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(1) Introduction 
 
The surface water quality (WQ) in a region largely depends on the nature and extent of 
land uses (LUs) and other anthropogenic activities in the catchments. In mixed use 
watersheds, the percentages of each type of land use (LU), i.e., mining, industrial, 
agricultural, and residential become important if they differ significantly in contribution 
to non-point source pollution.  
Urban development in Kintan River basin has been rapid. It is impacting water resources 
through an increased demand on water and increased inputs of nutrients, organics, and 
microbes from human activities. But the relative impacts of different types of LUs on 
river WQ are yet to be ascertained and quantified. Hence, there is an increasing interest in 
establishing models which can predict the effects of LU and changes in it on river WQ.  
This research uses a comprehensive, watershed-based approach to examine the effects of 
LU on river WQ at a local scale. Statistical analyses, tests, and modeling, as well as 
artificial neural network pattern recognition and modeling techniques will be employed to 
examine and model the relationships of LU with Kinta River WQ.  
Environmental stewardship and restoration efforts in Kinta River basin necessitate 
prediction of WQ in response to LU patterns; current and projected. Study will develop a 
quantitative model and then use it to estimate impacts of future LU changes on the WQ of 
the river. Model predictions will allow preventive measures/ actions to be taken early 
during the development planning process to cope with any foreseen changes in river WQ 
in conjunction with planned development. In addition, the built model will allow 
reduction of the time, effort, and cost of gaining WQ data without compromising 
reliability and credibility of conclusions. Ultimately, it will contribute to the keen efforts 
of policy makers and decision takers in establishment of a balance between water 
resource use and extended, sustainable development. 
 
(2) Study Goal and Objectives 
 
The goal of this research is to recognize patterns in, and model relationships between, LU 
and WQ of Kinta River basin using chemometric and artificial neural network 
techniques. 
Accordingly, the objectives of this study are to: 
1- Recognize, model, and predict patterns in Kinta River WQ and LU data using 
chemometric and ANN pattern recognition and prediction techniques. 
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2- Explore and model the plausible relationships of land uses with Kinta River WQ using 
artificial neural network (ANN). 
3- Predict Kinta River WQ in light of urban development plans in the watershed and 
projected and/ or planned changes in LU patterns. 
 
(3) Methodology: 
 
The study begins with examination of the rate of urbanization as well as the changing 
patterns of LUs within Kinta River basin between 1997 and 2006. It then provides 
analysis of the relationship between WQ and changes in the rate of urbanization and LUs. 
LU statistics will be extracted using suitable LU and digital maps. Digital maps of the L 
8082 series will be used as reference maps and also for the purpose of delineation of the 
river basin. 
 
3.1 Study Area 
 
Kinta River is located in Perak, Ipoh (Malaysia). It flows from Gunung Korbu at Ulu 
Kinta, to Tanjung Rambutan. It is 100 km long and covers an area of 2540 km2. 
Kinta River is currently classified with an average Class III water quality and a water 
quality index (WQI) of 51.9 – 76.5. This means that the water is polluted and requires 
extensive treatment before it can be used for drinking purposes. Major causes of pollution 
are industrial and residential discharges, animal husbandry farms, sand-mining, and soil 
erosion. 
 
3.2 The Data Set 
 
The WQ dataset comprises 9180 entries derived from 36 measurements on 255 samples. 
The 36 monitored parameters encompass hydrologic, physico-chemical, chemical, and 
microbial variables. This dataset covers the period from March, 1997, to November, 
2006, and documents the values of 32 pollution indicators for 8 monitoring locations 
along the river. 
The LU dataset comprises LU statistics for Kinta River basin over 10 years covering the 
period 1997-2006. It encloses LUs in the year 1997 and changes in which in the years 
2000, 2002, 2004, and 2006. LU maps will be employed for statistics extraction of 
priority LU; mining, industrial, animal husbandry, agricultural, logging, residential, and 
forest uses.  
 
