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New Micropeptins with Anti-Neuroinflammatory Activity 

Isolated from a Cyanobacterial Bloom 

Riley D. Kirk,† Haiyin He,‡ Paul G. Wahome,‡ ShiBiao Wu,‡ Guy T. Carter,‡ and Matthew J. Bertin†,* 

† Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA 
‡ Biosortia Pharmaceuticals Hollings Marine Laboratory, Charleston, SC 29412, USA 

*Correspondence: mbertin@uri.edu; Tel.: +1-401-874-5016 

Abstract: Metabolite mining of environmentally collected aquatic and marine microbiomes offers a 

platform for the discovery of new therapeutic lead molecules. Combining a pre-fractionated 

chromatography library with LC-MS/MS-based molecular networking, and biological assays, we isolated 

and characterized two new micropeptins (1 and 2) along with the previously characterized micropeptin 996. 

These metabolites showed potency in anti-neuroinflammatory assays using BV-2 mouse microglial cells, 

showing 50% reduction in inflammation in a range from 1-10 μM. These results show promise for 

cyanobacterial peptides in the therapeutic realm apart from their impact in environmental health, and 

provide another example of the utility of large pre-fractionated natural product libraries for therapeutic hit 

and lead identification.  
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INTRODUCTION 

Neuropathic pain, or nerve pain, resulting from damage to or dysfunction of the 
somatosensory nervous system is notoriously difficult to treat. Neuroinflammation is key in the 
initiation and persistence of neuropathic pain.1 Recent research has shown that the prevalence of 
neuropathic pain in the United States is approximately 10% of adults, and out of those reporting 
neuropathic pain over 40% were treating with either weak or strong opioid drugs.2 This prevalence 
of neuropathic pain increases in specific cohorts with 33% of those with chronic back pain 
displaying characteristic signs of neuropathic pain.3 Additionally, chronic, uncontrolled 
neuroinflammation is an indicative sign of neurodegenerative diseases such as Alzheimer’s 
Disease and Parkinson’s Disease.4,5 Our group is interested in the discovery of new specialized 
metabolites from marine and aquatic microbiomes that are effective in reducing 
neuroinflammation. While we have had some success in this approach by mining marine 
cyanobacterial blooms for anti-neuroinflammatory agents,6 freshwater cyanobacterial blooms 
offer additional chemical space for discovery, especially in terms of cyclic peptides.7 These 
peptides belong to several classes including the microcystins, aeruginosins, microginins, 
anabaenopeptins, micropeptins, microviridins and cyclamides. More than 600 peptides and 
peptidic compounds have been described from various cyanobacterial taxa.7 Many of these 
peptides are hepatotoxic, such as the microcystins, which can cause non-alcoholic liver disease 
and acute liver failure.8,9 Consumption of contaminated drinking water is considered the major 
route of human exposure to microcystins, and the EPA has set concentration limits on these toxins 
(1.6 μg/L = Do Not Drink; 20 μg/L = Do Not Use). While neurotoxins and hepatotoxins are a 
significant public health concern, these blooms are comprised of a complex milieu of 
taxonomically diverse microbes, each possessing various biosynthetic capabilities. Large scale 
biomass sampling from groups like Biosortia have revealed freshwater cyanobacterial blooms are 
more chemically complex than previously assumed, and novel molecules with potent biological 
activities can be isolated and characterized.10,11 Work on this ‘metabolite mining’ from complex 
aquatic microbiomes envisions the bloom environment as an ecosystem level complex co-culture 
experiment in which the aquatic microbiome is producing an equally complex suite of secondary 
metabolites.  

The use of prefractionated natural product libraries has shown promise in increasing the 
potential of identifying lead structures following a bioassay-guided discovery approach.12 
Biosortia Pharmaceuticals has generated a prefractionated library from cyanobacterial biomass 
dominated by Microcystis aeruginosa originally isolated from a wastewater management facility 
in Muskegon, Michigan. Previous mining of this material resulted in the isolation and structure 
elucidation of new highly cytotoxic microcystin toxins.10 A similar workflow was implemented 
for biomass collected from Grand Lake St. Mary’s in Ohio, and this effort resulted in the 
identification and characterization of the exquisitely potent cyanobufalin toxins.11 Each 
chromatography fraction in the library contained a rarefied mixture of chemicals allowing hits to 
be identified from less complex starting material compared to crude extracts or more complex 
fractions. Pairing the prefractionated library with metabolite profiling tools such as LC-MS/MS-
based molecular networking afforded the opportunity for rapid annotation and dereplication.13 
Implementing these approaches allowed our group to isolate and characterize two new 
micropeptins (1 and 2) and the previously discovered micropeptin 996 (Figures 1 and S1). All 
three metabolites showed potent inhibition of the inflammatory response in BV-2 murine 
microglial cells. 
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Figure 1. Structures of micropeptins 982 (1) and 957 (2). 

