

UNIVERSITI PUTRA MALAYSIA

GLOBALIZATION OF BARZILAI AND BORWEIN METHOD FOR UNCONSTRAINED OPTIMIZATION

MAHBOUBEH FARID IPM 2009 10

GLOBALIZATION OF BARZILAI AND BORWEIN METHOD FOR

UNCONSTRAINED OPTIMIZATION

By

MAHBOUBEH FARID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

December 2009

Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

GLOBALIZATION OF BARZILAI AND BORWEIN METHOD FOR UNCONSTRAINED OPTIMIZATION

By

MAHBOUBEH FARID

December 2009

Chairman: Professor Malik Hj. Abu Hassan, PhD

Faculty: Institute for Mathematical Research

The focus of this thesis is on finding the unconstrained minimizer of a function. Specifically, we will focus on the Barzilai and Borwein (BB) method that is a famous two-point stepsize gradient method. First we briefly give some mathematical background. Then we discuss the (BB) method that is important in the area of optimization. A review of the minimization methods currently available that can be used to solve unconstrained optimization is also given.

Due to BB method's simplicity, low storage and numerical efficiency, the Barzilai and Borwein method has received a good deal of attention in the optimization community but despite all these advances, stepsize of BB method is computed by means of simple approximation of Hessian in the form of scalar multiple of identity and especially the BB method is not monotone, and it is not easy to generalize the method to general nonlinear functions. Due to the presence of these deficiencies, we introduce new gradient-type methods in the frame of BB method including a new

gradient method via weak secant equation (quasi-Cauchy relation), improved Hessian approximation and scaling the diagonal updating.

The proposed methods are a kind of fixed step gradient method like that of Barzilai and Borwein method. In contrast with the Barzilai and Borwein approach's in which stepsize is computed by means of simple approximation of the Hessian in the form of scalar multiple of identity, the proposed methods consider approximation of Hessian in diagonal matrix. Incorporate with monotone strategies, the resulting algorithms belong to the class of monotone gradient methods with globally convergence. Numerical results suggest that for non-quadratic minimization problem, the new methods clearly outperform the Barzilai- Borwein method.

Finally we comment on some achievement in our researches. Possible extensions are also given to conclude this thesis.

Abstrak tesis untuk dibentangkan kepada Senat Universiti Putra Malaysia bagi memenuhi syarat Ijazah Doktor Falsafah.

GLOBALISASI KAEDAH BARZILAI DAN BORWEIN BAGI PENGOPTIMUMAN TAK BERKEKANGAN

Oleh

MAHBOUBEH FARID

Disember 2009

Pengerusi: Professor Malik Hj. Abu Hassan, PhD

Fakulti:Institute Penyelidikan Matematik

Fokus tesis ini adalah untuk mencari suatu minimum tak berkekangan bagi sesuatu fungsi. Secara khusus, kami akan memberi tumpuan kepada kaedah Barzilai dan Borwein (BB) yang terkemuka iaitu kaedah kecerunan saiz langkah dua titik. Pertama sekali, kami membincangkan tentang latar belakang matematik secara ringkas. Kemudian, kami menumpukan perbincangan kepada kaedah BB yang memainkan peranan penting dalam bidang pengoptimuman. Suatu sorotan tentang kaedah peminimuman semasa bagi menyelesaikan masalah pengoptimuman tak berkekangan juga diberi.

Disebabkan oleh kemudahan, storan rendah dan kecekapan berangka kaedah BB, ia telah menerima perhatian dalam komuniti pengoptimuman tetapi walaupun dengan kemajuannya, saiz langkah bagi kaedah BB dikira secara penganggaran mudah Hessan dalam bentuk gandaan skalar matriks identiti dan terutamanya kaedah BB tidak ekanada, dan ia tidak mudah diitlakan ini kepada fungsi tak linear am. Disebabkan oleh kehadiran kelemahan-kelemahan tersebut, kami memperkenalkan kaedah kecerunan baru dalam rangka kaedah BB termasuk suatu kaedah kecerunan baru melalui persamaan sekan lemah (perhubungan kuasi-Cauchy), menambahbaik penghampiran Hessan dan menskalar pengemaskinian pepenjuru.

