

UNIVERSITI PUTRA MALAYSIA

STABILITY ANALYSIS OF WEATHERED ROCK CUT SLOPE USING GEOLOGICAL MAPPING AND LABORATORY TESTS

AZIMAN BIN MADUN

FK 2002 30

STABILITY ANALYSIS OF WEATHERED ROCK CUT SLOPE USING GEOLOGICAL MAPPING AND LABORATORY TESTS

AZIMAN BIN MADUN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2002

STABILITY ANALYSIS OF WEATHERED ROCK CUT SLOPE USING GEOLOGICAL MAPPING AND LABORATORY TESTS

By

AZIMAN BIN MADUN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

August 2002

Specially Dedicated to My Family

Kamsiah Ahmad

Abdul Muiz Aziman

Muhammad Fauzan Aziman

Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

STABILITY ANALYSIS OF WEATHERED ROCK CUT SLOPE USING GEOLOGICAL MAPPING AND LABORATORY TESTS

By

AZIMAN BIN MADUN

August 2002

Chairman	:	Associate Professor Husaini bin Omar,	Ph.D.
		,	

Faculty : Engineering

A study on determining the stability of weathered rock cut slope using geological mapping and laboratory tests. The study is divided into two parts: field work and laboratory testing. The field study focused on the measurement and analysis of the orientation and characteristics of discontinuity. Identification of rock types, weathering grades and observation of cut slope conditions were also included in the field study. Laboratory testing involved determination of natural moisture content, particle size distribution and shear strength. Discontinuity data were analyzed using stereographical method for identification of potential instabilities. A factor of safety (FOS) analysis was conducted on unstable cut slopes using SWEDGE software and manual calculation. It is found that the geological mapping and laboratory tests are feasible for assessing slope stability. The FOS analysis has distinguished 10 slope to be considered as fail whilst the other 6 are consider stable same as field observation.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains.

ANALISA KESTABILAN CERUN BATUAN TERLULUHAWA MENGGUNAKAN PEMETAAN GEOLOGI DAN UJIAN MAKMAL

Oleh

AZIMAN BIN MADUN

Ogos 2002

Pengerusi	:	Profesor Madya Husaini Omar, Ph.D.
Fakulti	:	Kejuruteraan

Kajian telah dijalankan untuk mengenal pasti kestabilan cerun potongan dengan menggunakan pemetaan geologi dan ujian makmal. Kajian terbahagi kepada dua bahagian iaitu kajian di lapangan dan di makmal. Di lapangan, kajian terhadap ketakselanjaran iaitu menentukan orentasi dan sifat ketakselanjaran. Pengecaman litologi batuan, keadaan pengluluhawaan dan pencerapan keadaan cerun potongan juga termasuk di dalam kajian di lapangan. Di makmal, analisa kelembapan tanah semulajadi, pengredan saiz tanah dan kekuatan ricih. Data ketakselanjaran dianalisa menggunakan kaedah plot stereografikal bagi menentukan potensi ketidakstabilan. Cerun potongan yang tidak stabil akan dianalisa faktor keselamatan (FK) dengan menggunakan perisian SWEDGE dan secara pengiraan. Kajian mendapati pemetaan geologi dan ujian makmal dapat menilai kestabilan cerun. Analisa FK mendapati 10 cerun gagal dan 6 lagi stabil sama seperti cerapan di lapangan.

ACKNOWLEDGEMENTS

In the name of Allah Most Merciful and Most Compassionate

I wish to express my profound appreciation and gratitude to my supervisor Dr. Husaini Omar for his supervision, guidance and constructive suggestion and comments throughout this project until successful completion. I am greatly indebted to the supervisory committee, Dr. Rosely Ab. Malik and En. Zainuddin Md. Yusof for their affectionate guidance, prompt decisions and valuable assistance during this period.

Special thanks are also extended to my sponsor, MTD Capital Berhad for funding my studies, Dato' Ramli Ismail and Ir. Rozlan Ismail (General Manager of Terratech Consultants (M) Sdn. Bhd). Great appreciation is expressed to MTD-RC staff, En. Shukri Maail, En. Rozaini, Pn Juraidah, En. Sal Salsidu, En. Saiful, En. Zaidi and Cik Azura. En. Hammad Ismail and Aliz for prompt advice.

Lastly, my deep appreciation goes to the entire members of my family; beloved wife and children for their invaluable love and patience. Also to my dearly beloved mother, Rasimah Ahmad, for her constant prayers and blessing for my success.

I certify that an Examination Committee met on 29th August 2002 to conduct the final examination of Aziman Madun on his Master of Science thesis entitled "Stability Analysis of Weathered Rock Cut Slope Using Geological Mapping and Laboratory Tests" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Bujang bin Kim Huat, Ph.D.

