

UNIVERSITI PUTRA MALAYSIA

A SURVEY ON BUILDING SYSTEMS IN MALAYSIA

YUOSRE F. MOHAMED BADIR

FK 1998 16

A SURVEY ON BUILDING SYSTEMS IN MALAYSIA

By
YUOSRE F. MOHAMED BADIR

Thesis Submitted in Partial Fulfilment of Requirements for the Degree of Master of Science in the Faculty of Engineering,
University Putra Malaysia

July 1998

DEDICATED TO MY PARENTS

ACKNOWLEDGEMENTS

First of all, I would like to express my utmost thanks and gratitude to Almighty Allah S.W.T. for giving me life without which this thesis will never be carried out. Selawat and salam to His righteous messenger, Prophet Muhammad S.A.W.

I wish to express my profound appreciation and gratitude to the chairman of the supervisory committee, Dr. Mohd. Razali Abd. Kadir, Head of the Civil Engineering Department for his supervision, guidance and constructive suggestions and comments throughout the duration of the project.

I am also indebted to the members of the supervisory committee, Dr. Ahmed Hariza Hashim and Mr. Mohd. Rasid Osman for their affectionate guidance, prompt decision and valuable assistance during this period.

Special gratitude to Asso. Professor R. B. Kumar and Dr. A. M. S. Hamouda for useful suggestions and their support. A special thanks goes to my friends and fellow colleagues for their encouragement. I acknowledge the assistance rendered by the respective lecturers, staffs of the graduate school and staffs of the University Putra Malaysia, too numerous to mention individually, in many direct and indirect way.

Last, but not least, I would like to express my deep gratitude to my family, parents and brothers, who provided much moral support and for their sacrifices and love.

TABLE OF CONTENTS

ACKNOW	LEDGEMENTS	Page iii
LIST OF T	ABLES	vii
LIST OF F	IGURES	ix
	LATES	xi
	Т	xiii
	,	XV
CHAPTEI I	INTRODUCTION	1
	Historical Background	2
	Objective	8
	Justification	8
	Thesis Layout	11
П	LITERATURE REVIEW.	13
	Introduction	13
	Building System	14
	Promises of Industrialised Building	21
	Previous Industrialised Building Project in Asia	22
	Quality of Construction	24
	Types of Construction Methods	26
	Cast In-situ Construction Method.	26
	Composite Construction Method	35
	Full Prefabricated Construction Method	37
	The Rational Use of Prefabricated Standardised	
	Components	38
	Advantages of Full Prefabrication	38
	Disadvantages of Full Prefabrication	39
	On and Off Site Construction of Full Prefabrication	40
	Precast Concrete	48
	Sandwich Wall Panel	57
	Interlocking Hollow Block Building System	60
	Steel Frame SystemFirst Experience of Full Industrialized Approach in	61
	Malaysia	61
	Closure	64
Щ	RESEARCH METHODOLOGY	65
	Introduction	65
	Objective	65
	Methods of Data Collection	66
	Questionnaire Design	67

	Pre-testing of the Questionnaire	68
	Population and sampling	69
	Case Studies	71
	Closure	72
IV	RESULTS AND DISCUSSION	7 3
	Introduction	73
	The Profile of Respondents	73
	Respondents' Qualification	74
	Length of Time in the Construction Industry	75
	Respondents Current Position	75
	Building System Profile	76
	Companies Establishment	77
	Country of Origin	77
	Business Activity Areas of the Building System	
	Companies	78
	Types of Building Systems Used in Malaysia	7 9
	Merits and Demerits of Building Systems	82
	Suitability of the Systems to the Number of Storeys	83
	Suitability of the systems to the Level of Cost	84
	Classification of Projects Constructed Using Building	
	Systems	85
	Reasons of Delay in Building System Projects	85
	Building System Versus Conventional System	87
	Some Important Relationship Inferred from the Questionnaire	
	Responses	90
	The Relationship between the Type of System and the	,
	Number of Storeys of the Building	90
	The Relationship between Type of System and the Type	70
	of Foundation Used	91
	The Relationship between the Type of System and the	71
		01
	Delay During Construction Time	91
	The Relationship between the Age of the Building System and	00
	the Delay in Completion of the Projects	92
	Closure	93
17	CASE STUDIES	94
•	CASE STUDIES	94
	Introduction	94
	Sandwich Honeycomb Panel System Case Study	94
	What Is Sandwich Honeycomb Panel System?	95
	Advantages of Using Sandwich Honeycomb Panel	95
	Disadvantages of Using Sandwich Honeycomb Panel	96
	Sandwich Honeycomb Panel System Classification	97
	Formwork System Case Study	97
	Conclusion of Formwork Case Study	98
	Formwork Building System Classification	99
	Tilt-up Precast Concrete System Case Study	100
	Method of Construction	101
	LEVELOPMENT OF A New Killiding Systems ('lassification	103

