

UNIVERSITI PUTRA MALAYSIA

GENETIC DIVERSITY OF ACACIA CRASSICARPA A. CUNN. EX BENTH.PLUS TREES OF A PROVENANCE TRIAL IN SERDANG, MALAYSIA

JOHN KEEN CHUBO

FH 1999 2

GENETIC DIVERSITY OF ACACIA CRASSICARPA A. CUNN. EX BENTH. PLUS TREES OF A PROVENANCE TRIAL IN SERDANG, MALAYSIA

By

JOHN KEEN CHUBO

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Forestry Universiti Putra Malaysia

July 1999

ACKNOWLEDGEMENTS

Praise the Lord for giving me knowledge, wisdom and courage that I am able to proceed until this stage. In HIM nothing is impossible. My special thanks to my supervisor, Associate Professor Dr. Nor Aini Ab Shukor for her dedication and support throughout my study in UPM. I am also indebted to my supervisory committee, Associate Professor Dr. Kamis Awang, Dr. Jennifer A. Harikrishna and Puan Aziah Mohd. Yusoff for their invaluable suggestions and comments. My gratitudes to Dr. Norwati M. of FRIM, for her help in editing and giving some comments on the thesis and Dr. Ahmad Said Saad for providing some of the RAPD primers. My appreciation to Dean Dr. Rusli Mohd., for giving me the permission to use the facilities in the faculty and also to the PASCA Scheme for supporting my study. Nonetheless, my sincere thanks to Mr. Abd. Latib Senin and Mr. Salim Ahmad for their support and help in the initial stage of the project.

My love and thanks to my beloved grandmother, parents, brothers and my only sister, for their encouragement, support and prayer. Special thanks to my uncle, Mr. Daniel Supit, who supported me financially towards the end of my study. To my beloved friends, Gloria, Alona, Maricar, Hazel, Edward and Renato, thank you for making me as one of you eventhough I am a Sarawakian. To all my colleagues Geo, Ida, Liew, Wong, Astinah, Roland, Romeo and family, Evelyn, Noor, Lin, Boy and Michael, thank you for being my friends. To all those that know me, thanks and I appreciate your friendship.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
LIST OF TABLES	
LIST OF FIGURES	viii
LIST OF PLATES	x
LIST OF ABBREVIATIONS	xi
GLOSSARY	xiii
ABSTRACT	xvii
ABSTRAK	xix

CHAPTER

Ι	GENERAL INTRODUCTION	1
П	LITERATURE REVIEW	7
	Distribution and Ecology of A. crassicarpa	7
	Botany and Taxonomy of A. crassicarpa	9
	Reproductive Biology of A. crassicarpa	10
	Industrial and Other Uses of A. crassicarpa	11
	Electrophoresis and Biochemical Markers	12
	Isozyme Markers	14
	Random Amplified Polymorphic DNA (RAPD) Markers	16
	Considerations in Isozyme and Nucleic Acids Analyses	23
	Genetic Studies of Forest Trees and Other Plants	25
	Isozyme Analysis	25
	Random Amplified Polymorphic DNA (RAPD)	33
	Correlations Between Isozyme, RAPD and Morphological	
	Markers	36
	Summary of Literatures	39
ш	MATERIALS AND METHODS	41
	Plant Materials	41
	Seed Sources	41
	Field Establishment and Stand Description	41
	Sample Collection	46
	Isozyme Electrophoresis	47

	Enzyme Extraction
	Gel and Electrode Buffer
	Starch Gel Preparation
	Electrophoretic Run
	Gel Slicing and Staining
	RAPD Analysis
	DNA Isolation
	Amplification Conditions
	Data Analysis
IV	RESULTS
	General Assumptions
	Morphological Variations
	Qualitative Similarities Coefficients
	Isozyme Analysis
	Electrophoretic Patterns
	Intra-provenance Diversity
	Regional Allelic Diversity
	Intra- and Inter-Region Genetic Diversity
	Genetic Structure and Mating System
	Genetic Distance
	RAPD Analysis
	Provenance Diversity
	Gene Diversity of Geographical Region
	Total Diversity of A. crassicarpa
	Genetic Similarities
	Comparison of Morphological and Genetic Variations
	Comparison of Morphological and Cenede Variations
V	DISCUSSION
	Selection of Plus Trees
	Intra- and Inter-Provenance Genetic Variation
	Genetic Structure and Mating System
	Morphological and Genetic Variation
	Cluster Analyses
VI	CONCLUSIONS AND RECOMMENDATIONS
VI	CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations

