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By  

MAHBOUBEH FARID 

December 2009 

 

Chairman:   Professor Malik Hj. Abu Hassan, PhD 

Faculty:        Institute for Mathematical Research 

 

The focus of this thesis is on finding the unconstrained minimizer of a function. 

Specifically, we will focus on the Barzilai and Borwein (BB) method that is a famous 

two-point stepsize gradient method. First we briefly give some mathematical 

background. Then we discuss the (BB) method that is important in the area of 

optimization.  A review of the minimization methods currently available that can be 

used to solve unconstrained optimization is also given. 

 

Due to BB method’s simplicity, low storage and numerical efficiency, the Barzilai 

and Borwein method has received a good deal of attention in the optimization 

community but despite all these advances, stepsize of BB method is computed by 

means of simple approximation of Hessian in the form of scalar multiple of identity 

and especially the BB method is not monotone, and it is not easy to generalize the 

method to general nonlinear functions.  Due to the presence of these deficiencies, we 

introduce new gradient-type methods in the frame of BB method including a new 
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gradient method via weak secant equation (quasi-Cauchy relation), improved 

Hessian approximation and scaling the diagonal updating. 

The proposed methods are a kind of fixed step gradient method like that of Barzilai 

and Borwein method. In contrast with the Barzilai and Borwein approach’s in which 

stepsize is computed by means of simple approximation of the Hessian in the form of 

scalar multiple of identity, the proposed methods consider approximation of Hessian 

in diagonal matrix. Incorporate with monotone strategies, the resulting algorithms 

belong to the class of monotone gradient methods with globally convergence.  

Numerical results suggest that for non-quadratic minimization problem, the new 

methods clearly outperform the Barzilai- Borwein method.  

 

Finally we comment on some achievement in our researches. Possible extensions are 

also given to conclude this thesis. 
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Abstrak tesis untuk dibentangkan kepada Senat Universiti Putra Malaysia bagi 

memenuhi syarat Ijazah Doktor Falsafah. 

  

 

GLOBALISASI KAEDAH BARZILAI DAN BORWEIN BAGI 

PENGOPTIMUMAN TAK BERKEKANGAN  

 

Oleh  

MAHBOUBEH FARID 

Disember 2009 

 

Pengerusi:   Professor Malik Hj. Abu Hassan, PhD 

Fakulti:        Institute Penyelidikan Matematik 

 

Fokus tesis ini adalah untuk mencari suatu minimum tak berkekangan bagi sesuatu 

fungsi. Secara khusus, kami akan memberi tumpuan kepada kaedah Barzilai dan 

Borwein (BB) yang terkemuka iaitu kaedah kecerunan saiz langkah dua titik. 

Pertama sekali, kami membincangkan tentang latar belakang matematik secara 

ringkas. Kemudian, kami menumpukan perbincangan kepada kaedah BB yang 

memainkan peranan penting dalam bidang pengoptimuman. Suatu sorotan tentang 

kaedah peminimuman semasa bagi menyelesaikan masalah pengoptimuman tak 

berkekangan juga diberi.  

 

Disebabkan oleh kemudahan, storan rendah dan kecekapan berangka kaedah BB, ia 

telah menerima perhatian dalam komuniti pengoptimuman tetapi walaupun dengan 

kemajuannya, saiz langkah bagi kaedah BB dikira secara penganggaran mudah 

Hessan dalam bentuk gandaan skalar matriks identiti dan terutamanya kaedah BB 

tidak ekanada, dan ia tidak mudah diitlakan ini kepada fungsi tak linear am. 
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Disebabkan oleh kehadiran kelemahan-kelemahan tersebut, kami memperkenalkan  

kaedah kecerunan baru dalam rangka kaedah BB termasuk suatu kaedah kecerunan 

baru melalui persamaan sekan lemah (perhubungan kuasi-Cauchy), menambahbaik 

penghampiran Hessan dan menskalar pengemaskinian pepenjuru.    

 

Kaedah yang dicadangkan adalah suatu jenis kaedah kecerunan langkah tetap 

sepertimana kaedah Barzilai dan Borwein. Berbeza dari pendekatan Barzilai dan 

Borwein di mana saiz langkah dikira melalui penghampiran mudah Hessan dalam 

bentuk gandaan skalar matriks identiti, kaedah yang dicadangkan 

mempertimbangkan penghampiran Hessan dalam bentuk matriks pepenjuru. 