	Closure	107
VI	CONCLUSIONS AND RECOMMENDATIONS	109
	Conclusion	109 114
REFERE	NCES	115
APPEND	\mathbf{x}	121
A	Preliminary Questionnaire Survey	122
В	Final Version of Questionnaire	128
C	Case Study Format	138
D	Sandwich Honeycomb Panel System Case Study	140
E	Formwork System Case Study	155
F	Tilt-up Precast Concrete System Case Study	172
G	Theory of Classification	181
VITA		186
PUBLICA	ATION	188

LIST OF TABLES

Table	e	Page
1	Malaysia Plans From (1976-1995) for Low Cost Housing	4
2	Categorised of Housing	5
3	Comparison Between Tunnel Form and Modular Form	34
4	Comparing the Building Systems with the Conventional System As A reference	88
5	The Relation between the Type of System, Number of Storeys and Type of Foundation	91
6	The Relation between Type of System and Delay during Construction Time	92
7	The Relation between the Age of the Company and Delay in Completion of the projects	92
8	Steps of Classification of Sandwich Honeycomb Panel System	97
9	Formwork System Classification.	100
10	Steps of Classification of the Tilt-up System	102
11	Dimensions and Quantity of Sandwich Honeycomb Panel Used For 32 Units	145
12	Worker Operation Performance	148
13	Erect Sandwich Honeycomb Panel by Team of Three Workers	150
14	Number and Classification of Companies Interviewed	161
15	Country of Origin of the Companies.	161
16	Types of Material	163
17	Classification of Formwork Companies	165
18	Average Man-hours per Square Meter for Different Types of Formwork	165

19	Max. and Min. Man-hours per Square Meters	167
20	Reusability of Different Types of Formwork	167
21	Cost per Square Meter of Various Types of Formwork	168
22	Cost Calculation for Beam	169

LIST OF FIGURES

Figu	ire	Page
1	Research Scheme	9
2	Thesis Layout.	12
3	The Concept of Systemisation and Industrialisation and their Relationship	16
4	The Basic Elements of Industrialisation	16
5	Alternative Ways in which Two Concepts can be Combined to Form Various Industrialised Building System	17
6	Components of Industrialisation in Construction	20
7	Classification of Full Prefabricated Construction Method	40
8	Guidelines for Data Collection	67
9	Parts of the Questionnaire	7 0
10	Distribution of the Respondents by their Qualification	74
11	Distribution of the Respondents by their Position	76
12	Building System Companies Establishment	77
13	Country of Origin of the Building Systems	78
14	Distribution of the Companies by their Business Activity	7 9
15	Types of Building Systems in Malaysia	80
16	Formwork Classification	81
17	Types of Precast Concrete Panel	81
18	Advantages of the Building Systems	82
19	Disadvantages of the Building Systems	83
20	Suitability of the Systems to the Number of Storeys	84
21	Distribution of the Systems by their Cost Level	85

