

UNIVERSITI PUTRA MALAYSIA

A PROTOTYPE OF WEB-BASED SIMULATION ENVIRONMENT (WEBSIM)

TAN KEE LEONG

FK 2000 4

A PROTOTYPE OF WEB-BASED SIMULATION ENVIRONMENT (WEBSIM)

By

TAN KEE LEONG

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in Faculty of Engineering Universiti Putra Malaysia

November 2000

DEDICATION

This book is dedicated to my parents: Mdm. Koo Kim Lai and my late father Mr.Tan Guat @ Tan Ban Po (1945–1998) – from whom I learned the value of hard work and perseverance.

Abstract of the thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science.

A PROTOTYPE OF WEB-BASED SIMULATION ENVIRONMENT (WEBSIM)

By

TAN KEE LEONG

November 2000

Chairman : Associate Professor Borhanuddin Mohd. Ali, Ph.D.

Faculty : Engineering

Computer simulation is the discipline of designing a model of an actual or theoretical physical system, executing the model on a computer, and analysing the execution output. Among the popular simulation tools are Mil3 Opnet, Mathworks MATLAB and even self-developed simulation program (using language such as Pascal, Fortran and C/C++). However, these simulation tools have limitations such as platform dependent, expensive cost, maintenance difficulties and limited in reusability.

One of the methods to overcome this limitation is by implementing webbased simulation. Web-based simulation allows simulation to be carried out over the Internet using a standard web browser. The usage of web browsers make the Internet a very user-friendly environment by integrating all related resources into a single tool that eliminates the steep learning curve for novice simulation users.

In this thesis, we present the web-based simulation environment project (Websim). Websim uploads a simulation program (developed using C/C++) in

binary format, generates a web-interface for the program and allows users to access the simulation program via the Internet. The results generated from the simulation program would be translated into an image file. Finally, the image file is embedded into an HTML file, and returned to Websim users. Websim is mainly developed using the combination of CGI and Javascript technologies. The server-side CGI scripts, written in Perl process the various requests from users, while the client-side Javascript is used to perform user inputs validations. Thus, lessen the workload of the server and tightens the security.

Websim is able to receive the simulation program in executable format and provide a web interface for it. This gives the flexibility and convenience of using the programming language of choice for the simulation modeller, and to integrate it with the web. Besides that, Websim also allows the storage of simulation program on a web server, thus could act as an online store for simulation programs. This permits the sharing of simulation program over the Internet, to an exclusive user groups or to the general public. Finally, Websim could act as a teaching tool in school and universities, especially for courses involving modelling and simulation. It allows teaching and learning to be done through the Internet, hence could assist students in having a better understanding on certain topics or concepts

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia untuk memenuhi keperluan ijazah Master Sains.

SATU CONTOH PERSEKITARAN SIMULASI WEB (WEBSIM)

Oleh

TAN KEE LEONG

November 2000

Pengerusi : Profesor Madya Borhanuddin Mohd. Ali, Ph.D.

Fakulti : Kejuruteraan

Simulasi komputer merupakan satu disiplin yang melibatkan proses merekabentuk model sebenar atau model sistem fizikal teori, melaksanakan model tersebut pada komputer, dan menganalisis hasil perlaksanaan model tersebut. Antara perisian simulasi yang popular ialah Mi13 Opnet, Mathworks MATLAB, dan perisian yang ditulis sendiri menggunakan bahasa paras tinggi seperti Pascal, Fortran dan C/C++. Namun, perisian-perisian simulasi seumpama ini mempunyai kelemahan seperti tertakluk kepada pelantaran, kos yang tinggi, kesukaran dalam memelihara serta menyokong perisian, dan penggunaan-semula yang terhad.

Salah satu cara untuk mengatasi kelemahan tersebut ialah dengan melaksanakan simulasi web. Dengan simulasi web, proses simulasi boleh dilaksanakan pada Internet dengan menggunakan sebarang pelayan laman biasa. Penggunaan pelayan laman juga menjadikan Internet satu persekitaran yang mudah, iaitu dengan menggabungkan sumber-sumber yang berkaitan untuk menjadi satu perisian yang senang dipelajari.