RESULTS AND DISCUSSION 

Structure Elucidation of Micropeptin 996, 1 and 2. Biosortia’s chromatography fraction library 
consisted of over 150 individual samples each with a rarefied collection of microbial metabolites. 
Following a bioassay-guided isolation approach, we prioritized fractions with low cytotoxicity and 
strong anti-inflammatory effects in the BV-2 murine microglial cell line. Fraction D29 showed no 
significant cytotoxicity and inhibited the production of nitric oxide species (NOS) in the cells by 
greater than 50% at a 10 μg/mL dose (Figures S2 and S3).  

 While we were using a pre-fractionated library for screening, the samples were still 
relatively complex, likely due to the complex consortia of bacteria and other microbes in the 
original biomass. In order to rapidly annotate and visualize the chemical space in the fraction of 
interest (D29), we subjected the fraction to LC-MS/MS analysis followed by molecular 
networking. The resultant network showed five separate clusters with clusters 1 and 2 showing 15 
and 9 individual nodes, respectively and parent masses between m/z 900-1100 (Figure S4). 
Comparing precursor m/z values and previous molecular networks available in the literature, we 
putatively identified the metabolites in clusters 1 and 2 as micropeptins or cyanopeptolins.14,15 
Node 1019 and 1005 showed high ion counts in mass spectrometry analysis and were abundant in 
the HPLC chromatogram and these metabolites were targeted for isolation (cf. Figure 2, S4, and 
S5). 

 

Figure 2. Molecular networking cluster showing micropeptin 982 (1) and micropeptin 996 as 
nodes 1005 (M+Na+) and 1019 (M+Na+), respectively. These nodes are enlarged and in yellow. 

 Following examination of the molecular networks, additional chromatographic procedures 
and testing led to the isolation of three metabolites (Figures S5 and S6). 1H NMR and 13C NMR 



4 

 

analysis indicated that these molecules were peptidic in nature and that they were closely related 
to each other in chemical structure (cf. Figures S7, S8, S11, S12, and S20).  

 The first metabolite of interest (Fraction D29, peak 7) gave an m/z of 1019.4854 [M+Na]+ 
following HRESIMS analysis suggesting a molecular formula of C52H68N8O12 (Figure S9). 
Dereplication efforts based on mass spectrometry data (Figures S9 and S10) identified micropeptin 
996 as the likely metabolite and further examination of 1H NMR and 13C NMR spectra confirmed 
the identification as these data matched the previously published data exactly.16  

 The second metabolite (1) (Fraction D29, peak 6.1) gave an m/z of 1005.4698 [M+Na]+ 
following HRESIMS analysis suggesting a molecular formula of C51H66N8O12 and 23 degrees of 
unsaturation (Figure S18). Dereplication efforts did not readily identify a known micropeptin with 
this m/z value. The molecule was 14 Da less than micropeptin 996 and the 1H NMR and 13C NMR 
spectra of 1 and micropeptin 996 were nearly identical and the presumption was a difference of a 
CH2 group between the two compounds. Examination of 2D NMR data including HSQC, HMBC, 
COSY, TOCSY, and NOESY spectra (Table 1 and Figures S1 and S13-S17) established spin 
systems and connections for the following sequence of amino acids: valine, N-methyl 
phenylalanine, phenylalanine, amino hydroxy piperidone (Ahp), tyrosine, threonine, glutamine, 
and butyric acid. The difference being the substitution of a tyrosine in 1 for the homotyrosine in 
micropeptin 996. The planar structure of 1 was also supported by MS/MS fragmentation data, 
which identified a key fragment (m/z 404.1832) as Ahp-Phe-N-MePhe-H2O (Figure S19).16 The 
relative configuration of the Ahp residue was assigned based on NOE correlations between H-
2Ahp, H-4aAhp, and H-5Ahp showing that these hydrogens were co-planar. Additionally, the NH 
proton of the Ahp residue showed an NOE correlation to H-3aAhp, which showed an NOE 
correlation to the OH group attached to C-5Ahp (Figure S1). This was consistent with previously 
publised research assigning the relative configuration of the Ahp residue.16,17 Compound 1 was 
given the name micropeptin 982, which is a general convention to designate these micropeptins 
by molecular weight.  

