

UNIVERSITI PUTRA MALAYSIA

DOPING DEPENDENCE OF MAGNETIC SUSCEPTIBILITY AND ELECTRICAL PROPERTIES OF HIGH TEMPERATURE SUPERCONDUCTING CERAMICS

SYED ALI BEER MOHAMED

FSAS 1999 11

DOPING DEPENDENCE OF MAGNETIC SUSCEPTIBILITY AND ELECTRICAL PROPERTIES OF HIGH TEMPERATURE SUPERCONDUCTING CERAMICS

SYED ALI BEER MOHAMED

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

1999

SPECIALLY DEDICATED TO MY BELOVED PARENTS AND WIFE

DOPING DEPENDENCE OF MAGNETIC SUSCEPTIBILITY AND ELECTRICAL PROPERTIES OF HIGH TEMPERATURE SUPERCONDUCTING CERAMICS

By

SYED ALI BEER MOHAMED

Dissertation Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

March 1999

ACKNOWLEDGEMENTS

First of all I am very grateful to Allah Subahanahu Thala the most beneficent and merciful, for giving me full strength to complete this thesis

I express my deep sense of gratitude to my chairman Associate Prof Dr Abdul Halim Shaari who has moulded my scientific career I thank him for his invaluable guidance throughout the project by his constant encouragement, constructive suggestions and continuous discussion. It is a great pleasure for having such a dedicated person to be my supervisor. My gratitude to him is beyond expression I also express my gratitude to my co-supervisors Associate Prof Dr Kaida Khalid and Associate Prof Dr Sidek Abdul Aziz for their comments, suggestions, guidance and kind words of appreciation throughout the research work

I am very much grateful for the financial assistance provided through Intensified Research Program in Priority Area (IRPA) I also thank Dr Mansor Hashim, Associate Prof Dr Wan Mahmood Mat Yunus, Prof Dr Mohd Yusof Sulaiman, Dr Abdul Majeed Azad, Associate Prof Dr Zainal Abidin Sulaiman and Dr Jamil Suradi and all the lecturers in the physics department for their kind help and discussion I am also grateful to Prof V Sivan, Prof K Mathrubootham, Dr Kamaludeen, Prof Shiek Omar and Prof Palani for their help and suggestions

My special thanks to Mr. Ho, Mrs. Aminah and Miss. Azilah for their help in SEM examination. I am grateful to Mrs. Zurina of University Malaya and also Prof. Hamzah and Mr. Azhari of Geology Department, Universiti Kebangsaan Malaysia, for helping me in carrying out X-ray diffraction analysis.

I am extremely grateful to my friend Azhan for his kind help and fruitful discussion throughout the work. I am thankful to my friends Lim, Saleh, Roy, Malik, Norhana, Zolman, Halim, Win, Abdul Talib, Kabashi, Masdiah, Dr. Fareed Dr. Jawahar, Nathan and Kiron for their kind help. I also thank all my friends in UPM who helped me regarding this work.

My special thanks to Mr. Razak Harun, for his timely technical help provided throughout the work. My thanks also goes to Mr. Roslim, Mr. Nordin, Mr. Mohamed, Mrs. Aini, Mr. Radzi, Mrs. Mariah and other technical staffs in the Physics department for their kind help.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	111
LIST OF TABLES	V111
LIST OF FIGURES	1X
LIST OF PLATES	XIX
LIST OF SYMBOLS AND ABBREVIATIONS	XX
ABSTRACT	XX111
ABSTRAK	XXVI

CHAPTER

Ι	GENERAL INTRODUCTION	1
	High Temperature Oxide Superconductors	4
	The B1-Sr-Ca-Cu-O System	7
	Doping in the BPSCCO System	9
	Application of Superconductors	10
	Objectives and Scope of the Present Work	10
	Layout of the Thesis	11
П	THEORIES ABOUT SUPERCONDUCTORS	13
	Type I and Type II Superconductors	13
	Type I	14
	Type II	15
	Flux Pinning	16
	Meissner-Ochsnefeld Effect	17
	London Brother's Theory	18
	Ginzburg and Laundau's Theory	19
	Abrikosov's Theory	21
	BCS Theory	21
	Bean's Model	26
	Critical Current Density AC Determination	30
	Dopants	32
	Lead Doping in Bi-Sr-Cu-O(2223)	34
Ш	LITERATURE REVIEW	37
	Effect of Sintering Temperature/Time	37
	Effect of Doping	42
	Lead Doping	42
	Barium Doping	45
	Yttrium Doping	47
	Vanadium Doping	49
	Tin Doping	51
	Zinc Doping	52