22	Classification of the Building System Projects	86
23	Reasons of Delay in Building System Projects	86
24	Comparing the Building Systems with the Conventional System as A reference	89
25	Majzub Building System Classification	105
26	Badir-Razali Building System Classification	108
2 7	Performance of Worker Operation	149
28	Cost of One Units and the Percentage of Each Item to the Total Cost	153
29	Formwork Suppliers	162
30	Formwork Suppler in Percentage	162
31	Breakdown of Materials Used as Formwork	163
32	Materials Used by Suppliers and Contractors	164
33	Average Man-hours per Square Meters with Different Types of Formwork.	166
34	Classification Steps.	185

LIST OF PLATES

Plate		Page
1	Modular Moulding Metal Used in Accommodation Constructed In UPM	33
2	Precast Wall Incorporates with Column Cast in-situ	36
3	Cast the Panel in a Horizontal Mould	42
4	Erection of Precast Beam and Column	51
5	Assembly of Precast Panel in Multi Storey Building	53
6	Tilting the Precast Panel to its Position	55
7	Honeycomb Core Paper Used in Sandwich Wall Panel	59
8	Erection of Sandwich Honeycomb Wall Panel	59
9	Aluminium Studs "U" Shaped Fixed on the Ground	143
10	The Panels are Flexible in Cutting on Site	143
11	Fixed the Panel Upon Aluminium Studs "U" Shaped	144
12	Fixed Aluminium Splice "H" Shaped Along One Side of the Panel	146
13	Panel Fixed to "H" Section which Fixed on the Previous Panel	146
14	Wasted Time of the Worker	150
15	Wall Construction Using Steel Formwork	157
16	Slab Construction Using Aluminium Formwork	157
17	Erection of Traditional Formwork For Wall	159
18	Wall Construction Using Special Timber Formwork	159
19	Tilt-up the Concrete Panel by Crane	177
20	Edge Form Prepared to Cast the Concrete in	177
21	Staircase is Produced on Site	178

22	Concrete Panel Including Window	178
23	Placing and Fasting Windows	1 7 9
24	The Panels Kept Moist During the First 20 Hours of Setting	179
25	The Panels are Jointed Together by Steel Bars	180

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in partial fulfilment for the degree of Master of Science.

A SURVEY ON BUILDING SYSTEMS IN MALAYSIA

BY

YUOSRE F. MOHAMED BADIR

July 1998

Chairman: Mohd. Razali Abdul Kadir, Ph.D.

Faculty: Engineering

In recent years the term "system" has been frequently used in the "Operational

Research" jargon, probably is a result of the terms "Systematic Approach" and

"Systematic Analysis". In some minds the term system represents computerization, but

this word has been used in other fields as well, explaining the complexity and inter-

relationship between the parts such as building system. Because of this broadness of

activities and functions that the term "system" denotes, it has recently been used in the

field of construction to show the variety of complex problems which are closely

related within the process of building.

Malaysia is presently look at building systems as an answer to housing shortage

problem. The main advantages of using building system are, speed, quality, and

economics, all of which are required to meet such a large demand for housing.

The clear understand of the current status of building systems will help to set the

housing programs under the Seventh Malaysia Plan (1996-2000). However, the first

xiii

step in any advance study on building systems and its technology should be initiated by knowing the status quo.

In this thesis, three case studies and questionnaire survey were conducted. The case studies have been conducted on the unconventional construction methods, which are full prefabricated; cast in-situ; and composite construction methods. The questionnaire survey was carried out on the building system companies to understand their building system usage and current status. On the basis of the study, the building systems existing in Malaysia have been classified according to the method of construction and type of production.

The study found many types of building systems implemented in Malaysia, each have its own characteristic features, advantages, and disadvantages. These systems are the formwork, precast load bearing wall panel, precast frame, sandwich panel, interlocking block, and steel systems. The quality, speed of construction, and cost saving are the main advantages of the building systems in Malaysia, while the main disadvantages are highly capital intensive, the need for heavy equipment, and the shortage of raw materials. Finally, a comparison was made between the building system construction methods and conventional construction method. This comparison is based on the Malaysian construction industry environment.

