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Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in 
fulfilment of the requirements for the degree of Master Science. 

ONSET OF CONVECTION IN POROUS MEDIA INDUCED BY 
TRANSIENT HEAT CONDUCfION 

By 

SAM TORNG 

October 1999 

Chairman: Associate Professor Tan Ka Kheng. Ph.D, P.Eng 

Faculty: Engineering 

In this study a computational fluid dynamics (CFD) package - FLUENTIUNS was 

adopted to simulate the occurrence of convection in an isotropic porous media. The 

porous layer was homogenous and bounded by two horizontal rigid surfaces. 2-D 

simulation for steady state and time-dependent were conducted for the bottom surface 

with two boundary conditions: i) Fixed Surface Temperature - FST, ii) Constant Heat 

Flux - CHF. The top surface was maintained at FST boundary condition and the vertical 

wall was adiabatic. 

The 2-D steady state simulations were carried out to investigate the occurrence of 

convection as predicted by the linear theory. The 2-D time-dependent were conducted to 

investigate the possibility of adopting Tan and Thorp's transient Rayleigh number theory 

in deep layer of porous media saturated with water. 

xv 



The CFD was successful in modeling the onset of convection in saturated porous 

media. The range of maximum velocity at the onset of convection and the finger shape of 

the thermal plume were in agreement with the literatures (Horton and Roger 1949, Elder 

1968). The maximum Nusselt number based on Km for the FST and CHF boundary 

condition were in the range between 3 - 4, depending on the rate of heat transfer. The 

steady state and time-dependent simulation results showed no significant difference in the 

Rayleigh number as predicted by Lapwood (1948) Rae = 39.5, Ribando and Torrance 

(1976) Rae = 27.1 for the FST and CHF boundary condition. The average Rayleigh 

numbers based on Km for the steady state simulation were respectively 32.02 and 32.71 

for the FST and CHF boundary conditions. The average transient Rayleigh numbers for 

the time-dependent simulations were respective 30.90 and 30.04 for FST and CHF 

boundary conditions respectively. 

The deviation of the Rayleigh number may be due to the complexity of the heat 

transfer in porous media as wide difference of thermal diffusivity of the solid and liquid 

that are existing in the saturated porous media. Beside this, large temperature difference 

AT 11 or heat flux qO, imposed on the porous media to induce the convection was against 

the assumption of perturbation theory in which allows only a small disturbance or change 

in density of the fluid and constant fluid properties. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi kepeduan untuk ijazah Master Sains. 

PERMULAAN PEROLAKAN DALAM MEDIA POROS YANG 
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Dalam kajian ini. satu pakaj Pengiraan Dinamik Bendalir (CFD) - FLUENTIUNS 

telah diguna untuk menyimulasi kejadian perolakan di dalam satu media poros isotropik 

Media poros ini adalah sekata, dlbatasi oleh dinding tegak yang adiabatik dan dua 

sempadan horizontal yang tegar. Simulasi dalam keadaan mantap dan keadaan fans telah 

dijalankan untuk sempadan horizontal untuk keadaan i) Permukaan suhu tetap (FST), ii) 

Fluks haba tetap (CHF). Sempadan datar babagian atas dikekalkan pada keadaan FST. 

Simulasi 2-D dengan keadaan keseimbangan dijalankan untuk mengkaji kejadian 

perolakan yang diramalkan oleh teorl linear. Simulasi 2-D dengan keadaan fana 

dijalankan untuk mengkaji kesesuaian mengguna teori konduksi yang dikemukakan oleh 

Tan and Thorpe (1996) dalam media poros yang ditepu dengan air. 
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CFD adalah berkesan dalam pennodelan permulaan perolakan baba dalam media 

poros yang ditepu dengan air . Julat bagi halaju maximum pada permulaan perolakan haba 

dan plum haba yang berbentuk jari adalah sependapat dengan kajian yang lain ( Horton 

and Roger 1949. Elder 1968) Nombor Nusselt maximum yang dicapai berdasarkan Km 

untuk sempadan FST and CHF adalah diantara julat 3 - 4, bergantung kepada kadar 

pemindahan hada. Keputusan simulasi 2-D dalam keadaan mantap dan fana tidak 

menujukkan perbezaan yang besar untuk nombor Raylegh sebagaimana yang diramal 

oleh teori iatitu untuk keadaan sempadan FST Rae::;: 4� (Lapwood, 1948) dan keadaan 

sempadan CHF Rae == 27.1 (Ribando dan Torrance, 1978). Nombor Rayleigh untuk 

simulasi keadaan mantap berdasarkan Km adalah masing-masing 32.02 dan 32.71 untuk 

keadaan sempadan FST dan CHF. Manakala, nombor Rayleigh untuk keadaan fana 

adaalah masing-masing 30.90 dan 30.04 bagi keadaan sempadan FST dan CHF. 

