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Human embryonic stem cells (hESC) have been a major cell source for research in 

regenerative medicine due to the demonstration of properties of self-renewal and efficient 

lineage specific differentiation, both on additions of external cues. Self-renewal provides the 

potential to extract large quantities of naïve cells that can then be differentiated to clinically 

relevant mature lineages. While there exists significant proof-of-concept to transform stem cells 

to the desired lineage, generating fully functional cell types is still an unmet challenge. A major 

reason for this is our limited understanding of the complexity of the transformation process. The 

overarching goal of this PhD research was to provide strategies to bring mathematical modeling 

into the realm of stem cell research, particularly to analyze the complex regulatory network of 

signaling events controlling cell fate. This work focused on the signaling pathways that in 

concert control the balance of self-renewal and endoderm differentiation of hESCs. 

We proposed a framework for developing mechanistic understanding from disparate 

signaling pathways using combinations of data-driven and equation based models. As a first step, 

we analyzed growth factor mediated PI3K/AKT pathway that must remain highly active to 

inhibit differentiation in self-renewal state. Using an integrated approach of mechanistic 

modeling, systems analysis and experimental validation we identified the role of a regulatory 

process (negative feedback) in maintaining signal amplitudes and controlling the propagation of 

parameter uncertainty down the pathway in the self-renewal state. To analyze endoderm 
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differentiation, biclustering with bootstrapping formulation was used to identify co-regulated 

transcription factor patterns under a combinatorial modulation of endoderm inducing signaling 

pathways. In the final step, a detailed mechanistic analysis was done to characterize the dynamic 

features of TGF-β/SMAD pathway for inducing endoderm. Utilizing a dynamic Bayesian 

network formulism, AKT mediated crosstalk connections were inferred from the detailed time 

series data. Modeling of competing AKT-SMAD interactions followed by parametric ensemble 

analysis enabled identification of plausible hypotheses that could explain experimental 

observations. Using our integrated approach, we can now begin to rationally optimize for 

desirable fate of hESCs with reduced variability and accelerate the path towards therapeutic 

applications of hESCs. 
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1.0  INTRODUCTION 

Regenerative medicine employs the replacement or replenishment of human cells, tissues, or 

organs in order to restore natural homeostasis (Ao et al., 2011; Atala et al., 2010). Development 

of therapies based on stem cells has been the cornerstone of research in this area for treatment of 

chronic illnesses like diabetes (Mimeault et al., 2007). This attraction for stem cells arises from 

two of their unique properties, namely self-renewal and lineage specific differentiation, both on 

additions of external cues (Figure 1.1). While there exists significant proof-of-concept to 

transform stem cells to the desired lineage, generation of fully functional cell types in vitro that 

are ready for clinical applications is still an unmet challenge (Soria et al., 2015). A major reason 

for this is our limited understanding of the complexity of the transformation process (Huang, 

2011). The overall objective of this PhD research was to purport strategies to gain a mechanistic 

understanding of the complex behavior of stem cells by integrating the power of mathematical 

and computational sciences with targeted in vitro experiments. 
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Figure 1.1 Channels for stem cell research 

1.1 HUMAN EMBRYONIC STEM CELLS 

By definition, a stem cell is a cell that replaces itself through proliferation for prolonged periods 

of time (property called self-renewal) and gives rise to differentiated cell types in the presence of 

proper cues (Jones and Thomson, 1999). Human embryonic stem cells (hESCs) are derived from 

the inner cell mass (ICM) of a blastocyst-stage human embryo. The ICM cells are taken out of 

their normal embryonic environment and cultured in an in vitro setting establishing a cell line for 

research and therapeutic applications (Mummery et al., 2014). Several decades of research have 

given rise to a plethora of established protocols for deriving cell types of the major germ layers 

of human embryonic development from hESCs; namely endoderm (pancreas, lung and liver), 

mesoderm (heart, blood, vascular and skeletal muscle) and ectoderm (neural and skin cells) 
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(Murry and Keller, 2008). While significant strides have been made in this field, there are several 

challenges in maintaining self-renewal and inducing lineage specific differentiation and these 

will be discussed below. 

1.1.1 Self-renewal and its challenges 

In the embryo, self-renewal is a transient stage and this is artificially extended indefinitely in an 

in vitro context by mimicking appropriate chemical and mechanical signals (Nichols and Smith, 

2012). Proliferation, which is an important feature of the self-renewal stage, provides the 

potential for obtaining large quantities of cells necessary for regenerative medicine applications 

and often the proliferative capacity is decreased on differentiation (Molofsky et al., 2004). 

Consequently, maintaining self-renewal over multiple passages is of therapeutic value but this 

brings additional constraints that the purity of the state has to be preserved as much as possible. 

Decades of research have established the types of gene regulatory networks (GRNs) that define 

the self-renewal state, with the transcription factors (TFs) OCT4, SOX2 and NANOG as the core 

players in these networks (Yeo and Ng, 2013). The expression of these markers, emerging from 

their interactions in participating GRNs, is taken as a litmus test for self-renewal and the 

corresponding marker heterogeneity in the population is taken as a test for its purity. As a simple 

example, hESC cultures are known to show a bimodal distribution of NANOG with NANOGhigh 

cells in the population in a self-renewal mode and NANOGlow cells showing increased propensity 

to differentiate (Fischer et al., 2010). 

Stochastic origin of this transcriptional heterogeneity in the self-renewal state has been 

the most common theory purported by several experimental and mathematical modeling studies 

(Torres-Padilla and Chambers, 2014; Wu and Tzanakakis, 2012). Therefore, cell-sorting 
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techniques have become the common standards for obtaining homogeneous cell cultures (Fong et 

al., 2009; Nicholas et al., 2007). This is however, a less reliable strategy from a control point of 

view due to the re-establishment of heterogeneity on further culture and associated loss of cell 

numbers (Torres-Padilla and Chambers, 2014). Heterogeneity also compromises the translational 

potential of these cells. In 2013, pioneering work from the Vallier and Dalton groups revealed 

the importance of chemical signaling pathways and cell-cycle state in controlling transcriptional 

heterogeneity in hESCs (Pauklin and Vallier, 2013; Singh et al., 2013). These features are 

upstream of the GRNs (though feedback exists) and directly influenced by culture media. This 

has resulted in the necessity of a mechanistic understanding of hESC signaling and its 

manipulation by modifying cell culture conditions. Furthermore, these and other experimental 

studies have eventually led to the realization that hESC fate choice is very complex and in order 

to improve maintenance of self-renewal, simple analyses using small set of controlling factors 

are insufficient. 

1.1.2 Differentiation and its challenges 

Similar to the self-renewal state, GRN programs specific to the induced lineage control hESC 

differentiation. In general, differentiating hESCs have the choice to select various combinations 

of genetic markers (called as Epigenetic Landscape of Cell State (Waddington, 1957)). The type 

of signals present in the cell culture and cell-intrinsic properties guide the final fate choice 

(referred to as highway guide-rails on an Epigenetic Landscape (Schatten, 2013)). Plasticity of 

hESCs however plays a dual role; on one hand conferring therapeutic potential but on the other 

hand increasing contamination of differentiating population by non-desirable lineages. The 

negative effect is because of the difficulty in recapitulating exactly all the conditions (or 
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constraints) existing in vivo (called the micro-environmental niche) in an in vitro setting 

(Schatten, 2013). What these constraints are is still an area of active research. These constraints 

may be imposed by external factors like basement membranes, extracellular matrices and cell-

cell contact, internal factors like composition of cellular receptors, cytoskeleton, chromatin 

organization etc. (Schatten, 2013). 

 Evolution of studies in diverse areas of regenerative medicine and tissue engineering has 

converged on many of the essential factors that mediate the influence of the above factors in this 

niche (Discher et al., 2009). Growth factors and the signaling pathways that they activate are a 

major component. Naturally, identifying the mechanisms by which the hESCs regulate signal 

transduction is an important step in recapitulating the niche and consequently this knowledge can 

be used to control differentiation potential. Further, chemical stimuli have been the most widely 

used method for regulating cell fate due to their more defined and relative ease of application as 

compared to others like mechanical stimuli. These signaling pathways work by transducing the 

signals that originate from chemical factors in the cellular environment to the nuclear 

machineries inside the cell via a host of interacting molecules. However, signaling interaction 

networks have received meager attention compared to GRNs in hESC differentiation field, firstly 

due to laborious experimentation required to simultaneously measure the activity of multiple 

signaling molecules with high temporal sampling frequency and secondly, due to the difficulty in 

interpreting the results without a blueprint of the complete network and kinetics of the embedded 

reactions. In 2012, a pioneering and thorough experimental work by Dalton group identified 

several crosstalk interactions that controlled the balance of self-renewal and early differentiation 

of hESCs indicating additional complexity via crosstalk (Singh et al., 2012a). Thus, this and 

other experimental studies lead to the realization that “Signaling in PSCs (pluripotent stem cells 
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which hESCs are a part of) is a complex, dynamic process where thresholds, temporal changes 

and combinatorial effects make important contributions to cell fate outcomes” (quoted text taken 

verbatim from (Dalton, 2013)). 

1.2 RATIONAL CONTROL OF HESC FATE CHOICE 

The challenges presented in Section 1.1 show that difficulty in manipulating and maintaining cell 

fate is the most important concern facing hESC culture and differentiation. The experimental 

community is taking efforts to address these challenges by identifying better signaling pathway 

and genomic modulators. Since the early days of hESC derivation, there have been efforts to 

develop defined chemical media for hESC culture by identifying new chemical factors that can 

have targeted and well defined effects, thus leading to removal of undefined factors of xeno-

genic origin (Xu et al., 2001). Currently, the field is actively investigating small molecules for 

this purpose (Atkinson et al., 2013). 

In general, small molecules are low molecular weight (typically < 500 Da) organic 

compounds that can rapidly diffuse across cell membranes and reach the intracellular sites of 

action (Veber et al., 2002). Several research groups are using high throughput screening 

platforms and large arrayed chemical libraries for discovering appropriate small molecules 

(Gafni et al., 2013; Zhang et al., 2012b). The focus until now has been on developing and 

integrating new chemical and functional genomic tools to identify optimal formulations of the 

additives. Many groups also focus on the molecular mechanism of action of these small 

molecules (Xu et al., 2008) and on the combinatorial effects of multiple molecules using 

statistical frameworks (Marinho et al., 2015). While such data driven approaches can identify 



 

 7 

important molecular interactions, predictive control over such complex interacting pathways is 

best achieved by mechanistic models. Mechanistic mathematical models are invaluable in 

gaining such insights into the action of signaling networks. 

1.3 MATHEMATICAL MODELING OF HESC SYSTEMS 

Mathematical models have been extensively used to understand the behavior of complex 

biological systems (Murray, 2002). However, the application of mathematical modeling for 

gaining mechanistic insights is less explored in hESC research. The primary goal of this PhD 

dissertation is to answer questions (Section 1.4) in hESC signal transduction that are challenging 

to answer using experiments alone and can be complemented by adequate mathematical 

treatment. Mathematical models come in different flavors, from small-scale models composed of 

a few entities and interactions to large-scale network models capturing multiple entities and 

interactions. Since hESC signal transduction networks belong to the latter category (Dalton, 

2013), the discussions in this section will mainly pertain to the advantages, developments and 

challenges in modeling complex systems. 

1.3.1 Typical modeling frameworks for complex interacting systems 

1.3.1.1 Mechanism based models 

For interacting systems where preliminary information about the nature of interactions is 

available but the actual values of the rates of these interactions are not available, rules based 

modeling (RBM) approach is first undertaken. Here, rules are written to describe interactions 
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between the entities of the system based on biological observations. For example, a rule may 

indicate what level a particular molecule must take when another molecule (same type or 

different) is nearby or at a certain level. Boolean models and agent-based models belong to this 

category (Miskov-Zivanov et al., 2013; Ziraldo et al., 2015). These models are advantageous 

even if partial information about the system is available, since they can incorporate qualitative 

guesses easily. These models are particularly valuable for building models for systems from 

scratch and give a rough idea of the behavior of the system, which can be used for hypothesis 

testing, experimental design and later inquiry using equation based frameworks. 

Equation based models (EBMs) are common for mathematical representation of complex 

physical phenomena in science, engineering and medicine (Aldridge et al., 2006; Daun et al., 

2008; Parker and Clermont, 2010). EBMs are particularly suited to represent changes in large 

number of interacting components with independent variables like time and space. If there is 

some a priori knowledge on the nature of these interactions, solving these equations will allow 

prediction of how the system evolves in time or space and what happens when the characteristics 

(parameters/conditions) of the system are varied. The EBM tools are useful when the predictions 

of the system are not directly obvious and when mechanisms underlying some observations 

cannot be arrived at using intuition alone. In a typical EBM, time ( t ) and space ({ }zyx ,, ) are 

taken as the independent variables and if these are discrete, then a difference equation results and 

if continuous, a differential equation results. The entities that undergo changes in time and space, 

for example, species, molecules, volume etc. are the dependent variables (Y ). To write an EBM, 

a conservation law has to be invoked. Mass and energy balances are common laws used for 

biological systems. A differential equation with one independent variable (called as ordinary 

differential equation or ODE) is represented as: 
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0)0(

,),,,(

YtY

UktY
dt
dY

==

=ϕ
                                                                                                    (1.1) 

Here, the parameter vector, , represents physical constants and chemical kinetic parameters 

and  represents external input vector. The parameters, external inputs and the initial condition 

( 0Y ) are to be supplied to solve the ODE. Adding additional spatial structure to the model gives 

rise to compartmental models and partial differential equations (PDEs). Further, these methods 

are purely deterministic and give the same outcome for a given set of parameters and initial 

conditions. In many systems, however, noise effects due to temperature fluctuations, variability 

in molecular interactions and low numbers of the interacting molecules can modulate the 

deterministic behavior and these can be described using stochastic differential equations (SDE). 

In this dissertation, deterministic EBMs will be explored to resolve the large numbers of each 

signaling molecule in the pathways of importance to hESCs. Furthermore, the experimental 

techniques commonly employed for hESC signal transduction research employ population 

averages and a deterministic treatment is sufficient unless otherwise stated in the following 

chapters. For many signaling pathways, detailed ODE models are available with many of the 

network connections known and rate parameters calibrated for mammalian systems. Therefore, 

an EBM framework can be directly applied to signaling in hESCs with the same basic network 

structure (with modifications allowed based on the context) but with recalibration of the rate 

parameters. 

1.3.1.2 Data driven models 

The other category of modeling tools, called data-driven models are useful for teasing out 

the essential features of the experimental data (or outputs from multiple simulation runs of an 
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ODE). Availability of big data in signal transduction from high throughput and multiplex 

strategies require the use of statistical frameworks to make sense of the dense information 

content (Albeck et al., 2006; Jaqaman and Danuser, 2006). The data available for signal 

transduction modeling is often in the form of levels, localization and activities of several proteins 

for multiple timescales and treatment conditions. Commonly used data-driven techniques to 

analyze such data include clustering for data organization, principal component analysis for data 

condensation and partial least squares regression for data prediction (Janes and Yaffe, 2006; 

Vodovotz and An, 2014). In these techniques, the entire data is represented as a matrix or set of 

matrices and appropriate matrix operations are done to identify and quantify similar and distinct 

features embedded in the dataset. While both EBMs and data driven models have their own 

advantages, using techniques from each category and allowing crosstalk between these 

categories can prove to be very useful for obtaining a fully developed view of the system under 

consideration (Hua et al., 2006). 

1.3.2 Modeling stem cell behavior 

Current methods to model stem cell behavior have focused on two aspects of these cells: (1) the 

behavior of populations of cells and (2) behavior of intracellular signals in a single cell. 

Population models have been useful to understand the proliferation kinetics of hESCs and 

influence of growth and differentiation on this process. Intracellular models have focused on 

mechanisms within a single cell that control the fate choice of hESCs. 
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1.3.2.1 Population based models 

Models capturing the population behavior of stem cells have been explored with great detail in 

stem cell systems.  The earliest application of such models to simulate stem cell proliferation was 

by physicians Till and McCulloch, who together made the groundbreaking discovery of the 

existence of multi-potent stem cells in the bone marrow (Till and McCulloch, 1961), which 

eventually lead to the rise of stem cell research. They applied stochastic models of birth-death 

processes to explain the enhanced proliferative capacity of such cells and identified a probability 

distribution of rate parameters that explains the experimental proliferation data (Till et al., 1964). 

Later models have focused on distinguishing different members of a population based on their 

differentiation stage. Using a rules based stochastic population model, Task et al. estimated the 

kinetics of differentiation in common endoderm induction conditions and the best sequence of 

transition stages in the lineage commitment process of hESCs (Task et al., 2012). Another rules 

based study explored the cell fate transitions in an 3D multi-cellular aggregate of mouse ESCs 

(mESCs) undergoing differentiation (White et al., 2013). Using an ODE-based population model 

and sensitivity analysis, Selekman et al. estimated the influence of different cell decision rate 

parameters on overall differentiation yield (Selekman et al., 2013). Such models have been 

further extended with simulation of cell-cell interactions to capture the spatial distribution of 

differentiated cells on micropatterned surfaces (Smith et al., 2015). 

1.3.2.2 Models of intracellular processes 

A large number of studies have explored GRNs controlling fate specification of different 

types of stem cells (Herberg and Roeder, 2015). Chickarmane et al. modeled a bistable switch in 

a GRN model (utilizing ODE framework) of OCT4-SOX2-NANOG pluripotency factors to 

explain the transition from self-renewal to differentiation (Chickarmane et al., 2006) and refined 
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the model with addition of lineage specific TFs to explain lineage specification (Chickarmane 

and Peterson, 2008). Bifurcation analysis has been commonly employed to identify the stable 

states of these networks (Bessonnard et al., 2014). Other groups have explored the influence of 

stochastic processes on GRNs controlling fate specification during induced and non-induced 

pluripotency (Glauche et al., 2010; Herberg and Roeder, 2015; MacArthur et al., 2008). These 

models have focused on a small set of transcriptional mediators. Currently, with availability of 

high throughput techniques, data-driven methods are being employed for identification of large-

scale transcriptional networks of cellular differentiation (Cahan et al., 2014). 

Application of mathematical frameworks for signaling pathways in stem cells is 

relatively sparse. Prudhomme et al. applied a multivariate partial least squares regression 

technique to identify the combinations of intracellular signals that best influence self-renewal 

and differentiation of mESCs (Prudhomme et al., 2004). Woolf et al. used a Bayesian learning 

algorithm to identify the network structure of signaling molecules and the influence of specific 

signaling molecules on downstream responses like proliferation and differentiation in mESC 

system (Woolf et al., 2005). These studies, however, have not explicitly focused on the kinetics 

of signal transduction during differentiation. In one such study, Mahdavi et al. applied a detailed 

ODE model of the JAK/STAT pathway for identifying an optimal ligand delivery strategy to 

enhance self-renewal in mESCs (Mahdavi et al., 2007). To our knowledge, mathematical models 

have not been used to analyze signaling kinetics, crosstalks and signal regulation in hESC system 

before. But, many ODE based mathematical models exist for the pathways that are of relevance 

for the hESC system. In order to evaluate the features of signal transduction in hESCs, we 

adopted these models to the hESC system after making necessary relaxations to the model 

constraints and adding additional features based on the context. Before utilizing these models for 
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hESCs, certain precautions (discussed in Section 1.4) have to be taken to ensure their predictive 

capability. 

1.4 SPECIFIC AIMS 

Our long-term goal of applying mathematical modeling and computational approaches to 

hESC research is to identify principles that govern fate choice of hESCs. Our hope is that 

understanding the network motifs and mechanisms by which signals get transduced opens the 

window to rationally control hESC behavior, reduce culture heterogeneity and enhance 

efficiency of fate commitment. The overarching goal of this PhD dissertation was to identify 

signaling mechanisms regulating the process of self-renewal and early differentiation using an 

integrated experimental and computational workflow. For self-renewal, we chose the system of 

H1 hESCs cultured in tissue culture plates coated with matrigel. For differentiation, we selected 

the same system and induced them towards Definitive Endoderm (DE), which is the critical first 

step towards clinically relevant lineages of pancreas, liver and lungs (Semb, 2008). Here, we 

focused on identifying signaling mechanisms that are the most critical ones in the cell fate 

decisions of hESCs. We used experimental techniques that measure population averages of 

signaling molecules and we recognize this to be the first step in characterizing signaling of a new 

system like hESC. The PhD project was divided into the three aims listed below (also see Figure 

1.2). For each aim, the influence of variability existing in the experimental data as well as the 

influence of parametric variability on the robustness of model predictions was given special 

importance. 
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1.4.1 Specific Aim 1: Identification of robust perturbations that control PI3K/AKT 

pathway activity in self-renewing hESCs 

In self-renewing hESCs, growth factor induced PI3K/AKT pathway has the function of 

inhibiting differentiation signals and maintaining self-renewal in long-term culture. Currently the 

common method of activating the pathway is by controlling the external concentration of growth 

factors. Determination of proper intracellular reactions of this pathway, perturbation of which 

can enhance signal propagation through this pathway, has not been undertaken before. We 

developed a detailed ODE based mathematical model of the pathway and by its integration with 

a meta-model approach and model informed experimental perturbations identified sensitive 

nodes in the pathway that controlled the activity and variability of key self-renewal molecules. 

Since the ODE based model of PI3K/AKT pathway was applied to the new system of hESCs, we 

first identified the parameter intervals that could capture qualitative features of detailed 

experimental dynamics (Kim et al., 2010). Then a formal study was conducted using a meta-

model based Global Sensitivity Analysis (GSA) to identify most sensitive nodes in the pathway 

(Kent et al., 2013; Kiparissides et al., 2009). The network nodes (or molecules) affected by the 

most sensitive parameters from this study were experimentally perturbed to ensure that the 

model structure is adequate to represent the system. The results are detailed in Chapter 2. 

1.4.2 Specific Aim 2: Identification of specific combinations of external growth factors 

that enhance DE differentiation of hESCs 

Currently many protocols exist that modulate the activity of one or a few pathways for DE 

induction from hESCs. The co-operative effect of various endoderm induction pathways, along 
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with its impact on long-term maturation has received less attention. Utilizing a data-driven 

biclustering + bootstrap approach, we systematically analyzed the combinatorial action of five 

major signaling pathways and identified robustly co-regulated DE TFs. The results are detailed 

in Chapter 3. 

1.4.3 Specific Aim 3: Quantitative analysis of SMAD signaling in hESCs and modeling 

crosstalk interactions with AKT 

1.4.3.1 Sub aim 3a: Identification of coarse grained network of signaling interactions 

governing DE differentiation of hESCs 

The presence of extensive crosstalk interactions and uncontrolled variability has made 

signaling data from hESCs difficult to interpret (Dalton, 2013). Rational manipulation of 

signaling during differentiation has to account for nature of these interactions as well as the time 

points when they are active. In this aim, we evaluated two common DE induction conditions to 

identify temporal within-pathway and between-pathway interactions among molecules belonging 

to the TGF-β/SMAD, PI3K/AKT and MAPK/ERK pathways that drive DE differentiation. The 

results are detailed in first part of Chapter 4. 

1.4.3.2 Sub aim 3b: Mechanistic analysis of activin induced TGF-β/SMAD pathway 

dynamics and its crosstalk with PI3K/AKT pathway during DE differentiation of hESCs 

To obtain a quantitative predictive model of the differentiation process, it is necessary to 

estimate the kinetics of signal transduction. In this aim, a detailed ODE based model of the TGF-

β/SMAD pathway interactions in combination with three literature based crosstalk interactions of 

SMADs with the molecule AKT from the PI3K pathway were developed. The resulting model 
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was calibrated to experimental time series of signaling during DE differentiation. We utilized a 

Bayesian Parallel Tempering approach to identify the parameter ensembles that can capture the 

experimental data. Special care was taken to ensure that the parameters are identifiable, make 

biological sense and that we get good fits to most of the experimentally measured species 

(Gutenkunst et al., 2007; Slezak et al., 2010). Theoretical analysis of the parametric ensembles 

from the calibrated model revealed several differences between the competing crosstalk 

mechanisms that are currently under experimental investigation. The results are detailed in 

second part of Chapter 4. 

 

Figure 1.2 Overview of the specific aims of this dissertation 

The three aims are overlayed on the differentiation landscape. For this dissertation, self-renewal stage and the first 

step towards pancreatic beta cells, aka endoderm, is analyzed. Aim 1 concentrated on the self-renewal stage, Aim 2 

concentrated on the endpoint of endoderm differentiation but obtained through different pathways and Aim 3 

concentrated on the dynamics of transition from self-renewal stage to endoderm using the pathway of minimal 

modifications. 
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2.0  REGULATORY INTERACTIONS MAINTAINING SELF-RENEWAL OF HESCS 

AS REVEALED THROUGH SYSTEMS ANALYSIS OF INSULIN MEDIATED 

PI3K/AKT PATHWAY 

The content of this chapter is taken from Mathew, S., Sankaramanivel, S., Mamiya H. and 

Banerjee, I., 2014. Regulatory interactions maintaining self-renewal of human embryonic stem 

cells as revealed through systems analysis of PI3K/AKT pathway. Bioinformatics 30(16), 2334-

2342 

2.1 INTRODUCTION 

Long-term maintenance of hESCs in the self-renewal state requires a fine balance of 

many signaling pathways, including PI3K, TGFβ, WNT and ERK (Singh et al., 2012b). Several 

earlier studies have reported that the PI3K/AKT pathway plays a central role in balancing self-

renewal and differentiation but with limited mechanistic details (McLean et al., 2007b). The 

pioneering work by Singh et al. first recognized the presence of molecular switches controlled by 

the PI3K/AKT pathway that promotes self-renewal in its active state and strengthens the 

differentiation signals in its inactive state (Singh et al., 2012b). In this aim, our goal was to 

evaluate the steady state of the PI3K/AKT pathway in self-renewing hESCs and identify 

perturbation points in this pathway to improve self-renewal capacity. 
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Kinase p-AKT is a key effector of the PI3K/AKT pathway and participates in critical 

functions like survival, metabolism, protein synthesis, cell cycle etc. (Taniguchi et al., 2006). In 

addition, in hESCs, p-AKT regulates the activity of pluripotency factors like c-MYC and controls 

the levels of differentiation molecules like p-SMAD2/3, p-ERK, p-GSK3β in the self-renewal 

state (Singh et al., 2012b). Therefore, maintaining high levels of p-AKT is necessary for long-

term self-renewal of hESCs. 

In spite of the recognized role of p-AKT, there is limited understanding on the 

maintenance of p-AKT levels in hESCs by the network of regulatory interactions. The 

PI3K/AKT pathway includes several positive and negative feedback loops and negative 

regulators like PTP, PTEN and SHIP that together influence its state (Taniguchi et al., 2006). 

Analysis of such regulatory interactions will be helpful in the design of targeted molecules to 

support self-renewal. This, however, requires a quantitative systems level approach rather than a 

restricted study of few interactions. Therefore, in the current work, we have used an integrated 

experimental and computational approach to identify regulatory interactions maintaining p-AKT 

levels during hESC self-renewal. 

This being the first effort towards modeling the PI3K/AKT pathway dynamics in hESCs, 

our workflow includes the following critical steps: (i) determine a mathematical structure 

adequately describing the hESC system, (ii) determine the parameter range over which the model 

captures hESC behavior, (iii) identify the relative importance of components of the pathway in 

hESCs, (iv) validate the model predicted sensitive processes in hESCs. These steps result in a 

validated mathematical representation of the pathway for hESCs. However, any modeling effort 

of a biological system is incomplete without understanding how parameter variability affects its 

predictions. We treat this as an important requirement due to the notorious cell-to-cell variability 
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in hESC systems. We, therefore, (v) analyze the propagation of uncertainty in the pathway under 

various states of the identified sensitive regulators. This will, in turn, allow identification of 

processes that promote a robust behavior under experimental variability. 

To accomplish these objectives, we started with a well-established ODE model of insulin 

mediated PI3K/AKT pathway developed for adipocytes by Sedaghat et al. (Sedaghat et al., 

2002). The model is a compendium of accepted knowledge of the pathway, and has been 

successfully tested in many mammalian systems. We developed a systematic procedure to adopt 

the Sedaghat model to a system of self-renewing hESCs. We first performed extensive parameter 

sampling to identify the mechanisms relevant for hESCs. We next evaluated the most significant 

contributors to the active levels of key molecules using GSA. We adopted random sampling high 

dimensional model representation (RS-HDMR) based meta-model approach to overcome the 

large Monte Carlo (MC) sampling requirements of traditional GSA. The model-predicted 

sensitive processes were successfully validated by a series of perturbation experiments. Our 

workflow, thus, demonstrates the application of computationally efficient techniques for 

mechanism detection in uncertain systems like hESCs. 

2.2 SYSTEM AND METHODS 

2.2.1 Mathematical model of PI3K/AKT pathway 

The insulin-mediated activation of the PI3K/AKT pathway can be divided into two 

modules: Module 1: insulin receptor activation, internalization and recycling, and Module 2: 

post-receptor signaling cascade involving PI3K/AKT (Figure 2.1A and B). On stimulation with 
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insulin, insulin receptors are auto-phosphorylated and become available for further signaling. 

These active receptors then undergo intracellular trafficking as shown in Module 1. The active 

receptors on the surface propagate the signal to components of PI3K/AKT pathway as shown in 

Module 2. This includes phosphorylated IRS1 (tyrosine), kinase PI3K and phosphoinositol lipids 

like PI(3,4,5)P3 (or PIP3 henceforth). The signal then propagates to important kinases like AKT 

and PKC-ζ. Negative regulators that catalyze dephosphorylation reactions include the following: 

PTP1B or PTP (dephosphoryate active receptors and active IRS1), PTEN (dephosphorylates 

PIP3 to PI(4,5)P2) and SHIP (dephosphorylates PIP3 to PI(3,4)P2). The pathway also activates 

negative feedback loops by serine phosphorylation of IRS1 via kinases like PKC-ζ and a double 

negative loop from AKT resulting in deactivation of PTP. In this article, we relaxed model 

assumptions by Sedaghat et al. for a more generalized analysis. The details of the ODEs and 

relaxed assumptions are given in Appendix A (Note: Appendix A contains extra figures and 

tables for this chapter and the names for these are mentioned with letter A in this chapter). The 

current version of the model comprises 27 reactions, 20 output species and 31 rate parameters. 

From the rate parameters, 21 were selected as free inputs for GSA (Table A.1 in Appendix A), 

and the remaining were functions of these selected inputs. Other input parameters included the 

concentrations of the molecules PTP, PTEN and SHIP. The output molecules of interest for 

analysis in this chapter were p-IR, p-IRS1 (Y), p-IRS1 (S) and p-AKT. 
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Figure 2.1 Schematic of insulin mediated PI3K/AKT pathway. 

