Multi-level garbage collection. To the handle onode partial update, the multi-level

garbage collection (MLGC) technique is proposed. Besides page-level garbage collection,

MLGC adopts byte-level garbage collection. Instead of moving the valid bytes of the same

page immediately, MLGC records the information of the invalidated bytes in a byte-level

63



GC table. By grouping invalid bytes incurred by more than one onode partial updates in

a physical page and moving the remaining valid bytes at one time, the data migration is

reduced. The detail of MLGC is depicted in Section 4.4.2.

Virtual B+ tree. To minimize data migration incurred by cascading update within

per-object index, the virtual B+ tree is proposed. In the extent-based B+ tree, a major cause

to internal node page update is that the frequently updated physical address of the child

node pages. To reduce the address update frequency, the virtual B+ tree replaces physical

addresses with virtual addresses. Every node page in the virtual B+ tree has a unchanged

virtual address. The internal node pages record child node pages’ virtual addresses. A page

table is used to map the virtual addresses to the physical address. When a child node page

migrates, the new address is updated in the page table instead of the parent node pages.

Thereby, update to the internal node pages can be reduced. The virtual B+ tree is discussed

in detail in Section 4.4.3.

Diff cache. To mitigate the object data induced cascading update, we propose the

diff cache. Due to limited size, diff cache selectively buffers the data depending data type.

To maximize cache utilization, a diff cache replacement policy is adopted. The diff cache

technique is described in Section 4.4.4.

Power failure handling. In the DMM device, the byte-level GC table, the virtual B+

tree page table and the diff cache reside in volatile DRAM. Power failure will cause loss of

the byte-level GC table and virtual B+ tree page table. Besides, the loss of diff cache data

will result in inconsistency between object data and object metadata. To restore system

consistency and the lost tables, we propose a power failure handling technique as described

in Section 4.4.5.

4.4.2 Multi-level Garbage Collection (MLGC)

MLGC is proposed to mitigate onode partial update. Basically, MLGC delays migration

of the un-updated bytes. By grouping invalid bytes incurred by two or more onode partial

updates in a physical page and moving the remaining valid bytes at one time, the data

migration can be reduced. To realize delay migration, we adopt both page-level and byte-

64



level garbage collection. Two tables are adopted: A page bitmap table is employed to record

page statuses; a byte-level GC table is employed to keep track of byte statuses within a

physical page. When onode partial update occurs, MLGC records the information of the

invalid bytes <physical page number, offset, length> in the byte-level GC table. The physical

page is still marked valid in the page bitmap table. During garbage collection, both the page

bitmap table and the byte-level GC table are consulted. If a physical page is shown valid in

the page bitmap table, MLGC checks whether this page has invalid bytes by the byte-level

GC table. If there are invalid bytes, only the valid bytes migrate to a clean page. Otherwise,

the entire page is moved.

The invalid bytes information is maintained in the byte-level GC table. Each invalid

bytes information entry is represented by 8 bytes. Thus, if we book-keeps the invalid bytes

information of every physical page, the memory consumption is prohibitively high. To reduce

memory consumption, we set a pre-defined size for the byte-level GC table. When byte-level

GC table is full, some physical page is selected for eviction. To minimize data migration,

the physical page with most invalid bytes is selected. The valid bytes of the evicted page

migrates to a clean page. Then the evicted physical page is invalidated in the page bitmap

table. All invalid bytes information entries of the evicted page is removed from the byte-level

GC table.

An example of MLGC is shown in Fig. 29. Upon onode partial update, the old on-

ode stored at offset 150 in physical page 4 are invalidated. The invalid bytes information

<physical page number 4, offset 150, length 50> are recorded in the byte-level GC table.

At this point, the byte-level GC table is full. The physical page with most invalid bytes are

selected for eviction. In the example, physical page 5 with 200 invalid bytes is selected. After

moving the remaining valid bytes to physical page 127, the physical page 5 is invalidated in

the page bitmap table. All invalid bytes information of physical page 5 is removed from the

byte-level GC table.

The major overhead of MLGC is the byte-level GC table. The byte-level GC table is

implemented with a hash table to quickly locate a physical page with invalid bytes. The

invalid bytes information of the same physical page are stored in a single link table as

65



shown in Fig. 29. For fast access, the byte-level GC table is stored in DRAM. Hence, the

performance overhead of MLGC is negligible. The size of the byte-level GC table is limited.

The experiment results in Section 4.6 show that memory resources consumed by the byte-

level GC table is only marginal.

……
1

PN 5        

Byte-level GC table is not full

…
…

offset=5   len=100

PN 100  offset=0    len=50

offset=105  len=100

offset=50   len=100

Byte-level GC table

PN
5

PN
4

PN
3

PN
2

PN
1

PN
0

NAND flash block 3. Read the valid bytes in PN 5

Byte-level GC table is full

Valid bytes

6. Release PN 5

……
1
1
0
0
0
0

Page bitmap table
0
1
2
3
4
5

100

……
1

……
0
1
0
0
0
00

1
2
3
4
5

100

5. Invalidate PN 5 in 
page bitmap table

PN 4 offset=5   len=100

PN 5        offset=5   len=100

PN 100  offset=0    len=50

offset=105  len=100

offset=50   len=100

Byte-level GC table
PN 4 offset=0   len=100

PN
12

7

Write the valid bytes
of PN5 to PN 127

PN: physical page number

Page bitmap table

offset=150   len=50

1. Onode partial update: 
the old onode in <PN4, offset 150, 
len 50> should be invalidated……

Invalid bytes

Valid bytes

2. The invalid bytes information 
<PN4, offset 150, len 50> is recorded

Figure 29: Multi-level garbage collection.

4.4.3 Virtual B+ Tree

Virtual B+ tree is proposed to mitigate the cascading update issue. Cascading update within

per-object index is incurred by updates to the address of a child node page. If the addresses

66



VA:	virtual	address PA:	physical	address

Internal
node	page

……

VA 1 VA 2

VA 3 VA 4 VA 5 VA 6

offset,length PA

data	offset	
VAs	of	the	child	
node	pages

Leaf	
node
page

VA 0

Virtual	B+	tree	
page	table

Figure 30: The virtual B+ tree.

of child node pages remain unchanged, update of parent node pages can be reduced. To

reduce the update of child node page addresses, we propose the virtual B+ tree in this

chapter.

4.4.3.1 Overview of Virtual B+ Tree The concept of the virtual B+ tree is shown in

Fig. 30. The virtual B+ tree has the same structure as the extent-base B+ tree in [21]. The

leaf node page records offset, length and physical address of the object data. The internal

node page stores <data offset, child node page address> pairs, i.e., key-value pairs. Unlike

the extent-based B+ tree, each node page of the virtual B+ tree has a virtual address (VA)

besides the physical address (PA). The relationship between VAs and PAs is maintained in

a page table. Instead of recording PAs, the internal node page stores the VAs of its child

node pages. When a child node page migrates to a new page, the new PA is reflected in

the page table instead of its parent node page. As such, updates to the internal node pages

can be avoided. We also stores the VA of the per-object index root node page in the onode.

Therefore, updates to onode can be also reduced.

The concept of VA is similar to the logic address in block-based NAND flash device.

However, usage of the virtual address in the DMM device is different. In block-based NAND

flash device, all stored data is indiscriminately assigned with logic addresses. In contrast,

the DMM device only applies VAs to the per-object indices node pages. The object data

67



Table 13. Write Overhead of the Virtual B+ Tree

Operations Extent-based Virtual

B+ tree B+ tree

Insertion without tree split H 1

Insertion with tree split 2l+1+(H-l) 2l+1

Insertion with tree split(worst case) 2H+1 2H+1

Deletion without nodes merging H 1

Deletion with nodes merging (worst case) H-1 H-1

and onode have no virtual address. The per-object indices node pages only consume a small

portion of the entire physical space. Hence, mapping between the VAs and PAs in the DMM

device incurs low storage overhead.

4.4.3.2 Write overhead of virtual B+ tree The insertion and deletion write over-

heads of the virtual B+ tree are shown in Table 13. The overheads are evaluated with the

number of page write. H and l denote the tree height and the number of splitting nodes,

respectively. The overhead of virtual B+ tree insertion without tree splitting is always 1,

1/H of the extent-based B+ tree overhead. The example of Fig. 31(a) depicts the overhead

difference. Node pages A, B, C are stored in PA P1, P2 and P3, respectively. P1, P2 and

P3 are mapped to VA V1, V2 and V3. When the leaf node page C is updated, the virtual

B+ tree only updates the new PA of C in the page table. Therefore, only one per-object

index node page migrates. In contrast, up to three node pages, A, B and C are moved in

the extent-based B+ tree.

When insertion with tree splitting occurs, the splitting node, the newly inserted node

and their parent node is updated. Compare with the extent-based B+ tree, the virtual B+

tree can reduce the page writes by H − 1. The worst case is that the tree splitting cascades

to the root node page as shown in Fig. 31(b). In this example, tree splitting occurs to two

node pages. Five page writes are incurred, which is equal to the overhead of the extent-based

68



B+ tree. Since the worst case occurs much less frequently than others, applying the virtual

B+ tree can still significantly reduce the write overhead. The way to estimate the deletion

overhead is similar to that of insertion.

Besides reducing the insertion and deletion overhead, the virtual B+ tree also reduces

the overhead of garbage collection. In the extent-based B+ tree, migration of a child node

page involves updating the parent node pages cascadingly. Comparatively, under the virtual

B+ tree, migration of a child node page is only reflected in the page table. Therefore, update

and migration of the parent node pages can be eliminated.

…
… 

…
… 

…
… 

…
… 

A(P1)

B(P2)

C(P3)

…
… 

…
… 

…
… 

…
… 

A(V1)

B(V2)

C(V3)

…
… 

…
… 

…
… 

…
… 

A

B

C

A'(P1')

C'(P3')

B'(P2')

…
… 

…
… 

…
… 

A(P1)

B(P2)

C(P3) C(P3')

P1
P2
P3'
……

V1
V2
V3

P1
P2
P3
……

Virtual B+ tree

V2
V3

Extent-based B+ tree

V1

(a) Insertion operation without splitting in virtual B+ tree.

…… 

…… 

V1(P1)

V2(P2)

V4(P4) V5(P5) V6(P6)

V3(P3)

P1
P2
P3

……

V1
V2
V3

P4
P5
P6

V4
V5
V6

VA PA

P3

…….

V1
V2
V3

P7
P5
P6

V4
V5
V6

VA PA

V1(P11)

V2(P9)

V4(P7) V7(P8)

V8(P10)

V6(P5) V6(P6)

V3(P3)
P8
P10

V7
V8

P11
P9

…… 

…… 

splitting

splitting

updating

(b) Insertion operation with splitting in virtual B+ tree.