 

Table 1. NMR data for micropeptin 982 (1) (500 MHz for 1H NMR, 125 MHz for 13C NMR; DMSO-d6). 

Position δC, mult δH, mult, J (Hz)        HMBC         COSY 

Val-1 

2                 

3 

4 

5 

NH 

171.9, C    

55.8, CH 

30.8, CH 

19.1, CH3 

17.2, CH3          

 4.65, dd (9.6, 4.5)         

2.00, m 

0.84, d (6.8) 

0.70, d (6.8) 

7.42 (ovlp) 

1                       

 

1,2,3,5 

2,3,4 

N-MePhe-1 

3         

4,5 

3,5 

3,4 

2 

N-MePhe-1 

2 

3a 

3b 

4 

5/9 

6/8 

7 

N-Me 

168.8, C 

60.5, CH 

33.8, CH2 

 

137.7, C 

129.7, CH 

129.3, CH 

126.3, CH 

30.3, CH3 

 

5.01, ovlp 

3.20, m 

2.84, ovlp 

 

7.23, d (7.3) 

7.39, m 

7.30, t (7.4) 

2.78, s 

 

 

4,5,9 

2,4,5,9 

 

6,7,8 

4,5,9 

6,8 

2,Phe-1 

 

3a,3b 

2,3b 

2,3a 

 

6,8 

5,9 

6,8 

 

Phe-1 

2 

3a 

3b 

170.2, C    

50.0, CH 

35.1, CH2 

4.72, dd (11.6, 4.4) 

2.83, ovlp 

1.66, ovlp 

1 

2 

 

3a,3b 

2,3b 

2,3a 
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4 

5/9 

6/8 

7 

136.5, C 

129.2, CH 

127.7, CH 

126.2, CH 

 

6.77, m 

7.17, d (7.4) 

7.13, d (7.1) 

 

7 

4,5,9 

5,9 

 

6,8 

5,9 

 

Ahp-1 

2 

3a 

3b 

4a 

4b 

5 

NH 

OH 

168.9, C 

48.8, CH 

21.4, CH2 

 

29.1, CH2 

 

73.7, CH 

 

3.59, m 

2.40, m 

1.61, m 

1.68, m 

1.50, m 

5.02, ovlp 

7.04, d (9.0) 

 

1 

 

 

 

 

 

Tyr-1 

 

3a,3b,Ahp-NH 

2,3b,4a,4b 

2,3a, 

3a,4b,5 

3a,4a,5 

4a,4b,Ahp-OH 

2 

 6.03, br  5 

Tyr-1 

2 

3a 

3b 

4 

5/9 

6/8 

7 

NH 

169.4, C 

53.8, CH                 

34.9, CH2 

 

128.1, C 

129.7, CH 

114.9, CH 

155.5, C 

 

4.30, m 

3.10, dd (14.3, 4.2) 

2.53, m 

 

6.90, d (8.4) 

6.56, d (8.4) 

 

8.52, d (8.9) 

 

 

2,4,5,9 

2,4,5,9 

 

6,7,8 

4,5,7,9 

 

Thr-1 

 

3a,3b,Tyr-NH 

2,3b 

2,3a 

 

6,8 

5,9 

 

1 

Thr-1 

2 

3 

4 

NH 

168.7, C 

54.0, CH 

72.0, CH 

17.5, CH3 

 

4.53, d (9.6) 

5.37, m 

1.10, d (6.5) 

7.46, d (9.5) 

 

1 

4, Val-1 

2,3 

Gln-1 

 

Thr-NH 

4 

3 

2 

Gln-1 

2 

3a 

3b 

4 

5 

NH 

NH2 

171.7, C 

52.6, CH 

27.6, CH2 

 

31.5, CH2 

173.7, C 

 

4.28, ovlp 

1.86, m 

1.67, m 

2.10, ovlp 

 

8.13, d (7.7) 

7.27, s 

 

 