(A) Insulin receptor level processes. (B) Intracellular signaling in PI3K/AKT pathway. The reactions marked by red 

donut (negative feedback) and blue star (PTEN and PTP) are perturbed in experiments mentioned in Figure 2.7. 

2.2.2 RS-HDMR based meta-model for analyzing global sensitivity of high dimensional 

models 

Traditional sensitivity analysis techniques are local in nature, and these evaluate the 

influence of each free parameter in isolation while the remaining parameters are kept constant at 
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their nominal values. This being the first attempt to model hESCs, it was necessary to estimate 

global sensitivity measures that are applicable in a wide region of the parameter space and 

capture parameter interactions. The advantages of traditional GSA based on MC methods are, 

however, challenged by the large number of parameters and the large number of samples 

required for accurate estimates of the sensitivity indices. To reduce computational cost, we 

adopted a meta-modeling technique called RS-HDMR developed by Li and Rabitz at Princeton 

(Li and Rabitz, 2012b). 

2.2.2.1 Sample generation 

For RS-HDMR, the input parameters must be normalized (say into ix ) so that they lie in 

the range [0,1]. The normalized variable, ix , can be converted into its actual value, iΞ , in the 

interval ],[ ii ba  by the transformation: iiiii xaba ×−+=Ξ )(  which is then used to 

evaluate the ODEs. For the current application, the variable  is chosen as a uniform random 

variable. The model was simulated in FORTRAN R90. Random samples were generated using 

the ran function in FORTRAN, which generates a uniform random number between 0 and 1 

(Teukolski et al., 1989) with a new seed for each MC sample set. Each such sample is denoted 

by vector ( )s
k

sss xxxx ...,,, 21= , where individual components ]1,0[∈ix , k  denotes the number 

of free parameters, and the superscript, , denotes the sample number. The resulting MC 

samples are collected in the training matrix, 
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total number of samples. For the generated matrix, trainM , the original ODE model described in 

the previous section was integrated using the DLSODE solver (Hindmarsh, 1983). The complete 

ODE integration process for 105 samples takes 4 min on INTEL® Core™ 2 Quad CPU (Q8400 

@ 2.66GHz). The selection of number of samples for RS-HDMR is discussed in Section 2.3.2. 

2.2.2.2 RS-HDMR algorithm for meta-model development 

RS-HDMR is an efficient technique for the identification of the nonlinear IO behavior of 

high dimensional systems (Li et al., 2001a; Li and Rabitz, 2012b). The performance 

characteristics of the method were verified in high-dimensional ODE models from different 

fields, namely atmospheric photochemistry (Li et al., 2002b), genetic circuits (Feng et al., 2004), 

combustion processes (Davis et al., 2011), signaling pathways (Mathew et al., 2014) and in 

network identification of a biochemical interaction model (Miller et al., 2012). RS-HDMR 

decomposes the selected output of the ODE, )(xfY =  (here, steady state levels of molecules 

like p-AKT), into component functions represented by the following hierarchical expansion in 

the  input parameters ( )kxxxx ...,,, 21= : 

( ) ( ) ( )kk
kji

jiij
ki

ii xxxfxxfxffxfY ..., ,,...,)( 21...123
   1   1

0 ++++== ∑∑
≤<≤≤≤

                   (2.1)    

The individual functions are called component functions and represent the influence of 

each type of input combination. These functions are evaluated from specific instances of the 

ODE output as detailed below: 

)(0 YEf =  

0)()( fxYExf iii −=  

0),(),( fffxxYExxf jijijiij −−−=  etc.                                                               (2.2) 
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The component functions are, therefore, higher dimensional integrals defined by:  

∫=
k

xdxfYE
]1,0[

)()(  

∫ ∏
− ≠

=
1]1,0[

)()(
k im

mi dxxfxYE                                                                                        (2.3) 

Each component function represents the contribution of the corresponding input variable 

to the output. First order components, )( ii xf , describe the contribution of a single parameter 

independently of the others while higher order functions, ),( jiij xxf  etc., describe the joint 

contributions of the parameters. Most importantly, the method rests on the realization that the 

expansion given in Equation 2.1 often converges rapidly so that higher order interactions (≥ 3) 

are often negligible. Expansions until the second-order terms are known to sufficiently describe 

most physical systems (Li et al., 2001b; Li et al., 2002b). 

The component functions can be evaluated by polynomial approximations (Li and Rabitz, 

2012a; Li et al., 2002a; Li et al., 2010). In this work, we used orthonormal polynomial 

approximations for 2nd order RS-HDMR given by: 

( ) ( )ip
i

up

i
pii xxf ϕα∑

≤≤

≈
1

  

( ) ( ) ( )∑ ∑
≤≤ ≤≤

≈
 1 1

,
vq wr

jr
j

iq
i

qr
ij

jiij xxxxf ϕϕβ                                                                      (2.4) 

The integers , ,  are orders of the orthonormal polynomials, , and are usually  

(Li et al., 2010). Based on Li et al., we used Jacobi polynomials in the domain [0,1] as the 

orthonormal basis functions, . These polynomials satisfy the following properties of 

orthonormality, namely, 
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Using these properties, the first three orthonormal polynomials were constructed to be: 
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See Rice and Do for further description of the construction of Jacobi polynomials (Rice 

and Do, 2012). By definition, the orthonormality of the basis functions preserve the 

orthonormality between the RS-HDMR component functions. Hence, the coefficients in 

Equation 2.4, i
pα  and ij

qrβ  are obtained by: 
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Using MC integration approximation, these coefficients can be estimated by least squares 

regression on the model output, , obtained for the training matrix,  (Li et al., 2001b). The 

mean output is obtained by approximating the integrals using summation terms, 
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( )∑
=

≈
N

s

sxf
N

f
1

0

1
. It is important to note that the entire coefficient in Equation 2.6 can be 

obtained simultaneously from a single set of MC samples. This leads to a substantial reduction in 

the computational cost due to the elimination of repeated sampling. As seen from most physical 

models, the number of samples required for accurate estimation of the coefficients is of the order 

of 103 (Li and Rabitz, 2012a). 

Using Equations 2.4-2.6, the terms ),()(
,
∑∑ +

ji
jiij

i
ii xxfxf  amount to )(~ xf , which is 

an estimate predicted by RS-HDMR of )(xf  from Equation 2.1. It is essential to compare how 

well )(~ xf  represents )(xf . For this, we generated MC samples and evaluated the model output 

)(xfY =  directly from the ODE and from the second order RS-HDMR based prediction,  

and estimated the coefficient of determination (R2) using the relation: 
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The numerator of the second term in Equation 2.7 denotes the sum of squares of residuals 

and the denominator denotes the total sum of squares (hence, proportional to the total variance). 

In the current application, the variables are chosen to be uniformly distributed, but future 

applications of RS-HDMR for detailed dynamic modeling will require estimation of the density 

functions of the rate parameters, which result in weighted component functions. 

2.2.2.3 Sobol’ sensitivity indices 

We used the variance decomposition method to estimate the global sensitivity indices (or 

Sobol’ indices). The Sobol’ indices present the sensitivity of the output to specific perturbations 
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of the input parameters. These indices are of various orders based on the number of parameters 

whose effects are studied. For example, first-order indices show the contribution of individual 

parameters, the second-order indices show the contributions of pairs of parameters, etc. Each 

index represents a fraction of the total variance. If 2σ  is the total variance of the model output in 

[0,1]k, , the decomposition of total variance assuming that contributions from higher 

order ( 3≥ ) are negligible is given by: 

∑∑
≤<≤≤≤

+=
kji

ij
ki

i
1

2

1

22 σσσ                                                                                                   (2.8) 

Here, each term on the right hand side of Equation 2.8 signifies the “independent” 

contribution of the particular parameter combination. The total variance of the model output in k-

dimensional space is estimated by the relation, 

( )( )∫ −=
k

xdfxf
]1,0[

2
0

2σ                                                                                               (2.9) 

By definition, the first order and second order Sobol’ indices can be related to the 

variance by the relation: 

2

2

σ
σ i

iS =  

2

2

σ
σ ij

ijS =                                                                                                                       (2.10) 

The relations in Equation 2.10 show that the Sobol’ index is a fraction of the total 

variance that is explained by the variance in the selected parameter combination. 

Direct MC based evaluation 

The estimation of Sobol’ indices using direct Monte Carlo integration requires repeated 

sampling from the parameter space and therefore, is computationally expensive (Feil et al., 
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2009). For evaluation of Sobol’ indices as given in Equation 2.10, the individual variances have 

to be evaluated first. The individual variances in Equation 2.8 can be obtained by: 
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The summation term in Equation 2.11 contains a product of the ODE based outputs 

obtained for two different MC samples,  and . For the second sample, , all the variables 

except the ones under study are resampled from another MC matrix. In other words,  and  are 

taken from two different random samples but with the same values of the parameters under study 

for that index. The total variance is calculated from: 
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In Equations 2.10-2.12, the functions,  and are hence, 

obtained directly from the ODE outputs.  These functions are different from the individual 

component functions ( ),(),( jiijii xxfxf ) of RS-HDMR. 

RS-HDMR based evaluation 

The RS-HDMR component functions present a convenient way to calculate all the Sobol’ 

indices using a single set of samples (Li et al., 2001b; Li et al., 2002b). The orthogonality of the 

RS-HDMR component functions allows the estimation of individual variances that are 

contributed independently (first-order) and jointly (higher order) by the input parameters. Using 

the component function definitions, the variance decomposition can now be written as:  
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and consequently, the Sobol’ indices can be written as: 
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Further, using the coefficients obtained described in Section 2.2.2.2, simple relationships 

can be obtained for the Sobol’ indices: 
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As discussed in Section 2.2.2.2, the evaluation of the coefficients in Equation 2.15 

requires only one set of MC samples, and by extension, this means that all the Sobol’ indices 

(first and second order) can be obtained simultaneously. This is unlike the case for direct MC 

based evaluation in Equations 2.11-2.12, where a new set of samples must be generated for each 

index and hence, is dependent on the total number of parameters and their combinations. Our 

prime goal is to evaluate the Sobol’ indices using RS-HDMR. However, direct MC based indices 

are also evaluated to compare the accuracy of the RS-HDMR estimates with the direct MC 

estimates. For direct MC based evaluation of the Sobol’ indices, a large number of samples (~ 

105 -106) are required (Feil et al., 2009). For RS-HDMR based evaluation of the indices, lower 
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number of samples (~ 103) is sufficient. However, for comparison between the direct MC based 

indices and RS-HDMR based indices, we chose 105 samples in all the plots of this chapter. We 

ensured that all the indices reached convergence by 105 samples and remained unchanged by 

further increase in sampling size (see Section 2.3.2). The entire process for GSA is represented 

as a schematic in Figure 2.2. 

 

Figure 2.2 Workflow for the entire global sensitivity analysis using RS-HDMR.  

We start with selection of input parameters and their intervals. Using several MC samples, the ODE model is 

simulated to obtain the dynamics of the model variables and the output of interest (like AUCD). The resulting input-

output matrix is utilized to generate the component functions of RS-HDMR followed by the variance based Sobol’ 

indices. 
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2.2.3 K-means clustering 

K-means clustering was performed on the dynamic profiles predicted by the model using 

MATLAB (R2010b, Mathworks, Natick, MA) function kmeans. This enabled identification of 

parameter ranges where the dynamics of the model outputs lie. Before analysis, the dynamic 

profiles were normalized by the maximum value per simulation. The normalized profiles were 

clustered using the ‘correlation distance’ as a metric since we are interested in the dynamics. 

Cluster quality was judged by the Silhouette value ( ) defined as (Kaufman and Rousseeuw, 

2009): 
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=            (2.16) 

 = average distance from the thi  profile in the cluster to other profiles in the same 

cluster,  = minimum average distance from the thi  profile in a cluster to profiles in the other 

clusters. The minimum denotes that this distance is measured to the closest cluster. The 

Silhouette value ranges from -1 to 1, with -1 denoting a misplacement of the  profile and +1 

denoting the best placement. The quality of the clustering process was determined by the mean 

Silhouette value ( meanS ) (Kaufman and Rousseeuw, 2009). We selected a threshold of 0.6, and 

determined the number of clusters k with meanS  values greater than 0.6 (See Table A.2 for 

variation in meanS  with the number of clusters). For our data, three clusters were found to be 

optimal, beyond which no further improvement was observed in the cluster quality and no new 

dynamics was observed. Information theoretic based approaches are also commonly used to 

determine the optimal number of clusters, but comparisons on several datasets have failed to 
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identify any particular advantage in using information theoretic criteria over the Silhouette value 

(Rendón et al., 2011). 

2.2.4 Experimental methods 

2.2.4.1 Cell Culture 

H1 ES cells were maintained with feeder-free conditions on matrigel-coated plates 

(hESC-qualified Matrigel, BD Biosciences, San Jose, CA, USA) in mTeSR1 (Stem Cell 

Technologies, Vancouver, BC, Canada) with the media changed daily. Cells were passaged 

every 6-7 days by mechanical agitation of the colonies and splitting at a 1:4-1:6 dilution. Cells 

were examined under the microscope daily and colonies with observable differentiation were 

removed before the media changes. All experiments were performed on cells in the passages 

ranging from 52 to 60. 

2.2.4.2 Insulin stimulation time course experiments 

H1 ES cells were kept in DMEM/F12 (Invitrogen, Carlsbad, CA, USA) and 0.2% Bovine 

Serum Albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA) for 18h before insulin stimulation 

was carried out. After 18h, the cells were washed twice with 1x PBS and then insulin (Sigma-

Aldrich, St. Louis, MO, USA) was added to fresh DMEM/F12, 0.2% BSA at a concentration of 

100 nM. A high insulin concentration that is well in the range of in vitro cell culture systems was 

selected (Kiselyov et al., 2009). The cells were stimulated for 120 min. After stimulation, the 

cells were analyzed for proteins using Luminex xMAP technology (Luminex, Austin, USA). 

Further details of the procedure are presented below under Luminex xMAP technology. 
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2.2.4.3 Experimental modulation of PKCζ, PTEN and PTP levels 

GÖ6983 (Calbiochem, Billercia, MA, USA) was used to inhibit PKC-ζ (Zheng et al., 

2000). Cells were treated with GÖ6983 at a concentration of 10 µM for 20 minutes in mTeSR1 

medium. For PTEN and PTP inhibition, cells were treated with dipotassium bisperoxo (5-

hydroxypyridine-2-carboxyl) oxovanadate (V) or bpV(HOpic) (Calbiochem), for 24 hr at 100 

nM in mTeSR1 medium. For PTEN + PTP inhibition, same chemical was used at 1 µM for 20 

min. Both concentrations were based on previous reports (Schmid et al., 2004). Further details of 

quantitative analysis are presented below under LiCOR western analysis. 

2.2.4.4 Multiplex protein measurements using Luminex xMAP technology 

Cell lysis  

After the specific treatments, cell lysis was carried out in Cell Extraction Buffer 

(Invitrogen). The medium was removed and washed twice with 1x PBS. The cells were lysed 

and then incubated on ice for 30 minutes, with cellular debris removed by centrifugation at 3200 

XG for 30 minutes. Protein concentration was measured using the BCA assay kit (Thermo 

Scientific, Rockford, Illinois, USA). Equal amounts of total proteins (25µg) were used for 

subsequent analyses. 

Luminex analysis 

Proteins IR (pY1162/1163), IGF-1R (pYpY1135/1136), IRS-1 (pS312), and Akt (pS473) 

were simultaneously measured in the same cell lysate using the AKT Pathway Phospho (Catalog 

no. LHO0001M) and AKT Pathway Total (Catalog no. LHO0002M) magnetic 7-Plex panels 

(Invitrogen) using MagPix Luminex xMAP technology (Luminex, Austin, USA). The assay was 
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setup with standards and samples according to the manufacturer’s instructions. All incubations 

were performed at room temperature. Total median fluorescence intensity (MFI) and the 

calibration curves were used to estimate the phosphorylated proteins (in units/ml) and total 

proteins (in ng/ml). The actual level of phosphorylation was calculated using the ratio of 

phosphorylated form to total form and expressed as units phosphorylation per ng of total protein. 

The panel did not contain tyrosine phosphorylated IRS1, and therefore we decided to analyze p-

IRS1 (Y) using quantitative western blot in LiCOR (LiCOR Biosciences, Lincoln, NE, USA). 

2.2.4.5 Western blot using LiCOR 

The proteins were separated using 4-20% pre-cast SDS-PAGE at 100V and then 

transferred to nitrocellulose membrane at 40C overnight at 20V. The membrane was blocked 

with Odyssey blocking buffer (LiCOR) for 2 h at room temperature. Primary antibody against 

AKT (pS473) (Cell Signaling, Beverly, MA, USA), PKCζ (pTpT403/410) (Cell Signaling), IRS-

1 (pY612) (EMD, Millipore, USA), and GAPDH (Santa Cruz, Dallas, TX, USA) were diluted 

(1:1000) in Odyssey blocking buffer with 0.1% Tween-20 (Hercules, CA, USA) and incubated 

overnight at 40C on a shaker. Thereafter, the membrane was washed with PBS containing 0.1% 

Tween-20 for 5 times at 5 minutes each. IR conjugated anti-rabbit secondary antibody diluted 

(1:20000) in Odyssey blocking buffer with 0.1% Tween-20 was added and incubated for 1 h at 

room temperature on a shaker. Before scanning in the Odyssey Imager, the membrane was again 

washed 5 times at 5 minutes each with PBS containing 0.1% Tween-20. Appropriate molecular 

weight markers were run for each analyzed protein. Densitometric analysis was performed using 

Image studio (LiCOR) and normalization was done with GAPDH values. Later, the change in the 

protein phosphorylation was expressed as fold change with respect to untreated cells. 



 

 35 

2.3 RESULTS 

2.3.1 Selection of parameter ranges for PI3K/AKT pathway in hESCs 

Before beginning to analyze the steady state of the PI3K/AKT pathway, we first determined if 

the structure of Sedaghat model is sufficient to address hESC features of dynamics. In the 

original Sedaghat model (Sedaghat et al., 2002), several phosphorylation and dephosphorylation 

rate constants of Module 2 were fixed by equilibrium ratios. For extension to hESCs, we 

decoupled these rates by varying them independently in a realistic range. These rate constants 

include: k7/IRp, k-7, k8, k-8, k9stim and k-9. To determine their biologically realistic ranges, we first 

measured the dynamics of key molecules of the pathway under insulin stimulation in H1 hESCs. 

Representative molecules from different positions of the signaling pathway were selected for 

analysis: early (p-IR, p-IGF1R), mid (p-IRS1 (Y), p-AKT) and late (p-IRS1 (S)). Figure 2.3 

presents the dynamics of the measured phospho-proteins. p-AKT showed an overshoot behavior 

and it settled at intermediate values of 3-folds by 120 min (Figure 2.3A). The levels of p-IR and 

p-IGF1R increased rapidly to 2- and 8-fold within 15 minutes and remained at these levels till 

the end of stimulation (Figure 2.3A-B). Among the IRS1 molecules, tyrosine phosphorylation (p-

IRS1 (Y)) showed rapid increase with maximum levels reached by 15 min and then a down-

regulation to intermediate values which remained constant upto 120 min (Figure 2.3B). Serine 

phosphorylation of IRS1 (p-IRS1 (S)) showed an initial dip followed by up-regulation at 30 min 

and then stabilization to basal levels. A distinct negative correlation was observed between p-

IRS1 (Y) and p-IRS1 (S) dynamics. 
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Figure 2.3 Experimental dynamics of pathway molecules in hESCs.  

(A) p-IGF1R and p-AKT (B) p-IR, p-IRS1 (Y) and (S). The phosphorylated protein measurements are normalized to 

corresponding total protein control and to time point zero. Number of repeats for each time point = 3. For p-AKT 

and p-IRS1(S), the mean values at the peak and steady state (at 120 min) were found to be different with a p-value 

of <0.01 and <0.05 respectively (calculated using a two-sample student t test with unequal variances). The peak 

value of p-IRS1 (Y) was not significantly different as compared to the steady state. 

 

Here, we are interested in finding out the parameter ranges that explain the overshoot 

behavior and intermediate steady state levels of p-AKT. It was observed that there is a delay 

(~15 min) in p-AKT peak after IRS1 tyrosine phosphorylation. In other cell lines, peak in p-AKT 

(S473) activation occurs parallel to IRS1 tyrosine phosphorylation. Currently there is no 

indication on what could biologically result in this delay, although recent work points to a delay 
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in AKT translocation from the cell membrane (due to retention) to the intracellular medium, 

although the actual molecular players are not identified (Nim et al., 2015). Later in this chapter, 

we are interested only in the steady state levels of the pathway and a delay due to this mechanism 

will not affect the long-term steady state levels. Hence, here we are focusing only on capturing 

the overshoot behavior (See Section 2.5 for additional comments). To select parameter ranges, 

we first explored the behavior of the relaxed Sedaghat model over a broad parameter range (100-

fold around nominal values). The basal levels of PTP, SHIP and PTEN and initial concentration 

of insulin were also included as additional parameters, resulting in 25 free parameters. 105 

random samples were drawn from a uniform distribution of 25 parameters and the ODE model 

was integrated for each sample till 120 min. This being the first modeling effort of the pathway 

for hESCs, the actual parameter distribution is not known a priori. Hence, a uniform distribution 

was used here. The profiles were normalized to the maximum level and clustered using k-means 

algorithm on p-AKT dynamics. There were three major clusters (Figure 2.4A-C, Table A.2). 

Among these, clusters 2 and 3 showed the characteristic overshoot behavior, but only cluster 3 

showed intermediate steady state values as seen in the experiments in Figure 3A. We also saw 

good correlation between experimental and clustered profiles for other molecules, p-IR and p-

IRS1 (Y). 

Cluster 3 being our primary cluster of interest, we wanted to select parameter ranges 

defining this cluster. Hence, we first analyzed parameters primarily segregating the three 

clusters. It was observed that of the 25 parameters, only 6 were varying between the 3 clusters: 

k7/IRp, k-7, k8, k-8, k9stim and k-9. Among these, the activation parameters were high and 

deactivation parameters were comparatively low in cluster 3. The distribution for de-activation 

parameter, k-7 for each cluster is shown in Figure 2.4D. The distributions for remaining 
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parameters are shown in Figure A1. Based on these distributions, we narrowed the range of the 6 

parameters around the peaks for cluster 3 (Figure 2.4D and Figure A.2). The chosen restricted 

ranges of the parameters are presented in Table A1. We next performed GSA in the restricted 

parameter ranges to identify the key parameters regulating the self-renewal state of hESCs. 

 

Figure 2.4 K-means clusters for p-AKT.  

(A-C) Three key dynamic clusters observed in the parameter space. Cluster 3 showed overshoot behavior and 

intermediate steady state levels. Cluster centroid is shown by red curve and the shaded region shows the cluster 

extent. Blue lines indicate the overlaid experimental data. Hierarchical clustering analysis gave same type of major 

clusters (See Figure A.3). (D) Parameter k-7 contained in clusters, C1, C2, C3 from (A-C). The black bar indicates 

the final selected range for sensitivity analysis and the red arrow shows the location of the nominal value. 
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2.3.2 Meta-model representation and efficient GSA 

To reduce the computational cost associated with GSA, we adopted RS-HDMR (Li and 

Rabitz, 2012b), to explore the model IO behavior and also to rank the parameters using Sobol’ 

sensitivity indices. The performance characteristics of the method has been validated for diverse 

physical systems (Li and Rabitz, 2012b). Here, we have applied the technique for a high 

dimensional, nonlinear signal transduction model. To check the validity of RS-HDMR and its 

computational efficiency, we compared the Sobol’ indices estimated using RS-HDMR with 

direct MC evaluations for one of the output molecule, p-IR. 

First we analyzed the effect of sample size on the sensitivity index evaluated both by 

direct MC and by RS-HDMR. Direct MC identified the basal rate of receptor recycling, k-4, as 

the most sensitive parameter with a Sobol’ index (Si) of 0.38. Figure 2.5A compares the 

convergence of Sobol’ indices for this parameter by the two methods, for sample size (N) 

ranging from 102 to 105. We see that the two methods converge to the same value by a sample 

size of 104. Relative ranking of parameters are often more informative than the actual value of 

the sensitivity index. Hence, Figure 2.5B represents the ranking of the parameters obtained by 

direct MC analysis for 105 samples and compares it with RS-HDMR predictions at different 

sample sizes. Overall it is observed that the parameters with higher sensitivity were predicted 

with great accuracy even at very low sampling of 103. Beyond the fourth-ranked parameter for 

103 samples and eighth-ranked parameter for 104, there is considerable deviation from MC 

analysis. The higher sampling size of 105, however, closely predicts the direct MC estimates for 

most of the parameters throughout the range. Hence, a sample size of 105 was chosen for the 

remaining work. 
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The primary motivation for adopting RS-HDMR is the computational efficiency of the 

algorithm. The computational cost of traditional GSA is primarily associated with the need for 

repeated sampling to evaluate the integrals. In contrast, using polynomial approximations in RS-

HDMR, both low and high order Sobol’ indices  can be estimated simultaneously from one set of 

MC samples. As an example we have tabulated the typical time requirements for first order 

indices in Figure 2.5C. Obtaining all the first order Sobol’ indices by RS-HDMR requires ~ 9 

min while it takes 300 min for direct MC. In RS-HDMR, a critical source of error is the MC 

integration approximation for the high dimensional integrals. The error of this approximation is 

inversely proportional to the sample size as N1/2 and favorably independent of the dimension (Li 

and Rabitz, 2012b). 

 

Figure 2.5 Comparison between RS-HDMR and direct MC for p-IR output.  

(A) Convergence of the Sobol’ index for k-4 with sample size (N). (B) Ranking of parameters with different samples 

sizes for RS-HDMR as compared to direct MC for 105 samples. (C) Typical computational time requirements for 25 
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input parameters and first order sensitivity evaluation for both RS-HDMR and direct MC. For RS-HDMR, all the 

Sobol’ indices are evaluated simultaneously. 

2.3.3 Sensitive parameters for key molecules of the pathway 

Upon confirming the accuracy of second order RS-HDMR for the current model, we next 

determined the globally sensitive parameters for the steady state of four molecules of the 

pathway: p-IR, p-IRS1 (Y), p-IRS1 (S) and p-AKT (Figure 2.6A). The resulting output 

distributions are presented in Figure A.4 and overall performance in Table A3. We see that the 

sensitivity contribution of each parameter to the different outputs is different. In Module 1, rates 

of recycling of the non-phosphorylated receptors, k-4 and active receptor internalization, k4’ were 

important. These parameters primarily changed the steady state levels of the active receptors p-

IR and also affected p-IRS1 (Y) and p-AKT levels to a small extent. The initial insulin levels and 

the binding rate of insulin to the receptors, k1, were the other parameters affecting p-IR but they 

did not affect the other molecules. The important parameters from Module 2 were primarily 

associated with negative regulators of the pathway. These included many of the deactivation 

rates: de-phosphorylation of p-IRS1 (Y), k-7, deactivation of PI3K, k-8, and de-phosphorylation of 

PIP3 to PI(4,5)P2, k-9. All these parameters were upstream of PIP3 and affected the p-AKT levels 

considerably. p-IRS1 (Y) was affected mostly by k-7 while p-IRS1 (S) was affected mostly by k-8 

and k-9. Another important set of parameters was associated with negative feedback by p-PKCζ 

and subsequent serine phosphorylation of IRS1. These included the Hill Equation parameters, 

Vmax, Kd, n and the IRS1 serine phosphorylation rates, k7’ and k-7’. These parameters significantly 

affect the p-IRS1 (S) levels followed by p-IRS1 (Y) and p-AKT. Thus, it is seen that for the 

intracellular molecules, most of the sensitive parameters are ‘negative regulators’ of molecules 
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upstream of PIP3 or they are associated with ‘negative feedback’. Additionally, for p-AKT there 

were also important contributions from the second order indices. 

 

Figure 2.6 Results from second order RS-HDMR analysis. 

(A) Scaled first order RS-HDMR based Sobol’ indices. The indices have been scaled by the maximum value for 

each output to show the relative importance of the parameters. p-IR is only affected by internalization and recycling 

processes. For the other molecules, negative regulators upstream of PIP3 and negative feedback by serine IRS1 are 

the most sensitive. (B) Scaled second order Sobol’ indices of p-AKT and the two groups with important interactions. 

For p-AKT, the second order indices contributed to 28% of the variance. Figure 2.6B 

presents the heat-map of the scaled second order Sobol’ indices. The sensitive parameters were 

found to cluster in two groups: Group A: interaction between negative regulators upstream of 

PIP3 (~7%) and Group B: interaction between negative feedback parameters with negative 
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regulators from Group A (~6%) (Table A.4). It is important to note that these parameters also 

had important first order contributions. Second order interactions further increase the sensitivity 

of these parameters (Figure A.5). 

 

Figure 2.7 Comparison of experimental and model analysis of sensitive processes in self-renewing hESCs.   

(A) Effect of perturbation of (1) negative feedback by GÖ-6983 at 1 μM, (2) PTEN by bpV(HOpic) at 100 nM and 

(3) PTEN+PTP by bpV(HOpic) at 1 μM. The top bar graph shows the quantitative analysis of western blots (bottom 

panel) using LiCOR image analysis software. Note: Missing bars indicate that the proteins were not analyzed in that 

experiment. ODE model predictions of fold change in p-AKT and p-IRS1 (Y), when p-PKCζ, PTEN and PTP are 

perturbed by the same amount as the experimental data, are shown by red lines overlaid onto the experimental bars 

of p-AKT and p-IRS1 (Y). All parameters are at nominal values. (B) First order component functions showing the 

effect of parameter k-9 and k-7 on p-IRS1 (Y) and p-AKT. Red curve is the first order component function and blue 

scatter points are the ODE model Monte Carlo outputs used to construct RS-HDMR functions. The scatter points 

represent the influence of variability in the other parameters (See Figure A.4 for output density). (C) Second order 

component functions showing interaction between k-9 and k7’ on p-IRS1 (Y) and p-AKT. 
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2.3.4 Experimental validation of key sensitive processes 

As seen from the previous section, the model predicted sensitive perturbations on the 

system include (1) negative feedback via p-PKCζ and (2) negative regulators that affect the de-

phosphorylation of PIP3 (Summarized in Figure 2.1). To validate the sensitivity of these 

processes in hESCs, we performed targeted perturbations and we carefully chose perturbations 

that would result in increase in p-AKT levels to avoid differentiation. For negative feedback, the 

ideal candidate for perturbation is p-PKCζ and for de-phosphorylation rates upstream of PIP3, 

two such candidates exist, namely PTEN and PTP. 

