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Practical implementation of apodized fiber Bragg grating results in approximation 

to the apodization profile. In this study, these profiles are simulated by sampling and 

segmentation. Segmenting an ideal profile is basically producing its corresponding 

piecewise linear profile. The number of segments varies with the error value, which is 

defined as the maximum absolute difference between the segmented profile and the ideal 

one. The relationship between the error and the number of segments is found to be one to 

many. To study the process normal and DWDM gratings have been considered. The 

quality of the fiber Bragg gratings was investigated through the maximum reflectivity, 

the SLSR, and the bandwidth of the normal gratings, the insertion loss, the bandwidth, 

and the crosstalk parameters for the DWDM gratings. 

Some of the results are wlexpected. Segmentation enhances the quality of the 

gratings for some error values. For example, side lobe suppression ratio for normal 

grating apodized with segmented profile is improved by around 5. 8dB at error of 0. 015 

compared to the grating apodized with smooth function. An enhancement of 0.5% on the 
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maximum reflectivity is also achieved for these normal gratings. For DWDM gratings the 

insertion loss is decreased by an amount of O. 002dB and the adjacent crosstalk is 

improved by an amount of around 2. 5dB for some approximated Cosine apodization 

profile. 

The study was also done to investigate the sampling effect. Sampling rate was 

varied for a fixed value of the maximum error. The study showed a good grating quality 

over a wide range of sampling. This would have an impact of relaxing the practical 

implementation of such process. In order to explain the results obtained, a criteria was 

formulated. This is based on the integration of error function. This criterion was 

instrumental in explaining the results. 
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Pelaksanaan praktik bagi "apodized fiber Bragg grating" mengakibatkan 

penganggaran pada profil "apodization" . Dalam k ajian ini, k ami menganggarkan profil-

profil ini dalam pensegmenan. Pembahagian untuk profil ideal asasnya adalah 

mengeluarkan sempadan profil "piecewise linear". Bilangan bahagian-bahagian adalah 

berbeza dengan ralat k adar, yang mana telah di jelaskan sebagai perbezaan mutlak yang 

maksimum diantara profil yang dibahagikan dan profil ideal. Perhubungan antara ralat 

dan bilangan segmen telah banyak berlaku. Untuk mengkaji proses terse but kami telah 

mengambil k ira grating normal dan DWDM. Kualiti bagi "fiber Bragg gratings" telah 

dikaji melalui pemantulan maksimum, "SLSR", dan "bandwidth" pada grating normal, 

"insertion loss", "bandwidth" dan parameter "crosstalk" untuk grating DWDM. 

Keputusannya tidak dapat diduga. Pembahagian telah mempertingkatkan kualiti 

bagi grating-grating untuk beberapa kadar ralat. Sebagai contoh, nisbah "side lobe 

suppression" untuk grating normal "apodized" dengan profil "segmented" telah di 
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tingkatkan lebih kurang 5 .8dB pada ralat 0.015 berbanding dengan grating apodized 

dengan fungsi lancar. Satu peningkatan pada 0.05% ke atas pemantulan maksimum juga 

telah tercapai untuk grating-grating normal ini. Bagi grating DWDM "insertion loss"nya 

telah dikurangkan lebih kurang 0.002dB dan "adjacent crosstalk" telah ditingkatkan pada 

kadar 2.5dB. 

Kajian telah dijalankan untuk mengkaji kesan "sampling". Kadar "sampling" 

adalah berbeza pada kadar tetap untuk ralat maksimum. Kajian ini menunjukkan kualiti 

tetap ke atas pelbagai jenis "sampling". Ini akan mengendurkan kesan proses 

perlaksanaan. Untuk menerangkan keputusan yang telah dicapai, satu kriteria telah di 

formulakan. Ini adalah berdasarkan kepada persepaduan fungsi ralat. Kriteria ini telah 

menjadi faktor dalam menerangkan rurnusan kajian. 
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CHAPTER ONE 

INTRODUCTION 

The usage of optical fiber has revolutionized the telecommunication sector. It can 

transfer the information over very long distances because of its distinguished properties 

such as the small attenuations at certain wavelengths. Nowadays most of the 

telecommunication companies are using fiber links, and the fiber market is still 

increasing. It is believed to be the best media for transferring data in the future. 

W ide transmission bandwidth is needed to cover the large demand for 

telecommunication and the increasing number of data services offered. Most of the 

services offered are data type services, like the Internet. Thus, the transmission volume of 

data type information is increasing faster than that of the voice. However, both of them 

need a high bandwidth transmission media. Optical fiber covers this gap with 

Wavelength Division Multiplexing (WDM) or Dense W DM (DWDM) transmission 

techniques. With these methods, four to eight cham1els (WDM) or more (DWDM) are 

sent on the same Single Mode Fiber (SMF) that has already been installed. This 

technique increases the optical fiber importance in telecommunication because it can 

provide us with a large bandwidth at competitive cost compared to that of other 

transmission media such as the copper cables, radio links, satellite links, or any other 



medium. Moreover, fiber has more advantages such as electromagnetic immunity, high 

temperature withstanding, lightness, lower costs for long distances, and more security 

[3, 31]. DWDM systems are now being commercially deployed for point-to-point 

communication links. Recent studies are concentrating to make the DWDM systems 

work in a network environment. 