APPENDIX

Α	Qualitative Characteristics and Their Evaluation Scheme	187
B-1	Leaf Extraction Buffer for Isozyme Analysis.	188

B-2	Buffer Systems Used in Isozyme Analysis.
B-3	Enzyme Staining Recipes.
B-4	Fixing Solution.
C-1	Protocol for the Isolation of Plant DNA From Fresh Tissue
C-2	DNA Extraction and Electrophoresis.
C-3	Sequence of Primers in the RAPD Analysis.
D-1	Allelic Frequencies, Genetic Diversity, Fixation Index and χ^2 in 8 Provenances of <i>Acacia crassicarpa</i> .
D-2	Genetic Diversity for 36 Loci Within Two Acacia crassicarpa regions.
D-3	F-Statistics and Gene Flow Within and Between 8 Provenances of <i>Acacia crassicarpa</i> .
D-4	F-Statistics and Gene Flow for 36 Loci Within Two Acacia crassicarpa regions.
E-1	RAPDs Gene Frequencies and Genetic Diversity Observed Using 15 Primers in 8 Acacia crassicarpa provenances
E-2	RAPDs Gene Frequencies and χ^2 for 87 Loci Within Two Regions of <i>Acacia crassicarpa</i> .
E-3	Gene Diversity and Gene Flow Within Two Regions of Acacia crassicarpa Plus Trees.
E-4	Allele Diversity, χ^2 , Genetic Diversity and Gene Flow of 8 Acacia crassicarpa Provenances.

LIST OF TABLES

Table		Page
1	Examples of Enzyme System Used in Isozyme Analysis.	17
2	Examples of RAPD Analysis on Forest Trees.	22
3	Details of Acacia crassicarpa Provenances Studied.	42
4	Statistical Analysis of Qualitative and Quantitative Data for 8 Acacia crassicarpa Provenances.	60
5	Quantitative Silimarity Coefficients for 8 Provenances of Acacia crassicarpa.	63
6	Allelic Frequencies and Genetic Variation Within 8 Provenances of Acacia crassicarpa.	96
7	Genetic Diversity for 8 Provenances of Acacia crassicarpa Using Isozymes.	106
8	Allelic Frequencies, Fixation Indices and χ^2 for 36 Loci Within 2 Regions of <i>Acacia crassicarpa</i> .	107
9	Summary of Genetic Variability Within and Between Regions of Acacia crassicarpa.	111
10	Summary of Wright's Fixation Indices and F-Statistics for Isozyme Analysis.	114
11	Single- and Multi-Locus Outcrossing Rates of Acacia crassicarpa.	116
12	Genetic Similarities and Differences of Isozyme Data for 8 Provenances of Acacia crassicarpa.	118
13	Summary of RAPD Fragments Observed in Acacia crassicarpa	120
14	Summary of Genetic Diversity Within 8 Provenances of Acacia crassicarpa Detected With RAPDs.	125
15	Summary of Genetic Diversity, GST and Gene Flow of RAPD analysis.	128

16	Genetic Similarities and Differences of RAPD Data for 8 Provenances of Acacia crassicarpa.	131
17	The Range of Expected Heterozygosity of Some Tree Species	142
18	The Range of Polymorphic Loci of Some Forest Trees.	144
19	The Range of Mean Number of Alleles Per Locus Obtained From Some Forest Trees.	145
20	Mean Heterozygosities Values of Forest Tree Species.	146
21	The Mean Proportion of Polymorphic Loci of Forest Trees	147
22	Mean Number of Allele Per Locus Reported on Forest Tree Species.	147
23	Relationships Between Genetic Parameters, Altitudes and Longitudes.	159

