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South Africa, 5Now at The United States Geological Survey, Menlo Park, CA, USA

Abstract Our understanding of the tectonic development of the African continent and the interplay
between its geological provinces is hindered by unevenly distributed seismic instrumentation. In order to
better understand the continent, we used long-period ambient noise full-waveform tomography on data
collected from 186 broadband seismic stations throughout Africa and surrounding regions to better image
the upper mantle structure. We extracted empirical Green’s functions from ambient seismic noise using a
frequency-time normalization method and retrieved coherent signal at periods of 7–340 s. We simulated
wave propagation through a heterogeneous Earth using a spherical finite-difference approach to obtain
synthetic waveforms, measured the misfit as phase delay between the data and synthetics, calculated
numerical sensitivity kernels using the scattering integral approach, and iteratively inverted for structure. The
resulting images of isotropic, shear wave speed for the continent reveal segmented, low-velocity upper
mantle beneath the highly magmatic northern and eastern sections of the East African Rift System (EARS). In
the southern and western sections, high-velocity upper mantle dominates, and distinct, low-velocity
anomalies are restricted to regions of current volcanism. At deeper depths, the southern and western EARS
transition to low velocities. In addition to the EARS, several low-velocity anomalies are scattered through the
shallow upper mantle beneath Angola and North Africa, and some of these low-velocity anomalies may be
connected to a deeper feature. Distinct upper mantle high-velocity anomalies are imaged throughout the
continent and suggest multiple cratonic roots within the Congo region and possible cratonic roots within the
Sahara Metacraton.

Plain Language Summary We use advanced seismic imaging techniques (full-waveform
tomography), constrained by data from background (ambient) seismic noise to image the upper mantle
beneath the African continent and search for low-velocity structures (hot spots) that might coincide with
regions of volcanism, surface uplift, and continental rifting, particularly along the East African Rift. We also
searched for high-velocity structures (old, rigid blocks) that could influence how warm, buoyant material
flows within the Earth’s upper mantle. Our seismic tomography method allowed us to obtain a clear image of
structure beneath parts of Africa where no or very few seismometers are located (such as the Sahara
Desert and the Congo Basin). Our results provide indications for segmented secondary (or shallow)
upwellings in the upper mantle beneath East Africa, as opposed to earlier models suggesting one large,
continuous plume within the upper mantle. Our results also suggest that the one large, rigid, cratonic block
previously imaged beneath the Congo region may instead be composed of smaller, distinct blocks. These
results provide insight into the factors that control continental rifting along East Africa and provide new
testable models that help us to understand the relationships between upper mantle flow, rifting, volcanism,
surface uplift, and sedimentation records.

1. Introduction

The continent of Africa is composed of terranes that have together recorded billions of years of geologic his-
tory. Ancient Archean cratons are fringed by regions of deformation associated with earlier continental colli-
sions, aulocogens and associated volcanics stretch inland from earlier continental breakup episodes, and
shear zones parallel many regions of earlier tectonic activity (Abdelsalam et al., 2002; Begg et al., 2009;
Collins & Piesarevsky, 2005; Porada, 1989). In many instances, the current day tectonic processes, such as rift-
ing along the East African Rift System (EARS), of the continent principally act upon and overprint the weakest
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regions that have sustained earlier lithospheric damage (e.g., Corti, 2009; Ebinger et al., 2000, 2017; Keranen
et al., 2009).