	Other Elements Doping	53
	Effect of Annealing	58
	AC Susceptibility Studies	62
IV	EXPERIMENTAL TECHNIQUES FOR SYNTHESIS	
	AND CHARACTERIZATION	65
	Chemical Stoichiometry of Bi(Pb)-Sr-Ca-Cu-O	66
	Fabrication of BPSCCO Superconductors	66
	Mixing the Chemicals	66
	Calcination	69
	Intermediate Firing	70
	Final Sintering	71
	Standard Characterisation of BPSCCO Superconductors	74
	Resistance Measurement	74
	AC Magnetic Susceptibility Measurements	76
	X-ray Diffraction	81
	Microstructure Analysis	81
V	RESULTS AND DISCUSSION	83
	Resistance Measurement	83
	B1(Pb)-Sr-Ca-Cu-O Samples	83
	Barium Doped Samples (Sintered)	92
	Barium Doped Samples (Annealed)	94
	Yttrium Doped Samples (Sintered)	96
	Yttrium Doped Samples (Annealed)	98
	Zinc Doped Samples (Sintered)	100
	Zinc Doped Samples (Annealed)	102
	Vanadium Doped Samples (Sintered and Annealed)	104
	Tin Doped Samples (Sintered)	107
	In Doped Samples (Annealed)	110
	AC Susceptibility Studies	112
	BI(PD)-SF-Ca-Cu-O Samples	112
	Barium Doped Samples (Sintered)	122
	Vitrum Doped Samples (Sintered)	120
	Yttrum Doped Samples (Annealed)	132
	Zinc Doned Samples (Suitered)	146
	Zinc Doped Samples (Annealed)	156
	Vanaduum Doped Samples (Sintered and Annealed)	162
	Tin Doped Samples (Sintered)	169
	Tin Doped Samples (Annealed)	175
	X-ray Diffraction Analysis	181
	Bi(Pb)-Sr-Ca-Cu-O Samples	181
	Barium Doped Samples (Sintered)	183
	Barium Doped Samples (Annealed)	184
	Yttrium Doped Samples (Sintered)	186
	Yttrium Doped Samples (Annealed)	188

	Zinc Doped Samples (Sintered)		189
	Zinc Doped Samples (Annealed)		190
	Vanadium Doped Samples (Sintered and	nd Annealed)	192
	Tin Doped Samples (Sintered)	,	194
	Tin Doped Samples (Annealed)		194
	Microstructure Analysis		196
	B1(Pb)-Sr-Ca-Cu-O Samples		196
	Barium Doped Samples (Sintered)		199
	Barium Doped Samples (Annealed)		199
	Yttrium Doped Samples (Sintered)		202
	Yttrium Doped Samples (Annealed)		202
	Zinc Doped Samples (Sintered)		205
	Zinc Doped Samples (Annealed)		205
	Vanadium Doped Samples (Sintered and	nd Annealed)	208
	Tin Doped Samples (Sintered)		208
	Tin Doped Samples (Annealed)		208
	Summary		213
VI	I CONCLUSIONS AND SUGGESTIONS		
	FOR FUTURE WORK		217
	Conclusions		217
	Suggestions for Future Work		220
RE	EFERENCES		221
AP	PPENDIX		
	A EDAX Spectrum and Semi Quanti	itative	
	Analysis		228
	B AC Susceptibility curve for B12Pb0	$_{15}Sr_{2}Ca_{2}Cu_{3}O_{\delta}$ and	
	$B_{12}Pb_{0.6}Sr_2Ca_2Cu_3O_{\delta}$ Samples		232
	-		
VI	ITA		233