LIST OF FIGURES

Figure		Page
1	The Natural Distribution and Location of Seed Sources of Acacia crassicarpa.	43
2	Randomised Complete Block Design of Acacia crassicarpa Provenance Trial.	45
3	Mean Diameter Growth (cm) Between the Two Regions of Acacia crassicarpa.	62
4	Mean Height Growth (m) Between the Two Regions of Acacia crassicarpa.	62
5	Dendrogram of Qualitative Data for 8 Provenances of Acacia crassicarpa Based on Qualitative Similarity Coefficient.	65
6.1	Zymogram of ACON Enzyme.	66
6.2	Zymogram of ADH Enzyme.	68
6.3	Zymogram of EST Enzyme.	69
6.4	Zymogram of GD Enzyme.	70
6.5	Zymogram of G2DH Enzyme.	72
6.6	Zymogram of GLYD Enzyme.	73
6.7	Zymogram of GOT Enzyme.	74
6.8	Zymogram of GPI Enzyme.	77
6.9	Zymogram of IDH(NAD) Enzyme.	78
6.10	Zymogram of IDH(NADP) Enzyme.	80
6.11	Zymogram of LAP Enzyme.	82
6.12	Zymogram of MD Enzyme.	83
6.13	Zymogram of MDH Enzyme.	84

6.14	Zymogram of ME Enzyme.	86
6.15	An Annonated Diagram of PER Banding Patterns	87
6.15a	Zymogram of PER Enzyme.	88
6.16	Zymogram of 6PGD Enzyme.	89
6.17	Zymogram of PGM Enzyme.	91
6.18	Zymogram of SDH Enzyme.	92
6.19	Zymogram of SORDH Enzyme.	94
6.20	Zymogram of TO Enzyme.	95
7	Dendrogram of Isozyme Data for 8 Provenances of Acacia crassicarpa Based on Nei's (1978) Genetic Distances.	119
8	Dendrogram of RAPD Data for 8 Acacia crassicarpa Provenances Based on Nei's (1978) Genetic Distances	132
9.1	Relationships Between Mean Heterozygosity Expected and Growth Parameters (Height, $r = 0.19$; Diameter, $r = -0.09$) Using Isozyme.	133
9.2	Relationships Between Proportion of Polymorphic Loci and Growth Parameters (Height, $r = 0.26$; Diameter, $r = -0.02$) Using Isozyme.	134
9.3	Relationships Between Mean Number of Allele Per Locus and Growth Parameters (Height, $r = 0.15$; Diameter, $r = -0.08$) Using Isozyme.	135
10.1	Relationships Between Mean Heterozygosity and Growth Parameters (Height, $r = 0.50$; Diameter, $r = 0.22$) Using RAPDs.	136
10.2	Relationships Between Proportion of Polymorphic Loci and Growth Parameters (Height, $r = 0.38$; Diameter, $r = 0.10$) Using RAPDs.	137
10.3	Relationships Between Mean Shannon's Index and Growth Parameters (Height, $r = 0.47$; Diameter, $r = 0.19$) Using RAPDs.	138

LIST OF PLATES

Plate		Page
1	The Actual Banding Patterns Observed for GPI Enzyme.	75
2	The Actual Banding Patterns Observed for IDH(NADP) Enzyme	79
3	The Actual Banding Patterns Observed for PER Enzyme.	87
4	DNA Fragments Using OPA-04.	121
5	DNA Fragments Using OPA-09.	121
6	DNA Fragments Using OPB-07.	122
7	DNA Fragments Using OPB-12.	122
8	DNA Fragments Using OPC-20.	123
9	DNA Fragments Using OPG-02.	123
10	DNA Fragments Using OPG-03.	124
11	DNA Fragments Using OPG-09.	124

LIST OF ABBREVIATIONS

ACON	Aconitase
ADH	Alcohol dehydrogenase
bp	Base pair
χ^2	Chi-square
EST	Esterase
F Index	Fixation index
FIT	Inbreeding coefficient of individuals in the total population.
FIS	Inbreeding coefficient of individuals in a sub population.
FST	Inbreeding coefficient of subpopulations in a total population.
Nm	Gene flow
GD	Glucose dehydrogenase
GPI	Glucose phosphate isomerase
GOT	Glutamate oxaloacetate transminase
G2DH	Glycerate dehydrogenase
GLYD	Glycerol dehydrogenase
IDH(NAD)	Isocitrate dehydrogenase (Nicotamine Adenine)
IDH (NADP)	Isocitrate dehydrogenase (Nicotamine Adenine Diphosphate)
Ind.	Indonesia
kb	Kilo base pair
LAP	Leucyl-aminopeptidase