Kaedah yang dicadangkan adalah suatu jenis kaedah kecerunan langkah tetap sepertimana kaedah Barzilai dan Borwein. Berbeza dari pendekatan Barzilai dan Borwein di mana saiz langkah dikira melalui penghampiran mudah Hessan dalam bentuk gandaan skalar matriks identiti, kaedah yang dicadangkan mempertimbangkan penghampiran Hessan dalam bentuk matriks pepenjuru. Bergabung dengan strategi ekanada pada setiap lelaran, algoritma yang terhasil adalah anggota kepada kelas kaedah kecerunan ekanada dengan penumpuan sejagat. Keputusan berangka mencadangkan bahawa untuk masalah peminimuman bukan kuadratik, kaedah baharu yang dicadangkan secara jelasnya adalah lebih baik daripada kaedah Barzilai-Borwein.

Akhir sekali, kami mengulas tentang pencapaian dalam penyelidikan kami. Perlanjutan yang mungkin juga diberi bagi mengakhiri tesis ini.

ACKNOWLEDGEMENTS

First and foremost I offer my sincerest gratitude to my chairman, Professor Dr. Malik Hj. Abu Hassan who has supported me throughout my thesis from the initial to the final level with his patience and knowledge whilst allowing me the room to work in my own way. I would like to express my deep and sincere gratitude to my cosupervisor, Dr. Leong Wah June. His wide knowledge and his logical way of thinking have been of great value for me. His encouraging, detailed and constructive comments have enabled me to develop an understanding of the subject. I am also grateful to Dr. Mansor Monsi for serving in the supervisory committee.

I offer my regards to the Head of Institute, academic and general staffs of the Institute for Mathematical Research, University Putra Malaysia, who supported me in any respect during the completion of the project. The financial support of the University Putra Malaysia under Special Graduate Research is gratefully acknowledged.

I owe my loving thanks to my parents who have lost a lot due to my research abroad. Without their encouragement, understanding and support it would have been impossible for me to finish this work. My special gratitude is due to my brother, for his loving support and personal guidance.

APPROVAL SHEET 1

I certify that Examination Committee has met on date of viva voce to conduct the final examination of Mahboubeh Farid on her Degree of Doctor of Philosophy thesis entitled "Globalization of Barzilai and Borwein Method for Unconstrained Optimization" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Degree of Doctor of Philosophy.

Member of the Examination committee were as follows

ISA DAUD, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

DATO' MOHAMED SULEIMAN, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

NORIHAN MD. ARIFFIN, PhD

Faculty of Science Universiti Putra Malaysia (Internal Examiner)

ISMAIL MOHD, PhD

Professor Department of Mathematics, Faculty of Science and Technology Universiti Malaysia Terengganu Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

APPROVAL SHEET 2

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory committee were as follows:

MALIK B HJ ABU HASSAN, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

LEONG WAH JUNE, PhD

Faculty of Science Universiti Putra Malaysia (Member)

MANSOR B MONSI, PhD

Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 February 2010

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and it is not concurrently, submitted for any other degree at University Putra Malaysia or at any institutions.

MAHBOUBEH FARID

Date: 17 February 2010

TABLE OF CONTENETS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACNOWLEDGEMENTS	vi
APPROVAL SHEET 1	vii
APPROVAL SHEET 2	viii
DECLARATION	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF NOTATIONS	XV

CHAPTER

1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 General Form of Optimization Problems	1
	1.3 Function and Differential	2
	1.4 Convex Set and Convex Function	5
	1.5 Optimality Condition for Unconstrained Optimization	16
	1.6 Objective of the Research	21
	1.7 Outline of Thesis	21
2	LITERATURE REVIEW	24
	2.1 Introduction	24
	2.2 Rate of Convergence	25
	2.3 Line Search Method	30
	2.4 Convergence Theory for Exact Line Search	33
	2.5 The Steepest Descent Method	36
	2.6 Convergence of the Steepest Descent Method	37
	2.7 Newton's Method	39
	2.8 Quasi-Newton Equation	40
	2.8.1 Davidon Fletcher Powell (DFP) Update	42
	2.8.2 Broyden Fletcher Goldfarb Shanno (BFGS) Update	43
	2.9 Barzilai and Borwein Gradient Method	44
	2.10 Conclusion	46
3	A MONOTONE GRADIENT METHOD VIA WEAK	
	SECANT EQUATION FOR UNCONSTRAINED	
	OPTIMIZATION	47
	3.1 Introduction	47
	3.2 Gradient Methods via Weak Secant Equation	49
	3.3 Monotone Gradient Method	54
	3.4 Convergence Analysis	55
	3.5 Numerical Results	57