Sisihan nombor Rayleigh mungkin disebabkan oleh pemindahan haba yang 

kompleks dalam media poros. Pemindaban haba dalam media poros adalah lebih 

kompleks daripada cecair disebabkan kewujudan kemeresapan haba yang berbeza bagi 

matriks pepejal dan cecair. Selain daripada itu. perbezaan suhu dan fluks haba yang 

tinggi dikenakan ke atas media poros untuk mengaruh perolakan adalah bertentangan 

dengan "perturbation theory" di mana hanya gangguan atau perubahan ketumpatan yang 

keeil dibenarkan dalam bendalir dan semua sifat-sifat bendalir yang lain dianggap kekal 
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CHAPTER I 

INTRODUCTION 

When a fluid is heated from below or cooled from the top, the density gradient 

decreases in the direction of the gravity field. If the temperature gradient exceeds a 

critical value, buoyancy forces will overcome the retarding influence of the viscous 

force, which will lead to the onset of convection of the fluid. Lord Rayleigh (1916) 

developed the famous thermal instability criterion for the onset of buoyancy 

convection based o� a linear temperature gradient in a fluid layer. In view that natural 

convection is induced by time-dependent and non-linear temperature profile, a great 

number of analytic�l and experimental works had been done on onset of convection 

during transient heat conduction in the past (Morton 1957, Lick 1965), Currie 1967). 

However none of them successfully developed an appropriate transient Rayleigh 

number for continuous fluid. However recently Tan and Thorpe (1996) had developed 

a new transient Rayleigh number for the deep fluid for different boundary conditions 

based on the 13iot number. 

The knowledge of natural convection in a fluid saturated porous media is of 

considerable interest because of its importance in geophysical and engineering 

applications. These included the modeling of geometrical field, high performance 

insulation for building and cold storage, solar power collection. Beginning with the 

classic studies of Horton and Roger (1945) and Lapwood (1948), who investigated the 

critical condition (Rayleigh number) at which the heat transport process changes from 

purely conduction to convection based on the linear stability analysis, a number of 
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experiments and a�alytical work were conducted on the of convection in porous 

media. Among th�m was Elder (1967), who studied the convective flow for 

conditions modera.ted above the critical Rayleigh number. The most recent 

experimental and numerical studies were concentrated on the structure of the 

convective flow and the heat transport in porous media by Lister (1990), Straus and 

Schubert (1988) and Steen and Aidun (1988). Not much of the experimental works 

had been done for the onset of convection in porous media during the transient heat 

conduction except Elder (1968), who had performed unsteady-state laboratory 

experiments on convective flow in Hele-Shaw cell and numerical experiments on the 

porous media. However he failed to develop a comprehensive concept for the 

transient Rayleigh number. 

In this study, a transient Rayleigh number based on Tan and Thorp (1996) 

theory for deep fluid was developed for two boundary conditions (FST and CHF) for 

a semi-infinite por9us media saturated with fluid. A computation fluid dynamic 

(CFD) package FLUENT was used to simulate the onset of convection in a porous 

media. The objectives of the study were: 

i) To simulate the occurrence of convection in porous media as predicted by 

linear theory for FST and CHF boundary condition 

ii) To simulate the time-dependent convection in porous media for FST and CHF 

boundary condition. 

iii) To investig�te the possibility of adopting Tan and Thorpe's theory of the 

transient Rayleigh number in deep layer of porous media saturated with fluid. 