Figure 31: Insertion operation of virtual B+ tree.

4.4.3.3 Storage overhead of the virtual B+ tree Compared with the extent-based

B+ tree, the virtual B+ tree consumes less storage space thanks to adoption of VA space.

In the DMM device, only the per-object indices are assigned with VAs. The size of the VA

69



space is much smaller than that of the PA space. Hence, VA can be represented by fewer

bytes than PA. For example, in 1TB ONFD with a 4KB page size, the key-value pair size

of the extent-based B+ tree internal node consumes 7 bytes. In comparison, the key-value

pair size of the virtual B+ tree only uses 6 bytes. The storage overhead is reduced by 14%.

With smaller address size, an internal node page can store more key-value pairs. Therefore,

the virtual B+ tree has a lower height and the PA of object data can be located faster.

In addition, storing more more key-value pairs in one internal node page also lowers the

re-balancing probability, further reducing the write overhead.

The virtual B+ tree introduces a page table to map the allocated VAs to PAs. The

page table resides in DRAM for fast access. The size of the page table is variable due to

dynamic VA allocation. A VA is dynamically allocated when a virtual B+ tree node page

is inserted; the VA is de-allocated when the node page is deleted. In addition, the extent-

based allocation may reduce the size of per-object indices and the allocated VA number. To

achieve good space efficiency, we adopt a two-level page table to map allocated VAs to PAs.

Although the exact size of the page table is not predicable, the maximum size of the page

table is calculable: In 2TB ONFD with a 8KB page size, the maximum size of the page table

is only 1MB. Compared with the size of DRAM (e.g., several gigabytes), the overhead of the

page table is negligible.

4.4.4 Diff Cache

The virtual B+ tree can minimize update to the internal node pages. However, object data

update still incurs write operations to leaf node pages. Besides, the tree rebalancing also

incurs update to internal node pages and onodes. Caching per-object indices or/and object

data is a way to reduce updates to per-object index node pages. However, due to limited

on-device DRAM and object-based interface, the existing cache replacement policy [59][60]

is sub-optimal. To maximize DRAM utilization, we propose a customized diff cache. The

diff cache selectively buffers data depending on the data types. Object data is bypassed

from the diff cache due to the following reason. In the existing object file system [61], a page

cache is always used to buffer dirty object data. Committing dirty objects to the underlying

ONFD is triggered by too much dirty object data or the object data being dirty for too

70



long. During commit, all the dirty data belonging to one object is flushed followed by the

inode to keep system consistency. Hence, it is unnecessary to cache the object data in the

limited-sized on-device DRAM.

The diff cache only buffers per-object indices and onodes. The per-object index leaf node

page is updated by unit of a <offset, length, physical address> entry, i.e., leaf node entry.

Each leaf node entry are only several bytes. To reduce memory consumption, instead of

buffering the entire leaf node page, the diff cache only caches the updated leaf node entries.

Only when the number of the updated entries in a leaf node page exceeds a threshold, the

entire leaf node page is cached. For quick search, the related internal node pages are also

cached in the diff cache. However, when tree rebalancing occurs, the internal node pages are

not immediately updated. Keeping the internal node pages clean facilitates fast release of

the diff cache space. Updating the internal node pages is delayed to the time of eviction. If

the diff cache size exceeds a threshold, a diff cache replacement policy is adopted for eviction:

• Internal node page buffered in the diff cache are always clean. To accelerate release of

cache space, the internal node pages of the the least recently used (LRU) objects are

gradually released. The internal node pages at the higher level have lower revisiting

probability. Hence, the internal node pages at highest levels are released first.

• If there is no internal node page, the updated object metadata of the LRU objects

are evicted. The old per-object index leaf node pages are read out and merges with

the updated entries. Once a leaf node page is updated, it is immediately committed

to release DRAM space. To merge more updates, all the updated internal node pages

reside in DRAM until the last updated leaf node pages are committed. The address of

the per-object index root node page may be updated due to tree balancing. To reduce

onode write incurred by per-object index root node page update, onode is committed

after per-object index internal node pages.

An diff cache example is shown in Fig. 32. In the diff cache, the updated leaf node entries

and clean internal node pages of object 2 and 3 are buffered. When updating per-object

index of object 1, the diff cache is full and some cache space should be released. The clean

internal node pages of objects 2 and 3 are first released. Then, the updated leaf node entries

71



of object 3 are evicted. During eviction, the updated leaf node pages of object 3 are first

committed. After all updated leaf node pages are flushed, the updated internal node pages

and onode are committed.

The diff cache consumes DRAM resources. During eviction, all the updated internal

node pages are buffered in the memory at the same time, which may increase memory

consumption. However, thanks to adoption of the virtual B+ tree, the frequency to update

the internal node pages is significantly reduced. Hence, the probability to buffer many

internal node pages simultaneously is low. The storage overhead of the diff cache is evaluated

in Section 4.6.

Object	2

Onode

Internal	
node	pages

Updated	per-object	index	entries

……	

Object	3

Onode

Internal	
node	pages

After	release	clean	internal	node	pages

Updated	entry
③	Flush	Onode

Evict	updated	object	metadata

②flush internal	
node	pages

①	Update	and flush
leaf	node	pages

…
…	

Object	1
Internal	node	

pages

Onode
Updated
per-object	index	
entries

Updated	
leaf	node pages

…
…	

Object	3

Onode

Release
Release

…
…	

Object	1
Internal	node	

pages

Onode

Updated
per-object	index	
entries

Updated	
leaf	node pages

…
…	

Object	2

Onode

……	

…
…	

…
…	

Clean	entry

Updated	pages Clean	pages

Object	2

Onode

……	

Updated	per-object	index	entries

……	

Figure 32: An example of the diff cache.

72



4.4.5 Power Failure Handling Approach

The byte-level GC table, the virtual B+ page table and the diff cache are buffered in on-

device DRAM. Power failure will result in loss of byte-level GC table and virtual B+ tree

page table. Besides, loss of the diff cache data upon power failure also causes inconsistency

between object data and metadata. To restore system consistency and rebuild the lost

byte-level GC table and virtual B+ tree page table, a data recovery technique is proposed.

4.4.5.1 Overview of DMM data recovery The data recovery technique leverages

page metadata to restore system consistency. The page metadata includes an object ID,

a sequence number (SN) and a VA. The SN represents the sequence of write operations.

The SN is automatically incremented after a write operation. The byte-level GC table can

be restored with SNs and object IDs. As described in 4.4.1, only onode partial update is

recorded in the byte-level GC table. During data recovery, the metadata of the physical

pages storing onodes are read out. If more than one physical page stores an onode with the

same object ID, only the onode with the highest SN is valid. Others are invalidated in the

byte-level GC table.

The system consistency can be restored with SNs and VAs. The system consistency is

restored in two steps: 1) The per-object index of the inconsistent objects are rolled back

to their own latest consistent state (LCS); 2) then the physical address of the object data

written after the LCS is used to update the per-object index. In LCS, the corresponding

per-object index and onode of the updated object data are completely committed. To roll

back the per-object indices to the LCS, it is critical to reconstruct a consistent virtual B+

tree page table. To rebuild the virtual B+ tree page table, we handle the consistent and

inconsistent objects in different ways. For the consistent object, the PAs of the per-object

index node pages are inserted to the virtual B+ tree page table according to the VAs stored

in these PAs. If more than one PA has the same VA, only the PA with the highest SN is

inserted. For the inconsistent object, only the per-object index node pages before the LCS

can be valid. Hence, the per-object index node pages with the SNs higher than the LCS are

73



all invalidated. The PA of a per-object index node page with SN lower than the LCS can be

inserted to the virtual B+ tree page table. Again, if more than one PA has the same VA,

only the PA with the highest SN is inserted.

The inconsistent objects are only the objects buffered in the diff cache. The LCS of the

inconsistent object can be represented by the SN of its latest committed onode. To quickly

identify the inconsistent objects, the object IDs and SNs of latest committed onodes of the

objects in diff cache are flushed to NAND flash memory with back-up power upon power

failure. The updated onode in the diff cache are also flushed to NAND flash memory to pre-

vent data loss. Due to small size, flushing these data won’t invoke high energy consumption.

Thus, highly reliable back-up power tantalum capacitors can be to adopted to guarantee

system reliability. After rolled back to the LCS, the object data of these inconsistent objects

is read to update the corresponding per-object indices: If the inconsistent object have an

object data whose SN is higher than the LCS, the PAs of these object data are used to

update the per-object index. After per-object index update, the object metadata becomes

consistent with the object data.

An example of consistency restoration is shown in Fig. 33. The power failure occurs

when committing updated per-object index pages of object 1. Updated per-object index

pages are not completely committed: VA1, VA2, VA5 and VA6 are committed while VA0 is

still in diff cache. Hence, object 1 has inconsistent metadata and data. During restoration

of the virtual B+ tree page table, the per-object index of object 1 is rolled back to the LCS

which is SN5: VA1 and VA2 are mapped to PA2 and PA0 whose SNs are lower than SN5;

The V5 and V6 have SNs higher than SN5 and therefore are invalidated. After restoration

of the page table, the inconsistent object data with SN6 is found. The object data PA PA6

are used to update per-object index. Finally, the updated per-object index pages VA0, VA1,

VA2, VA5 and VA6 are all flushed to PA15, PA13, PA11, PA12 and PA14.

Onode page, per-object index node page and data page need different page metadata for

system restoration. Hence, we adopt different metadata formats for different types of pages

as shown in Fig. 34 The data page metadata includes object data offset and object data

length to update per-object index. The onode page metadata contains onode number and

74



VA0, SN15

VA6, SN14

VA1, SN13

VA5, SN12

VA2, SN11

VA0, SN4 SN5

…… 

per-object index

VA1, SN2 VA4, SN3

VA2, SN0 VA3, SN1

Object 1

PA2 PA3

PA1PA0

onode
PA5PA4

Latest consistent state (LCS) of Object 1

VA0

…… 

VA1, SN9 VA4, SN3

VA2, SN7 VA5, SN8

PA9 PA10

PA8PA7

PA4

VA6, SN10

LCS of Object 1

Restore the virtual B+ tree 
table to the LCS

Use object data in PA6 to 
update per-object index of object 1

..….

0VA5

PA3VA4

PA1VA3

PA0VA2

PA2VA1

PA4VA0

VA0, SN15

…… 

VA1, SN13 VA4, SN3

VA2, SN11 VA5, SN12

PA13 PA3

PA12PA11

PA15

VA6, SN14
PA14

SN6

PA11

SN5PA5

VA0, SN4PA4

VA4, SN3PA3

VA1, SN2PA2

VA3, SN1PA1

VA2, SN0PA0

VA2, SN7PA7
PA6

PA12
PA13

PA14

…… 
PA15

…...