	3.6 Conclusion	63
4	A NEW GRADIENT METHOD VIA QUASI-CAUCHY	
	RELATION WHICH GUARANTEES DESCENT	64
	4.1 Introduction	64
	4.2 Gradient Method via Quasi-Cauchy Relation	66
	4.3 Convergence Analysis	69
	4.4 Numerical Results	72
	4.5 Conclusion	79
5	IMPROVED HESSIAN APPROXIMATION WITH	
	MODIFIED QUASI-CAUCHY RELATION FOR	
	GRADIENT METHOD	80
	5.1 Introduction	80
	5.2 Improved Diagonal Updating	82
	5.2.1 Diagonal Updating via Modified Quasi-	00
	Cauchy Relation	82
	5.2.2 Diagonal Updating via Modified Weak	05
	Secant Equation	85
	5.3 Convergence Analysis	89 89
	5.3.1 Global Convergence of M-DiaGRAD Algorithm5.3.2 Global Convergence of MODIFIED-	09
	MGRAD Algorithm	90
	5.4 Numerical Result	90 91
	5.4.1 Numerical Result of M-DiaGRAD Algorithm	91 91
	5.4.2 Numerical Result of MODIFIED MGRAD Algorithm	106
	5.5 Conclusion	110
6	SCALING THE DIAGONAL UPDATES FOR LARGE-	
	SCALE UNCONSTRAINED OPTIMIZATION	111
	6.1 Introduction	111
	6.2 Scaling the Diagonal Updates	113
	6.3 Convergence Analysis	116
	6.4 Numerical Results	118
	6.5 Conclusion	127
7	CONCLUSIONS AND RECOMMENDATION FOR	
	FUTURE STUDIES	128
	7.1 Conclusion	128
	7.2 Future Studies	129
REFER	ENCES	131
APPENI	DICES	135
BIODA	FA OF STUDENT	141
LIST OI	FPUBLICATIONS	142

LIST OF TABLES

Table		Page
3.1	Comparison of the BB and MONOGRAD methods	59
3.2	Comparison of the BB and MONOGRAD methods	60
3.3	Comparison of the BB and MONOGRAD methods	61
3.4	Comparison of the BB and MONOGRAD methods	62
4.1	Comparison of the BB and MonoCauchy methods	73
4.2	Comparison of the BB and MonoCauchy methods	74
4.3	Comparison of the BB and MonoCauchy methods	75
4.4	Comparison of the BB and MonoCauchy methods	76
4.5	Comparison of the BB and MonoCauchy methods	77
4.6	Comparison of the BB and MonoCauchy methods	78
5.1	Comparison of the BB(1) and M-DiaGRAD(1) methods	94
5.2	Comparison of the BB(1) and M-DiaGRAD(1) methods	95
5.3	Comparison of the BB(1) and M-DiaGRAD(1) methods	96
5.4	Comparison of the BB(1) and M-DiaGRAD(1) methods	97
5.5	Comparison of the BB(1) and M-DiaGRAD(1) methods	98
5.6	Comparison of the BB(1) and M-DiaGRAD(1) methods	99
5.7	Comparison of the BB(2) and M-DiaGRAD(2) methods	100
5.8	Comparison of the BB(2) and M-DiaGRAD(2) methods	101
5.9	Comparison of the BB(2) and M-DiaGRAD(2) methods	102
5.10	Comparison of the BB(2) and M-DiaGRAD(2) methods	103
5.11	Comparison of the BB(2) and M-DiaGRAD(2) methods	104

