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Abstract 
It is becoming more common that the decision-makers in private and public institutions are predictive 
algorithmic systems, not humans. This article argues that relying on algorithmic systems is procedurally 
unjust in contexts involving background conditions of structural injustice. Under such nonideal 
conditions, algorithmic systems, if left to their own devices, cannot meet a necessary condition of 
procedural justice, because they fail to provide a sufficiently nuanced model of which cases count as 
relevantly similar. Resolving this problem requires deliberative capacities uniquely available to human 
agents. After exploring the limitations of existing formal algorithmic fairness strategies, the article argues 
that procedural justice requires that human agents relying wholly or in part on algorithmic systems 
proceed with caution: by avoiding doxastic negligence about algorithmic outputs, by exercising deliberative 
capacities when making similarity judgments, and by suspending belief and gathering additional information in 
light of higher-order uncertainty.  
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Public and private sector entities are increasingly delegating decision-making to algorithmic 

systems to make predictions about our creditworthiness, our propensity for criminal behaviour, 

our access to welfare benefits and services, our prospective academic outcomes, or our expected 

job performance if hired, to name just a few examples. To those implementing these systems, 

algorithmic decision-making seems inherently impartial and objective. However, recent evidence 

concerning the impact of algorithmic decision-making and decision support systems shows that 

even when those who design and implement them have good intentions, they can magnify injustice, 

not reduce it. Much recent work on algorithmic fairness has explored this phenomenon from the 
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point of view of substantive justice—often understood in terms of fair distributions of outcomes—

while assuming that algorithmic systems are at least procedurally just. We question the latter 

assumption and argue that in contexts of pervasive structural injustice, algorithmic systems also fail 

a necessary condition of procedural justice: the Like Cases Maxim (LCM), which holds that 

individuals with morally equivalent sets of features should receive the same treatment. 

Procedures—including algorithmic procedures—cannot satisfy LCM if they fail to adequately 

model comparative differences between individuals differently affected by background structures of 

injustice. Human decision-makers relying on algorithmic decision-making systems thus run a 

significant moral risk of acting procedurally unjustly, unless they deliberate about and intervene 

upon algorithmic procedures in specific structural injustice-sensitive ways.  

  §1 argues for a wide interpretation of LCM that explicitly accounts for individuals’ social 

structural contexts and that imposes doxastic and deliberative duties on decision-makers so as to 

mitigate their risk of contributing to structural injustice. §2 introduces an example of an algorithmic 

decision-making procedure, which illustrates why many contemporary algorithmic systems fall 

short of a plausibly wide conception of procedural justice. §3-4 critically examine formal 

algorithmic fairness strategies, arguing that these strategies rely on an incomplete model 

representation of which cases are truly ‘similar’ given existing structures of injustice. Securing procedural 

justice requires, at a minimum, that we assess the likeness of cases in a way that recognizes the 

moral relevance of background social structures to the decision at hand.  

  §5 develops our positive counterproposal: we argue that our extended conception of 

procedural justice (‘Wide Procedural Justice’) requires that information about the effects of 

structural injustice be considered when designing algorithmic systems, and that human decision-

makers deliberate about and respond to such information with caution. In decision contexts of 

high empirical complexity and moral risk, such as when using predictive algorithmic systems in 

structurally unjust social contexts, we are morally required to avoid doxastic negligence: that is, 

prematurely adopting beliefs and pursuing interventions on the basis of highly uncertain evidence 

obtained from algorithmic systems.1 §6 concludes. 

 

 
1 We take this view to be aligned with Young’s (2003, 7) argument that a more complete conception of justice 
requires considering “how the institutions of a society work together to produce outcomes that support or minimize 
the threat of domination [...]  Social justice concerns [individual] actions [...] on the policies of particular institutions 
only secondarily, as [the latter] contribute to constituting structures that enable and constrain persons”, though we add 
to this view by emphasizing the distinctly epistemic duties of human agents when considering the relevance of 
structural injustice for identifying normative requirements for procedural justice.  
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1.  Procedural Justice in a Structurally Unjust World 
 

Structural injustice exists when institutions and social practices harm groups of individuals 

by creating and reifying social positions that are associated with complex advantages and 

disadvantages within a larger-scale framework of social relations (Young 2011, 39). Historically 

and to this day, structural injustice reflects, reifies, and compounds such (dis-)advantages 

experienced by members of socio-demographic groups defined by ascriptions of attributes like 

race, gender, class, disability, and sexuality.  

 

  Much of this structure consists of procedures: regularised sets of rules that make a complex 

world more manageable for decision-makers. Like other philosophers concerned with the problem 

of structural injustice, we think that tackling this problem requires, in Young’s words, that we "shift 

from a focus [purely] on distributive patterns to procedural issues of participation in deliberation 

and decisionmaking" (Young 2011, 34). But doing so is not philosophically straightforward: what 

does procedural justice look like in a structurally unjust world?    

  We argue that algorithmic decision-making procedures can perpetuate structural injustice if 

they fail to reflect, and impede human agents’ ability to critically scrutinize, relevant information 

in the outputs of algorithmic models, as well as information about the data underpinning such 

models. On our view, an algorithmic decision procedure is procedurally unjust to individuals subject 

to it if and because the procedure fails to include relevant information about the effects of current 

and past substantive structural injustices, including—but not limited to—racial and gender injustice. 

  Existing philosophical accounts of procedural justice typically define it by distinguishing it 

from substantive justice, which pertains to the justice of some allocation of benefits and burdens in 

society. Procedural justice, by contrast, pertains to rules and practices determining that allocation: 

procedures can be more or less just depending on whether they allow all those subject to them 

equal opportunities to advance their claims, to participate as equals in the contestation of decision 

outcomes, and to present relevant evidence, for example. Despite philosophical disagreement on 

the question of which normative criteria are sufficient for procedural justice, there is widespread 

agreement on the basic idea that treating like cases alike is a necessary condition for procedural justice: 

that the same rules are consistently applied to everyone, and that those who share similar 

features—however we might define them—obtain similar decision outcomes (Aristotle, 

Nicomachean Ethics V.3 and Politics III.9, III.12, Hart 1961, Winston 1974, Dworkin 1986, Schauer 

1987, Raz 1992, Rawls 2009). 
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Standard Procedural Justice: Procedural justice requires that similar cases are treated 
similarly, and different cases are treated differently (‘Like Cases Maxim’).  

Considerations of procedural justice and substantive justice are linked in complex ways. Often, 

substantive justice is deemed morally weightier than procedural justice: we ultimately care more 

whether a decision outcome establishes a just final allocation than we care about how that outcome 

was brought about. This, however, does not mean that procedural justice cannot have independent 

value: something is lost when we fail to treat like cases alike, and when those subject to an 

ostensibly substantively just decision outcomes lack opportunities to critically scrutinize the 

reasons why the outcomes reached in fact meet the demands of substantive justice. Thus, while 

procedural justice is not sufficient for substantive justice, it is still important for all-things-

considered justice.2 

  While we remain agnostic in this paper about which conception of substantive justice is best 

all-things-considered, we are committed to the following claims: first, that any plausible conception 

of substantive justice must include principles for ameliorating structures of past and current injustice, 

rather than distributing benefits and burdens amongst individuals without any attention to 

structural advantages and disadvantages; and second, that attending to the procedures by which 

such structures are to be ameliorated is itself a requirement of  justice all-things-considered: a 

failure to articulate and follow just decision procedures therefore undermines all-things-considered  

justice. We are thus committed to the view that all-things-considered justice requires identifying 

and implementing a conception of procedural justice that responds adequately to prevailing 

background structures of substantive injustice, which is why we defend a broader and more demanding 

conception of procedural justice than other contributors to the philosophical debate have adopted. 