PA3VA4

PA1VA3

PA0VA2

PA2VA1

PA4VA0

Virtual B+ tree 
page table

PA10VA6

PA8VA5

PA3VA4

PA1VA3

PA7VA2

PA9VA1

PA4VA0

Virtual B+ true 
page table

…… 

VA6, SN10

VA1, SN9

VA5, SN8

VA2, SN7

SN6

PA10

PA9

PA8

PA7

SN5PA5

VA0, SN4PA4

VA4, SN3PA3

VA1, SN2PA2

VA3, SN1PA1

VA2, SN0PA0

PA6

Object 1 onode
Object 1 object data

VA3, SN1
PA1

PA3

per-object index onode

Virtual B+ tree page table

Part of updated per-
object index is flushed 

VA6, SN10

VA1, SN9

VA5, SN8

PA10

PA9

PA8

All updated per-object 
index are stored

PA14
VA6

PA12
VA5

PA3
VA4

PA1
VA3

PA11
VA2

PA13
VA1

PA15
VA0

…… 

Virtual B+ tree 
page table

after all updated per-object 
index are stored to NAND flash

VA3, SN1
PA1

NAND flash pages 
upon power failure

NAND flash pages after 

The object metadata of Object 1 in diff cache

Object 1

Power failure occurs 
when the object 

metadata of Object 1 
is flushed

Figure 33: An example of per-object index recovery.

OOB	area	Data area	

Per-object	index	node	page

SN VA

Physical page	size

object 
id

Padding

Data	page

SN data 
offset

OOB	zone	
data 

length
object 

id

Physical page	size

Onode	page

onode 
numbers

…

…

Figure 34: The format of the page metadata.

75



Table 14. The definition of the variables of the restoration procedure

Name Description Name Description

GLB IDX global index VB TB the virtual B+ tree page table

BL GCT byte-level GC table IC OBJ list of inconsistent objects

CPN/CPA current page number/address TPN maximum page number

onode length. The metadata of per-object index page contains VA. Unlike storage formats

in [10], the page metadata and page data can both traverse the data area and OOB area.

This is because the metadata of onode pages is too large to be all stored in OOB area.

4.4.5.2 Data recovery implementation The restoration procedure is depicted in Al-

gorithm 1. We construct the global index simultaneously to facilitate the recovery of these

two tables. The variables in the algorithm are listed in Table 14.

4.5 OBJNANDSIM: ONFD SIMULATOR

To evaluate the efficiency of the proposed DMM device, we set up a object-based simulation

platform. A user-level object-based NAND flash device simulator ObjNandSim is imple-

mented. In this section, we first introduce the overall architecture of the simulation platform

in Section 4.5.1. Then, an overview of the ObjNandSim is introduced in Section 4.5.2. Fi-

nally, the hardware and software components of ObjNandSim are discussed in Section 4.5.3

and Section 4.5.4, respectively.

4.5.1 Simulation Platform

The overall architecture of the simulation platform is shown in Figure 35. The simulation

platform incorporates an object file system, an object storage device (OSD) initiator and

76



Algorithm 1 The restoration procedure

procedure restore scan(GLB IDX,VB TB,BL GCT,IC OBJ, TPN)

2: Initialize: CPN = 0 . CPN: current page number

VB TB.INIT(0);

4: while CPN ≤ TPN do

if IS FREE(CPN) then

6: goto INC CPN

end if

8: if PAGE TYPE(CPN) == OBJ INDEX && SN(CPN) >

VB TB.GET SN(VA(CPN)) && (!IC OBJ.HAVE(OBJ ID(CPN) ||

10: IC OBJ.GET LAST COMMIT SN(OBJ ID(CPN) > SN(CPN)) then

VB TB.UPDATE(VA(CPN),CPN, SN(CPN))

12: end if

if PAGE TYPE(CPN) == OBJ ONODE then

14: if !GLB IDX.HAVE(OBJ ID(CPN)) then

GLB IDX.UPDATE(OBJ ID(CPN),CPA,SN(CPN))

16: else if GLB IDX.HAVE(OBJ ID(CPN)) && SN(CPN) >

GLB IDX.GET SN(OBJ ID(CPN)) then

18: BL GCT.INSERT(GLB IDX.GET PA(OBJ ID(CPN)))

GLB IDX.UPDATE(OBJ ID(CPN),CPA,SN(CPN))

20: end if

end if

22: INC PLN:

CPN=CPN+1

24: end while

end procedure

77



an OSD. The object file system only maintains a name space without object management

functionality. EXOFS in Linux kernel is adopted as the object file system [61]. EXOFS does

not support direct IO. It can be only mounted on ASYNC mode. Under this mode, object

data and metadata are buffered in the page cache before flushed to the storage device. Upon

receiving a data request, EXOFS will first find the data in the page cache. If the data does

not reside in the page cache, a request will be sent to the OSD driver or OSD initiator.

The OSD initiator is an Linux kernel library which generates and interprets OSD request

packets according to the SCSI OSD command sets [54]. The application can also bypass the

object file system and talk to the OSD initiator directly. Finally, OSD request packets are

sent to the OSD via open-iSCSI, an iSCSI initiator. In this simulation platform, OSD is

ObjNandSim, the object-based NAND flash device simulator.

open()/close()

write()/read()

stat()/fstat()

get direct()
...

SC
SI

 O
SD

 
co

m
m

an
d 

se
ts

Figure 35: The architecture of simulation platform.

4.5.2 Overall Architecture of ObjNandSim

ObjNandSim is developed under the framework of open-source software OSC-OSD [58]. To

facilitate further code modification and extension, ObjNandSim provides a simple API for

object data and metadata (e.g., inode) access. The API functions are listed as follows:

• nand write obj(), nand read obj(): write and read object data;

• nand delete obj(), nand truncate obj(): delete or truncate object;

• nand write inode(), nand read inode(): write and read inode.

78



O
SD

 r
eq

ue
st

software 
components

hardware 
components

Figure 36: The architecture of ObjNandSim.

The ObjNandSim implements the ONFD architecture described in Section 4.1. The

architecture of the ObjNandSim is illustrated in Figure 36. The ObjNandSim incorporates

both hardware and software components. The hardware component mimics the hardware

behavior of NAND flash memory array such as generating NAND flash memory latency and

emulating multi-channel parallelism. The software component performs object management

and NAND flash management as in [56].

• Object management. The software component controls object access through SCSI

OSD commands such as READ, WRITE, DELETE, TRUNCATE and etc. It also man-

ages the layout of object data and object metadata.

• NAND flash management. The software component implements physical page allo-

cation and garbage collection as conventional FTL. Besides, the object-based interface

allows variable-sized write operations. Hence, the size of write data may be smaller than

the size of a physical page, which is partial page write. The software component also

handles the partial page write.

79



4.5.3 Hardware Component

The hardware component of ObjNandSim emulates the NAND flash storage space, gener-

ates flash memory access latency and mimics multi-channel parallelism. The ObjNandSim

allocates a part of the virtual memory space (main memory resource) as the storage space of

NAND flash memories. The emulated storage space can be divided into the following parts:

• Page: A page is the smallest write unit. Each page contains of data area and OOB area.

• Block: A block is the smallest erase unit. Each block contains a number of pages. The

typical page number in a block is 32, 64 or 128.

• Die: A die is a single NAND flash chip. Each die contains a number of blocks.

• Channel: The entire NAND flash memory storage space consists of a number of chan-

nels. Each channel contains one or more dies. The dies in different channels can be

accessed simultaneously.

In the ObjNandSim, the sizes of channel, die, block and page are configurable. The

program, erase and read latencies of NAND flash memory is emulated by using usleep().

Multi-channel parallelism is also implemented in the ObjNandSim. The multi-channel access

parallelism is realized by book-keeping the access latency of each channel. The overall I/O

latency is the maximum value of all channel latencies.

4.5.4 Software Component

Major functionality of the ObjNandSim is implemented in the software component. In this

section, we will discuss the software component functionality and the related work flow.

4.5.4.1 Software component function The ObjNandSim software component includes

two modules: object management layer and flash management layer. The object management

layer controls object operations. Only the object operations used in EXOFS are implemented

in the ObjNandSim. The implemented object operations are shown in Table 15. To realize

the object management, three data types, i.e., onode, per-object index and object data are

adopted as [19]. The layout of these three types of data in the ObjNandSim adopts data

80



Table 15. The object operations implemented NandOsdSim

SCSI OSD commands Function call

CREATE nand write inode()

REMOVE nand delete obj()

WRITE nand write obj()

READ nand read obj()

GET ATTRIBUTE nand read inode()

SET ATTRIBUTE nand write inode(),

nand truncate obj()

and metadata separation as [19]: To improve the efficiency of garbage collection, the object

data and the object metadata (i.e., onodes and per-object indices) are stored in different

chunks. The flash management layer implements physical page allocation as well as garbage

collection and tackles partial page write. The log-structured physical page allocation [62]

is employed in the ObjNandSim. The basic garbage collection unit is a chunk. A chunk

consists of a number of physical blocks. The chunk size is configurable in the ObjNandSim.

Garbage collection is performed in a greedy manner: The chunk with the fewest valid pages

is selected for reclamation. The partial page write is also handled in the ObjNandSim. Two

partial page write methods are adopted. 1) If the partial page write is performed to an

existing data, read-before-write operation is performed as in [63]. The un-updated data is

read out and stored in a clean page with the updated data. 2) If the partial page write is

performed to new data, the new data is first stored in a page-size data buffer. When it is

full, the data buffer is flushed to NAND flash memory.

4.5.4.2 I/O operation flow of the ObjNandSim Based on the functionality of soft-

ware component introduced in Section 4.5.4.1, we illustrate the I/O operation flow of the

ObjNandSim. One I/O operation can be broken down into a number of object operations.

81



Struct
Obj_op

-op : emum nand_op
-data : void*
-onode_len : uint32_t
-index_len : uint64_t
-data_len : uint64_t
-data_offset : uint64_t
-op_addr : uint64_t
-onode : nand_onode*
-index : bplus_index_entry*

Struct  
nand_onode

-pid : uint64_t
-oid : uint64_t
-inode_len : uint32_t
-flag : uint8_t
-data_index_addr : uint64_t
-data_index_len : uint64_t
-inode : exofs_fcb

Struct
index_ent  

-obj_offset : uint64_t
-obj_len : uint64_t
-phy_addr : uint64_t

Struct
Exofs_fcb 

-i_size : uint64_t
-i_mode : uint64_t
-i_links_count : uint16_t
-i_uid : uint32_t
-i_gid : uint32_t
-i_atime : uint32_t
-i_ctime : uint32_t
-i_mtime : uint32_t
-i_flags : uint32_t
-i_generation : uint32_t
-i_data : uint32_t[EXOFS_IDATA]

Struct bplus_index_entry
{

struct bplus_index_entry*prev;
//b+ node : parent
struct bplus_index_entry*next;
uint8_t status;
uint64_t addr;
struct mem_node node;

};

Struct mem_node
{

union Blk
{
struct bplus_block bplus_blk;
struct index_block index_blk;
}blk;
uint8_t bit[BPLUS_NODE_ORDER+2];

};

Struct index_block
{

uint32_t type : 5;
uint32_t len : 27;
struct index_ent val[MAX_ENTRY_PER_PAGE];

};

Struct bplus_block
{

uint32_t type : 5;
uint32_t len : 27;
uint64_t keys[BPLUS_NODE_ORDER+1];
uint64_t pts[BPLUS_NODE_ORDER+2];

};

Figure 37: The data type and dependency in the ObjNandSim.