2.3.4.1 Influence of negative feedback modulation on self-renewing hESCs 

Self-renewing hESCs were subjected to 20 min treatment of 10 μM GÖ6983 (PKC -ζ 

inhibitor) based on Zheng et al. (Zheng et al., 2000). In our experiments, we see large change in 

p-AKT (6-fold) and moderate change in p-IRS1 (Y) (1.5-fold) levels for small decrease in p-

PKCζ level (Figure 2.7A). Similar trends were predicted by model simulations (Figure 2.7A, red 

lines). Thus, small changes in the strength of negative feedback propagated to large changes in 

the levels of p-AKT. While sensitivity indices indicate the importance of a parameter on a 

specific output, the directionality of the effect, positive or negative, cannot be directly deduced 

from Sobol’ indices. The meta-model representation of RS-HDMR is particularly suited for such 

deduction as this information is contained in the hierarchical component functions of the 

decomposition. Increasing the strength of negative feedback (increasing k7’) decreases p-AKT 

and p-IRS1 (Y) (Figure A.6). Therefore, we see a positive correlation between p-AKT and p-

IRS1 (Y). The sensitivity based on first order indices show smaller increase in p-AKT, but the 

experiments clearly show a large increase in p-AKT levels. We envisage this to be the effect of 
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nonlinear influence of the other sensitive processes. For example, model simulations show that 

under complete inhibition of negative feedback, the levels of p- AKT will rise considerably if the 

influence of negative regulators like PTEN are low to begin with (low k-9) or the levels of 

positive regulators like PIP3 are high (Figure A.7). 

2.3.4.2 Influence of PIP3 dephosphorylation on self-renewing hESCs under basal PTP 

levels 

Using a direct inhibitor of PTEN, bpV(HOpic), we studied its effects on p-AKT and p-

IRS1 (Y) (Schmid et al., 2004). At a low concentration of 100 nM for 24 h, the compound is 

known to suppress active PTEN, thereby increasing inactive p-PTEN. Our experimental data 

shows that small change in PTEN resulted in 2-fold increase in p-AKT (Figure 2.7A). The levels 

of p–IRS1 (Y) showed a 1.5-fold decrease. Similar trends were predicted by model simulations 

(Figure 2.7A, red lines) and by RS-HDMR (Figure 2.7B). This effect is primarily because of the 

strengthening of negative feedback leading to indirect inhibition of p-IRS1 (Y). This also points 

to the fact that p-AKT is more sensitive to PIP3 levels as compared to p-IRS1 (Y). 

2.3.4.3 Influence of PIP3 dephosphorylation on self-renewing hESCs under PTP inhibition 

Next we validated the effect of combined PTEN and PTP inhibition to check if PTP 

inhibition increases p-IRS1 (Y) when PTEN is still inhibited. At higher concentrations, the same 

complex bpV(HOpic) can inhibit both PTEN and PTP. We treated hESCs with 1 μM inhibitor 

for 20 min following Schmid et al. (Schmid et al., 2004). Our experimental results show a 

proportional increase in all the three molecules, p-AKT, p-IRS1 (Y) and p-PTEN (Figure 2.7A). 

Similar trends were predicted by model simulations (Figure 2.7A, red lines) and RS-HDMR 

(Figure 2.7B). The increase in p-IRS1 (Y) is primarily due to PTP inhibition (decrease in k-7) 
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since PTEN inhibition alone resulted in a decrease in p-IRS1 (Y). Thus, under PTEN + PTP 

inhibition, p-IRS1 (Y) overcomes the effect of increase in downstream negative feedback. In our 

experimental studies we observed that the largest increase in p-AKT levels was brought about by 

the inhibition of negative feedback. This was also predicted by the second order RS-HDMR 

component functions for p-AKT. The second order component functions for one such 

combination, k-9 and k7’ is presented as a heat-map in Figure 2.7C for p-AKT and p-IRS1 (Y). 

For low k-9 and low k7’ there was significant positive contribution to the p-AKT levels but not for 

p-IRS1 (Y). Combining this with the first order contribution from k-9 and k7’ in this regime and 

together with the mean, f0, we get the total p-AKT of 47% (f0 + f (k-9) + f (k7’) + f (k-9, k7’)). 

Alternatively, this effect is reduced when the negative feedback is strengthened. For example, in 

the low k-9 and high k7’ regime, the same contribution to p-AKT amounts to 23%. Therefore, 

strong negative feedback can considerably decrease the sensitivity of other reactions involving 

PTEN and PTP. 

2.3.5 Robustness of system behavior under parameter uncertainty 

While mathematically representing hESC systems, it is important to consider the effect of 

variability as observed in different experimental repeats. To test how parameter uncertainty 

influences the variability in the model output, we chose a biologically realistic log-normal 

distribution of the parameters centered around the nominal values. From the negative feedback 

parameters, the value of the most sensitive parameter, k7’ was varied as follows: (1) no negative 

feedback, k7’ = 0 (2) nominal level of feedback, k7’ = 0.347 and (3) 10 times stronger feedback, 

k7’ = 3.47. Figure 2.8A presents the probability distribution of steady state levels of p-AKT and 

p-IRS1 (S) respectively when exposed to parametric uncertainty, under these different levels of 
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negative feedback. The model shows that strengthening the feedback parameter reduces variance 

in the  distribution for each molecule. Hence the robustness of the system to input perturbations 

is enhanced in the presence of a strong negative feedback. In addition it was observed that the 

distribution for p-AKT was narrower as compared to p-IRS1 (S). In order to verify this 

observation, we plotted steady state levels of p-IR, p-IRS1 (S) and p-AKT from 5 different 

experimental repeats in Figure 2.8B. We see a comparatively high variability in p-IR and p-IRS1 

(S) levels but interestingly, p-AKT shows a narrow range of variability (see cell-to-cell 

distribution in Figure A.8). Negative feedback, thus, plays an important role in maintaining 

robust levels of the important molecules under experimental variability. Additionally, Pearson 

pairwise correlation between the molecules showed a good agreement between the experiments 

and model predictions (Figure 2.8C-D). 
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Figure 2.8 Influence of sensitive parameters on variability observed in hESCs. 

(A) Steady state p-AKT (top) and p-IRS1 (S) (bottom) distributions under varying rate parameter values. The 

parameters identified to be most sensitive by RS-HDMR were varied assuming a log-normal distribution around the 

mean and a variance of 10%. Negative feedback strength was varied by keeping the parameter k7’ at 0 (no feedback), 

0.347 (nominal case), 3.47 (strong feedback). (B) Variability observed in the steady state from insulin stimulation 

experiments in Figure 2.3. The data was normalized with the mean value across 5 repeats. (C) Model predicted 
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pairwise Pearson correlation between molecules for varying negative feedback. (D) Pairwise Pearson correlation 

between molecules in experiments from Part B. 

2.4 DISCUSSION 

2.4.1 Meta-model approximation for GSA of complex biological signal transduction 

models 

In this aim we, for the first time, present a detailed analysis of the regulatory interactions 

in PI3K/AKT pathway actively maintaining the self-renewal state of hESCs. A key step in our 

workflow is the analysis of the uncertainty associated with the strength of interactions in the 

PI3K/AKT pathway of hESCs using a meta-model based GSA. GSA captures the complete 

nonlinear associations between the model parameters in a sufficiently wide region of the 

parameter space and is suited for non-linear systems. The traditional methods of GSA are 

variance decomposition schemes involving exhaustive exploration of the parameter space. This 

renders the use of a detailed parametric analysis of large-scale ODEs expensive restricting the 

modeler to fairly simple local analysis. To explore IO relationships efficiently, we adopted meta-

model approach called RS-HDMR to obtain accurate information on the sensitive model 

parameters. RS-HDMR constructs a complex surrogate function to replace the ODE model and 

evaluates MC integrals of the Sobol’ indices efficiently. The method has been proven to perform 

well in a variety of engineering systems where parameter uncertainty is a norm. In the current 

work the method was explored for a signal transduction model in a 25 dimensional parameter 

space. We demonstrated that the method is especially accurate in identifying the most sensitive 
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parameters and their functional relationships to the output. Also, the technique, being 

independent of the total number of parameters can be applied to larger models common in 

systems biology. Hence, it is a promising alternative to evaluate global sensitivities with 

computational efficiency, instead of settling for locally based approximations as commonly done 

in signal transduction studies. 

2.4.2 Implications of GSA for molecules of the PI3K/AKT pathway 

Through our systems level analysis, we found that parameters associated with post receptor 

processes can affect the levels of intracellular molecules of the PI3K/AKT pathway more than 

the receptor level processes for high insulin concentrations. The high sensitivity of the post 

receptor processes is in support with previous experimental and modeling analyses that show that 

the functionality of insulin signaling can be severely affected by mutations associated with post 

receptor signaling molecules (Nyman et al., 2012). Additionally, on removal of equilibrium 

relationship between the forward and backward reactions, it was observed that the 

dephosphorylation reactions of the direct cascade were highly sensitive while the 

phosphorylation reactions were comparatively insensitive as seen in other systems like the 

MAPK/ERK pathway (Yoon and Deisboeck, 2009). This is an important relation since many of 

the de-phosphorylation reactions are dependent on the concentrations or functionality of 

phosphatases that can vary widely with the cell type and state and are also implicated widely in 

diseased states (Yoon et al., 2010). Our analysis also shows that due to the competing nature of 

the reactions in this module of the pathway, there is a considerable nonlinear outcome to 

simultaneous changes in the sensitive parameters, for example reduction of sensitivity to PTEN 

and PTP inhibition by strengthening negative feedback. Such nonlinear behavior was seen in an 
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experimental study in hESCs, where inhibition of a direct phosphatase to p-AKT rendered the p-

AKT levels insensitive to PI3K inhibition (Yoon et al., 2010). Our current analysis thus 

highlights the importance of nonlinear interactions in determining the effect of perturbations on 

the pathway components. This is an important outcome of mechanistic modeling and will prove 

useful in the design of targeted interventions for many systems. 

2.4.3 Modeling self-renewal in hESCs 

2.4.3.1 Processes affecting pathway dynamics 

Insulin stimulation experiments in self-renewing hESCs showed an overshoot behavior in 

the dynamics of post receptor molecules. Two possible candidates have been identified to 

explain such overshoot behavior in other cell types: (1) receptor internalization (2) downstream 

negative feedback from still unknown regulators of receptor de-phosphorylation (Nyman et al., 

2012). Usually, there is combined contribution from both the processes. In our hESC system, 

however, we do not see substantial overshoot behavior in p-IR dynamics, but surely there is a 

clear decrease in downstream p-IRS1 (Y) levels and an accompanying increase in p-IRS1 (S) 

levels. This indicates that the negative feedback acting at the level of IRS1 is responsible for 

decrease in p-IRS1 (Y). This was also seen from the negative correlation between p-IRS1 (Y) 

and p-IRS1 (S). Our clustering analysis showed that many of the de-phosphorylation reactions 

above PIP3 had to be maintained at low levels and it was necessary to couple this with an 

existing negative feedback to see an overshoot behavior. 
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2.4.3.2 Processes affecting p-AKT levels 

The central molecule like p-AKT can counterbalance the mechanisms that may lead to 

differentiation and support mechanisms that can lead to self-renewal (Singh et al., 2012b). Any 

increase in p-AKT levels has been shown to result in increased stability and self-renewal 

capacity of hESC cultures. For example, the levels of the active form of self-renewal molecule c-

MYC can increase with increase in p-AKT levels (Yoon et al., 2010). Yet there are limited 

efforts to understand how regulatory mechanisms affect long-term maintenance of self-renewal 

in hESCs, which was the focus of the current study. Under the current culture conditions the 

receptor level processes were found to be less sensitive. Therefore, a promising strategy to 

increase p-AKT levels is inhibition of internal signals that suppress p-AKT. Our results suggest 

that inhibition of negative feedback via PKC-ζ is one such mechanism. A parallel experimental 

study has recently demonstrated the positive attribute of PKC inhibition in hESC self-renewal, 

but did not offer any mechanistic insight (Gafni et al., 2013). Additionally, model analysis shows 

that any perturbation in the phosphorylation and de-phosphorylation reactions of this pathway 

(for example, PTEN and PTP inhibition) would still need the removal of negative feedback 

mechanisms to increase sensitivity to these interventions. 

From uncertainty propagation analysis, we show that negative feedback also increases the 

robustness of p-AKT levels to variations in the levels of upstream molecules. Mechanisms like 

negative feedback are known to impart robustness in many biological systems. Interestingly, the 

steady state correlation between molecules of the pathway held under experimental variability. In 

conclusion, the strength of negative feedback needs to be maintained in a fine balance. 

Weakening the negative feedback is favorable for self-renewal but is associated with increased 

variability. 
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2.5 CONCLUSIONS AND FUTURE EXTENSIONS 

2.5.1 Major conclusions 

The current work has developed a mathematical structure of the PI3K/AKT pathway, validated 

by experiments, to describe self-renewing hESCs. Adoption of RS-HDMR, a powerful meta-

modeling technique, allowed feasible evaluation of GSA of the complex non-linear pathway. An 

important conclusion from our study is that the maintenance of p-AKT levels, and hence the self-

renewal state of hESCs, is controlled by many of the negative processes of the pathway. 

Additionally, nonlinear interactions identified by RS-HDMR show that the existing negative 

feedback plays an important role of desensitizing the pathway to input perturbations and thus, 

regulates the steady state distribution of molecules in self-renewing hESCs. Inhibition of 

negative feedback can significantly increase p-AKT levels and support self-renewal, but with a 

tradeoff associated with increased variability. Such mechanistic analysis of new systems like 

hESCs is a critical step towards identification of new targets for optimizing cell culture 

conditions. 

2.5.2 Assumptions, potential pitfalls and proposed extensions 

The current model of the pathway is sufficient to explain the steady state behavior of the 

molecules. However, in order to utilize the model to explain early behavior, it will be necessary 

to model the delayed time to peak of p-AKT accurately. Time to peak is an essential feature (in 

addition to signal amplitude) controlling time sensitive downstream catalytic responses of p-

AKT, for example cell cycle. In the current context, we believe that the steady state behavior 
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drives the self renewal fate. But in future extensions, for example crosstalk between PI3K/AKT 

and other pathways, time to peak will become important. Therefore, based on Nim et al. future 

extensions of the pathway in hESCs will need modeling of the shuttling of AKT between the 

membrane and cytoplasmic compartments, along with membrane fractionation experiments to 

determine the kinetics of this process (Nim et al., 2015). 

In the current analysis, we considered the dynamics until 2 h. After continuous 

stimulation with insulin, additional degradation processes will take over the dynamics. These 

mainly include, loss of ligand from the medium via direct degradation as well as indirect 

degradation within the intracellular medium. The results presented in this chapter assume that 

insulin is continuously present, which is valid for a short-term analysis. Hence, an implicit 

assumption made here is that the cell culture is continuously replenished with input insulin. For 

hESC cultures, a 24 h to 48 h replenishment of the medium is undertaken. Supraphysiologic 

concentrations of insulin considered in this study do not decrease substantially to limit p-AKT 

levels in a 24 h process (Sedaghat et al., 2002). However, for a 48 h process, we need to take this 

effect into consideration. On the other hand, a temporally changing insulin stimulation in 

combination with perturbation strategies discussed in the text will be useful to find the optimal 

method of increasing p-AKT levels without wastage of growth factors. This could be 

conveniently done in controlled ligand delivery environment of a microfluidic platform. While 

doing this, it will be necessary to ensure the robustness of the response, and some facets of this 

was explored by us for the same pathway and hESC relevant parameter ranges in a parallel study 

(Mathew and Banerjee, 2014). 

Change in composition of the media due to processes like cellular metabolism will need 

attention when stimulations are long. As a first step, it will be interesting to study how 
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metabolites and other molecules result in activation/deactivation of the insulin pathway. Based 

on the mechanism of action of these molecules, the relative importance of these secondary 

effects could be judged by whether they affect a sensitive or non-sensitive node in the pathway. 

Information from these studies will enable extension of the insulin model to include crosstalk 

effects. 

Active receptors continuously accumulate in the endosomes and only some fraction of it 

is recycled back (Nyman et al., 2012). This leads to desensitization of the cells on further insulin 

stimulation. Hence, additional time of rest may be useful to allow the receptors to recycle back 

from the refractory state. Modeling the refractory behavior will be necessary in order to ensure 

that the Sedaghat model is valid for longer times. Similar modeling work was recently attempted 

for the TGF-β receptor system (Vizán et al., 2013). 

For sensitivity analysis, we have focused on a global approach due to the large variability 

in hESC systems. We can characterize the signaling variability further by performing a detailed 

parameter estimation (as done in Chapter 4) and identifying true parameter distributions (not just 

the intervals) after accounting for time to peak. This step will become necessary in future when 

integrating this pathway with other pathways of differentiation, where the entire dynamics will 

become important. In this work, we have considered only one branch of negative feedback via 

PKC-ζ. Other loops of negative feedback exist in the pathway via pGSK3beta, pmTOR, p-

p70S6K, pERK all of which converge on IRS1 (Taniguchi et al., 2006). In general, presence of 

several negative feedbacks makes the system robust to failure in network connections. But if the 

feedbacks span multiple time scales, it may lead to oscillations in the pathway in combination 

with strong feedbacks (Birtwistle and Kolch, 2011). Further, molecules like IRS1 have multiple 

phosphorylation sites that regulate the overall activity and localization of the molecules. Such 
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effects are interesting and have not been characterized for the hESC system yet. These may 

affect properties like distribution of markers and can be studied by future single cell analysis 

techniques of relevant signaling molecules. Multi-site phosphorylation of molecules will blow up 

the number of molecular species to be considered in the mathematical model and in such cases; 

rules-based frameworks will become extremely useful. 

Here we have considered only the role of the PI3K/AKT pathway activated by insulin. 

Additional growth factors like FGF, EGF etc. may also activate the same pathway with different 

kinetics and the self-renewal growth medium is a complex cocktail of growth factors and other 

nutrients. The integrated effect of these external factors on the PI3K/AKT pathway will be 

necessary to completely model the self-renewal state. Further, the crosstalk between PI3K/AKT 

and other pathways (endogenously activated) like MAPK/ERK, TGF-β/SMAD, WNT/β-catenin, 

will be necessary to completely define the signal transduction during self-renewal. In Chapter 4, 

one such crosstalk between the PI3K/AKT and TGF-β/SMAD pathways is considered. 
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3.0  IDENTIFICATION OF TRANSCRIPTION FACTORS CO-REGULATED BY 

COMBINATORIAL SIGNALS INDUCING ENDODERM DIFFERENTIATION OF 

HESCS 

The content of this chapter is taken from Mathew, S., Jaramillo, M., Zhang, X., Zhang, L. A., 

Soto-Gutiérrez, A., Banerjee, I., 2012. Analysis of alternative signaling pathways of endoderm 

induction of human embryonic stem cells identifies context specific differences. BMC Systems 

Biology 6, 154 

3.1 INTRODUCTION 

In the previous aim, our focus was on the PI3K/AKT pathway that is to be maintained at high 

levels to inhibit differentiation signals. In order to induce differentiation, the levels of other 

signaling pathways must be enhanced in parallel with inhibition of PI3K/AKT pathway. Multiple 

signaling pathways have been reported to have success in inducing DE differentiation with 

subsequent maturation to liver, pancreas and lung. While there is some understanding of the 

pathways induced by these individual signaling molecules, detailed knowledge of transcriptional 

controls activated through these signaling pathways is largely unknown. Moreover, 

combinatorial effect of these endoderm induction pathways, along with its impact on later stage 

maturation has received less attention. In this aim, we have analyzed the DE induction stage of 
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the differentiation process, by identifying co-regulated TFs across different growth factor 

combinations using an integrated experimental and mathematical approach. In addition to 

identifying co-regulated TFs, analyzing all possible combinations of the signaling pathways 

provides the benefit of thoroughly characterizing their co-operative effects and possibly 

identifying better combinations not explored before in empirical studies. 

3.1.1 Pathways for differentiation of hESCs to DE 

Activin A (henceforth denoted as activin) has been shown to be effective in inducing DE from 

hESCs and is a necessary induction factor (D'Amour et al., 2005; D'Amour et al., 2006a). 

However, many studies have shown that activin alone may not produce homogeneous 

differentiation and additional factors must be used to modulate supplementary signaling 

pathways along with the TGF-β/SMAD pathway activated by activin (Payne et al., 2011; Zhang 

et al., 2009a). We chose several widely used DE induction protocols all of which involve activin 

with either PI3K inhibition (Zhang et al., 2009c), WNT3A (D'Amour et al., 2005), BMP4 

(Phillips et al., 2007) or FGF2 (Basma et al., 2009). The hESCs were differentiated into DE 

using these molecules alone and in all possible combinations, at the end of which the 

differentiated cell population was analyzed for endoderm markers. This gives rise to 15 

experimental conditions and for each condition, 12 TFs were analyzed giving rise to a 15 x 12 

expression matrix with three replicates. Further details of the experimental techniques are given 

in Section 3.2. 
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3.1.2 Introduction to the mathematical methods 

Our aim is twofold: to identify which growth factor combinations are most effective for efficient 

DE induction; and to identify TF subsets co-regulated by these induction conditions. We first 

analyzed the mean expression data using Hierarchical clustering (HC) to identify relationships 

between the conditions and the TFs, followed by biclustering on the original expression data 

with replicates to identify the TFs which are co-regulated under subsets of these conditions. 

3.1.2.1 Hierarchical clustering 

HC is a useful technique to analyze and interpret multivariate data. Each data point here is 

represented as a vector in the high dimensional space and the distances between these data points 

are measured using a suitable distance measure (Friedman et al., 2001). The high dimensional 

space of the dataset is described by pairs of points, one from the condition space (15 

dimensional) and one from the TF space (12 dimensional). These are the two major dimensions 

of the dataset. The HC process links the points in each major dimension together and the result is 

a hierarchical grouping of the data points separately in each of the dimensions (TFs and 

conditions in our case). Using HC, we can capture the similarities between different growth 

factor treatments for DE induction using co-regulated TFs (all of them). HC has been 

successfully used in a number of bioinformatics applications including microarray data analysis, 

structure identification of bio-molecules and gene pathway identification (Slonim, 2002). 

3.1.2.2 Biclustering 

The major disadvantage of HC is that the clustering is performed on each major dimension (TF 

and condition) separately. In other words, when clustering is performed between the TFs, the 
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information on the condition is homogenized and vice versa. However, same TF may have 

different functions for different conditions and thus may be regulated differently. Therefore, 

ideally we seek ‘subsets of TFs’ that are co-regulated under ‘subsets of conditions’. This local 

information is preserved in a biclustering approach where each data-point is truly treated as a 

pair in the two major dimensions. A bicluster is defined as a subset of TFs that show coherence 

in the expression across subset of conditions. Figure 3.1A shows example of a coherent pattern. 

It is important to mention that this information may be partially obtained from a clustergram of a 

HC post-priori by looking at the clustering information in the 2D heatmap. However, this has 

limited use, since features like overlapping and non-trivial clustering are difficult to analyze this 

way. 

In 2000, Cheng and Church proposed the use of similarity measure called the mean 

square residue for identification of coherent biclusters (Cheng and Church, 2000). Since then 

newer and better algorithms have been developed to identify biclusters with particular 

characteristic trends like coherence, low overlaps and hierarchical structure (Pontes et al., 2015; 

Yang et al., 2003). These algorithms perform either one or a combination of iterative row and 

column clustering, greedy iterative search or exhaustive bicluster enumeration (Madeira and 

Oliveira, 2004). Bleuler et al. proposed an evolutionary algorithm (EA) to determine high 

quality, partially overlapped biclusters using the Cheng and Church formulation (Bleuler et al., 

2004). EAs have the advantage of large search space and are efficient methods for complex 

optimization problems (Divina and Aguilar-Ruiz, 2006). High quality biclusters should satisfy 

many criteria; namely they should contain as many genes and conditions as possible, low mean 

square residue, high row variance and should have low overlapping. Divina et al. formulated 

Sequential Evolutionary Biclustering (SEBI) algorithm to identify such biclusters from the 
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expression data, which has been adopted in the current work to identify important biclusters for 

the endoderm induction data under different combinations of the growth factors (Divina and 

Aguilar-Ruiz, 2006). SEBI can find high quality biclusters and has been proved to perform well 

for large-scale biological datasets. At the same time, it allows the user the flexibility of selecting 

the degree of overlap of the biclusters. 

 

Figure 3.1 Biclustering with bootstrap analysis. 

(A) Typical bicluster of interest. Expression matrix from qRT-PCR analysis contains many hidden patterns. One 

such pattern is shown in the middle section, which shows three genes a, b, and c varying coherently when the 

experimental condition is varied. Several metrics are used to describe coherence, most commonly low residue. 
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Additionally, high variance and high volume constraints are added to identify non-trivial biclusters. (B) Work-flow 

for the entire analysis from data collection to identification of robust biclusters. In short, we start with the qRT-PCR 

data and perform bootstrap with re-sampling from the experimental replicates to obtain 1000 pseudo-datasets. Each 

of these datasets is subjected to biclustering analysis to obtain the most coherent pattern in each dataset. The 

resulting biclusters are then analyzed for the most repeated subsets of biclusters. 

3.1.2.3 Handling data variability using bootstrapping 

The gene expression data obtained for cell culture systems are subjected to noise because of the 

heterogeneity and stochasticity associated with the system. Differences among the biological 

replicates may therefore arise due to the inherent heterogeneity of the ES cell population as well 

as by experimental noise. Therefore, it is essential that the biclustering algorithm be 

supplemented with additional methods to discover good quality and robust biclusters from noisy 

gene expression data. One way to do this is to obtain a large number of experimental replicates 

and perform biclustering over the entire dataset. This is however, expensive and impractical. A 

mathematical surrogate of this approach is bootstrapping, a concept first presented systematically 

by Efron et al. (Efron and Tibshirani, 1994). 

Essentially, bootstrapping generates a pseudo dataset from the small number of 

experimental replicates by a sampling with replacement technique. The most important 

assumption in a bootstrap approach is that it relies on empirical distribution presented by the 

dataset. The advantage of bootstrap lies in estimating statistically significant parameters from a 

limited number of experimental replicates (Politis and Romano, 1994). Thus, the results from a 

bootstrap analysis can provide information on the parameter variances and confidence intervals. 

These bootstrap datasets may be further analyzed by ensemble methods like bagging to identify 

aggregation of biclusters, referred to as meta-clusters (Hanczar and Nadif, 2011). We have 
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adopted a similar approach to aggregate the individual biclusters identified from the bootstrap 

datasets. However instead of identifying an ensemble of biclusters, we have concentrated on 

identifying the most repeated subset of the bicluster, which we denote as robust. This approach is 

summarized in Figure 3.1B. 

3.2 METHODS 

3.2.1 Cell culture and treatment 

H1 hESCs were placed on hESC certified matrigel coated wells and maintained with 

mTeSR1 with media change every day. Cells were passaged every 5 to 7 days by incubating in 1 

mg/ml dispase for 5 minutes followed by mechanically breaking the colonies and splitting at a 

1:3–1:5 dilution. Cells were examined under the microscope every day and colonies with 

observable differentiation were picked and removed before the media changes. H1 hESCs were 

allowed to grow to 60-70% confluency before the experiments were started. Once confluency 

was reached, differentiation was performed by adding DE induction media for 4 days with media 

change every day. All conditions were prepared in DMEM:F12 supplemented with B27 and 

0.2% BSA with 100 ng/ml Activin A. Conditions involved the use of individual and all possible 

combinations of growth factors and molecules at the following concentrations: basic FGF (F) at 

100 ng/ml, BMP4 (B) at 100 ng/ml, WNT3A (W) at 25 ng/ml and Wortmannin (PI3K inhibitor, 

P) at 1 μM. This leads to 15 different experimental conditions. 
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3.2.2 Measurement of TF expression 

After 4 days of DE induction, cells were lysed and RNA extracted using Nucleospin 

RNA II kit (Macherey Nagel) according to the manufacturer’s instructions. The sample 

absorbance at 280 nm and 260 nm was measured using a BioRad Smart Spec spectrophotometer 

to obtain RNA concentration and quality. Reverse transcription was performed using ImProm II 

Promega reverse transcription kit following the manufacturer’s recommendation. qRT-PCR 

analysis was performed for endoderm and pancreatic markers using the primers listed in 

Appendix B. A total of 12 transcription factors were studied which included pluripotency marker 

OCT4, mesendoderm marker BRACHYURY, DE markers namely, CXCR4, SOX17, CER, FOXA2 

and pancreatic progenitor markers PTF1α, PDX1, GATA4, HNF1β, HNF4α and HNF6. GAPDH 

was selected as the housekeeping gene. Briefly, the fold change was calculated from the cycle 

times, CT, after normalization with respect to the control sample and housekeeping gene, 

GAPDH as TC∆∆−2 , 

where ( ) ( )[ ]
0,,,, dayGAPDHTtargetTsampleGAPDHTtargetTT CCCCC −−−=∆∆ . The control sample was 

chosen to be undifferentiated cells at day 0. The TF expression profiles can be grouped together 

to form an expression matrix with the rows corresponding to the measurements of interest (like 

the relative mRNA concentrations) and the columns corresponding to the experimental 

conditions or samples. Thus, each element in the matrix refers to the intensity of the particular 

measurement in a given sample. A schematic of the experimental data collection is presented in 

Figure 3.2A. 
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3.2.3 Hierarchical clustering 

Hierarchical clustering partitions the data into clusters through an iterative process, where 

similarity or dissimilarity between every pair of variables in the data matrix is calculated using 

an appropriate distance measure followed by grouping the variables in close proximity using a 

linkage function. We used in-built MATLAB functions to perform the analysis using various 

distance measures e.g. Euclidean, correlation distance, city block etc., on the mean centered and 

variance scaled expression matrix. The results were represented as a clustergram i.e. the linkage 

tree and the corresponding heat map. We tested the tree generated using different linkage 

measures after normalization of the mean expression matrix and found all the trees to be very 

similar with the cophenetic correlation coefficient greater than 0.9. 

3.2.4 Biclustering using SEBI 

Biclustering can be described as two-dimensional clustering, where a subset of genes exhibiting 

similar trend across a subset of conditions is being identified. Such subsets can be considered to 

be participating in similar regulatory mechanism, hence constituting a regulatory network. In 

order to identify sets of TFs expressing coherent trends under specific sets of conditions, we 

analyzed our TF-condition matrix, , using the SEBI algorithm developed by Divina et al. 