5.12	Comparison of the BB(2) and M-DiaGRAD(2) methods	105
5.13	Comparison of the BB and MODIFIED MGRAD methods	107
5.14	Comparison of the BB and MODIFIED MGRAD methods	108
5.15	Comparison of the BB and MODIFIED MGRAD methods	109
6.1	Comparison of the BB, MDGrad and SMDGrad methods	122
6.2	Comparison of the BB, MDGrad and SMDGrad methods	123
6.3	Comparison of the BB, MDGrad and SMDGrad methods	124
6.4	Comparison of the BB, MDGrad and SMDGrad methods	125
6.5	Comparison of the BB, MDGrad and SMDGrad methods	126

LIST OF FIGURES

Figure		Page
3.1	BB vs MONOGRAD	58
5.1	Performance profile of BB(1), BB(2), M-DiaGRAD(1)	
	and M-DiaGRAD(2) on [0,10] for iteration counts	93
6.1	Performance profile of BB, MDGrad and SMDGrad	
	methods on [0,6] for iteration counts	120
6.2	Performance profile of BB, MDGrad and SMDGrad	
	methods on [0,10] for CPU time	121

LIST OF NOTATIONS

- 1. R^n denotes the linear n dimensional Real space.
- 2. g is the $n \times 1$ gradient vector of function f, with components

$$g^{(i)} = \frac{\partial f}{\partial x^{(i)}}, \quad i = 1, 2, \dots, n.$$

3. G is the $n \times n$ Hessian matrix of f, that is (i, j) th element of G is given by

$$G^{(i,j)} = \frac{\partial^2 f(x)}{\partial x^{(i)} \partial x^{(j)}}, \quad 1 \le i, j \le n.$$

- 4. x_k is the k th approximation to x^* , a minimum of f.
- 5. g_k is the gradient vector of f at x_k .
- 6. D_k is an $n \times n k$ th diagonal matrix approximation to G.
- 7. U_k is an $n \times n k$ th diagonal matrix approximation to G^{-1} .
- 8. B_k is an $n \times n k$ th matrix approximation to G.
- 9. A^{T} denotes the transpose of matrix A.
- 10. ||y|| denotes an arbitrary norm of y.
- 11. min denotes the minimum.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Optimization Theory and Methods is a young subject in applied mathematics, computational mathematics and operations research which has wide applications in science, engineering, business management, military and space technology. The subject is involved in optimal solution of problems which are defined mathematically, i.e., given a practical problem, the "best" solution to the problem can be found from many schemes by means of scientific methods and tools.

1.2 General Form of Optimization Problems

The general form of optimization problems is

$$\min f(x) \tag{1.1}$$

s.t $x \in \mathbb{R}^n$

where $x \in \mathbb{R}^n$ is a decision variable, f(x) an objective function, $X \subset \mathbb{R}^n$ a constraint set or feasible region. Particularly, if the constraint set $X = \mathbb{R}^n$, the optimization problem (1.1) is called an unconstrained optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x) \tag{1.2}$$

The constrained optimization problem can be written as follows:

$$\min_{x\in R^n}f(x)$$

s.t.
$$c_i(x) = 0, \quad i \in E,$$
 (1.3)
 $c_i(x) \ge 0, \quad i \in I,$

where *E* and *I* are, respectively, the index set of equality constraints and inequality constraints, $c_i(x)$, $(i = 1,...,m \in E \cup I)$ are constrained functions. When the objective function and constrained functions are linear functions, the problem is called linear programming. Otherwise, the problem is called nonlinear programming.

Definition 1.1. A point x^* is a global minimizer if $f(x^*) \le f(x)$ for all x, where x ranges over all of \mathbb{R}^n .

Definition 1.2. A point x^* is a *local minimizer* if there is neighbourhood N of x^* such that $f(x^*) \le f(x)$ for $x \in N$.

This thesis studies solving unconstrained optimization problem (1.2) from the view points of both theory and numerical methods where f is continuously differentiable function and a local minimizer provides a satisfactory solution.

Additional information about this topic can be found in Nocedal and Wright (1999) and Sun and Yuan (2006).