Dalam tesis ini, kami melaporkan satu projek persekitaran simulasi web, kami kenali sebagai 'Websim'' Websim menerima satu aturcara simulasi (ditulis menggunakan bahasa C/C++) dalam format binari, menyediakan satu perantaraan web (dalam bentuk fail HTML) kepada aturcara tersebut, dan seterusnya membenarkan ia dicapai melalui Internet Hasil daripada aturcara simulasi tersebut akan diterjemah menjadi satu fail grafik Akhir sekali, fail grafik tersebut dimasukkan ke dalam fail HTML tadi dan dihantar kembali kepada pengguna Websim Websim dibina menggunakan gabungan teknologi CGI dan Javascript Aturcara CGI yang ditulis dalam bahasa Perl melaksanakan pelbagai proses di peringkat pelayan Sementara itu, Javascript digunakan untuk memeriksa input pengguna sebelum dihantar kepada pelayan, dengan itu mengurangkan beban pelayan dan meningkatkan tahap keselamatan sistem pada keseluruhannya

Websim memberi kemudahan fleksıbel kepada pengguna untuk menggunakan bahasa pengaturcaraan pilihan sendiri Selain itu, Websim juga membenarkan aturcara simulasi disimpan di dalam pelayan web, lantas boleh dıjadıkan tempat sımpanan aturcara sımulası yang boleh dıcapaı secara langsung Ini mengizinkan aturcara simulasi tersebut dicapai pada Internet, sama ada kepada kumpulan tertentu yang terhad ataupun kepada semua pengguna am Akhir kata, Websim juga boleh dijadikan satu alat bantuan mengajar di sekolah dan universiti, khasnya kepada kursus-kursus yang melibatkan pemodelan dan simulasi Websim membenarkan pengajaran dan pembelajaran dibuat melalui Internet, dan ini akan dapat membantu meninggikan pemahaman para pelajar bagi sesuatu topik

ACKNOWLEDGEMENTS

I am indebted to several people who have directly or indirectly contributed to this dissertation work. The knowledge and experiences I have gained with them cannot be measured in words. Neither can the appreciation I have for them. The following list, by no means exhaustive, is an attempt to acknowledge at least a few of these people.

To all lecturers, staffs and friends in the Department:	My beloved family members and relatives:	My housemates and friends in the campus
Dr. Borhan	My mother	Bro. Tan Ho Soon
Dr. V. Prakash	Lay Ki	Sek Thai
Puan Nor Kamariah	Kee Swee	Sai T'in
Dr. Abdul Rahman Ramli	Poay Lin	Boo Ping
Puan Roslizah	Poay Phing	Kah Wah
		Cheng Tong
Chee Boon Kok	Kor Lian	Tien Siong
Low Wai Yan	Kor Jin	Shau Meng
Fawwaz	Kor Peng	
Hadi	Loo Ching	Mr.Ong
Ali	Sze Fei	Wein Leong
Prihandoko	Ching Ji	Peng Siong
Choong Khong Neng	Uncle Kee Peng	Chong Yong
Yem Poh Cheang	Auntie Ong	Babbu
Fei Wang Li	Lina	
Ku Day Chyi	Lilia	My respectful residents of
Angeline	A E Tendong	Kalyana, Mudita, Bodhi,
Michael	Siew Kheng	Ananda and
Zubeir	Siew Chin	Dhammarakha Lodge.
Khalid		
Mabruk	Uncle Gan	Lai Hsiang
Abdul Latiff	Uncle Wee	Lewis
Haniff	Auntie Bee Liang	Teng Yong
Fizan	Uncle Guan Chit	Sheow Foong
	Susi	Choon Yan
Puan Aishah		Sau Ping
Puan Salbiah		
Puan Rufina		
Puan Noorlida		
Abang Nor		
Uncle Savier		

I share the happiness and joy with all of you!

I certify that an Examination Committee met on 6th November 2000, to conduct the final examination of Tan Kee Leong, on his Master of Science thesis entitled "A Prototype of Web-based Simulation Environment (Websim)" in accordance with Universiti Pertanian Malavsia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981 The Committee recommends that the candidate be awarded the relevant degree Members of the Examination Committee are as follows

ABDUL RAHMAN RAMLI, Ph.D.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

BORHANUDDIN MOHD. ALI, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

VEERARAGHAVAN PRAKASH, Ph.D.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

NOR KAMARIAH NOORDIN.