In this paper, we apply this higher-order view specifically to algorithmic procedures, though we think 

that our arguments about algorithmic procedures generalise more widely to other types of 

procedures as well, though they are particularly morally urgent in the context of contemporary AI.  

 
2 In some cases, procedural justice is both necessary and sufficient for substantive justice: consider fair coin tosses, for 
which it does not make sense to think of substantively just outcomes as being just independently of the procedure used 
to reach that outcome, because the outcome of the coin toss is fair precisely because the procedure itself is fair. 
Rawls distinguishes two irreducible dimensions of procedural justice: ‘perfection’ and ‘purity’ (2009, 176, 318). 
Perfect procedural justice pertains not to the features of the process itself, but to its ability to secure a distribution 
that is fair by the lights of procedure-independent normative standards. By contrast, pure procedural justice pertains not 
to the resulting distribution, but to the features of the process itself, as in a fair coin toss. While we agree that there 
is a subset of pure procedures in principle, we do not view algorithmic decision procedures necessarily as part of 
that subset: whether an algorithmic procedure is fair will often depend on whether the procedure’s outcomes satisfy 
procedure-independent normative standards of substantive justice, the latter of which include (but are obviously not 
limited to) the amelioration of structural injustice. 
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As we shall argue, procedural justice requires more than simply treating like cases alike—it 

also requires explicitly modeling and responding to the extent to which current and past substantive 

injustices are (part of) the reason why some individuals (i) receive disadvantageous outcomes or (ii) 

are adversely affected by seemingly non-disadvantageous outcomes. We call this 

Wide Procedural Justice: Under nonideal conditions, procedural justice in the context of 
algorithmic systems requires (i) that we treat like cases alike in a way that is sufficiently 
sensitive to how structural injustice renders individuals and groups (dis-)similar, and (ii) 
that human decision-makers relying wholly or in part on algorithmic procedures 
cautiously and critically scrutinize algorithmic decision outcomes in ways that promote 
the aim of ameliorating substantive injustice, including substantive structural injustice. 

Recent applications of artificial intelligence in public- and private-sector decision-making—such as 

algorithmic recidivism risk prediction in a criminal justice context (Angwin et al. 2016), the 

algorithmic allocation of welfare benefits and services (Brown et al. 2019), or algorithmic rankings 

of applicants during university admissions and hiring processes (Raghavan et al. 2020)—are 

paradigmatic examples of procedures that are unjust in this ‘wide’ sense. While such systems can 

be statistically powerful—they are often able to yield sufficiently accurate outputs concerning 

individuals subject to algorithmic procedures—they fail to attend to how, in a nonideal context, 

outputs that are sufficiently accurate on an individual level can still entrench structural 

disadvantages linked to social group membership. Here, we do not mean to imply that the best or 

the only solution to structural injustice necessarily requires algorithmic interventions. It may often be 

better to instead change laws and institutions, or to re-examine the purpose of using algorithmic 

decision-making in a given domain at all: technology alone cannot solve the much larger problem 

of social inequality. Our point is that if human decision-makers decide to use algorithmic systems 

in a given domain, algorithmic procedures must be designed so as to capture less readily apparent, 

but justice-relevant features shaped by structural injustice.  
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2.  A Deceptively Simple Example 

  Contemporary algorithmic systems aim to optimize for predictive accuracy. To illustrate how 

this works, consider  

Automated Mortgage Lending: A US mortgage lending company aims to maximise its 
expected profits when approving or denying loan applications. Although it is not 
permitted by law to base its decisions on the “protected attributes” of applicants, it 
may do so based on the estimated risk that the applicant will default on the loan 
(“creditworthiness”). As is increasingly common, this particular company relies on 
machine learning algorithms estimating an individual’s credit risk based on how the 
features of that individual’s application are associated with statistical patterns inferred 
from the population level and historical lending data.    

Suppose this system is highly accurate: it is able to reliably predict whether or not an individual is 

going to repay the loan, and to recommend approval or denial on that basis. Suppose further that 

it delivers the same verdicts for individuals with different sets of protected attributes, once we 

control for their credit risk. In this case, it seems that the algorithmic system satisfies some version 

of the Like Cases Maxim: if we deem credit risk to be the relevant normative property, then the 

treatment of individuals with equivalent credit risk are treated equivalently.  

While evaluating applications this way is legally compliant, these systems face a significant 

moral and political challenge: they are liable to ignore and compound existing historical and 

structural injustices. By ‘historically unjust’, we mean that marginalised groups in society 

experienced severe injustice in the past for which neither they nor their descendants received 

restitution. By ‘structurally unjust’, we mean that the present rules and conventions of society 

systematically burden some with adverse health, employment, education, and other outcomes. 

Thus, according to this simplified picture, historical injustice can be the cause of current 

disadvantage, while structural injustice explains the persistence of this disadvantage. In any society 

shaped by significant systemic inequality, the quality of many individuals’ foreseeable life prospects 

is constrained by social structures, which following Haslanger we will understand as shared social 

practices that coordinate behaviour and resources and make (un-)available particular options for 

individuals (Haslanger 2016). When deployed in this context, algorithmic systems striving for 

predictive accuracy will optimise for the status quo and give verdicts that, if relied on, will cement 

it further.   

In the case of mortgage lending in the US context, there is a well-documented history of 

racist historical and structural injustices by government and private actors that explain present 
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aggregate disparities in income, health, job security, among many other metrics, that exist between 

Black, Latinx, and Indigenous members of society as well as members of other marginalised groups 

on the one hand, and white members of the population on the other (Rothstein 2017). Historical 

and structural injustice causally explain why ostensibly neutral features are in fact highly predictive 

of particular adverse outcomes. For example, consider a single mother A who lacks affordable, 

reliable childcare options near her home or work. Suppose that this has impeded her career, leading 

to various gaps in employment, to say nothing of the gender pay-gap during those times when she 

was stably employed. Or consider a couple B and C who live in a historically redlined district that 

has limited public amenities, underfunded schools, and proximity to a polluting highway. The social 

structural factors in each of these examples would predict for and explain that these respective 

applicants might truly possess a high credit risk—especially if these structural features will remain 

in place for the foreseeable future. On the basis of this prediction, it is likely that A’s, B’s, and C’s 

loan applications will be denied.  

Note, however, that algorithmic systems are blind to the explanatory features of the situation. 

They issue verdicts on the basis of superficial characteristics only. Crucially, they will treat the above 

case as being equivalent, from a predictive accuracy perspective, to an individual D who presents 

credit risk despite not being disadvantaged by an unjust social situation (or, at least, not to the same 

degree as A, B, and C). 

Figure 1 illustrates this point using graphical causal analysis.3 Suppose that the algorithmic 

system correctly treats various features of an application as being predictive of the target property 

(T), credit risk. The system thus gives a prediction (P) that aims to track the credit risk of the 

individual, and which will support a particular decision outcome for the applicant. Crucially, 

however, in nonideal contexts, structurally unjust background conditions (S) affect both the 

features that an applicant presents (e.g. ZIP code) that are inputs (I) to the algorithmic system and 

whether or not they possess the relevant target property (T) of having high credit risk. These 

systems do not factor in structural phenomena that causally affect individuals, effectively treating 

structural injustice as an irrelevant consideration when comparing otherwise equivalent applicants. 

 

 
3 Figure 1 represents the model’s causal assumptions via a set of nodes (circles) representing the causal variables and 
directed edges (arrows) representing the direction of causal influence. For brevity, we are eliding formal details, 
including graphical methods for de-confounding (e.g. front-door and back-door criteria). For these details, see Pearl 
2009. 
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Structural injustice is thus a confounding variable that causally affects both the dependent and 

independent variables: credit risk and features, respectively (Herington 2020). Note, however, that 

if structural injustice remains stable, the model will continue to make highly accurate predictions. 