3.3 Statistical Analyses and Tests 
 
The river WQ dataset was screened for anomalies; i.e., outliers, missing values, zeros, 
values below the detection limits, and inconsistent data. The data was also explored for 
normality (the Shapiro–Wilk’s test) and for symmetry of variable distributions (Skewness 
test). 
Spearman rank correlation test was used to test for associations between the studied 
variables. In addition, both this test and the Kruskal-Wallis test were used for spatial and 
temporal trend analysis. Linear regression was used to develop a model predictive of the 
WQI from the various WQVs. Thee chemometric techniques principal factor analysis, 
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hierarchical cluster analysis, and discriminant function analysis are adopted for pattern 
recognition and trend analysis and modeling purposes.  
 
3.4 ANN Pattern Recognition, Trend Analysis, and Modeling 
 
We propose to use multi-layer perceptron (MLP) neural networks to establish models that 
predict (i) the WQI from the WQVs, and (ii) the WQI from the LUs of interest in the 
river basin. Both for the river WQ and the LU data sets, we will use (i) self-organizing 
feature maps (SOFM) for pattern recognition and trend analysis, and (ii) radial basis 
function (RBF) neural networks for classification and class membership prediction. 
 
4. Results and Discussion 
 
4.1 Data Screening and Pretreatment 
 
Main features of the WQ data archive are non-normal distribution and positive skewness 
of the WQVs, and presence of some missing values, entries below detection limits, 
structural zeros, and statistical outliers. Statistical outliers were used as is whereas other 
data anomalies were imputed using ordinary least square multiple linear regression (OLS 
MLR).  
Shapiro–Wilk’s test reveals that, except temperature and pH, the WQVs do not fit the 
normal distribution. This finding is normal since WQ data are typically non-normally 
distributed (Helsel, 1987; Tsirkunov et al., 1992). Almost all studied WQVs show 
varying degrees of positive skewness. This is expected since most WQ and 
environmental data are characterized by positive skewness (Helsel and Hirsch, 2002). 
Only pH and Pb show slight negative skewness. The WQI has a slight negative skewness 
mostly arising from skewness in pH.  
 
4.2 Monovariate Statistics 
 
The various WQVs studied were explored for their ranges, minima, maxima, means, and 
standard deviations. Most of the variables have wide ranges thus indicating the wide 
heterogeneity of the river system and the multiplicity and variability of pollutant sources 
along its course. On the other hand, and with the exclusion of pH, the WQVs having the 
highest weight in DoE and the regression WQI formulae, that’s, turbidity, SS, DO, BOD, 
and COD have maxima far exceeding the upper limit for unpolluted waters and are 
accordingly identified as the main culprits of deterioration of Kinta river WQ. 
 
4.3 Bivariate Statistics: 
 
The statistical analyses applied in this part aimed primarily at (i) exploring associations 
between the various WQVs and between each and the WQI, and (ii) exploring the spatial 
and temporal trends in the WQI. 
We applied the Spearman rank correlation analysis to explore associations between the 
various WQVs, and between the WQVs each and the WQI, time and space. In addition, 
we applied the Kruskal-Wallis test to determine if the different months, years, and 
monitoring locations do, or do not, cluster into groups of equal medians. When the 
Kruskal-Wallis test revealed significant median differences, we used the significant 
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results on the Kruskal-Wallis test as justification to perform a set of Mann-Whitney U 
tests (also known as Wilcoxon rank-sum test) to determine the underlying regularity in 
the dependent variables. 
 
4.3.1 Relationships between the Water Quality Variables and the WQI  
 
Main features of relationships between the WQVs are: (i) lack of any very high 
associations between variables (highest ρS < 0.90), (ii) absence of any high negative 
associations, and (iii) month, PO4

3−, Fe, and pH exhibited no significant correlation with 
any variable.  
The DO concentration is the only WQV that has high, positive correlation with the WQI 
(ρS = 0.73). No WQ parameter has moderate positive correlation with the WQI while ten 
parameters show negative, moderate correlation with strengths in the order BOD> NH3-
N> COD> DS> K> Cl> TS> Ca> conductivity> Mg. These correlations point to the 
individual contribution of these variables to any model that may be designed for 
prediction of river WQ. 
 
4.3.2 Trend Analysis 
 
4.3.2.1 Vriable/ Parameter Trends. This class of trends is discussed under the 
chemometric pattern recognition/ principal factor analysis section. 
 
