

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A WIRELESS PC-CONTROLLED MOBILE ROBOT SYSTEM AND MULTIMEDIA BASED LEARNING MODULE

TARIQ SAAD MUJBER

FK 2001 44

DEVELOPMENT OF A WIRELESS PC-CONTROLLED MOBILE ROBOT SYSTEM AND MULTIMEDIA BASED LEARNING MODULE

By

TARIQ SAAD MUJBER

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Engineering Universiti Putra Malaysia

April 2001

This work is dedicated to my beloved parents and wife

Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement of the degree of Master of Science.

DEVELOPMENT OF A WIRELESS PC-CONTROLLED MOBILE ROBOT SYSTEM AND MULTIMEDIA BASED LEARNING MODULE

By

TARIQ SAAD MUJBER

April 2001

Chairman: Associate Professor Abdel Magid Hamouda, Ph.D.

Faculty: Engineering

Autonomous mobile robots, which are required to operate safely in ill-defined, complex and time varying environments, are essential elements in achieving improved performance and flexibility in manufacturing.

In this thesis, a mobile robot system was designed and fabricated. The system consists of two main sections; namely; system hardware and system software. The system hardware includes motion system, receiver and transmitter, and video camera, all these components are controlled wireless using personal computer. The main purpose of the video camera is to enable the user to monitor the movement of the mobile robot system.

The system software includes the development of a user-friendly and flexible interface control code named PC-Mobile Robot Control (PC-MRC). The code has been developed using Object-Oriented Programming Language and Graphic User Interface. The developed control algorithms enable the user to control the mobile robot manually, automatically or by voice recognition commands. There are three ways to control the mobile robot manually (Manual Run, Path Run and Paths Run). For automatic-run, the mobile robot can be controlled using two ways (Run File and Timer). Voice recognition control is also installed and commissioned in the developed robot system.

The developed control software has been tested by running experimental movements of the robot in two different directions (forward and backward) and the time and the velocity were recorded. Three different types of motion systems (tracks, legs, wheels) were tested. It has been found that in all motion system types, the backward movement is faster than the forward movement by a range of 2% to 5.5%. It has also been found that in both movements (forward and backward) the wheels motion system is faster than the tracks and legs motion systems.

Multimedia technology provides a valuable resource to enhance the teaching and learning experience. The ability to combine practical applications and visualization is among the advantages of technology based training and teaching. In this study a multimedia module for robot teaching and training was developed and implemented using Macromedia Director 7 as authoring tool. The multimedia

module is divided into three main sections, which are automation, robotics and mobile robot systems. The mobile robot section shows the fabrication of the mobile robot, construction of gripper arm and some video of the movement of the mobile robot system.

The implementation of this multimedia-based learning for robot technology will help to enhance the learning abilities of the engineering students. Hence, it will help to complement the subject and its understanding.

Abstrak tesis yang dikeumukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN SISTEM KAWALAN KOMPUTER PERIBADI ROBOT BERGERAK TANPA WAYAR DAN MODUL PEMBELAJARAN BERASASKAN MULTIMEDIA

Oleh

Tariq Saad Mujber

April 2001

Pengerusi: Professor Madaya Dr. Abdel Magid Hamouda, Ph.D.

Fakulti: Kejuruteraan

Robot Bergerak peka dikehendaki untuk beroperasi dengan selamat, komplek dan dalam pelbagai keadaan persehitaran adalah merupakan unsure yang penting dalam meningkatkan prestasi dan kesesuaian dalam bidang pembuatan

Dalam tesis ini, satu system robot bergerak telah direka dan dihasilkan. Sistem tersebut terdiri daripada dua bahagian iaitu sistem perkakasan dan sistem perisian. Sistem perkakasan terdiri daripada sistem pergerakan, penerimaan, penghantaran dan kamera video. Komponen-komponen tersebut dikawal tanpa wayar melalui komputer peribadi. Penggunaan kamera video adalah untuk membolehkan pengguna mengawal pergerakan sistem robot bergerak.