The discovery of optical fiber photosensitivity opens the way to the DWDM 

system to become viable. The technology of photosensitive fiber is based on an in-fiber 

optical filter called Fiber Bragg Grating (FBG). From this basic component, a large 

number of devices are now available and providing the DWDM system with the basic 

functions like the multiplexing and channel selection. 

1.1 Historical Prospective of FBG 

The technological advances related to fiber photosensitivity is relatively recent, 

and the number of optical devices that depend on these advances in the market is 

increasing. W avelength division multiplexers, add/drop multiplexers, and other devices 

are now available in the market. This makes the DWDM network system easier to be 

achieved. And they will finally provide with other devices the routing for the DWDM 

system at the end of the way. 

The optical fiber photosensitivity was discovered in 1978 by Hill and Kawasaki 

[8,14] at the Communication Research Center (CRC) in Canada. They were doing an 

experiment to study the non-linearity of a specially designed fiber heavily doped with 

gemlanium. In this experiment they launched into the core of the fiber a 488 nnl intense 

visible light. And the transmitted and reflected light was measured during the exposure 
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time. They found out that the transmitted light was attenuated. During exposure, the 

reflected light intensity was increasing significantly with time. After a specific time all 

the incident light was totally reflected. The spectral measurements confirmed that this 

reflection was occurring because of the photo-induced change in the refractive index of 

the fiber core. This experiment makes an important phenomenon called photosensitivity 

to be observed for this type of fiber. The increasing interest of researchers in the 

photosensitivity of optical fiber from then on, led to the production of many 

photosensitive devices. 

The launched light at one terminal of the fiber core interfered with the Fresnel 

reflected beam from the other terminal of the fiber, to produce a standing wave intensity 

beam. This standing beam altered the refractive index of the core in this photosensitive 

fiber at the high intensity points permanently. Thus, the refractive index takes the shape 

of the intensity of the standing beam, which is a periodic change with the length of the 

fiber. This refractive index perturbation couple the forward and backward propagating 

light beams. The reflected beam enhanced the strength of the back-reflected beam, which 

increases the intensity of the interference pattern. This process continues until the 

refractive index of the core reaches saturation level. 

These first experiments achieved a 90% permanent reflectivity of the incident 

beam. And the change in the modulated index (L\n) was approximated to be around (1 0-5) 

to (1 0-6). The bandwidth was measured, by stretching and temperature tuning, to be 200 

MHz [11]. The characteristics of this grating were very useful in communication, but the 

major limitation is that its function is only valid at the visible part of the spectrum around 

the writing wavelength. 
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Since then, researchers started to be very interested in the photosensitivity of that 

special type of fiber presented by Bell Northern Research center which has a small 

diameter and is heavily doped with germanium. Lam and Garside [16] showed that the 

magnitude of the refractive index change; depend on the square of the writing power at 

the argon ion wavelength. This is called the two-photon process. The international 

interest was not that much at that time because they believed that this property is present 

only in this special design of fiber. In 1987 Stone [25] proved that the photosensitivity is 

not a characteristic of only that type of fiber when he demonstrated the same effect on the 

Ge02 -doped silica fiber. This ensures that the photosensitivity is a property of many 

types of fiber. This has ignited worldwide interest in making useful optical fiber devices 

such as selective spectral filters, DWDM multiplexers, add/drop mUltiplexers, and other 

optical devices. 

In 1989, Meltz et a1. [21] demonstrated the side writing technique. This 

phenomenon proved to be practical in telecommunication systems. This was done at the 

United Technology Research Center, and his writing method is called the holographic 

technique. He found out that the refractive index of the germanium doped fiber core is 

strongly affected by the side exposure to the single-photon, UV light with a power of 5 

e V. Exposing the side of the fiber to interfering beams with 244 nm will produce a 

modulation in the refractive index of the core. By changing the angle between the 

interfering beams, the period of interference will be changed accordingly. This makes the 

reflected bean1 from this grating to be possible at the (1300-1500 nm) range of 

wavelength. Even though the phenomenon is still related to the absorption of light in the 
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Ultra Violet (UV) range, gratings can be fabricated to any wavelength, which makes the 

grating more practical in the telecommunication and sensing fields. 