Abstrak tesis ini diserahkan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian daripada keperluan untuk ijazah Master Sains.

A SURVEY ON BUILDING SYSTEMS IN MALAYSIA

OLEH YUOSRE F. MOHAMED BADIR

Julai 1998

Pengerusi: Mohd Razali Abdel Kadir, Ph.D

Fakulti: Kejuruteraan

Dalam tahun-tahun kebelakangan, definasi "Sistem" selalunya digunakan

dalam bahasa kajian operasi, berkemungkinan berpunca dari perkataan

"Pengenalan Sistematik" dan "Analisis Sistematik". Pada sesetengah pihak

perkataan sistem mewalaili komputersasi tetapi perkataan ini juga banyak

digunakan dalam bidang-bidang lain yang menerangkan kompleksiti dan

perhubungan antara bahagian seperti sistem pembinaan. Disebabkan oleh aktiviti

dan fungsi yang menggunakan "sistem" begitu banyak, ianya, juga telah

digunakan dalam bidang pembinaan untuk menunjukkan variasi masalah yang

rumit yang berhubungkait dengan proses pembinaan.

Pada masa sekarang Malaysia sedang mengkaji sistem-sistem pembinaan

yang ada bagi menyelesaikan masalah perumahan yang timbul. Kelebihan

menggunakan sistem pembinaan yang baik ialah kepantasan kerja, kualiti dan

penjimatan yang mana semua faktor tersebut adalah penting bagi menampung

permintaan rumah yang kian meningkat.

Pemahaman yang jelas dalam status terkini sistem-sistem pembinaan akan

dapat membantu perancangan program perumahan di bawah Rancangan Malaysia

XV

Pemahaman yang jelas dalam status terkini sistem-sistem pembinaan akan dapat membantu perancangan program perumahan di bawah Rancangan Malaysia ke 7 (1996-2000). Walaubagaimanapun pemahaman tentang permasalahan yang wujud sekarang adalah penting sebelum sebarang kajian lebih lanjut dijalankan mengenai sistem-sistem pembinaan dan teknologinya.

Dalam tesis ini, kajian ilmiah dan soal selidik telah dijalankan. Kajian ilmiah telah dijalankan keatas kaedah pembinaan tidak lazim. Manakala borang kaji selidik telah diedarkan kepada sysrikat-syarikat pembinaan bagi mendapatkan maklumat yang tepat tentang penggunaan sistem pembinaan dan statusnya sekarang. Pada dasarnya, sistem-sistem pembinaan yang terdapat di Malaysia telah diklasifikasikan mengikut kaedah pembinaan dan jenis pembuatan.

Kajian ini mendapati terdapat banyak jenis sistem pembinaan yang digunakan di Malaysia, yang mana tiap satunya mempunyai kelebihan dan keburukannya sendiri. Akhir sekali, sebuah perbandingan dilakukan antara sistem pembinaan dengan kaedah tradisional. Perbandingan ini dibuat berdasarkan persekitaran sektor pembinaan di Malaysia.

CHAPTER I

INTRODUCTION

Malaysia's housing policy is geared towards meeting the objective of ensuring access to adequate and decent shelter to all its citizen particularly the low income groups. The national housing policy will effectively contribute towards the provision of physical shelter as a basic social need towards improving and enhancing the quality of life through the erection of decent and viable human settlements. In implementing this policy the quantitative and qualitative aspects of housing development are taken into account (Yahya, 1997).

While the problem of housing grows more acute, Malaysia is struggling to meet its own housing needs and is doing so through an increasingly advanced technology. The conventional construction method, due to the slow pace of construction and higher cost, is not able to meet the demand (Agus, 1997).

Malaysia is presently taking a long hard look at building systems as an answer to housing shortage problem. It has been suggested that there are a number of appropriate industrialized building systems which are useful for wide range of specific uses and situation, but none of them is applicable to all construction sites. They are dependent upon and influenced by many other aspects of the housing

situation such as land use, density, volume, environmental conditions, user needs, continuity of demand, and labour.