Sistem perisian terdiri daripada pembangunan kod antara muka pengguna dan mudah lentur yang dikenali sebagai Komputer Peribadi-Kawalan Robot Bergerak. Kod tersebut dibangunkan menggunakan bahasa pengaturcaraan berorientasikan objek dan antara muka pengguna Grafik. Pembangunan algoritma terkawal membolehkan pengguna mengawal robot bergerak secara manual, automatik atau melalui arahan pengecaman suara. Terdapat tiga cara untuk mengawal robot bergerak secara manual (Manual Berlari, Lorong Berlari, dan Lorong Berjalan). Bagi automatik berlari, robot bergerak boleh dikawal dengan dua cara iaitu (Fail Berlari dan Masa). Kwalan Pengecaman Suara dimasukkan dalam membangunkan sistem robot.

Pembangunan perisian terkawal telah diuji secara eksperimen terhadap pergerakan robot dalam dua arah yang berbeza iaitu (ke hadapan dan belakang) dan masa serta halajunya direkodkan. Tiga jenis sistem pergerakan yang berbeza (jejakan, kaki dan roda) telah diuji. Hasilnya menunjukkan kesemua sistem pergerakan ke belakang adalah lebih laju berbanding dengan pergerakan ke hadapan sekitar 2% hingga 5.5%. Bagi pergerakan ke hadapan dan ke belakang, sistem pergerakan beroda lebih laju berbanding dengan sistem pergerakan jejakan dan kaki.

Teknologi Multimedia merupakan satu sumber yang berguna untuk meningkatkan pengalaman pengajaran dan pembelajaran. Kebolehan untuk menggabungkan aplikasi praktikal dan penglihatan adalah satu kelebihan bagi teknologi berasaskan latihan dan pengajaran. Satu modul multimedia untuk pengajaran dan latihan robot

telah dihasilkan menggunakan Macromedia Director 7. Modul multimedia itu terbahagi kepada bahagian iaitu automasi, robotik dan sistem robot bergerak. Sistem Robot bergerak menunjukkan penghasilan robot bergerak, pembinaan lengan pemegangan dan beberapa video daripada pergerakan sistem Robot Bergerak.

Implementasi Asas Pembelajaran Multimedia untuk teknologi robot telah membantu meningkatkan keupayaan pembelajaran di kalangan pelajar Kejuruteraan. Ini membantu melengkapkan pemahaman dalam subjek tersebut.

ACKNOWLEDGEMENTS

I wish to express my profound gratitude and thanks to my supervisor Prof. Abdel Magid Hamouda for his guidance, enthusiastic supervision, encouragement and help throughout the duration of the research. Special thanks go to him for his knowledge and expertise in the field of the study.

Sincere appreciation and gratitude is expressed to Tn Hj Mohd. Rasid Osman, Dr. Napsiah Ismail and Dr. S.V. Wong for their numerous stimulating discussions and continues assistance throughout the research. Thanks are extended to the Mechanical and Manufacturing faculty members and technical staff for their assistance throughout my study.

I am grateful to my country Libya for having offered me the scholarship for pursuing the graduate study at University Putra Malaysia. Special thanks to all my friends in Malaysia for being the surrogate family and their support during my study.

Finally, I am forever indebted to my parents and my wife for their understanding, endless patience and encouragement when it was most needed.

I certify that an Examination Committee met on 28th April 2001 to conduct the final examination of Tariq Saad Mujber on his Master of Science thesis entitled "Development of a Wireless PC-Controlled Mobile Robot System and Multimedia Based Learning Module" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Tang Sai Hong, Ph.D. Faculty of Engineering Universiti Putra Malaysia (Chairman)

Abdel Magid Hamouda, Ph.D. Professor Madya Faculty of Engineering Universiti Putra Malaysia (Member)

Tn. Hj Mohd. Rasid Osman Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Napsiah Ismail, Ph.D. Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

S.V. Wong, Ph.D. Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

lun

MOHO. GHAZALI MOHAYIDIN, Ph.D. Professor/Deputy Dean of Graduate School Universiti Putra Malaysia