4.3.2.2 Spatial Trends 
 
The Correlation Approach 
 
The WQI has a low, negative correlation with distance downstream the river (ρS = -0.23, 
α = 0.00018). In other words, there is a trend of slight decline in the WQI with distance 
from headwaters. The DO concentration declines away from the headwaters at moderate 
pace. The major soluble ions (Na, K, Ca, Mg, Cl) increase with distance; Ca and Mg 
increase moderately while the rest major ions increase slightly. On the other hand, our 
data set reveals no significant spatial differences in NO3

− and PO4
3− concentrations.  

 
The Group Median Comparisons Approach 
 
Kruskal-Wallis test indicated lack of clear-cut, consistent spatial trends in river WQ. 
Nonetheless, the test allowed classification of the monitoring stations into four groups. 
Moreover, our results identify the surroundings of the monitoring stations 2PK25, 
2PK34, and 2PK59 (the river stretch 33.52- 44.1 km) and 2PK60 as critical pollution 
areas that classify as priority zones for extensive research on the land uses and pollution 
sources in these areas, and for urgent remedial action to restore desired WQ. 
 
4.3.2.3 Temporal Trends 
 
The Correlation Approach 
 
The WQI has a low, positive correlation with year (ρS = 0.14, α =0.026) meaning that it 
tends to increase with time, but at slow pace. On the other hand, the WQI has no 
significant relationship with sampling month (ρS = 0.11, α = 0.086) thus indicating that 
the temporal trends in WQI can not be detected at the month level.  
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No WQV tends to decrease highly with time. Hg is the only variable that decreases 
moderately with time whereas a number of variables show a tendency of slight decrease. 
The concentrations of Cd and Pb are the only variables that show a high tendency to 
increase with time. Salinity and the concentrations of Zn and Cr show a moderate 
tendency of increase. 
 
The Group Median Comparisons Approach 
 
Kruskal-Wallis test indicated lack of clear-cut, consistent temporal trends in river WQ 
and that the WQI distributions among the 8 monitoring months and ten years are 
significantly different. The Mann-Whitney U pair-wise tests and Bonferroni group 
comparisons revealed that the different years and months can be grouped into three 
distinct groups each. 
 
4.3.4 Culprits of Observed Spatial and Temporal Trends: 
 
Based on the above findings, we ran the Kruskal-Wallis test to identify the WQVs that 
are simultaneously responsible for the spatial and temporal differences and subsequent 
groupings. Our results reveal that these vaiables are salinity, SS, TS, pH, DO, BOD, 
NH3-N, Cl, PO4

3−, Cd, Cr, Pb, Zn, and E. coli bacteria. 
 
4.4 Multivariate Statistics 
 
Regression Modeling 
 
In this part of our work, we established an OLS, stepwise MLR model predictive of the 
WQI from the raw WQVs without the need for sub-indexing. Produced prediction model 
has a very high correlation (ρS = 0.901, p = 0.000, α = 0.01) with the WQI formula 
already in use (the Department of Environment WQI). The model identified the variables 
most representative to the quality of the river water to decline in significance following 
the order DO > BOD > NH3-N > turbidity > pH > COD. The coefficient of determination 
(R2) provides a measure of how well the regression model fits the data. This six-predictor 
model has an R2 value of 0.812, i.e., it explains 81.2% of the variation in the WQI and 
implies the model is well-specified.  
 
Pattern Recognition: 
Multivariate pattern recognition was investigated in this study following the 
chemometrics as well as the Artificial Neural Networks approaches. 
  
Pattern Recognition: The Chemometric Approach 
 
The multivariate analysis is widely used to characterize and evaluate river WQ and it is 
useful for evidencing temporal and seasonal variations caused by natural and 
anthropogenic processes (Vega et al., 1998; Singh et al., 2004). 
 
