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Nitrous oxide (N20) emission to the atmosphere has a great implication on 

global climate change. Agricultural soils seem to be its major source, though little 

attention is given to the soils and upland cropping systems of the humid tropics. Thus, 

laboratory experiments were carried out to study the impact of N sources, moisture 

regimes and soil types on N20 production A field experiment was conducted to 

measure N20 emissions from a maize-groundnut cropping system managed with 

different N sources. The laboratory incubation study using an Ultisol showed a 

maximum N20 flux of 2379 Jlg N20-N kg-l soil dol with chicken manure application 

at 60010 water-filled pore space (WFPS). Application of potassium nitrate, groundnut 

residue and urea resulted in smaller production rates (615  - 699 Jlg N20-N kg-l soil 

dol). Addition of ammonium sulfate and maize residue produced the lowest rates, 229 

and 246 Jlg N20-N kg-l soil dol, respectively. In general, the total N20 production in 

25 days increased with decrease in elN ratio of the organic N sources. The loss of 
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applied N through N20 emission was higher from inorganic N (3 .5-8.6%) than from 

organic N sources ( 1 .6-6.7%). It could be because of denitrification during the initial 

period of incubation with readily available mineral N, compared to slower release 

from organic N sources. Although smaller N20 production (26.6-38.7 Ilg N20-N kg-l 

soil dol), the fluxes increased with increase in soil moisture content. The relatively 

drier soil (20010 WFPS) acted as a sink. The total N20 production in the soil with 40, 

60 and 80% WFPS increased by 46, 58 and 72%, respectively over the soil with 20% 

WFPS. Liming the acid soils, similar to the addition of urea and chicken manure, 

increased the soil pH to around 5 .5, stimulating nitrate accumulation after a lag period 

and N20 production concurrently. The N20 productions were not affected by the soil 

acidity; the total production correlated positively with pH, CEC, organic C and N 

content of the soils and negatively with water- soluble organic carbon (WSOC). Under 

the maize-groundnut crop rotation, addition of chicken manure resulted in a 

maximum N20 flux of 9889 Ilg N20-N m-2 dol within the first one week after 

application during the fallow period i.e. after the groundnut crop cycle. The residual 

effect is also exhibited during the maize cultivation, showing a higher N20 flux 

(4053 Ilg N20-N mOz dol) than the plots treated with only inorganic N fertilizer. A 

lower N20 flux or negative flux during fallow periods occurred probably due to small 

availability of substrates and/or low WFPS «40010). The added N sources retained in 

the soil for 2 to 3 weeks, matching with the N20 emission. The high coefficients of 

variation ofNzO emission under both crop covers showed no clear diurnal variations 

of N20 flux. The temporal variability was large, showing a higher emission during 

the fallow period after addition of chicken manure as well as during maize cultivation 

after application of N fertilizer. The highest total emission (1.82 kg N20-N ha°l) 
during maize period was in the plots with chicken manure and addition of half the 
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amount of recommended N fertilizer. This depicted an influence of chicken manure, 

which was applied before cultivation of the maize crop. The estimated annual 

emission was 3.94, 1.90 and 1.4 1  kg N20-N ha-1 from the plots treated with chicken 

manure plus crop residues and N fertilizer, crop residues and N fertilizer, and N 

fertilizer only, respectively. The estimated fertilizer-induced N20 emission factor 

(l.06%) was lower than the generally accepted standard value (1.25%) currently 

being used by the Intergovernmental Panel on Climate Change. This study suggests 

that supply of chicken manure to crop fields could be an important potential source of 

N20. 
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Nitrus oksida (N20) mempunyai implikasi yang besar terhadap perubahan 

cuaca global. Tanah pertanian merupakan punca utama pengeluaran N20 walaupan 

masih kurang perhatian diberikan terhadap tanah dan sistem pananaman di kawasan 

tropika. Berdasarkan permasalahan tersebut kajian di ladang dan makmal telah 

dijalankan untuk mengkaji kesan sumber N, kelembapan tanah dan jenis-jenis tanah 

terhadap penghasilan N20 dan pemeruwapannya daripada sistem tanaman bergiliran 

jagung-kacang tanah dengan aplikasi sumber N yang berbeza. Kajian inkubasi di 

makmal menggunakan tanah Ultisol menunjukkan fluks maksimum N20 (2379 J.lg 

N20-N kg-I tanah harl-I) teIjadi apabila ditambah tahi ayam pada 60% ruangrongga 

isian air (water-filled pore space, WFPS). Penambahan kalium nitrat, sisa kacang 

tanah dan urea menunjukkan kadar penghasilan N20 yang rendah (615 - 669 J.lg N20-