Associate Professor, Faculty of Enginnering, Universiti Putra Malaysia. (Chairman)

Husaini Omar, Ph.D.

Associate Professor, Faculty of Enginnering, Universiti Putra Malaysia. (Member)

Rosely Ab. Malik, Ph.D. Lecturer, Faculty of Enginnering, Universiti Putra Malaysia. (Member)

Zainuddin Md. Yusof Lecturer, Faculty of Enginnering,

Universiti Putra Malaysia. (Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D. Professor/Deputy Dean, School of Graduate Studies, Universiti Putra Malaysia

Date : 1 5 NGV 2002

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Husaini Omar, Ph.D.

Associate Professor, Faculty of Enginnering, Universiti Putra Malaysia. (Chairman)

Rosely Ab. Malik, Ph.D. Lecturer, Faculty of Enginnering, Universiti Putra Malaysia. (Member)

Zainuddin Md. Yusof Lecturer, Faculty of Enginnering, Universiti Putra Malaysia. (Member)

eig

AINI IDERIS, Ph.D.

Professor/Dean, School of Graduate Studies, Universiti Putra Malaysia

Date: 9 JAN 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AZIMAN MADUN

Date: 12/11/02

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENTS	v
APPROVAL SHEET	vi
DECLARATION	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii

CHAPTER

I	INTRODUCTION	1
	Background	1
	Objective	4
	Scope and limitation	5
	Summary	5
	Expected outcome of the research	6
II	LITERATURE REVIEW	7
	Introduction	7
	Slope	7
	Slope failures	9
	Slope stability	13
	Rock slope stability analysis	18
	Geological contribution to slope instability	24
	Weathering	24
	Engineering properties	31
	Geological structures	35
	Geological mapping	37
	Lithology	38
	Discontinuity	39

III	METHODOLOGY	60
	Introduction	60
	Geological mapping	62
	Lithology	63
	Weathering	64
	Discontinuity	65
	Engineering properties	69
	Natural moisture content	70
	Particle size distribution	70
	Shear strength	72
	Rock slope stability analysis	75
IV	RESULTS AND DISCUSSIONS	79
	Introduction	79
	Field study	81
	Geology setting	84
	Geological mapping	91
	Field observation	114
	Laboratory testing	131
	Rock slope stability analysis	139
	Discussion	167
v	CONCLUSIONS AND RECOMMENDATIONS	178
	Conclusion	178
	Recommendations for future work	179
REF	ERENCES	180
APP	ENDICES	
	A Discontinuity mapping data	187
	B Factor of safety analysis	228
VITA	A	253

LIST OF TABLES

Table		Page
2.1	Weathering classification system for granite and volcanic rocks	28
2.2	Weathering classification system for sedimentary rocks	29
2.3	The 15 aspects involved in engineering geological mapping	38
2.4	Summary of the criteria should be met to give rise to circular, planar, wedge and toppling failures	49
2.5	Failure mechanisms involving relict discontinuities	49
4.1	Study locations	81
4.2	Granite found at six slopes while schist at ten slopes	85
4.3	Step of testing	131
4.4	Geological mapping results	168
4.5	Condition of study slopes	170
4.6	Engineering properties for study slopes	171
4.7	Results of potential instability analysis	172
4.8	Summary of factor of safety (FOS) analysis	173
4.9	The summary of failure cut slopes	175
4.10	The summary of stable cut slopes	177

LIST OF FIGURES

Figure		Page
1.1	The location map	3
2.1	Engineered hill slope	6
2.2	Three basic types of slopes	9
2.3	An example of slope failure occurring without human activity	11
2.4	Survey of 322 slope failures in Hong Kong and Malaysia	12
2.5	Vegetation reduces slope erosion and enhances the stability of soil slope by reinforcement of roots	14
2.6	Factor of safety of 1.2 to 1.5 is save and economical	17
2.7	Slope geometry and equations for calculating forces acting on a slope	20
2.8	Geometry of wedge and water pressure distribution on the failure surface	22
2.9	Stereoplot of data required for wedge stability analysis	23
2.10	Bowen's series	25
2.11	Colluvium resting over the residual soil is more prone to sliding rather than in-situ geological material	26
2.12	The rock cycle	39
2.13	Definition of discontinuity in geometrical terms	41
2.14	Sketch of different movements of rock mass i.e. along fault plane	42
2.15	Major discontinuity sets dominate the behavior of slope	43