Date: 6 JUN 2001

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

enfi

AINI IDERIS, Ph.D. Professor Dean of Graduate School Universiti Putra Malaysia

Date: 44 JUN 2001

DECLARATION

I hereby declare that the thesis is based on my original work expect for the quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Name: Tariq S. Mujber Date: 6.6.2001

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL SHEET	х
DECLRATION FORM	xii
TABLE OF CONTENTS	xiii
LIST OF FIGURES	xvi
LIST OF TABLES	XX

CHAPTER

1	INTRODUCTION	1
	1.1 Importance of Study and Justification	1
	1.2 Objectives	4
	1.4 Thesis Layout	4
2	LITERATURE REVIEW	5
	2.1 Robotics	5
	2.1.1 Uses of Robot	8
	2.1.2 Industrial Robotics	10
	2.1.3 Robot Configuration	11
	2.1.4 Types of Robot Control	19
	2.1.5 Sensors in Robotics	20
	2.1.6 Robot Applications	23
	2.1.7 Robot Programming	32
	2.2 Autonomous Mobile Robotics	36
	2.2.1 Mobile Robot	37
	2.2.2 Mobile Robot Navigation	39
	2.2.3 The Challenges of Autonomous Navigation	39
	2.2.4 Autonomous Navigation Issues	41
	2.2.5 Mobile Robot System Architecture	42
	2.2.6 Planning	45
	2.2.7 Video Capture	46
	2.2.8 Wireless Communication	48
	2.2.9 Voice Recognition	51
	2.2.10 LEGO Mindstorm	54
	2.3 Multimedia in Education	55
	2.3.1 Education Psychology	59
	2.3.2 Instructional Technology	61

3 METHODOLOGY

	3.1 Method of Approach	65
	3.2 Development of Wireless PC-Controlled Mobile Robot	68
	3.2.1 System Hardware of the Mobile Robot	69
	3.3 Mobile Robot System Software	88
	3.3.1 Manual	97 105
	3.3.2 Automatic	103
	3.3.3 Voice Recognition	107
	3.4 Development of the Multimedia Module	112
	3.4.1 Project Planning	112
	3.4.2 Implementation	113
	3.4.3 Multimedia Development Process	110
4	RESULTS AND DISCUSSION	122
	4.1 Mobile Robot Fabrication	122
	4.2 The User Friendly Interface PC-MRC	127
	4.2.1 Manual	127
	4.2.2 Automatic	133
	4.2.3 Voice Recognition	136
	4.2.4 Camera Control Window	138
	4.3 Development Multimedia Module for Robot	
	Teaching and Training	139
5	CONCLUSION AND FUTURE WORK	143
	5.1 Conclusion	143
	5.2 Future Work	145
REF	FERENCES	146
APF	PENDIX A	151
A.1	Automation	151
	A.1.1 Types of Automation	151
	A.1.2 Reasons of Automating	153
	A.1.3 Arguments Against Automation	154
	A.1.4 Arguments in Favor of Automation	154
A.2	Artificial Intelligence	155
	A.2.1 Definition and Introduction	155
	A.2.2 Application of AI	156
A.3	Justification of Robots	156
	A.3.1 Checklist and Potential Applications	157
	A.3.2 Qualitative Justification	160

65

A.3.3 Cost Justification	161
APPENDIX B	163
Source code of the user-friendly interface PC-MRC	163
APPENDIX C	181
Some slide of the multimedia module for robot teaching and training	181
PUBLICATIONS VITA	191 195