The data type and dependency related to the object operation are shown in Fig. 37.

An object operation employs a data structure (struct obj op) to maintain the information

related to the operation and object. Each object operation involves accesses to onodes (struct

nand onode), per-object indices (struct bplus index block) and data. The onode records

object inode (struct exofs fcb) and the address of per-object index root node page. There

are two types of per-object index node pages: the internal node page (struct bplus block) and

the leaf node page (struct index block). The internal node page records <data offset, length,

PA> pairs of the child node pages. The leaf node page records <offset, length, PA> of the

82



object data (struct index ent). During a write I/O, garbage collection is usually invoked to

free storage space for the upcoming write data. Hence, object operations to two or more

objects are handled during one I/O. To maintain the object operations to object data, per-

object indices and onodes, three queues, i.e., data queue, index queue and onode queue are

employed. The data queue, index queue and onode queue are processed sequentially.

The write I/O operation flow is shown in Fig. 38. When a data write I/O request is

received from the file system, the corresponding onode is first retrieved from the global

index. According to the address stored in the onode, the per-object index root node page is

read out. If the write I/O request updates an existing data, the old object data is invalidated

first. The new object data is encapsulated into an object operation structure. The object

operation is then inserted to the data queue and waits for process. After the object data is

flushed to NAND flash memory, the per-object index entries are updated accordingly and

inserted into the index queue. Similarly, when the per-object index is flushed, the new per-

object index root node page is updated in the onode and the onode is inserted to the onode

queue. When garbage collection occurs, the migrating data is inserted to the corresponding

queue depending on the data type. The details of write I/O operation flow are shown in

Algorithm 2.

Figure 38: The ObjNandSim write I/O flows.

83



The object data read operation is relatively simple. Upon a read request, the onode is

retrieved from the global index followed by the per-object index. Then object data can be

located by looking up the per-object index.

Algorithm 2 ObjNandSim write I/O operation flow

1: procedure nand write obj(oid, offset, len, new data)

2: onode = global index.read onode(oid)

3: index = onode.read index()

4: index.invalidate data<offset,len>

5: new op(oid,offset,len,new data)

6: data queue.insert(new op)

7: handle data queue:

8: while !data queue.empty() do

9: cur op = data queue.dequeue()

10: if available chunks < Tchunk then

11: recycle dirty block()

12: end if

13: addr = flush2nand(cur op.get data())

14: new op = index queue.find(cur op.get oid())

15: if !new op then

16: onode = global index.read onode(cur op.get oid())

17: index = onode.read index()

18: new op(cur op.get oid(),index)

19: index queue.insert(new op)

20: index.invalidate index(cur op.get offset(), cur op.get len())

21: end if

22: new op.update index(cur op.get offset(), cur op.get len()),addr)

23: end while

24: while index queue.empty() do

25: cur op = index queue.dequeue()

84



26: if available chunks < Tchunk then

27: recycle dirty block()

28: goto handle data queue

29: end if

30: addr = flush2nand(cur op.get index())

31: new op = onode queue.find(cur op.get oid())

32: if !new op then

33: onode = global index.read onode(cur op. get oid())

34: new op(cur op.get oid(),onode)

35: onode queue.insert(cur op.get oid(),new op)

36: onode.invalidate()

37: end if

38: new op.update onode(addr)

39: end while

40: while onode queue.empty() do

41: cur op = index queue.dequeue()

42: if available chunks < Tchunk then

43: recycle dirty block()

44: goto handle data queue

45: end if

46: addr = flush2nand(cur op.get onode())

47: global index.update onode addr(cur op.get oid(), addr)

48: end while

49: end procedure

85



4.6 EXPERIMENTAL RESULTS

In this section, we first measure I/O response time, page write counts and block erase

counts to demonstrate validation of the ObjNandSim. The simulation results of the the

ObjNandSim are shown in Section 4.6.3. Then the efficiency of the DMM device is evaluated

by using the ObjNandSim. To fully demonstrate the efficiency of the DMM device, we

separately show the simulation results of the proposed MLGC, virtual B+ tree and diff

cache of the DMM device in Section 4.6.3.1∼ 4.6.3.3. Then we compare our works with

previous works in Section 4.6.3.4.

4.6.1 Simulation Setup

In our experiments, we adopt the simulation platform shown in Fig. 35. The object file

system, OSD initiator, and the ObjNandSim run the same host machine. The host machine

is equipped with an Intel Quad-Core Xeon 5-2609 v2 (10MB 2GHz) processor and 128GB

RAM. The operating system is RHEL 5 with Linux kernel 3.2.67. The OSD initiator and

the ObjNandSim are connected via the Gigabit Ethernet. To exclude the network overhead

for accurate evaluation of device overhead, we only show the I/O response time of the Ob-

jNandSim instead of the entire simulation platform. The configuration of the ObjNandSim

is adjustable. By default, The ObjNandSim is set with following configuration: the device

capacity is set 64 GB with 16 NAND flash memory dies; the channel number and the chunk

size are 16 and 2MB, respectively. The default NAND flash memory parameters are shown

in Table 16. We set low clean chunk thresholds to quickly initiate garbage collection.

In the simulation, a customized benchmark, DMMbench are adopted to demonstrate the

validation of the ObjNandSim. The DMMbench creates one large file and accesses the file

data by using four types of I/Os: sequential write, sequential read, random write and random

read. To accurately verify the functionality of the ObjNandSim, DMMbench communicates

with the ObjNandSim only through OSD initiator without EXOFS to bypass the page cache.

DMMbench emulates the behavior of synchronized I/Os from file system: Before the file data

access, the file inode is read; each file data access is followed by a file inode write. The length

86



Table 16. The default parameters of NAND flash memory

Capacity
Block size Block number Page size

512KB 8192 2KB

Timing

Program latency Read latency Erase latency

900 µs 50 µs 1500 µs

of sequential I/O ranges from 4KB to 1MB. The length of random I/O is 4KB. The total

accessed data amounts under different I/O types are the same. The device performance

under DMMbench is predictable. The validity of the ObjNandSim can be demonstrated by

comparing the measured performance and expected values.

We evaluate the performance of the DMM device under four real-world workloads. The

characteristics of these workload traces are depicted in Table 17. The TPCC workload trace

is generated by Hammerora [64] and captured with strace utility [65]. We write a relay

program to generate input to the simulation platform from these workload traces as shown

in Fig. 26.

Table 17. Workload characteristics

Workload Application File Avg. req. Write Write Read

count size (KB) (%) seq. (%) seq. (%)

DVORAK (CODA) [66] campus server 10262 1.23 4.1 86 39

environment

iMOVIE (iBench) [67] Mac application 85806 19.09 6.07 0 11.33

iPHOTO (iBench) [67] Mac application 6902 6.06 83.10 50.83 37.54

TPCC online transaction 677 4.59 22.64 19.71 14.54

processing

87



4.6.2 ObjNandSim Evaluation

First, we demonstrate the memory latency emulation and the software component function-

ality of the ObjNandSim. The average response time of the ObjNandSim under sequential

and random write I/Os is shown in Fig. 39(a). The average write response time under 4KB

I/O is 2.24ms, which is between the latency of two page write operations and three page

write operations. Write to one data page involves write to data, per-object index and onode.

Since different types of data are distributed to different pages, total three write operations

are performed. Although each data write I/O causes three write operations, the response

(a) The average and total response time under 4KB,
32KB, 256KB sequential and random write I/Os.

(b) The page write counts and the erase counts under
sequential and random write I/Os.

(c) The write counts of onode, per-object-index and
object data under sequential and random write I/Os.

Figure 39: The sequential and random average response time under DMMbench.

88



time is less than the latency of three page write operations. This is because several write

operations to onodes or per-object indices incur one page write operation due to small object

metadata size. The average response time is only 1.500ms, less than the average write re-

sponse time. This is because there is inode read performed before the object data is accessed.

The latency of inode read operation is much lower than the that of data write operation.

The average write response time under 32KB is 2.04ms, which is less than that of 4KB

sequential write. The reduced response time can be explained by multi-channel parallelism

and object metadata write reduction. Due to utilization of the multi-channel parallelism,

write data is evenly distributed to all channels of the NAND flash array. Hence, the response

time of object data write does not increase compared with that of 4KB write. However, I/O

operation of larger size incurs fewer number of write operations to onode and per-object index

as shown in Fig. 39(c). Each write request to object data is followed by the write to the

corresponding inode. Hence, under the same total amount of object data write, large data

I/O size incurs fewer inode write therefore fewer onode write operations. In addition, fewer

object data write operation also incur fewer updates to the per-object indices. Reduction of

the onode and per-object index write operations reduces the total page write amount. Hence,

fewer erase operations are invoked to reclaim the dirty chunks, which can be demonstrated

by Fig. 39(b). Reduction of the erase operations also reduces the response time.

The average response time under 256KB sequential I/Os is 7ms, which is much higher

than that of 32KB sequential write. The response time increase can be explained by large

data write per I/O operation and channel saturation. The write latency of object data

write under 256MB sequential I/O is close to 8 times that of 32KB sequential write. 256KB

I/O size can reduce write operations to onode and per-object index and incur fewer erase

operations as shown in Fig. 39(b). However, the response time increase resulting from

a large amount of data write still outnumbers the response time reduction. The average

response time under 4KB random I/Os is 20% higher than that of 4KB sequential write.

The performance degradation is induced by data migration during garbage collection.

The page write and erase counts of the ObjNandSim under sequential and random write

I/O are shown in Fig. 39(b). As expected, there is no page write operation during garbage

collection under sequential I/Os. The erase count under 256KB sequential I/Os is only

89



approximately 30% of 32KB sequential write and only 67% of 4KB sequential write. The

page write and erase count reduction is due to fewer write operations to onode and per-object

index. For random write, approximately two thousand page write operations are performed

during garbage collection. Unlike sequential write which invalidates all pages in a chunk,

random write induces partial update to a chunk. The valid pages in the dirty chunk have

to migrate before the chunk is erased, which increases both the garbage collection overhead

and the response time as shown in Fig. 39(a).