LIST OF TABLES

Table		Page
11	Superconducting Transition Temperatures	2
12	Structural Parameters for Common High-Temperature Superconductors	5
13	Summary of Applications for Superconductors	10
51	Zero Resistance, Onset Resistance and Differential Resistance Values of $Bi_2Pb_0 _6Sr_2Ca_{2-x}Ba_xCu_3O_\delta$	92
52	The Temperature at which Resistance goes to Zero of the $B_{12}Pb_{06}Sr_2Ca_{2-\lambda}V_xCu_3O_{\delta}$ Sintered and Annealed Samples	107
53	The Values of T_P , T_{C_J} , T_{Conset} and I_0 for Different Barium Concentration	131
54	The Values of T_{C_J} , T_{Conset} and I_0 for Different Yttrium Concentration	145
5 5	The Values of T_P , T_{C_J} , T_{Conset} and I_0 for Tin Doped (Annealed) Samples	176
56	Volume Percentage of 2223 Phase in $Bi_{2-x}Pb_xSr_2Ca_{2-x}Ba_xCu_3O_{\delta}$ Samples	183
57	Lattice Values of $Bi_2Pb_{0.6}Sr_2Ca_{2-x}Ba_xCu_3O_{\delta}$ Sintered and Annealed Samples	184
58	Lattice Values of $Bi_2Pb_{0.6}Sr_2Ca_{2-\lambda}Y_xCu_3O_{\delta}$ Sintered and Annealed Samples	188
59	Lattice Values of $B_{12}Pb_{0.6}Sr_{2}Ca_{2-\lambda}Zn_{\lambda}Cu_{3}O_{\delta}$ Sintered and Annealed Samples	190
5 10	Lattice Values of $B_{12}Pb_{0.6}Sr_2Ca_{2-x}V_{\lambda}Cu_3O_{\delta}$ Annealed Samples	192
5 1 1	Lattice Values of $B_{12}Pb_{0.6}Sr_{2}Ca_{2-\lambda}Sn_{\lambda}Cu_{3}O_{\delta}$ Annealed Samples	194

LIST OF FIGURES

Figure		Page
11	Crystal structure of $B_{12}Sr_2Ca_{n-1}Cu_{n-1}O_{2n+4}$ phases with (a) n =1 (b) n =2 and (c) n = 3	3
21	Graph of induced magnetic field versus applied magnetic field for type I superconductor	14
22	Graph of induced magnetic field versus applied magnetic field for type II superconductor	15
23	A wave of lattice distortion due to the attraction to moving electrons	24
24	Formation of Cooper pairs	24
2 5	Field distribution internal to a slab of thickness 2a with applied field parallel to the slab surface	28
26	Critical current density assumed by the Bean model for the field distribution	28
27	Imaginary component (χ ") of susceptibility as a function of temperature and applied ac field for a bulk YBCO sample The applied ac fields range in the value from 0 0125 Oe to 10 Oe RMS	29
28	Bean model determination of critical current density J_C as a function of temperature for the data shown	32
41	Flow chart for fabrication of BSCCO and doped BSCCO superconductors	68
42	Graph of temperature vs time for furnace final sintering	72
43	Graph of temperature vs time for furnace annealing treatment	73
4 4	Schematic diagram of four-point probe resistance device with temperature sensor used for measuring dc resistivity	75
4 5	Schematic block diagram of Ac Susceptometer (Model - 7000)	77
46	Cross section view of the primary and secondary coils	80

4	7	Schematic diagram of Scanning Electron Microscope JOEL (JSM-6400) system	82
5	l(a-b)	Normalised resistance versus temperature plot of $Bi_{2-x}Pb_{x}Sr_{2}Ca_{2}Cu_{3}O_{\delta}$ samples (a) $x = 0.1$ and (b) $x = 0.2$	84
5	l(c-d)	Normalised resistance versus temperature plot of $Bi_{2-x}Pb_xSr_2Ca_2Cu_3O_{\delta}$ samples (c) x = 0 3 and (d) x = 0 4	85
5	1(e-f)	Normalised resistance versus temperature plot of $B_{1_2-x}Pb_xSr_2Ca_2Cu_3O_{\delta}$ samples (a) $x = 0$ 1 and (b) $x = 0$ 2	86
5	2	A plot of concentration of lead versus zero resistance	87
5	3(a-b)	Differential resistance versus temperature plot of $Bi_2Pb_0 {}_6Sr_2Ca_2Cu_3O_\delta$ samples (a) x = 0 1 (b) x = 0 2	89
5	3(c-d)	D ₁ fferential resistance versus temperature plot of Bi ₂ Pb _{0 6} Sr ₂ Ca ₂ Cu ₃ O _{δ} samples (c) x = 0 3 (d) x = 0 4	90
5	3(e-f)	Differential resistance versus temperature plot of $B_{12}Pb_{0.6}Sr_2Ca_2Cu_3O_{\delta}$ samples (e) $x = 0.5$ (f) $x = 0.6$	91
5	4	Temperature dependence of normalised resistance of $B_{12}Pb_{0.6}Sr_{2}Ca_{2-\lambda}Y_{\lambda}Cu_{3}O_{\delta}$ samples	93
5	5	Derivative of resistance with temperature for $Bi_2Pb_0 _6Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ samples	93
5	6	Normalised resistance versus temperature curve for $Bi_2Pb_0 {}_6Sr_2Ca_{2-x}Ba_xCu_3O_\delta$ samples annealed at $830^{0}C$ for 30 hours	94
5	7	Composition of barium versus zero resistance of $Bi_2Pb_{\bullet 6}Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ annealed samples	95
5	8	Differential resistance versus temperature curve for $Bi_2Pb_0 {}_6Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ samples annealed at 830^0C for 30 hours	95
5	9	Normalised resistance versus temperature curve for $Bi_2Pb_0 {}_6Sr_2Ca_{2-x}Ba_xCu_3O_\delta$ samples sintered at 855^0C for 150 hours	96
5	10	Differential resistance versus temperature curve for $Bi_2Pb_{0.6}Sr_2Ca_{2-x}Y_{x}Cu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	97