While some studies suggest that magmatism in the Ethiopian segment of the East African rift results from
passive melting of normal mantle (e.g., Hammond et al., 2013; Rychert et al., 2012), a majority of studies sug-
gest that themantle beneath East Africa is characterized by a deep-seated, lowwave speed anomaly, possibly
a mantle plume (e.g., Bastow et al., 2008; Benoit, Nyblade, & VanDecar, 2006; French & Romanowicz, 2015;
Hansen & Nyblade, 2013; Ritsema et al., 2011). Several studies have suggested that the low wave speed
anomaly is thermochemical in nature (Cornwell et al., 2011; Rooney et al., 2012; Thompson et al., 2015).
Mantle plumes are expected to affect patterns of uplift and subsidence at the surface, and as such, sedimen-
tary records are also often relevant to the discussion of mantle upwellings (Burke & Gunnell, 2008; Chardon
et al., 2018; Hager et al., 1985; Lithgow-Bertelloni & Silver, 1998). This is particularly true for the current-day
EARS, the African Superswell, and its possible connection to a deep-seated African Superplume (e.g.,
Grand, 2000; Nyblade & Robinson, 1994). However, in order to couple the deep with the shallow systems, a
strong understanding of present Earth structure is necessary (e.g., Hager et al., 1985; Lithgow-Bertelloni &
Silver, 1998).

Numerous continental-scale, regional-scale, and focused tomographic studies, each with their own data and
methodology, have already been completed (e.g., Fishwick & Bastow, 2011, and references therein). However,
a challenge to deciphering the tomographic results, including the spatial relationships between low-velocity
asthenosphere and rigid cratons, is the uneven broadband seismic coverage, which is relatively dense imme-
diately adjacent to much of the EARS, while being notably sparse in regions distant from the rift (Figure 1).
Furthermore, the varying scales of individual study, the data that are included, and the methods that are
employed influence the resulting resolution, uncertainty, and interpretations of the results (e.g., Bastow,
2012; Rawlinson et al., 2014).

With recent developments in seismic tomography methods, alongside increased availability of high-
performance computational resources, we are now able to analyze all together a wealth of previously col-
lected seismic data from Africa with new ambient noise and full-waveform tomography approaches (e.g.,
Shapiro et al., 2005; Shen et al., 2012; Zhang et al., 2012). In this paper, we extract empirical Green’s functions
(EGFs) from the vertical component of ambient seismic noise at periods up to 340 s from broadband seism-
ometers located throughout Africa, the Middle East, and southern Europe (Figure 1; Shen et al., 2012). We
then numerically calculate synthetic Green’s tensors using a 3-D finite-difference wave propagation method
(Zhang et al., 2012). These accurate synthetic waveforms are compared directly with the long-period Rayleigh
waveforms extracted from ambient noise and the measured phase delays inverted (Paige & Saunders, 1982),
incorporating 3-D, numerical sensitivity kernels (Zhao et al., 2005), to obtain absolute, isotropic, upper mantle
shear wave speeds throughout continental Africa.

2. Tectonic Background
2.1. African Cratonic Structure

The African continent is composed of several cratons, with Archean rocks outcropping at the surface
(Figure 1). Several large cratonic provinces exist: the West African craton, in west-northwest Africa; the
Congo Craton, in western Central Africa; the Tanzania Craton, in eastern Central Africa; and the Kalahari, in
southern Africa (Begg et al., 2009). Within each of these larger groupings are several smaller
Archean/Proterozoic nuclei: the Reguibat and Man-Leo within the West Africa Craton; the Gabon-Kamerun,
the Bomu-Kibalan, the Kasai, and the Angolan within the Congo Craton; the Ugandan and distinct terranes
of the Tanzanian within the larger Tanzania Craton; and the Zimbabwean and the distinct terranes of the
Kaapvaal within the Kalahari Craton (e.g., Begg et al., 2009; Ennih & Liégeois, 2008; Jessell et al., 2016). One
markedly different region is the Sahara Metacraton in North Africa, so-named for the widespread deforma-
tion and metasomatism that occurred during the Pan-African Orogeny; this altered cratonic region is largely
buried beneath the Sahara Desert, making it difficult to study (Abdelsalam et al., 2002; Begg et al., 2009;
Liégeois et al., 2013).