The statistics of writes to object data and metadata in Fig. 39(c) is employed to explain

the page write and erase counts. The onode write count under 256KB sequential I/Os is

only approximately 12% of 32KB sequential write and 1.5% of 4KB sequential write. The

per-object index write count under 256KB sequential I/Os is also reduced compared with

the 32KB and 4KB sequential writes. Similar to onode write, the per-object index write is

reduced with the increase of I/O sizes. Under the 4KB random write, write operations to

object data, per-object index and onode increase. Compared with the 4KB sequential write,

write operations to data, per-object index and onode increase by 8%, 8% and 20%, respec-

tively. The increase of data write count is within expectation: since the valid and invalid

pages co-exist in the chunks storing object data, data migration occurs during reclaiming

these chunks. Although there are all invalid pages in the dirty chunks storing per-object

index and onode, there is still increase in onode and per-object index write counts. This is

because increased object data write operations also incur more updates to per-object index

and onode.

The average response time of sequential and random reads are shown in Fig.40(a). Under

4KB sequential write, the average read response time is approximately three times NAND

flash read latency. This is because the object data can be accessed after its onode and per-

object index are read out. Hence, reading one object data page requires three page read

operations. Similar to sequential write, the average response time under 32KB sequential

read is the same as that of 4KB sequential read by leveraging multi-channel parallelism. The

average response time under 1MB sequential read I/O is 32 times that of 32KB and that

of 4KB. The average response time is higher than the average read response time. This is

because that each read request is followed by an inode write to update atime. Therefore, the

90



latency to handle inode write is also counted in the average response time calculation. Under

4KB and 32KB sequential read, the average read response time is lower than the average

response time. When the I/O size increases to 1MB, the average read response time is higher

than the average response time. This is because the read latency to read 1MB object data

reaches up to 1500 µs, which is much higher than that of the average onode write.

Since the sequential and random read tests also incur write operations to inode, we

also shows the write and erase statistics in Fig. 40(b) and Fig. 40(c). There are only erase

operations during garbage collection. It can be explain by inode write. Write operations

to inode only incurs write operations to onode as shown in Fig. 40(c). Repeated updating

one onode eliminates valid pages in the dirty blocks. As expected, the onode write count

decreases with increase of the I/O size and consequentially the erase count also decreases:

onode write count of the 4KB sequential write is eight times that of 32KB sequential write.

There is no onode write count difference between sequential and random 4KB write.

We also demonstrate the internal parallelism capability of ObjNandSim by comparing the

response time under the configurations of different channels. We evaluate the performance

under 4, 8 and 16 channels under 32KB sequential I/Os. Here, we assign one NAND flash

die to one channel. To keep the block size unchanged, we set the page number of a physical

block 1024,512,256 under 4, 8 and 16 channels, respectively. The average write response time

of the sequential write and the average read response time of sequential read are shown in

Fig. 40(c). As expected, the average write response time decreases when the channel number

increases: when the channel number increases from 4 to 8 and from 8 to 16, the average

response time increases approximately 0.7 ms, which is close to the write latency of one page

write. The increase of the write response time is less than the latency of one page write. This

is because the inode update induced write latency is also counted in the average response

time calculation. Several inode updates incurs one physical page write. The sequential read

I/O test demonstrates similar results: the average read response time under 16 channels is

approximately 50 µs lower than that of 8 channels. As expected, the read response time

reduction is close to the latency of one page read.

91



(a) The response time under 4KB, 32KB and 1MB
sequential and random read I/O.

(b) The write and erase counts under 4KB, 32KB
and 1MB sequential and random read I/O.

(c) The write counts of onode, per-object-index and
object data under sequential and random read I/Os.

Figure 40: The sequential and random performance under DMMbench.

Figure 41: The sequential write and read response time under 4, 8 and 16 channels.

92



(a) The normalized page write counts under different
byte-level GC table sizes.

(b) The normalized onode write counts under byte-
level GC tables with different sizes.

Figure 42: The performance of MLGC under different byte-level GC table sizes.

4.6.3 Evaluation of DMM Device Efficiency

In this section, we first evaluate the efficiency of the proposed MLGC, virtual B+ tree and

diff cache, separately. Then, we will compare the overall performance of the DMM device

with these of YAFFS2 and OBFS [19].

4.6.3.1 Evaluation of MLGC The write count of MLGC under different byte-level

GC table sizes is shown in Fig. 42. As shown in Fig. 42(a), compared with the ONFD

without MLGC, the systems with a 4MB byte-level GC table reduces page write count by

13% on average. Under 4MB byte-level GC table, the onode write count is reduced by 65%

on average against the ONFD without MLGC. This result demonstrates that MLGC can

effectively reduce onode write count with marginal memory resource.

The maximum page write reduction (65%) occurs in read-intensive DVORAK workload.

Accordingly, the maximum onode write reduction (83%) also occurs under the DVORAK

workload. The write reduction can be explained by the read incurred object metadata

update. The read syscall invokes atime modification. Frequent read operations generates a

large amount of inode update and invokes many onode writes. Hence, reduction of onode

writes by the byte-level GC table greatly contributes to the page write reduction.

93



(a) The normalized page write and block erase counts
under extent-based B+ tree and virtual B+ tree.

(b) The normalized per-object index and onode
write counts under extent-based B+ tree and vir-
tual B+ tree.

Figure 43: The efficiency of the virtual B+ tree.

In all workloads, the page write counts have a slight increase under the 16KB byte-level

GC table. As shown in Fig. 42(b), the onode write counts with a 16KB byte-level GC table

are slightly more than that without MLGC. The page write increase can be explained by

redistribution of reclaimed chunks. MLGC reduces updates to onode pages. Hence, the

probability of reclaiming the chunks storing onode is reduced. More chunks storing object

data (i.e., object data chunk) are reclaimed. Reclamation of object data chunks invokes

updates to the corresponding per-object indices and onodes, directly leading to increase of

data migration. Due to small table size, the MLGC cannot group enough amount of onode

partial updates. Hence, the increased data migration outnumbers the onode write reduction

by MLGC, leading to page write count increase. When the byte-level GC table size increases

from 16KB to 4MB, the page write counts decrease. As show in Fig. 42(a) and Fig. 42(b),

the page write count and onode write count decreases by 15% and 87% on average when the

size of byte-level GC table increases from 16KB to 4MB. With large table size, the MLGC

can group and merge a large mount of onode partial updates. Thus, MLGC can greatly

reduce the data migration even through there is a slight increase of reclaimed object data

chunks.

94



4.6.3.2 Evaluation of the virtual B+ tree The virtual B+ tree is evaluated under

the default system configuration with a 1MB byte-level GC table. The efficiency of the

virtual B+ tree is shown in Fig. 43. It it shown that the virtual B+ tree has different

impacts under different workloads. The maximum data migration reduction of virtual B+

tree occurs under the TPCC workload. Fig. 43(a) shows that the page write count and

block erase count are reduced by 55% and 58%, respectively. The per-object index write

reduction reaches 20% as shown in Fig. 43(b). The TPCC workload is featured by frequent

update to large-sized database tables which have high per-object index trees. Under the high

extent-based B+ tree, update to a leaf node page invokes updates to several internal node

pages. Comparatively, update to the internal node pages can be effectively reduced in the

virtual B+ tree. The decrease of internal node page update also reduces the onode update

since update to the per-object index root node page address is reduced.

In comparison, other workloads only have 3% page write count reduction on average with

the virtual B+ tree. Accordingly, there is only slight reduction on per-object index write

count (4%). The slight write performance improvement can be explained by the fact that

many of the frequent accessed objects have small size. These small-sized objects have data

and onode stored together without per-object index or only have a leaf node page without

internal node pages. Since the internal node pages only account for a small portion of per-

object index node pages, reduction of the write operations to internal node pages by the

virtual B+ tree only account for a slight reduction to the per-object index node pages write

operation.

4.6.3.3 Evaluation of diff cache We evaluate the efficiency of the diff cache under

the default system configuration with a 1MB byte-level GC table and the virtual B+ tree.

The write count reduction under different diff cache sizes is shown in Fig. 44. As shown

in Fig. 44(a) and Fig. 44(b), compared with the ONFD without the diff cache, the page

write count and the per-object write count are reduced by 20% and 60% on average under

a 2MB diff cache. The maximum page write reduction occurs to the TPCC workload: The

page write count and per-object index count is reduced by 30% and 90%, respectively. The

cache hit rate of the TPCC workload reaches 95% as shown in Fig. 44(c). In comparison,

95



the diff cache has least page write reduction under the IMOVIE workload: With a 2MB

diff cache, the page write count only decreases by 1%. However, there is 80% reduction in

per-object index write. Per-object index write only accounts for a small part of total page

write under the IMOVIE workload. This is because there are only a few write operations

and most frequently written files are small files without per-object index. Hence, there is

only a slight page write reduction. The page write reduction is 7% under the DVORAK

workload. Similar to the IMOVIE workload, there are large per-object index write reduction

(85%) but only a slightly page write reduction (7%).

(a) The normalized page write counts under differ-
ent diff cache sizes.

(b) The normalized per-object index write counts
under different diff cache sizes.

(c) The cache hit rates under different diff cache sizes.

Figure 44: The efficiency of the diff cache.

The effect of diff cache size is also evaluated. As shown in Fig. 44(c), under the IMOVIE

and IPHOTO workloads, the cache hit rate reaches up to 95% with only a 16KB diff cache.

96



The high cache hit rate can be explained by small write working set. Comparatively, the

cache hit rate of the 16KB diff cache is low under the TPCC workload. The low cache

hit rate can be explained by random access patterns to the database tables. The cache hit

rate increases to 95% when the diff cache size reaches 2MB. These results demonstrate that

the diff cache can effectively reduce the per-object index write with only marginal memory

consumption.

(a) The average write response time of the DMM
device.

(b) The page write count of the DMM device.

(c) The block erase count of the DMM device.

Figure 45: The overall efficiency of the DMM device

4.6.3.4 The overall performance improvement Finally, we compare the overall per-

formance of the DMM device with OBFS [19] and YAFFS2 [68]. The DMM device with the

default system configuration has a 4MB byte-level GC table and a 2MB diff cache. We im-

plement the functionality of OBFS and YAFFS2 in the ONFD simulator. The performance

97



improvement of the DMM device is shown in Fig. 45. Fig. 45(a) shows that compared with

YAFFS2 and OBFS, the DMM device achieves the write response time reduction by 35%

and 38% on average. Accordingly, the DMM device reduces the page write by 19% and 25%,

respectively. Under the TPCC workload, the page write count is reduced up to 20% against

OBFS. Due to the page write reduction, the DMM device improves the system endurance

by 76% on average compared with OBFS.