Bergabung dengan strategi ekanada pada setiap lelaran, algoritma yang terhasil 

adalah anggota kepada kelas kaedah kecerunan ekanada dengan penumpuan sejagat. 

Keputusan berangka mencadangkan bahawa untuk masalah peminimuman bukan 

kuadratik, kaedah baharu yang dicadangkan secara jelasnya adalah lebih baik 

daripada kaedah Barzilai-Borwein.   

 

Akhir sekali, kami mengulas tentang pencapaian dalam penyelidikan kami. 

Perlanjutan yang mungkin juga diberi bagi mengakhiri tesis ini. 
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1. nR  denotes the linear n dimensional Real space.  

2. g  is the 1n  gradient vector of function f , with components 

                                 ,...,n., i
x

f
g

i

i 21      ,
)(

)( 



  

3. G  is the nn  Hessian matrix of f , that is ),( ji th element of G  is given by 

                                .,1,
)(

)()(

2
),( nji

xx

xf
G

ji

ji 
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
  

4.  kx  is the k th approximation to *x , a minimum of .f  

5.  kg  is the gradient vector of f  at kx . 

6.  kD  is an nn  k th diagonal matrix approximation to G . 

7.   kU  is an nn  k th diagonal matrix approximation to 1G . 

8.  kB  is an nn  k th matrix approximation to G . 

9.  TA  denotes the transpose of matrix .A  

10.  y  denotes an arbitrary norm of .y  

11.  min denotes the minimum. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Optimization Theory and Methods is a young subject in applied mathematics, 

computational mathematics and operations research which has wide applications in 

science, engineering, business management, military and space technology.  The 

subject is involved in optimal solution of problems which are defined 

mathematically, i.e., given a practical problem, the ‗‗best‘‘ solution to the problem 

can be found from many schemes by means of scientific methods and tools. 

 

1.2 General Form of Optimization Problems 

 

The general form of optimization problems is 

                                                       )(min xf                                                       (1.1) 

                                                           s.t  nRx  

where nRx  is a decision variable,  )(xf  an objective function, nRX   a 

constraint set or feasible region.  Particularly, if the constraint set nRX  , the 

optimization problem (1.1) is called an unconstrained optimization problem:          

                                                         )(min xf
nRx

                                                        (1.2) 

The constrained optimization problem can be written as follows: 

                                                         )(min xf
nRx
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                                                         s.t.  ,,0)( Eixci                                      (1.3) 

                                                                ,,0)( Iixci   

where E  and I  are, respectively, the index set of equality constraints and inequality 

constraints, ),...,1(),( IEmixci   are constrained functions. When the 

objective function and constrained functions are linear functions, the problem is 

called linear programming. Otherwise, the problem is called nonlinear programming. 

Definition 1.1.   A point *x is a global minimizer  if )()( * xfxf   for all x , where 

x  ranges over  all of nR . 

Definition 1.2.   A point *x is a local minimizer  if  there  is neighbourhood N  of  

*x such that )()( * xfxf   for Nx . 

This thesis studies solving unconstrained optimization problem (1.2) from the view 

points of both theory and numerical methods where f  is continuously differentiable 

function and a local minimizer provides a satisfactory solution.  

Additional information about this topic can be found in Nocedal and Wright (1999) 

and Sun and Yuan (2006). 

 

1.3 Function and Differential 

 

 A continuous function RRf n :  is said to be continuously differentiable at 

nRx , if )
)(

(
ix

xf




 exists and is continuous, ni ,...,2,1 . The gradient of f  at x  is 

defined as  

                                    .]
)(

,...,
)(

[)(
1

T

nx

xf

x

xf
xf








                                              (1.4) 
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If f  is continuously differentiable at every point of an open set nRD  , then f  is 

said to be continuously  differentiable on D  and is denoted by )(1 DCf  . A 

continuously differentiable function RRf n :  is called twice continuously 

differentiable at nRx , if )
)(

(
2

ji xx

xf




 exists and is continuous, ni ,...,2,1 . The 

Hessian of f is defined as the nn  symmetric matrix with elements  

                        .,1,
)(

)]([
2

2 nji
xx

xf
xf

ji

ij 



   

If  f  is twice continuously differentiable at every point of an open set nRD  , then 

f  is said to be twice continuously  differentiable on D  and is denoted by 

)(2 DCf  . 