N kg-I tanah harl-I). Penambahan ammonium sulfat dan sisa jagung menghasilkan 

N20 yang lebih rendah, iaitu masing-masing 229 dan 246 Ilg N20-N kg-I tanah harl-I. 

Penghasilan jumlah N20, dalam 25 harl meningkat dengan penurunan nisbah CIN 

sumber N organik. Peratus kehilangan baja N melalui penghasilan N20 adalah lebih 
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tinggi untuk sumber N tak organik (3.5-8.6%) berbanding sumber N organik (1.6-

6.7%), disebabkan berlakunya proses denitrifikasi pada permulaan tempoh inkubasi 

dengan adanya N mineral tersedia berbanding permineralan N yang berlaku dari baja 

organik. Walaupun penghasilan N20 rendah (26.6-38.7 �g N20-N kg"l tanah harrl), 

fluksnya meningkat selaras dengan peningkatan peratus kelembapan tanah apabila 

dibandingkan dengan tanah yang lebih kering (20% WFPS) yang bertindak sebagai 

penjerap N20. Penghasilan jumlah N20 pada 40, 60 dan 80010 WFPS masing-masing 

meningkat sehingga 46, 58 dan 72% pada 20010 WFPS. Pengapuran tanah berasid, 

sarna seperti penambahan urea dan tahi ayam, telah meningkatkan pH tanah sehingga 

5.5 dan meningkatkan pengumpulan nitrat selepas tempoh lamban dan penghasilan 

N20. Pemeruwapan N20 tidak dikawal oleh keasidan tanah; jumlah penghasilan N20 

berkorelasi secara positif dengan pH, CEC, C organik dan kandungan N tanah dan 

berkorelasi negatif dengan karbon organik larut air (WSOC). Dalam sistem tanaman 

bergiliran jagung-kacang tanah, penambahan tahi ayam menyebabkan fluks N20 

maksimum (9889 J.1g N20-N kg"l tanah m"2 hari"l), dalam masa satu minggu semasa 

tempoh tanpa tanaman, iaitu selepas tanaman kacang tanah. Kesan sisa tahi ayam 

dapat dilihat semasa penanaman jagung iaitu dengan kadar pemeruwapan N20 yang 

tinggi (4053 J.1g N20-N kg"l tanah hari"l). Fluks N20 yang rendah atau fluks negative 

semasa tempoh tanpa penanaman teIjadi disebabkan substrat yang rendah atau WFPS 

yang rendah «40010). Sumber N yang ditambah, kekal di dalam tanah sebingga 2-3 

minggu berpadanan dengan pemeruwapan N20. Variasi koefisien yang tinggi bagi 

fluks N20 untuk untuk kedua-dua tanaman menunjukkan tiada variasi fluks diurnal 

N20 yang jelas. Variasi temporal adalah besar, dan menunjukkan pemeruwapan yang 

tinggi semasa tempoh tanpa tanaman, iaitu selepas penambahan tahi ayam serta 

semasa penanaman jagung selepas penambahan baja N. lumlah pemeruwapan N20 

tertinggi dalam tempoh penanaman jagung (1.82 kg N20-N ha"l), adalah dalam plot 

penambahan tahi ayam bersama separuh daripada kadar baja N yang disyorkan (75 kg 

N ha-l), mungkin disebabkan kesan penambahan tahi ayam sebelum penanaman 
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jagung. Pemeruwapan tahunan yang dicatatkan adalah 3 .94, 1.90 dan 1.41 kg N20-N 

ha-1 daripada plot penambahan tahi ayam bersama sisa tanaman dan baja N, plot sisa 

tanaman bersama baja N, dan plot baja N sahaja. Faktor pemeruwapan N20 

disebabkan penambahan baja (1.06%) yang dikira daripada kajian ini, adalah lebih 

rendah daripada nilai yang digunakan sekarang mengikut garis panduan 

'Intergovernmental Panel on Climate Change' iaitu 1 .25%. Keputusan ini 

menunjukkan bahawa penambahan tahi ayam di kawasan tanaman adalah berpotensi 

sebagai punca utama pemeruwapan N20. 
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CHAPTER I 