Principal Factor Analysis: Variable/ Parameter Trend Analysis 
 
Factor analysis is a powerful approach for recognizing patterns. It aims to explain the 
variance of a large set of inter-correlated variables by transforming them into a smaller 
set of independent (uncorrelated) ones. The resultant variables can be treated as new sets 
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called latent factors, which are neither observed nor expressible in terms of the observed 
variables (Liao et al., 2006). 
Dimensionality of the data set was reduced to 26 variables distributed between seven 
factors that explain 71.63% of variation in the data. Individually, variation in the data that 
each factor explains are 26%, 10.26%, 9.34%, 8.24%, 8.16%, 4.98%, and 4.70%, 
respectively. 
The first factor has high loadings from TDS, Cl, Na, Mg, salinity, conductivity, K, and 
Ca. Hence, we combine these items in a scale which might be called "salinity” factor. 
The second factor has high loadings from SS, TS, turbidity, and COD. This factor might 
be called "turbidity" factor. The third factor has moderate and above moderate loadings 
from total coliform bacteria, E. coli bacteria, NH3-N, and BOD. Hence, it might be called 
"wastewater” or “microbial scale". The fourth factor has moderate and above moderate 
loadings from Cd, Pb, and Cr. So, it might be called "Heavy metal” or “industrial 
pollution” scale. The fifth factor has moderate and above moderate loadings from DO, 
temperature, and As. The sixth has moderate and above moderate loadings from Fe, Zn, 
and PO4

3–. Only one factor loads on the seventh factor, so we can drop it and conclude 
that dimensionality of the data was reduced to 26 variables distributed between six 
factors explaining 67.0% of variation in the data. 
 
Hierarchical Agglomerate Cluster Analysis (HACA) 
 
We carried out HACA using Ward’s method and applying the squared Euclidean distance 
as the distance measure. Due to the large number of observations, we ran CA first on the 
90th percentile, second on the mean, of each WQ parameter for each station and month. 
Variables introduced to CA correspond to those WQVs with moderate and above 
moderate loadings on the factors extracted by PFA. 
 
Spatial Trends 
 
Clustering the WQ monitoring stations based on the 90th percentile value for the WQVs 
produced 3 clusters: (i) cluster I is formed by the stations 2PK25, 2PK33, 2PK34, and 
2PK19, (ii) cluster II by the stations 2PK59 and 2PK60, and (iii) cluster III by the stations 
2PK22 and 2PK24. The WQV means also clustered the stations into 3 clusters but with 
different assignations; (i) cluster I is formed by the stations 2PK33, 2PK34, and 2PK19, 
(ii) cluster II by station 2PK22, and (iii) cluster III by the stations 2PK24, 2PK25, 2PK59, 
and 2PK60. 
 
Temporal Trends 
 
Clustering the WQ monitoring months based on the 90th percentile value for the WQVs 
produced 2 clusters; one formed by the months 2, 5, 6, 8, 11, and 12, while the other by 
the months 3 and 9. However, clustering based on the mean of the WQVs produced 3 
clusters: (i) cluster I is formed by the months 2, 5, 8, and 11, (ii) cluster II by the months 
6, 9, and 12, and (iii) cluster III only by the month 3. These results imply that for rapid 
assessment of river WQ, only one station and one month from each cluster is needed to 
represent a reasonably accurate spatial and temporal assessment of the WQ for the whole 
river. 
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Discriminant Function Analysis (DFA) 
 
Our aim in this part of the project was firstly to verify if the various spatial and temporal 
clusters can, or can not, be used to represent the differences among the CA-defined 
station and month groups and secondly to determine which variables are of most 
significance to the classification. Finally, the DFA was performed to relate the WQ 
clusters to different WQVs and generate predicting equations. New objects can then be 
classified and the learning objects reclassified by means of the non-elementary 
discriminant functions. 
  
Spatial Class Prediction 
 
Station “90th percentile” clusters produced two discriminant functions. A 95.3% of the 
variance in these clusters is explained by the first discriminant function while the second 
explains the remaining variance. The classification power of the generated function is 
82.7%. The expected hit ratio is 50.16%. Since the actual predictive accuracy is 82.7%, 
we conclude that our discriminant function works appreciably well.  
On the other hand, the station “Mean” clusters produced two discriminant functions. The 
first function accounts for 85.1% of the discriminating ability of the discriminating 
variables while the second accounts for the rest. The classification power of the function 
is 65.1% and the expected hit ratio is 48.15%. Hence, the discriminant function works 
appreciably well. 
As a conclusion, monitoring station clustering based on the 90th percentile, rather than 
mean, values of the WQVs produced a discriminant function of a higher discriminating 
power. 
 