4.7 SUMMARY

In the object-based NAND flash device (ONFD), onode partial update and cascading update

are identified as two causes to write amplification. To minimize the data migration incurred

by onode partial update and cascading update, the Data Migration Minimization (DMM)

device design is proposed. To reduce the unnecessary write reduced by onode partial update,

the multi-level garbage collection (MLGC) technique is proposed. MLGC groups invalid

data induced by more than one onode partial updates to one physical page and moves the

remaining valid data at one time. Thereby, migration of unnecessary data can be reduced.

The virtual B+ tree is proposed to reduce cascading update within per-object index. With

frequently updated physical addresses replaced by unchanged virtual addresses, update to

parent node pages of per-object indices can effectively reduced. The diff cache is proposed to

further reduce cascading update induced data migration. Due to limited size, the diff cache

selectively buffers data and adopts a customized cache replacement policy to maximize per-

object index update merging. Our experimental results show that, compared with the best

previous work, the DMM device design can reduce page write by 20% with 76% system

lifetime extension. To evaluate the efficiency of the proposed DMM device, we design a

ONFD simulator, ObjNandSim. The ObjNandSim implements an ONFD architecture in

the software component and emulates the hardware behavior of real NAND flash memory

array. The simulation results demonstrate the validity of the ObjNandSim.

98



5.0 CONCLUSION AND FUTURE WORK

5.1 DISSERTATION CONCLUSION

Thanks to the fast access time, good scalability and low power consumption, NAND flash

memory has been adopted in various storage systems ranging from low-power embedded

systems to high-end enterprise servers. Despite efforts in exploring data protection schemes

and architectural optimization, the system designers and researchers are still faced with

challenges from three aspects: 1) Limited memory endurance due to high bit error rate

(BER), 2) Long data protection overhead and 3) Write amplification due to out-of-update

property.

Bit errors in the NAND flash memory results from the intrinsic device noises: random

telegraph noise (RTN), cell-to-cell interference and retention time limit [2, 3, 4, 5]. To protect

data integrity, hard-decision ECCs such as Bose-Chaudhuri-Hocquenghem (BCH) code can

be employed to protect data integrity [69]. The noises rise up as program/erase (P/E) cycle

increases, leading to high BER and limiting the memory endurance. To protect data integrity

under high BER and extend system lifetime, high hardware cost is incurred. To handle the

issues of limited system lifetime, we proposed a Data Pattern Aware (DPA) error prevention

technique to extend the lifespan of NAND flash storage systems in Chapter 2. We note

that the Vth level L0 is resistant to retention time error and cell-to-cell interference. Based

on this observation, we proposed Pattern Probability Unbalance (DPA-PPU) technique to

unbalance the number of 1’s and 0’s in the data. As such, more cells are placed on the

Vth level L0. We also proposed Data Redundancy Management (DPA-DRM) to mitigate

the performance overhead induced by DPA-PPU. Experimental results show that DPA can

improve the NAND flash lifetime by 3× or 4× with no or ∼ 10% performance overhead,

respectively. The incurred hardware cost is very marginal.

99



With technology node further scaling down, BER increases to 10−2. Hard-decision ECCs

and our proposed DPA either induces prohibitively high hardware cost or intolerable storage

overhead. To provide more powerful error correction capability, low-density parity-check

(LDPC) code is introduced in the NAND flash based storage system. However, the LDPC

code incurs high decoding overhead, directly degrading read performance. To reduce LDPC-

induced read latency, we proposed the FlexLevel technique in Chapter 3. The proposed

device-level LevelAdjust technique can dynamically reduce BER via Vth level reduction. By

minimizing BER, extra sensing levels can be effectively reduced and read performance is im-

proved. To balance performance improvement and density loss, we proposed the AccessEval

technique at the system level. Instead of employing LevelAdjust to all data stored in NAND

flash, AccessEval only applies LevelAdjust to the data with high LDPC overhead. LDPC

overhead is effectively reduced while the incurred capacity loss is kept at a minimum level.

Simulation results show that compared with the best prior works, the proposed design can

achieve read speedup by up to 11% with negligible capacity loss.

Besides the reliability issue, the performance degradation incurred by write amplification

is another issues that the system designers have to tackle. In the object-based NAND flash

device (ONFD), write amplification is induced by onode partial update and cascading update.

Partial page update results from the inconsistent minimum write size between the object-

based interface and NAND flash memory. Under the byte-unit access object-based interface,

onode partial update always induces a write to an entire NAND flash page, leading to

unnecessary write operation. Cascading update results from the out-of-update proberty: The

object data update generates the per-object index and onode update in a cascading manner,

resulting in large amount of unnecessary data migration. To reduce write amplification

incurred by onode partial update and cascading update, we proposed the Data Migration

Minimization (DMM) device in Chapter 4. We proposed a multi-level garbage collection

(MLGC) technique to reduce onode partial update induced data migration. MLGC groups

invalid data of more than one onode partial update and moves the remaining valid bytes of

the same page at one time. As such, data migration can be reduced. The virtual B+ tree

is proposed to reduce cascading update within per-object index. By using virtual address

instead of physical address, updating the leaf nodes address does not incur the update to the

100



parent node pages in the virtual B+ tree. Thereby, the data migration of per-object indices

can be effectively reduced. The diff cache is proposed to merge the per-object index updates

by on-device DRAM. Due to limited size, the diff cache only buffers the updated per-object

indices and onodes with the customized diff cache replacement policy. Our experimental

results show that compared with the best previous work, the DMM device design can reduce

response time by 35% with 20% data migration reduction.

5.2 FUTURE WORK

In Chapter 4, we focus on elimination of unnecessary write induced by onode partial update

and cascading update. For future research work, we will concentrate on optimization of

data layout to improve the wear-leveling efficiency. In this section, we will investigate the

relationship between the data layout and the wear-leveling efficiency.

In the existing ONFD architecture (Fig. 26), the data storage layout is shown in Fig. 46.

The physical storage space is divided into a number of chunks. One chunk contains one or

more NAND flash blocks. The chunk without any data is a free chunk. The free chunk can

be assigned to store any type of data. Once it has data, a chunk will become one of the

three types of chunks depending on data stored in it: 1) Data chunk which stores object

data, 2) index chunk storing per-object indices and 3) onode chunk storing object onodes.

The chunk is the basic garbage collection unit : When the number of free chunks is under

a threshold, the dirty chunks are selected and reclaimed for the upcoming write requests.

Due to different access patterns, separately storing different types of data in different chunks

offers better cold/hot data isolation. As such, the amount of migrating data can be reduced

since the chunk with hot data is frequently reclaimed [56].

However, the data separation leads to reduction of wear-leveling efficiency. Compared

with the object data, onodes and the per-object indices are more frequently updated. The

onodes chunks and the per-object chunks are selected for reclamation at most times. The

onode and per-object index chunks are repeatedly erased while the data chunks are less

frequently moved. As shown in Fig. 47, per-object indices and onodes are stored in Chunk 3

101



……

O
no

d
e

Channel 0
NAND flash 

Chip 0

Block 0
……
Block 0

……
Block 0

……
Block 0

…… …… …… ……

……

Block 5
……

Block 5
……

Block 5
……

Block 5
…… …… …… ……

……

Block 120
……

Block 120
……

Block 120
……

Block 120
…… …… …… ……

object data

offset 0

object data

offset 2K

object data

offset 4K

object data

offset 6K

O
no

d
e

O
no

d
e

O
no

d
e

O
no

d
e

…
…

Per-object
index node

Index chunk

Onode chunk

Data chunk

Channel 1
NAND flash 

Chip 1

Channel 2
NAND flash 

Chip 2

Channel 3
NAND flash 

Chip 3

One entry in per-
object index:  <0, 8K>

2KB 2KB 2KB 2KB

Figure 46: The data layout of existing ONFD.

and Chunk 0. Due to frequent update, per-object indices and onodes are stored to Chunk 0,

3, 4 and 5 repeatedly. Under the highly biased chunk reclamation, the data chunks wear out

much slowly than other types of chunks. The data chunks stay young while other types of

chunks grow old fast. To wear out all chunks evenly, the ONFD should manually swap the

data stored in data chunks and other types of chunks during wear-leveling, which directly

increases data migration. In our further work, we will propose solutions to reduce the data

migration between old and young chunks by mitigating biased reclamation.

5.3 DISSERTATION SUMMARY

NAND flash memory has demonstrated wide application in the existing storage systems.

However, limited memory endurance, long data protection overhead and write amplification

continue to be the most critical design challenges. In this dissertation, we proposed the

Data Pattern Aware (DPA), Flexlevel and Data Migration Minimization (DMM) techniques

102



Reclaim chunk 0

Chunk 0 Chunk 4 Chunk 5

Chunk 2 Chunk 1

Chunk 3

Reclaim chunk 3

Chunk 0 Chunk 4 Chunk 5

Chunk 2 Chunk 1

Chunk 3

Reclaim chunk 4

Chunk 0 Chunk 4 Chunk 5

Chunk 2 Chunk 1

Chunk 3

Reclaim chunk 4

Chunk 0 Chunk 4 Chunk 5

Chunk 2 Chunk 1

Chunk 3

Chunk 0,3,4,5 
iterativelly used

Free chunk Onode chunk Index chunk Data chunk

Figure 47: The biased chunk reclamation issue in ONFD.

to handle these three issues. In these works, we adopted Monte Carlo simulation for error

pattern characterization. We employed an open-source simulator Flashsim to evaluate the

efficiency of DPA and Flexlevel techniques. In addition, to evaluate the proposed DDM

technique, we developed a ONFD simulator. Due to small hardware overhead, the FlexLevel

technique is a possible solution that can be used in industry to reduce LDPC induced over-

head. Our developed ONFD provides a easy-to-use platform for other researchers to evaluate

their solution and algorithms of ONFD.

103



BIBLIOGRAPHY

[1] K. Vatto, “Samsung ssd 840: Testing the endurance of tlc nand,”
http://www.anandtech.com/show/6459/samsung-ssd-840-testing-the-endurance-of-
tlc-nand.

[2] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Good-
ness, and L. R. Nevill, “Bit error rate in nand flash memories,” in International Relia-
bility Physics Symposium (IRPS). IEEE, 2008, pp. 9–19.

[3] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-nonvolatile ssd: Trading flash mem-
ory nonvolatility to improve storage system performance for enterprise applications,”
in IEEE 18th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2012, pp. 1–10.

[4] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in mlc nand flash
memory: Measurement, characterization, and analysis,” in Conference on Design, Au-
tomation and Test in Europe (DATE). IEEE, 2012, pp. 521–526.

[5] H. Sun, P. Grayson, and B. Wood, “Quantifying reliability of solid-state storage from
multiple aspects,” in IEEE International Workshop on Storage Network Architecture
and Parallel I/O (SNAPI), vol. 11, 2011.