LIST OF FIGURES

Figure		Page
2.1	Functional groups of a robot system	7
2.2	Cylindrical coordinate robot	12
2.3	Spherical coordinate robot	13
2.4	Cartesian coordinate robot	14
2.5	Jointed arm robot	16
2.6	SCARA robot	18
2.7	Welding with a robot (Robot Application "welding")	27
2.8	Painting applications (Robot Application "painting")	28
2.9	Material handling with a robot	28
2.10	Robot for assembly (Robot Application "assembly")	29
2.11	Pathfinder	30
2.12	Hybrid control architecture	39
2.13	Building blocks of a system interacting with the real noisy world	43
2.14	The electromagnetic spectrum	49
3.1	Method of Approach	67
3.2	A diagram of the control process of the mobile robot system	68
3.3	Motion system of the mobile robot	71
3.4	Photo of the motion system	71
3.5	Meshing the driver gear with the follower gears	72
3.6	Power supply sketch of the mobile robot system	73
3.7	Photo of the power supply of the mobile robot system	74
3.8	The transmitter interface circuit	75
3.9	A diagram of the opto-coupler circuit	76
3.10	The receiver interface circuit	78
3.11	Photo of the camera installed on the mobile robot system	79
3.12	Capturing control window	7 9
3.13	Flowchart of fabrication the mobile robot system	80

3.14	Driving base of the mobile robot system	81
3.15	Photo of the driving base of the mobile robot system	81
3.16	Power supply installed on the driving base of the	
	mobile robot system	82
3.17	Receiver installed on the driving base of the mobile robot system	82
3.18	Base of the camera	83
3.19	Camera installed on the driving base of the mobile robot system	83
3.20	Attaching the wheels to the driving base	84
3.21	The mobile robot system with wheels	84
3.22	Legs of the mobile robot system	85
3.23	Photo of legs of the mobile robot system	85
3.24	The mobile robot system with legs	86
3.25	Tracks of the mobile robot system	86
3.26	Photo of the tracks of the mobile robot system	87
3.27	The mobile robot system with the tracks	87
3.28	Flowchart of the general operation of the PC-MRC	89
3.29	Flowchart of the manual run of the PC-MRC	90
3.30	Flowchart of the automatic run and the voice recognition	
	of the PC-MRC	91
3.31	Main menu of the PC-MRC	92
3.32	Options of the PC-MRC	96
3.33	Manual run options	9 7
3.34	Manual run control window	98
3.35	Open common dialog box	101
3.36	Paths of the mobile robot system	101
3.37	Path run control window	103
3.38	Paths run control window	104
3.39	Save As common dialog box	104
3.40	Automatic run options	105
3.41	Run file window	106

3.42	Timer control window	107
3.43	Voice recognition control window	108
3.44	Flowchart of the voice recognition	110
3.45	Project planning structure	113
3.46	Multimedia development process	118
4.1	Mobile robot system	122
4.2	The mobile robot system with a forklift	126
4.3	Arm fabricated using LEGO components	126
4.4	User-friendly interface PC-MRC	127
4.5	Manual run control window	128
4.6	Paths written in a file	129
4.7	Path run control window	130
4.8	Paths run control window	131
4.9	Message of wrong directions	132
4.10	Save paths run control window	133
4.11	Open file window	134
4.12	Timer control window	135
4.13	Voice recognition control window	136
4.14	Camera control window	138
4.15	Intel PC camera	138
4.16	Structure of the multimedia module	140
4.17	Main menu of the multimedia module	139
4.18	Automation category	141
4.19	Robotics category	142
4.20	Mobile robot category	142
C .1	Main menu of the multimedia module	181
C.2	Robotics menu	181
C.3	Advantages of robotics	182
C.4	Industrial robot application	182
C.5	Non Industrial robot application	183

C .6	Robot anatomy	183
C.7	Joints of robot	184
C.8	Common robot configuration	184
C.9	Automation menu	185
C .10	Defined of automation	185
C.11	Types of automation	186
C.12	Fixed automation	186
C.13	Flexible automation	187
C.14	Programmable automation	187
C.15	Reasons of automating	188
C.16	Arguments against automation	188
C.17	Arguments in favor of automation	189
C.18	Mobile robot system	189
C.19	Mobile robot fabrication	190
C.20	Motion system of the mobile robot	190