Let RRf n :  be continuously differentiable on an open set nRD  . Then for 

Dx  and nRd  , the directional derivative of f at x  in the direction d  is defined 

as  

                   ,)(
)()(

),( lim
0

dxf
xfdxf

dxf T



 





                                    (1.5) 

where )(xf  is the gradient of f  at x , an 1n  vector. 

 For any , , Ddxx   if ),(1 DCf   then 

                                    tdtdxfxfdxf T d)()()(
1

0

   

                                                    



dx

x

fxf  d)()( .                                       (1.6) 

Thus, 

                                 ).,(,)()()( dxxdfxfdxf                           (1.7) 

Similarly, for all Dyx , , we have 
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                         ),1,0(),())(()()(  txyxytxfxfyf T                      (1.8) 

or 

                        ).()()()()( xyoxyxfxfyf T                                        (1.9) 

It follows from (1.8) that 

                                   ,)(sup|)()(|
),(




fxyxfyf
yxL




                                 (1.10) 

where ),( yxL  denotes the line segment with endpoint x  and y . 

Let )(2 DCf  . For any nRdDx    , , the second directional derivative of f  at x  

in direction d  is defined as 

                          ,
),(),(

),( lim
0 





dxfddxf
dxf






                                   (1.11) 

which is equal to ,)(2 dxfd T  where )(2 xf  denotes the Hessian of f at x . For 

any Ddxx , , there exists ),( dxx   such that  

                           ,)(
2

1
)()()( 2 dfddxfxfdxf TT                            (1.12) 

or 

                     ).()(
2

1
)()()(

22 dodxfddxfxfdxf TT                    (1.13) 

Let RRh n : , RRg m : , mn RRf : . Let 1Cf  , 1Cg  , )).(()( 00 xfgxh   

Then the chain rule is 

                                           ),())(()( 000 xfxfgxh                                           (1.14) 

where nmj

i

x

xf
xf 




 ]

)(
[)( 0

0   is an nm  matrix. Also 

               .])([
)]([

)()]([)()( 0

1

0

00

2

00





 



xf
f

xfg
xfxfgxfxh i

m

i i

T
            (1.15) 

Next, we discuss the calculus of vector-valued functions. 
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A continuous function mn RRF :  is continuously differentiable at nRx  if each 

component function ),...,1( mif i  is continuously differentiable at x . The derivative 

nmRxF  )(  of F at x  is called the Jacobian matrix of F at x , 

                                                 )()( xJxF  , 

with components 

                            ),()]([)]([ x
x

f
xJxF

j

i
ijij




  .,...,1;,...,1 njmi     

If mn RRF :  is continuously differentiable in an open convex set nRD  , then 

for any Ddxx , , we have 

                              



dx

x

FddttdxJxFdxF .d)()()()(
1

0

                     (1.16) 

In many of our considerations, we shall  single out the different types of continuities. 

Definition 1.3. mn RRDF :  is Holder continuous on D  if there exists 

constants 0  and ]1,0(p  so that for all Dyx . , 

                                         
p

xyxFyF  )()( .                                           (1.17) 

If 1p  then F  is called Lipschitz continuous on D  and   is a Lipschitz constant. 

 

1.4 Convex Set and Convex Function 

 

Convex sets and convex functions play an important role in the study of 

optimization.  

Definition 1.4. Let the set nRS  . If for any Sxx 21, , we have 

],1,0[,)1( 21   Sxx  then S is said to be convex set.  
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Definition 1.5.   Let nRS   be a nonempty convex set. Let RRSf n : . If for 

any Sxx 21, and all ),1,0(  we have 

                       ),()1()())1(( 2121 xfxfxxf                                     (1.18) 

then f  is  said to be convex on S . If the inequality (1.18) is strict inequality for all 

21 xx  , i.e.,  

                     ),()1()())1(( 2121 xfxfxxf                                       (1.19) 

then f is called a strict convex function on S .  If there is constant 0c  such that for 

any  Sxx 21, , 

    ,)1(
2

1
)()1()())1((

2

212121 xxcxfxfxxf                   (1.20) 

then f  is called a uniformly (or strongly) convex function on S . 

If f  is a convex (strictly convex, uniformly convex) function on S , then f  is said 

to be concave (strictly concave, uniformly concave) function. Next, we give some 

properties of convex functions. 