If, by contrast, social conditions were to be ameliorated, so that the degree of structural injustice 

decreases, then features such as ZIP code would cease to be predictive. In other words, algorithmic 

systems that are optimized for an unjust society can thus optimise for accuracy while ignoring these 

unjust background conditions.  

When morally evaluating algorithmic decision-making cases of this kind, it is tempting to 

focus exclusively on the obvious substantive injustices of individuals who are wrongfully prevented 

(due to past and current social structures) from receiving beneficial decision outcomes, while taking 

for granted that algorithmic decision-making is at least procedurally just. While we agree that 

procedurally just decisions can yield substantively unjust outcomes, we emphasise that many 

algorithmic decision-making systems operating under background conditions of structural injustice 

are both substantively unjust and procedurally unjust. Procedural injustice, in this context, is a 

distinct moral phenomenon. Specifically, the lending algorithm in our example will treat individuals 

with the same credit risk equivalently, while failing to take into account different (dis-)advantageous 

effects of structural injustice on different individuals’ credit risk. Hence, this system proceeds as if 

structural injustice were not a moral consideration relevant to a justifiable assessment of ‘similarity’ 

in the context of the Like Cases Maxim: where a plausibly structural injustice-sensitive conception 

of similarity would weigh in favour of differential treatment for (A, B, C) in comparison to D, a 

structural injustice-insensitive conception of similarity will unjustly recommend equivalent 

S 

M 

T 

P I 

Figure 1: Structural Injustice (S) is an unobserved confounding variable in an algorithmic system 
comprising data inputs about an individual (I), a model (M) that optimises the accuracy of its predictions 

(P) with respect to the target property (T). 
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treatment for differently-positioned individuals (A, B, C, D) while still seeming to treat like cases 

alike. 

3. The Restricted Inputs Strategy 

  Let us return to a seemingly simple assumption in our case above: the common idea that you 

cannot discriminate against an individual on the basis of feature ascriptions like race or gender if 

you do not know the relevant features of the individual. Indeed, discrimination law usually focuses 

on prohibiting decision-making on the basis of ‘protected attributes’, such as gender or race.4  

  The historical roots of this normative idea reach back far and are deeply intertwined with 

constitutional controversy over racial segregation laws during the Reconstruction Era in the US. In 

the now infamous US Supreme Court decision in Plessy v. Ferguson (1896), in which the majority 

upheld the constitutionality of racist ‘separate but equal’ laws, Justice John Marshall Harlan argued 

in his lone dissent that “in view of the constitution, in the eye of the law, there is in this country 

no superior, dominant, ruling class of citizens. [...] Our constitution is color-blind, and neither 

knows nor tolerates classes among citizens. In respect of civil rights, all citizens are equal before 

the law. The humblest is the peer of the most powerful”. Harlan’s argument that constitutional 

equality requires color-blindness has significantly influenced the trajectory of progressive law- and 

policy-making.  

This type of view may lead some to believe that it is procedurally unfair for an algorithmic 

model to explicitly incorporate information about an individual’s feature ascriptions like race and 

gender into its decision-making. Based on that assumption, it is natural to endorse:  

 
The Restricted Inputs Strategy (RIS): Procedures are unfair if, and because, ‘protected 
features’ like race or gender (i) are explicitly taken into consideration, and (ii) make a difference 
to the decision outcome. Given these assumptions, procedural justice in the context 
of algorithmic systems requires that we restrict permissible inputs to non-protected 
features only.  

 
4 Relevant US anti-discrimination law which articulates distinct ‘protected attributes’ includes the Equal Pay Act 
(1963), the Civil Rights Act (1964), and the Americans with Disabilities Act (1990). Similarly, in the UK, the Equality Act 
(2010) consolidated a number of prior acts articulating protections on the basis of protected features such as (but 
not limited to) race and gender, including the Equal Pay Act 1970, the Race Relations Act 1976, and the Disability 
Discrimination Act 1995. Although there are some narrow instances in which protected features may be explicitly 
considered (in US constitutional law, see: Fisher v. University of Texas, 579 U.S. __ (2016), our argument suggests that 
this class of exceptions should be significantly expanded in contexts involving algorithmic decision-making.  
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Equivalently, this strategy presumes that an algorithmic decision system is procedurally fair only if 

it is blinded to protected features. This would require, in the case of our earlier example, that 

neither the data nor model mention the applicants’ race, gender, or other protected attributes.  This 

would clearly not be sufficient for procedural fairness, but proponents of this strategy would take 

this to be a necessary first step.  

  Our view is that despite the prima facie plausibility of RIS, it cannot secure procedural justice 

in algorithmic systems that ignore the effects of structural injustice on assessed applicants. Due to 

the pervasive, complex nature of structural injustice, features like an applicant’s ZIP code will be 

predictive of credit risk:   

 
The Redundant Encoding Problem (‘It Doesn’t Work’): Restricting inputs will often not 
prevent algorithmic unfairness, because unrestricted inputs may function as proxies 
for restricted inputs. 

‘Blindness’ does not work because under conditions of structural injustice, features like income 

and educational background tend to be strongly correlated with race and gender. These 

correlations may often be obvious—but not always. Suppose, for instance, that instead of a security 

asset’s value, which is obviously correlated with structural injustice, one found the average 

temperature of the neighbourhood to be predictive of the target variable. Surely, the weather is 

irrelevant to structural justice! As it turns out, however, the historical impact of redlining—a 

racially discriminatory practice that effectively prohibited loans to Black and other marginalised 

communities—is visible in the average temperatures of neighbourhoods (Plumer & Popovich 

2020). Today, redlined neighbourhoods are abundant in heat-radiating pavement, and lack cooling 

green spaces and trees, which leads to higher average temperatures compared to non-redlined 

areas. These non-obvious causal effects of historical injustice turn up in algorithmic models as 

statistical associations. Automated decisions made solely on the basis of these associations will 

perpetuate them.  

 
  The insufficiency of RIS is now well recognised in contemporary contributions to fair 

algorithmic decision-making scholarship in computer science (Dwork et al. 2012).5 However, 

 
5 However, this literature has focused on overcoming the problem of redundant encoding on a technological level by 
supplementing RIS with additional constraints such as ensuring that these systems have equal error rates across 
different combinations of protected features. We discuss these more technologically sophisticated solutions in §4, 
which we argue obscure various morally relevant features of an individual’s claim, and which are therefore still 
vulnerable to versions of the normative objections to RIS outlined in the remainder of this section.  
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beyond the technological problem that restricting inputs does not work, and is thus not sufficient for 

procedural justice, there are two more fundamental normative worries about RIS. Consider first 

 
The Objectionable Goal Problem (‘Even if it worked, it would be bad’): The Restricted Inputs 
Strategy is implicitly committed to a goal which remains morally and politically 
objectionable as long as unjust background conditions obtain. 

The ‘blind justice’ view built into RIS implicitly assumes that neutral decision-making will have 

equal effects. But the opposite is true: neutrality under nonideal conditions of background injustice 

will likely have unequal effects which disproportionately disadvantage members of oppressed and 

marginalised groups, while upholding the unjust status quo (Mills 1998, Anderson 2010, Medina 

2013). Empirical and historical research on the impact of colour-blind policies has shown that, 

despite the egalitarian intentions underpinning such policies, they lead to observable racial 

disparities (Alexander 2010, Bonilla-Silva 2013). Ultimately, the ‘blind justice’ view rests on the 

flawed assumption that all those subject to it are starting from a reasonably just baseline. The denial 

of unjust background conditions itself is harmful not only because it may result in substantively 

unjust outcomes, but also because it may constitute expressive harm: it communicates the false 

message that directly experienced conditions of inequality and injustice are not real, which has a 

demeaning effect on those burdened by such conditions. The failure of government and other 

public actors in particular to publicly acknowledge as much when articulating policies adds insult 

to injury, and thus risks undermining citizens’ conception of themselves as free and equal members 

of society. 