The clear understanding of the current status of building systems will help to set the housing programmes under the Seventh Malaysia Plan (1996-2000). However, the first step in any advance study on building systems and its technology should be initiated by knowing the status quo.

Historical Background

During the First Malaya Plan (1956-1960) a small provision of about RM 10 million was made in the development estimates for low cost housing followed by the provision of some RM 40 million in the Second Malaya Plan (1961-1965). During these periods housing was places under the Ministry of Interior. In 1964, following the General Elections in April, a new Ministry of Local Government and Housing was established, which could be interpreted as an indication of the government's interest in pushing forward a more vigorous programme of public housing development. Some scattered housing projects were built in certain big towns in Malaysia. The response from the people who applied for such house was beyond expectation. In one case there were over 8,000 applicants for only a hundred units of such low cost house in Penang (Chew, 1986). This jolted the Ministry to take a look at the housing situation in the country. For the First Malaysia Plan (1966-1970), the Government voted RM150 million for low cost housing, almost of three to four times the provision in the previous development plan. The result was that about 22,500 low cost housing units were built during this

period with several thousand units under construction, as against about 7,500 units during the previous plan (Chua, 1980).

But the funds provided by the government for housing in all these years fell short of demand, although the actual extent of demand was not known. Judging by the rate of population increase and the backlog of housing, it was estimated that something like 32,000 low cost dwelling should be built annually throughout West Malaysia. The lack of data also prompted the Ministry to press for a housing census in conjunction with the population census in 1970. The housing census data is now available and is being analysed. Absolute figures indicate that there are 1.4 million dwellings for population of approximately 9 million. The average household size is 6.6 and the ratio of households to living quarters is 1:08 (Jagatheesan, 1979).

For the Third Malaysia Plan (1976-1980) the project housing needs were 500,000 units of various categories of houses. However by the beginning of the Fourth Malaysia Plan (1981-1985) the housing needs shot up to 923,300 units.

The Fifth Malaysia plan (1986-1990) envisaged a total of 701,500 units of which 71 per cent is low cost houses (Chew, 1986). During the Sixth Malaysia Plan (1991-1995), the public and private sectors constructed a total of 667,745 houses. The public sector's contribution constituted 104,524 units (15.7 per cent), while that of private sector was 563,221 units (84.3 per cent). By price breakdown, 260,797 units or 40.9 per cent constituted low cost units, 288,877 units and 188,071 units were medium and high cost respectively (Ministry of Housing and

Local Government Malaysia, 1997). Table 1 shows Malaysia plans from (1976-1995) for low cost housing project.

Table 1: Malaysia Plans From (1976-1995) for Low Cost Housing

Malaysia Plan	Number of projects completed	Number of units constructed
3 rd Malaysia Plan (1976-1980)	21	5,153
4 th Malaysia plan (1981-1985)	143	21,556
5 th Malaysia plan (1986-1990)	72	13,992
6 th Malaysia plan (1991-1995)	28	6,042

Source: Ministry of Housing and Local Government Malaysia, 1997.

There is an increasing recognition by government in this region particularly, of the importance of housing for the large masses of low-income people. The Malaysian Government has always been concerned with ensuring that all Malaysians have access to adequate housing. This social obligation becomes especially vital when the home ownership is realised, not just mere shelter seeking, is the desire of every Malaysian (Salleh and Meng, 1997).

Under the Seventh Malaysia Plan (1996-2000), the Government has drawn up a housing programme involving the planned construction of some 800,000 units of houses by both the public and private sectors. These houses are categorised in Table 2.

