

UNIVERSITI PUTRA MALAYSIA

INDUCTION AND PLANT REGENERATION OF CALLUS IN DENDROBIUM

CYNTHIA PSYQUAY COSSALL

FP 2000 15

INDUCTION AND PLANT REGENERATION OF CALLUS IN DENDROBIUM

By

CYNTHIA PSYQUAY COSSALL

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Agriculture Science in the Faculty of Agriculture Universiti Putra Malaysia

March 2000

DEDICATION

ESPECIALLY FOR....

MUMMY AND DADDY
TIL DEATH DO US PART

I LOVE YOU

RAYMOND SHEILLA ANTHONY RICHARD

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Agriculture Science.

INDUCTION AND PLANT REGENERATION OF CALLUS IN DENDROBIUM

By

CYNTHIA PSYQUAY COSSALL

March 2000

Chairman: Associate Professor Saleh bin Kadzimin, Ph.D.

Faculty: Agriculture

The present study examines the effects of some selected chemicals and physical treatments on protocorm-like body (plbs) of orchid hybrid, *Dendrobium* Kasem White. This is an attempt at initiating embryogenic callus, and setting conditions optimal for its maintenance and regeneration into plbs and hence plantlets. This protocol was initiated to establish a system for the transfer of genetic material through genetic engineering technology.

The study was conducted in four main parts, a set of preliminary studies, callus induction, maintenance and regeneration. The critical concentration of picloram and kinetin for the survival of wounded and unwounded plbs were obtained from the preliminary studies. Optimal concentration of picloram and kinetin for unwounded plbs ranged from 0 to 1.0 mg/l. For wounded plbs the

UPM

concentration ranged from 0 to 0.5 mg/l and 0 to 1 mg/l for picloram and kinetin respectively.

Callus-like tissue formation was observed from unwounded plbs cultured on ½ MS supplemented with 0.6 to 0.9 mg/l picloram and 0.3 to 0.6 mg/l kinetin treatments. The best concentrations were 0.75 mg/l picloram and 0.60 mg/l kinetin. Induction was achieved in the 40-day dark treatment. Wounded plbs produced callus-like tissue on 0.1 mg/l picloram + 0.8 mg/l kinetin and 0 mg/l picloram + 1.0 mg/l kinetin treatments after 30 days of culture in the dark.

Callus-like tissue remained viable in both solid and liquid medium of ½ MS supplemented with 0.75 mg/l picloram and 0.6 mg/l kinetin, cultured in the dark.

Through several modifications of medium, the callus-like tissue regenerated into plbs when the medium was devoid of hormones and cultured in the light. Regenerated plbs formed shoots and roots upon transfer to medium with IBA and BA.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains Pertanian.

PENGGALAKAN DAN PENJANAAN SEMULA PERTUMBUHAN KALUS *DENDROBIUM*

Oleh

CYNTHIA PSYQUAY COSSALL

Mac 2000

Pengerusi: Profesor Madya Saleh Kadzimin, Ph.D.

Fakulti : Pertanian

Kajian telah dijalankan untuk mengkaji kesan beberapa rawatan kimia dan fizikal terhadap protokom hibrid orkid *Dendrobium* Kasem White. Kajian ini berusaha untuk menghasilkan sel-sel kalus yang embrionik dan mengujudkan keadaan persekitaran yang optima bagi pemelihraan dan penjanaan semula kalus kepada protokom dan seterusnya kepada anak pokok. Protokol ini dibentuk untuk mencipta satu sistem pemindahan gen melalui teknologi kejuruteraan genetik.

Kajian dibahagikan kepada empat bahagian iaitu kajian-kajian permulaan, penggalakan kalus, pemeliharaan kalus dan penjanaan semula kalus. Kepekatan kritikal pikloram dan kinetin untuk pertumbuhan protokom terluka dan tak luka didapati dari kajian-kajian permulaan.

UPM

Kepekatan optima pikloram dan kinetin bagi pertumbuhan protokom tak luka telah diperolehi dari 0 hingga 1.0 mg/l pikloram dan 0 hingga 1.0 mg/l. Kepekatan optima pikloram dan kinetin bagi protokom terluka adalah masing-masing 0 hingga 0.5 mg/l dan 0 hingga 1.0 mg/l.