2.16	Discontinuity set refers to the same inclination and orientation of discontinuity	44
2.17	Slope movement along fault plane	45
2.18	Relict discontinuity in weathered rock can induce stability problem	46
2.19	The stereographic plot of potential instability analysis and types of failure mode	48
2.20	Schmidt net	52
2.21	Method of construction of great circle and pole representing plane	55
2.22	Counting net of circle cells	57
2.23	The presence of water causes the reduction of bonding between soil particles	58
3.1	The methodology adopted for this research project	61
3.2	Geological mapping study	63
3.3	Field study tools	64
3.4	Discontinuity data sheet	67
3.5	Engineering properties study	70
3.6	Apparatus for particle size distribution analysis	72
3.7	Layout of tri-axial machine	73
3.8	The front page of the SWEDGE program	76
3.9	Input and results of the SWEDGE program	78
4.1	Investigated cut slope locations	80
4.2	The frequency of slope failures	82
4.3	82% of slope failures occurred in lithology schist	83

4.4	Granite lithology covers 63% and metamorphic rocks 37% of the study area	85
4.5	Granite rock located below schist rock	86
4.6	Schist fragment inside the granite	87
4.7	Aplite granite intruded along schist foliation	87
4.8	Schist rock is indicates by a grey color, fine-grained mineral of mica, quartz and is dominated by foliation	88
4.9	The granite rock is indicated by mineralogy of quartz, orthoclase, plagioclase and mica and dominated by joint	89
4.10	Weathered schist slope indicates that material is heterogeneous	90
4.11	Scanline method for discontinuity mapping	92
4.12	Discontinuity mapping at slope S1 to determine discontinuity set	94
4.13	Discontinuity mapping at slope S2 to determine discontinuity set	95
4.14	Discontinuity mapping at slope S3 to determine discontinuity set	96
4.15	Discontinuity mapping at slope S4 to determine discontinuity set	97
4.16	Discontinuity mapping at slope S5 to determine discontinuity set	99
4.17	Discontinuity mapping at slope S6 to determine discontinuity set	100
4.18	Discontinuity mapping at slope S7 to determine discontinuity set	101
4.19	Discontinuity mapping at slope S8 to determine discontinuity set	102
4.20	Discontinuity mapping at slope S9 to determine discontinuity set	104
4.21	Discontinuity mapping at slope S10 to determine discontinuity set	105
4.22	Discontinuity mapping at slope S11 to determine discontinuity set	107
4.23	Discontinuity mapping at slope S12 to determine discontinuity set	108
4.24	Discontinuity mapping at slope S13 to determine discontinuity set	109

4.25	Discontinuity mapping at slope S14 to determine discontinuity set	110
4.26	Discontinuity mapping at slope S15 to determine discontinuity set	112
4.27	Discontinuity mapping at slope S16 to determine discontinuity set	113
4.28	Slope S1 failed with wedge mode of failure	115
4.29	Slope S2 is stable	116
4.30	Slope S3 failed with wedge mode of failure	117
4.31	Slope S4 is stable	118
4.32	Slope S5 is stable	119
4.33	Slope S6 failed with wedge mode of failure	120
4.34	Slope S7 failed with wedge mode of failure	121
4.35	Slope S8 failed with wedge mode of failure	122
4.36	Slope S9 failed with wedge mode of failure	123
4.37	Slope S10 failed with wedge mode of failure	124
4.38	Slope S11 failed with wedge mode of failure	125
4.39	Slope S12 failed with wedge mode of failure	126
4.40	Slope S13 failed with wedge mode of failure	127
4.41	Slope S14 failed with wedge mode of failure	128
4.42	Slope S15 is stable	129
4.43	Slope S16 is stable	130
4.44	A, B, C and D are steps involved in sample preparation prior to tri-axial test	132
4.45	Soil samples after completion of tri-axial tests	138
4.46	Menu of input data	141

4.47	Examples of factor of safety analysis for wedge	141
4.48	Potential instability analysis for slope S1	142
4.49	Potential instability analysis for slope S2	144
4.50	Potential instability analysis for slope S3	146
4.51	Potential instability analysis for slope S4	147
4.52	Potential instability analysis for slope S5	149
4.53	Potential instability analysis for slope S6	150
4.54	Potential instability analysis for slope S7	152
4.55	Potential instability analysis for slope S8	153
4.56	Potential instability analysis for slope S9	155
4.57	Potential instability analysis for slope S10	157
4.58	Potential instability analysis for slope S11	158
4.59	Potential instability analysis for slope S12	160
4.60	Potential instability analysis for slope S13	162
4.61	Potential instability analysis for slope S14	163
4.62	Potential instability analysis for slope S15	165
4.63	Potential instability analysis for slope S16	167