MgCl ₂	Magnesium chloride
IVIGCI2	Magnesium emonde
MDH	Malate dehydrogenase
ME	Malic enzyme
MD	Mannitol dehydrogenase
μL	Microlitres
mL	Millilitres
М	Molar
6PGD	6-Phosphogluconic dehydrogenase
рН	Negative logarithim of the hydrogen concentration
OPA	Operon primer set-A
OPB	Operon primer set-B
OPC	Operon primer set-C
OPG	Operon primer set-G
PER	Peroxidase
PGM	Phosphoglucomutase
PNG	Papua New Guinea
QLD	Queensland
RAPD	Random amplified polymorphic DNA
SDH	Shikimate dehydrogenase
SORDH	Sorbitol dehydrogenase
S.E.	Standard error
ТО	Tetrazolium oxidase

GLOSSARY

Allele	One of two or more alternative forms of a gene, differing in DNA sequence and affecting the function in of a single gene product (RNA and/or protein). All alleles of a series occupy the same site or locus on a pair of homologous chromosomes.
Amplification	The production of many DNA copies from one master region of DNA.
Anneal	The spontaneous pairing of complementary DNA or RNA sequences by hydrogen bonding to form a double-stranded polynucleotide.
Apomixis	Asexual reproduction in plants in which the sexual organs or related structures are involved, but fertilisation does not occur. The resulting seed is vegetatively produced from an unfertilised egg or from somatic cells associated with the female parent.
Arbitrary primer	A short oligonucleotide primer used in certain PCR methods to initiate DNA synthesis at random locations on the target DNA.
Base	The chemical unit which characterises a nucleotide. In DNA the bases found are adenine, guanine, thymine and cytosine.
Base pair	Two nucleotide bases on different strands of a nucleic acid molecule that are held together by hydrogen bonds. Bases can pair in only one way - adenine with thymine and guanine with cytosine in DNA.
Chloroplast	Organelles found only in plants and photosynthetic proteins that absorb sunlight and use it to drive the synthesis of organic compounds from carbon dioxide and water.
Codominant alleles	Alleles of a given gene whose properties can be detected in a heterozygote.
Cytosolic fraction	The soluble fractions of cytoplasm, remaining after all particulates have been removed.
Denature	To provoke structural changes in a molecule which disrupt its biological activity. In DNA, it refers to the separation of the two component strands caused by the breaking of the hydrogen bonds. In proteins, it refers to disruptions in the

	secondary and tertiary structure of the protein, destroying its activity.
Dimer	The complex of 2 polypeptides. These can be the same (in a homodimer) or different (in a heterodimer).
DNA	Deoxyribonucleic acid. The genetic material of most organisms. It is an organic acid and polymer consisting of four nitrogenous bases (adenine, cytosine, guanine and thymine) and a sugar-phosphate backbone. It usually exists as a double- stranded molecule in which the two antiparallel strands are held together by hydrogen bonding between the bases adenin- thymine and cytosine-guanine.
Dominant	Descriptive of an allele whose properties can be detected even in the presence of another allele.
Electrophoresis	A technique for separating molecules in a matrix (such as agarose or starch gels) according to their electrical charge and size.
Enzyme	A specialised protein catalyses biochemical reactions.
Ex situ	Plants which are planted outside its natural origin.
Fixation	In population genetics, a condition in which all members of a population are homozygous for a given allele.
Gene	The functional unit of heredity - a locus on a chromosome which encodes a specific functional product.
Gene flow	The movement of genes through or between population or species, the possession of a variety of genetic traits that frequently result in differing expressions in different individuals.
Genetic drift	A change in gene frequency that is a consequence of the continual random gain and loss of gametes and individuals in a population.
Genotype	The genetic constitution of an individual or group that may be either expressed or unexpressed, depending on the environmental effects of a given location.
Hardy-Weinberg equilibrium	Stability in frequency of alleles and genotypes in a population generation after generation. A state of equilibrium in a population's gene pool.