 
  Let us now turn to the final, and—in our view—the most important problem for RIS, which 

shows that restricting inputs (or ‘blinding’) is not only not sufficient for procedural justice—it is also 

not necessary: 

 
The Obfuscation Problem: Under conditions of structural injustice, restricting inputs 
makes it hard or indeed impossible to determine the degree to which the ascription of 
socio-demographic features like race and gender makes a difference for outputs. This 
renders outputs uninformative in a morally significant way: it creates a deliberative gap 
for human agents interacting with the system, which undermines those agents’ ability 
to satisfy the demands of Wide Procedural Justice.  

‘Protected features’ like race and gender are justice-relevant features: it is impossible to evaluate 

whether a given procedure is just or not without paying explicit attention to the question of how 

such a procedure interacts with existing substantive structural injustices in society, many or indeed 

all of which track the ways in which social practices and institutions de facto position individuals 
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differently on the basis of precisely these ‘protected attributes’. This is a generalisation of the 

problem of confounding described in §2. Due to the fact that structural injustice acts as an 

unobserved confounding variable, RIS do not, as a matter of fact, achieve their stated aims—

though this is not purely a matter of technological efficacy, but also (and primarily) a moral and 

political problem. Human decision-makers ought not to design, and let their judgments be 

determined by the outputs of, algorithmic systems which obfuscate the degree to which outputs 

are shaped by structural injustice, because doing so would be wilfully ignorant. Choosing to pursue 

RIS, then, means choosing to risk being complicit in upholding injustice. Given that procedural 

justice necessarily requires—as we have argued in §1—that we treat similar cases similarly, it is 

clear that blindness does not satisfy this necessary condition: we cannot treat similar cases similarly 

if we do not know which individuals are truly similarly positioned, factoring in the extent to which 

their respective advantaged and disadvantaged social positions have been shaped by structural 

injustice.  

 

  In sum, our view is that procedures—including algorithmic systems—must control for the 

impact of historical and structural injustices when assessing individuals, rather than being blind to 

them. So far, we have shown that as long as structurally unjust background conditions obtain, 

rendering procedures blind to morally relevant features of individuals that are causally tied to these 

injustices is not sufficient for procedural justice, because restricting inputs allows such injustices to 

unduly affect and distort algorithmic procedures, and thereby to further perpetuate structural 

injustice. But we have also argued that restricting inputs is not necessary for procedural justice either: 

what is necessary instead is to control for the effects of background injustice, in order to meet the 

necessary condition for procedural justice to treat similar cases similarly. Controlling is not only an 

empirical exercise of understanding the legacy of past policies and social events; it is also a 

substantive moral assessment. It brings into consideration the historical and ongoing social 

structural factors that affect the prospects of the individual being assessed. It does so due to their 

moral relevance to assessing their case, not simply for their predictive value.6 

 
6 In this way, we are offering a broader alternative to RIS than others have advocated for. For example, Corbett-
Davies and Goel (2018) argue that protected attributes should be included for forward-looking reasons relating to 
risk assessment, which can allow these procedures to maximise aggregate social utility. Our approach allows for 
information relating to backward-looking considerations, such as historical injustice, to be included in the decision-
making process.  
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4. Insufficiently Informative Input Strategies 

4.1 Unrestricted Inputs Still Obfuscate the Impact of Structural Injustice 

There are many technologically sophisticated alternatives to Restricted Inputs Strategies: recent 

formal fairness criteria include equal prediction measures, either conditional on outcomes7 or 

conditional on decisions;8 group fairness measures9 and individual fairness measures;10 and causal 

approaches.11 Each of these approaches aims to eliminate the statistical effect of particular 

demographic feature ascriptions, such as race or gender. The idea is that rendering the statistical 

effect of these features ascriptions null amounts to ensuring that the procedures are, in a statistical 

sense at least, fair. 

 

Those who aim to achieve this kind of fairness do not intervene in the social world, but in 

the algorithmic model. They do so via multiple stages of the model design process: for instance, 

data-based de-biasing efforts in the form of weighing and feature selection at preprocessing with 

the aim of satisfying a particular set of formal fairness criteria (Bolukbasi et al. 2016, Kamiran & 

Calders 2012), adversarial debiasing at training time or other model-based algorithmic 

interventions (Zhang et al. 2018), and defining outcome thresholds in order to constrain the 

outcome set to the outcome subset that one deems unobjectionable by the lights of particular 

formal criteria at postprocessing.12 

  

  These strategies respond directly to the problems that RIS faces: there is an emerging 

consensus in the technical debate on fair machine learning that ‘blind’ approaches will not achieve 

fairness. While all aforementioned strategies are clearly superior to RIS because they work better 

in terms of achieving their stated aims, and because they are not implicitly committed to an 

objectionable moral and political goal, they are still vulnerable to the Obfuscation Problem.  

 
7 One example for this strategy are efforts to achieve Equality of True Positive Rates and Equality of False Negative Rates, 
also known as ‘error rate balance’, ‘equalized odds’ or ‘separation’. For surveys of state of the art formal algorithmic 
fairness strategies, see Barocas et al. 2020, Mitchell et al. 2021. 
8 For example, a criterion that requires both Equality of Positive Predictive Value and Equality of False Discovery Rate, also 
known as ‘predictive parity’ or (for closely related notions) ‘sufficiency’ or ‘calibration within groups’. 
9 Also known as ‘statistical parity’ or ‘demographic parity’ (Corbett-Davies et al. 2017). 
10 This is also known as ‘metric fairness’ (Yona & Rothblum 2018).. 
11 Examples include ‘individual counterfactual fairness’, ‘conditional counterfactual fairness’, and ‘counterfactual 
parity’ (Kusner et al. 2017, Nabi & Shpitser 2018). 
12 See Hardt et al. 2016 for an example of a simple postprocessing step which intervenes solely on the basis of 
objectionable joint statistical distributions of a predictor, a target variable, and a protected attribute, but not on the 
basis of individual features; see Dwork et al. (2018) for a strategy using transfer learning for sub-groups about which 
we have less data with the goal of maximizing accuracy across groups. 



14 

  

Recall that Obfuscation undermines procedural justice because it hides the degree to which 

substantive structural injustice shapes both inputs and outputs, thus stifling the aim of treating 

similar cases similarly in a way that is sufficiently accurate given a nonideal real-world social context. One 

reason why a given algorithmic fairness strategy can be vulnerable to Obfuscation is that it might rely 

on insufficiently informative inputs, resulting in an insufficiently informative model representation of what 

constitutes ‘similarity’, and thus of what it means for an input feature to ‘make a difference’ for a 

decision. Such fairness strategies give us an incomplete picture of the impact of structural injustice: 

call such strategies ‘Insufficiently Informative Input Strategies’ (IIIS).  

 

Our central concern is that adopting IIIS increases the risk that human decision-makers will 

mistakenly think that they have achieved procedural justice after having implemented such a 

strategy. If we adopt false beliefs about whether we have acted (un-)justly—say, by basing our 

decisions on an algorithmic model that obscures important aspects of injustice—we risk upholding 

and further compounding structural injustice. A morally superficial modeling of similarity and 

difference-making therefore has important but underappreciated epistemic costs which matter 

morally and politically. After outlining why adopting a sufficiently rich notion of treating similar 

cases similarly is a necessary condition for procedural justice, we identify two reasons why all 

aforementioned strategies are in principle liable to model similarity in a way that is insufficiently 

informative for human decision-makers (§4.2). We do not mean to imply that all existing formal 

fairness strategies are doomed to fail: in fact, many strategies are in principle compatible with 

amendments and constraints rendering them less morally superficial. Here, we merely explain why 

a less morally superficial, sufficiently informative notion of similarity matters, why it matters 

specifically for procedural justice, and how much closer a sufficiently informative algorithmic 

representation of similarity would get us to all-things-considered substantive justice. 