2,5 

2,5 

2,3,5 

 

BTA-1,Gln-2 

 

 

3a,3b,Gln-NH 

2,3b,4 

3a,4 

3a, 3b 

 

2 

BTA-1 

2 

3 

4 

172.4, C 

37.2, CH2 

18.7, CH2 

13.7, CH3 

 

2.11, ovlp 

1.55, m 

0.90, t (7.4) 

 

1,3,4 

1,2,4 

1,2,3 

 

3 

2 

3 

     

 

 The third metabolite (2) (Fraction D29, peak 6.2) gave an m/z of 980.4858 [M+Na]+ 
suggesting a molecular formula of C49H67N9O11 and 21 degrees of unsaturation (Figure S24). 
Examination of the 1H NMR spectrum showed additional resonances in 2 in the region from 7.0 
to 7.5 ppm and two shielded doublets (δH 0.88 and 0.75) that were not present in 1 (Figure S20). 
Examination of the 1H NMR spectrum and 1H-1H 2D NMR spectra (COSY, TOCSY, NOESY, 
Figures S21-S23) established spin systems consistent with the following amino acids: valine, N-
methyltryptophan, phenylalanine, amino hydroxy piperidone (Ahp), valine, threonine, glutamine, 
and butyric acid. The sequence of amino acids was estabished via NOE correlations, MS/MS data, 
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and analogy to previously characterized micropeptins. An NOE correlation between Ahp-OH (δH 

5.85) and H-9 of Phe (δH 6.78) supported that these residues were connected. The MS/MS data 
showed a fragment m/z 443.1931, which supported the fragmentation of Ahp-Phe-N-MeTrp-H2O 
(Figure S25). This left two positions in the peptide ring to be occupied by valines along with ester 
formation by threonine and the Gln-BTA side chain. The relative configuration of the Ahp residue 
was identical to that of 1 based on NOE correlations and 2 was given the name micropeptin 957.      

 The absolute configuration of the amino acids in 1 and 2 was determined by acid 
hydrolysis of both compounds. Next, we treated the hydrolysates with Marfey’s reagent (L-
FDAA) to generate derivatives, and finally we completed chromatographic comparision of the 
derivatized hydrolysates to authentic L- and D-amino acid standards (Figures S26 and S27). All 
amino acids in both 1 and 2 matched L standards and the configuration of the Ahp residues in 
both compouds is proposed based on relative configuration and comparison to previously 
characterized micropeptins. 

 

Biological Activity. Each micropeptin tested (1, 2, and micropeptin 996) showed the ability to 
reduce NOS in BV-2 microglial cells following stimulation with bacterial LPS (Figure 3). 
Approximately a 50% reduction in NOS was observed for doses of each metabolite at 10 μM, 
and significant reduction in NOS was shown at concentrations as low as 0.1 μM. We tested each 
metabolite for the ability to inhibit the protease plasmin with the rationale that perhaps the anti-
inflammatory activity was the result of the inhibition of this protease in the cell. The activation 
of plasminogen to the protease plasmin occurs in cellular inflammatory responses and 
plasminogen activation has shown the ability to activate microglial cells.18,19 Additionally, other 
micropeptins have shown the ability to inhibit plasmin.20 However, in vitro enzyme inhibition 
assays did not show inhibition when concentrations of the micropeptins were tested up to 10 μM 
concentrations (Figure S28). 