The African cratons are bordered by mobile belts, where deformation and metasomatism occurred during
previous collisional and extensional events (Figure 1). Several mobile belts contain stranded Archean and

10.1029/2018GC007804Geochemistry, Geophysics, Geosystems

EMRY ET AL. 121



Proterozoic fragments within them (e.g., Abdelsalam et al., 2002; Begg et al., 2009). A few such fragments
include the Bengweulu, the Lurio, and the Niassa blocks in south central Africa within the Kibaran, Irumide,
Southern Irumide, and Lurio belts (Andreoli, 1984; Begg et al., 2009). Such cratonic fragments within the lar-
ger mobile belts could still have deep lithospheric roots detectable by geophysical studies. Other large
mobile belts include the Oubanguides along the northern side of the Congo and Tanzania Cratons, the
Damara Belt between the Congo and Kalahari Cratons, and the Mozambique Orogenic Belt along the eastern
side of the Tanzania Craton and the EARS (Begg et al., 2009).

Within several of the cratonic provinces, between exposed Archean nuclei are thick sedimentary basins; in
some places these basins are known to have formed during extensional episodes (Ennih & Liégeois, 2008).
The Congo Basin is located between the four distinct Archean nuclei on the edges of the larger Congo

Figure 1. Topography/Bathymetry from ETOPO1 showing land-based broadband seismometer locations (terrain shaded
and gray shaded, respectively; Amante & Eakins, 2009). Small gray triangles show all stations for which ambient noise
data have been collected and processed. Red triangles indicate stations for which empirical Green’s functions with signal-
to-noise ratios > 5 have been obtained from long-period ambient noise at 40–340 s and were used in the waveform
inversion. Dashed black lines show the estimated boundaries of the larger cratonic regions, including the Sahara
Metacraton. Thin, purple lines show segments of the East African Rift System, from Chorowicz (2005). Abbreviations are as
follows (alphabetical): AF = Afar; AP = Arabian Peninsula; AS = Angolan Shield; BB = Bengweulu Block; BKS = Bomu-Kibalan
Shield; BP = Biu Plateau; CdB = Chad Basin; CgB = Congo Basin; CVL = Cameroon Volcanic Line; DB = Damara Belt;
DD = Darfur Dome; GA = Gulf of Aden; GKS = Gabon-Kamerun Shield; HP = Hoggar Plateau; JP = Jos Plateau; KC = Kalahari
Craton; KpC = Kaapvaal Craton; KS = Kasai Shield; LB = Lurio Block; MOB = Mozambique Orogenic Belt; MER = Main
Ethiopian Rift; MLS = Man-Leo Shield; MR = Malawi Rift; MwR = Mweru Rift; NB = Niassa Block; OB = Oubanguides Belt;
OR = Okavango Rift; Rgs = Reguibat Shield; RS = Red Sea; RVP = Rungwe Volcanic Province; SS = South Sudan; TC = Tanzania
Craton; TD = Turkana Depression; TP = Tibesti Plateau; UC = Uganda Craton; VVP = Virunga Volcanic Province;
ZC = Zimbabwe Craton.
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Craton (Begg et al., 2009). Although this sedimentary basin exhibits shallow (subbasin) extensional structures
(e.g., Kadima et al., 2011), the basin is typically considered intracratonic because of the massive, deep litho-
spheric root imaged by some seismic tomography studies (e.g., Crosby et al., 2010; Priestley & McKenzie,
2006; Priestley et al., 2008; Ritsema & van Heijst, 2000; Schaeffer & Lebedev, 2013; Sebai et al., 2006; Sicilia
et al., 2008). However, other tomographic models have suggested that the Congo Craton may be composed
of smaller blocks (Fishwick, 2010; Pasyanos & Nyblade, 2007; Raveloson et al., 2015).