511	Composition of yttrium versus T_C zero of $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Y_{\lambda}Cu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	97
5 12	Normalised resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours	98
5 13	Composition of yttrium versus T_C zero of $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours	99
5 14	Differential resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours	99
5 15	Normalised resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Zn_xCu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150hours	100
5 16	Derivative of resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Zn_xCu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150hours	101
5 17	Composition of zinc versus zero resistance plot for sintered samples	101
5 18	Normalised resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Zn_{x}Cu_{3}O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours	102
5 19	Composition of zinc versus zero resistance plot for sintered samples $B_{12}Pb_{0.6}Sr_{2}Ca_{2.x}Zn_{x}Cu_{3}O_{\delta}$ samples annealed at 830 ^o C for 30 hours	103
5 20	Derivative of resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Zn_{\lambda}Cu_3O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours	103
5 21a	Normalised resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_{2}Ca_{2.x}V_{x}Cu_{3}O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	105
5 2 I b	Normalised resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}V_{\lambda}$ 30 hours	105

5 22a	Derivative of resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}V_{\lambda}Cu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	106
5 22b	Derivative of resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}V_{x}Cu_3O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours	106
5 23	Normalised resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Sn_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	108
5 24	Composition of tin as a function of zero resistance for $B_{12}Pb_{0.6}Sr_{2}Ca_{2-\lambda}Sn_{\lambda}Cu_{3}O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	109
5 25	Derivative of resistance as a function of temperature for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Sn_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	109
5 26	Normalised resistance versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Sn_{\lambda}Cu_3O_{\delta}$ samples annealed at 830 ⁰ C for 30 hours	110
5 27	Differential resistance as a function of temperature for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Sn_xCu_3O_{\delta}$ samples annealed at $830^{\circ}C$ for 30 hours	111
5 28	Composition of tin as a function of zero resistance for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Sn_xCu_3O_{0}$ samples annealed at $830^{0}C$ for 30 hours	111
5 29(a-	b)AC susceptibility curves for $B_{12-x}PbxSr_2Ca_2Cu_3O_{\delta}$ samples sintered at 855°C for 150hours (c) x =0 1(d) x=0 2	113
5 29(c-	d)AC susceptibility curves for $B_{12-x}PbxSr_2Ca_2Cu_3O_{\delta}$ samples sintered at 855°C for 150hours (c) x =0 3(d) x=0 4	114
5 29(e-	f)AC susceptibility curves for $B_{12-x}PbxSr_2Ca_2Cu_3O_{\delta}$ samples sintered at 855°C for 150hours (e) x =0 5(f) x=0 6	115
5 30(a-1	b) AC susceptibility curves for $B_{12-x}PbxSr_2Ca_2Cu_3O_{\delta}$ samples annealed at 830°C for 30 hours (a) x = 0 1 (b) x = 0 2	116
5 30(c-	d)AC susceptibility curves for $B_{12-\lambda}PbxSr_2Ca_2Cu_3O_{\delta}$ samples annealed at 830 ^o C for 30 hours (c) x = 0 3 (d) x = 0 4	117