Heterozygosity	The condition of having different alleles at corresponding loci on homologous chromosomes.
Homozygosity	The condition of having the same alleles at corresponding loci on homologous chromosomes.
Inbreeding	The intentional or unintentional breeding or crossing of individuals that are more closely related than their parents.
Linkage	The physical association of genes on the same chromosomes.
Loci	Plural of locus (refer locus).
Locus	A specific site on a chromosome, usually of a gene or other marker.
Marker	An identifiable physical location on a chromosome whose inheritance can be monitored.
Mitochondria	Organelles in eukaryotic cells that serve as sites of cellular respiration.
Monomer	A single molecular entity that may combine with others to form more complex structures.
Monomorphic	The situations in which all the individuals in a population are the same genetic type or have the same allele.
Morphometric	The study of the physical shape and form.
Mutation	Change in genotype of an individual.
Organelles	Structures within eukaryotic cell in which certain functions and processes are localised.
Outcrossing	The breeding of unrelated plants or plants of different genotypes, usually under natural conditions.
Panmictic	A population in which mating occurs at random.
PCR	Polymerase Chain Reaction. A method for amplifying a DNA sequence in large amounts using a heat-stable polymerase and suitable primers to direct the amplification of the desired region of DNA.
Phenotype	The observable characteristics of an organism due to the interaction between the genotype and the environment.

Polymerase	General term for enzymes which carry out the synthesis of nucleic acid using a pre-existing nucleic acid template and the appropriate nucleotides.
Polymorphism	A detectable difference at a particular marker occurring among individuals.
Population	A group of organisms of the same species that occupy a particular geographic area or region. In general, individuals within a population interbreed with one another.
Primer	A short DNA fragment annealed to a single-stranded DNA, to which further nucleotides can be added by DNA polymerase.
Protein	A polymer of amino acids joined by peptide bonds, which may be comprised of two or more polypeptide chains.
Provenance	Origin of source; for trees, an identifiable region in the natural habitat of a species from where the seed of the trees originally came.
Putative	Commonly accepted, supposed or assumed to exist or to have existed.
Random mating	Mating between individuals where the choice of a partner is not influenced by the genotypes (with respect to specific genes under study).
RAPD	Random Amplified Polymorphic DNA. A widely used technique for amplifying anonymous stretches of DNA using PCR with arbitrary primers.
Self-Fertilisation (Selfing)	The natural or artificial process of placing pollen grains on a receptive stigma of the same individual.

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

GENETIC DIVERSITY OF ACACIA CRASSICARPA A. CUNN. EX BENTH. PLUS TREES OF A PROVENANCE TRIAL IN SERDANG, MALAYSIA

By

JOHN KEEN CHUBO

July 1999

Chairperson	:	Associate Professor Nor Aini Ab Shukor, Ph.D.
Faculty	:	Forestry

In the selection of the best species for forest plantation, few criterias have to be considered including morphological and genetic diversity. Thus, the objective of this study was to investigate the diversity of *Acacia crassicarpa* plus trees using morphological and genetic markers. The genetic structure and mating system of the species were also studied.

Plus trees were selected from a provenance trial in Universiti Putra Malaysia (UPM), Serdang based on 8 qualitative and 2 quantitative parameters from 2 regions i.e. Queensland (8 plus trees) and Papua New Guinea (23 plus trees). Leaf samples were collected from these trees and were analysed using 20 isozyme and 15 RAPD markers.

The morphological study observed higher variation and better growth performance of trees from Papua New Guinea. However, trees from Queensland have higher retention towards strong wind contradictory to trees from Papua New Guinea. The isozyme analysis observed 36 loci with 24 loci being polymorphic. The mean expected heterozygosities were 0.2316 and 0.2675 for Queensland and Papua New Guinea respectively. The proportions of polymorphic loci for both regions were found to be similar. In the RAPD analysis, a total of 87 loci were scored ranging from 0.10 kb to more than 2.10 kb. Generally, provenances from Papua New Guinea were found to produce higher polymorphism levels as compared to the Queensland provenances. Life history and the ecological characteristics of the species were believed to be the possible reasons for such conditions. Cluster analyses produced three different dendrogram patterns with a tendency of similarity to a certain. The effect of different approaches was suggested to have caused these differences. Relationships of clusters according to number of parent trees, altitudes and longitudes were also observed.