2.2. The East African Rift

The EARS is composed of several rift branches that stretch from the Red Sea and Gulf of Aden in the north-
east, along the eastern side of Africa, to Zambia, Madagascar, and Mozambique in the south (e.g., Chorowicz,
2005; Figure 1). Along much of the EARS, rifting closely follows the trend of the mobile zones, particularly in
the south where several rigid cratons and cratonic fragments are located (e.g., Begg et al., 2009). The EARS
segments are generally narrow (<100 km), although the Turkana and Omo regions of northern Kenya and
southern Ethiopia are much broader (~300 km); this region is marked by lower elevation and a prior episode
of rifting that strikes obliquely to current day rifting (Ebinger et al., 2000). In the north, large flood basalts are
located throughout Ethiopia and Yemen, and the oldest volcanic deposits (~45 Myr) are found in the Turkana
Depression (Furman, 2007; Furman et al., 2006). In general, the northern EARS and Eastern Branch are more
highly magmatic than the Western and Southern Branches (Furman, 2007); this is reinforced by prior research
that suggests that the northern EARS is underlain by particularly slow upper mantle velocities (e.g., Bastow
et al., 2008; Benoit, Nyblade, Owens, & Stuart , 2006; Benoit, Nyblade, & VanDecar, 2006; Chang & van der
Lee, 2011; Dugda et al., 2007; Fishwick, 2010; Gallacher et al., 2016; Sebai et al., 2006). The EARS also coincides
with a broad region of high elevations that may be associated with dynamic uplift due to mantle upwellings
or thermal alteration (e.g., Lithgow-Bertelloni & Silver, 1998; Mulibo & Nyblade, 2013a; Nyblade &
Robinson, 1994).

2.3. North Africa

The geology of North Africa, particularly the Sahara Metacraton, is mostly buried beneath the Sahara Desert
(Figure 1). Scattered regions of elevated topography exist throughout North Africa; some of these expose
altered Proterozoic or Archean rocks of the Sahara Metacraton and many are capped by Cenozoic volcanic
deposits (Abdelsalam et al., 2002; Burke & Gunnell, 2008). These small-scale regions of uplift have been pro-
posed by earlier studies to be due to dynamic uplift (Burke & Gunnell, 2008; Forte et al., 2010). Seismic instru-
mentation has been very sparse throughout the Sahara (Figure 1). Despite this, earlier seismic studies suggest
that North Africa may have lower than average velocities at shallow mantle depths (e.g., Fishwick, 2010) and
that several high-velocity regions within may mark the locations of cratonic fragments within the Sahara
Metacraton (Liégeois et al., 2013; Pasyanos & Nyblade, 2007; Sebai et al., 2006; Sicilia et al., 2008).

3. Data Set and Methods

We followed the long-period ambient noise waveform inversion methods and workflow based on the scat-
tering integral method (Chen et al., 2007; Shen et al., 2012; Zhang & Shen, 2010; Zhang et al., 2012; Zhao
et al., 2005). This approach has been applied on a range of scales to several other regions including the wes-
tern United States (Gao & Shen, 2012, 2014, 2015), the entire Eastern Hemisphere (Shen & Zhang, 2012), the
Ontong Java Plateau (Covellone et al., 2015), and Eastern North America (Savage et al., 2017). Descriptions of
the methods are outlined in those studies, so we include only a brief description here.

3.1. Ambient Noise Data sets

We gathered continuous records of ambient seismic noise from the Incorporated Research Institutions for
Seismology Data Management Center for land-based broadband seismic stations located in Africa, the
Middle East, and Southern Europe within the region defined by corners 40°S, 30°W and 45°N, 60°E
(Figure 1). For all stations within Africa and the Middle East, we collected vertical component data from sen-
sors with a low corner period of 120 s or greater. Due to the large number of sensors available in southern
Europe, we were more selective with the quality of sensors, preferentially collecting data with a low corner
period greater than 200 s. Data were split into synchronous daylong (24 hr) signals with an added buffer
of 4 hr of overlap. In total, we obtained data from 851 broadband seismic stations throughout the
region (Figure 1).
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3.2. Extraction of EGF From Long-Period Ambient Noise