 In this report, we have isolated and characterized two new micropeptins (1 and 2), and we 
have evaluated the ability of three micropeptins (1, 2, micropeptin 996) to reduce inflammation in 
BV-2 microglial cells. Micropeptins are a large class of cyanobacterial peptides with over 82 
variants,7 and a complicated nomenclature which includes alternative names to micropeptin such 
as cyanopeptolin, aeruginopeptin, anabaenopeptilide, oscillapeptilide, oscillapeptin among several 
others.7 However, despite the many names, the chemistry is more consistent in this group as the 
class is characterized by the 3-amino-6-hydroxy-2-piperidone (Ahp) residue and an ester linkage 
formed by the β-hydroxy group of threonine and the carboxy group of the terminal amino acid. 
There are four other ring amino acids (six total), which can be variable and the penultimate residue 
(from the point of view of biosynthesis) is N-methylated. There are two additional residues not in 
the ring: one an amino acid and the other a fatty acid. These characteristics are also observed in 1 
and 2. Intriguingly, while these metabolites are generally thought to be sequestered to 
cyanobacterial metabolism, a recent cyanopeptolin isolated from a Streptomyces 
olivochromogenes strain provokes thoughts as to the evolutionary history of this class of 
molecules.21 A consistent biological activity observed in this class is protease inhibition in contrast 
to the phosphatase inhibition observed from microcystins.22 For instance, micropeptin 996 was 
previously shown as a potent inhibitor of chymotrypsin with an IC50 of 0.64 μM.16 Micropeptin 
T2 showed potent inhibition of plasmin (IC50 = 0.1 μg/mL), while micropeptin T1 showed no 
ability to inhibit this protease (IC50 > 100 μg/mL).20 The difference between the two metabolites 
was a substitution of lysine in T2 instead of the tyrosine in T1 (in the same amino acid position as 
tyrosine in 1). We observed no plasmin inhibition from 1, 2, or micropeptin 996 and this may be 
due to specific amino acid residues conferring this activity to specific micropeptins. Additional 
structure-activity relationship studies should prove illuminating with respect to protease inhibition. 
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Other micropeptins such as kyanamide, symplostatin 5, and tutuilamides A-C all showed potent 
inhibition of elastase.17,23,24 

 

Figure 3. Anti-inflammatory activity of micropeptin 982 (MP 982) 1, micropeptin 957 (MP 957) 
2, and micropeptin 996 (MP 996) tested against BV-2 murine microglial cells. All data is 
expressed as mean ± standard error (n = 3), and the significance was reported by analysis of 
variance (ANOVA) followed with Dunnett’s multiple comparison procedure. Significance (α = 
0.05) as compared with LPS, p ≤ 0.0002 (***) and p ≤ 0.0001 (****). 

Symplostatin 5 additionally alleviated inflammation in an epithelial lung airway model system.22 
We observed a reduction in inflammation in microglial cells after treatment with the micropeptins 
reported in this study and further explorations of their mechanism of action in microglial cells in 
warranted. For realistic therapeutic development of CNS drugs, transport through the blood-brain 
barrier is essential. While microcystins have been shown to rely on transportation through organic 
anionic transporters (OATs) to move into cells,25 less is known about the same transport of 
micropeptins. However, it will be essential to determine the ability of micropeptins to cross the 
BBB to be realistic agents for reducing neuroinflammation. In addition to the fraction (D29) that 
was further mined in this report, there are several other fractions of interest that had the ability to 
reduce NOS levels in LPS-stimulated microglial cells (Figure S3). Fraction D29 was chosen for 
further purification because it showed the strongest reduction in NOS when tested at 10 μg/mL 
and also showed no significant cytotoxic effects at the same concentration.  
 
CONCLUSION 
 
The metabolite profiling approach (LC-MS/MS molecular networking) was implemented in our 
workflow and we quickly identified the micropeptin class in our active fraction. This mass 
spectrometry-guided approach can be paired with bioassay data to identify likely bioactive 
molecules in samples with many analytes.26 Molecular networking has been used to describe the 
chemical space in cyanobacterial harmful algal blooms,27,28 and innovative approaches using this 
technology will continue to increase the efficiency of therapeutic discovery efforts. There are many 
other likely micropeptins in this active sample (Figure S4), and further isolations will allow for 
structure-activity relationship studies to be carried out. There were clearly potent cytotoxins as 
well in the prefractionated library, which may be of interest as potential chemotherapeutics or may 
be explored for their environmental toxicity (Figure S2). High content and information-rich mass 
spectrometry workflows paired with additional bioassays will be necessary to fully exploit the 
potential of the wealth of metabolites in the prefractionated library.  

MATERIALS AND METHODS 
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General Experimental Procedures. Optical rotations were acquired using a Jasco P-2000 
polarimeter. UV spectra were measured using a Beckman Coulter DU-800 spectrophotometer. 
NMR spectra were recorded using a Varian 500 MHz instrument. The chemical shifts reported for 
1, 2, and micropeptin 996 were referenced to the residual solvent peaks of DMSO-d6 (δH 2.50 and 
δC 39.5). HRESIMS analysis was peformed using an AB SCIEX TripleTOF 4600 mass 
spectrometer with Analyst software. MS/MS data were recorded on this same instrument using the 
product ion function. LC-MS/MS was performed using a ThermoFisher LTQ XL mass 
spectrometer with an electrospray ionization (ESI) source. Semi-preparative and analytical HPLC 
was carried out using a Dionex UltiMate 3000 HPLC system equipped with a micro vacuum 
degasser, an autosampler, and a diode-array detector. 