LIST OF ABBREVIATIONS

FOS	Factor of safety
deg	Degree
CH	Chainage
RHS	Right hand side
LHS	Left hand side
QU	Quick undrained
UU	Unconsolidated undrained
CD	Consolidated drained
CU	Consolidated undrained
σΙ	Lateral pressure + principal stress-pore pressure
σ3	Lateral pressure
σ	Normal stress
τ	Shear stress
Φ	Friction angle
A _p	Area of failure plane
С	Cohesion
U	Uplift water pressure
V	Horizontal water pressure
W	Weight of failure block
ψ_p	Angle of failure plane
$\psi_{\rm f}$	Angle of slope
Z	Depth of tension crack
Zw	Depth of water in tension crack.
γ	Rock density
γw	Water density

CHAPTER I

INTRODUCTION

Background

The search for human needs such as food, shelter and communication has lead to civilization. Thus civilization was the basis for development in the world for centuries. It has led to improve standards of living for mankind. Building technology is part of civilization. As a result, a modern network of roads is one of its products that has enabled connectivity and communication between one colony of people to another. Roadways are vital infrastructure to promote development in any area. It triggers economic development and prospers a nation from the biggest to the most remote.

Unfortunately, construction development often fails to synchronize with the requirements of nature. Intrusion into nature usually results in catastrophes, especially when construction occurs on hilly and mountainous terrain.

The reasons for failure are many and range from natural slope development process often referred to as 'Acts of God' or the inappropriate design of engineered slopes. The reasons for the failure of engineered slopes can be the result of non-recognition of certain factors controlling stability in the design process or the application of inappropriate methods in the assessment of actual stability conditions (Othman et al., 1997).

In the past, studies by many researchers like Komoo, (1985), Komoo and Abdullah (1983), Komoo et al. (1985) and Tajul (1991) were directed towards developing engineering geological mapping in Malaysia. They studied the geological structure that cause slope instability in various places in Malaysia.

For this study, the author will focus on geological mapping and engineering properties. These geological mapping and engineering properties will then be used in rock slope stability analysis. The field study was conducted on cut slopes at Pos Selim Highway in Perak, the western part of Peninsular Malaysia (Figure 1.1).

The highway which is part of the East West Second Link project has been divided into a total of eight packages. Package 1 has been completed while packages 2, 3, 4 and 7 are currently in progress. This study covers package 2, which cover the area from Pos Selim in the state of Perak to Ladang Blue Valley at Cameron Highlands, Pahang. The highway will link Perak on the West Coast and Terengganu in the East Coast. The completed product will hopefully enhance economic development in the central state of Perak, North Pahang, South Kelantan and Hulu Terengganu areas.

Figure 1.1 : The location map

The construction work for package 2 was awarded to MTD Construction Sdn. Bhd. under a Fixed Turnkey Lump Sum contract for a total of RM 282 million. The length of the proposed road is approximately 35 kilometers and was designed as a two-lane single carriageway with a design speed of 50 km/h. The road crosses over the Titiwangsa Main Range bordering Pahang and Perak.

The road begins at Pos Selim at an elevation of 496 meters in Perak and transverses over the mountainous terrain for 27 km to the Pahang border at an elevation of 1440 meters. The route continues through rolling terrain over several plantations before it ends at Ladang Blue Valley at km 35.5 at an elevation of 1402 meters.

The idea to carry out this study cause from the occurrence of a number of cut slope failures during construction along Pos Selim to Ladang Blue Valley Highway project. This study will investigate the geological structures and engineering properties that affect cut slope instability.

Objectives

The objective of the research is to study the contribution of geological structures and engineering properties in slope stability of weathered rock. The approach of this study is by means:

- 1. To study the geological structures by geological mapping.
- 2. To determine the engineering properties.
- 3. To carry out factor of safety analysis of cut slope.

Scope and Limitation

The study focuses on two aspects, which are geological mapping and laboratory study for engineering properties. First, geological mapping was undertaken in the field of 16 cut slope along Pos Selim to Ladang Blue Valley Highway to determine potential instability of slopes. Secondly, laboratory testing were conducted on 16 cut slope materials to determine the engineering properties. Subsequently, all data related to slope stability was used for the factor of safety analysis.

Summary

A literature review of research work conducted in various areas related to this research is presented in Chapter 2. The literature review begins with introduction of slopes and slope failures problem. The survey will look at slope stability and rock slope stability analysis. Next, a review of literature will be undertaken on geological contribution to slope instability such as weathering, engineering properties and geological structures. Next will be a review of literature related to geological mapping. The methodology of this study is discussed in

Chapter 3. Chapter 4 presents a complete account of results and discussions of findings and data obtained from both field and laboratory tests. The conclusions and recommendations of this study are presented in Chapter 5.

Expected outcome of the research

The expected outcome of the research is to obtain information and better understanding of the geological structures and engineering properties that affect cut slope instability.