(Divina and Aguilar-Ruiz, 2006). 
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3.2.4.1 Biclustering formulation 

The SEBI algorithm identifies coherent biclusters sequentially with the help of a number 

of metrics as described below. For a bicluster XJIB ∈),( , containing elements, ije  for Ii∈ , 

Jj∈  the residue, ijr  of each element in the bicluster is defined as: IJIjiJijij eeeer −−−= . The 

gene base is defined as 
J

e
e Jj

ij

iJ

∑
∈=  , with I  and J  representing the total number of genes and 

conditions respectively in the bicluster B . The condition base is defined as 
I

e
e Ii

ij

Ij

∑
∈= . The 

base of the bicluster is the mean of all entries in the bicluster, i.e., 
JI

e
e JjIi

ij

IJ ×
=
∑

∈∈ , . The residue, 

therefore, indicates the degree of coherence of the element with other elements in the bicluster. 

Further, the squared mean residue of all the elements in the bicluster is defined as 
JI

r
r JjIi

ij

IJ ×
=
∑

∈∈ ,

2

. 

It is possible to have biclusters having constant expression values and hence have low residue 

value. To avoid such trivial biclusters, the variance metric is introduced. The variance, , of 

a bicluster is defined as, 
( )

JI

ee
var JjIi

ijiJij

IJ ×

−
=
∑

∈∈ ,

2

. Hence, the variance captures fluctuating 

trends. Finally, we would be interested in biclusters with as many genes and conditions as 

possible i.e. having large volume. The basic premise of the analysis is that the genes belonging to 

a bicluster are under the influence of a common regulatory pathway and hence show coherence 

in their expression trends. However it is possible for the genes to participate in multiple 
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regulatory pathways, to capture which we allow certain degree of overlapping amongst the 

biclusters discovered sequentially by the SEBI algorithm using a penalty term. Thus, our final 

goal is to find biclusters of maximum size, with mean squared residue lower than a given 

threshold (δ ), with relatively high row variance, and a low level of overlapping among the 

biclusters. We represent this as an optimization problem with objective function defined as: 

penaltyw
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In this function, ),( JIB  is an individual solution, δ  is the mean squared residue of the 
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Where N , M  are the number of rows and columns of the expression matrix, 

respectively and )( ijeCov  is the number of previous biclusters containing ije . The use of the 

penalty term biases the search against members which already have appeared in the previous 

biclusters, thus reducing the overlapping amongst the biclusters. 

dw  is defined as 
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 and δ  is the threshold mean squared 

residue and biclusters with mean squared residue above δ  are discarded. 
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3.2.4.2 Solution procedure 

The current optimization formulation has been identified to be NP-hard and has been 

shown to be effectively handled by evolutionary techniques like Genetic Algorithm (GA) 

(Divina and Aguilar-Ruiz, 2006). GA is an iterative search process which looks for the fittest 

member of a population (candidate solutions) using the biological principle of evolution under 

mutation and natural selection (Golberg, 1989; Tanay et al., 2005). In a typical GA, the 

optimization variables are encoded as a sequence of binary bits and these sequences are 

concatenated to form the chromosome. Thus, for the present formulation, each chromosome 

consists of I binary bits for genes and J binary bits for conditions forming the I + J  binary bits of 

the chromosome. The binary variables, 0 and 1 represent the absence or presence of a gene (or 

condition) respectively. Thus, a GA population is made of chromosomes with each chromosome 

representing a candidate bicluster. 

Each chromosome has a metric associated with it called the fitness which we wish to 

maximize. The GA algorithm is initiated by randomly initializing a population of chromosomes 

(i.e. biclusters). The population is continuously evolved in every generation by the operators: 

reproduction, crossover and mutation. At the end of every generation, individuals for the next 

one are selected on the basis of their fitness values. This cycle of evolution is continued until a 

predetermined termination criterion is reached. For the present case, we continued the 

simulations for a maximum number of generations until no further change in the population was 

observed. The biclustering formulation was coded in FORTRAN R90 and the Genetic Algorithm 

(version 1.7a) driver obtained from David Carroll, CU Aerospace, Urbana, IL. Computations 

were performed on INTEL (R) Core (TM) 2 Quad CPU (Q8400 @ 2.66 GHz). 
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3.2.4.3 Identifying robust biclusters 

The inherent noise in biological systems makes it difficult to draw meaningful 

conclusions from a deterministic analysis. The formulation proposed above is based on the mean 

gene expression data which possibly reduces confidence in the identified bicluster. Here we have 

adopted the bootstrap technique to obtain robust biclusters from noisy experimental data. 

Bootstrap is a statistical technique to generate large data set from a small number of 

experimental replicates, using sampling with replacement technique. The present formulation 

systematically re-samples the original experimental data set using Monte Carlo algorithm to 

generate the artificial data set. The optimization formulation of the biclustering problem is then 

solved at each of the bootstrap data points to generate a family of alternate biclusters. The final 

goal will be to identify the most repeated biclusters in the entire array, based on the justification 

that such a bicluster will be relatively insensitive to experimental noise and hence is robust. To 

this end, the number of repeats of a particular gene-condition combination is analyzed using the 

quicksort algorithm (N log N). Our analysis showed that the complete bicluster was typically not 

repeated significantly; instead only subsets of the biclusters were repeated sufficient number of 

times. For identification of robust biclusters, we set the threshold frequency of repeats as 500 out 

of every 1000 alternate biclusters. The most repeated subsets are thereby concluded to be robust 

under experimental noise. The workflow for the entire analysis is depicted in Figure 3.1B. 

3.3 RESULTS 

The focus of this work is to understand the mechanism of endoderm induction using 

different growth factors, acting alone and in combination, from an integrated experimental and 
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computational approach. The H1 human embryonic stem cells were induced towards endoderm 

lineage using activin along with alternate growth factors, namely FGF2, BMP4, PI3KI, WNT3A, 

added in 15 combinations. The cells differentiated thereof were analyzed in detail for their gene 

expression levels, specifically concentrating on a broad range of endoderm markers along with 

representative pancreatic endoderm markers. 

3.3.1 Experimental analysis of endoderm differentiation using combinations of major 

pathways 

Figure 3.2A shows the mean expression data plotted as fold changes in 12 genes across 

the 15 experimental conditions. At this stage, the fold change data showed interesting trends for 

the different conditions. When using only one factor other than activin, PI3KI along with activin 

was found to give the highest expression of most of the DE markers while BMP4 and activin in 

combination was found to give the lowest expression among the four conditions. Interestingly, 

BMP4 was found to perform better in combination with another factor like WNT3A or FGF2. 

Also, FGF2 containing conditions were found to favor CER while BMP4 containing conditions 

to favor HNF4α. Among the 4 conditions which contain 3 factors other than activin, 

combinations of FGF2, BMP4 and PI3KI perform well. Using all the factors together was not 

particularly useful since all the TFs maintained expressions in the same range as other 

combinations. Figure 3.2B shows the range of variation observed in each of the transcriptional 

markers across the 15 experimental conditions along-with the experimental replicates. The levels 

of DE markers CER, FOXA2, CXCR4 and late endoderm markers HNF4α, HNF1β and GATA4 

change substantially when the induction conditions are changed. This level of analysis, however, 

makes it difficult to draw mechanistic insights from the dataset. Hence, we performed a more 
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rigorous mathematical analysis to separate out the TF trends and associate them with the 

appropriate conditions. Because of the inherent differences in expression level of different genes, 

it is essential to normalize the data to avoid bias. For the mathematical analysis, the data 

presented in Figure 3.2A was normalized by mean centering and variance scaling so that every 

TF has a mean expression value of zero and standard deviation of one. 

 

Figure 3.2 Experimental data used for biclustering + bootstrap analysis 
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(A) Experimental variables and outputs. (B) The fold change calculated from the mean expression data from qRT-

PCR on day 4 of the differentiation process is plotted from the expression matrix, X, constructed using rows as the 

TFs and columns as the experimental conditions. (C) Variation observed in the 12 transcriptional markers with 

changes in the signaling pathways presented as mean ± SE. All the major DE markers CER, CXCR4, FOXA2, 

SOX17 and the later endoderm markers HNF4α, HNF1β and GATA4 show significant changes with the nature of DE 

induction. 

 

Figure 3.3 Hierarchical clustering on mean expression data 

The conditions cluster into two major groups, one containing BMP4 in the absence of exogenous FGF2 and the 

other containing all the other treatments and BMP4 in combination with exogenous FGF2. Activin A is common 

among all the treatments. The TFs cluster into two groups, the late and early endoderm markers. 
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3.3.2 Hierarchical clustering of the mean expression data 

The mean experimental data matrix was first analyzed using hierarchical clustering which 

clusters the TFs and conditions separately, as shown in Figure 3.3. Among the conditions, two 

major branches were observed: the first cluster contains BMP4 dominant conditions (B, B + W, 

B + P, B + W + P) and the second cluster contains the remaining conditions which also includes 

BMP4 but interestingly only in combination with FGF2. The TFs also segregate into two 

branches; the first branch contains the late endoderm markers and one of the DE markers 

(HNF4α, HNF1β, GATA4, PDX1, FOXA2), the second branch contains the early DE and late 

endoderm markers (OCT4, BRACHYURY, CER, HNF6, CXCR4, SOX17, PTF1α). The first 

group of markers is particularly high in BMP4 dominant conditions and low in the other 

conditions. The second group of markers is low in the BMP4 dominant conditions and high in 

the presence of PI3KI, WNT3A and BMP4 and high FGF2. Thus our results point to differences 

in activin and BMP4 induced endoderm in the presence and absence of exogenous FGF2. 

The clusters identified by the hierarchical algorithm reflect our biological understanding 

of the induction conditions as seen from the previous studies. A major difference between the 

two clusters of conditions was the context dependent function of BMP4. In the presence of FGF2 

and high activin, BMP4 was found to favor the endodermal lineage which was seen in several 

recent studies (Bernardo et al., 2011; Xu et al., 2011) and was also on par with PI3KI dominant 

conditions which gave the best endoderm in our experiments. Also, in our BMP4 dominant 

conditions, the late stage markers showed very high expression while the major DE markers 

were low indicating that the resulting endoderm may already be mature. Among the second 

group of conditions, PI3KI and high activin resulted in high expression of three major DE 

markers SOX17, CXCR4 and CER which is supported by a number of earlier studies (McLean et 
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al., 2007a; Singh et al., 2012b). Using all the factors together does not improve upon the 

endoderm derived by PI3KI treatment. The second group of conditions also contains FGF2 as a 

major factor along with WNT3A. It is found that both pluripotency (OCT4) and the endoderm 

factors (CER and HNF6) are relatively favored by conditions involving FGF2 and WNT3A as 

the major contributor. In fact, FGF2 has been found to be sufficient to maintain the hESCs in the 

pluripotent state and has also been used for endoderm induction in several differentiation 

protocols (Shiraki et al., 2008). Thus, FGF2 can potentially favor both pluripotency as well as 

endoderm differentiation depending on associated conditions (for example level of activin). 

 

Figure 3.4 Biclusters obtained from normalized mean expression data 

(A) Optimal Biclusters. The bicluster contains 3 genes across 5 conditions. (B) Subsequent optimal bicluster 

containing 3 genes and 7 conditions. The bicluster parameters selected were δ = 1.5, Wc, Wr = 1. 

3.3.3 Identification of co-regulated transcription factors by biclustering 

While hierarchical clustering enables a fast and simplistic analysis of the experimental 

data sets, it does not provide information on which subsets of TFs are co- regulated across 

subsets of conditions. Identifying such co-clusters will be beneficial, since the governing 

signaling pathways change with the induction condition and the same TFs may not be co-

regulated. The technique of biclustering serves to mine subgroups of such TFs exhibiting similar 
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trends in their expression level under sub- sets of conditions. Hence TFs appearing in the same 

bicluster can be inferred to be co-regulated and constituents of a similar network architecture. 

The experimental data matrix, I, constituting the mean expression data across all the growth 

factor conditions is analyzed using the algorithm elaborated in Methods section. Here, the 

biclustering approach is formulated as an optimization problem solved using genetic algorithm 

(GA) and the quality of every candidate bicluster is assessed by a fitness function. The fitness 

function has a number of free parameters associated with it that can be tuned in order to identify 

certain desired trends. The detailed procedure on the selection of the optimum parameters is 

outlined in the Appendix B. 

The developed optimization based bicluster identification algorithm was applied to the 

mean expression data with the above mentioned parameters, which resulted in a 3-gene 5-

condition bicluster as illustrated in Figure 3.4A. However, to identify additional biclusters, 

possibly with overlaps, the SEBI algorithm was subsequently run by penalizing the identified 

biclusters. One such bicluster is presented in Figure 3.4B. Although, the SEBI algorithm allows 

some degree of overlapping amongst the subsequent biclusters, the current mean dataset did not 

result in any overlaps. 

Recently, a new method was proposed by Banka et al. called as Fuzzy Possibilistic 

Biclustering which assigns a membership value to each gene-condition pair in the expression 

matrix and therefore, allows varying degree of overlapping amongst the biclusters (Filippone et 

al., 2006; Mitra et al., 2007). However, though the method has been proven to provide very large 

biclusters with acceptable residue, the selection of the degree of fuzziness often depends upon 

the question that the biologists have set to answer (Nosova et al., 2011). In our case, we are 

interested in analyzing the well identified markers of endoderm induction under necessary 
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signaling pathways. Since, our aim is to discover subtle differences in the gene regulation when 

the induction conditions are changed, a traditional crisp method like SEBI will be more useful 

for identifying the best induction condition. 

 

Figure 3.5 Robust biclusters identified from 1000 bootstrap datasets 

Robust biclusters are the most repeated subsets (>500). The bicluster parameters selected were δ = 1.5, Wc, Wr = 1. 

Note: Group 1 contains five subsets only one of which is shown. 

3.3.4 Robust biclusters identify WNT3A treatment to favor both early and late endoderm 

The above identified biclusters were for the mean dataset, and hence does not explicitly 

take into account the experimental variations. In general biological datasets are known for their 

noise and uncertainty, and in particular stem cells have inherent heterogeneity and stochasticity. 

In order to increase confidence in the identified bicluster we undertook bootstrap analysis on the 

experimental data to generate 1000 pseudo-datasets. Each of these datasets were treated as an 

experimental repeat and subjected to the entire biclustering analysis. In order to identify 

somewhat overlapped biclusters, we ran the biclustering algorithm five times at each data point 

by subsequently penalizing previously identified biclusters. 

The next task was to determine a robust bicluster from this array of alternate biclusters. 

We hypothesize that the robust bicluster will not be significantly affected by the experimental 
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noise, and hence will appear a large number of times in the bootstrapped-bicluster data set. 

However, a thorough search of the entire array of alternate biclusters for frequency of repeats did 

not yield any satisfactory outcome. Thus we could not find a single bicluster that was 

significantly repeated in its entirety across the data set. Instead, we realized subsets of genes and 

conditions of the bicluster were being repeated with very high frequency instead of the entire 

bicluster. Hence, we focused on identifying such subsets from the family of bootstrap + bicluster 

solutions. Setting a minimum threshold of 50% repeats across the bootstrap samples, we 

identified 6 such subsets. First five of these contained different combinations of the same two 

markers and four conditions. Hence we collected them together into a single group. The profiles 

of the repeated subsets are presented in Figure 3.5. These subsets are of two kinds: Group 1 

contains (CER, HNF6 | F, F+W, B+W+P, B+P) and Group 2 contains (HNF6, HNF4α| F+B, 

F+P, W+P). It is important to note that the robust biclusters were different from the biclusters 

obtained for the mean expression data. For example, the biclusters in Figure 3.4 show that 

HNF4α clusters closer to HNF1β (and GATA4) rather than CER. This is also evident from our 

hierarchical clusters in Figure 3.3. The fact that they do not appear together in the robust 

biclusters is interesting and shows that analysis from mean datasets can be risky for stem cell 

systems when there is inherent variability among the replicates. Supportively, the HNF4α, 

HNF1β (and GATA4) combination occurs in subsets with less than 300 repeats (data not shown). 

Figure 3.6 shows a summary of the robust biclusters represented as a bipartite graph of genes and 

conditions. The identified biclusters are biologically relevant to the development stages in vivo. 

Group 1 contains endoderm markers CER and HNF6 under FGF2/WNT3A and 

BMP4/WNT3A/PI3KI. CER is an important early marker for the DE stage rising after the 

formation of the primitive streak during development while HNF6 is a marker for a more 



 

 77 

primitive foregut stage in pancreas development (D'Amour et al., 2005). Thus, Group 1 is similar 

to the foregut development stage in vivo (Zorn and Wells, 2009). In addition, the conditions in 

Group 1 contain FGF2 and WNT3A but not BMP4 and as seen from Figure 3.5, CER and HNF6 

decrease under BMP4 dominance. Thus, the biclustering analysis shows that the early marker 

CER and a late endoderm marker HNF6 are controlled by the FGF2, WNT3A pathway and are 

relatively down-regulated under BMP4 and PI3KI. Group 2 contains another primitive foregut 

stage marker HNF4α alongwith HNF6. Interestingly here, the biclustering results show that 

pancreatic endodermal transcriptional machinery may not be favored at the DE stage by the 

FGF2 + BMP4 combination although in our hierarchical clustering results FGF2 + BMP4 

combination clustered with the other conditions that gave a better DE signature. We also note 

that WNT3A and PI3KI combination with high activin increased the expression of HNF4α and 

HNF6 and these conditions also gave a successful DE signature as seen from the hierarchical 

clustering. Thus our results indicate that WNT3A pathway can favor both early and late markers 

like CER, HNF4α and HNF6. Also, WNT3A + PI3KI induced DE cells may be more capable of 

developing into later pancreatic lineages. While WNT3A and PI3KI have been used for DE 

induction towards pancreatic maturation (D'Amour et al., 2006a; Zhang et al., 2009c), the effect 

of co-induction has not been explored yet. However, direct modulation of molecules from these 

two pathways was undertaken by Singh et al. and found to lead to better endoderm 

differentiation and pancreatic maturation as compared to one of these alone (Singh et al., 2012b). 
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Figure 3.6 Robust subsets of co-regulated TFs presented as a bipartite graph. 

We have identified high Activin along with PI3K inhibition or activin in combination with WNT3A to work the best 

to co-regulate early endoderm marker CER and late endoderm markers HNF6. The Group 2 TFs HNF4α and HNF6 

are part of the network inducing NGN3 and PDX1, reminiscent of the pancreatic genotype and are favored by high 

activin with PI3KI and WNT3A. 

3.4 DISCUSSION 

The differentiation of hESCs into the endoderm lineages is carried out by the activation 

of different signaling pathways mimicking in vivo development. However, there is no consensus 

on which induction method is the most desirable and whether combination of these could result 

in an endoderm with the best signature. Here, we have used a combination of experimental and 

mathematical techniques to shed light on these concerns. 
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3.4.1 The DE signature differs under exogenous activation of different signaling pathways 

participating in endoderm commitment 

Our experiments with different DE inducing conditions show that the DE potential of the 

differentiating hESCs is highly dependent on the method of DE induction. The major DE 

markers (CER, CXCR4, FOXA2, SOX17) showed considerable variation when some of the path- 

ways were activated above their basal levels. 

All the pathways studied here have been known to be important at the earlier stages of in 

vivo endoderm differentiation and has also been documented as necessary for in vitro 

differentiation. The common denominator in our studies is activin which is an essential inducer 

of DE. This is primarily because activin, being a member of the TGFβ family, mimics nodal 

signaling which is proven to be necessary for endoderm development (Payne et al., 2011). 

Activin has been shown to maintain pluripotency at low concentrations and to induce mesoderm 

and endoderm at high concentrations (Singh et al., 2012b). However, activin alone may not 

result in efficient endoderm induction (Zhang et al., 2009a). Low PI3K signaling was essential 

for efficient induction of DE from hESCs (McLean et al., 2007a). Our hierarchical clusters show 

that Activin and PI3K inhibition in combination favor the up-regulation of a number of DE 

markers and form the most minimal signaling pathways to be modulated for efficient DE 

induction. In fact a number of recent studies have identified the interplay between PI3K/AKT 

and Activin/SMAD2,3 pathways and the resulting regulation of the gene transcription events 

necessary for early DE induction (Singh et al., 2012b). 

Among the DE markers, CER showed up-regulation on differentiation, and the highest 

up-regulation was achieved in the presence of FGF2, WNT and PI3KI treatments. Katoh et al. 

recently identified the binding domains of several key signaling effectors of the activin and WNT 
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pathways on the promoter regions of CER in hESCs (Katoh and Katoh, 2006). According to their 

results, the key nodal effectors SMAD3/SMAD4 as well as the WNT effectors beta-catenin and 

TCF/LEF transcriptional complex regulate the expression of the CER gene. In addition to high 

activin and WNT signaling, PI3K inhibition may be necessary to enhance the effect of nodal 

signaling as SMAD3/SMAD4 complex is negatively regulated by AKT (Singh et al., 2012b). 

Exogenous FGF2 simultaneously activates the ERK pathway and maintains the expression of 

other key regulators of differentiation (Mfopou et al., 2010). However, BMP4 effectors 

SMAD1/3 may compete with the activin pathway and thus reduce the up-regulation of CER, as 

substantiated by the consistent grouping of the BMP4 dominant conditions in the hierarchical 

clustering with low CER as a common marker. 

The response to the BMP4 pathway, however, was highly dependent on the context, 

namely the presence and absence of FGF2 which was a striking feature of the hierarchical 

clustering on the 15 conditions. BMP4 is typically known as an activin antagonist and high 

concentrations of BMP4 in the culture with high activin results in mesoderm fate (Poulain et al., 

2006; Sulzbacher et al., 2009; Sumi et al., 2008). At the same time, BMP4 alone results in the 

extra-embryonic lineages (Xu et al., 2002). The presence of FGF2 with BMP4 modulates the net 

response to the mesendoderm fate, which is an intermediate stage that can result in DE and 

mesoderm. Several recent studies have demonstrated the use of this combination to promote 

endoderm formation (Xu et al., 2011; Yu et al., 2011). FGF2 sustains the expression of NANOG 

(a pluripotency marker) and this sustained NANOG expression is found to shift the outcome of 

BMP4 induced differentiation of hESCs towards mesendoderm (Yu et al., 2011). However, 

prolonged use of FGF2 and BMP4 together may be detrimental for pancreatic differentiation, 

since this combination has been shown to induce hepatic differentiation after the DE stage (Zorn 
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and Wells, 2009). Also, BMP4 dominant clusters showed high expression of late endoderm 

markers HNF4α, HNF1β and GATA4. This may indicate that BMP4 accelerates the 

differentiation to the mesendoderm phase and therefore, the overall dynamics may be faster for 

the BMP4 dominant case. But, it was striking to note that the expression of HNF6, another 

important marker for late endoderm was still lower in the BMP4 dominant case. Hence, 

hierarchical clustering alone was not sufficient to answer if BMP4 addition could be useful for 

late endoderm differentiation. Importantly, BMP4 dominant conditions gave low expression of 

markers from the robust biclusters. Thus the current analysis shows that BMP4 may not be a 

suitable choice for endoderm induction. WNT3A/β-catenin signaling has been shown to be 

important both for maintenance of pluripotency as well as induction of differentiation (Zorn and 

Wells, 2009). The WNT pathway is also found to be important in the formation of primitive 

streak due to which it is often used in the very early stages of in vitro differentiation until the 

formation of mesendoderm (D'Amour et al., 2005). Stabilization of β-catenin by canonical WNT 

signaling is found to be responsible for differentiation by epithelial-mesenchymal transition; 

however presence of WNT after this stage supports mesoderm (Sumi et al., 2008). Also, FGF2 is 

found to synergistically influence the WNT pathway (Katoh and Katoh, 2006). WNT alongwith 

PI3KI was commonly present in both the groups identified by our hierarchical clustering. WNT 

was consistently found to be supportive to the activin + FGF2 signaling assessed by the up-

regulation of DE markers. Hence, WNT and PI3KI may be the essential pathway modulators 

necessary for endoderm differentiation. 
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3.4.2 Robust biclusters identify the necessary pathways for efficient endoderm 

differentiation to the pancreatic lineage 

The robust biclusters identified by the biclustering + bootstrap analysis show the most 

important trends preserved under experimental variations. Supportively, CER, HNF6 and HNF4α 

belonged to the robust clusters. As mentioned earlier, CER is an important target of the activin 

and WNT signaling pathways and HNF6 is a very early pancreatic progenitor marker taking part 

in the transcriptional network activating pancreatic progenitors. As seen from the Group 1 

bicluster, FGF2 + WNT3A conditions favor CER and HNF6 while BMP4 limits their up-

regulation. It is also found that the stability of β–catenin is partly enhanced by PI3K signaling 

(activated by FGF2) (Voskas et al., 2010) and hence this combination of high activin + FGF2 + 

WNT3A may work to control the expression of some endoderm markers like CER and HNF6. At 

the same time, CER protein is a negative regulator of the TGF-β (activin, BMP4) pathway and 

upregulation of CER is necessary to limit the activation of these pathways, since inhibition of the 

TGF-β pathway was found to be necessary for efficient differentiation to the pancreatic 

progenitors after PDX1 and HNF6 expression (Nostro et al., 2011). However, external addition 

of WNT3A may still be necessary since CER negatively regulates the WNT pathway (Katoh and 

Katoh, 2006). 

Alternatively, the markers HNF4α and HNF6 which occur in Group 2 are co-regulated 

under FGF2 + BMP4, FGF2 + WNT3A + PI3KI action. These markers also occur in the MODY 

network for induction of Neurogenin expressing cells which represents mature pancreatic lineage 

(Wilding and Gannon, 2004). HNF6 occupies a predominant position in regulating the 

expression of HNF4α and other genes prior to PDX1 induction. A key result identified by the 

bicluster was the consistent up-regulation of the late pancreatic markers HNF4α and HNF6 under 
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WNT3A + PI3KI dominant conditions and studies by Nostro et al. have indicated the necessity 

of WNT3A for induction of pancreatic progenitors (Nostro et al., 2011). CER, HNF6 

combination was also upregulated under WNT3A conditions and thus WNT3A addition was 

found to favor both DE markers as well as late pancreatic endoderm markers supposedly 

showing similarity with in vivo pancreatic organogenesis. The presence of FGF2 and BMP4 

lowers the expression of these markers and is consistent with the inhibition of FGF2 and BMP4 

at the later stages for inhibition of a hepatic fate and efficient pancreatic lineage selection 

(Nostro et al., 2011). The key signaling pathway interactions from the robust biclusters are 

summarized in Figure 3.7. 

 

Figure 3.7 Functional dependence of the coregulated genes on the active signaling pathways of endoderm 

induction. 

CER and HNF6 are favored by High activin and WNT3A, FGF2 while HNF4α and HNF6 are favored by High 

activin, WNT3A and PI3KI. Combining the early and late stages, high activin with PI3KI and WNT3A together is 

an effective strategy for endoderm differentiation. 
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3.5 CONCLUSIONS AND FUTURE DEVELOPMENTS 

3.5.1 Major conclusions 

The focus of the current work was to achieve insights into the in vitro differentiation 

process of human embryonic stem cells to the endoderm stage using both experimental and 

mathematical approaches. Our work has identified the differences between the different 

protocols for endoderm induction. Essentially, high activin A and PI3K inhibition or high activin 

A with FGF2 or WNT3A serve well as early DE inducer. Additionally, biclustering shows that 

the early and late endoderm markers are co-regulated under high activin and WNT3A. Thus, 

overall high activin with PI3KI and WNT3A together may serve better for in vitro differentiation 

of hESCs to the definitive endoderm and pancreatic endoderm lineages. Work by Dalton et al. 

indicate that components of the pathways activated by these conditions are necessary for 

effective DE lineage specification (Singh et al., 2012b). This condition is currently being used in 

regular DE differentiation protocols in our lab. 

3.5.2 Assumptions, potential pitfalls and proposed extensions 

In the current analysis, only a snapshot of the differentiation process was used, since the 

gene expression differences were evaluated only on day 4. While this is sufficient to analyze 

differentiation at the final stage of definitive endoderm, it does not give information on the 

intermediate stages unless the final set of markers selected are such that they have correlations to 

the markers preceding them. This was taken care of in the current analysis by selecting 

appropriate markers. However, in future if we would like to expand the network and ensure co-
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expression of multiple markers (which is a better indicator of the cell state) instead of 2-3 

markers in the biclusters identified in this aim, it will be necessary to consider multiple time 

steps. In such a situation, techniques like tri-clustering would be necessary where the time 

ordering information is preserved (Gutiérrez-Avilés et al., 2014; Tchagang et al., 2012). 
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4.0  QUANTITATIVE NATURE OF SMAD SIGNALING IN HESCS AND 

MODELING CROSSTALK INTERACTIONS WITH AKT 

The DBN content of this chapter is taken from Mathew, S., Sundararaj, S. and Banerjee, I., 2015. 

Network analysis identifies crosstalk interactions governing TGF-β signaling dynamics during 

endoderm differentiation of human embryonic stem cells. Processes 3, 286-308. 

4.1 INTRODUCTION 

The fate choice of hESCs is controlled by complex signaling milieu synthesized by diverse 

chemical factors in the growth media. Prevalence of crosstalks and interactions between parallel 

pathways renders any analysis probing the dynamics of fate choice elusive. Although, some key 

interactions within major signaling pathways as well as interactions between parallel pathways in 

differentiating hESCs was recently characterized (Singh et al., 2012a), experimental studies have 

not focused on the dynamics of signal transduction in differentiating hESCs. Further, the nature 

of interactions present in the signaling network and the sequence of signal propagation events are 

cumulatively captured in the dynamics of key molecules in a signaling pathway (Heinrich et al., 

2002). In the previous chapter, our focus was on one time snapshot of the endoderm 

differentiation process. Here, we are focusing on the entire early dynamics of signaling 

molecules, but using two major minimal pathways for a thorough analysis. In this aim we (i) 
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determined the crosstalk network interactions and (ii) developed the mechanistic model of these 

interactions from the experimental dynamics of signaling molecules. The quantitative and 

experimental approaches applied in this aim are new to the hESC system and were particularly 

selected to address high variability in the dynamic signaling data of hESCs. 