CHAPTERll 

LITERATURE REVIEW 

Steady-State Convection in a Horizontal Layer of Fluid 

Rayleigh (1916) did the first analytical work on thennal instability of finite 

thickness fluid layer. He studied the idealized case of free conducting boundaries with 

an adverse linear temperature gradient typical of steady-state heat transport. He used a 

perturbation expansion of the linearized Boussinesq equations, assuming a convection 

pattern, which v�es, sinusoidal in the horizontal direction. In the Boussinesq 

approximation, the temperature dependence of the fluid properties was neglected, 

except for thermallx induced density difference when they induce buoyant force. He 

showed that there was a critical Rayleigh number Rae, a non-dimensional number now 

named after him, which divides the conduction and the convection regime. For this 

boundary condition the critical Rayleigh number was defined as: 

Ra = gal{3 AT 
= 657 c VK 

Extending tQ the work of Rayleigh (1916), Jeffreys (1928) predicted that for a 

layer of fluid confined between two conducting rigid boundary with different constant 

temperature conditi�n, Rae = 1708, whereas Low (1929) predicted that if one of the 

boundary was rigid flI1d the other one is free, Rae = 1108. 



Onset of Convection in a Horizontal Layer of Fluid 

Induced by Transient Heat Conduction 
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However, in nature, the onset of convection in deep fluid is induced by 

transient heat cOn<\uction with nonlinear temperature profile. This means that the 

conventional steady-state linear stability analysis is not valid except for very 

extremely slow cooling or heating rate with finite fluid layer thickness in an artificial 

laboratory experiment. 

Owing to the above fact, a considerable amount of analytical and experimental 

investigations had "een done in the past to develope the critical transient Rayleigh 

number. The early studies of the onset of convection during transient heat conduction 

had been conducte4 by Morton (1957); Lick (1965); Currie (1967). They had adopted 

the quasi-steady state model for linear stability analysis, whereas Foster (1965) used 

the velocity amplification theory in his study to investigate the onset of convection. 

However none of them were successful in determining the critical Rayleigh number to 

predict the transien� heat convection as pointed out by Tan and Thorpe (1996). 

Tan and Thorp (1996) had derived a new transient Rayleigh number, which 

incorporated the mode and rate of heat transport. The mode of the heat transport is 

characterized by a thennal boundary condition that determines the Biot number and 

the corresponding c,ritical Rayleigh number. The new transient Biot number (Tan and 

Thorpe, 1994 and 1996) is based on an effective thermal depth and depends on the 

mode and rate of hefit transfer. 
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They adopted Pearson's (1958) definition of Biot number, which is based on 

the rate of surface heat flux, where 

Bi= 
dqjdT;s 

(dq/dT)/ 

When the surface is subjected to a constant heat flux (CHF), i.e dq/dTs = 0, Biot 

number = 0; Biot n\lmber = oc when the surface temperature is fixed (FST), i.e dq/dTs 

= oc. By detennining the transient Biot number, the corresponding critical Rayleigh 

number can be found. 

The new tQmsient Rayleigh number is a function of the penetration depth z 

and the local temperature gradient Of/Oz, and is defined as follow: 

Ra = 
gaz4 (aT) 

VK Oz t 

It is derived from the convection Rayleigh number Ra = gai L1T/(KV}, by substituting 

the corresponding (iJ['/ &)z for the Fixed Surface (FST) boundary condition, Constant 

Heat Flux (CHF) boundary condition and Linear Temperatwe (LTR) boundary 

condition as cited by Carslaw and Jaeger (1973). The maximum vertical position Zm«c 

of the critical transient local Rayleigh number is obtained by differentiating the above 

equation. The critical Rayleigh number for the FST, CHF and L TR boundary 

conditions are obtained by substitute the corresponding Zm«c for the FST, CHF and 

LTR model into Ra = gai L1T/(KV). The critical Rayleigh number for the FST, CHF 

and L TR boundary �onditions are obtained as shown in Table (1). 
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For a fluid layer bounded by a top free surface and bottom solid surface, 

where the bottom solid surface is at fixed temperature and the top surface of the fluid 

is cooled by a step change instantaneously to a fixed temperature Ts. The loss of mass 

by evaporation is negligible, the Biot number is infinity and the corresponding critical 

Rae is 1100 (Low 1929) as shown in Table (2). By substituting the Rae = 1100 into the 

transient Rayleigh number, the critical time te, critical wavelength � critical thermal 

depth Zmax for the onset of convection can be obtained. The critical Rayleigh number 

and Biot number for various boundary conditions are tabulated in Table (2). 

Table 1: Equations of maximum transient Rae for various 
boundary conditions. (Tan and Thorpe, 1996) 

. 4. 89ga.J /(/3 �T 
Fixed surface temperature: Ramax = $ 

v 

Ra = 1.73gaBU = 1.73gaU ATs 
Linear temperature rate: DWt v v 

Constant heat flux: 