531(e-	E)AC susceptibility curves for $B_{1_{2-x}}$ annealed at 830 ⁰ C for 30 hours (e) x = 0 5 (f) x = 0 6	118
531a	Field versus intergranular peak of $B_{12-\lambda}PbxSr_2Ca_2Cu_3O_{\delta}$ samples sintered at 855°C for 150hours	120
531b	Field versus intergranular peak of $B_{1_{2-\lambda}}PbxSr_2Ca_2Cu_3O_{\delta}$ samples annealed at 830°C for 30 hours	120
5 32	Plot of composition of lead in bismuth versus intergranular peak	121
5 33	Plot of composition of Pb versus Josephson current $I_{\rm o}$	121
5 34	Temperature dependence of ac susceptibility component (χ ') of B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-λ} Ba _{λ} Cu ₃ O _{δ} samples at 0.1 Oe	123
5 3 5	Temperature dependence of ac susceptibility component (χ ') of B ₁₂ Pb _{0 6} Sr ₂ Ca _{2-x} Ba _x Cu ₃ O _b samples at 10 Oe	123
5 36	Temperature dependence of ac susceptibility component (χ ") of B ₁₂ Pb _{0 6} Sr ₂ Ca _{2-x} Ba _x Cu ₃ O _b samples at 0 1 Oe	124
5 37	Temperature dependence of ac susceptibility component (χ'') of B ₁₂ Pb _{0 6} Sr ₂ Ca _{2-x} Ba _x Cu ₃ O _b samples at 10 Oe	124
5 38	Composition of Ba as a function of Josephson current for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	125
5 39(a-t	b) AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Ba_xCu_3O_{\delta}$ samples annealed at 830 ^o C for 30 hours (a) x = 0 02 (b) x = 0 04	127
5 39(c-c	d)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ samples annealed at 830 ⁰ C for 30 hours (c) x = 0.05 (d) x = 0.06	128
5 39(e-f)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ samples annealed at 830 ⁰ C for 30 hours (e) x = 0 07 (f) x = 0 08	129
5 39(g-ł	h)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ samples annealed at 830 ^o C for 30 hours (g) x = 0.09 (h) x = 0.10	130

5 40	A plot of composition of barium annealed samples versus Josephson current	131
5 41(a-	b)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Y_{x}Cu_{3}O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours (a) x = 0 02 (d) x = 0 04	133
5 41(c-0	d)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Y_xCu_3O_{\delta}$ samples sintered at 855 [°] C for 150 hours (c) x = 0.05 (d) x = 0.06	134
5 41(e-1	f)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_2$, $Y_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ^o C for 150 hours (e) x = 0 07 (f) x = 0 08	135
5 41(g-)	h)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Y_xCu_3O_{\delta}$ samples sintered at 855 ^o C for 150 hours (g) x = 0.09 (h) x = 0.10	136
5 42	χ " versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2.\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	137
5 43	χ' versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	137
5 44	Composition of yttrium versus intergranular peak of sintered samples	138
5 45	Composition of yttrium versus Josephson current for sintered samples	138
5 46(a-t	b) AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples annealed at 830 ^o C for 30 hours (a) x = 0 02 (b) x = 0 04	140
5 46(c-c	d)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Y_xCu_3O_{\delta}$ samples annealed at 830 ^o C for 30 hours (c) x = 0.05 (d) x = 0.06	141
5 46(e-f)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Y_{x}Cu_{3}O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours (e) x = 0 07 (f) x = 0 08	142
5 46(g-ł	h)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples annealed at 830 ^o C for 30 hours (g) x =0 09 (h) x = 0 10	143

5 47	Applied field versus intergranular peak for annealed at 830^{0} C for 30 hours	144
5 48(a-	b)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2.x}Zn_xCu_3O_{\delta}$ samples sintered at 855 ^o C for 150 hours (a) x =0 02 (b) x = 0 04	147
5 48(c-	d)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Zn_xCu_3O_{\delta}$ samples sintered at 855 ^o C for 150 hours (c) x =0.05 (d) x = 0.06	148
5 48(e-:	f)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Zn_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ^o C for 150 hours (e) x =0 07 (f) x = 0 08	149
5 48(g-	h)AC susceptibility curves for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Zn_xCu_3O_{\delta}$ samples sintered at 855 ^o C for 150 hours (g) x =0.09 (h) x = 0.1	150
5 49a	Imaginary component (χ'') versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Zn_{\lambda}Cu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	151
5 49b	Imaginary component $(\chi")$ versus temperature curve for $B_{12}Pb_{0.6}Sr_{2}Ca_{2.\lambda}Zn_{\lambda}Cu_{3}O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	152
5 50a	Real component (χ') versus temperature curve for $B_{12}Pb_{0.6}Sr_{2}Ca_{2-x}Zn_{x}Cu_{3}O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	153
5 50b	Real component (χ ') versus temperature curve for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Zn_xCu_3O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	154
5 51	Composition of Zinc versus Josephson current I_0 for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Zn_xCu_3O_{\delta}$ samples sintered at 855^0 for 150 hours	155
5 52	Logarithm of Applied field versus intergranular peak over onset diamagnetism for $B_{12}Pb_{0.6}Sr_2Ca_{2.x}Zn_xCu_3O_{\delta}$ samples sintered at 855 ^o C for 150 hours	155
5 53(a-t	b)Temperature dependence of ac susceptibility for $B_{12}Pb_{0.6}Sr_{2}Ca_{2.x}Zn_{x}Cu_{3}O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours (a) x = 0 02 (b) x = 0 04	157