The first step in the process is network identification. Previous studies have shown that 

the effectors of TGF-β pathway (SMAD molecules) play a major role in fate choice of hESCs 

(Singh et al., 2012a). The Activin mediated TGF-β/SMAD pathway is a major pathway 

associated with many functions of organ development including proliferation, differentiation, 

migration and cell death. This pathway is activated by superfamily of cytokine ligands (TGF-β, 

Activin, Inhibin, Nodal and Lefty) that activate serine/threonine signaling (Clarke and Liu, 2008; 

Hagos and Dougan, 2007; Schier, 2009). Among these ligands, Nodal is the primary ligand 

during embryonic development and its functions are mimicked by Activin ligand in in vitro 

cultures (Schier, 2009). TGF-β is the ligand that is commonly associated with inflammation, 

tissue homeostasis and cancer cell signaling (Clarke and Liu, 2008; Massagué, 2012). However, 

all of these ligands activate the same pathway and include the molecules SMAD2 and SMAD3 

as their primary effectors. However, the context of survival pathways like PI3K/AKT and 

mitogen activated pathways like MAPK/ERK ultimately decides whether active SMAD 

complexes support self-renewal or differentiation of hESCs. This is because of critical crosstalk 

interactions between TGF-β/SMAD and these other pathways (Dalton, 2013). The efficiency of 

endoderm differentiation is consequently diminished without appropriate removal of negative 

interactions with parallel pathways. Until now, there has not been a thorough mathematical and 

network level analysis of the existing interactions, which is the focus of this aim. Due to the high 

variability associated with hESC systems, it is also necessary to infer robust connections from 
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noisy data. Bayesian models provide a natural framework to investigate the causal dependence 

between nodes in a network and derive probabilistic relationships that most likely explain 

experimental observations (Needham et al., 2007). These models have proven successful in 

network reconstruction from noisy signal transduction data (Woolf et al., 2005; Zielinski et al., 

2009). Among the different Bayesian models, Dynamic Bayesian Networks (DBNs) provide the 

best representation of the adaptive nature of signal transduction networks (Murphy, 2002). DBNs 

provide information on the conditional dependencies between participating molecules from their 

measured time series. As a first step for network identification, a multiplex measurement 

platform was used to measure detailed dynamics of multiple signaling molecules of the TGFβ 

pathway along with key crosstalk molecules. The measurements were made under Activin 

induction condition along with a perturbed case where PI3K pathway was simultaneously 

inhibited. We observed divergent dynamics of SMAD signaling molecules between these two 

conditions. DBN inference results conducted on the entire time series of key signaling molecules 

identified molecule from PI3K/AKT pathway (p-AKT) as a major molecule of crosstalk with the 

TGF-β/SMAD pathway. 

The DBN inference does not give information on the kinetics of signal transduction, for 

which a more detailed reaction rate based approach like ODE is necessary. Therefore, a detailed 

ODE based mathematical model of the activin stimulated TGF-β/SMAD pathway was developed 

and the model was calibrated to the experimental data in hESCs. Using the model, we explored 

the reason for the divergent dynamics of SMAD molecules in hESCs. Using the most important 

crosstalk molecule p-AKT, different scenarios were tested for the actual mechanism of AKT and 

SMAD interactions. We utilized an ensemble parametric estimation process to check which of 

these mechanisms explains the experimental observations. We identified differences between the 



 

 89 

competing mechanisms that can be experimentally tested. This resulted in a comprehensive 

model of the TGF-β/SMAD pathway for hESCs differentiating to endoderm with the most valid 

p-AKT mediated crosstalk interactions. Future developments of the model by incorporating the 

entire PI3K/AKT pathway developed in Chapter 2 will enable rational control of the 

differentiation process. 

4.2 METHODS (DBN INFERENCE) 

4.2.1 Experimental treatments 

H1 hESCs were placed on hESC certified Matrigel (BD Biosciences, Billerica, MA, USA)-

coated tissue culture plate for 5–7 days in mTESR1 (Stemcell Technologies, Vancouver, BC, 

Canada) at 37 °C and 5% CO2 before passaging. Cells were examined under the microscope 

every day and colonies with observable differentiation were picked and removed before the 

media changes. The maintenance protocol was adopted from our previous studies (Jaramillo et 

al., 2014; Mathew et al., 2012; Richardson et al., 2014). 

hESCs were allowed to grow to 60%–70% confluency before experiments were started. 

Once confluency was reached, endoderm differentiation was induced by adding 100 ng/mL 

Activin A (R & D Systems, Minneapolis, MN, USA) in the presence or absence of 1 μM 

Wortmannin (PI3K inhibitor; Sigma-Aldrich, St. Louis, MO, USA) for 24 h (or otherwise 

indicated). In the remainder of this chapter, these conditions are called as high and low PI3K 

respectively. The differentiation media were made using DMEM/F12 (Life Technologies, Grand 

Island, NE, USA), supplemented with 0.2% bovine serum albumin (BSA; Sigma-Aldrich, St. 
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Louis, MO, USA) and 1xB27 (Life Technologies, Grand Island, NE, USA). The induction 

protocol for endoderm was adopted from our previous study (Jaramillo et al., 2014; Mathew et 

al., 2012). 

4.2.2 Experimental time series data 

Intracellular expression of signaling proteins were measured by MagPix analysis using the TGFβ 

Signaling Pathway Magnetic Bead 6-Plex Cell Signaling Multiplex Assay (EMD Millipore, 

Catalog no.: 48-614MAG) according to manufacturer’s instructions. The detailed protocol for 

MagPix is described in Section 2.2. Mean fluorescence intensity (MFI) was measured using the 

xMAP (Luminex, Madison, WI, USA) instrument. Measurements were obtained for 6 analytes, 

namely total TGFβ receptor 2 (t-TGFβRII), total SMAD4 (t-SMAD4), phosphorylated SMAD2 

(p-SMAD2 Ser465/Ser467), p-SMAD3 (Ser423/Ser425), p-AKT (Ser473) and p-ERK 

(Thr185/Tyr187). The time points selected for analysis were: 0, 0.5, 1, 1.5, 2, 3, 6, 12, 18 and 24 

h (10 time points, each from a different well of tissue culture plate). Three repeats were 

conducted per experimental condition and quantitative analysis was performed on each repeat 

separately. Total protein content of the sample was measured using BCA total protein kit 

(Thermo Scientific, Grand Island, NE, USA), according to manufacturer’s instructions. 

The entire data (6 molecules) were used for DBN inference. To apply the algorithm to the 

high and low PI3K data, the data were preprocessed by normalizing the raw MFI values of each 

protein by its maximum MFI value for the given time series. We tested other types of 

normalization like mean centering and variance scaling and found that this did not change the 

most important results. A common concern with biological datasets is the inherent variability 

arising from batch-to-batch and well-to-well variability. This is further enhanced in hESC 



 

 91 

systems, used in the current work, due to inherent variations in differentiation, which cannot be 

conveniently controlled in the current experimental setting. However, even though the individual 

repeats elicited high variability in measured MFI values, many features of the overall protein 

dynamics was largely conserved. Therefore, DBN was repeated separately on each experimental 

repeat and the commonly repeated connections were collected together in a consensus graph. 

4.2.3 Identification of network interactions 

Bayesian networks are probabilistic graphical models that relate nodes via directed edges, with 

the direction showing the causal relationship between the nodes (Needham et al., 2007). These 

relationships are stronger as compared to correlative methods. Graphical models have nodes that 

represent entities that can interact (here molecules) and edges show how the nodes influence 

each other. The node where the edge originates is commonly called a parent node and the node 

where the edge ends is called a child node. Each node in the network is described by conditional 

probabilities as tables or functions. In continuous space, the relationship is represented by 

conditional probability distributions, and Gaussian distributions are commonly used to model the 

relationships (Koller and Friedman, 2009; Needham et al., 2007). Bayesian networks however 

cannot represent cyclic loops like feedbacks that are common in signal transduction networks. 

The problem of cyclic loops can be overcome by use of a generalization of Bayesian networks 

via DBNs (Grzegorczyk and Husmeier, 2011b). 

4.2.3.1 Details of DBN algorithm 

DBNs relate variables between adjacent time points such that a child node at a given time point 

is related to the parent nodes at a previous time point, thereby expanding the network in time. 
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Based on the system and the dynamics, the relationship can go back one or several time steps. A 

common approach to construct DBN is by using score equivalence criterion (Koller and 

Friedman, 2009). Here, a scoring metric (for example, maximum likelihood (ML) estimate in 

combination with regularization strategies) is used to evaluate how well a graph reconstructs the 

experimental data. Although DBNs provide good representation of biological networks, they are 

computationally expensive. Grzegorczyk et al. developed a computationally efficient algorithm 

to identify non-stationary DBNs (Grzegorczyk and Husmeier, 2011b). Specifically, in non-

stationary DBNs, the network structure is kept constant between different time points, but the 

model parameters are allowed to vary between different time segments. The method has been 

successful in discovering biologically relevant interactions from diverse biological data sets 

including times series of gene expression using qRT-PCR and MagPix protein concentrations 

across species (Aerts et al., 2014; Azhar et al., 2013; Dojer et al., 2006; Emr et al., 2014; 

Grzegorczyk and Husmeier, 2011a). The model systems are diverse, including circadian rhythms 

in A. thaliana, morphogenesis in D. melanogaster, synthetic metabolic networks in S. cerevisiae, 

serum inflammatory cytokine mediators in pediatric acute liver injury etc. Full details of the 

algorithm are presented in the manuscript and supplementary material of Grzegorczyk et al. 

(Grzegorczyk and Husmeier, 2011b). A brief discussion of the algorithm based on the original 

manuscript is presented below. 

Consider a set of N  interacting nodes of a signaling network represented by 

nXXX ,......,, 21  and a directed graph structure G . An edge pointing from iX  to jX  in a DBN 

with time lag equal to one time step shows that the realization of jX  at time step t  is dependent 

on the realization of its parent iX  at time step 1−t . It is commonly assumed that a time lag 

equal to one time step is sufficient to represent the relationship, indicating that the data have to 
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be sampled at the right time intervals for the dynamics to be represented correctly. The parent 

node set, jπ , of a node jX  is the set of all nodes from which an edge points to jX  in G . 

Grzegorczyk et al. proposed a non-stationary generalization of the Bayesian Gaussian with score 

equivalence model (called BGe), and it is a node-specific mixture of BGe models (Grzegorczyk 

and Husmeier, 2011b). The non-stationary DBN is based on the following Markov chain 

expansion: 
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where, D  is the time course data, 
ktnV ),(

δ  is the Kronecker delta, V  is a matrix of latent 

variables that indicate which BGe mixture component generates a data point, ( )nK κκκ ,..,, 21=  

is a vector of mixture components,  is the total number of time points. Vectors and matrices 

are denoted by single underbars in the symbols of all the equations of this manuscript. Each 

column of matrix V  is the vector nV , which divides the time series for a node into different 

time segments. The endpoints of these time segments are called as change-points. Each time 

segment between change-points is a different BGe model with parameters n
kθ , which includes 

the mean and covariance matrix of the conditional dependences for the mixture component. The 

allocation scheme in Equation 4.1 provides representation of a nonlinear regulatory process by a 

piecewise linear process. From Equation 4.1, the marginal likelihood conditional on the latent 

variables is given by:  
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Equation 4.4 is the local change-point BGe score (called as cpBGe) for node . In this 

work, a Gibbs MCMC sampling scheme was followed to sample from the local posterior 

distributions. Although, the location of change-points is inferred, the actual values of the 

parameters are not directly obtained since they are integrated out as seen from Equation 4.3. In 

the algorithm, the change-points were sampled from a point process prior using dynamic 

programming and the graphs were sampled by sampling parent node set (restricted to 3 parents 

per node) from a Boltzmann posterior distribution using the cpBGe score. Additional details of 

the sampling procedure are given in (Grzegorczyk and Husmeier, 2011b). Algorithm and code 

developed by Azhar et al. was used in this work which was based on the work by Grzegorczyk et 

al. (Azhar et al., 2013; Grzegorczyk and Husmeier, 2011b). The sampling parameters were kept 

at nominal values suggested by the authors. All simulations were performed in MATLAB® 

(Natick, MA, USA) on Linux 64-bit platform and single core of INTEL® (Santa Clara, CA, 

USA) CoreTM 2 Quad CPU (Q8400 @ 2.66 GHz). 

4.2.3.2 Constructing the DBNs 

The DBN inference was performed on each of the two experimental conditions separately to 

identify the network interactions that exist in each condition. The marginal edge probability was 

monitored for each Gibbs sampling step. The marginal edge probability for a given edge denotes 

the fraction of the graphs in which that edge was present. Each Gibbs sampling step represents 

an instance of the network that can best explain the experimental time series. In the early phases 
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of the simulation, the network is not yet stabilized and hence, the likelihood scores and the 

marginal edge probabilities fluctuate. The marginal edge probabilities of the final network were 

calculated after a burn-in phase when the distributions have stabilized. The marginal edge 

probability scores from networks obtained for the three experimental repeats were averaged to 

obtain a consensus network for a given condition or time zone. Finally, only those edges that 

were present in more than 50% of the sampled graphs were kept in the consensus DBN, a 

criterion used in the study by Azhar et al. (Azhar et al., 2013). Any value less than 50% indicates 

that the number of samples in which the associated edge was absent is more than the number of 

samples in which it is present. 

4.3 RESULTS AND DISCUSSION (DBN INFERENCE) 

4.3.1 Experimental dynamics of signaling molecules 

Figure 4.1 shows the dynamics of six signaling molecules after activin addition in the 

presence (shown by blue dashed line) and absence (shown by red continuous line) of PI3K 

inhibitor, called as low and high PI3K conditions respectively. The original data was normalized 

by time 0 values to obtain the fold change. The mean levels and standard deviation from 3 

experimental repeats are plotted here. The time points selected for the study include: 0, 0.5, 1, 

1.5, 2, 3, 6, 12, 18 and 24 h. The high PI3K condition represents the differentiation protocol 

where only the TGF-β/SMAD2,3 pathway is externally activated while the PI3K/AKT pathway 

is left unperturbed. In this condition, p-AKT levels are maintained near the basal levels, only 

slightly lower (Figure 4.1A). For the purpose of this manuscript, the basal levels are defined as 
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the protein levels at time 0. It is seen that the mean levels of p-AKT fluctuate in the early time 

points (< 6 h). Levels of t-TGFβRII (Figure 4.1B) also remain close to basal levels under high 

PI3K signaling. For p-SMAD2 (Figure 4.1C), an overshoot behavior is seen with levels reaching 

the maximum within 2-3 hours and settling at intermediate levels by 6 h. For p-SMAD3 (Figure 

4.1D), the dynamics shows a different behavior than p-SMAD2 even though both are activated 

by the same ligand-receptor complex. In general, the dynamics shows a continuous increase 

instead of the overshoot behavior seen for p-SMAD2. t-SMAD4 (Figure 4.1E) is maintained near 

the basal levels for this condition. p-ERK shows a minimal and delayed increase (Figure 4.1F) 

under high PI3K. 

The low PI3K condition represents a modulation over the high PI3K condition with the 

PI3K/AKT pathway externally inhibited in addition to activation of TGF-β/SMAD2,3 pathway. 

In this condition, we see a considerable decrease in p-AKT levels since it is a downstream 

effector of PI3K signal (Figure 4.1A). However, interestingly this decrease is short-lived. Even 

after continued inhibition of PI3K, the levels of p-AKT start increasing from 3 hours with the 

levels reaching near basal levels by 12 h. The levels of t-TGFβRII in this condition are lower 

than high PI3K condition at time points from 6 h (Figure 4.1B). The dynamics of p-SMAD2 is 

similar to the high PI3K condition (Figure 4.1C) with slightly higher fold-change at early time 

points. The fold-change in p-SMAD3 is higher compared to high PI3K signaling and it also 

shows substantial increase at later time points. t-SMAD4 (Figure 4.1E) shows fluctuations at 

early time points and a slight reduction at later time points (from 6 h). p-ERK (Figure 4.1F) 

shows a slow rise as compared to p-SMAD2,3 and the increase is substantial as compared to 

high PI3K signaling. Thus, overall, the low PI3K condition results in higher fold-changes in 
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levels of phosphorylated SMAD3 and ERK than high PI3K condition. The low PI3K condition 

favors differentiation to endoderm over a 4-day differentiation process (Figure C.1). 

The dynamics shown in Figure 4.1 is the first detailed study of signaling dynamics 

obtained for hESCs under endoderm induction conditions. Two unique features are observed for 

hESCs, namely the rise in p-AKT levels under continued PI3K inhibition and the divergent 

dynamics of p-SMAD2 and p-SMAD3 under high Activin levels. Further, as is typical for hESC 

system, there is high degree of variability in the levels of most molecules and the degree of 

variability is different at different time points. The variability is higher for low PI3K condition, a 

possible effect resulting from high degree of cell death observed in this condition since PI3K is 

an important cell survival pathway. The differences in the levels and dynamics of molecules 

between high and low PI3K conditions indicate existence of crosstalk interactions between the 

TGF-β/SMAD2,3, PI3K/AKT and MAPK/ERK pathways. Previous reports from the Dalton 

group has indicated interactions between these pathways using static end-point analysis (Singh et 

al., 2012a). Here, we use a computational framework to identify all possible interactions from 

the information contained in the signaling dynamics. 



 

 98 

 

Figure 4.1 Dynamics of key molecules from the TGF-β/SMAD, PI3K/AKT and MAPK/ERK pathways for 

two endoderm induction conditions. 

4.3.2 Predictions of network interactions by DBN inference 

We next applied DBN inference on the entire time series data for each repeat separately. This 

gives rise to three DBNs for each condition. The connections identified in each repeat are 

compiled together to form a consensus graph. 

4.3.2.1 Consensus graph 

Figure 4.2A and Figure 4.2C shows the consensus digraphs for the high and low PI3K 

data. The convergence diagnostics for the DBNs for each repeat is presented in Figure C.2. The 
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log likelihood score stabilized very early in the sampling runs for both conditions (see Figure 

C.2A-B). For the current data, it was found that 250 Gibbs sampling steps were sufficient to 

converge to the marginal edge posterior distribution (see Figure C.2C-D). This was confirmed 

over independent sampling runs, due to stochastic nature of the algorithm. Then, 500 sampling 

steps were performed to obtain enough samples in the converged region to calculate the marginal 

edge probabilities. At the end of 500 Gibbs sampling steps, the final marginal edge probabilities 

were calculated using the later half of the 500 samples (the early half belongs to the burn-in 

phase of the simulation). The mean marginal edge probabilities from the three samples are 

presented in Figure 4.2B and Figure 4.2D. Any edge, which was present in less than 50% of the 

samples, was removed from the consensus graph. Note that the DBN for each sample represents 

the network that can explain the entire time series of that sample, with only network parameters 

allowed to vary between time segments. We also tested the robustness of the connections by 

increasing the number of time points (by interpolation of the data). The number of time points 

was increased until 20 and no changes in the major connections of the dataset were observed. 
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Figure 4.2 Dynamic Bayesian Networks inferred for endoderm induction conditions. 

(A) Consensus graph for high PI3K data. The thickness of the edges reflects the value of edge probabilities (>=0.5). 

(B) Marginal edge probability table for high PI3K data. The parent node is the node whose value at time (t-1) affects 

the value of child node at time t.  (C) Consensus graph for low PI3K data. (D) Marginal edge probability table for 

low PI3K data. 
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4.3.2.2 High PI3K condition 

The consensus graph shows the average interactions that are present for the given 

experimental condition across the three samples. As seen from Figure 4.2A, the dynamics of the 

receptor influences all the other molecules in the network, both molecules of the TGF-β pathway 

(p-SMAD2,3, SMAD4) and molecules of parallel pathways (p-AKT and p-ERK). The receptor is 

also self-regulated. The mean marginal edge probabilities in Figure 4.2B show that these edges 

are present in 100% of the sampled graphs (t-TGFβRII as the parent node and all the other 

molecules including the receptor being the child node). Next common edges include p-ERK 

regulation by p-AKT and p-AKT regulation by p-SMAD3 present in 97 and 96% of the graphs 

respectively. Remaining possible interactions include: regulation of the receptor levels by p-AKT 

(74%), t-SMAD4 by p-AKT and t-SMAD4 (60-70%), p-SMAD3 by p-AKT (55%), p-AKT self-

regulation (52%), p-SMAD3 and p-ERK by t-SMAD4 (57%). The graphs for the individual 

repeats are presented in Figure C.3. 

4.3.2.3 Low PI3K condition 

For the low PI3K condition, the edges originating from the receptor are similar to the 

high PI3K case and are also reflected in 100% of the graphs (Figure 4.2C-D). Next highly 

represented edges include p-SMAD2 regulation by t-SMAD4 (94%) and t-SMAD4 self-

regulation (81%). Remaining possible interactions include: t-SMAD4 as a parent node for p-

SMAD3 (77%), p-AKT (76%), p-ERK (56%), p-ERK as the parent node for t-TGFβRII (71%) 

and p-AKT (50%), p-SMAD2 as a parent node for t-TGFβRII (77%), p-SMAD2 (76%), t-

SMAD4 (58%) and p-ERK (51%). The graphs for the individual repeats are presented in Figure 

C.4. 
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4.3.2.4 Comparison between digraphs of high and low PI3K conditions 

Influence of total receptor levels 

The DBN inference identified several similarities and differences in the interactions 

present in the two conditions. Firstly, the dynamics of the total receptor levels affect the 

downstream molecules in both the conditions. This influence of total receptor levels is reflected 

in all the individual samples across both the conditions (Figure C.3-C.4). This indicates that the 

changes in the receptor levels are important in influencing the downstream molecules during 

endoderm induction. 

Interactions between intracellular molecules 

Among the TGF-β pathway molecules, p-SMAD2 has increased regulatory interactions in 

the low PI3K condition, especially influencing the receptor levels. Further, p-SMAD2 shows 

influence on p-SMAD3 and p-ERK in sample 1 of high PI3K (Figure C.3). p-SMAD3 shows 

interactions with p-AKT in the high PI3K condition. This interaction is removed in the low PI3K 

condition. The low PI3K condition also shows increased role for t-SMAD4 in influencing the p-

SMAD2 and p-SMAD3 dynamics. p-AKT shows striking differences in the connections between 

the two conditions. For example, p-AKT interacts with and regulates majority of the nodes in the 

high PI3K condition. However, in the low PI3K condition, p-AKT does not regulate other nodes, 

but instead acts as a child node for all of its interactions. This is an interesting prediction, 

because the levels of p-AKT increased back in spite of continued inhibition in the low PI3K 

condition. The current analysis indicates that a short-term decrease in p-AKT levels is sufficient 

to remove the influence of p-AKT on TGF-β pathway molecules. Next important difference is in 

the regulatory role of p-ERK. p-ERK is not regulating any of the other nodes in the high PI3K 
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condition. This is also reflected in each of the repeats in high PI3K condition (Figure C.3). 

Interestingly in the low PI3K condition, p-ERK takes an important role in regulating the 

receptors. p-ERK shows increased regulatory role on p-SMAD3 and t-SMAD4 in one of the 

samples (Figure C.4). 

4.3.3 Changes in regulatory structure across time zones 

Next we selected two time segments (0.5, 1, 1.5 h, called as early) and (6, 12, 18 h, called 

as late) to check if the regulatory interactions existing in the early and late zones of the dynamics 

is the same. This is necessary to check if the crosstalk interactions exist throughout the 24 hr 

time series, or only in certain time zones. DBN inference was done on each zone separately. It is 

important to note that each of the resulting networks is particular to the time segment of interest 

since the algorithm has not seen data from the other zone. Nevertheless, the regulatory structure 

identified in each segment will confirm if these segments contain similar information as any 

other portion of the dynamics. We increased the sampling frequency in each segment by 

interpolation of the data, so that there are 10 time points in each of the time zones. 

4.3.3.1 High PI3K condition 

Figure 4.3A-B presents the consensus graph and marginal edge probabilities respectively 

for the early time points. The network is very similar to the network obtained using the entire 

time series of high PI3K condition (Figure 4.2A), with some minor differences. The key 

regulations by the receptor as well as supplementary crosstalk interactions are identified from the 

early time points. Figure 4.3C-D presents the consensus graph and marginal edge probabilities 
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respectively for the late time points. The network obtained only contains regulation by the 

receptor and some repeats contain the regulation by p-AKT on the receptor and p-ERK levels. 

 

 

Figure 4.3 Dynamic Bayesian Network inferred for endoderm induction conditions under different time zones 

and high PI3K. 

(A) Consensus graph for high PI3K data, early dynamics (t = 0.5, 1, 1.5 h). (B) Marginal edge probability table for 

high PI3K data, early dynamics. (C) Consensus graph for high PI3K data, late dynamics (t = 6, 12, 18 h). (D) 

Marginal edge probability table for high PI3K data, late dynamics. 
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Figure 4.4 Dynamic Bayesian Network inferred for endoderm induction conditions under different time zones 

and low PI3K. 

(A) Consensus graph for low PI3K data, early dynamics (t = 0.5, 1, 1.5 h). (B) Marginal edge probability table for 

low PI3K data, early dynamics. (C) Consensus graph for low PI3K data, late dynamics (t = 12, 18, 24 h). (D) 

Marginal edge probability table for low PI3K data, late dynamics. 
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4.3.3.2 Low PI3K condition 

Figure 4.4A-B presents the consensus graph and marginal edge probabilities respectively 

for the early time points, averaged over repeats 1 and 3. The network is very similar to the 

network obtained using the entire time series of low PI3K condition (Figure 4.2B), with some 

minor differences. The key regulations by the receptor as well as supplementary crosstalk 

interactions are identified from the early time points. Figure 4.4C-D presents the consensus 

graph and marginal edge probabilities respectively for the late time points. It is seen that only the 

receptor-mediated regulation is identified in this region with no additional crosstalk interactions 

identified. 

4.4 CONCLUSIONS (DBN INFERENCE) 

4.4.1 Major conclusions 

This work is the first account in identifying specific signaling interactions governing 

endoderm differentiation of hESCs using network analysis tools. The DBNs inferred for the high 

and low PI3K data accomplished two major tasks: (1) They identified molecular interactions 

within the TGF-β pathway along-with crosstalk interactions with parallel pathways and (2) They 

identified distinct pathway regulations during the early and late phases of the signaling 

dynamics. One key prediction from the entire analysis is the influence of receptor levels on 

downstream molecules including SMAD, AKT and ERK. In the canonical pathway, TGFβRII is 

known to activate SMAD molecules after formation of the ligand-receptor complex (Guo and 

Wang, 2008). TGFβ signaling also participates in several non-canonical signaling leading to 
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activation of PI3K/AKT and MAPK/ERK pathways in many cell lines (Guo and Wang, 2008; 

Zhang, 2008). Our analysis indicates that the levels of the receptors (TGFβRII) are still in the 

regime where they are limiting and any change in their level is reflected downstream. 

Several important interactions from p-AKT were identified indicating the existence of p-

AKT mediated crosstalk in high PI3K condition and its removal under low PI3K. Ours is the first 

systematic study to identify these crosstalk interactions in differentiating hESCs. The regulation 

of p-SMAD3 by p-AKT is well known in other cell lines, mainly inhibition of p-SMAD3 

phosphorylation by mTORC1 and sequestration of non-phospho SMAD3 by p-AKT (Conery et 

al., 2004; Danielpour and Song, 2006; Remy et al., 2004; Song et al., 2006; Zhang et al., 2013). 

The regulation of p-SMAD2 by p-AKT is observed only in one sample of the high PI3K 

condition (Figure C.3). Literature shows that most negative regulation of p-AKT is on p-SMAD3 

and not p-SMAD2 (Song et al., 2006), however some reports indicate negative regulation of both 

p-SMAD2 and p-SMAD3 by p-AKT in neuroblastoma and CHO cell lines (Qiao et al., 2006; 

Sun et al., 2006). Therefore, it is possible that influence on p-SMAD2 is weak and therefore, not 

identified amongst the other strong interactions. The removal of crosstalk interactions with p-

AKT in the low PI3K condition is interesting although the actual mechanism needs further study. 

The regulation of the receptors and t-SMAD4 by p-AKT was also seen but these interactions are 

not as widely studied as those of p-AKT and p-SMADs. 

The DBNs showed regulation of p-ERK by p-AKT in the high PI3K condition. It is well 

reported that p-ERK is inhibited by p-AKT and many of its downstream effectors (via mTORC1) 

in multiple cell lines (Aksamitiene et al., 2012). Previous study has shown the interaction 

between AKT1 and cRAF in hESCs leading to inhibition of RAF/MEK/ERK signaling (Singh et 

al., 2012a). Our experiments show that the levels of p-ERK are higher in low PI3K condition and 
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the influence of p-AKT on p-ERK is also absent from the low PI3K DBNs. This indicates that 

this interaction negatively influences endoderm induction. Although not identified with any 

significance, possibility of p-ERK mediated interactions under low PI3K signaling is interesting. 

It is known that p-ERK has additional roles in linker phosphorylation of SMAD molecules which 

can affect the nucleo-cytoplasmic shuttling and ultimately their dynamics as modeled by Liu et 

al. (Liu et al., 2014). This could be the reason for seeing increasing p-ERK influence on SMAD 

molecules under low PI3K condition in some samples. But, since this was observed in only some 

samples of low PI3K that used the entire time series information, additional investigation needs 

to be done. Future studies of long-term p-ERK dynamics (> 24 hr) and perturbation experiments 

will enable further exploration of this portion of the network. Overall, the identified DBNs 

demonstrate significant biologically relevant interactions. Such agreement with literature 

observations along with prediction of additional interactions prove the applicability of 

quantitative methods like ODEs for teasing out the network level properties of complex systems 

like hESCs. 

4.4.2 Assumptions, potential pitfalls and proposed extensions 

One main assumption for the DBN applied here was that the dependences are valid 

between two adjacent time points. However, often it may span multiple time steps. This requires 

highly (1) resolved data in the time dimension or (2) addition of intermediate molecular species 

that help provide edges between two otherwise unconnected nodes, or (3) higher order DBNs, 

but currently available methods are computationally very expensive for higher order DBNs. 

The DBN inference does not provide direct outputs of the type of interactions (positive or 

negative). These interactions can be tested by direct experimental perturbations. On the other 
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hand, correlation and regression analysis of the original experimental data using a selected node 

as the output and all its parent nodes as the input can be done. If proper normalization of the data 

is undertaken, the coefficients of the regression model will indicate the relative strength and sign 

of the influence of the parent nodes. See Figure C.5 for a preliminary analysis of the DBNs using 

Pearson correlation metric. It is seen that for the DBNs predicted in previous sections, the 

direction of correlation for most pairs of molecules follows the literature observations. However, 

such analysis may be flawed by the assumption of linearity of the model. To overcome this, 

simple ODE based models, using mass action or other non-linear kinetics depicting the 

connections in the DBN, may be generated. Simulation of such phenomenological models with 

suitable selection of rate parameters followed by comparison with the experimental time series 

will be another check. In the remaining sections, an ODE based model with the direction of 

interaction based on literature observations is developed and the same experimental dataset is 

used to check if the model is able to capture the data well. 

4.5 METHODS (KINETIC MODELING) 

The results from previous section show that p-AKT is the main crosstalk molecule influencing 

the SMAD levels. DBN, however, does not provide information on the strength of these 

interactions and the kinetics of the crosstalk process. Further, the mechanism of crosstalk is still 

not characterized, for example which reaction in the main pathway is influenced by p-AKT? In 

the remaining sections, we explicitly modeled possible interactions and evaluated how well the 

competing mechanisms recapture the experimental data from Section 4.3.1. We used an ODE 
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based framework to describe the kinetics of signal transduction in the SMAD pathway followed 

by incorporation of AKT mediated interactions. 