 
Collection and Processing of Cyanobacterial Biomass into Prefraction Library. Biomass was 
collected from a holding lagoon at the Muskegon County Wastewater Management facility on 
Maple Island Road, Muskegon, Michigan, USA and concentration of biomass was completed as 
previously described.10 The biomass was lyophilized and sent to AnalytiCon Discovery (Potsdam, 
Germany) for library fractionation. 10 kg of lyophilized biomass powder was repeatedly extracted 
methanol, and separation over HP-20 eluting in 10% MeOH steps resulted in a medium polarity 
fraction. Next preparative HPLC generated the pre-fractionated library, which was partitioned into 
deep well plates for initial biological testing.  
 
LC-MS/MS-Based Molecular Networking. Fraction D29 was subjected to LC-MS/MS analysis 
with a specific scan event recording MS/MS spectra in data-dependent acquisition mode on a 
ThermoFisher LTQ XL mass spectrometer with an electrospray ionization (ESI) source coupled 
to a Dionex UltiMate 3000 HPLC system equipped with a micro vacuum degasser, an autosampler, 
and a diode-array detector. A Kinetex 5 μm C18 column (150 x 4.6 mm) was used for separation 
of analytes. The LC method consisted of a linear gradient from 15% to 100% CH3CN in water + 
0.1% formic acid over 20 min, followed by an isocratic period at 100% CH3CN of 5 min. The flow 
rate was held constant at 0.4 mL/min. The MS spray voltage was 3.5 kV with a capillary 
temperature of 325 °C. For the MS/MS component, the CID isolation width was 1.0 and the 
collision energy was 35.0 eV. The raw data files were converted to mzXML format using 
MSConvert from the ProteoWizard suite (http://proteowizard.sourceforge.net/tools.shtml). The 
molecular network was generated using the online platform at Global Natural Products Social 
Molecular Networking website (gnps.ucsd.edu) [27]. The data were processed by removing all 
MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS spectra were filtered by 
choosing only the top 6 fragment ions in the +/- 50 Da window throughout the spectrum. The 
precursor ion mass tolerance was set to 2.0 Da with a MS/MS fragment ion tolerance of 0.5 Da. A 
network was then created where edges were filtered to have a cosine score above 0.6 and more 
than 2 matched peaks. The spectra in the network were then searched against GNPS' spectral 
libraries. The library spectra were filtered in the same manner as the input data. All matches kept 
between network spectra and library spectra were required to have a score above 0.6 and at least 2 
matched peaks. The network was visualized using the Browser Network Visualizer tool available 
on the gnps website,29 and then imported into the program Cytoscape for additional analysis. 

 
Isolation of 1 and 2. Fraction D29 from the prefractionated library was subjected to reversed 
phase semi-preparative HPLC using a Kinetex 5 μm C18 column (250 x 10 mm) and an isocratic 
method. Mobile phase: 65% CH3CN/35% H2O with 0.05% formic acid added to each solvent and 
flow rate of 3 mL/min. Seven HPLC peaks (1-7) were collected and subjected to the anti-
inflammatory assay and an evaluation of purity using 1H NMR and LC-MS. This first purification 
resulted in the isolation of 14 mg of micropeptin 996 (tR, 26.5 min, peak 7). Peak 6 (tR, 25 min) 



9 

 

was further purified using a YMC 5 μm Chiral ART Cellulose-SB column (250 x 4.6 mm) using 
an isocratic method. Mobile phase: 65% CH3CN/35% H2O with 0.05% formic acid added to each 
solvent and flow rate of 1 mL/min. Final purification resulted in the isolation of 12 mg of 1 (tR, 
5.25 min, peak 6.1) and 2 mg of 2 (tR, 10.75 min, peak 6.2).  

 
 Micropeptin 982 (1): colorless oil; [α]23

D -65 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 228 
 (4.8), 278 (4.1) nm; 1H NMR (500 MHz, DMSO-d6), and 13C NMR (125 MHz, DMSO-
 d6), see Table 1; HRESIMS m/z 1005.4698 [M+Na]+ (calcd for C51H66N8O12Na, 
 1005.4698). 