5 53(c-	d)Temperature dependence of ac susceptibility for B ₁₂ Pb _{0 6} Sr ₂ Ca _{2-x} Zn _x Cu ₃ O _{δ} samples annealed at 830 ⁰ C for 30 hours (c) x = 0 05 (d) x = 0 06	158
5 53(e-	f)Temperature dependence of ac susceptibility for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} Zn _x Cu ₃ O ₀ samples annealed at 830 ⁰ C for 30 hours (e) $x = 0.07$ (f) $x = 0.08$	159
5 53(g-	h)Temperature dependence of ac susceptibility for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} Zn _x Cu ₃ O ₀ samples annealed at 830 ^o C for 30 hours (g) $x = 0.09$ (h) $x = 0.1$	160
5 54	Plot of Concentration of Zinc versus intergranular peak for samples annealed at 830° C for 30 hours	161
5 55	Plot of Concentration of Zinc versus Josephson current annealed at 830° C for 30 hours	161
5 56(a-	b)AC susceptibility as a function of temperature for B ₁₂ Pb ₀₆ Sr ₂ Ca _{2-x} V _x Cu ₃ O ₀ samples sintered at 855° C for 150 hours (a) x = 0 02 (b) x = 0 05	163
5 56(c-	d)AC susceptibility as a function of temperature for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} V _x Cu ₃ O _{δ} samples sintered at 855 ⁰ C for 150 hours (c) x = 0 07 (d) x = 0 1	164
5 57(a-	b)AC susceptibility as a function of temperature for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} V _x Cu ₃ O _{δ} samples annealed at 830 ⁰ C for 30 hours (a) x = 0 02 (b) x = 0 05	165
5 57(c-0	d)AC susceptibility as a function of temperature for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} V _x Cu ₃ O _{δ} samples annealed at 830 ⁰ C for 30 hours (c) x = 0 07 (d) x = 0 1	166
5 58(a-l	Temperature dependence of ac susceptibility for sintered and annealed samples (a) $x = 0.02$ (b) $x = 0.05$	167
5 58(c-a	d)Temperature dependence of ac susceptibility for sintered and annealed samples (c) $x = 0.07$ (d) $x = 0.1$	168
5 59	Composition of yttium as a function of Josephson current for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}V_{\lambda}Cu_3O_{\delta}$ samples	169
5 60(a-ł	b) AC susceptibility versus temperature curve for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} Sn _x Cu ₃ O ₀ samples sintered at 855° C for 150 hours (a) x =0 02 (b) x = 0 04	171

5 60(c-	d)AC susceptibility versus temperature curve for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} Sn _x Cu ₃ O _{δ} samples sintered at 855 ^o C for 150 hours (c) x =0 05 (d) x = 0 06	172
5 60(e-	f)AC susceptibility versus temperature curve for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} Sn _x Cu ₃ O _{δ} samples sintered at 855 ⁰ C for 150 hours (e) x =0 07 (f) x = 0 08	173
5 60(g-	h)AC susceptibility versus temperature curve for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-λ} Sn _{λ} Cu ₃ O _{δ} samples sintered at 855 ⁰ C for 150 hours (g) x =0 09 (h) x = 0 1	174
5 61	Josephson current as a function of tin composition for $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Sn_xCu_3O_{\delta}$ samples sintered at $855^{0}C$ for 150 hours	175
5 62(a-	b)AC susceptibility versus temperature curve for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} Sn _x CuOSamples annealed at 830 ⁰ C for 30 hours (a) $x = 0.02$ (b) $x = 0.04$	177
5 62(c-	d) AC susceptibility versus temperature curve for B ₁₂ Pb _{0.6} Sr ₂ Ca _{2-x} Sn _x CuOSamples annealed at 830° C for 30 hours (c) x = 0.05 (d) x = 0.06	178
5 62(e-:	f) AC susceptibility versus temperature curve for B ₁₂ Pb _{0 6} Sr ₂ Ca _{2-x} Sn _x CuOSamples annealed at 830 ⁰ C for 30 hours (e) $x = 0.07$ (f) $x = 0.08$	179
5 62(g-	h)AC susceptibility versus temperature curve for B ₁₂ Pb _{0 6} Sr ₂ Ca _{2-x} Sn _x CuOSamples annealed at 830 ⁰ C for 30 hours (g) $x = 0$ 09 (h) $x = 0$ 1	180
5 63a	XRD patterns of $B_{12-x}Pb_{x}Sr_{2}Ca_{2}Cu_{3}O_{\delta}$ samples sintered at 855°C for 150 hours	182
5 63b	XRD patterns of $B_{12-x}Pb_{x}Sr_{2}Ca_{2}Cu_{3}O_{\delta}$ samples annealed at 830 ⁰ C for 30 hours	182
5 64	X-ray diffraction patterns of $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ (x = 0 02 - 0 10) samples	185
5 65	Concentration of barium versus volume percentage of 2223 Phase for samples sintered at 855°C for 150 hours	185
5 66	X-ray diffraction patterns of $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Ba_{\lambda}Cu_3O_{\delta}$ (x = 0 02 - 0 10) annealed samples	186