 
Why is treating like cases alike morally and politically valuable? Failing to treat like cases 

alike, all else being equal, would be objectionably arbitrary (Hart 1961, Dworkin 1986, Rawls 2009), 

as it would prevent the creation of a system of rules in which persons’ legitimate expectations are 

met, such that there are no unpredictable rule exceptions and right infringements. As Rawls (2009, 

50-1) argues, by ‘secur[ing] legitimate expectations, [LCM] excludes significant kinds of injustices’. 

One such injustice would be the arbitrary application of an existing system of rules: predictability 

matters not only because persons subject to a given system have legitimate expectations concerning 

substantive decision outcomes in an individual case, but also because they will have more general 
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legitimate expectations that the system of rules will indeed be implemented in each case, except in 

cases in which specific contextual circumstances plausibly mitigate the application of a given rule. 

 

In a society aiming to secure justice for all, arbitrary decisions require justification. While it 

is plausible to argue that public actors and institutions—particularly those which are directly 

democratically authorized—have special obligations not to engage in arbitrary decision-making, 

similar moral obligations arguably apply to private decision-making as well, such as private 

companies engaged in credit and mortgage lending. Just because a private actor is not 

democratically authorised and therefore has no special moral obligations of non-arbitrariness, this 

does not necessarily imply that she has no moral obligations with respect to non-arbitrariness at all: 

private actors play a key role in shaping social structures in contemporary democratic societies, 

and are not automatically exempt from important moral and political duties. Although as [other 

authors in this issue argue] the law allows these businesses to sub-erogate—to choose an avoidably 

worse option (say, by not loaning to a creditworthy individual)—our view is that arbitrary decision-

making is always pro tanto wrong. While pro tanto wrongs might easily be overridden by 

competing moral concerns in other contexts, the presence and enduring impact of historical racial 

injustice in credit and mortgage lending raises the moral stakes of arbitrary lending, thereby also 

raising the bar for potentially overriding moral considerations (if any).  

 

While many philosophical accounts of the role of LCM for procedural justice focus 

specifically on legal procedures—and in particular, trial and sentencing procedures—we take a 

significantly broader view so as to include any type of algorithmic or non-algorithmic decision 

procedure in the private and public sector in which justice-based considerations plausibly apply. 

In our view, LCM construed as a moral rather than exclusively legal principle has wide applicability 

in a range of decision domains, including but not limited to legal procedures. Credit-granting 

procedures, for instance, have historically violated LCM, leading to credit denials on the basis of 

racial discrimination, creating structural disadvantage across generations. LCM is a minimal 

bulwark against this.  

Importantly, while LCM is not itself devoid of normative content, it necessarily requires 

additional substantive normative principles to determine its scope of application (cf. Westen 1982, 

Sunstein 1993). As Rawls argues, LCM demands that “similar cases are treated similarly, the relevant 

similarities and differences being those identified by the existing norms” (2009, 50-1, our emphasis), 

and as Hart puts it, LCM “is by itself incomplete” (1961, 159), but that “we have, in the bare notion 

of applying a general rule of law, the germ at least of justice” (ibid., 206). Departures from the 



16 

‘germ of justice’, provided that they lack a plausible normative justification with reference to principles of 

substantive justice, undermine the pursuit of substantive justice. What all-things-considered 

substantive justice—whether on an individual or structural level—would require is, of course, a 

question that cannot be solved algorithmically: it requires human judgment. Even adopting a non-

traditional yet plausible broad notion of procedural justice, as we suggest here, does not free us, 

then, from the difficult task of determining the evaluative standards by which to ultimately judge 

a social state of affairs as substantively just. As Aristotle argues, “[j]ustice […] should be equal for 

equal persons. But equality in what sort of things and inequality in what sort of things—this should not 

be overlooked” (Politics III.13, our emphasis).  

  Recognising the central role of substantive theorising reveals the limitations of various formal 

strategies for achieving procedural justice, including those that explicitly invoke LCM. Dwork et 

al. (2012), for instance, formalise LCM by relying on a Lipschitz condition: 

  
“The Lipschitz condition requires that any two individuals x,y that are at distanced 
(x,y) ∈ [0,1] map to distributions M(x) and M(y), respectively, such that the statistical 
distance between M(x) and M(y) is at most d(x,y). In other words, the distributions 
over outcomes observed by x and y are indistinguishable up to their distanced (x,y)”. 

 
The Lipschitz Condition formalizes multiple important aspects of LCM: it imposes a consistency 

requirement—for all cases, similarly-situated individuals are treated similarly—and it imposes a 

spacing constraint, such that the distance between individuals at the level of inputs (as measured by 

some task-specific metric that approximates ground truth as closely as possible) is equivalent to the 

distance between outcomes for those individuals, and thus (implicitly) non-arbitrary.  

  Rival formal fairness strategies, by contrast, do not commit explicitly to LCM. However, in 

our view, any formal fairness strategy must necessarily implicitly commit to some version of LCM, 

though different strategies may give different responses to the question which types of agents 

(individuals, demographic subgroups, or demographic groups) ought to be compared to each other 

with respect to considerations of similarity.13 Given that all formal strategies aim to achieve 

algorithmic procedures which block features shaped by individual or structural disadvantage from 

making a difference for outputs, all such strategies must also rely on some notion of which features 

may permissibly make a difference for outputs, and which agents thus count as relevantly (dis-) 

similar. 

  

 
13 Indeed, as Dwork et al. 2012 point out, their account is compatible with group fairness strategies (in particular, 
those requiring statistical parity), and in fact LCM-style individual fairness implies group fairness in some cases, 
whereas in cases in which LCM does not imply group fairness, additional constraints can plausibly be imposed. 
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4.2 Two Ways of Getting Similarity Wrong 

         Many fairness strategies tacitly rely on morally superficial notions of which (sets of) features 

are similar to other (sets of) features. First, non-restricted input strategies may explicitly include 

features like ‘race’, but this alone does not tell us much about the difference-making mechanism 

between structural injustice, social categories like race ascriptions, and outcomes actually works: 

 
a) Essentialism vs. Ascription: many input features are socially constructed and contested. 
Thus, it is not apt to think of ‘race’ as ‘making a causal difference for an algorithmic 
prediction P’. It is more apt to think of a ‘race ascription plus the social meaning of 
social positions and practices’ as ‘making a causal difference for P’.   

 
Most formal fairness strategies seem to assume that demographic features are essential categories 

unaffected by social norms and practices. Our position is that this view is often wrong: many 

demographic features—and in particular, race—are socially constructed,14 and thus contextually 

and geographically contingent (cf. Root 2000, 632). Given this, it is important to recognize that 

when selecting and modeling features in an algorithmic system, we must first make a—potentially 

contested—choice about what the scope of a given feature is: who is included in the group of 

persons who possess that feature, and on what grounds. In other words, we ascribe features to 

individuals.  