INTRODUCTION 

Nitrogen, an essential element for plant growth, plays a vital role in the soil

plant- atmosphere continuum. It is estimated that, by the year 2020 at a global level, 

70010 of the plant nutrients will have to come from fertilizers with a view to sustain the 

future world population (Ayoub, 1999). The annual global use of fertilizers will need to 

be doubled by the year 2030 from about 130 million tonnes in the 1990s (Brown et al., 

1997), if the current per capita cereal production is to be maintained (Gilland, 1993). 

Besides, the anthropogenic N inputs into agricultural systems like N from animal 

wastes, increased biological N fixation, cultivation of mineral and organic soils and 

addition of crop residue to the field are also a growing concern. The use of inorganic 

nitrogenous fertilizers has been increasing in the tropics during the last few decades to 

enhance soil productivity and crop yield potential. Consequently, the indiscriminate use 

of both inorganic and organic N fertilizers may cause significantly higher gaseous N 

losses, particularly nitrous oxide (N20) that causes global warming and ozone layer 

depletion (Bouwman, 1990; Cicerone, 1987; Crutzen, 1981). The main sources ofN20 

are cultivated soils, biomass burning, fossil fuels and nitric and adipic acid productiori. 

On a molar basis, N20 is about 250-320 times more effective as an absorber of infrared 

radiation than C� (IPCC, 1995; Robertson, 1993) and about 25 times more than CRt 

(Murdiyarso, 1998). The atmospheric concentrations ofN20 have increased by 15% 
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during the last 250 years (Mosier, 1998). The present increasing concentration of 

N20 in the atmosphere seems to create a genuine catastrophe on the global climate. 

The N20 emission is a significant biogenic phenomenon in N transfonnation 

mechanisms and occurs during both the nitrification and denitrification process. It may 

be fonned by various denitrifiers, nitrifiers and even certain assimilatory nitrate

reducing yeasts and fungi. Nitrification may be a significant source of N20 through 

autotrophic microbes in most soils and heterotrophs in aerobic to near-aerobic soils, 

particularly in soils that are too acidic to support the chemoautotrophic nitrifiers 

(Anderson et al., 1993; Bremner, 1997). Its production is enhanced in soils having a 

high mineralization capacity to form NHt + or treated with nitrifiable forms of nitrogen. 

The N20 is an obligatory intermediate during denitrification and aerobic bacteria are 

basically responsible for the process. The dominant denitrifiers are organotrophs 

because of their versatility and ability to compete for C substrate (Tiedje, 1988). If soils 

containing nitrate become anaerobic, the availability of organic carbon to enhance the 

activity of denitrifiers is the limiting factor for the reduction of nitrate. During both 

processes, a large accumulation ofNO£-N can be a key compound in N loss processes, 

fonning NO, NO:z and N20 (Firestone and Davidson, 1989) because of its low stability 

in acid conditions (Van Cleemput and Baert, 1984). 

The emission of N20 to the atmosphere from the soil system consists of a series 

of complex reactions. It is also related to the sequence of enzymatic processes in which 

the living microbial biomass provides the enzymes and the dead microbial biomass the 

substrate (Mengel, 1996). The N20 release depends on the N supplying capacity of 
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soils, which depends mostly on the indigenous soil organic matter, addition of organic 

residue and the various soil environmental factors viz. moisture, temperature, aeration 

and pH (Nemeth and Szebeni, 1987; Szebeni and Nemeth, 1987). Under aerobic 

conditions, nitrification is the dominant process for N20 formation, though a small 

uptake has been observed in isolated instances in dry soils (Duxbury and Mosier, 

1993). It is greater under anaerobic conditions (Firestone, 1982) during denitrification. 

However, its consumption has also been reported in wet grass pastures (Ryden, 1981). 