5 67	X-ray diffraction patterns of $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	187
5 68	Volume of 2223 percentage versus composition for $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Y_{\lambda}Cu_3O_{\delta}$ sintered samples	187
5 69	X-ray diffraction patterns of $B_{12}Pb_{0.6}Sr_2Ca_{2-x}Y_xCu_3O_{\delta}$ samples annealed at 830 ⁰ C for 30 hours	189
5 70	X-ray diffraction patterns of $B_{12}Pb_{0.6}S_{r2}Ca_{2-x}Zn_{x}Cu_{3}O_{\delta}$ samples sintered at 855 ⁶ C for 150 hours	191
5 71	X-ray diffraction patterns of $B_{12}Pb_{0.6}S_{r2}Ca_{2-\lambda}Zn_{\lambda}Cu_{3}O_{\delta}$ samples annealed at 830 ⁰ C for 30 hours	191
5 72	X-ray diffraction patterns of $B_{12}Pb_{0.6}S_{r2}Ca_{2-x}V_{x}Cu_{3}O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	193
5 73	X-ray diffraction patterns of $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}V_{\lambda}Cu_3O_{\delta}$ samples annealed at $830^{0}C$ for 30 hours	193
5 74	X-ray diffraction patterns of $B_{12}Pb_{0.6}Sr_2Ca_{2-\lambda}Sn_{\lambda}Cu_3O_{\delta}$ samples sintered at 855 ⁰ C for 150 hours	195
5 75	X-ray diffraction patterns of $B_{12}Pb_{0.6}S_{r2}Ca_{2-\lambda}Sn_{\lambda}Cu_{3}O_{\delta}$ samples annealed at 830 ⁰ C for 30 hours	195
5 76	Variation of composition as a function of zero resistance for sintered samples	214
5 77	Variation of composition as a function of zero resistance for sintered samples	214
5 78	Josephson current as a function of concentration for sintered samples	216
5 79	Josephson current as a function of concentration for annealed samples	216

LIST OF PLATES

Plate		Page
41	Lindberg High Temperature Furnace	73
51	SEM M1crographs of Fractured Surface of $B_{12-\lambda}Pb_{\lambda}$ Sr ₂ Ca ₂ Cu ₃ O _{δ} Samples Sintered at 855 ⁰ C for 150 hours	197
52	SEM Micrographs of Fractured Surface of $B_{12-\lambda}Pb_{\lambda}$ Sr ₂ Ca ₂ Cu ₃ O _{δ} Samples Annealed at 830 ⁰ C for 30 hours	198
53	SEM M1crographs of B12Pb0 6 Sr2Ca2- $_{\lambda}$ Ba $_{\lambda}$ Cu3O $_{\delta}$ Sintered Samples	200
54	SEM M1crographs of B12Pb0 6 Sr2Ca2- $_{\lambda}$ Ba $_{\lambda}$ Cu3O $_{\delta}$ Annealed Samples	201
55	SEM Micrographs of B12Pb0 6 Sr2Ca2- $_{\lambda}Y_{\lambda}Cu_{3}O_{\delta}$ Sintered Samples	203
56	SEM M1crographs of B12Pb0 6 Sr2Ca2- $_xY_{\lambda}Cu_3O_{\delta}$ Annealed Samples	204
57	SEM M1crographs of B12Pb0 6 $Sr_2Ca_{2-\lambda}Zn_{\lambda}Cu_3O_{\delta}$ Sintered Samples	206
58	SEM M1crographs of B12Pb06 Sr2Ca2- $_{x}$ Zn $_{x}$ Cu3O $_{\delta}$ Annealed Samples	207
59	SEM M1crographs of B12Pb0 6 Sr2Ca2- $_{\lambda}V_{\lambda}Cu_{3}O_{\delta}$ Sintered Samples	209
5 10	SEM M1crographs of B12Pb0 6 Sr2Ca2-, V_xCu3O_{\delta} Annealed Samples	210
5 1 1	SEM M1crographs of B12Pb0 6 Sr2Ca2- $_{x}$ Sn $_{x}$ Cu3O $_{\delta}$ S1ntered Samples	211
5 12	SEM M1crographs of B12Pb0 6 Sr2Ca2-xSnxCu3O $_{\delta}$ Annealed Samples	212