 
 Micropeptin 957 (2): colorless oil; [α]23

D -23 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 224 
 (4.8), 274 (3.9) nm; 1H NMR (500 MHz, DMSO-d6), see Table S1; HRESIMS m/z 
 980.4858 [M+Na]+ (calcd for C49H67N9O11Na, 980.4858). 

 
Marfey’s Analysis. To determine the absolute configuration of the α-amino acids in 1 and 2, 0.5 
mg of each compound was reconstituted in 0.5 mL of 6 N HCl and heated at 110 °C for 15 h. The 
hydrolysate was dried, reconstituted in 300 µL of 1 M NaHCO3 solution, and treated with 50 µL 
of 1 mg/ml solution of N-α-(2,4-dinitro-5-fluorophenyl)-L-alanine amide (L-FDAA) in acetone, 
followed by heating at 40 °C for 1 h. Next the mixture was cooled to room temperature and 
quenched with 100 µL of 1 N HCl. The hydrolysate was dried and reconstituted in 200 µL of 
CH3CN and filtered through a 0.2 µm filter. The hydrolysate and the L-FDAA derivatized α-amino 
acid standards were subjected to HPLC analysis (20% H2O/CH3CN + 0.1% FA to 50% H2O/ 
CH3CN + 0.1% FA over 30 min and then back to initial conditions from 31-36 min; Kinetex C18 
column, 150 × 4.6 mm, flow rate 0.6 mL/min). The retention time (min) of the hydrolysate of 1 
matched L-Val (20.4; D-Val, 23.1), L-N-MePhe (23.6; D-N-MePhe, 23.9), L-Phe (23.3; D-Phe, 
25.1), L-Tyr (18.4, D-Tyr, 19.6), L-Thr (12.5; D-Thr, 15.3; L-allo-Thr, 12.7; D-allo-Thr, 13.8), and 
L-Gln (11.6; D-Gln, 12.0). The retention times (min) of the hydrolysate of 2 matched L-Val (20.4; 
D-Val, 23.1), L-N-MeTrp (21.6; D-N-MeTrp, 22.4), L-Phe (23.3; D-Phe, 25.1), L-Thr (12.5; D-Tyr, 
15.3; L-allo-Thr, 12.7; D-allo-Thr, 13.8), and L-Gln (11.6; D-Gln, 12.0). 

 
Biological Assays. BV-2 murine microglial cells were cultured as previously described.6 The 
cytotoxicity of the library fractions and pure compounds to the cells was measured using the 
CellTiter-Glo® Luminescent Cell Viability Assay (CTG, Promega, Fitchburg, WI). BV-2 cells 
were treated with trypsin and seeded in a white-walled 96-well plate (Corning, Corning, NY) at 
100,000 cells/mL in DMEM/F-12 media. Cells were allowed to adhere for 24 h in the incubator 
followed by treatment with the fractions at 10 μg/mL concentrations and eventually pure 
compounds at final concentrations of 10 µM, 1 µM, and 0.1 µM. After dosing, the cells were 
incubated with fractions or pure compounds for 24 h. Following incubation, the cell viability was 
measured following manufacturer’s protocols. The CTG buffer and substrate were combined, and 
100 μL of mixed reagent was added to each well followed by two minutes of slow shaking on an 
orbital shaker, then 10 minutes of non-shaking equilibration time. The luminescence was measured 
using a SpectraMax M2 Plate Reader. Cell viability was then reported as a percent of vehicle 
control (DMSO). In order to test for anti-inflammatory activity, the Griess assay was used. The 
Griess assay reagent kit was purchased from Promega Corp (Fitchburg, WI, USA). BV-2 cells 
were plated in a 24-well plate at 100,000 cells/mL in complete media. Cells were treated with 
fractions or pure compounds for 1 h at the same concentrations used for the cell viability assays. 
After incubation, BV-2 microglia were exposed to (LPS) at 1 µg/mL for 23 h. After incubation, 
50 µL aliquots were taken from each well and transferred to a clear 96-well plate where Griess 
reagents were added for total nitric oxide concentration determination compared to the control 
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wells of DMSO. Statistical significance was determined using a One-way ANOVA followed by a 
Dunnett’s post hoc test, and analysis was performed using the program Prism (San Diego, CA). 
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