We extracted EGFs from the data using the approach detailed by Shen et al. (2012). Briefly, this method splits
up ambient noise records into discrete time and frequency windows and normalizes the signal in order to
better achieve the flat frequency spectrum of a diffuse wavefield (Shen et al., 2012). This method has been
shown to improve the signal-to-noise ratio (SNR) of resulting EGFs, allowing longer-period signals to be
acquired (e.g., Bensen et al., 2007; Shen et al., 2012). Following normalization, earthquakes withMw 5.5+ were
removed from the time series. The daylong records were cross-correlated for each station-station pair and
were stacked to obtain EGFs for each set of stations. EGFs were then filtered into nine broad, overlapping fre-
quency bands from 7 to 40, 25 to 55, 40 to 80, 60 to 100, 80 to 140, 110 to 180, 145 to 225, 180 to 260, and 220
to 340 s (see supporting information Figures S1–S3 for examples of long-period EGFs). From these, SNRs were
calculated and EGF variances (σ) were obtained from monthly stacks of cross correlations. The estimates of
error are later used when calculating phase delays relative to the synthetic waveforms. From the 851 broad-
band stations for which data were collected, 414 stations returned at least one quality EGF (SNR > 5) for one
or more of the nine period bands listed above, and 186 of these stations returned quality EGFs for one or
more of the seven period bands greater than 40° (Figure 1; see supporting information Figure S4 for the dis-
tribution of station-station paths). EGFs from these 186 stations were convolved with the same Gaussian
source time function (centered at 22.5 s, half-width 7.5 s) used to forward model the synthetics (described
in the following section). Data that were brought into the inversion step, as discussed below, came from sev-
eral permanent and temporary networks (network codes: AF, G, GE, GT, HL, II, IU, MN, PM, XA, XB, XS, XV, YF,
YH, YL, ZK, and ZP).

3.3. Waveform Simulation

For each individual seismic station from which EGFs with SNR > 5 were extracted in the frequency bands of
interest, we model synthetic waveforms emanating from a virtual source at the station through a three-
dimensional heterogeneous Earth structure (Zhang & Shen, 2010; Zhang et al., 2012). The synthetic wavefield
is simulated using a spherical, collocated-grid finite difference waveform propagation method, which
employs a region of complex-frequency shifted perfectly matched layers along the boundaries of the model
domain to suppress artificial reflections off of the boundaries (Zhang et al., 2012; Zhang & Shen, 2010). The
spherical grid is constructed with uniform spacing in latitude and longitude and nonuniform grid spacing
in the depth direction (Zhang et al., 2012). The vertical grid spacing starts at one third of the horizontal grid
spacing at the Earth’s surface and increases with depth, so that it is roughly equal to the horizontal grid spa-
cing at 100-km depth (Zhang et al., 2012).

A trade-off exists between the computational time required to model the full set of station-to-station syn-
thetics while maintaining a dense enough finite difference grid to ensure accuracy of the shortest period
waveforms (i.e., at least ~8 grid points per wavelength for body waves and ~15 grid points per wavelength
for surface waves; see Zhang et al., 2012). For a lateral grid spacing of 0.2° in latitude and longitude,
Rayleigh waveforms as low as 80 s are accurate, and for a lateral grid spacing of 0.1° in latitude and longitude,
waveforms with periods as low as 40 s are accurate (e.g., Covellone et al., 2015; Gao & Shen, 2012, 2014). We
utilized two high performance computing clusters located at the University of Rhode Island to model all syn-
thetics and to invert the model using the EGFs extracted from ambient noise.

Our starting tomographic model was the CRUST 1.0 model (Laske et al., 2013) underlain by AK135 (Kennett
et al., 1995) down to 1,100-km depth. The boundaries of the domain were set so that the first Fresnel zone
of all station-station sensitivity kernels would lie within the domain. Our model domain was set to be several
degrees larger than our initial station selection range, from 43°S, 34°W to 53°N, 68°E. We used a virtual source
that is a single upward force, with a Gaussian source time function. During each model iterative step, syn-
thetic waveforms were calculated by propagating a virtual source through the 3-D velocity model.