1.3 Function and Differential

A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be continuously differentiable at $x \in \mathbb{R}^n$, if $(\frac{\partial f(x)}{\partial x_i})$ exists and is continuous, i = 1, 2, ..., n. The gradient of f at x is

defined as

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right]^T.$$
(1.4)

If f is continuously differentiable at every point of an open set $D \subset \mathbb{R}^n$, then f is said to be continuously differentiable on D and is denoted by $f \in C^1(D)$. A continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called twice continuously differentiable at $x \in \mathbb{R}^n$, if $(\frac{\partial^2 f(x)}{\partial x_i \partial x_j})$ exists and is continuous, i = 1, 2, ..., n. The

Hessian of f is defined as the $n \times n$ symmetric matrix with elements

$$\left[\nabla^2 f(x)\right]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad 1 \le i, j \le n.$$

If f is twice continuously differentiable at every point of an open set $D \subset \mathbb{R}^n$, then f is said to be twice continuously differentiable on D and is denoted by $f \in C^2(D)$.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set $D \subset \mathbb{R}^n$. Then for $x \in D$ and $d \in \mathbb{R}^n$, the directional derivative of f at x in the direction d is defined as

$$f'(x,d) = \lim_{\theta \to 0} \frac{f(x+\theta d) - f(x)}{\theta} = \nabla f(x)^T d, \qquad (1.5)$$

where $\nabla f(x)$ is the gradient of f at x, an $n \times 1$ vector.

For any $x, x + d \in D$, if $f \in C^{1}(D)$, then

$$f(x+d) = f(x) + \int_{0}^{1} \nabla f(x+td)^{T} ddt$$

= $f(x) + \int_{x}^{x+d} \nabla f(\xi) d\xi$. (1.6)

Thus,

$$f(x+d) = f(x) + \nabla f(\xi)d, \quad \xi \in (x, x+d).$$
 (1.7)

Similarly, for all $x, y \in D$, we have

$$f(y) = f(x) + \nabla f(x + t(y - x))^{T} (y - x), \quad t \in (0, 1),$$
(1.8)

or

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + o(||y - x||).$$
(1.9)

It follows from (1.8) that

$$|f(y) - f(x)| \le ||y - x|| \sup_{\xi \in L(x, y)} ||f'(\xi)||,$$
(1.10)

where L(x, y) denotes the line segment with endpoint x and y.

Let $f \in C^2(D)$. For any $x \in D$, $d \in R^n$, the second directional derivative of f at x in direction d is defined as

$$f''(x,d) = \lim_{\theta \to 0} \frac{f'(x+\theta d, d) - f'(x,d)}{\theta},$$
(1.11)

which is equal to $d^T \nabla^2 f(x) d$, where $\nabla^2 f(x)$ denotes the Hessian of f at x. For any x, $x + d \in D$, there exists $\zeta \in (x, x + d)$ such that

$$f(x+d) = f(x) + \nabla f(x)^{T} d + \frac{1}{2} d^{T} \nabla^{2} f(\xi) d, \qquad (1.12)$$

or

$$f(x+d) = f(x) + \nabla f(x)^{T} d + \frac{1}{2} d^{T} \nabla^{2} f(x) d + o(||d||^{2}).$$
(1.13)

Let $h: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^m \to \mathbb{R}$, $f: \mathbb{R}^n \to \mathbb{R}^m$. Let $f \in \mathbb{C}^1$, $g \in \mathbb{C}^1$, $h(x_0) = g(f(x_0))$.

Then the chain rule is

$$h'(x_0) = g'(f(x_0))f'(x_0), \qquad (1.14)$$

where $f'(x_0) = \left[\frac{\partial f_i(x_0)}{\partial x^j}\right]_{m \times n}$ is an $m \times n$ matrix. Also

$$h''(x_0) = \nabla f(x_0)^T \nabla^2 g[f(x_0)] \nabla f(x_0) + \sum_{i=1}^m \frac{\partial g[f(x_0)]}{\partial f_i} [f_i(x_0)]''.$$
(1.15)

Next, we discuss the calculus of vector-valued functions.