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

MOHD GHAZALI MOHAYIDIN, Ph.D. Professor / Deputy Dean of Graduate School Universiti Putra Malaysia

Date: 1 3 NOV 2000

This thesis was submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirements for the degree of Master of Science

lanic fra 1

KAMIS AWANG, Ph.D. Associate Professor, Dean of Graduate School Universiti Putra Malaysia

Date

14 DEC 2000

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions

Candidate Name TAN KEE LEONG

Date 7 November 2000

TABLE OF CONTENTS

	Page
DEDICATION	- 11
ABSTRACT	111
ABSTRAK	v
ACKNOWLEDGEMENTS	V11
APPROVAL SHEETS	V111
DECLARATION FORM	x
LIST OF TABLES	XIV
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	XVII

CHAPTER

I	INTRODUCTION	1
	Computer Simulation	1
	Web-based Simulation	3
	Characteristics of Web-Based Simulation	4
	Significance of Websim	5
	Objectives	6
	Organisation of Thesis	7
П	LITERATURE REVIEW	
	Potential of WWW to Support Simulation	8
	Education and Training	8
	Simulation Programs	9
	Web-based Simulation Environment Service	9
	Architecture of Web-based Simulation System	10
	Remote Simulation using CGI	10
	Remote Simulation using Java Data Server	11
	Local Simulation based on Java Applets	12
	Conclusion	13
	Simulation Languages	14
	С	15
	C++	16
	Java	17
	Conclusion	18
	Web-based Simulation Technologies	19
	Common Gateway Interface	19
	Practical Extraction and Report Language (PERL)	20
	Javascript	22
	Java RMI	23
	Plotting Tools	25
	Conclusion	26

111	WEBSIM SYSTEM DESIGN AND ARCHITECTURE	
	Introduction	28
	Client Server Architecture	29
	Web Browser	30
	HTTP Web Server	31
	Controlling CGI Script	32
	Simulation Program	32
	Gnuplot	34
	System Services	34
	User Authorization Service	35
	Simulation Program Upload Service	35
	Web Interface Generation Service	35
	Program Execution Service	36
	Graph Plotting Service	36
	Image Viewer Service	36
	Site Management Service	37
	Websim Actors	37
	Websim Logical Design	38
	Login Module	41
	Upload Wızard Module	42
	Site Manager Module	43
	Image Viewer Module	45
	Plotting Module	46
	Simulation Run Module	47
	Files Used in Websim	48
IV	SYSTEM IMPLEMENTATION	
	Introduction	50
	Implementation Tools	51
	Generating Simulation Program Web-Interface	53
	Step 1 Upload simulation program	53
	Step 2 Upload status notification	54
	Step 3 Enter web-interface settings	55
	Step 4 Preview and finalise settings	56
	Performing Simulation over the Web	58
	Step 1 Enter simulation parameters	60
	Step 2 Invoking simulation program	61
	Step 3 Generating simulation results and graph settings	
	files	62
	Presentation of Simulation Results	63
	Security Issues	65
	Web Server Security	68
	CGI Script Security	68

....

_

· P POLON

V	RESULTS AND DISCUSSION			
	Introduction	71		
	Experimental Setup	72		
	Machine Configuration	73		
	Functional Testing	74		
	Performance Evaluation	7 7		
	Limitations and Proposed Solutions	79		
	Websim security	80		
	Multi-users supports	81		
	Simulation Program	82		
	Conclusion	83		
VI	CONCLUSIONS AND FUTURE WORK			
	Future Works	84		
	Additional Services	84		
	Database	85		
	Graphical User Interface	86		
	Animation and Visualization			
	Websim Documentation and User Guide	88		
	Websim Contributions	89		
	Conclusion	90		
REFERE	INCES	92		
APPEND	DICES	96		
A-1	Source codes for a sample of simulation program to generate and			
	show the characteristic of a semiconductor diode	97		
A-2	Source codes for a sample of simulation program to generate a			
	truncated Fourier series	98		
A-3	Source codes for a sample of simulation program to find the			
	effect of timeout on GBN throughput	99		
BIODAT	A OF AUTHOR	104		

LIST OF TABLES

Table		Page
1	Comparison between the performance of C++ and Java	18
2	Files used and their descriptions in Websim	48
3	Configurations for Websim Server	73
4	Configurations for Client A	73
5	Configurations for Client B	74
6	Websim performance when accessed from local machine	78
7	Websim performance when accessed from a machine within the same LAN	78
8	Websim performance when accessed from another machine outside campus network, via Internet	79

LIST OF FIGURES

Figure		Page
1	Remote Simulation & Animation and data transfer	11
2	Remote Simulation and Local Visualization	12
3	Client-Site simulation with loaded applets	13
4	Remote Methods Invocation	24
5	Client-server interaction in Websim	29
6	Screen shot from the input form	31
7	C/C++ Simulation Program Template	33
8	Input and Output Parameter of Simulation System	34
9	Relationship between Websim users and their services	38
10	Websim Modules	39
11	Dialogue Diagram showing sequence of interaction between Websim users and the system	40
12	DFD of Login Module	41
13	DFD of Upload Wızard Module	42
14	DFD of Site Manager Module - Delete Option	43
15	DFD of Site Manager Module - Edit Option	44
16	DFD of Site Manager Module - Upload Option	45
17	DFD of Image viewer	46
18	DFD of Plotting Module	46
19	DFD of Simulation Run Module	47
20	The layout of the directories and files for Websim	49