[6] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and K. Mai, “Flash
correct-and-refresh: Retention-aware error management for increased flash memory life-
time,” in 2012 IEEE International Conference on Computer Design (ICCD). IEEE,
2012, pp. 94–101.

[7] S. Tanakamaru, K. Takeuchi, and M. Doi, “Error-prediction analyses in 1x, 2x and
3xnm nand flash memories for system-level reliability improvement of solid-state drives
(ssds),” in 2013 IEEE International Reliability Physics Symposium (IRPS). IEEE,
2013, pp. 3B–3.

[8] J. Wang, T. Courtade, H. Shankar, and R. D. Wesel, “Soft information for ldpc decoding
in flash: Mutual-information optimized quantization,” in Global Telecommunications
Conference (GLOBECOM). IEEE, 2011, pp. 1–6.

104



[9] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-correction codes in
nand flash memory,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 58, no. 2, pp. 429–439, 2011.

[10] Y. Lu, J. Shu, and W. Zheng, “Extending the lifetime of flash-based storage through
reducing write amplification from file systems.” in File and Storage Technologies(FAST),
2013, pp. 257–270.

[11] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write amplification analysis
in flash-based solid state drives,” in System and Storage Conference (SYSTOR), 2009,
p. 10.

[12] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang, “Ldpc-in-ssd: Making
advanced error correction codes work effectively in solid state drives.” in File and storage
technologies (FAST), 2013, pp. 243–256.

[13] J. Yoon and G. Tressler, “Advanced flash technology status, scaling trends and impli-
cations to enterprise ssd technology enablement,” Flash Memory Summit, 2012.

[14] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identification of hot data for flash
memory storage systems,” ACM Transactions on Storage (TOS), vol. 2, no. 1, pp. 22–40,
2006.

[15] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “Last: locality-aware sector translation for
nand flash memory-based storage systems,” ACM SIGOPS Operating Systems Review,
vol. 42, no. 6, pp. 36–42, 2008.

[16] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Con-
sistency without ordering.” in File and Storage Technologies (FAST), 2012, p. 9.

[17] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “De-
indirection for flash-based ssds with nameless writes,” in File and Storage Technologies
(FAST), 2012, p. 1.

[18] A. Rajimwale, V. Prabhakaran, and J. D. Davis, “Block management in solid-state
devices,” in Proceedings of the USENIX Annual Technical Conference (ATC), 2009, pp.
279–284.

[19] Y. Kang, J. Yang, and E. L. Miller, “Object-based scm: An efficient interface for stor-
age class memories,” in IEEE Symposium on Mass Storage Systems and Technologies
(MSST), 2011, pp. 1–12.

[20] W. Wang, Y. Lu, and J. Shu, “P-oftl: An object-based semantic-aware parallel flash
translation layer,” in Proceedings of the conference on Design, Automation & Test in
Europe (DATE). European Design and Automation Association, 2014, p. 157.

105



[21] Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim, “µ-ftl:: a memory-efficient flash translation
layer supporting multiple mapping granularities,” in Proceedings of the ACM interna-
tional conference on Embedded software (EMSOFT). ACM, 2008, pp. 21–30.

[22] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim, “µ-tree: an ordered index structure for
nand flash memory,” in Proceedings of the ACM & IEEE international conference on
Embedded software (EMSOFT), 2007, pp. 144–153.

[23] J. Moon, J. No, S. Lee, S. Kim, J. Yang, and S. H. Chang, “Noise and interference
characterization for mlc flash memories,” in International Conference on Computing,
Networking and Communications (ICNC), 2012, pp. 588–592.

[24] J. Guo, Z. Chen, D. Wang, Z. Shao, and Y. Chen, “Dpa: A data pattern aware error
prevention technique for nand flash lifetime extension,” in 2014 19th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 2014, pp. 592–597.

[25] J. Guo, W. Wen, J. Hu, D. Wang, H. Li, and Y. Chen, “Flexlevel: a novel nand flash
storage system design for ldpc latency reduction,” in 52nd Annual Design Automation
Conference (DAC). ACM, 2015, p. 194.

[26] K. Takeuchi, T. Tanaka, and T. Tanzawa, “A multipage cell architecture for high-speed
programming multilevel nand flash memories,” Journal of Solid-State Circuits (JSSC),
vol. 33, no. 8, pp. 1228–1238, 1998.

[27] G. Dong, S. Li, and T. Zhang, “Using data postcompensation and predistortion to tol-
erate cell-to-cell interference in mlc nand flash memory,” IEEE Transactions on Circuits
and Systems I: Regular Papers (TCAS), vol. 57, no. 10, pp. 2718–2728, 2010.

[28] L. Cola, M. De Tomasi, R. E. Vaion, A. Mervic, and P. Zabberoni, “Read disturb on
flash memories: Study on temperature annealing effect,” Microelectronics Reliability,
vol. 52, no. 9, pp. 1803–1807, 2012.

[29] C. M. Compagnoni, R. Gusmeroli, A. S. Spinelli, and A. Visconti, “Analytical model for
the electron-injection statistics during programming of nanoscale nand flash memories,”
IEEE Transactions on Electron Devices, vol. 55, no. 11, pp. 3192–3199, 2008.

[30] H. P. Belgal, N. Righos, I. Kalastirsky, J. J. Peterson, R. Shiner, and N. Mielke, “A
new reliability model for post-cycling charge retention of flash memories,” in Annual
Reliability Physics Symposium Proceedings. IEEE, 2002, pp. 7–20.

[31] K. Fukuda, Y. Shimizu, K. Amemiya, M. Kamoshida, and C. Hu, “Random telegraph
noise in flash memories-model and technology scaling,” in IEEE International Electron
Devices Meeting (IEDM), 2007, pp. 169–172.

[32] M. R. Stan and W. P. Burleson, “Low-power encodings for global communication in
cmos vlsi,” IEEE Transactions on Very Large Scale Integration Systems (TVLSI), vol. 5,
no. 4, pp. 444–455, 1997.

106



[33] S. Li and T. Zhang, “Improving multi-level nand flash memory storage reliability us-
ing concatenated bch-tcm coding,” IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), vol. 18, no. 10, pp. 1412–1420, 2010.

[34] Y. Maeda and H. Kaneko, “Error control coding for multilevel cell flash memories using
non-binary low-density parity-check codes,” in IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems. IEEE, 2009, pp. 367–375.

[35] B. Shin, C. Seol, J.-S. Chung, and J. J. Kong, “Error control coding and signal processing
for flash memories,” in 2012 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2012, pp. 409–412.

[36] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level nand flash memory
using reed-solomon codes,” in IEEE Workshop on Signal Processing Systems (SiPS).
IEEE, 2008, pp. 94–99.

[37] Y. Lee, S. Jung, and Y. H. Song, “Fra: a flash-aware redundancy array of flash storage
devices,” in IEEE/ACM International Conference on Hardware/Software Codesign and
System Synthesis. ACM, 2009, pp. 163–172.

[38] “A simulator for various ftl scheme,” http://csl.cse.psu.edu/?q=node/322.

[39] “Oltp application i/o and search engine i/o,” http://traces.cs.umass.edu/index.php/
storage/storage.

[40] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi, “Highly reliable solid-state drives
(ssds) with error-prediction ldpc (ep-ldpc) architecture and error-recovery scheme,” in
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2013, pp.
83–84.

[41] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-correction codes in
nand flash memory,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 58, no. 2, pp. 429–439, 2011.

[42] G. Dong, Y. Zou, and T. Zhang, “Reducing data transfer latency of nand flash mem-
ory with soft-decision sensing,” in International Conference on Communications (ICC).
IEEE, 2012, pp. 7024–7028.

[43] N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-level-cell phase change memory: toward
an efficient and reliable memory system,” in International Symposium on Computer
Architecture (ISCA), 2013, pp. 440–451.

[44] K. Prall, “Scaling non-volatile memory below 30nm,” in IEEE Non-Volatile Semicon-
ductor Memory Workshop (NVMW). IEEE, 2007, pp. 5–10.

[45] R.-S. Liu, C.-L. Yang, and W. Wu, “Optimizing nand flash-based ssds via retention
relaxation,” in File and storage technologies (FAST), 2012, pp. 243–256.

107



[46] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage distribution in
mlc nand flash memory: Characterization, analysis, and modeling,” in Conference on
Design, Automation and Test in Europe (DATE), 2013, pp. 1285–1290.

[47] C. Sun, K. Miyaji, K. Johguchi, and K. Takeuchi, “Scm capacity and nand over-
provisioning requirements for scm/nand flash hybrid enterprise ssd,” in International
Memory Workshop (IMW), 2013, pp. 64–67.

[48] D. Park and D. H. Du, “Hot and cold data identification for flash memory using multiple
bloom filters,” in File and Storage Technologies (FAST), 2011.

[49] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang, “hstorage-db: heterogeneity-aware
data management to exploit the full capability of hybrid storage systems,” Very Large
Data Base Endowment (VLDB Endowment), vol. 5, no. 10, pp. 1076–1087, 2012.

[50] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identification of hot data for flash
memory storage systems,” ACM Transactions on Storage (TOS), vol. 2, no. 1, pp. 22–40,
2006.

[51] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator for nand
flash-based solid-state drives,” in 1st International Conference on Advances in System
Simulation (SIMUL’09). IEEE, 2009, pp. 125–131.

[52] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand flash memory,”
in File and Storage Technologies (FAST), 2012, pp. 2–2.

[53] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse, and R. Panigrahy,
“Design tradeoffs for ssd performance,” in Proceedings of the USENIX Annual Technical
Conference (ATC), 2008, pp. 57–70.

[54] D. Nagle, M. Factor, S. Iren, D. Naor, E. Riedel, O. Rodeh, and J. Satran, “The ansi t10
object-based storage standard and current implementations,” IBM Journal of Research
and Development, vol. 52, no. 4.5, pp. 401–411, 2008.

[55] M. Rosenblum and J. K. Ousterhout, “The design and implementation of a log-
structured file system,” ACM Transactions on Computer Systems (TOCS), vol. 10,
no. 1, pp. 26–52, 1992.

[56] Y.-S. Lee, S.-H. Kim, J.-S. Kim, J. Lee, C. Park, and S. Maeng, “Ossd: A case for
object-based solid state drives,” in IEEE Symposium on Mass Storage Systems and
Technologies (MSST), 2013, pp. 1–13.

[57] S. T. On, H. Hu, Y. Li, and J. Xu, “Lazy-update b+-tree for flash devices,” in IEEE In-
ternational Conference on Mobile Data Management: Systems, Services and Middleware
(MDM), 2009, pp. 323–328.

[58] O. S. Center, “Osc software osd implementation,” http://jp.jplovetv.com/
2015/09/special-drama-20150905.html.

108



[59] R. Van Riel, “Page replacement in linux 2.4 memory management.” in USENIX Annual
Technical Conference (ATC) FREENIX Track, 2001, pp. 165–172.