Its production and diffusion are considerable upon irrigation/rainfall events under 

upland conditions by changing the soil physico-chemical properties or by affecting soil 

gas diffusivity and microbial activity and subsequent nitrogen gas production and 

eftlux (Delgado and Mosier, 1996; Valente and Thornton, 1993). However, Rosswall et 

al. (1989) emphasized on the medium to high moisture content, limiting oxygen 

diffusion, and high mineral-N and high organic-C availability for the production of 

N20 from soils. 

The application of chemical N fertilizers is a major contribution to N20 

emission from agricultural soils. Addition of organic residue/amendment, preferably N

rich residue, causes considerable release ofN20. It is estimated that more than 75% of 

the added N fertilizer is lost from the residue-soil system on a year to year basis if the 

soil N content remains unchanged (Beauchamp, 1997). In general, N20 emissions from 

agricultural land vary from 0.03 to 2.7010 of the applied total N fertilizer (Eichner, 

1990). However, soil management and cropping systems, and variable rainfall have 

greater effects on N20 emission than the type of fertilizer and its fluxes are variable in 

time and space (Mosier, 1989). Biological nitrogen fixation (BNF) also acts as a source 
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of N20 as the atmospheric nitrogen fixed by legumes can be nitrified and denitrified in 

the same way as fertilizer nitrogen (Freney, 1997; Galbally et al. ,  1992). The 

contribution from the BNF ranges from 0.5 to 5 kg N20-N ha-1 yr-l that vary with soils 

and climatic conditions (Carran et al. , 1995; Mosier et al., 1996). However, the fixation 

and conversion coefficients are still uncertain. 

Ultisols, Oxisols and Inceptisols are the dominant soils in Malaysia, where 

Oxisols and Ultisols occupy about 72% of the total area. They are also the major soils 

of the tropics and occupy 38.1% of the total land area, where the Ultisols covers 

10.6% (Van Wambeke, 1991). Malaysian soils in the upland are mostly weathered 

and acid with low organic matter content and low CEC. Hence, more and more 

inorganic and organic N fertilizers are applied to sustain yields through improvement 

of soil productivity. As a typical humid country in the tropics, this area mostly 

experiences a good amount of rainfall (2000-2500 mm per annum), which is well 

distributed, and has a temperature range of 24-34°C throughout the year. These may 

influence gaseous and leaching losses of N with poor N use efficiency by the crops. 

Controlled release fertilizer or nitrification inhibitor has the potential to improve N 

use efficiency by matching nutrient release with crop demand and reducing nitrate 

release and gaseous losses (Delgado and Mosier� 1996). However, its application is 

still considered to be uneconomical due to the higher production cost of the fertilizers. 

Appropriate soil management approaches may be considered better options till now to 

reduce the emission of N20 gas - a global concern for the 21 st century. 
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Objectives of the Study 

Identification of the processes involved in N20 production from agricultural 

systems may take into account also different soils, crops and climates. However, 

research work has mostly been confined on its emission in the temperate regions. There 

is only limited information concerning utilization of N from crop residue and animal 

manure applied to agricultural soils (Mosier et al., 1998a). In the humid tropics, 

considerable works on rice-ecosystem has been done and very few on the upland 

agroecosystems, particularly in acid soils. Maize is one of the major crops in the 

tropics, next to rice and wheat. Groundnut, a leguminous oil crop, occupies a large area 

next to oil palm, soybean and mustard and has also been cultivated either as monocrop 

or in rotation. However, information on N20 emission from a maize-groundnut crop 

rotation is greatly lacking, particularly under sustainable soil management systems. 

Therefore, this study was carried out to estimate the emission of N20 from an upland 

cropping system applied with both inorganic and organic N (as crop 

residue/amendment) fertilizers. The following specific objectives are defined: 

1. To study the diurnal and temporal variations of N20 emission, and the annual 

N20 release from a maize-ground nut crop rotation under different soil 

management practices over a one-cycle period. 

2. To measure N20 fluxes under different inorganic and organic nitrogenous 

fertilizers, and moisture regimes through the laboratory incubation technique 

using the soil of the experimental field. 

3. To evaluate N20 production under laboratory conditions using different soil types 

with or without liming and to detennine soil factors controlling its production. 