LIST OF SYMBOLS AND ABBREVIATIONS

T _c	Critical temperature
B_c , B_{c1} , B_{c2}	Critical magnetic field
BSCCO	Bi-Sr-Ca-Cu-O system
GL theory	Ginzburg-Landau theory
BCS theory	Bardeen, Cooper and Schrieffer theory
LBCO	La-Ba-Cu-O system
YBCO	Y-Ba-Cu-O system
Y123	Family member in YBa ₂ Cu ₃ O _{7-x}
Bi(2201)	Family member in $Bi_2Sr_2Ca_nCu_{n+1}O_{6+2n}$, n =0
Bi(2212)	Family member in $Bi_2Sr_2Ca_nCu_{n+1}O_{6+2n}$, $n = 1$
Bi(2223)	Family member in $Bi_2Sr_2Ca_nCu_{n+1}O_{6+2n}$, $n=2$
BPSCCO	Bi-Pb-Sr-Ca-Cu-O
ТВССО	Tl-Ba-Ca-Cu-O system
T(2223)	Family member in $Tl_2Ba_2Ca_nCu_{n+1}O_{6+2n}$, $n=2$
НВССО	Hg-Ba-Ca-Cu-O system
TGA	Thermogravimetric Analysis
DTA	Differential Thermal Analysis
Calcination	Heating process where the solid state reaction occur
Sintering	Heating process yielding for more compacting of the sample grains and improve its properties
Acetate Precursor	Metal acetate dissolved in suitable solvent

Citrate Precursor	Metal citrate dissolved in suitable solvent
Oxide technique	Solid state reaction method
G_{s}	Gibbs free energy per unit volume
Gn	Free -energy density of the normal state
Н	Applied magnetic field
М	Magnetization
μ_0	Permeability of free space
ξ	Coherence length
λ_L	Penetration depth
ε _F	Fermi energy
$ heta_D$	Debye temperature
v_F	Fermi velocity
k	Boltzman constant
h	Blanck constant
Ν,	Superelectron density
Ν(ε)	Density of state
Δ_0	The zero-temperature energy gap
Cs	Specific heat
λ	Electron- phonon coupling constant
$D_{ph}(\omega)$	Phonon density of the state
$\alpha^2(\omega)$	The electron -phonon coupling strength

μ^*	Coulombic repulsion
а, b, c	Lattice parameters
J _c	Critical current density
MRI	Magnetic Resonance Image
SQUID	Superconducting Quantum Interference Device
$MO(R)_m$	Metals alkoxides
$M(OH)_m$	Metal hydroxides
χ	Susceptibility
AC	Alternating Current
ι.	Induced voltage
5	Filling factor
ŗ	Sample volume
α	Calibration coefficient
f, w	Frequency and angular frequency
XRD	X-ray diffraction
d _{hkl}	Reciprocal d vector
hkl	Miller indices
SEM	Scanning Electron Microscope
IR	Infrared
$\overline{\nu}$	Wave number

Abstract of dissertation presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

DOPING DEPENDENCE OF MAGNETIC SUSCEPTIBILITY AND ELECTRICAL PROPERTIES OF HIGH TEMPERATURE SUPERCONDUCTING CERAMICS

By

SYED ALI BEER MOHAMED

March 1999

Chairman : Associate Professor Abdul Halim Shaari, Ph.D.

Faculty : Science and Environmental Studies

It has been well known that Bi-Sr-Ca-Cu-O system has three superconducting phases represented by general formula, $Bi_2Sr_2Ca_{n-1}Cu_nO_y$, referred to as 2201(n = 1,T_C ~ 10K), 2212 (n=2, T_C ~ 80K), and 2223 (n = 3, T_C ~ 110K) The role of calcium and copper seem to influence the formation of those phases This research work was focussed at the role played by calcium in the formation of 2223 phase by doping this site with different elements having different valences and ionic radius

Samples of $Bi_{2-x}Pb_xSr_2Ca_2Cu_3O_3$ (x = 0 1 to 0 6) and $Bi_2Pb_{0.6}Sr_2Ca_2$. $_xM_xCu_3O_y$ (M = Ba, Y, V, Zn, Sn with x =0 02 to 0 10) were prepared using the conventional solid state reaction technique. The samples were sintered at $855^{\circ}C$ for 150 hours and annealed at $830^{\circ}C$ for 30 hours. The transport properties of the samples were measured using four-point probe resistance measurement, magnetic properties by using ac susceptibility, microstructure by scanning electron