Theorem 1.1.  1. Let f  be a convex function on convex set nRS   and 0  is a 

real number  , then f  is also a convex function on S . 

2. Let 21 , ff  be convex functions on convex set S  ,  then 21 ff   is also a  

 convex function on .S  

3. Let mfff ,...,, 21  be convex function on a convex set S  and 0,...,, 21 m  are 

real numbers, then  i

m

i

i f
1

  is also a convex function on S . 

Proof.   We only prove the second statement. The others are similar. 

Let Sxx 21,  and 10  , then 

                      ))1(())1(( 212211 xxfxxf    
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                   )].()()[1()]()([ 22212211 xfxfxfxf                           

  

Continuity is an important property of convex function. However, it is not sure that 

convex function whose domain is not open is continuous. 

The following theorem shows that a convex function is continuous on an open 

convex set or the interior of its domain. 

  

Theorem 1.2.   Let DS   be an open  convex set and RRDf n :  be convex. 

Then f  is continuous on S .  

Proof.   Let 0x  be an arbitrary point in S . Since S is  an open convex set, we can 

find 1n  points  Sxx n 11,...,  such that the interior of the convex hull  

                      }1,0,|{
1

1

1

1

 








n

i

iii

n

i

i xxxC   

is not empty and Cx int0  . 

Now let ),(max 11 ini xf  then 

                    ,,)()()(
1

1

1

1

Cxxfxfxf i

n

i
ii

n

i
i  









                                  (1.21) 

so that f  is bounded over C . Also, since Cx int0  , there is a 0  such that 

,),( 0 CxB   where }.|{),( 00   xxxxB  Hence for arbitrary ),0( Bh  

and ]1,0[ , we have  

                              ).(
1

)(
1

1
000 hxhxx 













                                       (1.22) 

Since f  is convex onC , then 

                              ).(
1

)(
1

1
)( 000 hxfhxfxf 













                           (1.23) 
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By (1.21) and (1.23), we have 

                 )).(())()(()()( 00000 xfhxfxfxfhxf               (1.24) 

On the other hand, 

              ),()1()())1()(()( 00000 xfhxfxhxfhxf         

which is 

               )).(())()(()()( 00000 xfxfhxfxfhxf                   (1.25) 

Therefore (1.24) and (1.25) give 

                             .|)(||)()(| 000   xfxfhxf                                     (1.26) 

Now, for given 0 , choose  '  so that .|)(| 0

'  xf  Set hd   with 

h , then ),0( Bd   and 

                               |)()(| 00 xfdxf .            

 

If convex function is differentiable, we can describe the characterization of 

differential convex functions. The following theorem gives the first order 

characterization of differential convex functions. 

Theorem 1.3.   Let nRS   be a nonempty open convex set and let RRSf n :   

be a differentiable function. Then f  is convex if and only if  

       ),()()()( xyxfxfyf T   ., Syx                                               (1.27) 

Similarly, f  is strictly convex on S . 

              .,,),()()()( xySyxxyxfxfyf T                                     (1.28) 

Furthermore, f is strongly (or uniformly) convex if and only if 

         ,,,
2

1
)()()()(

2
Syxxycxyxfxfyf T                               (1.29) 

where 0c  is a constant. 
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Proof.   Necessity: Let )(xf  be a convex function, then for all   with 10  , 

                        ).()1()())1(( xfyfxyf                                           

Hence, 

                        ).()(
)())((

xfyf
xfxyxf







 

Setting 0  yields 

                            ).()()()( xfyfxyxf T   

Sufficiency: Assume that (1.27) holds. Choose any Sxx 21,  and set 

.10 ,)1( 21   xxx  Then 

                             ),()()()( 11 xxxfxfxf T   

                             ).()()()( 22 xxxfxfxf T   

Hence  

             ))1(()()()()1()( 2121 xxxxfxfxfxf T    

                                                 ),)1(( 21 xxf    

which indicates that )(xf  is a convex function. 

Similarly, we can prove (1.28) and (1.29) by use of (1.27). For example, from the 

definition of strictly convex, we have 

                          )).()(()())(( xfyfxfxyxf    

Then, using (1.27) and the above inequality, we have 

)),()(()())(()(),( xfyfxfxyxfxyxf    

which is the required (1.28). 

 To obtain (1.29), it is enough to apply (1.27) to the function . . 
2

1 2
cf           

 

Definition 1.4 of convex function indicates that function value is below the chord, 