A continuous function $F : \mathbb{R}^n \to \mathbb{R}^m$ is continuously differentiable at $x \in \mathbb{R}^n$ if each component function $f_i (i = 1, ..., m)$ is continuously differentiable at x. The derivative $F'(x) \in \mathbb{R}^{m \times n}$ of F at x is called the Jacobian matrix of F at x,

$$F'(x) = J(x),$$

with components

$$[F'(x)]_{ij} = [J(x)]_{ij} = \frac{\partial f_i}{\partial x^j}(x), \ i = 1,...,m; \ j = 1,...,n.$$

If $F: \mathbb{R}^n \to \mathbb{R}^m$ is continuously differentiable in an open convex set $D \subset \mathbb{R}^n$, then for any $x, x+d \in D$, we have

$$F(x+d) - F(x) = \int_{0}^{1} J(x+td) ddt = \int_{x}^{x+d} F'(\xi) d\xi.$$
 (1.16)

In many of our considerations, we shall single out the different types of continuities. **Definition 1.3.** $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ is *Holder continuous* on *D* if there exists constants $\gamma \ge 0$ and $p \in (0,1]$ so that for all $x.y \in D$,

$$||F(y) - F(x)|| \le \gamma ||y - x||^p$$
. (1.17)

If p = 1 then F is called *Lipschitz continuous* on D and γ is a *Lipschitz constant*.

1.4 Convex Set and Convex Function

Convex sets and convex functions play an important role in the study of optimization.

Definition 1.4. Let the set $S \subset \mathbb{R}^n$. If for any $x_1, x_2 \in S$, we have $\alpha x_1 + (1 - \alpha) x_2 \in S$, $\forall \alpha \in [0,1]$, then S is said to be *convex set*.

Definition 1.5. Let $S \subset \mathbb{R}^n$ be a nonempty convex set. Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$. If for any $x_1, x_2 \in S$ and all $\alpha \in (0,1)$, we have

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2),$$
(1.18)

then f is said to be *convex* on S. If the inequality (1.18) is strict inequality for all $x_1 \neq x_2$, i.e.,

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2),$$
(1.19)

then f is called a *strict convex function* on S. If there is constant c > 0 such that for any $x_1, x_2 \in S$,

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2) - \frac{1}{2}c\alpha(1 - \alpha)||x_1 - x_2||^2,$$
(1.20)

then f is called a *uniformly (or strongly) convex function* on S.

If -f is a convex (strictly convex, uniformly convex) function on S, then f is said to be concave (strictly concave, uniformly concave) function. Next, we give some properties of convex functions.

Theorem 1.1. 1. Let f be a convex function on convex set $S \subset \mathbb{R}^n$ and $\alpha \ge 0$ is a real number, then αf is also a convex function on S.

2. Let f_1, f_2 be convex functions on convex set S , then $f_1 + f_2$ is also a

convex function on S.

3. Let $f_1, f_2, ..., f_m$ be convex function on a convex set S and $\alpha_1, \alpha_2, ..., \alpha_m \ge 0$ are real numbers, then $\sum_{i=1}^m \alpha_i f_i$ is also a convex function on S.

Proof. We only prove the second statement. The others are similar.

Let $x_1, x_2 \in S$ and $0 < \alpha < 1$, then

$$f_1(\alpha x_1 + (1 - \alpha)x_2) + f_2(\alpha x_1 + (1 - \alpha)x_2)$$

$$\leq \alpha [f_1(x_1) + f_2(x_2)] + (1 - \alpha) [f_1(x_2) + f_2(x_2)].$$

Continuity is an important property of convex function. However, it is not sure that convex function whose domain is not open is continuous.

The following theorem shows that a convex function is continuous on an open convex set or the interior of its domain.

Theorem 1.2. Let $S \subset D$ be an open convex set and $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be convex. Then f is continuous on S.

Proof. Let x_0 be an arbitrary point in *S*. Since *S* is an open convex set, we can find n+1 points $x_1, ..., x_{n+1} \in S$ such that the interior of the convex hull

$$C = \{x \mid x = \sum_{i=1}^{n+1} \alpha_i x_i, \alpha_i \ge 0, \sum_{i=1}^{n+1} \alpha_i = 1\}$$

is not empty and $x_0 \in \text{int } C$.