Pembentukan tisu yang menyerupai kalus berlaku pada protokom tak luka yang dikultur pada ½ MS yang mengandungi 0.6 hingga 0.9 mg/l pikloram dan 0.3 mg/l hingga 0.6 mg/l kinetin. Kepekatan 0.75 mg/l pikloram dan 0.6 mg/l kinetin merupakan kepekatan optima yang untuk penggalakan kalus dari protokom tak luka yang dikulturkan selama 40 hari di rawatan gelap. Protokom terluka mengeluarkan tisu yang menyerupai kalus selepas 30 hari di rawatan gelap pada rawatan 0.1 mg/l pikloram + 0.8 mg/l kinetin dan 0 mg/l pikloram + 0.1 mg/l kinetin.

Tisu yang menyerupai kalus kekal hidup pada medium cair dan beku dalam rawatan ½ MS dengan 0.75 mg/l pikloram dan 0.6 mg/l kinetin dan dikultur di dalam gelap.

Melalui pengubahsuaian medium, penjanaan tisu yang menyerupai kalus berlaku pada medium tanpa hormon dan pendedahan kepada cahaya. Protokom yang disubkultur ke medium dengan rawatan

IBA dan BA menghasilkan pembentukan anak pokok yang berdaun dan berakar.

ACKNOWLEDGEMENTS

The author would like to express her gratitude to Associate Professor Dr. Saleh bin Kadzimin, of the Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM) for his advice and supervision throughout the course of her studies. She also would like to express her appreciation and thanks to her cosupervisors, Professor Dr. Marziah bt. Mahmood of the Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, UPM and Dr. K. Harikrishna of the Department of Biotechnology, Faculty of Food Science and Biotechnology, UPM.

Her thanks are also due to Associate Professor Dr. Ghizan Saleh, Dr. Sayed Mohd. Zain Sayed Hassan, Dr. Maheran Abdul Aziz of the Department of Plant Science and Dr. Anuar Rahim of the Department of Land Management, UPM for their advice and other contributions to her studies.

Special thanks also to due to Encik Abdul Rahman bin Sidam, Cik Haryati bt. Jamsari, Puan Norshila bt. Abdul Jalil, Cik Aniza bt.

Che Ngah and Cik Salimah bt. Ali of the Plant Tissue Culture Laboratory of the Department of Crop Science for their invaluable help in the running of the experiments.

Her thanks are also due to Encik Anib Ali and Puan Maiminah bt. Tahir of the Plant Breeding Laboratory, to Encik Aminnudin Hashim and Mr. Wong Chee Ching of the Floricluture Laboratory, to Puan Salmi Yaacob of Biometry Laboratory and Encik Baharin of the Photography Unit of the Faculty of Agriculture.

The author also wold like to thank Pn. Azilah bt. Abdul Jalil, Puan Sulika Madhavan and Mr. Ho Oi Kuan of the Microscopic Unit, Institute of Bioscience, UPM for their assistance in electron microscopic work.

Last but not least, her thanks to Dr. Ahmad Tarmizi bin Hashim, Mr. Khairul Naim Adham, Ms. Florencen C. Ginibun, Mdm. Kathreen Sherit, Mr. Philip Sipen, Mr. Adrain Ling, Mdm. Janna Ong, Mdm. Sarong Muring, Ms. Wong Lay Yieng, Mdm. Sam Yen Yen, Mr. Hendry Joseph, Ms. Rabecca Ranty, Ms. Nancy Ngaran, Mdm. Jenes Anyi, Ms. Mary Ahin, Ms. Ida Suryani bt. Md. Sidik, Cik Norazlina Noordin and Ms. N. Sivajothi for their kind support.

The author would like to take this opportunity to dedicates this thesis to her friends, Ms. Valerie Ngau, Mdm. Regina Leong, Mdm. Judy Henry, Ms. Helena Banun Valentine, Ms. Trinka Slan, Ms. Diana Lucas Sadin and Ms. Lucyana Dominic Ritay.

The author dedicates her thesis to her second family, Mr. and Mrs. Md. Noh Manap of Sri Serdang, Selangor.