 
  The same is true for implementing LCM once we have made such ascriptions: we ascribe 

similarity and difference to different cases given a prior, higher-order normative judgment of who or what counts 

as similar enough, for the purposes of procedural justice: as Schauer plausibly expresses this point, 

“identifying what is a precedent for what is about [...] ascribing likeness; and it is not about 

discovering, locating, or unearthing likeness. Determining [...] which different events or acts or 

questions will in spite of those differences be treated as similar, entails the question of what a 

decision-maker [...] deems to be similar, and not about what is actually similar in some deep 

ontological sense” (2018, 446). If we fail to critically evaluate which feature ascriptions we should 

take as a given, and which ascriptions we should contest, we fall short of enacting procedural 

justice. We cannot opt out of making that higher-order normative judgment with respect to 

 
14 We endorse social constructivism about race, the view that race is a social rather than a natural kind, which is 
nevertheless ‘real’ in the sense that race ascriptions have social meaning, and in the sense that they cause people to 
be positioned in tangibly advantageous and disadvantageous ways in society. We remain agnostic, for the purposes 
of this paper, about the question of which branch of constructivism is ultimately the most plausible, including thin 
constructivism (Gooding-William 1998), cultural constructivism (Jeffers 2019) and political constructivism 
(Haslanger 2000, 2019). We also remain agnostic about the respective merits of conservationist constructivism (the 
view that racial categories, though socially constructed, should be preserved for the purposes of adopting policies 
aiming to mitigate social differences) and eliminativist constructivism (the view that racial categories should be 
eliminated in the long run). 
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similarity: formal fairness measures cannot perform this task by themselves, not only because input 

features alone do not give algorithmic systems sufficient information for that purpose, but also 

because identifying suitable higher-order principles governing ascriptions of similarity requires 

moral and political deliberation.15  

 

  Importantly, higher-order judgments of this kind include judgments about moral equivalence: 

when to ascribe similarity to two cases involving input features which do not seem similar on a 

surface level, but which—having factored in differing impacts of structural injustice in either 

case—merit a similar response. Deciding to treat cases alike when background conditions of 

injustice have created an uneven playing field for individuals through no fault of their own, then, 

does not necessarily mean that one is arbitrarily treating unlike cases alike. Rather, as we shall argue 

in §5, doing so can allow us to meet the demands of the moral intuitions underpinning Wide 

Procedural Justice.  

 
b) Complexity and Intersectionality: representing social structure-relevant input features in 
an isolated way is insufficiently informative if and because such a representation fails 
to model complex interactions between features that result in social (dis-)advantages.  

 
Working with any plausible list of protected features, whether that list is codified in law or not, will 

not adequately model complex intersectional (dis-)advantages if those features are modeled in a 

purely additive way, because intersecting disadvantages reinforce each other in a way that does not 

equal the sum of their isolated causal effects.16 Consider, for example, Ana, a Black woman who is 

denied a loan. It is insufficient to model Ana’s case by quantifying the statistical disadvantage that 

Black loan applicants face and adding that to the statistical disadvantage of female loan applicants. 

Instead, we must recognize that injustices faced specifically by Black women are relevantly 

different from, and irreducible to, the sum of injustices against white women and Black men. 

Lending decisions may be heavily influenced by employment, where intersectional disparities are 

particularly hard to capture via an additive approach. Jenkins presents an intuitive example: 

“suppose that [...] women are less likely to be in paid employment than men, and Black people are 

 
15 Here, we are assuming that such moral deliberations can be performed by human decision-makers only, at least 
until the still distant prospect of trustworthy, value-aligned Artificial General Intelligence becomes a reality. 
16 On this causal interpretation of the non-additivity thesis, we are following Bright et al (2016). On the theoretical 
foundations of the non-additivity thesis, we endorse Crenshaw’s (1991) influential view. It is worth noting that work 
on the non-additivity thesis has a much longer history in Black feminist thought. Consider, for instance, the 
Combahee River Collective’s statement that “we are actively committed to struggling against racial, sexual, 
heterosexual, and class oppression, and see as our particular task the development of integrated analysis and practice 
based upon the fact that the major systems of oppression are interlocking. The synthesis of these oppressions creates 
the conditions of our lives” [cited in Taylor 2017, 15, our emphasis), or Audre Lorde’s (1984, 138) claim that 
“[t]here is no such thing as a single-issue struggle because we do not live single-issue lives”. For a historical overview 
over the development of intersectionality theory starting in the 19th century, see Gines 2011. 
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less likely to be in paid employment than women. An additive approach would [suggest] that Black 

women are especially unlikely to be in paid employment—they are unlikely ‘twice over, as it were. 

But [...] it might be that Black women are employed at higher rates than White women and higher 

rates than Black men, because Black woman, unlike White women, are subject to economic 

pressure to take on paid work, and because there are many domestic service jobs available for 

which Black women, unlike Black men, are considered suitable employees” (Jenkins 2019, 264 f.). 

However, even if Black women like Ana are employed at higher rates, they may still be unjustly 

disadvantaged in credit lending decisions in comparison to other groups, and this disadvantage will 

not map neatly onto the ways in which employment affects lending decisions for Black men and 

white women: Black women may face qualitatively distinctive injustices, which are hard to model 

as a mere aggregation of injustices against others in this context. Importantly, even if a purely 

additive model of intersectional disadvantage appears accurate in some cases, such a model might 

be misleadingly simple in that it might not transfer well to different, rapidly evolving social 

contexts, and lose its explanatory power with respect to similarity. 

 

  Many existing formal fairness strategies struggle to represent intersectional and context-

dependent forms of disadvantage: consider, for instance, individual fairness strategies. It is difficult 

for such strategies to distinguish between individuals who seem to be similarly socially positioned 

at a given moment in time, but who—due to intersecting forms of disadvantage—may experience 

different repercussions of receiving similar algorithmic outputs. Group fairness strategies, in turn, 

must answer (though often fail to address explicitly) a number of complex, context-specific 

questions: who counts as part of a given group? Which groups matter from the perspective of 

justice? And, most urgently, is the risk of unjust disadvantage of individuals who are members of 

multiple oppressed groups, and thus experience intersecting disadvantages, best modeled as a mere 

combination of multiple group fairness measures stacked together, as formal group fairness 

accounts often do?  

  Supporters of group fairness strategies—as well as other formal strategies—may respond 

that in order to adequately model intersectional disadvantages, we could simply consider more 

fine-grained groups (e.g. by having a separate group for Black women), and implement formal 

fairness measures (such as statistical parity or equalised false positive rates) across all groups. This 

would better model intersectional disadvantages than a more coarse-grained approach. However, 

even the more fine-grained approach may fail to achieve fairness in cases in which, due to 

background structures of injustice, equalising across fine-grained groups would not have equal effects. 

Suppose that Ana and Betty (a white woman) are similarly positioned loan applicants, and both 
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Ana’s and Betty’s applications are denied. Ana not getting a loan may well have more 

disadvantageous effects in comparison to the effects of the denied loan on Betty, given that the 

decision result of denying Ana the loan will interact with other future decision results in other 

domains of Ana’s life, all of which structurally disadvantage Ana in ways that are different from 

the structural effects on Betty.   

 

  Several causal algorithmic fairness strategies have recently attempted to address the problem 

of modeling intersectionality directly (cf. Bright et al. 2016). Foulds et al. (2019), for instance, 

articulate an “intuitive intersectional definition of fairness: regardless of the combination of protected 

attributes, the probabilities of the outcomes will be similar” (our emphasis). Note, however, that 

such strategies still face the morally and politically complex question of which combination of 

intersecting features counts as morally ‘similar’—with respect to the extent of structural injustice 

experienced by those who have that combination of features—to which other combination of 

features, and which way of quantifying similarity might adequately model intersectional 

disadvantages, including the real social effects of algorithmic outputs on individuals and groups: 

this kind of similarity judgment is needed in order to determine which members of which groups 

should, as a matter of justice, receive similar algorithmic scores. . Similarly, counterfactual strategies 

must answer the non-trivial question of which counterfactuals matter when we attempt to model 

intersectionality: what is a plausible counterfactual set of features for an individual who is a 

heterosexual Asian woman, or a queer Black man—and given the complex nature of intersectional 

(dis-)advantages, are all counterfactuals straightforwardly comparable with each other? The answer 

to these questions will require not only sophisticated formalization, but also (and indeed, primarily) 

nuanced engagement with heterogeneous lived experiences and persistent disagreement.  