[60] H. Kim and S. Ahn, “Bplru: A buffer management scheme for improving random writes
in flash storage.” in File and Storage Technologies (FAST), vol. 8, 2008, pp. 1–14.

[61] B. Harrosh and B. Halevy, “The linux exofs object-based pnfs metadata server,” 2009.

[62] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin, “An implementation of a log-
structured file system for unix,” in Proceedings of the USENIX Winter 1993 Conference.
USENIX Association, 1993, pp. 3–3.

[63] C. Sun, K. Miyaji, K. Johguchi, and K. Takeuchi, “Scm capacity and nand over-
provisioning requirements for scm/nand flash hybrid enterprise ssd,” in 2013 5th IEEE
International Memory Workshop (IMW). IEEE, 2013, pp. 64–67.

[64] “Hammerora: the open source oracle load test tool,” http://hammerora.source-
forge.net/faq.htm.

[65] “Strace - trace system calls and signals,” http://man7.org/linux/man-pages/
man1/strace.1.html.

[66] C. M. University, “Coda project traces and dfstrace,” http://coda.cs.cmu.edu/DFS-
Trace/.

[67] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“A file is not a file: understanding the i/o behavior of apple desktop applications,” ACM
Transactions on Computer Systems (TOCS), vol. 30, no. 3, p. 10, 2012.

[68] “Yaffs a flash file system for embedded use,” http://www.yaffs.net/.

[69] S. Li and T. Zhang, “Improving multi-level nand flash memory storage reliability us-
ing concatenated bch-tcm coding,” IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), vol. 18, no. 10, pp. 1412–1420, 2010.

109


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. File data characteristics
	2. Workload characteristics.
	3. The parameters of MLC NAND flash
	4. Sixty-four polynomials employed for scrambling
	5. The probability of each polynomial to reduce 1's number
	6. Required extra LDPC soft sensing levels
	7. Bit value mapping under ReduceCode
	8. Vth transaction under 2-step programming operation
	9. Workloads access pattern characterization
	10. Non-uniform LevelAdjust configuration
	11. BER comparison under three NUNMA configurations
	12. MLC NAND flash specification
	13. Write Overhead of the Virtual B+ Tree
	14. The definition of the variables of the restoration procedure
	15. The object operations implemented NandOsdSim
	16. The default parameters of NAND flash memory
	17. Workload characteristics

	LIST OF FIGURES
	1. The block-based storage v.s. the object-based storage.
	2. MLC NAND flash memory circuit structure. 
	(a). MLC NAND flash even/odd bit-line structure.
	(b). MLC NAND flash device structure and the Vth distribution.
	3. The program method and RTN noise of NAND flash memory. 
	(a). 2-step program to MLC NAND flash memory.
	(b). RTN-induced Vth distribution.
	4. The device noise in NAND flash memory. 
	(a). Illustration of cell-to-cell interference.
	(b). Description of read disturb. Both the read and unread cells are exposed to risk of read disturb.
	5. The ECC failure rate of NAND flash based storage system 
	(a). The distribution of 1's number in 8-bytes data block.
	(b). The 8-bit ECC failure rate under different P/E cycling.
	6. DPA Architecture Overview
	7. Architecture of DPA-PPU.
	8. Redundant pages & data pages
	9. The ratio of 1's before and after de-correlation.
	10. The efficiency of DPA-PPU to reduce 0's ratio 
	(a). The efficiency of scrambling under 4,8 and 16-order polynomials.
	(b). The efficiency of scrambling when the polynomial number changes from 32 to 256.
	(c). The efficiency of scrambling when the data chunk size changes from 4B to 32B.
	(d). Ratio of 0's under DPA-PPU.
	11. Vth distribution after DPA-PPU.
	12. The ECC failure rates under different device noise. 
	(a). DPA-PPU program disturb ECC failure rate.
	(b). DPA-PPU retention time ECC failure rate.
	(c). DPA-PPU read disturb ECC failure rate.
	13. Tradeoff between read count and P/E cycle count.
	14. The performance overhead of DPA-DRM. 
	(a). Write counts of DPA-DRM.
	(b). The average response time of DPA-DRM.
	(c). Erase counts of DPA-DRM.
	15. NAND flash memory BER over P/E cycling
	16. FlexLevel NAND flash storage system overview
	17. ReduceCode bitline structure.
	18. Bit error occurrence probability at four Vth levels.
	19. NUNMA technique.
	20. AccessEval architecture
	21. IWFR identification flow.
	22. Program BER in reduced state cells.
	23. Average false identification rate of IWFR identification technique.
	24. The performance improvement of the Flex-level design.
	(a). Normalized read average response time under the Flex-level design.
	(b). Normalized overall average response time under the Flex-level design.
	(c). Normalized average response time under different P/E cycle counts.
	25. The lifetime cost of LevelAdjust+AccessEval technique.
	(a). The write count increase under LevelAdjust+AccessEval technique.
	(b). The erase count increase under LevelAdjust+AccessEval technique.
	(c). The lifetime reduction under LevelAdjust+AccessEval technique.
	26. The architecture of object-based storage system.
	27. An example of cascading update.
	28. The overall architecture of the DMM device.
	29. Multi-level garbage collection.
	30. The virtual B+ tree.
	31. Insertion operation of virtual B+ tree.
	(a). Insertion operation without splitting in virtual B+ tree.
	(b). Insertion operation with splitting in virtual B+ tree.
	32. An example of the diff cache.
	33. An example of per-object index recovery.
	34. The format of the page metadata.
	35. The architecture of simulation platform.
	36. The architecture of ObjNandSim.
	37. The data type and dependency in the ObjNandSim.
	38. The ObjNandSim write I/O flows.
	39. The sequential and random average response time under DMMbench.
	(a). The average and total response time under 4KB, 32KB, 256KB sequential and random write I/Os.
	(b). The page write counts and the erase counts under sequential and random write I/Os.
	(c). The write counts of onode, per-object-index and object data under sequential and random write I/Os.
	40. The sequential and random performance under DMMbench.
	(a). The response time under 4KB, 32KB and 1MB sequential and random read I/O.
	(b). The write and erase counts under 4KB, 32KB and 1MB sequential and random read I/O.
	(c). The write counts of onode, per-object-index and object data under sequential and random read I/Os.
	41. The sequential write and read response time under 4, 8 and 16 channels.
	42. The performance of MLGC under different byte-level GC table sizes.
	(a). The normalized page write counts under different byte-level GC table sizes.
	(b). The normalized onode write counts under byte-level GC tables with different sizes.
	43. The efficiency of the virtual B+ tree.
	(a). The normalized page write and block erase counts under extent-based B+ tree and virtual B+ tree.
	(b). The normalized per-object index and onode write counts under extent-based B+ tree and virtual B+ tree.
	44. The efficiency of the diff cache.
	(a). The normalized page write counts under different diff cache sizes.
	(b). The normalized per-object index write counts under different diff cache sizes.
	(c). The cache hit rates under different diff cache sizes.
	45. The overall efficiency of the DMM device
	(a). The average write response time of the DMM device.
	(b). The page write count of the DMM device.
	(c). The block erase count of the DMM device.
	46. The data layout of existing ONFD.
	47. The biased chunk reclamation issue in ONFD.

	PREFACE
	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.1.1 Challenge 1: Limited Device Endurance
	1.1.2 Challenge 2: High Data Protection Overhead
	1.1.3 Challenge 3: Write Amplification

	1.2 Dissertation Contribution and Outline

	2.0 DPA: DATA PATTERN AWARE ERROR PREVENTION TECHNIQUE
	2.1 Preliminary
	2.1.1 MLC NAND Flash Basics
	2.1.2 Program Disturb
	2.1.3 Read Disturb
	2.1.4 Retention Time

	2.2 Motivations
	2.2.1 Lifetime Model

	2.3 DPA Overview
	2.4 DPA-PPU: Pattern Probability Unbalance
	2.5 DPA-DRM: Data-Redundancy Management
	2.6 Experimental Results
	2.6.1 DPA Error Failure Rate
	2.6.2 Overheads of DPA

	2.7 Chapter 2 summary

	3.0 FLEXLEVEL NAND FLASH STORAGE SYSTEM DESIGN TO REDUCE LDPC LATENCY
	3.1 LDPC Code and Relative Works
	3.2 Motivations
	3.3 FlexLevel NAND Flash Storage System Overview
	3.4 LevelAdjust: Vth Level Adjustment
	3.4.1 Basic LevelAdjust Technique
	3.4.2 NUNMA Technique: Non-uniform Noise Margin Adjustment
	3.4.3 LevelAdjust Overhead Evaluation

	3.5 AccessEval: Access Pattern Evaluation
	3.5.1 AccessEval Overview
	3.5.2 IWFR Data Identification
	3.5.3 AccessEval Overhead Discussion

	3.6 Experimental Results
	3.6.1 LevelAdjust Efficiency
	3.6.2 AccessEval Performance Evaluation

	3.7 Chapter 3 summary

	4.0 PERFORMANCE OF OBJECT BASED NAND FLASH STORAGE SYSTEM
	4.1 Background
	4.1.1 Basics of NAND Flash Memory
	4.1.2 Basics of Object-based NAND Flash Device

	4.2 Motivation
	4.3 Related Works
	4.4 Optimization of Object-based NAND Flash Device
	4.4.1 An Overview of Data Migration Minimizing (DMM) Device
	4.4.2 Multi-level Garbage Collection (MLGC)
	4.4.3 Virtual B+ Tree
	4.4.3.1 Overview of Virtual B+ Tree
	4.4.3.2 Write overhead of virtual B+ tree
	4.4.3.3 Storage overhead of the virtual B+ tree

	4.4.4 Diff Cache
	4.4.5 Power Failure Handling Approach
	4.4.5.1 Overview of DMM data recovery
	4.4.5.2 Data recovery implementation


	4.5 ObjNandSim: ONFD Simulator
	4.5.1 Simulation Platform
	4.5.2 Overall Architecture of ObjNandSim
	4.5.3 Hardware Component
	4.5.4 Software Component
	4.5.4.1 Software component function
	4.5.4.2 I/O operation flow of the ObjNandSim


	4.6 Experimental Results
	4.6.1 Simulation Setup
	4.6.2 ObjNandSim Evaluation
	4.6.3 Evaluation of DMM Device Efficiency
	4.6.3.1 Evaluation of MLGC
	4.6.3.2 Evaluation of the virtual B+ tree
	4.6.3.3 Evaluation of diff cache
	4.6.3.4 The overall performance improvement


	4.7 Summary

	5.0 CONCLUSION AND FUTURE WORK
	5.1 Dissertation Conclusion
	5.2 Future Work
	5.3 Dissertation Summary

	BIBLIOGRAPHY