Temporal Class Prediction 
 
Since the month “90th percentile” clusters have only two categories, one discriminant 
function explains all the variance in the dependent variable. This discriminant function 
correctly classifies 81.6% of the cases. Its classification power is 80.4%. The expected hit 
ratio is 79.0%. Since the actual predictive accuracy is 80.4%, we conclude that our 
discriminant function works well. On the other hand, the DA identifies two discriminant 
functions for the month “Mean” clusters. The first of which explains 83.7% of the 
variance in the month “mean” clusters. Cross validation indicates that the classification 
power of the generated discriminant function is 72.5%. The expected hit ratio is 58.04%. 
Since the actual predictive accuracy is 72.5%, we conclude that the discriminant function 
works well. 
 
4.5 Artificial Neural Networks 
 
ANN Model for Prediction of the WQI from the WQVs 
 
This part of the study aimed at establishing a NN model for prediction of the WQI from 
the various WQVs. We used a fully-connected, feed-forward, multi-layer perceptron 
network comprised of a single, 28-neuron input layer, one hidden layer, and the WQI as 
the output layer. Training was carried out by the standard, supervised, quick-propagation 
algorithm and activation was triggered by the logistic sigmoid activation function. 
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The optimum network architecture was obtained by trial and error based on estimation of 
several models. We found that the optimum network performance is obtained with 10 
neurons. The network with the architecture (1:28, 1:10, 1) yielded a correlation 
coefficient with the experimental WQI of 0.994. That’s, this model cares for 98.8% of the 
variation in the experimental WQI values. This implies that the network architecture is 
well-specified.  
The next step was identifying the optimum learning rate. We tested net work performance 
with learning rates within the range 0.01-0.90. Selection of the optimum training rate was 
based on the mean absolute error (MAE). Tests indicated that the optimum network 
architecture (1:28, 1:10, 1) performs best with a learning rate of 0.90. 
Linear regression analysis of calculated results and measured data can be used to evaluate 
the results of a validation in a more objective and quantitative manner (Flavelle, 1992). 
Accordingly, the OLS regression was the measure we followed in validating the model 
and evaluating its final performance. With a learning rate of 0.9, the WQI predictions of 
this network have a correlation coefficient of 0.990. This means that these predictions 
have a very high positive correlation with the actual WQI values and that they explain 
around 97.9% of the variation in the experimentally calculated WQI. 
 
 
Pattern Recognition: The ANN Approach 
 
Clustering: The Self-Organizing Feature Maps (SOFM). 
This part of the project is now ongoing. 
 
Classification: Radial Basis Function Neural Networks (RBF NN) 
This part of the project will be started after the former part is finished. 
 
4.6 Land Use Data Acquisition and Analysis: 
The LU maps have already been georeferenced, Kina River basin has already been 
delineated, and LU map digitization is in progress. 
 
(5) Significance  
 
This study will contribute to our understanding of the cumulative contributions of 
different land uses as they change downstream of the river and hence will contribute to 
development of water quality regulations and sustainable development practices in the 
study area.  
Study results can be applied in selective chemical monitoring of river water quality. We 
identify the water quality parameters most significant in describing the spatial and 
temporal variations in the water quality, identify and propose the optimum locations for 
future sampling stations, and specify the optimum number of monitoring stations such 
that highly reliable and cost-effective river water quality data is still secured without 
compromising reliability and credibility of conclusions. This will reduce monitoring time 
and costs through reducing the number of the WQVs to test, sampling stations to include 
in future monitoring programs, number of samples to collect, and the frequency of 
sampling. 
Study will develop a quantitative model and then use this model to estimate future LU 
changes and their impacts on the water quality of Kinta River. Model predictions will 
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allow preventive measures/actions to be taken early during development planning 
processes to cope with any foreseen changes in river WQ in conjunction with planned 
development. 
Information on the hydrologic effects of LUs can provide guidelines not only for resource 
managers in restoring our aquatic ecosystems, but also for local planners in devising 
viable and ecologically-sound watershed development plans, as well as for policy makers 
in evaluating alternate land management decisions. Special care will be paid to making 
the NN model available for local planners and regulatory authorities involved in restoring 
or improving the desired WQ in light of predicted or planned changes in LU patterns.  
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