5. How to Proceed with Caution 

5.1 Getting Similarity Right Would Not By Itself Achieve Procedural Justice  

  Even if Insufficiently Informative Input Strategies did not model similarity in a misleadingly simple 

way, they would still not meet the demands of procedural justice under nonideal conditions, 

because procedures cannot be viewed in isolation from the social context in which they are 

implemented. An algorithmic procedure is but one part of a larger decision procedure involving 

dynamic interactions between technological models, human agents, and the social world. If human 

decision-makers neglect to acknowledge and intervene in how unjust social structures affect 

algorithmic procedures, and the ways in which unjust algorithmic procedures affect the social 
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world, they are liable to adopt wrongful beliefs about those subject to algorithmic systems, and to 

act wrongfully based on those beliefs. The moral duty to avoid replicating and amplifying 

background structures of injustice thus has an important epistemic component. When engaging with 

information from algorithmic outputs, we must avoid jumping to conclusions, lest we commit: 

 
Doxastic Negligence. A is doxastically negligent if A, purely on the basis of an algorithmic 
output concerning B, adopts a belief about what kind of treatment of B is warranted. 

 
By ‘purely on the basis of an algorithmic output’, we mean ‘without any additional deliberation 

about whether that output is in fact decisive for the actions we ought to take’. Note that, on our 

view, even if A adopts morally right beliefs about what treatment of B is warranted, A can still be 

doxastically negligent if A fails to engage in a process of deliberation on whether the algorithmic 

model obfuscates any justice-relevant information, whether the algorithmic procedure in fact treats 

like cases alike, and whether more information about B, the social structures that affect B, and the 

availability of means (if any) for intervening in the structures causing disadvantage must be 

gathered.  

 

  This point can be tied to recent accounts of moral encroachment (Basu 2019, Bolinger 2020), 

the view that: 

 
Moral Encroachment. Whether an agent knows some proposition depends in part on the 
moral stakes of the situation.  

 
If we accept the claim that moral norms require justified belief or even knowledge that one is not 

doing wrong, then we must also accept the claim that human decision-makers should not rely 

uncritically on algorithmic systems when there are risks of compounding structural injustices: given 

that the question of whether their action will ameliorate or compound structural injustice is morally 

high-stakes—both for human decision-makers and decision subjects—this raises the bar for what 

kinds of beliefs human decision-makers may justifiably adopt based on particular types of evidence. 

It follows that in our earlier lending example, even if predictive outputs concerning credit risk are 

highly statistically accurate, human decision-makers relying on such outputs nevertheless may 

not—as a matter of justice—negligently adopt beliefs about individuals’ creditworthiness purely based 

on such outputs, nor may they act upon such beliefs (e.g. by denying loans) without sufficient prior 

deliberation about the attendant moral risks.  
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  Note, however, that whether or not one accepts Moral Encroachment is not decisive for 

whether one can accept our argument concerning the duty to avoid Doxastic Negligence. One need 

not endorse Moral Encroachment in order to accept the more general normative principle that in 

high-stakes decision scenarios involving incomplete information, human decision-makers ought 

to gather more information before acting—and as our earlier argument emphasized, many 

seemingly straightforward algorithmic decision scenarios that ostensibly provide human decision-

makers with sufficient information are in fact insufficiently informative with respect to the impact 

of structural injustice on algorithmic outputs. Within the causal analysis of our earlier lending 

example, critical deliberation and information-gathering would help de-confound the often-

overlooked relationship between structural injustice, the individual, and the algorithmic system. 

Importantly, estimating the causal effect of structural injustice would (i) allow human decision-

makers to control for it, (ii) estimate effects of potential justice-oriented interventions, and (iii) 

avoid actions which risk perpetuating structural injustice, and instead take actions that ameliorate 

it.17 

5.2  Closing the Deliberative Gap 

As we have argued, anyone aiming to interrogate the assumptions encoded in an algorithmic 

procedure must maintain a healthy dose of doubt about the veracity of the representation of 

complex social facts in the models underpinning algorithmic procedures. This type of doubt can 

be understood in terms of higher-order uncertainty, where the decision-maker’s own uncertainty about 

an uncertain set of facts is relevant to the decision problem. Avoiding doxastic negligence means 

deliberately recognising and leaving room for such uncertainty when evaluating which actions are 

morally and politically justified in light of particular algorithmic classifications. Beyond a more 

demanding, structural injustice-sensitive notion of LCM, Wide Procedural Justice thus requires: 

 
Caution About Outputs (CAO): Instead of restricting inputs or relying on insufficiently 
informative inputs, human agents relying on algorithmic procedures should (i) aim to 
work with inputs that are maximally informative with respect to the impact of 
structural injustice, and (ii) exercise caution when basing decisions on algorithmic 
outputs. This may, depending on the context-sensitive features, entail suspending 
belief and remaining agnostic about a particular issue (e.g. a question like “does 
individual A merit X?”), or it may entail not taking any action for the moment.  

 
Sometimes, the two necessary and jointly sufficient components of procedural justice as we 

conceive of it—adherence to a plausibly rich version of LCM on the one hand, and the moral and 

 
17 On deconfounding and estimating causal effect, see Pearl 2009, 65-106. 
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political duty to avoid doxastic negligence by proceeding with caution—may conflict. Consider 

cases in which substantive justice clearly requires that we treat descriptively dissimilar cases similarly 

in order to bring about more equitable outcomes.18 In such cases, the value of responding to new 

information with caution will usually outweigh the value of strict adherence to LCM. CAO 

therefore also entails the duty to deliberate critically on the likely impact of structural injustice on 

algorithmic outputs when making ascriptive judgments about which cases we ought to consider 

(dis-)similar, and why. In light of more information, it may turn out that we have strong moral 

reasons to ascribe similarity to a broader range of cases than we currently do, or indeed to explicitly 

treat unlike cases alike if doing so would get us closer to a plausible ideal of substantive justice. 

According to Dworkin’s (1986, 219) account of political integrity, deviations from LCM are justified 

from the perspective of procedural justice iff they are consistent with a higher-order theory of 

justice. While articulating a complete theory of which specific substantive ideals of justice should 

guide us in our assessment of whether a departure from LCM would contribute to political integrity 

would be beyond our scope, we endorse Dworkin’s general view that departures from the LCM 

component of procedural justice may be desirable under specific circumstances.19  

 

  Skeptics of Wide Procedural Justice who disagree with including CAO as a necessary component 

of procedural justice can still endorse all substantive conclusions of our account, while rejecting the 

view that moral requirements like (i) a ‘thick’, structural injustice-sensitive interpretation of LCM 

and (ii) CAO can all be unified under any single procedural justice framework. We leave open the 

possibility that normative principles independent of procedural justice could plausibly justify CAO. 

The reason why we include CAO as a necessary component of procedural justice in the context of 

algorithmic systems is that we define ‘procedures’ broadly as the full decision sequence which 

necessarily includes some algorithmic procedure and some human response, rather than defining 

it narrowly as just the algorithmic procedure. For this reason, we view human deliberation as an 

appropriate object of procedural justice constraints. 