4.5.1 Basal Activin induced TGF-β/SMAD pathway 

Due to the importance of activin mediated signaling for DE differentiation, this chapter will 

focus on activation of SMAD pathway by this ligand alone. Most mechanistic mathematical 

models available in the literature have been developed for the TGF-β ligand case in cancer cells 

(Clarke et al., 2006; Schmierer et al., 2008; Vilar et al., 2006; Zi et al., 2011), and therefore, 

certain aspects of the model have to be re-calibrated for activin case and these will be discussed 

in the following sections. The entire SMAD pathway can be separated into two modules: (1) 

Receptor activation, trafficking and regulation, (2) Intracellular SMAD activation and shuttling. 

A more detailed description of each module is given below and a schematic is presented in 

Figure 4.5. 

4.5.1.1 Receptor activation, trafficking and regulation 

Cell surface has two types of activin receptors, ActRI and ActRII (R1 and R2 respectively). 

These receptors are activated by the same sequence of reactions as TGF-β receptor (Attisano et 

al., 1996). The Activin ligand in the medium complexes with R2 and activates the receptor. This 

active receptor phosphorylates receptor R1 and forms a ligand receptor complex (LRC) on the 

surface. R1 and R2 in the basal and active condition are susceptible to receptor internalization 

and recycling. Each receptor undergoes degradation in the endosome. LRC also internalize into 

the endosomes where it forms the active signaling complex that catalyzes phosphorylation of 

cytoplasmic substrates like R-SMADs (SMAD2 and SMAD3). LRC undergoes dissociation in 
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the endosomal environment leading to release of R1 and R2. These receptors are recycled back 

and become available for further complexation with activin on the surface while the activin in 

the endosomes undergoes degradation. LRC levels on the surface are under negative regulation 

of the pathway via the complex SMAD7/Smurf2/SIK (Kang et al., 2009). SMAD7 molecule in 

this complex is transcribed by the active SMAD2,3 complexes in the nucleus from the 

intracellular module. Current models in the literature consider a very crude incorporation of 

SMAD7 mediated negative feedback, for example the feedback is considered a function of the 

nuclear level of p-SMAD2-SMAD4 complex. Since the strength of this connection has not been 

estimated for the hESC case, we incorporated details of SMAD7 transcription and translation 

into the model and modeled the negative feedback explicitly as a function of SMAD7 molecule 

levels. 

4.5.1.2 Intracellular SMAD activation and shuttling 

Non-phosphorylated SMAD2 and SMAD3 (as monomers) undergo continuous nuclear 

import and export. The initial levels of SMAD2 and SMAD3 in the cytoplasm and nucleus 

reflect the dynamic equilibrium between these two shuttling processes. Experiments in cancer 

cells have shown that SMAD2,3 are more abundant in the cytoplasm than the nucleus while 

SMAD4 is equally distributed between the two compartments (Clarke et al., 2006). Once LRCs 

are formed in the endosomes, they activate SMAD2 and SMAD3 via C-terminal 

phosphorylation. These phospho SMADs then undergo complex formation with Co-SMADs like 

SMAD4. Phosphorylation of SMAD2,3 is essential for complex formation. Various types of 

complexes are formed after activation; for example, homomeric SMAD complexes like p-

SMAD2-p-SMAD2 and p-SMAD3-p-SMAD3 and heteromeric SMAD complexes like p-

SMAD2-SMAD4 and p-SMAD3-SMAD4. These complexes also undergo nuclear import. Many 
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mathematical models have shown that complexed SMADs may have a lower nuclear export rate 

than non-complexed SMADs. In fact, most mathematical models have kept nuclear export rate of 

complexed SMAD as zero. Export of these nuclear SMADs happen only after they decomplex 

and convert to monomeric SMADs (p-SMAD or SMAD). The dephosphorylation of p-SMADs 

is catalyzed by a variety of phosphatases when in the monomeric form and these phosphatases 

are mainly nuclear in location. 

 

Figure 4.5 Schematic of Receptor level and SMAD level interactions 
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4.5.2 Mathematical model of basal pathway 

The basal ODE model used in this aim was developed for TGF-β/SMAD2 signaling by a number 

of groups over a span of a decade (Chung et al., 2009; Clarke et al., 2006; Schmierer et al., 

2008; Vilar et al., 2006; Vizán et al., 2013; Wegner et al., 2012; Zi et al., 2011). We used the 

final form of the model published by Zi et al., which is the most comprehensive model to date, 

and this model incorporates all the essential features of each module (Zi et al., 2011). However, 

many changes were necessary to the model for the hESC case, the major additions being distinct 

SMAD2 and SMAD3 related reactions and SMAD7 mediated negative feedback. The following 

sub-sections describe the species and their reactions, model assumptions, initial conditions and 

rate parameters. 

4.5.2.1 Activin levels, compartment volumes and cell number 

The total activin level in the medium is 100 ng/ml. All concentrations in the model are 

converted to nM. Activin used for our cell culture is a 25.6 kDa homodimer (R & D Systems, 

Minneapolis, MN, USA). We use 1 mL of media containing 100 ng/ml activin per well of a 6-

well tissue culture plate. Hence the concentration of activin per well is 3.91 nM. Each well of 

this culture plate contains ~106 cells; value obtained by manual cell counting using a 

hemocytometer. The total volume of a mammalian cell is taken as 3.3 pM (Schmierer et al., 

2008). For a 24 h differentiation process, there are no substantial changes in the morphology of 

the cells for the conditions explored here (experimental observation). This assumption may be 

invalid for measurements made over a typical 4-day differentiation process, but all the data used 

for current scenario are for a 24 h process. To calculate the nuclear and cytoplasmic 

compartment volumes, the pixel area of nucleus and cytoplasm were measured using image 
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analysis. Cytoskeletal actin and nuclear DAPI stained undifferentiated hESCs were used for the 

measurement of cytoplasmic and nuclear areas respectively. Here, an assumption was made that 

the cells are cylindrical discs with small thickness in the z-direction. Therefore the nuclear to 

cytoplasmic area ratio is very close to the volume ratios. The average N to C ratio ( ) for 

undifferentiated cells from different regions of a colony came out to be 0.43 + 0.2. This ratio was 

used to obtain average nuclear and cytoplasmic volumes of the cell using the following 

equations: 
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Total cell number in a well is assumed constant during the 24 h study period. From the 

modeling results it was observed that any decrease in cell number (for example in the low PI3K 

condition), did not lead to any substantial increase in downstream signaling (via increased ligand 

availability per cell) indicating that activin levels are under saturation in our cell culture medium. 

In the literature, most studies are conducted at lower ligand concentrations than those explored in 

the hESC differentiation protocols and even at these levels the downstream SMAD levels are 

found to be not in the ligand-limited regime. At concentrations explored in this study (3.9 nM), 

the decrease in activin levels in a 24 h period is minimal, with model predicted minimum values 

(from different simulation runs) of 3.3 nM at 24 h. Activin in the medium is lost due to cellular 
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uptake during LRC formation and by non-specific binding and unbinding on the cell surface, 

modeled in the following form: 

( )nsoffnsmedonnsmedsurfsurfmedaLRCcyt
med

med ActkActkVRRActkV
dt

dActV −−−= 21                     (4.10)      

Dissociation rate of activin binding to non-specific location on the cell is fixed by the 

relation: 

onnsnsDoffns kkk ×= _            (4.11) 

4.5.2.2 Receptors 

Dynamics of R1 on the surface is dependent on the formation of R1, internalization of R1 

into the endosomes, recycling of R1 and LRC complex formation. Identical reactions can be 

written for R2 with R2 related rate parameters. 
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The dynamics of endosomal receptors (both R1 and R2) is dependent on the receptor 

degradation in the low pH environment of the endosomes, internalization and recycling and LRC 

dissociation. 
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The initial conditions for these species are given as follows (by solving algebraic 

equations obtained after equating the right hand side to zero): 
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4.5.2.3 LRC levels 

LRC is the catalyst for activation of SMADs in the endosomal compartment. LRC is distributed 

between the cell surface and endosomes. The levels of LRC on the surface are controlled by its 

rate of formation via complexation between activin, R1 and R2 followed by internalization into 

endosomes and negative feedback mediated degradation via SMAD7/Smurf2/SIK complex. The 

levels of endosomal LRC are controlled by internalization, degradation and dissociation. The 

initial condition for each of these species is zero. 
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4.5.2.4 Non-phospho SMADs 

Intracellular SMAD4 undergoes nucleo-cytoplasmic shuttling both in the absence and 

presence of the ligand. Further it forms heteromeric complexes with pSMAD2 and pSMAD3. 

The levels of total SMAD4 in a cell are abundant and assumed to be constant and kept fixed at 

105 molecules/cell (Clarke et al., 2006). 
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The initial conditions for cytoplasmic and nuclear SMAD4 are given by: 
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Intracellular SMAD2 and SMAD3 also undergo nucleo-cytoplasmic shuttling in the absence and 

presence of the ligand. Further, SMAD2 and SMAD3 form homomeric and heterometric 

complexes with themselves and with SMAD4 respectively after their phosphorylation. Various 

other combinations of complexes are also possible, but these have been less experimentally 

characterized and are found to be less abundant under current conditions (Schmierer et al., 

2008). Note that phosphorylation occurs in the cytoplasm since we assume the LRC complex is 

localized in the cytoplasm and dephosphorylation occurs in the nucleus. 
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The initial conditions for non-phospho SMADs are given by: 
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4.5.2.5 Monomeric phospho SMADs 

Phospho-SMAD concentration changes due to phosphorylation, dephosphorylation, 

nuclear import and export and formation and dissociation of higher order complexes like 

pSMAD-SMAD4 and pSMAD-pSMAD. The initial conditions of all monomeric phospho 

SMADs are zero. 
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4.5.2.6 Phospho-SMAD complexes 

Phospho-SMAD and SMAD4 complexes are imported to the nucleus (but not exported 

unless decomplexed) and they can form complexes both in the cytoplasm and the nucleus. The 

initial conditions of all the complexes are zero. 
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4.5.2.7 Negative feedback molecule SMAD7, transcription and translation 

New equations were added to capture SMAD7 transcription mediated by the binding of 

pSMAD2,3-SMAD4 complexes to the promoter region (Nicklas and Saiz, 2013). The rate of 

transcription is modeled as a function of the amount of SMAD7 mRNA released per molecule of 

pSMAD-SMAD4 complex and the efficiency of this process is captured by affinity constants 

multiplied to this rate. The degradation of SMAD7 mRNA transcripts is modeled as a first order 

reaction. SMAD7 protein is controlled by first order translation and degradation and loss due to 

participation in surface LRC degradation. Both SMAD7 species have initial concentration of 

zero. 
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4.5.2.8 Activin non-specific binding and intracellular fate of Activin 

Activin in the medium may be lost by non-specific binding to cell surface as described in 

Equation 4.10. Further, the intracellular activin released by LRC dissociation may be degraded 

inside the cell. The equations for these species are given below: 
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Figure 4.6 Schematic representing the three modes of AKT mediated crosstalk on SMADs 
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4.5.3 Modeling crosstalk between AKT and SMADs 

Several experimental studies have shown that AKT may directly or indirectly influence 

the levels of SMAD signaling. These mechanisms are summarized in Figure 4.6. The crosstalk 

mechanisms involve sequestration of different SMADs in the cytoplasm or inhibition of SMAD 

activation. 

4.5.3.1 Crosstalk 1: Sequestration of non-phospho SMADs by AKT 

Earliest experiments by Remy et al. showed that AKT can physically interact with SMAD3 and 

form a complex with SMAD3 leading to its sequestration on the cell membrane in a human 

hepatoma cell line (Hep3B) (Remy et al., 2004). As a result, some pool of SMAD3 is lost and 

not available to the LRC. In their analysis, this lead to indirect effects like decreases in SMAD3 

phosphorylation, nuclear translocation and SMAD3 induced transcription. Further, they reported 

that kinase activity of AKT was not critical for existence of this crosstalk and AKT was not 

influenced by SMAD3. However, this crosstalk is minimal once SMAD3 gets phosphorylated, 

perhaps because SMAD3 forms non-AKT complexes and thus, SMAD nucleo-cytoplasmic 

shuttling becomes preferential to sequestration. Similar observations were made by Conery et al. 

(Conery et al., 2004). They also reported that the effect was specific to SMAD3 and not 

observed for SMAD2. Our DBN inference also showed that AKT might influence SMAD3 

levels but not SMAD2.  However, report by Song et al., found that AKT may bind to SMAD2 

but its influence on SMAD2 phosphorylation is not clear (Song et al., 2006). In a neutroblastoma 

cell line, PI3K/AKT pathway inhibition was found to increase SMAD2 phosphorylation and 

nuclear translocation (Qiao et al., 2006). Therefore, in this crosstalk mechanism, both SMAD2 



 

 125 

and SMAD3 were allowed to form a pool of non-available SMADs ( cSMAD − ). These 

reactions occur in the cytoplasm and are modeled as: 

22 ,22 dcScS kkcSMADSMAD −↔  

33 ,33 dcScS kkcSMADSMAD −↔  

The rate coefficients represent the rate of complexation ( ) and decomplexation ( ) 

of SMAD2 and SMAD3 with AKT and these have to be estimated from the experimental data. In 

this interaction, a constant level of AKT is assumed throughout the 24 h time period. But these 

reaction rate coefficients are allowed to vary between the high and low PI3K conditions to model 

different levels of AKT. The initial condition for each SMAD now has to account for the new 

pool of non-available SMADs. The initial conditions of free cytoplasmic SMADs are now 

calculated as: 
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The nuclear concentrations are obtained by using these values in Equation 4.31 and 4.33. 
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4.5.3.2 Crosstalk 2: Sequestration of phospho-SMADs by AKT 

The study by Song et al. also showed that phospho SMADs may be sequestered by AKT 

in the cytoplasm (Song et al., 2006). However, they did not analyze if reduction in SMAD 

nuclear accumulation is specific to SMAD or phospho SMAD sequestration. Since the 

possibility of p-SMAD sequestration exists, we modeled these reactions to check how well this 

model can capture the experimental data. The reactions are similar to Crosstalk 1, with non-

phospho SMAD replaced by phospho SMAD. 

22 ,22 dcpScpS kkcpSMADpSMAD −↔  

33,33 dcpScpS kkcpSMADpSMAD −↔  

The initial conditions of SMADs do not change with this crosstalk, however this pool of 

complexed p-SMADs is to be included in Equations (4.56-4.57) while calculating the model 

output that is to be compared to experimental data. 

4.5.3.3 Crosstalk 3: AKT inhibition of SMAD phosphorylation 

The most dominant model proposed by Song et al. was the direct inhibition of 

phosphorylation of SMAD by the PI3K/AKT pathway (Song et al., 2003; Song et al., 2006). In 

this model, a molecule downstream of AKT, called mTORC1, directly inhibits AKT 

phosphorylation. Since PI3K inhibition leads to reduction in both p-AKT and mTORC1 

signaling, this effect could still exist in the PI3K perturbation explored in the experimental data. 

In order to model this effect, we chose a simplified scenario where the phosphorylation rates of 

SMAD2 and SMAD3 in the low PI3K condition are chosen equal to a factor multiplied by 

corresponding rates in the high PI3K condition, with the factor being greater than or equal to 1. 
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This ensures that low PI3K has a phosphorylation rate greater than or equal to the high PI3K 

case. 

[ ]2,0log 2103_223_2 ∈×= SKhighPIphoSSKlowPIphoS fkfk                                                  (4.52) 

[ ]2,0log 3103_333_3 ∈×= SKhighPIphoSSKlowPIphoS fkfk                                                 (4.53) 

4.5.4 Why model crosstalk? 

Each experimental study presented in the previous section focused on one model of 

crosstalk between AKT and SMAD and did not explicitly test the other models. The studies by 

Remy et al. and Conery et al. did not consider the influence of AKT inhibition of SMAD 

phosphorylation. The study by Song et al. could not verify if sequestration of SMADs could 

contribute in any way to their observation, and if their observations could be explained only by 

AKT mediated inhibition of SMAD phosphorylation. There is also a possibility that 

combinations of these mechanisms may exist. The mechanism may also be dependent on the cell 

type. In addition, completely removing SMAD sequestration effect is difficult since the actual 

biophysics of complex formation between AKT and SMAD is not well-known (Danielpour and 

Song, 2006; Song et al., 2006). Furthermore, it is unclear if SMAD2 and SMAD3 show the same 

type of crosstalk behavior. Because of these reasons, it is challenging for a pure experimental 

study to tease out the differences. It is non-intuitive to decipher specific mechanism of crosstalk 

purely from the experimental dynamics. Hence using a mathematical modeling approach we 

wanted to verify if specific mechanism of crosstalk will result in unique dynamics of any 

signaling molecules. This can be tested using a detailed mathematical model of the entire SMAD 

pathway with each type of crosstalk represented explicitly. Once we have the complete model, 
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we can test the performance of the model with crosstalk by fitting it to explain experimental data 

(high and low PI3K). This process may allow us to test individual mechanisms and eliminate 

those that do not adequately capture the experimental dynamics. The modeled mechanisms, 

which capture the experimental dynamics, can be further verified experimentally, for example by 

measurement of species whose dynamics/levels diverge between the competing mechanisms or 

performing additional perturbations or even checking the biological feasibility of the model 

predictions. We chose this particular route to test the three types of crosstalk hypotheses in the 

hESC system (which additionally shows distinct dynamics of p-SMAD2 and p-SMAD3). The 

parameter estimation process used to check the validity of the three hypotheses will be discussed 

next. 

4.5.5 Parameter estimation 

Values of the free rate parameters were inferred using a Bayesian parallel tempering (PT) 

approach (Brown and Sethna, 2003; Malkin et al., 2015; Swigon, 2012), which utilizes Markov 

Chain Monte Carlo (MCMC) methods to sample the Bayesian posterior distribution, the 

probability of parameter set  given data , given by the Bayes’ formula, 

∫
=

)()/(
)()/()/(

ppyL
ppyLypP

θ
θ

                                                     (4.54) 

 where,  is the likelihood of observing  for a model with parameters ,  is the 

prior distribution, and ∫ )()/( ppyL θ  is the normalizing constant. Additional sampling 

efficiency is gained by running multiple parallel chains evolving at different temperatures. 

Higher temperature increases the likelihood of acceptance of proposed steps. This allows the 
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high temperature chains to move more freely through the parameter space, avoiding getting stuck 

in local minima. This results in more efficient exploration of parameter space, a method we have 

applied extensively in parameter estimation of complex non-linear models (Mochan et al., 2014; 

Slezak et al., 2010; Song et al., 2012). This results in the creation of parameter ensembles, where 

each parameter is represented by a posterior distribution, rather than a single value. 

4.5.5.1 Bayesian priors 

For each parameter to be fitted, a uniform prior was used, with a suitably large range so 

as to encompass all reasonable parameter values. For the parameters with known literature values 

but which had to be fitted for the new system, the center of the interval was fixed at the nominal 

value in the literature. 

4.5.5.2 Parameter set fitness 

Fitness (log likelihood) of candidate parameter sets was determined by the percentage 

difference between the model simulations and experimental data, as determined by the sum of 

squared residuals cost function: 
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                                                                                  (4.55) 

where,  is the output for a simulation with single set of parameters,  is the 

experimental mean,  is the standard deviation allowed for the experimental mean at time 

point , for observable  under treatment condition . No additional penalties were added to 

the fitness function. Best-fit parameter set is the one with the least fitness value. But, we are 

interested in the parameter ensembles that can explain the experimental data. 
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4.5.5.3 Parallel tempering 

To efficiently sample the posterior distribution, four separate Markov chains were run, initiated 

with parameter values randomly selected from the supplied prior distributions that met a 

maximum energy criterion. Each chain was initiated with a temperature and step size parameter, 

which controlled the chain’s ability to fully explore the parameters space. Chains were allowed 

to swap from a higher temperature to a lower temperature every 25 steps to allow for local 

sampling of newly found local minima. Step size and temperature parameters dynamically 

changed every 6000 and 2000 steps respectively to attempt to reach an ideal step acceptance rate 

of 23% (Roberts et al., 1997), and swap rates of 15%-30%. Once these targets were reached, the 

temperature schedule and step sizes were fixed. Parameter sets were saved every 25 steps. Full 

exploration of parameter space was confirmed by examining, for each parameter, the frequency 

histogram of its full marginal posterior distribution, confirming that it spanned the prior domain. 

We measured convergence and chain stationarity using the Gelman-Rubin criteria 

(Brooks and Gelman, 1998; Gelman and Rubin, 1992). All parameters had converged with a 

potential scale reduction factor (PSRF) < 1.1 following 200,000 (x25) MCMC steps. Another 

100,000 steps were taken to build a posterior distribution for each parameter that would be used 

for all model analysis and simulation. This ensured that all samples from the burn-in time for 

each chain were discarded, and only samples from the correct stationary distribution were used. 

The ensemble of all parameter sets from the lowest chain comprised the computed ensemble 

(posterior distribution). The ensemble process directly gives the uncertainty associated with each 

parameter and also contains the covariance information between the parameters in the high 

dimensional space. 



 

 131 

4.5.5.4 Preprocessing of experimental data 

For kinetic analysis, only p-SMAD2 and p-SMAD3 time series were used. In addition, 

we measured the levels of negative feedback molecule SMAD7 mRNA using qRT-PCR for time 

points of 0, 1, 6, 18 and 24 h. The data were converted to fold change over time 0. Therefore, we 

have three output levels measured at 22 non-zero time points (9 p-SMAD2 + 9 p-SMAD3 + 4 

SMAD7) across three repeats of 2 conditions. Due to the high variability between repeats, we 

treated each repeat separately during the parameter fitting process. However, we treated each 

pair of condition (high and low PI3K) from the same passage together for the parameter fitting 

processes. The results from a representative repeat are presented in this chapter and it was seen 

that the same conclusions could be drawn when the process was repeated for the other two 

repeats. To summarize, for each fitting process we have 2 (conditions) x 22 (time points) = 44 

number of experimental data points. 

4.5.5.5 Selection of model outputs to be fitted to experimental data 

The following equations describe the model outputs that were fitted to the experimental data for 

high and low PI3K. 
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Each of these model outputs was multipled by a scaling factor. The scaling factor is a function of 

the specific detection molecules used in the experimental assay for each species of SMADs and 

should not change between the high and low PI3K condition. Therefore, each scaling factor is 

kept constant between the high and low PI3K condition but separately chosen for each species. 

The levels of p-SMADs are not zero in the experimental measurements at time zero (which is the 

no activin stimulation condition). This is a complex function of the background fluorescence, 

minimum detection limit and stimulation from growth factors present in the culture medium (that 

are not explicitly added). From our observations, the time zero fluorescence values were very 

low as compared to the values after stimulation. Hence, the experimental time zero values are 

taken as an offset for the model output at all time points and this also ensures that proper fold 

changes can be taken. Otherwise, fold change is meaningless since the model outputs for 

phospho SMADs and SMAD7 at time zero are zero. 

4.5.5.6 Selection of key parameters 

In the fitting process, a trial run was first conducted to identify the intervals of the model 

parameters that could capture important features of the experimental data (Section 4.3.1). This 

step was necessary since many features of the experimental dynamics was different from that 

reported in other cell systems (see description presented in Section 4.3.1). Once the correct 

ranges were identified, a GSA was conduced within this interval for total p-SMAD2, p-SMAD3 

and SMAD7 mRNA to identify the most sensitive parameters that control these outputs. The 

goal of this approach is to identify the most sensitive parameters in the right parameter intervals 

and only include these sensitive parameters in the main parameter estimation process. 

Figure 4.7 shows the sensitivity indices for first few sensitive parameters controlling p-

SMAD2 and p-SMAD3 in the early and late time points. Same procedure is followed as 



 

 133 

described in Chapter 2. Here, 105 random parameter set samples were selected within the 

intervals identified by the above step, the ODE model with/without crosstalk was simulated and 

the dynamic profiles of total pSMAD2, total pSMAD3 and SMAD7 mRNA were calculated. 

Then a RS-HDMR based GSA was conducted at 9 time points within a 24 h period and for the 

area under the total pSMAD curve (AUC) over 24 h. It was seen that first order Sobol’ indices 

amounted to ~70% of the variance on average and important second order indices were 

combinations of these first order indices. The entire 2nd order RS-HDMR explained close to 95% 

of variance in the outputs. As seen from Figure 4.7A, the most sensitive parameters for pSMAD2 

and pSMAD3 were similar with phosphorylation and de-phosphorylation dominating the 

variance, but these parameters were more important in the early and late time points respectively. 

This was followed by LRC dissociation rate (important in the mid time point region) and the 

production of R2 receptor (important early on). Similar parameters were important when 

considering the AUC (Figure 4.7B). Additionally, some other secondary parameters included the 

receptor R2 degradation and SMAD7 mRNA production. Between pSMAD2 and pSMAD3, 

there were only minor differences. Similar results were obtained for GSA on SMAD7 mRNA 

(Figure C.6). Based on the results of this section, the parameters in Table 4.1 were kept fixed at 

the nominal values and the parameters in Table 4.2 were estimated during parameter estimation. 

Fixed parameters mainly included the import/export rates, the complex formation/dissociation 

rates etc. These rate constants are faster compared to the slow rates of phosphorylation and 

dephosphorylation (rate limiting). The fitted parameters additionally included the scaling 

parameters for comparison to the experimental data. The fitted parameters were either allowed 

the flexibility to be different between the high and low PI3K case or they were kept identical 
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between high and low PI3K case based on the context. Additional parameters were added for 

each crosstalk scenario. These details are discussed in the results section. 

     

Figure 4.7 Results from GSA for pSMAD2 and pSMAD3 levels over time (A) and integrated levels (B). 

 

Table 4.1 Fixed Parameters 

Index Parameter Reaction step Value   Unit Reference 
1 

ik  Receptor 
internalization 

0.333 min-1 (Vilar et al., 2006) 

2 
rk  Receptor 

recycling 
0.0333 min-1 (Vilar et al., 2006) 

3 
1prodRk  Receptor 

production 
0.0137 nM-1min-1 (Zi and Klipp, 2007) 

4 
1deg Rk  Receptor 

degradation 
0.00256 min-1 (Zi and Klipp, 2007) 

5 
LRCkdeg  LRC 

degradation 
0.00256 min-1 (Zi and Klipp, 2007) 

6 
Actkdeg  Ligand 

degradation 
0.00256 min-1 (Kaminska et al., 

2005) 
7 

aLRCk  LRC complex 
formation 

117.897 nM-2min-1 (Zi et al., 2011) 

8,9 
2impSk , 

3impSk  

Nuclear import 
(SMAD2,3) 

0.156 min-1 (Schmierer et al., 
2008) for Smad2 
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Table 4.1 (continued) 
10,11 

2expSk , 

3expSk  

Nuclear export 
(SMAD2,3) 

0.739 min-1 (Schmierer et al., 
2008) for Smad2 

12 
4impSk  Nuclear import 

(SMAD4) 
0.156 min-1 (Schmierer et al., 

2008) 
13 

4expSk  Nuclear export 
(SMAD4) 

0.355 min-1 (Schmierer et al., 
2008) 

14 
impSmadsk  Nuclear import 

(complexes) 
0.889 min-1 (Schmierer et al., 

2008) 
15 

onSmadsk  Smad complex 
formation 

0.1985 nM-1min-1 (Zi et al., 2011) 

16 
offSmadsk  Smad complex 

dissociation 
1 min-1 (Schmierer et al., 

2008) 
17 

onnsk  Non-specific 
Ligand binding 

0.0505 min-1 (Zi et al., 2011) 

18 
nsDk _  Non-specific 

Ligand 
dissociation 

40.2257 - (Zi et al., 2011) 

19 
427 SaffpSSk  Chromosome 

affinity 
(complex 
pS2S4) 

0.001 nM-1 (Nicklas and Saiz, 
2013) 

20 
437 SaffpSSk  Chromosome 

affinity 
(complex 
pS2S4) 

0.001 nM-1 (Nicklas and Saiz, 
2013) 

21 
2dcSk  De-

Sequestration 
(SMAD2) 

1 min-1 Fixed after first trial 
of parameter 
estimation 

22 
3dcSk  De-

Sequestration 
 (SMAD3) 

1 min-1 Fixed after first trial 
of parameter 
estimation 

23 
2dcpSk  De-

Sequestration 
(pSMAD2) 

1 min-1 Fixed after first trial 
of parameter 
estimation 

24 
3dcpSk  De-

Sequestration 
(pSMAD3) 

1 min-1 Fixed after first trial 
of parameter 
estimation 
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Table 4.2 Fitted Parameters 

Index Parameter Reaction step Unit Explored 
Range in 

log10 scale 
1 

2phoSk  phosphorylation nM-1min-1 [-4,2] 

2 
2dephoSk  de-

phosphorylation 
min-1 [-4,2] 

3 
3phoSk  phosphorylation nM-1min-1 [-4,2] 

4 
3dephoSk  de-

phosphorylation 
min-1 [-4,2] 

5 
2prodRk  Receptor 

production 
nM-1min-1 [-4,1] 

6 
2deg Rk  Receptor 

degradation 
min-1 [-4,1] 

7 
lidk  Negative 

feedback 
strength 

nM-1min-1 [-4,1] 

8 
427 SprodpSSk  SMAD7 

Transcription 
by pS2S4 

nM min-1 [0,4] 

9 
437 SprodpSSk  SMAD7 

Transcription 
by pS3S4 

nM min-1 [0,4] 

10 
mrnaSk 7deg  SMAD7 

mRNA 
degradation 

min-1 [-4,1] 

11 
protSk 7deg  SMAD7 protein 

degradation 
min-1 [-4,1] 

12 
protprodSk _7  SMAD7 protein 

production 
nM-1min-1 [-4,1] 

13 
dissLRCk  LRC 

dissociation 
min-1 [-4,4] 

14 
iLRCk  LRC 

internalization 
min-1 [-4,4] 

15 
2pSScale  Scaling 

parameter 
- [-6,6] 

16 
3pSScale  Scaling 

parameter 
- [-6,6] 
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Table 4.2 (continued) 
17 

mRNASScale 7  Scaling 
parameter 

- [-6,6] 

18 
2cSk  Sequestration 

(SMAD2) 
min-1 [-4,4] 

19 
3cSk  Sequestration 

 (SMAD3) 
min-1 [-4,4] 

20 
2cpSk  Sequestration 

(pSMAD2) 
min-1 [-4,4] 

21 
3cpSk  Sequestration 

(pSMAD3) 
min-1 [-4,4] 

 

4.5.5.7 Refined model fitting 

The selected parameters are estimated using the PT approach for each experimental repeat 

separately. During each fitting process, the model is fitted to the high and low PI3K data 

simultaneously and it is ensured that each pair of data is from the same cell culture passage. This 

eliminates passage-to-passage variability. Each fitting process results in a parametric ensemble 

that can be used to distinguish between the high and low PI3K conditions as well as distinguish 

between the three crosstalk mechanisms. Best fit parameter sets from each crosstalk mechanism 

are compared using the Akaike information criterion (AIC) (Akaike, 1998): 

freei NLAIC 2)ln(2 +=             (4.59) 

AIC weighs model fit (log-likelihood from Equation 4.55) against model complexity, for 

example the number of free parameters ( ). AIC values are mainly used for comparison of 

competing models, which can be formally done with the AIC weights: 
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Here, minAIC  represents the minimum AIC value. Among a given set of competing models, the 

models with higher AIC weights are the best among the set. 