The species was found to be highly outcrossing with rates ranging from 0.69 and 0.94. Genetic differentiation in the species observed 60 to 70% of the total diversity to be within provenances. Factors such as reproductive biology, seed dispersal, history and gene flow were suggested to be some of the possible causes for such phenomena.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk mendapatkan Ijazah Master Sains

KEPELBAGAIAN GENETIK POKOK PLUS ACACIA CRASSICARPA A. CUNN. EX BENTH. DARI KAWASAN PERCUBAAN PROVENAN DI SERDANG, MALAYSIA

Oleh

JOHN KEEN CHUBO

Julai 1999

Pengerusi	:	Profesor Madya Nor Aini Ab Shukor, Ph.D.
Fakulti	:	Perhutanan

Dalam pemilihan spesis yang paling sesuai untuk hutan ladang, beberapa kriteria hendaklah diambilkira termasuk faktor morfologi dan kepelbagaian genetik. Maka, objektif kajian ini adalah mengkaji kepelbagaian pokok plus *Acacia crassicarpa* menggunakan kaedah morfologi dan penanda genetik. Struktur genetik dan sistem persenyawaan spesis tersebut juga turut dikaji.

Pokok-pokok plus dipilih dari kawasan percubaan provenan di Universiti Putra Malaysia (UPM), Serdang berdasarkan 8 parameter kualitatif dan 2 parameter kuantitatif dari 2 daerah iaitu Queensland (8 pokok plus) dan Papua New Guinea (23 pokok plus). Sampel daun yang dikutip dari pokok-pokok ini dianalisa menggunakan 20 penanda isoenzim and 15 penanda RAPD.

Kajian morfologi menunjukkan pokok-pokok dari Papua New Guinea mempunyai variasi yang lebih tinggi dan pertumbuhan yang lebih baik. Sungguhpun begitu, pokok-pokok dari Queenland mempunyai kadar rintangan angin yang lebih baik daripada Papua New Guinea. Analisa isoenzim menunjukkan kewujudan 36 lokus dengan 24 lokus polimorfik. Nilai heterozigositi jangkaan adalah 0.2316 untuk Queensland dan 0.2675 untuk Papua New Guinea. Peratusan lokus polimorfik untuk kedua-dua daerah adalah serupa. Dalam analisa RAPD, 87 lokus telah diambilkira dan berjulat dari 0.10 kb ke lebih dari 2.10 kb. Umumnya, provenan-provenan dari Papua New Guinea mempunyai nilai polimorfisma yang lebih tinggi daripada Queensland. Kejadian in dipercayai berhubungkait dengan sejarah kehidupan dan ciri-ciri ekologi spesis tersebut. Analisa perkumpulan menghasilkan tiga dendrogram yang berlainan sungguhpun terdapat sedikit persamaan di antaranya. Dalam hal ini, penggunaan kaedah-kaedah yang berlainan dipercayai telah memberikan kesan-kesan yang berlainan. Hubungan perkumpulan berdasarkan jumlah pokok ibu, altitud dan longitud juga turut dibincangkan.

Kadar persenyawaan silang didapati tinggi dalam spesis ini dan berjulat dari 0.69 ke 0.94. Perbezaan genetik mendapati 60 hingga 70% daripada keseluruhan kepelbagaian spesis ini terkandung di peringkat provenan. Faktorfaktor seperti biologi pembiakan, penyebaran biji benih, sejarah dan hanyutan gen adalah punca yang mungkin untuk menerangkan fenomena ini.

CHAPTER I

GENERAL INTRODUCTION

The world's forest has been reported to decline at an alarming rate. The area of the world's forests, including natural and plantation forests, was estimated to be 3,454 million hectares in 1995, or about one-forth of the land area of the earth. Between 1990 and 1995, FAO (1997) estimated a net loss on 56.3 million hectares of forests worldwide. This represented a decrease of 65.1 million hectares in developing countries and an increase on 8.8 million hectares in developed countries. The area under natural forest in the developing countries particularly in Asia / Oceania was estimated to reduce by nearly 4 million hectares annually between 1980 and 1995 (Asian Timber, February 1998). In Malaysia alone, a decrease of about 2 million hectares between 1990 and 1995 has been reported by FAO (1997).

The global demand for all forest products will continue to rise. According to FAO, through its "most probable" growth scenario at 1% per year, demand is expected to reach 3.9 million m³ in 2010, of which half would be fuelwood, which is used largely in the developing countries (Asian Timber, January 1998). FAO has also projected a shortage of industrial roundwood of about 110 million m³ by the year 2010, with the consumption expected to reach 2.28 billion m³ compared to a

1

production estimated at 2.17 billion m³ (Asian Timber, February 1998). In Malaysia, the annual log production in the Seventh Malaysia Plan was expected to be 28.3 million m³ with 7.4, 5.4 and 15.5 million m³, for Peninsular Malaysia, Sabah and Sarawak respectively, which represented a decrease of 17% compared to the average of 34 million m³ per year under the Sixth Malaysia Plan (Thai, 1995). The local supply of log up to the year 2010 has been projected to be about 13.7 million m³ (Abdul Razak, 1997), implying a reduction in log production of more than 17%.