Now let $\alpha = \max_{1 \le i \le n+1} f(x_i)$, then

$$f(x) = f(\sum_{i=1}^{n+1} \alpha_i x_i) \le \sum_{i=1}^{n+1} \alpha_i f(x_i) \le \alpha, \forall x \in C,$$
(1.21)

so that f is bounded over C. Also, since $x_0 \in \text{int } C$, there is a $\delta > 0$ such that $B(x_0, \delta) \subset C$, where $B(x_0, \delta) = \{x \mid ||x - x_0|| \le \delta\}$. Hence for arbitrary $h \in B(0, \delta)$ and $\lambda \in [0,1]$, we have

$$x_{0} = \frac{1}{1+\lambda} (x_{0} + \lambda h) + \frac{\lambda}{1+\lambda} (x_{0} - h).$$
(1.22)

Since f is convex on C, then

$$f(x_0) = \frac{1}{1+\lambda} f(x_0 + \lambda h) + \frac{\lambda}{1+\lambda} f(x_0 - h).$$
(1.23)

By (1.21) and (1.23), we have

$$f(x_0 + \lambda h) - f(x_0) \ge \lambda (f(x_0) - f(x_0 - h)) \ge -\lambda(\alpha - f(x_0)).$$
(1.24)

On the other hand,

$$f(x_0 + \lambda h) = f(\lambda(x_0 + h) + (1 - \lambda)x_0) \le \lambda f(x_0 + h) + (1 - \lambda)f(x_0),$$

which is

$$f(x_0 + \lambda h) - f(x_0) \le \lambda (f(x_0 + h) - f(x_0)) \le \lambda (\alpha - f(x_0)).$$
(1.25)

Therefore (1.24) and (1.25) give

$$|f(x_{0} + \lambda h) - f(x_{0})| \le \lambda |f(x_{0}) - \alpha|.$$
(1.26)

Now, for given $\varepsilon > 0$, choose $\delta' \le \delta$ so that $\delta' | f(x_0) - \alpha | \le \varepsilon \delta$. Set $d = \lambda h$ with $||h|| = \delta$, then $d \in B(0, \delta)$ and

$$|f(x_0+d)-f(x_0)| \leq \varepsilon. \qquad \Box$$

If convex function is differentiable, we can describe the characterization of differential convex functions. The following theorem gives the first order characterization of differential convex functions.

Theorem 1.3. Let $S \subset \mathbb{R}^n$ be a nonempty open convex set and let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \ \forall x, y \in S.$$

$$(1.27)$$

Similarly, f is strictly convex on S.

$$f(y) > f(x) + \nabla f(x)^T (y - x), \quad \forall x, y \in S, y \neq x.$$

$$(1.28)$$

Furthermore, f is strongly (or uniformly) convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} c \|y - x\|^{2}, \quad \forall x, y \in S,$$
(1.29)

where c > 0 is a constant.

Proof. Necessity: Let f(x) be a convex function, then for all α with $0 < \alpha < 1$,

$$f(\alpha y + (1 - \alpha)x) \le \alpha f(y) + (1 - \alpha)f(x).$$

Hence,

$$\frac{f(x+\alpha(y-x))-f(x)}{\alpha} \le f(y)-f(x).$$

Setting $\alpha \rightarrow 0$ yields

$$\nabla f(x)^T (y-x) \le f(y) - f(x).$$

Sufficiency: Assume that (1.27) holds. Choose any $x_1, x_2 \in S$ and set $x = \alpha x_1 + (1 - \alpha) x_2, 0 < \alpha < 1$. Then

$$f(x_1) \ge f(x) + \nabla f(x)^T (x_1 - x),$$

 $f(x_2) \ge f(x) + \nabla f(x)^T (x_2 - x).$

Hence

$$\alpha f(x_1) + (1 - \alpha) f(x_2) \ge f(x) + \nabla f(x)^T (\alpha x_1 + (1 - \alpha) x_2 - x)$$

= $f(\alpha x_1 + (1 - \alpha) x_2),$

which indicates that f(x) is a convex function.

Similarly, we can prove (1.28) and (1.29) by use of (1.27). For example, from the definition of strictly convex, we have

$$f(x + \alpha(y - x)) - f(x) < \alpha(f(y) - f(x)).$$

Then, using (1.27) and the above inequality, we have

$$\langle \nabla f(x), \alpha(y-x) \rangle \le f(x+\alpha(y-x)) - f(x) < \alpha(f(y) - f(x)),$$

which is the required (1.28).

To obtain (1.29), it is enough to apply (1.27) to the function $f - \frac{1}{2}c \| \cdot \|^2$.

Definition 1.4 of convex function indicates that function value is below the chord,