4.6 RESULTS (KINETIC MODELING) 

The following sections present the results for one experimental repeat. The goal of the fitting 

process is to evaluate the kinetics of the TGF-β/SMAD pathway in hESCs and the kinetics of 

three crosstalk mechanisms between AKT and SMAD. The parametric ensembles after 

convergence of MCMC chains are plotted against the experimental data for the two conditions. 

Then, the marginal distributions of the important fitted parameters are compared across the two 

conditions to evaluate the predictions made by each crosstalk model. Fitness of the best-fit 

parameter set and the number of parameters are given in Table 4.3. 

4.6.1 Evaluating crosstalk 1 

Figure 4.8A shows the ensemble outputs for each of the three species for high and low PI3K 

simulated using the model with non-phospho SMAD sequestration process. Here, the 

phosphorylation rate is kept the same between the high and low PI3K case to remove crosstalk 3 

and simulate only crosstalk 1. In these plots, the lightly shaded region represents 5th-95th 

percentile trajectories of the simulated output, dark shaded region represents 25th-75th percentile, 

intermediate dark line shows the median output and the small circles represent the experimental 
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data from one repeat. The fitted model faithfully recreates most of the important features in high 

PI3K condition. For example, the overshoot behavior in p-SMAD2, the first order increase of p-

SMAD3 and the overshoot behavior of SMAD7 mRNA. For low PI3K condition, we obtain 

mixed results. Good fits are obtained for p-SMAD2 with increased phospho protein levels in the 

early time points. For p-SMAD3, the fits in the early time points (until 6 h) are good, although 

the variability in the data is high early on. The model predicts the rapid rise in p-SMAD3 in the 

low PI3K condition. After 6 h, the model predicts a saturation behavior with the levels equal to 

the high PI3K case, but the experimental data shows high levels at 12 and 24 h. The predicted 6 

h SMAD7 mRNA levels in low PI3K are lower than the experimental value. 

Figure 4.8B presents the posterior distributions of the parameters (box and whisker plot 

on log scale) with high and low PI3K conditions grouped together. Overall, the distributions of 

many parameters for the two conditions are close together, even though this was not explicitly 

imposed during the fitting process (except phosphorylation rate). Parameter distributions were 

compared using a two-sample Kolmogorov-Smirnov test. The de-phosphorylation rates for both 

molecules are unchanged between the two conditions. Comparing SMAD2 and SMAD3, the 

phosphorylation rates for both molecules are similar between the two conditions. However, the 

de-phosphorylation rate is very low for p-SMAD3 compared to p-SMAD2, possibly giving rise 

to the first order behavior. Receptor production and degradation are also similar between the 

conditions. Among the distributions that are different, SMAD7 shows increased degradation of 

protein but decreased degradation of mRNA in low PI3K. Therefore, the protein levels are lower 

in low PI3K condition (possibly due to reduced protein translation under low p-AKT). However 

this is compensated by increased negative feedback parameter leading to the same overall 

strength of feedback on p-SMAD2 and p-SMAD3. Interestingly, the comparison of crosstalk 
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parameters showed that the complexation rate for SMAD2 is higher in low PI3K condition, 

which is opposite to the expectation. SMAD3 complexation rate is lower in the low PI3K 

condition as expected. 

Under close inspection, it was found that the increase in p-SMAD2 in low PI3K is mainly 

due to increased levels of LRC in the endosomes (the signaling complex) (see Figure C.6A). In 

all the simulations of both conditions, the LRC peaks at the same time as p-SMAD2 and reduced 

dissociation of LRC in low PI3K increases its levels. This in turn increases p-SMAD2 and p-

SMAD3. But this alone is not enough for pSMAD3 and reduced complexation also contributes 

to the increase. Overall, the correlations between the parameters are low in both conditions, with 

the strongest being the LRC dissociation rate and the phosphorylation rates of both SMADs (see 

Figure C.7). Thus, this mechanism does capture major features of the experimental data, but does 

not conform to the hypothesized mechanism for SMAD2. 

 

Table 4.3 Comparison of best parameter outputs for each crosstalk mechanism* 

Crosstalk # # of fitted  
parameters 

(Nfree) 

Best 
energy 

value (L) 

AIC = 2 
Nfree +2lnL   

AICweights Is the mechanism 
biologically feasible? 

1 36 42.64 79.51 0.1085 No, predicts increased 
SMAD2 complexation 

under low PI3K 
2 36 99.13 81.19 0.0468 No, poor fits to p-SMAD2 

and p-SMAD3 dynamics 
under low PI3K 

3 34 41.23 75.44 0.8300 Yes 
Combined 

1+3 
38 42.80 83.51 0.0147 Yes 

* Note: Total number of experimental data points = 44 (from three outputs for two conditions) 
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Figure 4.8 Ensemble modeling outputs for mechanism 1. 

(A) Simulated model fits with the experimental training data. 105 MCMC samples are used for plotting. (B) 

Posterior distributions of the fitted parameters. Values for the mean (circle), 25th-75th percentile (end points of the 

boxes) and 2.5th to 97.5th percentiles as endpoints of the whiskers are shown. Parameter distributions were compared 

using a two sample Kolmogorov-Smirnov test, *p<0.05, **p<0.01. 
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4.6.2 Evaluating crosstalk 2 

Figure 4.9A presents the simulated model outputs for mechanism 2. Here, it is observed that the 

model fits are satisfactory for the high PI3K case while very poor fits are obtained for the low 

PI3K case for p-SMAD2 and p-SMAD3. The low PI3K case does not capture the early rise in 

pSMAD3 and a delay in pSMAD3 is seen similar to the high PI3K case. Therefore, this 

mechanism, where AKT sequesters phospho protein in the cytoplasm, is unable to explain the 

increased pSMAD2 levels in low PI3K and faster increase in pSMAD3 in the low PI3K 

condition. The main reason for this is accumulation of pSMAD if it complexes with AKT 

(Figure 4.10). This reduces the amount of SMAD available for de-phosphorylation. Hence, it 

becomes difficult for the model to capture the increase in pSMAD when AKT is low if this 

mechanism is the only one leading to the increase in pSMAD. 

Posterior parameter distributions shown in Figure 4.9B indicate that the two models 

differ mainly in the SMAD7 related parameters. SMAD7 mRNA degradation is increased and 

protein degradation is decreased in the low PI3K case which enables the model to capture the 1 h 

level of SMAD7 mRNA in low PI3K condition, but the model follows the high PI3K condition 

at the other time points. The LRC dissociation rate is increased in the low PI3K condition 

leading to lower levels of active LRC complex (Figure C.6B). Overall, this mechanism captures 

the SMAD7 dynamics better than previous mechanism but not the other phosphor protein 

dynamics. 
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Figure 4.9 Ensemble modeling outputs for mechanism 2. 

(A) Simulated model fits with the experimental training data. (B) Posterior distributions of the fitted parameters. 

Details identical to Figure 4.8. 
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Figure 4.10 Changes in total pSMAD2 levels with increasing complexation rate with AKT.  

Three levels of kcpS2 are considered here, best parameter from high PI3K case followed by 100-fold reduction and 

increase over this level. Increasing complexation rate (modeling increasing AKT) is leading to increase in total 

pSMAD2 levels. 

4.6.3 Evaluating crosstalk 3 

Figure 4.11A presents the simulated model outputs for mechanism 3. Here, it is observed that the 

model fits are satisfactory for the high PI3K case. The low PI3K fits are very similar to 

mechanism 1, with the early time points showing good fits for p-SMAD2 and pre 6h time points 

for p-SMAD3. Posterior parameter distributions shown in Figure 4.11B indicate that the two 

models differ in the SMAD phosphorylation rates. Both p-SMAD2 and p-SMAD3 show 

increased phosphorylation in the low PI3K condition, with the mean values of SMAD3 further 

apart than SMAD2. Therefore, the parameter ensembles capture right type of interaction between 

SMAD and AKT. In addition, the differences in LRC dissociation rate are minimal, indicating 

that the endosomal LRC levels are similar between the two conditions (Figure C.6C). Therefore 
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the increase in p-SMADs is solely due to increased phosphorylation rate of SMADs in low PI3K. 

SMAD7 related parameters show similar distributions as mechanism 1. 

 

Figure 4.11 Ensemble modeling outputs for mechanism 3.  

(A) Simulated model fits with the experimental training data. (B) Posterior distributions of the fitted parameters. 
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4.6.4 Evaluation of crosstalk combinations: Crosstalk 1 + 3 

So far, mechanism 3 is able to explain most of the differences in p-SMAD2 and p-SMAD3 using 

increased phosphorylation rates and similar peak levels of LRC signaling complex in the 

endosomes. Mechanism 1 made predictions related to SMAD2 complexation that were opposite 

to the hypothesized mechanism and also predicted increased LRC complex in the endosomes for 

low PI3K. Mechanism 2 gave poor fits to the low PI3K condition. Next we wanted to check if 

combining mechanisms 1 and 3 gave better predictions. Figure 4.12A shows simulated model 

outputs for mechanism 1+3. The model fits were very similar to those obtained individually with 

1 and 3. It was seen that LRC in the endosomes was identical between the two conditions, and 

therefore the differences in phospho-SMAD are only due to the modeled crosstalk interactions. 

However the parameter distributions (Figure 4.12B) showed that the phosphorylation rates are 

still higher in the low PI3K condition. Interestingly, the complexation rate of SMAD2 is lowered 

in the low PI3K condition unlike mechanism 1. Furthermore, the complexation rate of SMAD3 is 

similar between the two conditions. Therefore, according to this combination, SMAD3 probably 

is under the action of mechanism 3. For SMAD2, there is a combined action of mechanism 1 and 

3. This improvement in biological feasibility comes with addition of two extra parameters as 

compared to mechanism 1 and four extra parameters as compared to mechanism 2 in the fitting 

process. The fits to SMAD7 mRNA are similar to each of the individual crosstalk mechanisms 1 

and 3. 
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Figure 4.12 Ensemble modeling outputs for mechanism 1+3. 

(A) Simulated model fits with the experimental training data. (B) Posterior distributions of the fitted parameters. 
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4.6.5 Model predictions of difference between crosstalk 1 and 3 

In Section 4.6.4, the differences between crosstalk 1 and 3 from the simulation outputs 

were presented. The model also predicted other differences that can be tested experimentally. 

One such scenario is presented in Figure 4.13. Inhibition of activin signaling or non-stimulation 

condition followed by modulation of AKT levels will perturb the basal distribution of SMADs 

(non-phospho SMAD) between the cytoplasm and nucleus if crosstalk 1 is acting. In this 

situation, the non-phospho SMAD levels will be negligible. This effect will not be seen for 

crosstalk 3. Experimental measurement of total SMADs in the cytoplasm and nucleus (violet line 

for cytoplasm and orange line for nucleus in Figure 4.13) under high and low PI3K condition 

will enable verification of these differences. It is seen that the effect is more pronounced for the 

nucleus than the cytoplasm. 

 

Figure 4.13 Model prediction distinguishing crosstalk 1 and 3. 
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Inhibition of Activin signaling (for example by inhibiting receptor activity) followed by modulation of AKT levels 

would perturb the nuclear-cytoplasmic equilibrium distribution of SMADs when crosstalk 1 is acting (thick lines). 

But no effect will be seen by modulation of AKT levels if crosstalk 3 is acting (dashed lines). 

4.7 DISCUSSION (KINETIC MODELING) 

In this section, we modeled the mechanism of AKT SMAD interactions and applied parametric 

ensemble analysis to check the plausibility of each mechanism to explain experimental 

observations. An important observation in hESCs was the difference in the dynamics of 

pSMAD2 and pSMAD3. pSMAD2 showed an overshoot behavior while pSMAD3 showed a 

first order increase in the initial phases of the signaling dynamics. Model predictions showed that 

this difference is likely due to the differences in the dephosphorylation rates. Some studies have 

indicated that low receptor levels could lead to delay in the activation of pSMADs (Schmierer 

and Hill, 2007), however this would affect SMAD2 and SMAD3 equally. Parameter estimation 

and sensitivity analysis on our model indicated that the receptor production and degradation rates 

showed a broad distribution. Therefore, the receptor levels have less control over SMAD 

dynamics as compared to phosphorylation and dephosphorylation rates in our system. Thus, our 

results indicate that low receptor levels alone are not sufficient to explain the difference in 

SMAD kinetics and a more direct influence via dephosphorylation could be necessary. But it is 

still important to note that the earliest peak in pSMAD2 and pSMAD3 occur around 2-3 hours 

and 1-3 hours respectively which is still later than 45-60 minutes seen in other cell types. 

Therefore, the receptor levels could be lower in hESCs that other mature cell types. 
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The dephosphorylation of SMADs is controlled by different phosphatases and several 

candidates have been identified in recent years (Bruce and Sapkota, 2012). However, there is no 

consensus on the most dominant phosphatase from the pool of identified candidates. 

Furthermore, the model of identical phosphatases regulating different SMAD types is now in 

question. The SMAD signaling community is increasingly recognizing that the phosphatase 

activity is likely to be different between SMAD2 and SMAD3, although a thorough experimental 

analysis is still lacking (Bruce and Sapkota, 2012). Our analysis provides the first evidence that 

hESCs are a good cell model to study the difference in the kinetics of SMAD2 and SMAD3 and 

future experimental work can identify the nature of the phosphatases catalyzing 

dephosphorylation of pSMAD2 and pSMAD3. Our modeling analysis has predicted the kinetics 

of the action of these phosphatases but their actual identity needs further experimental study. 

Negative feedback via SMAD7 was found to be less important in controlling the long term 

dynamics of SMAD2,3. This is possibly because SMAD7 is acting on the surface LRC complex 

which is a small fraction of the entire pool of LRC. Nevertheless, negative feedback in 

combination with dephosphorylation is the prime mechanisms to limit SMAD signaling in this 

model. 

DBN inference indicated that AKT mediated crosstalk might be dominant in the early 

phases of signal transduction in the TGF-β/SMAD pathway. Kinetic analysis showed that 

addition of crosstalk interactions via AKT is helpful in capturing the early phase of the signal 

transduction differences between high and low PI3K conditions. Among the crosstalk 

mechanisms, the most promising model was where AKT inhibited the phosphorylation kinetics 

of SMAD2 and SMAD3. The effect was more dominant for SMAD3 than SMAD2. This is in 

line with the literature, where more studies have focused on AKT-SMAD3 crosstalk than AKT-
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SMAD2 crosstalk in most cell lines. This was also seen in the DBN inference where AKT-

SMAD3 connections were predicted but AKT-SMAD2 connections were not identified. One 

reason could be that correlation between AKT and SMAD2 time series is not strong enough 

relative to other connections of AKT and therefore, this connection is lost due to the 3-parent 

rule per child node imposed in the DBN algorithm. 

The combination crosstalk model also explained the early signaling data well, although at 

the expense of additional parameters. From the modeling standpoint, this leads to higher AIC 

values than crosstalk 3 and thus not favorable. Comparison of the combination model with 

individual crosstalks is however interesting. SMAD3 phosphorylation is predicted to be inhibited 

by AKT in both scenarios. But, for SMAD2, there is a combination of both inhibition of SMAD 

phosphorylation and sequestration of SMADs. Though not experimentally proven, studies by 

Song et al. have indicated that crosstalk effects may be different for SMAD2 and SMAD3 

(Danielpour and Song, 2006). Currently, our analysis cannot distinguish between these best 

cases. Future experiments probing the sequestration effect of AKT on SMAD2 will be necessary. 

This can be done by Fluorescence recovery of Photobleaching (FRAP) and Fluorescence loss in 

Photobleaching (FLIP) (Bancaud et al., 2010; Phair and Misteli, 2001). Using FRAP/FLIP 

techniques, we can check if fluorescently tagged SMAD2 and SMAD3 accumulate in the 

cytoplasmic regions, possibly at the membranes where AKT is abundant (Meyer et al., 2011). 

Such sequestration effects would be captured in the changes in the diffusivity coefficients of 

SMAD. Further, we can estimate the differences in the nuclear import and export kinetics of 

different SMADs, which were fixed to be the same in the current analysis (Schmierer and Hill, 

2005). We have begun initial experiments to probe these connections (see Appendix D for 
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preliminary experimental results and PDE modeling analysis for estimation of diffusivity of 

fusion protein, GFP-Profilin1 in a breast cancer cell line). 

The kinetic analysis of crosstalk interactions with AKT presented in this section is unable 

to explain the long-term levels of pSMAD3 in low PI3K condition. This is also the region where 

AKT levels are increasing back to basal levels. Therefore, it is unlikely that AKT mediated 

interactions are responsible for the increase in pSMAD3 level in this time region of low PI3K 

condition. This was also indicated by the DBN inference in the late time zones of signaling 

dynamics. There could be influence of other crosstalk interactions that we have not measured 

and analyzed in this work. A prime candidate mechanism is the phosphorylation in the linker 

region of SMADs that can positively influence phospho SMAD3 levels, for example via proline 

directed cyclin dependent kinases that change during the cell cycle (Kamato et al., 2013). 

In our analysis, the levels of AKT were assumed to be constant in a particular condition 

since the rate parameters for crosstalk were assumed constant during the entire phase of the 

signaling dynamics. This is a valid assumption in the early phases of the signaling dynamics 

where we saw that the levels of AKT were either high or low (within experimental variability). 

Further, this is also the region where crosstalk effects are dominant. Future extensions of the 

model will require explicit consideration of AKT dynamics. This will enable integration of the 

mechanistic PI3K/AKT pathway model used in the self-renewal phase (Chapter 2) with the 

entire SMAD signaling machinery along-with the possible points of crosstalk. 
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4.8 CONCLUSIONS AND EXTENSIONS (KINETIC MODELING) 

4.8.1 Major conclusions 

In this work, we identified the unique dynamics of effector SMAD2,3 molecules in hESCs 

during early endoderm signaling. Through a thorough parametric ensemble analysis, we 

estimated the differences in the kinetics of reaction steps that lead to divergent dynamics of 

SMAD2,3. Further, detailed modeling of competing SMAD-AKT crosstalk interactions 

identified the differences in AKT mediated effects on SMAD2 and SMAD3. These results 

demonstrate the use of detailed mathematical models for evaluation of signaling mechanisms and 

regulatory interactions guiding endoderm differentiation. 

4.8.2 Assumptions, potential pitfalls and proposed extensions 

In the current work, the focus was on C-terminal phosphorylation of SMAD2,3 which is 

catalyzed by LRC and is the major phosphorylation event controlling processes in the early 

signaling phase. However, additional sites on the SMAD molecules undergo phosphorylation 

and this may lead to modulation of reactions in which SMAD participates. For example, 

phosphorylation in the linker region of SMAD proteins may affect the nuclear export rates 

(Pauklin and Vallier, 2013) and degradation of SMADs (Jason et al., 2015). In the current 

modeling scenario, the total number of SMAD molecules in the cell is held constant. But protein 

degradation events, which have slower kinetics than the processes included in the current model, 

will become important in long term signaling and perturb the constant SMAD levels. SMAD7 

dynamics under low PI3K was not captured effectively. Capturing the low PI3K SMAD7 
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behavior led to poor fits to pSMAD2 and pSMAD3 indicating some interactions not accounted 

for. Smad7 protein levels were not measured here and it is possible that the actual pool of 

SMAD7 proteins taking part in negative feedback may not be directly proportional to the mRNA 

levels. Measuring the total SMAD7 protein levels will provide additional data to confirm this. 

In this work, only one source of crosstalk is modeled, namely AKT (ERK was found to 

be unimportant in general). However, ERK may affect linker phosphorylation, which was not 

measured in the current experiments. In other words, ERK (and other molecules like CDKs) may 

indirectly influence SMAD activity via linker phosphorylation and these effects may become 

more prominent in the later phases of signaling dynamics. It is important to note that linker 

phosphorylation has a slower kinetics than C-terminal phosphorylation (Kamato et al., 2013). On 

the other hand, crosstalk with other developmental pathways like WNT/β-catenin might also 

affect SMAD activity. These open questions can be explored in future studies and our work will 

provide a framework to design the stimulation conditions for these experiments. 

 



 

 155 

5.0  OVERALL CONCLUSIONS AND FUTURE DIRECTIONS 

In this work, we have performed a systems level analysis of signal transduction in the self-

renewal state and during endoderm differentiation process of hESCs. Through the use of data-

driven and equation based mechanistic models, we have analyzed the process by which signals 

integrate between disparate yet interacting signaling pathways in hESCs. Through the three aims, 

we have identified critical interactions and regulatory processes that robustly control features of 

hESC signaling and therefore, are best candidates for further exploration and optimization of 

hESC cultures. In the following sections, the major contributions and possible applications of the 

techniques developed in each aim are presented. 

5.1 AIM 1: SENSITIVE NODES OF COMPLEX PATHWAYS 

Our first aim focused on application of computationally efficient algorithms to identify critical 

nodes from the PI3K/AKT pathway in the self-renewal state of hESCs. Our motivation was 

based on the hypothesis that these critical (or sensitive) nodes are the best places to target and 

modulate the pathway to achieve the desired aim of improving signals promoting self-renewal. 

Identification of such positions from complex signaling pathways is non-trivial, time consuming 

and computationally expensive. Because of the non-linearity in the kinetics of the interactions, 

the pathway of signal transduction becomes non-intuitive. To identify the sensitive nodes, we 
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employed a novel meta-model based global sensitivity analysis based on high dimensional model 

representation technique developed for large-scale chemical reacting systems. We performed the 

sensitivity analysis in biologically realistic range for the rate parameters identified from 

experimental time series data. Through this work, we have demonstrated the application of meta-

modeling techniques to reduce computational costs associated with traditional MC approaches 

for GSA. According to the current analysis, we observed a 10-fold reduction in the 

computational cost for evaluation of Sobol’ indices and the accuracy of the indices of most 

sensitive parameters was good at low MC sample sizes (after around 1000 MC samples). 

The meta-model approximation used for GSA is general and can be applied to different 

scenarios. For example, analysis of simulation outputs and analysis of experimental data (Li et 

al., 2001a). For the latter, if fairly large input-output experimental datasets (~103 for first order 

analysis) are available, then we can model the input-output space for a high dimensional system. 

The outputs of second-order analysis indicate the influence of pairs of perturbations and often, 

these may provide better combinations of small molecule perturbations than single molecule 

perturbations. This is well known for pharmacological therapies in illnesses like cancer, but only 

empirically studied in stem cell biology. The meta-model technique can be expanded to evaluate 

third order indices, but this will require additional regularization strategies to reduce overfitting 

and inaccuracy (Miller et al., 2012). Thus, overall we can identify best combinations of 

perturbations to improve self-renewal state using a systematic analysis that draws upon the 

power of mechanistic models. This will provide a parallel method to high throughput screening 

assays. In future, we can evaluate the entire network with crosstalks and identify co-modulation 

strategies to control the balance of self-renewal and differentiation. This will require model 

extension through addition of crosstalk interactions, some of which have been studied in AIM3. 
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5.2 AIM 2: CO-REGULATION OF TRANSCRIPTION FACTORS UNDER 

COMBINATORIAL SIGNAL INPUTS 

In the second aim, we focused on the end stage of endoderm differentiation of hESCs using 

combinations of important signaling pathways. Starting from five commonly employed signaling 

pathways, we explored all possible combinations of these pathways to identify similarities and 

differences in the TF expression at the end-point of differentiation. We applied biclustering 

formulation to identify subsets of TFs that are co-regulated under sub-sets of conditions. To 

ensure that the identified biclusters are robust against experimental noise, we employed a 

bootstrapping with resampling approach. Our analysis primarily indicates that efficiency of 

endoderm induction depends on the context of BMP4 signaling. Therefore, protocols employing 

BMP4 signaling in combination with other pathways would require careful consideration when 

evaluating the later stage maturation potential. 

Biclustering with bootstrapping framework has not found applications for analyzing 

signal transduction data. In the hESC literature, most signal transduction data is very sparse and 

composed of population averages and few different signaling molecules. Many hESC research 

labs use large-scale arrays for gene expression measurements and mass-spectroscopic 

measurements for phosphoproteins. Biclustering techniques can be used here to mine patterns of 

signal transduction dynamics that are relevant for fate choice, a question that is still unanswered 

(Schneider et al., 2012). This could be an important step to effectively connect signaling 

pathways with gene regulatory networks to simulate the entire dynamics of fate choice. With 

newer platforms like Reverse Phase Protein Array for analyzing signal transduction molecules on 

a large scale (Iadevaia et al., 2010; Tibes et al., 2006), we envision that the techniques proposed 

in this aim will become commonplace. These experimental platforms, which provide large 
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number of data points, will give better approximations for the bootstrapping approach that is 

sensitive to the empirical distribution. Our analysis was done on the end-point of differentiation. 

Performing the analysis with dynamic profiles will be useful to identify co-regulation patterns 

across intermediate stages like mesendoderm. This would require extension to the third 

dimension and this is possible using triclustering techniques (Mahanta et al., 2011). 

5.3 AIM 3: CROSSTALKS AND DYNAMICS OF SIGNAL PROPAGATION 

DURING ENDODERM DIFFERENTIATION 

In the third aim, we focused on the main pathway of endoderm induction and associated 

crosstalks with parallel pathways. We first measured the dynamics of key signaling molecules 

from the TGF-β/SMAD pathway with additional molecules from PI3K/AKT and MAPK/ERK 

pathways. Using a DBN framework, we analyzed the within pathway and between pathway 

interactions, information about which was hidden in the experimental time series. DBN inference 

is applicable for wide variety of expression datasets and its application to protein expression 

datasets is fairly recent (Azhar et al., 2013). Due to the large number of crosstalks in hESC 

signal transduction networks, DBN inference can provide a framework to generate hypotheses 

about possible interactions which can be tested further by perturbations of the associated nodes. 

Even for small number of signaling molecules, the associations provided by DBNs are 

informative. 

As demonstrated by our analysis, DBN interactions can be probed further using detailed 

ODE models that enable identification of kinetics of these interactions. Application of ensemble 

parametric methods enables effective characterization of identifiability of parameters of systems 
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biology models. Using this analysis, we identified possible reasons for the complex signaling 

behavior in hESCs. Although we have not characterized the actual identity of molecules 

catalyzing the differences, our model has made several predictions about the nature of these 

interactions. Mechanistic modeling of crosstalk interactions in a systematic way can be 

conducted using the same mathematical framework. These methods enable testing of competing 

hypotheses by identifying model predictions that are different between them. This can eventually 

help in building bigger network level representation of signaling during differentiation. Once 

complex predictive models are available, we can identify best possible treatments that will keep 

the differentiation relevant signals active and improve overall differentiation process. Taken 

together, we can utilize the information gained from different types of modeling frameworks 

employed in this work. These improvements will eventually enable development of well-defined 

cell types for cellular transplantation applications. 

5.4 COMMON ASSUMPTIONS, PITFALLS, FUTURE DIRECTIONS 

Throughout the dissertation, the experimental protein signaling data used for model 

calibration was obtained using a MagPix assay. Before analysis, cells in a well are lysed and 

their internal contents are collected together, similar to a western analysis. Therefore, the final 

fluorescence intensities are proportional to the cumulative protein content of the entire 

population in a well. This is the common method of analyzing signal transduction dynamics of 

many models (Janes, 2015). However, one major drawback of this method is the loss of single 

cell resolution. Phenomena like oscillations and cell-to-cell variability are hidden when data is 

collected at the population level (de Vargas Roditi and Claassen, 2015). Therefore, future studies 
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using single cell measurements of the dynamics of signaling molecules will enable exploration of 

these phenomena. This requires generation of hESC cell lines with fluorescently tagged signaling 

proteins. The method of generation of such cell lines are critical, because this leads to additional 

complications like increased expression levels of the proteins etc. which may lead to non 

intended changes in the signaling behavior. We envision that population and single cell 

measurements must go hand in hand and this is an emerging area of analysis in signal 

transduction research. The population measurements may be used to verify the single cell 

behavior or to provide constraints, since population behavior should be a geometric combination 

of single cell measurements (Hasenauer et al., 2014). Mathematical modeling will provide a link 

to connect these two measurement methods. 

Variability is an inherent feature of hESC systems and the experimental variability seen 

in the three aims may have multiple origins that are specific to hESCs. Some of these are 

discussed below and these factors may need special attention in future studies of signal 

transduction in hESCs. hESCs grow as colonies and location within the colony may modify the 

behavior of these cells to cell fate manipulation (Rosowski et al., 2015). The effect of spatial 

location within the colony on the signaling behavior has not been studied here, but this may 

contribute to variability seen in the experiments. Reorganization or breakage of colony structure 

during differentiation must be considered when modeling long term signaling since this changes 

the local signaling cues experienced by the cells. Further, random X-chromosome inactivation, 

during differentiation in female cell lines may lead to epigenetic alterations and this may affect 

the signaling behavior of daughter cells (Shen et al., 2008). Future studies that will model long 

term signaling will have to consider the effect of cell cycle and cell density on the signaling 
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outcomes. Location within the cell cycle is an important determinant of the culture heterogeneity 

in hESCs (Singh et al., 2013). 

In the current work, all experiments were done on H1 hESCs. Comparison between 

different hESC cell lines is an area of active research and many studies have shown that 

differences in hESC cell lines may lead to different behaviors under the same conditions 

(Allegrucci and Young, 2007). However, not much has been done to compare differences at the 

signal transduction level. Predictions from the current dissertation need to be verified in multiple 

cell lines including induced pluripotent cell types. This will lead to strategies that are common 

across cell lines and at the same time, help us to identify sources of variation in signal 

transduction between cell lines. 
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APPENDIX A 

CHAPTER 2 ADDITIONAL MATERIAL 

     

The mechanistic model of insulin signaling is based on the nonlinear ODE model 

developed by Sedaghat et al. (Sedaghat et al., 2002). The model is divided into several steps: 

insulin binding kinetics, receptor internalization and recycling, post-receptor activation of 

PI3K/AKT pathway and positive and negative feedback pathways. For the purpose of our 

analysis, the model was divided into two major modules, namely; (M1) Receptor-insulin binding 

kinetics and intracellular receptor trafficking, (M2) Post-receptor PI3K/AKT pathway with 

feedbacks. The complete version of the model consists of 20 state variables (including various 

states of the same molecule). For the sensitivity analysis, we utilized 21 rate parameters, 1 initial 

condition (insulin) and 3 modulators of the signaling pathway (PTP, PTEN and SHIP). Each 

reaction is modeled using mass-action kinetics unless stated otherwise. Total concentrations of 

the post-receptor signaling molecules are assumed to be constant for the time scale of the 

experiment. 
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Module M1 

In the absence of feedback, M1 is completely independent of the post receptor signaling. 