Table 2: Categorised of Housing

house cost level	cost of one unit	No. of units	percentage of the total No. of unit
i- low cost house	costing not more then RM 25,000	235,000 units	29.3 per cent
ii- low-medium cost house	costing between RM 25,000 to RM 60,000	350,000 units	43.75 per cent
iii- medium cost house	costing more than RM 60,000 but not exceeding RM 100,00	85,000 units	16.25 per cent
iv- high cost house	costing RM 100,000 and above	85,000 units	10.63 per cent

Source: Ministry of Housing and Local Government Malaysia, 1997.

The housing programmes under the Seventh Plan particularly emphasise the construction of more low medium cost houses. The private sector will play an increasingly important role in meeting the housing needs of the population. During the plan period, the private sector is expected to construct about 570,000 units or 71.3 per cent of the total. Of the total to be constructed by the private sector, 24.6 per cent will be low cost houses and 42.1 per cent low medium cost houses (Ministry of Housing and Local Government Malaysia, 1997).

Waleed et al. (1997) stated that to achieve this target using the present conventional Building System (reinforced concrete frames and brick as in-fill) will require an excessive number of workers, since on average only one house is completed per year per worker (on house/ year/ worker). The rising cost of labour (unskilled foreign workers) is an important factor in increasing the total cost of the house (the labour cost has increased to 30 per cent of the construction cost

compared to 10 per cent a few years ago). Moreover, the required quality can not be achieved due to poor quality control at the site. In order to overcome the present problems, the mass production of housing under high quality control is required.

The concept of mass production of quality building is termed "Industrialised Building System". By using new building systems and factory produced building components and by pioneering "conveyor belt" mass production technique at the building site, it may be possible for each building worker to construct up to 10 houses per year (Waleed et al., 1997).

Industrialised System means that to build on site with elements or components produced by series in plants. These components are such as floors, walls, columns, beams, and roofs. They are then assembled and erected on the site properly joined to form the final units. However, it is accepted that the Industrialised System is the only way to bridge the gap between demand and supply (Rollet, 1986).

For the building industry, industrialisation involves the rationalisation of the whole process of building, which includes the process of design, the forms of construction used, and the methods of building adopted in order to achieve an integration of design, supply of materials, fabrication and assembly so that building work is carried out more quickly, with less labour on site, and if possible, at less cost (Friedman and Cammalleri, 1993).

Mullens (1995) reported that the leading idea of industrialisation of building was to transfer the major share of production activities from site to a factory, where various methods and techniques of mass manufacturing can be used, and an increase of productivity can be ensured. For this, standardisation of building components was necessary. This was the background of industrialisation in the sixties and seventies. Industrialisation equalled to the use of prefabricated components and their manufacturing techniques.

In the eighties, the leading ideas were productivity increase, on the one hand, and flexibility of system buildings, providing for easy customisation and powerful architectural expression, on the other hand. Requirements with increasing importance were also the service life assessment, energy, operability, maintainability, recyclability and the total quality. Information technology, automation and robotics emerged as powerful means for realisation of these requirements. Now, in the nineties the leading idea is process improvement and redesign. It is understood that it is not enough to convert construction to seem like manufacturing or to introduce advanced technology. Rather the goal is to have processes that generate maximum value to their customers and contain minimum amount of waste (Mullens, 1995).

Objective

The aim of this research is to survey the current status of the building systems exist in Malaysia, and to find out the practice use of the existing building system technology. In addition to that, secondary objectives may be achieved by this research are such as:

- i- Providing a new building systems classification;
- ii- Since there are no list or registry for the building system companies, the approach was to get a list of these companies in Malaysia; and
- iii- Providing information regarding current status of the building systems.

The above objectives will be achieved through the following:

- i- Provide a detailed explanation for each type of the building systems;
- ii- Survey by using questionnaire; and
- iii- present and discuss case studies for some available systems constructed in Malaysia.

The method of approach adopted in this study is shown in Figure 1.

Justification

Available literature indicates that considerable research efforts have been directed towards the 'hardware elements' of the building systems technology, as will be shown in the literature review in Chapter II. However, the hardware elements are concerned with the structure itself. Nonetheless, to date, the 'software elements' of the building systems, which concerned with the data and information