I certify that an Examination Committee met on 30 March, 2000 to conduct the final examination of Cynthia Psyquay Cossall on her Master of Agriculture Science thesis entitled "Induction and Plant Regeneration of Callus in *Dendrobium*" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

WONG KAI CHOO, PhD.

Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

SALEH BIN KADZIMIN, PhD.

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

MARZIAH BT. MAHMOOD, PhD.

Professor Faculty of Scince and Environmental Science Universiti Putra Malaysia (Member)

K. HARIKRISHNA, PhD.

Associate Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

MOHD. GHAZALI MOHAYIDIN, PhD,

Professor/Deputy Dean of Graduate School, Universiti Putra Malaysia

Date: 24 MAY Luiu

This Thesis submitted to the Senate of Universiti Putra Malaysia and was accepted as fufilment of the requirements for the degree of Master of Agriculture Science.

KAMIS AWANG, PhD,
Associate Professor

Dean of Graduate School, Universiti Putra Malaysia

Date: 13 JUL 2000

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledge. I also declare that if it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CYNTHIA PSYQUAY COSSALL

Date: 29 MAY 2080

TABLE OF CONTENTS

				Pag
DEDICA'				
ABSTRA				
ABSTRA				
	VLEDGEMENTS			8
	AL SHEET			
	ATION FORM			13
	TABLES			17
LIST OF FIGURES LIST OF PLATES				18
LIST OF	ABBREVIATIONS			22
СНАРТЕ	R			
I	INTRODUCTION	,		23
II	LITERATURE RI	EVIEW	,	26
	Dendrobium			26
	Protocorm			28
	Protocorm-like B	odies		28
	Chimeras			29
	Callus			32
	Growth Ch	aracte	ristics	33
	Function o	f Callu	ıs	34
	Colour			
	Embryoger	nic Call	lus	38
	Callus Growth			
	Callus Indi			
	Maintenance			
	Regeneration			
	Organogen	esis		58
III	MATERIALS AN	D MET	HODS	61
	Location			
	Orchid Hybrid			
	Medium Prepara	tion		
	Stock Solu			
	Plant Grow	th Res	gulators	63
	Sterilization			
	Autoclave			
	Filtration			
	Ultra Viole	t light		
		_		

	IOGRAPHY ENDICES				
v	CONCLUSION	114			
	From Plbs	107			
	_	Shoot Induction			
		ion to Plbs105			
	Callus Maintena				
		oservations94			
		ments on Callus from Unwounded Plbs92			
		Production from Wounded Plbs86 Effects of Picloram, Kinetin and Dark Treatments on Callus			
		ments on Callus			
		Picloram, Kinetin and			
	Callus Induction				
	Callus Indi				
		oncentrations for			
	on Surviva				
	Preliminary Stud	of Picloram and Kinetin			
IV		DISCUSSION			
		7.			
	Regenerati	on of Callus74			
	Callus Mai	ntenance73			
		uction73			
		Analysis72			
	Assessmen				
		y Studies67			
	Experiments	66 67			
	Work Area Culturing				
	_	Procedures66			
	Open Flam				

APPENDIX

A	Table 7: Chemical and Stock	
	Solution Concentration for ½ MS	
	Medium Preparation	100
	Table 8 : Chemical Formula	
	Media Components	102
B-1	Table 9 :Analysis of Variance on	
	Effects of Picloram and Kinetin	
	on the Survival of Unwounded Plbs	103
B-2	Table 10: Analysis of Variance on	
	Effects of Picloram and Kinetin	
	on the Survival of Wounded Plbs	105

LIST OF TABLES

Table		Page
1	Treatment Combinations for Picloram and Kinetin	71
2	The Effect of Wounding and Without Wounding on Survival of Plbs on MS without Picloram and Kinetin	77
3	Effects of Picloram and Kinetin on Survival of Wounded Plbs	78
4	Effects of Picloram and Kinetin on Survival of Unwounded Plbs	82
5	Summary of Effects of Picloram, Kinetin and Dark Treatment on Callus Induction from Unwounded Plbs of Dendrobium Kasem White	88
6	Summary of Effects of Picloram, Kinetin and Dark Treatment on Callus Induction From Wounded Plbs of Dendrobium Kasem White	93
7	Maintenance of Callus	101