21	Block Diagram Of Websim System Implementation	51
22	Uploading Simulation Program	54
23	Confirmation on Successful Simulation Program Upload	55
24	Form Collecting Information for Web-Interface File	56
25	Preview of HTML Interface File	57
26	Display URL of Simulation Project Folder to User	58
27	CGI-based Web Connection for a Simulator	59
28	Input simulation parameters via web-interface page	60
29	Final HTML page containing the output graph	65
30	Websim Experimental Setup Environment	72
31	Characteristic of semiconductor diode	75
32	A truncated Fourier series	76
33	Simulation output showing the GBN throughput for 54 bytes packet	77
34	Example of components created using Java AWT class	86
35	Example of several Java Swing Components	87
36	A 3-D image created in VRML	88

LIST OF ABBREVIATIONS

API	-	Application Programmer Interface
AWT	-	Abstract Window Toolkit
CGI	-	Common Gateway Interface
CORBA	-	Common Object Request Broker Architecture
GBN	-	Go Back N.
HTML	-	Hyper Text Markup Language
HTTP	-	Hyper Text Transfer Protocol
IP	-	Internet Protocol
JVM	-	Java Virtual Machine
LAN	-	Local Area Network
ODBC	-	Open Database Connectivity
ORB	-	Object Request Broker
PERL	-	Practical Extract Report Language
RMI	-	Remote Method Invocation
S&A	-	Simulation and Animation
SMTP	-	Simple Mail Transfer Protocol
ТСР	-	Transport Control Protocol
GUI	-	Graphical User Interface
UML	-	Unified Modelling Language
VRML	-	Virtual Reality Markup Language
WAN	-	Wide Area Network
WWW	-	World Wide Web

.

CHAPTER I

INTRODUCTION

Computer Simulation

Computer simulation is the discipline of designing a model of an actual or theoretical physical system, executing the model on a computer, and analysing the execution output [Fishwick, 1995]. In general, simulation is to pretend that one deals with a real thing while really working with an imitation. In operational research the imitation is a computer model of the simulated reality. Models are used in industry and commerce and military because to make experiment with real systems is very costly, dangerous and sometimes impossible. Provided that models are adequate descriptions of reality, experimenting with them can save money, suffering and time [Pollatschek, 1999].

There are generally two types of simulation:

• **Discrete Event Simulation**. When the numbers of events are finite and between two consecutive items nothing happens, we call this kind of simulation a discrete event. Car arrivals and departures occurred at distinct points of time are example of discrete event simulation.

• **Continuous Simulation** In some systems the state changes all the time, not just at time of some discrete events For example water level in a reservoir with given in and outflow may change all the time

Simulation is often performed by writing a computer code to represent a system model, or as some kind of input into a simulator software. Simulation may be carried out:

- On a spreadsheet
- By running a computer program written in some general language (such as Fortran, C/C++ or Pascal)
- By running a computer program written in some special language for simulations
- By running specially built simulator with appropriate input.

These four methods are the most popular methods of performing simulations. But due to the dependency on the local standalone system they are running on, these simulation methods suffers several disadvantages such as platform-dependent, machine-dependent, and require longer learning curve With the current advancement in Internet and web technology, we propose a partial solution to the above problems with a Web-based Simulation Environment (Websim) project. Websim provides a dynamic web interface for a standalone simulation engine and allow the performing of simulation works over the World Wide Web (WWW). Websim also provides a simulation environment where users can examine the simulation outputs to verify and validate their system model. The outputs can either be in text or graphical representation.

Web-based Simulation

The Internet is a loosely connected world-wide network of heterogeneous computers and the WWW is a set of on-line hypermedia documents that resides on the Internet. The WWW was conceived as a set of simple Internet-based client/server protocols for transferring and rendering documents of a primarily textual nature. What distinguished the web's mode of communicating information from other Internet-based tools that preceded it (e-mail and FTP) was the provision for embedding hyperlinks that allows users to easily navigate between related documents. Hypermedia documents are built using a language called Hypertext Markup Language (HTML). Access to the web is afforded using the web browser such as Netscape Navigator or Internet Explorer.