On the other hand, the total annual installed processing capacities of mills in Peninsular Malaysia, Sabah and Sarawak are 13.2, 7.45 and 6.0 million m³ respectively (Mahmud, 1997). One key determinant in future development of the downstream wood-based industry is the sustainable supply of raw materials, particularly logs. Thus, access to a reliable supply of trees for raw materials will continue to remain as an important determining indicator in this sector. In order to overcome deficit of raw materials as well as to ensure sustainable supply of timber for wood-based downstream industry, extensive tree planting is urgently needed (Mahmud, 1997).

Presently, the rehabilitation of deforested area has been practised in certain parts of South East Asia through the establishment of forest plantations. To date there are about 80 to 100 million hectares of forest plantations in the developed countries while in the developing countries the total area of forest plantations have increased from 40 million hectares in 1980 to about 81 million hectares in 1990 (Asian Timber, February 1998).

In Malaysia, forest plantation has long been recognised as an essential part of a strategic development plan for the sustainable management of forest resources (Thai, 1994). Fast growing species of both indigenous dipterocarps as well as exotic species such as *Gmelina arborea*, *Paraserianthes facaltaria* have been identified as suitable species for planting particularly for the production of general utility timbers (Thai, 1994). More recently, Krishnapillay *et al.* (1997) revealed that *Tectona grandis* and *Azadirachta excelsa* are very viable as plantation crops on a 15- year rotation. Another genus that has drawn much attention as a plantation species is the fast growing tropical *Acacia*. Several species of this genus have proven themselves as potential multiple plantation species (Turnbull, 1986) in many developing countries which cover a range of climatic zones such as the humid tropics, cool tropical highlands and arid or semi-arid regions (Logan, 1987).

The success of sustainable forest management will also require the understanding and effective management of other aspects such as ecology and genetics besides the biology aspect. Genetic studies in particular, have been used to identify superior species populations or provenance and played an important role in the subsequent selection and breeding of the most desirable individuals within the populations. Moreover, the conservation of genetic diversity requires knowledge about the distribution and abundance of species, key mutualistic interactions among organisms, amount and patterns of genetic diversity, and progress in technology of long-term storage of propagules. Data on the levels and spatial distribution of genetic variation are of crucial importance to several aspects of tropical biology (Hamrick and Loveless, 1986). In addition, Bawa (1976) also stressed on the

importance of genetic information in tropical tree breeding programmes. Genetic variation found between and within species serves as an important buffer to the temporal and spatial variation of potential stress factors (Bergmann *et al.*, 1989) and also in the building blocks for human use in selection and breeding for adaptability to a range of environments and end uses. Thus, this will include the establishment, management and preservation of the maximum amount of genetic variation within species (Soule, 1980; Whitmore, 1980).

Isozyme electrophoresis using starch gel has been extensively used over the past several decades in investigations of the genetics of a large number of organisms from fruit flies and human to crop plants. In terms of forest species, isozyme analysis in particular genetic polymorphism has been reported in temperate trees. The species studied include those on Pseudotsuga menziesii (Yeh and O'Malley, 1980; Mejnartowicz and Lewandowski, 1994; Prat and Arnal, 1994), Pinus strobus (Beaulieu and Simon, 1994), Pinus nigra (Aguinagalde and Bueno, 1994) and Chamaecyparis lawsoniana (Millar and Marshall, 1991). Similar investigations have also been done on tropical trees such as those on genetic diversity and breeding systems of Acacia. These reports encompass those on Acacia auriculiformis (Moran et al., 1989a, Wickneswari and Norwati, 1993), Acacia crassicarpa (Moran et al., 1989a), Acacia mangium (Moran et al., 1989b) and Acacia melanoxylon (Playford et al., 1991). Other tropical species included Pterocarpus macrocarpus (Liengsiri et al., 1994), Hevea brasiliensis (de Paiva et al., 1994a and 1994b), Tectona grandis (Kertadikara and Prat, 1995) as well as Eucalyptus urophylla and Eucalyptus grandis (Martins-Corder and Lopes, 1997).