LIST OF FIGURES

Figure		Page
1	The Relative Amount of Auxin and Cytokinin Often Required	
	for Morphogenesis (George & Sherrington, 1984)	51
2	Flowchart of Callus Induction Experiments	68
3	The Rate of Growth of Callus Maintained on ½ MS Medium	101

LIST OF PLATES

Plate		Page
1	Flower of <i>Dendrobium</i> Kasem White	62
2	Plbs of <i>Dendrobium</i> Kasem White in Liquid Medium	62
3	Sartorius Minisart Microfilters Assembly with Syringe for Sterilization	65
4	Typical Individual Plbs (Right) Separated from Mother Clump (Left)	66
5	Razor Blade (0.1 mm) with Locking Forcep	70
6	Plbs with New Branches	83
7	Cream to White-Coloured Structure After 30 Days of Culture	89
8	Compact Yellow Callus on Medium Containing Picloram and Kinetin after 40 Days Incubation in the Dark	89
9	Scanning Electron Micrograph of Surface of Callus	95
10	Young Plbs with Organized Shoot	97

Plate		Page
11	Embryogenic Callus Cells Eve (20x)	97
12	Embryogenic (a) and Non-Embryogenic (b) Cells of Callus (40x)	98
13	Transmission Electrone Micrograph of Nucleus (N) and Nucleolus (n)	98
14	Transmission Electrone Micrograph of Embryogenic Callus of Dendrobium	99
15	Callus Cultures Turning Green after Exposure to Light	104
16	Brown or Dead Callus Tissues	104
17	Initiation of New Callus Tissue From Previous Brown Callus	105
18	Plbs Regenerated from Callus in VW Liquid Medium	111
19	Shoot Growth from Plbs Regenerated from Callus	111
20	Root Protrusions from Plbs Regenerated from Callus	112
21	Shoot Proliferation Without Root on 1/2 MS Medium with IBA	112

Plate		Page
22	Root Development Without Shoot on	
	½ MS Medium with BA	113

LIST OF ABBREVIATIONS

% - Percentage

RM - Ringgit Malaysia

mg/l - milligramme per litre

° C - degree Celcius

p.s.i. - pound per square inch

rpm - rate per minute

plbs - protocorm-like bodies

MS - Murashige and Skoog's

VM - Vacin and Went

CHAPTER I

INTRODUCTION

Orchids belong to the largest family of flowering plants. There are about 100 genera consisting of about 800 species of orchids in Malaysia (Holttum & Enoch, 1991; MARDI, 1991; Teo, 1985). The flowers have long captured the interest of orchid growers because of their great diversity in shapes and colour. The passion which started as a hobby has now become a million-dollar industry, in countries like Malaysia, Thailand, Singapore, Indonesia and Philippines.

The orchid industry, which started as a small-scale activity, has become an important export earner contributing about 40% of the total value of cut flower production in 1995. The general economic outlook for the industry appears to be positive. The high demand for orchids seems to continue with the growing affluence of the population.

Dendrobium is by far the largest genus in the orchid family and mostly grown in commercial farm's. It is one of the leading cut and potted orchid hybrids grown in the tropics.

Breeding of *Dendrobium* using sexual hybridization is restricted due to the long generation time and lack of useable genetic variability. Hybridization could only occur within intra-generic boundaries, that is *Dendrobium* could only be crossed with another *Dendrobium*. It has not always been possible to obtain full hybrids between desired individuals because of sexual incompatibility. In recent years, genetic engineering has played a vital role in producing new hybrids where foreign genetic material could be introduced via the use of several systems of genetic transformation such as particle-bombardment. This may provide an alternative to improve *Dendrobium* hybrids genetically.

Transformation of Dendrobium protocorm-like bodies (plbs) using particle bombardment was achived by Kuehle and Sugii (1992). However, chimerism may be a problem using plbs as target tissue. In order to recover non-chimeric plants, callus as an alternative could be used as target cells.

Callus is a mass of proliferating unorganized cells. Naturally, wounded plant cells produce callus for wound healing. Growing a mass of callus on a semisolid or liquid suspension is widespread in *in vitro* growth studies. The culture of callus provides a system for the study of differentiation, morphogenesis and plant regeneration. It may also provide an alternative to improve plants genetically.