LIST OF TABLES

Table		Page
3.1	Motors directions	77
4.1	Measuring the speed of the mobile robot	124
4.2	Mobile Robot with extra load	125
4.3	Voice Recognition Results	137
2.1	Checklist and potential applications	158
2.2	Cost justification	162

CHAPTER 1

INTRODUCTION

1.1 Importance of Study and Justification

Robots in general and mobile robots in particular have long been a fascinating subject. Making progress toward autonomous robots is of major practical interest in a wide variety of application domains, including: factory automation, where mobile robots carry out transportation tasks; operations in hazardous environments, including deployment of mobile robots in mine excavation, for inspection purposes inside nuclear or chemical facilities; planetary and space exploration; deep-sea surveying; military applications etc. It is also of great technical interest in various fields of computer science and AI, computer vision, process control etc. because it raises challenging and rich computational issues from which new concepts of broad usefulness are likely to emerge.

As a class of robotics system, autonomous mobile robots constitute one of the important steps in the evaluation of robotic intelligence and structure. The property of "autonomy" is understood as the ability to independently make intelligent decisions as the situation changes. Such ability is possible if intelligence allows a creation level of independence i.e. if the general goal of motion is formulated by human-operator, the specificities of the particular motion are taken care of by the robot with no direct involvement of human. Autonomous mobile vehicles can be

considered as the ultimate goal for the joint area of automatic control and artificial intelligence, which is now called "intelligent control". [1]

Robot technology is offered as a core subject to students pursuing their Bachelors in Manufacturing Engineering. For many years, student have found it difficult to "enjoy" this subject due to its passive delivery and lecturers have been unable to "liven" the subject due to its dry contents. This may has a detrimental effect on engineering students, as robot technology is fundamental in engineering. Being an important, it is ironic that students tend to neglect the importance of mastering its basic principles due to its nature. This was one of the motivating factors behind this work.

Recently, robot technology undergraduate courses throughout the world are experiencing much pressure to be both more efficient and effective. Also there are moves in education to encourage learning as opposed to teaching, in an attempt to make the educational process more active rather than passive. Many of these difficulties may be overcome by the use of Computer-Based tutorial programs, which use Multimedia techniques. Multimedia Technology provides a valuable resource to enhance the teaching and learning experience. The ability to combine practical applications, visualization of complete mathematical and abstract subject, visual labs is among the advantages of technology-based education.

In this work an overview of some of the basic consideration of multimedia courseware are discussed and presented. This includes description of the common types of digital media and their formats. Methods of course distribution are also discussed with emphasis on dissemination on CD-ROM. This work also describes the main features of several multimedia tutorials for robot technology education. The Robot Technology CD-ROM includes lessons on automation, robot definition and historical perspective, robot applications and characterization. Several virtual robot kinematics and movement are also developed using virtual reality software. Also, in this work, a mobile robot system was designed and fabricated. The system consists of two main sections; namely; system hardware and system software. The mobile system has been integrated within the Multimedia module to enhance the student learning process, make the subject more interesting and appealing, and encourage the students to be more innovative. It is hoped that the implementation of this multimedia-based learning for robot technology will help to enhance the learning abilities of the engineering students. Hence, it will help to complement the subject and its understanding.

1.2 Objectives

The objectives of the present study can be summarized as follows:

- (i) To design and fabricate a Wireless PC Controlled Mobile Robot.
- (ii) To develop and implement a user-friendly interface for the Mobile Robot Control (PC-MRC).
- (iii) To develop a multimedia module for Robotics teaching and training.

1.3 Thesis Layout

This thesis is divided into five chapters. Chapter one gives the importance of study, the aims and objectives of the project. Chapter two gives a comprehensive and critical background about robot technology, robot characteristic, applications, control languages, sensors and navigation system. Chapter three is divided into two main sections, first section is devoted to the development of a wireless PC controlled mobile robot, while the second section discusses the development stages of the multimedia module for robotics teaching and training. Chapter four is devoted to the analysis and discussion of results. Finally in chapter five, conclusions are drawn and recommendations for future work are suggested based on the present study.