 

  To illustrate the CAO component of Wide Procedural Justice more concretely, let us return to 

our earlier lending example (section §2). Supposing that the algorithmic system classifies an 

 
18 Schauer (2018, 448) makes a similar argument: “consider, for example, the statement [...] ‘all men are created 
equal.’ [...T]he statement [...] was made against the background of the numerous ways in which people are not [...] 
empirically equal. Some are smarter, nicer, fitter, [...] and the authors of the Declaration plainly knew that. But the 
ascriptive dimension of the statement is that people should be treated as equal not because they are equal in a 
descriptive sense, but despite the fact that they are not”. 
19 Our view differs from Dworkin’s view, however, in that Dworkin allows for departures from LCM only on the 
basis of axioms of a pure theory of justice, whereas our account allows for departures form LCM on the basis of 
pragmatic, contextual, and thus non-axiomatic reasons. For a similar point, see Rawls 2009, 51. 
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individual B as ‘high risk of default’, what should a human decision-maker (A) using that system 

do? Should A necessarily deny B’s application? Although it may seem to conveniently allow A to 

shirk responsibility for error (“computer says no”), the algorithmic prediction does not in fact tell 

A what to do, especially when it comes to assessing B in comparison to another individual C who 

seems superficially similar to B, such that an algorithmic model recommends the same outcome 

for B and C. There is a wide deliberative gap between classification and procedurally just 

decisions.20 Closing that gap, and deciding whether B should get the same rate as C, will require 

asking questions of the following kind: 

 
1. Has A considered the full range of available options (e.g. denial, approval, different loan 

rates or conditions, social services)? 
 
In simplistic decision models, available options are pre-defined. In more realistic cases, one must 

discover the options available by querying the causal structure of the situation, identifying possible 

interventions that might bring about more just outcomes. These interventions will be outside the 

scope of predictive algorithmic systems, since they address counterfactual scenarios that humans 

are capable of recognising, but which are not reflected in the system’s data.21  

 
2. How much is at stake for the decision subject (i.e. loan applicants B and C)? Will an adverse 

decision outcome impact B and C in the same way, or will structural injustice lead to vastly 
different effects for B and C? 
 

If A is reasonably certain that structural injustice disadvantages B in a way that makes B relevantly 

different from C, by the lights of some plausible conception of ‘creditworthiness’, then B should get 

a different, more lenient rate than C. 

 
3. How much is at stake for decision-maker A: might A have morally relevant biases which 

impair their ability to know what justice would require in this context? How much is A’s 
judgment about B being actually similar to C affected by higher-order uncertainty? Can A 
reasonably adopt any belief about B, or is A morally required to suspend judgment for the 
time being? 
 

If A is unsure about the extent to which structural injustice has disadvantaged B in comparison to 

C, A should suspend—at least temporarily—belief about B, and adopt a blanket rule that gives B 

the benefit of the doubt, the latter of which counteracts historically unjust negative assumptions 

 
20 This claim is compatible with the claim that deliberation alone will not guarantee substantively just outcomes, 
since—as we have argued in §1—procedural justice is not sufficient for substantive justice. 
21 This is a standard conceptual point made by proponents of causal modelling. For an application, see Prosperi et 
al. 2020. 
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about ‘people like B defaulting on loans’. While suspending belief, A ought to gather additional 

information, while weighting the moral value of such information against potential morally 

significant costs of information-gathering like privacy breaches. 

5.3 How Much Caution? 

Given that background structures of injustice are ubiquitous, and thus shape many or possibly 

even all contemporary decision scenarios, one may worry that our view prescribes an objectionably 

high degree of caution in an objectionably high number of cases:  

 
The Caution Paralysis Worry: CAO seems to imply that we should approach the 
overwhelming majority of algorithmic outputs with a high degree of caution. A duty 
to keep deliberating, and to suspend belief in cases involving insufficiently informative 
inputs, may stifle rather than support our ability to make decisions efficiently. 

 
However, under conditions of entrenched structural injustice, the disvalue of procedural injustice 

at a massive scale, enabled by the increasingly widespread use of algorithmic systems, far outweighs 

the value of efficient decision-making. It is morally worse to jump to conclusions than it is to 

suspend belief, if one grants the—in our view, plausible—assumption that under such conditions, 

human decision-makers are more likely to have implicit or explicit biases that align with 

background injustice than they are to have biases that oppose it.22 If decision-makers have those 

biases, jumping to conclusions—that is, committing doxastic negligence about algorithmic 

outputs—is likely to sustain background structures of injustice, in which case the mere fact that 

the decisions which sustained that state of affairs were made efficiently has barely any moral and 

political value. 

Relatedly, one may worry that it is undue caution that may ultimately sustain injustice if and 

when the prescription to suspend belief is taken to mean not taking any action based on a given 

algorithmic output. Not taking any action, CAO skeptics may reasonably argue, does not mean 

that one has not made a decision: not taking any action necessarily requires choosing one option 

(non-intervention) over another (intervention)—or, in the context of our earlier lending case, 

suspending a loan application decision (non-intervention) rather than approving or denying the 

loan (intervention). Assuming that under background conditions of structural injustice, non-

 
22 As philosophers and social scientists working on phenomena like adaptive preferences and double consciousness 
have persuasively shown, such injustice-sustaining biases can also adversely affect deliberations by those disadvantaged 
by structural injustice. 
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intervention will typically sustain the unjust status quo, it seems that CAO may ultimately prescribe 

rather than prohibit structural injustice-entrenching actions on the part of human decision-makers. 

  But of course, suspending belief does not necessarily mean non-intervention: Caution about 

Outputs does permit intervention, as long as decisions to intervene are subject to ongoing critical 

scrutiny and potential revision in light of new information about justice-relevant features. For 

example, CAO-compliant interventions could involve altering decision rules in order to approve 

more loans for members of structurally disadvantaged groups, or (at the very least) treating 

decisions to deny loans to members of such groups as highly revisable in light of mitigating 

contextual factors. We can avoid doxastic negligence by explicitly recognizing opportunities to 

change our minds about what justice in fact requires when we evaluate decision procedures and make 

judgments about which treatments count as fair.  

6. Conclusion 

Automating decision-making processes in public and private institutions tends to hide 

important moral and empirical complexities beneath a veneer of impartiality and objectivity. In 

particular, algorithmic systems in many contemporary settings are subject to confounding by 

structural injustice, leading to algorithmic predictions that further entrench rather than ameliorate 

unjust background conditions. Although various formal strategies exist for making such procedural 

systems more ‘fair’, they are liable to obfuscate or over-simplify the influence of structural injustice: 

they fail to make salient the extent to which current and past injustices are (part of) the reason why 

some individuals receive disadvantageous algorithmic outcomes, or are adversely affected by 

seemingly non-disadvantageous outcomes. This results in a dangerously incomplete picture of 

what it would take to meet a key requirement of procedural justice: determining which cases are 

relevantly similar, and treating similar cases similarly on the basis of that determination. 

 

  Meanwhile, algorithmic systems as well as formal interventions into such systems often 

endow algorithmic outputs with a false air of certainty: there is a morally and politically urgent risk 

that human agents relying on such systems will assume that justice has been done as soon as the 

algorithmic system delivers an output. But as we have argued, procedural justice in this context 

requires that we base our human response to algorithmic outputs on a deliberate acknowledgement 

of how much uncertainty remains in a given decision scenario: how much justice-relevant 

information is missing, which cases should truly count as similar given background conditions of 

injustice, and which social complexities are camouflaged by ostensibly fair algorithmic models. In 
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light of incomplete information, the act of suspending belief—of giving decision subjects the 

benefit of the doubt when the full impact of structural injustice on them is unclear—is necessary 

for meeting the demands of procedural injustice, and it contributes to the larger-scale moral and 

political aim of ameliorating structurally unjust conditions.  

 

  Navigating the moral risks involved in deploying predictive algorithmic systems, then, 

requires moral deliberation and doxastic restraint uniquely available to human agents. For the 

foreseeable future at least, as our public institutions and private-sector decision processes 

increasingly rely on algorithmic systems, justice requires that we proceed with caution.   
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