Web-based simulation was introduced to perform all steps needed for simulation over the Internet and the web In other words, it uses the web as a means of access to simulation models as well as its use as a platform for the creation, execution and distribution of simulation models [Nam and Kim, 1999]

Most of the existing Web-based simulation tools focused mainly on the development of the runtime simulation libraries and mechanisms on the Web, such as Simjava [Howell, 1999], Javasim [Javasim, 1999], Silk [Healy and Kilgore, 1998] and the development of the distributed simulation environments using ORB technology such as JavaRMI and CORBA [Orfali and Harkey, 1997] Some of these tools require simulation model developers to be good at C/C++, Java and simulation languages if-bwever, performance of web applications developed in Java are relatively slow in speed. To ease the burden of modellers, GUI based modelling

environments are essential Simulation tools like OPNET [MIL3, 1997] and Digital Workshop [Fishwick 1998] support the visual development environments, but OPNET could not support Web-based simulation capability, and Digital Workshop could be used only for digital circuit design

Most of the existing commercial and non-commercial simulation tools are typically platform-dependent and are not designed to work in the Internet or the Intranet We acknowledge that it is easier to write a simulation model using a general-purpose language such as C/C^{++} because the C/C^{++} is very popular and easy to learn The only problem with programs written in C/C^{++} is that they are typically machine dependent and standalone. In this thesis, Websim project acts as the missing jigsaw which encapsulates the standalone programs in C/C^{++} with a web interface, and allows it to be accessible through the web

Characteristics of Web-based Simulation

A web-based simulation environment refers to a web application system, which provides a dynamic web interface for a simulation tool, and allows the performing of simulation works over the WWW This environment is accessible with a web browser and has the following characteristics

- Supports a modelling tool which is independent of hardware and software platforms
- Supports a graphical user interface for easy modelling
- Supports execution over the web
- Able to store and display the simulation results over the web

In this thesis we develop the Websim, a simulation environment for selfdeveloped simulation tool Websim shows how one could extend the capability of simulation tools into the web Websim allows a simulation model to be uploaded to a web server, and automatically generate a web interface for the simulation model Websim can be accessed on any platform (Unix, PC or Mac) using a standard web browser. With this simulation environment, an easier and faster integration of simulation and visualization techniques and tools into the Internet can be realized.

Significance of Websim

There are three significant aspects of this thesis. First, it is the ability of Websim to produce a web-based simulator on a standalone simulation engine. Websim simply receive the simulation engine in executable formats and provide a web interface to it. Secondly, Websim act as the online store for a collection of simulation models. For example, researchers from the same group could upload their simulation models to Websim, so that their simulation works could be easily referred and executed by other researchers from other parts of the world. Finally Websim could act as a teaching aid / tools in schools and universities. This would be very helpful especially for courses involving modeling and simulation, where lecturers could ask several students who are good in C/C++ programming to develop simulation engines, and upload them to Websim. These web-based simulation engines could assist other peers in having a better understanding of certain topics or concepts.

Objectives

One important property of Websim is that the execution of simulation runs on a remote server. It is designed to provide distributed and platform independent features to multiple concurrent users. For instance, a user could perform the simulation works at home using the simulator located at his office, while another colleague at the office watches the results shown on the computer screen via a web browser. The aim of the thesis is to develop a server-side web application of a webbased simulation environment for self-developed simulation program by utilizing Common Gateway Interface (CGI) and Javascript technologies

The objectives of this thesis are as follows

- To enable a standalone simulation program to be executed by multiple concurrent clients over the web
- To produce web interface for the simulation program based on its input and output data
- To develop a server side application which could receive the self-developed simulation program (executables C/C++ program file)
- To provide an interface to support execution of the simulation program over the web
- To develop some useful server-side administrator modules to manage Websim This include features such as uploading, editing, maintaining, and the like
- To develop several simulation program as samples to test and evaluate the performance of Websim

Organisation of Thesis

This thesis is organised into six chapters Chapter 1 provides a brief introduction to web-based simulation systems and the significance of Websim Chapter 2 presents the literature review on various web-based simulation topics. The history and the development of web-based simulation are also included. Chapter 3 describes the design methodology employed and the system architecture defined for Websim As CGI plays an important role in this project, various issues pertaining to this area are highlighted. The system implementation is described in Chapter 4. The performance testing, evaluation of results and general limitations of Websim are presented in Chapter 5. The final chapter discusses the significance and contribution of Websim, its future works and conclusion of this project.