Therefore, this module is solved independently of M2 to estimate the maximal phosphorylation 

of surface receptors achieved for every parameter set explored. This maximal value of 54 yy +  

at steady state is referred to as pIR  in the original Sedaghat model. Once pIR  is evaluated the 

complete model (M1+M2) is evaluated again. However, for sensitivity analysis, the rate 

parameter, 7k , is combined with pIR . The selected free parameters for global sensitivity 

analysis are provided in Table A.1. The state variables and the corresponding ODEs for this 

module are described below: 
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The dependent rate parameters for M1 are evaluated as follows:
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Module M2 

This module contains the cascade of signaling events following the activation of insulin 

receptors on the cell surface as described in the text. The signal terminates at the AKT and PKCζ 

nodes. Activation of these terminal nodes results in two types of feedback: positive feedback by 

p-AKT resulting in modulation of PTP and negative feedback from p-PKCζ resulting in the 

serine phosphorylation of IRS-1 node. The state variables and the corresponding ODEs are 

described below: 
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In the original model, the dependent rate parameters for M2 are evaluated as follows: 
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[PTP]basal is the basal level of PTP selected by the parameter sampling. The levels of PTP 

change because of the feedback by phospho-AKT. Hence, PTP is modeled as: 
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The coefficients for the above equations are set from the nominal case. 
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The constants in the equation for PI3K are again selected from the nominal case.  

The action of negative feedback by p-PKCζ is modeled by a Hill equation for enzyme 

kinetics, 
19

19max][ n
d

n

n

YK
YVPKC
+

= . We do not incorporate delay into the equation as originally 

included in the Sedaghat model since we are performing a steady state analysis while doing 

GSA. The total number of free rate parameters for the complete model is as follows: 

Module M1: 8 

Module M2: 8 

Additional modifications for GSA 

As seen in the previous section, many of the rate parameters of the signaling cascade 

(M2) are related by equilibrium ratios. The equilibrium ratios enable one to calculate one of the 

forward or backward reaction rates when the other is known. However, for GSA, these 

parameters were chosen independently so that the effect of each of these reactions on the final 

steady state can be effectively studies. Otherwise, the final steady state will be the same since 

both the forward and backward reactions are perturbed to the same extent. Also, for application 

to completely new systems, it is not known whether the same equilibrium ratios hold. It is 

important to note that the rate constants, 11k , 11−k  and 12k , 12−k  were kept constant as they were 



 

 168 

phenomenological values in the original model and were not calibrated to any experiments. In 

short, the final list of free input parameters was expanded to include 7−k , '7−k , 8k , 9−k , 10k . 

This new list of parameters now includes 21 rate parameters (16 original + 5 additional), 1 initial 

concentration (insulin) and 3 modulators of the pathway. The nominal values and the explored 

ranges of these parameters are presented in Table A.1 of the main manuscript. The 

equations/parameters that were modified are given below: 

(1) 7k  was changed to pIRk /7  with a nominal value of 4.64×1012. 

(2) The parameter, stimk9 , was combined with KPI3 . The parameter, 9k , was modified 

to avoid negative values under parameter perturbations. The new equation is 

basalstim kykk 91299 +=  

(3) The parameters, 11k  and 12k , were modified to avoid negative values. The new 

equations are:   

)31.01.3(
1.0 11

11

131212

131111

−
=

=
=

−kk

ykk
ykk

basal

basal

basal

 and similar equation for basalk12 . Here, the basal values of the 

parameters are the same as the original model. 

(4) In the original model, PTP was described by a piecewise function that was linear in 

the low p-AKT regime and abruptly became zero when p-AKT was 4 times the nominal value. 

However, this was not based on any precise experimental measurements. In our hESC system, 

the levels of p-AKT were still in the lower range and negative feedback was still dominant. 

Therefore, we chose to model PTP using a continuous linear function that went to small values 
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(but not zero) when p-AKT was high (> 36.36). The levels reach zero when all the p-AKT 

molecules are phosphorylated (i.e. pAKT = 100%). 

( )1701.01 yPTPPTP basal −=  

The basal PTP levels are perturbed during the sensitivity analysis in the range 0.5 to 1.5. 

Therefore, under nominal conditions without feedback (i.e. p-AKT equal to 100/11), PTP levels 

can change to 0.45 and to 1.36 for the basal levels of 0.5 and 1.5 respectively. 

Table A.1 Free input parameters used for the MC simulation and their explored ranges** 

No. Symbol Nominal  value Range 

M1    

1 1k  6 × 107 M-1 • min-1 [106, 108] 

2 
1−k  0.2 min-1 [10-2, 5] 

3 
3k  2500 min-1 [102, 104] 

4 
4−k  0.003 min-1 [10-4, 10-2] 

5 
'4k  2.1 × 10-3 min-1 [10-4, 10-2] 

6 
'4−k  2.1 × 10-4 min-1 [10-5, 10-3] 

7 
5−k  1.67 × 10-18 min-1 [10-19, 10-17] 

8 
6k  0.461 min-1 [10-2, 100] 

M2    

9 

pIR
k7

 
4.64 × 1012                          

M-1 • min-1 

[4×1012, 1013] 

10 
7−k  1.396 min-1 [0.1, 6] 
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Table A.1 (continued) 

11 
8k  7.06 × 1011               

M-1 • min-1 

[5×1011, 1012] 

12 
8−k  10 min-1 [1, 50] 

13 
9−k  42.15 min-1 [1, 50] 

14 
stimk9  4.96 × 1014   

M-1 • min-1 

[4×1014, 1015] 

15 
10k  2.96 min-1 [0.1, 50] 

16 
10−k  2.77 min-1 [0.1, 10] 

17 
'7k  0.347 min-1 [0.01, 0.5] 

18 
'7−k  0.0858 min-1 [10-3, 10-1] 

19 
maxV  20 [1, 50] 

20 
dK  12 [1, 20] 

21 n  4 [1, 5] 

22 
basalPTP

 
1.00 [0.5, 1.5] 

23 ][SHIP
 

1.00 [0.5, 1.5] 

24 [PTEN
 

1.00 [0.5, 1.5] 

25 )0(1y  10-7 M [10-9, 10-6] 
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**The values of the parameters, ),( 1211 kk , and ),( 1211 −− kk  were kept constant at 0.693 and 6.93 

respectively. The initial conditions for all the species except insulin was kept constant at values same as (Sedaghat et 

al., 2002). 

 

Table A.2 Selection of number of clusters 

Number of clusters Mean Silhouette value ( meanS ) 

1 - 

2 0.55 

3  0.61 (Optimal) 

4 0.56 

5 0.53 
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Figure A.1 K-means clusters of p-IR and p-IRS1 (Y) dynamics observed in 105 samples. 

These profiles are presented for the k-means clustering done on the p-AKT profiles from Figure 2.3. The shaded 

areas represent the range of the profiles present in the cluster and the red curve represents the cluster centroid. The 

blue error bars represent the experimental data normalized to maximum. (A-C) p-IR clusters do not show significant 

differences and all the clusters are close to the experimental data. This is consistent with the GSA results that show 

that p-AKT does not significantly affect the molecules upstream of IRS1 (Y) under the current input conditions. (D-

F) p-IRS1 (Y) clusters 1 and 3 fall closer to the experimental data as judged by the centroids. 
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Figure A.2 Selection of parameter ranges for hESC dynamics. 

 (A-C) K-means clustering of p-AKT dynamics observed in 105 MC samples. (D-I) Parameter collection in the three 

k-clusters of p-AKT. The histograms present the number of samples in each cluster in a given parameter interval. 

The bottom red arrow shows the location of the nominal value. For each plot, black bars show final range chosen for 

sensitivity analysis. 
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Figure A.3 Dendrogram showing the clustering of p-AKT profiles from the same samples as used for Figure 

A.2. 

A cluster node limit of 30 was used for plotting purposes, but the clustering was performed on the entire 105 

samples. Increasing the cluster node limit will expand the current terminal nodes further. It is seen that a total of 

three clusters were found to represent most dissimilar dynamics that were the same as k-means clustering analysis 

(and same parameter ranges were seen). The numbers at the nodes of these clusters denote the k-means clusters from 

Figure A.2 to which they belong. Cophenetic correlation coefficient was estimated to be 0.79 and the Spearman 

correlation coefficient was estimated to be 0.85 showing an acceptable clustering. 
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Figure A.4 Histogram of output distributions in the 105 MC samples used for RS-HDMR. 

 (A) % p-IR shows abundant intermediate levels (B) % p-IRS1 (Y) shows a skewed distribution with abundant low 

phosphorylation states (C) % p-IRS1 (S) shows a skewed distribution with abundant high phosphorylation states (D) 

% p-AKT distribution shows a skewed distribution with abundantly low levels at steady state. 
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Table A.3 Performance of second order RS-HDMR meta-model** 

10
5
 samples Mean and 

Range of 

Output (%) 

Total 

Variance**         

    (%
2 
) 

∑
=

25

1i
iS
 

∑∑
= +=

25

1

25

1i ij
ijS

 

R
2
 

p-IR 44 [0-100] 453 0.89 0.08 0.97 

p-IRS1 (Y) 12 [0-100] 195 0.69 0.21 0.90 

p-IRS1 (S) 78 [0-100] 429 0.72 0.19 0.91 

p-AKT 6.5 [0-80] 62 0.59 0.28 0.87 

 

**From our observation of total variance, we see that it is relatively easier to perturb the levels of p-IR and p-

IRS1 (S) and (Y) that show large variances while it is difficult to perturb p-AKT levels that shows a relatively small 

variance. For outputs, p-IR, p-IRS1 (Y) and p-IRS1 (S), the first order contributions are sufficient while for p-AKT there 

are additional contributions from second order processes. 
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Table A.4 Important second order processes affecting p-AKT 

Group Location in the 

pathway and 

function 

Parameters Actual 

contribution to 

total variance (%) 

A Negative regulators 

upstream of PIP3 
k-9, k-8, k-7 7.3 

   B Negative regulators 

upstream of PIP3 

with negative 

feedback regulators 

downstream of 

PIP3 

k-9, k-8 with 

k7’, k-7’, Vmax 

6.2 
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Figure A.5 Sum of first and second order indices. 

Combined contribution of first and all relevant second order indices for the two important groups: negative 

regulators and negative feedback parameters. Second order interactions increase the sensitivity of the most sensitive 

parameters (for example, from 0.15 to 0.25 for ). 

 

Figure A.6 Model predictions for p-IRS1 (Y) and p-AKT during perturbation of negative feedback strength. 

 (A) Influence on p-IRS1 (Y) output. (B) Influence on p-AKT output. The blue scatter points are the actual model 

output and the red curve is the first order RS-HDMR approximation. Inhibition of negative feedback (decrease in 

parameter ) increases p-IRS1 (Y) and p-AKT levels and we also see large variability in the levels when negative 

feedback is weak. 



 

 179 

 

Figure A.7 Influence of perturbations in PI3K levels and PIP3 levels under varying strength of negative 

feedback 

 (A) Influence of PI3K levels. The parameter k-7 is perturbed to change PI3K levels. (B) Influence of PIP3 levels. 

The parameter k-9 is perturbed to change PIP3 levels. The X-axis shows the variation in the strength of negative 

feedback. The remaining parameters are kept at their nominal values. Changing PIP3 levels can considerably change 

p-AKT levels when negative feedback is weak while the variation is low when negative feedback is strong. 
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Figure A.8 Variability in phosphorylated IRS1 and AKT protein levels in hESC population. 

 (A) p-IRS1 (Y) levels. (B) p-AKT (S) levels. H1 cells were cultured in Activin + FGF (100 ng/ml) for 18 hr and 

were subjected to flow cytometry analysis as described in Task et al. (Task et al., 2012). Primary antibodies, rabbit 

anti-human p-IRS1 (pY612) and rabbit anti-human p-AKT (pS473) at 1:250 dilution were used to quantify the 

levels of signaling molecules. The red curve presents the positive readout within the gated region and the black 

curve represents the secondary antibody-only staining. p-IRS1 (Y) shows almost 98% positive staining while p-AKT 

shows 44% positive staining. The coefficient of variation (CV) of the curve falling in the positive region shows a 

large variability in p-IRS1 (Y) levels as compared to p-AKT. 
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APPENDIX B 

CHAPTER 3 ADDITIONAL MATERIAL 

 

Table B.1 Primers used for qRT-PCR of TF expression 

MARKER (TFs) PRIMERS FOR qRT-PCR Reference 

OCT4 CTGGGTTGATCCTCGGACCT (D'Amour et al., 
2006b) CACAGAACTCATACGGCGGG 

CXCR4 CACCGCATCTGGAGAACCA (D'Amour et al., 
2006b) GCCCATTTCCTCGGTGTAGTT 

SOX17 CTCTGCCTCCTCCACGAA (Osafune et al., 
2008) CAGAATCCAGACCTGCACAA 

BRACHYURY TGCTTCCCTGAGACCCAGTT (D'Amour et al., 
2006b) GATCACTTCTTTCCTTTGCATCAAG 

PTF1α 
GAAGGTCATCATCTGCCATCG (D'Amour et al., 

2006b) GGCCATAATCAGGGTCGCT 

PDX1 AAGTCTACCAAAGCTCACGCG (Kroon et al., 
2008) GTAGGCGCCGCCTGC 

CER ACAGTGCCCTTCAGCCAGACT (D'Amour et al., 
2006b) ACAACTACTTTTTCACAGCCTTCGT 

FOXA2 (HNF3β) GGAGCGGTGAAGATGGAA (Osafune et al., 
2008) TACGTGTTCATGCCGTTCAT 

GATA4 GGAAGCCCAAGAACCTGAAT (Rust et al., 
2006) GGGAGGAAGGCTCTCACTG 

HNF1β TCACAGATACCAGCAGCATCAGT (Kroon et al., 
2008) GGGCATCACCAGGCTTGTA 

HNF4α 
CATGGCCAAGATTGACAACCT (Kroon et al., 

2008) TTCCCATATGTTCCTGCATCAG 

HNF6 TGTGGAAGTGGCTGCAGGA (Zhang et al., 
2009b) TGTGAAGACCAACCTGGGCT 

GAPDH ACGACCACTTTGTCAAGCTCATTTC (D'Amour et al., 
2006b) GCAGTGAGGGTCTCTCTCTTCCTCT 
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EFFECT OF MODEL PARAMETERS ON BICLUSTERING 

 

In a recent work by Zhang et al., the SEBI algorithm was applied to a transcriptional 

factor data-set of embryonic stem cells (Zhang et al., 2012a). The SEBI algorithm was successful 

in identifying biologically relevant biclusters stable under the free parameters of the algorithm. 

This section elaborates the selection of free parameters of the SEBI algorithm. 

GA Parameters 

GA has been shown to be efficient in solving this class of NP hard problems, but the 

common criticism in using GA is its lack of convergence criteria and sensitivity to various search 

parameters. In the present simulation, a population size of 20 was used which was simulated for 

700 generations, at which point no further improvement of the optimal objective was observed. 

A crossover probability of 0.5 and a mutation probability of 0.2 were used to maintain sufficient 

diversity in the population. Table B.2 summarizes all the GA parameters in detail.. 

Table B.2 Summary of the GA parameters 

Parameter  Value  
Population Size  20  

Number of generations  700  
Crossover probability  0.5  
Mutation probability  0.2  
Elitism probability  1  

Weight for conditions ( eW )  1  
Weight for genes ( rW )  1  
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Bicluster Parameters 

While parameters associated with the GA formulation influences the optimal objective, 

there are additional parameters associated with the biclustering formulation which affects the 

quality of optimal bicluster. Equation 3.1 in the text details the objective function for optimizing 

the bicluster formulation, which consists of the following free parameters: δ , the user defined 

threshold on residue; Wc, Wr the relative weights associated with the columns and the rows of the 

bicluster respectively. The optimal bicluster obtained is significantly affected by the values of 

these parameters. 

In order to analyze the effect of these parameters on the optimum bicluster, the 

optimization problem was solved at various values of δ , Wc and Wr, as summarized in Figures 

B.1-B.5. Figure B.1 shows the variation of the number of genes and conditions in the optimal 

bicluster when the threshold on the residue in varied. Very low threshold identifies smaller 

biclusters. For example, low values of δ  = 0.5 identifies optimal biclusters containing 2 genes 

and 2 conditions. Increasing the threshold relaxes the problem and therefore, the algorithm can 

search for biclusters with acceptable residue as well as larger volumes. The size of the biclusters 

increases with the relaxation of the threshold residue. Larger thresholds, however, compromise 

the quality of the bicluster, hence we select a value of δ  = 1.5 which gives optimal biclusters 

containing 3 genes and 5 conditions and acceptable residue. 

Figure B.2 illustrates the effect of the relative weights on columns and rows on the 

volume of the identified optimal bicluster and on the number of identified genes and conditions 

in the bicluster. The weights Wc and Wr allow user the flexibility to bias the bicluster to include 

more genes or more conditions. Such flexibility is useful with prior knowledge of the structure of 



 

 184 

existing network. Comparing Figures B.2 (A), (C), it is found that the bicluster volume does not 

change appreciably with changes in row weight and the column weight, the volume increases 

from 10 to 30 when changing Wr from 0.5 to 2 while it changes from 12 to 24 over the same 

range for Wc. For cW  greater than 2, we see rapid increase in the number of conditions because 

the search is sensitive to cW . Figure B.2 (B), (D) further breaks up the volume into genes and 

conditions and illustrates how it changes in the number of both genes and conditions with cW  

and rW  respectively. We find that increasing the column (row) weight increases the number of 

conditions (genes) while the number of genes (conditions) remain almost constant until cW  (Wr) 

= 2. 

Figure B.3 shows the effect of row and column weights on the residue of the bicluster for 

a fixed threshold value of δ  = 1.5. Changing the row weights is found to increase the residue 

appreciably. However, the residue is found to be less sensitive to the column weights. It is 

interesting to note that the residue is never found to be higher than the threshold even though this 

check was not explicitly introduced in the formulation. 

Following above analysis, we chose the value of δ  = 1.5 in order to capture reasonable 

volume of the bicluster. Regarding the weights Wr and Wc, in the absence of prior knowledge 

regarding the structure of expected bicluster, all were chosen to be on the lower end of 1. 
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Figure B.1 Variation of number of genes and conditions in the optimal bicluster with different values of the 

threshold, δ 

Increasing the threshold increases the number of genes and conditions contained by the optimal bicluster. A rapid 

increase in the number of TFs and conditions is observed after a δ of 1.5. 

 

 

Figure B.2 Effect of model parameters on features of optimal bicluster. 

Variation in the bicluster volume and the number of genes, conditions in the optimal bicluster with changes in the 

column weights (A-B) and row weights (C-D) respectively. 
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Figure B.3 Variation of the residue as a function of row and column weights. 

The residue is found to be sensitive to the row weights. All the residues remain well within the threshold limit of δ = 

1.5. 

Effect of model parameters on the robust subsets 

While the bootstrap + biclustering algorithm enables determination of biclusters which 

remain robust to experimental noise, these are still evaluated for certain specific values of model 

parameters. Hence to analyze its sensitivity to the model parameters, the entire procedure was 

repeated for different values of model parameters: the threshold on residue (δ ); row weight (Wr) 

and column weights (Wc). The frequency of occurrence of the two groups was subsequently 

measured by changing the parameter values, as illustrated in Figure B.4 (A-C). Figure B.4 (A) 

shows the variation in the frequency of occurrence of the robust bicluster for varying values of 

δ . It was observed that for a broad range of the threshold the subsets are being repeated over 

50% of time. Also, for low values of δ , the number of repeats of Group 1 remains almost 

constant indicating that it is indeed robust. At larger values of δ , the number of repeats for this 

group decrease and Group 2 takes over. Higher values of δ  relax the constraint on the residue of 
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the biclusters and therefore, increase the volume of the biclusters and the residue. Hence, this 

increases the occurrence of other genes and conditions in the biclusters and therefore, we see a 

decrease in the number of repeats for Group 1. It is interesting to note that the number of repeats 

for Group 2 increases with delta indicating that it is possibly the next robust subset present in the 

array but has higher residue as compared to Group 1. Figure B.4 (B) shows the variation in the 

number of repeats with the column weight. Again, we see that the number of repeats for Group 1 

goes through a maximum at 1.0 and on average stays above 500. At lower Wc, the biclusters are 

very small and therefore, the subsets are repeated fewer number of times and the repeats increase 

with Wc. However, when the δ  crosses 1.0, the larger biclusters tend to have relatively high 

residue and thus contain mostly genes-condition groups with less similar profiles. Thus, we see a 

decrease in the repeats at larger Wc. Again, we note that Group 2 subset occurs more frequently 

with increase in Wc. Figure B.4 (C) shows the variation in the number of repeats with the row 

weight. 
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Figure B.4 Sensitivity of the identified robust bicluster on model parameters. 

Biclustering of the bootstrap data identifies 2 groups of robust bi-clusters. The figure illustrates the number of 

repeats of these robust bi-clusters with changes in (A) threshold, δ (B) column weight, Wc. (C) row weight, Wr. 
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APPENDIX C 

CHAPTER 4 ADDITIONAL MATERIAL 

DBN INFERENCE  

 

Figure C.1 Endoderm markers SOX17 and CER1 at day 4 of differentiation under high and low PI3K.  

The fold change is calculated over undifferentiated hESCs (number of repeats = 3). 
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Figure C.2 Convergence characteristics for DBN inference of entire time series. 

(A-B) Log likelihood score for each repeat of high PI3K and low PI3K. (C-D) Marginal edge probabilities for 

selected nodes in the two conditions for each successive Gibbs sampling step. The marginal edge probability at a 

given step was calculated by using later half of the samples until that step. It is evident from the edges presented in 

this plot (as well as those not shown here) that the probabilities converge to the mean value by 250 steps. 
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Figure C.3 DBNs for individual repeats in high PI3K condition over the entire time series data 

 

 

Figure C.4 DBNs for individual repeats in low PI3K condition over the entire time series data. 
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Figure C.5 Correlation tables for high and low PI3K condition. 

(A) Receptor mediated regulation; (B) p-AKT mediated regulation; (C) p-ERK mediated regulation. The Pearson 

correlation is calculated between the parent nodes at time step (t − 1) and all other nodes at time step t. The early 

time points 0.5, 1, 1.5 h (both conditions) and the late time points correspond to 6, 12, and 18 for high PI3K and 12, 

18, 24 for low PI3K. 
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KINETIC ANALYSIS ADDITIONAL FIGURES 

 

 

Figure C.6 Sobol’ indices for parameters controlling SMAD7 mRNA levels with time 
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Figure C.7 Endosomal LRC levels in high and low PI3K condition. 

Panels are for (A) Crosstalk 1, (B) Crosstalk 2, (C) Crosstalk 3, (D) Crosstalk 1+3. 
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Figure C.8 Pearson correlation plots for Crosstalk 1. 

 

Figure C.9 Pearson correlation plots for Crosstalk 2. 
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Figure C.10 Pearson correlation plots for Crosstalk 3. 

 

Figure C.11 Pearson correlation plots for Crosstalk 1+3. 
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APPENDIX D 

ANALYZING PROTEIN MOBILITY USING FRAP TECHNIQUE 

BACKGROUND 

FRAP technique is commonly used to measure the kinetics of protein diffusion in cells, for 

example movement of proteins in the membrane or within and between cellular compartments 

(Phair and Misteli, 2001). Tagging proteins with small fluorescent molecules like GFP makes 

them visible by light microscopy. Combining laser induced photobleaching and confocal laser 

scanning microscopy enables qualitative and quantitative analysis of various features of protein 

mobility, for example diffusivity, compartmental import and export rates and association and 

dissociation constants. 

METHODS: EXPERIMENTAL 

In a typical FRAP experiment; fluorescence in a small area of the cell (called Region of Interest 

or ROI) where diffusion is to be measured is repeatedly bleached using a high intensity laser 

(Figure D.1A). After this bleaching episode, the movement of unbleached molecules from the 

neighboring regions into the ROI is recorded by time-lapse microscopy. This data gives the 

recovery curve of fluorescence in the ROI. Proteins may enter the ROI by pure diffusion or by 

active transport via transporter molecules. Further, during the transport process, the protein may 

encounter binding sites and the equilibrium kinetics of binding influence the overall recovery of 

fluorescence in the ROI. Standard confocal microscopes are suitable for the FRAP technique; 
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since they are equipped with an acousto-optical tunable filter, which allows for rapid switching 

of the laser power from low intensity for imaging the cells to high intensity for bleaching the 

desired area and back again (Davies et al., 2010). Integration of mathematical methods 

(conservation equations) to the recovery curve and the spatial fluorescence distribution 

(proportional to the concentration distribution) enables estimation of the diffusivity coefficient of 

the protein in and around the ROI. 

 

Figure D.1 FRAP experiments and ROI geometry.  

(A) Three major stages in a typical FRAP experiment. (B) Circular bleach geometry showing the bleach radius and 

effective radius of bleach (defined using Gaussian fit of Equation D.1 to the fluorescence data along a middle strip 

of the ROI). 

A.2 EVALUATING DIFFUSION COEFFICIENTS USING MATHEMATICAL 

MODELING 

Consider a circular ROI with radius nr  bleached at time 0 (Figure D.1B). Although bleaching is 

done only in the ROI, there is movement of bleached molecules into the surrounding region 
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during the bleaching process. Therefore, the actual area of bleaching is greater than the ROI. The 

effective radius of bleaching ( er ) is empirically determined from the first FRAP image after 

bleaching. Note that during the bleaching process, no image is taken as the laser is in the 

bleaching mode. Microscope parameters decide how long it takes for switching from bleaching 

to acquisition mode. The radial distribution of fluorescence ( F ) just after bleach (due to 

instantaneous diffusion) usually takes an inverted bell shaped curve, given by: 
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Here  represents the bleach depth parameter and  represents the pre-bleach 

fluorescence at a given radial location. The fluorescence values are normalized to remove 

background fluorescence ( ) and also net loss of fluorescence due to the bleaching process 

itself. The normalization is performed using the following relation: 
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Here,  is the intensity of the entire cell and ),( iROIF  is the intensity of the 

ROI. Similar normalization is performed on the fluorescence intensities at different radial 

locations and time points. For a pure diffusion process, the concentration distribution at different 

radial locations evolves in time according to the diffusion equation: 
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The initial condition is given by the Gaussian curve: 
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At sufficient distance from the center of the ROI, the change in concentration with distance is 

negligible leading to the following boundary condition at all times: 

0,0, >=
∂
∂

= t
r
uRrAt c  

Solution to this PDE is given by: 
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The Bessel functions ( )(0 cnRJ α ) are fixed according to the boundary condition: 

0)(0 =′ cnRJ α  

c

n
n R

x
=α , where  is a positive root of 0)(0 =′ nxJ . The first three positive roots are  

 : 3.8317, 7.0156 and 10.1735. 

The average intensity in the ROI and its evolution with time can be obtained using the relation: 
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In the above equation, the intensity profile from Equation (D.4) can be used to obtain an 

expression for )(tuROI  as a function of the diffusivity. This analytical expression can be fitted to 

the experimental data to obtain an estimate of the diffusivity coefficient using a least squares 

error function: 
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#
1min iiROI

pointstime

iD
tftu

pointstime
−∑

=

                                     Equation (D.6) 

A.3 EXAMPLES OF DIFFUSIVITY MEASUREMENTS 

We estimated the diffusivity for two cases; freely diffusing GFP and GFP fused Profilin1 protein 

in MDA-MB-231 cancer cell line and obtained values close to the literature reports (Table D.1). 

The diffusivity values were in the same order of magnitude as the literature and the differences 

are mainly due to the increase in protein size from GFP to GFP-Profilin1. Figure D.2 shows the 

results and model fits and predictions for GFP-Profilin1. 

Table D.1 Diffusivity coefficients 

Protein Diffusion coefficient (D, μm2/s) 

Our model Literature value (Reference) 

GFP 30 20-50 (Kang et al., 2012) 

GFP-Profilin1 3 5 (Novak et al., 2008) 
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Figure D.2 FRAP analysis to estimate intracellular diffusion coefficient.  

(A) Pseudo-color FRAP images acquired using NIS-Elements and confocal laser scanning microscope. The intensity 

increases from blue to red.  FRAP was performed to measure EGFP-Profilin1 diffusion coefficient in MDA-MB-231 

breast cancer cells. Bleach parameters: 488 nm laser at 100 % power, 1.3 s bleach time. Image acquisition is 

performed at 1% laser power and 200 ms acquisition time. (C) Initial radial bleach profile smoothed with a gaussian 

profile. (D) Recovery curve with time in the bleached ROI. Model output from Equation D.5 is fitted to the 

experimental data in this region with time. (E) Model predictions of the radial intensity profile with time (Equation 

D.4) compared to non-fitted experimental data. The intensity profile for 149 ms and 3 s after bleach are shown. 

 

SIGNIFICANCE TO SMAD SIGNALING 

FRAP can be used to quantify the influence of complexation of SMAD2,3 either with SMADs or 

crosstalk molecules like AKT on the transport properties of SMADs. Studies have looked at the 

diffusivity of GFP-SMAD2 under no stimulation (therefore monomeric SMAD2) and under 

stimulation (therefore mixed/effective diffusivity due to various proportions of complexed 
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SMAD2) (Gonzalez-Perez et al., 2011). Similar analysis can be done for GFP-SMAD3, which 

has not been analyzed before. Further the variation of diffusivity near the membrane and in the 

cytoplasm under high and low PI3K signaling can be used to test the strength of the sequestration 

effect by AKT. On the other hand, simple compartmental models can be used to describe 

recovery in the nuclear fluorescence after complete bleaching of the nucleus. These FRAP 

configurations have been used to estimate the import and export rates of SMAD2 and SMAD4 

(Nicolas et al., 2004; Schmierer and Hill, 2005). Future experiments using such integrated 

modeling and experimental analysis will be useful to thoroughly characterize the differences in 

SMAD2 and SMAD3 and also study the cell-to-cell variability in processes involving these 

proteins. 
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