Afterward, Meltz method was developed to get a modulation index up to 

(2 x 1 0-3 ) [ 1 1 ] .  Further research make it possible to achieve modulation index same as the 

difference between the refractive index of the core and the cladding. One of the important 

advantages of the single-photon over the two-photon process is the power needed for 

each one, to get the same value of modulation index. The two-photon process needs 

around IGJ / cm2 of influence level for the modulation index to saturate. While the single 

photon process takes only lKJ / cm2 for the same index change, which is one million 

times less. Table 1 . 1  shows some of the major differences between the two methods 

mentioned above [8,9] . 

a e . 1 erences etween smgJ e an two PJ oton T bI l l  D'ffi b . I d h 
Properiy Two photon process 
Exposure Internally 
Grating length Along the length of he fiber 
Reflection wavelength 240-250 nm 
Influence level � (IGJ / cm2 ) to saturate 
PopUlarity Not used for commercial 

production 

a ncatlOn ec lques FBG f: b . t hni 
Single photon process 

Externally 
Same as the interference length 

240-1 600 nm 
� (lKJ / cm2 )to saturate 
Used for fabrication in 

industry for mass production 

The most important parameters that affect the modulation index is shown to be 

the writing beam wavelength, intensity, the exposure time, the composition of the fiber 

under exposure, and any other pre-processing that may be done to the fiber, like 

hydrogenation. The laser sources used in fabrication of the Fiber Bragg Gratings (FBGs) 

are KrF and ArF excimer lasers, which are UV laser sources operating at 248, and 193 

respectively. These lasers generate pulses of laser light each with 1 020 ns duration at a 

frequency of 1 0's of Hz. A typical example shows that exposing the germanium doped 
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single mode fiber to a UV laser for several minutes with irradiation intensity 

ofl 00 - 500mJ / cm2 , will produce a refractive index change of magnitude 

D.n = 1 0-5 - 10--4 [30,9] . 

Lamaire et al. [ 1 7] showed that optical fiber hydrogenation photosensitize even 

the standard telecommunication fiber. Loading the fiber with hydrogen before 

fabrication, produce a very sensitive fiber to the UV light. So gratings with hundred 

time's higher modulation index were achieved (Lin = 1 0-2 ) . This makes the grating a basic 

component in many linear and non-linear optical devices. 

Phase mask was proposed by Hill et al. [ 1 2] in 1 993 to be used for the fabrication 

of fiber Bragg gratings (FBGs). The phase mask is a surface relief grating etched in silica 

plate of glass. It diffracts the UV light beam into several orders, (0, + 1 ,  - 1 ,  +2, -2 . . . . ) 

Depending on its period, the angle of the orders can be controlled, and the efficiency of 

these orders depends on the mark-space ratio and the etch depth. Special phase masks 

that have high diffraction efficiency for the plus and minus first orders, and minimwn 

efficiency for the rest of the orders, are used in the fabrication. Exposing this phase mask 

to the designed UV wavelength will split the beam into the plus and minus orders, which 

will interfere, just near the opposite side of the phase mask. Placing the fiber a distance 

close to the diameter of the fiber to the phase mask, will produce a Bragg grating with a 

period similar to that of the interference pattern which is half the grating pitch period of 

the phase mask. This technique does not add any improvement on the magnitude of the 

modulation index, but it relaxes both the high sensitive issue of alignment process needed 

for the holographic technique, and the stability and quality conditions needed for the laser 
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source. So it has become the most popular technique especially for the mass production 

of the fiber gratings. 

1.2 Fiber Bragg Grating Applications in Telecommunications 

The increasing demand for network bandwidth is principally due to the growth of 

the data traffic. WDM and DWDM are transmission techniques that provide the networks 

with the needed bandwidth and speed. These techniques multiplex the data into different 

wavelength channels, with a constant spacing between them. Using the DWDM systems 

as a network solution requires many functions to be done in the optical domain, because 

the Optical to Electrical Conversion (OEC) incurs losses and is a costly option. Devices 

that provide some of the network functions as DWDM Multiplexers, add/drop 

Multiplexers and the cross connect may be realized by fiber Bragg gratings [ 16]. 

Fiber Bragg gratings are basic components used in many devices because they are 

in-fiber components and they have unique filtering characteristics. They are used in 

wavelength-stabilized lasers, fiber lasers, remote pump amplifiers, Raman amplifiers, 

phase conjugators, wavelength converters, wavelength division multiplexers, add/drop 

multiplexers, dispersion compensators, and gain equalizers [5 ,28] . 

Although the fiber Bragg grating is a band-stop and not a band pass filter, there 

are solutions to get the desired spectrum in the reflection or transmission of the gratings. 

Additional devices are required to achieve the desired functionality in the reflection 

spectrum, such as circulators and couplers. On the other hand, solutions like distributed 

feedback (DFB) gratings, Fabry-port interferometer, moire resonator, and slide tap filters 
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