3.4. Waveform Inversion

For each iteration, the resulting synthetics from the waveform simulations were cross-correlated with the
data from the EGFs to obtain a correlation coefficient and a phase delay. Those data with a correlation coeffi-
cient of 0.8 or greater were used to constrain the model during the iteration. As the three-dimensional model
was refined during subsequent iterations, the synthetic waveforms fit to the data waveforms improved, and
the number of data (convolved EGFs) that constrained the model increased (Figure 2).
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Both compressional and shear wave velocities contribute to Rayleigh wave propagation, particularly at shal-
low depth (Covellone et al., 2015; Gao & Shen, 2014; Savage et al., 2017). Our inversion was set up as a joint Vp
and Vs inverse problem

δt¼∫ Kα m0; xð ÞΔmα þ Kβ m0; xð ÞΔmβ
� �

dV

where δt is the phase delay between the synthetic and data (for cross correlations with correlation coeffi-
cients ≥0.8), Δmα and Δmβ were the perturbations (Vp and Vs, respectively) to the current 3-D Earth model
at each block (x) within our model, and Kα(m0, x) and Kβ(m0, x) were the Rayleigh wave phase sensitivity ker-
nels (Vp and Vs, respectively) calculated using the scattering-integral formulation (Zhao et al., 2005).
Supporting information Figures S5 and S6 show examples of the sensitivity kernels to shear wave velocity
perturbations and the spatial summation of all kernels used in the inversion. Density was not explicitly
included in the inversion, though density is updated using an empirical Vp-density relation (Christensen &
Mooney, 1995). Although the Vp-density relation is most applicable to crustal depths, the very minor Vp
(and density) variations at upper mantle depths have a negligible effect on the Vs model (see supporting
information Figure S7). During each iteration, new sensitivity kernels were calculated from the wave propa-
gation through the 3-D velocity model.

Following the construction of sensitivity kernels, the inverse problem was solved for using a sparse, damped,
least squares inversion method (Chen et al., 2007; Paige & Saunders, 1982; Zhao et al., 2005). The model was
inverted using a number of smoothing and damping constraints, and a new model was selected so that the
normalized chi-square misfit between data and synthetics was close to 1 (Gao & Shen, 2012; Montelli et al.,
2004). The initial iterations of the model were oversmoothed and overdamped (see Table 1) with regard to
this criterion; however, this was changed with subsequent iterations in accordance with Montelli et al.
(2004) and Gao and Shen (2012).

Our inversion was initially run using a grid located at every 0.2° (~22 km); this allowed us to utilize longer-
period EGF data (80+ s) to constrain broader and deeper structure first. For the first three iterations, a

Figure 2. Phase delay reduction over the nine iterations of waveform inversion. (a) Phase delay measurements for all fre-
quency bands (80–260 s) versus interstation distance for the initial model, CRUST1.0+AK135 (black dots), and after the final
(ninth) iteration (red dots). (b) Same as in (a); however, the black dots correspond to the phase delay during the seventh
iteration for the added higher-frequency bands (40–100 s). The red dots correspond to the final iteration for these two
higher-frequency bands. (c) Magnitude of the average phase delay (dt) per iteration. The gray vertical lines mark the
iterations where additional data were added to the inversion (see text for further explanation). Black dots are iterations 1–6,
and orange dots are iterations 7–9 (denotes inclusion of higher-frequency EGF data). (d) Similar to (c), except that y axis
denotes the number of EGFs used in each of the nine iterations. EGF = empirical Green’s functions.
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subset of the EGFs, those with SNR> 7, were utilized to constrain the overall
regional structure more robustly. In subsequent iterations, we incorporated
EGFs with SNR > 6, then finally SNR > 5. The first six iterations were com-
pleted using the coarser 0.2° grid. The inversion block size is decided by
the number of saved spatial grids in each time snapshot of wave propaga-
tion; in the first few iterations, every five grids were saved in the horizontal
direction and every one grid was saved in the vertical direction—producing
a block size (and best possible resolution) of ~1° in the horizontal direction.
Following the sixth iteration, the grid was resampled with a spacing of 0.1°
(~11 km), moved onto a faster (1,200 cpu-core) cluster at the University of
Rhode Island, and EGFs with periods of 40–340 s and SNR > 5 were utilized
to constrain the model. Due to data storage limitations, every 10 grids were
saved in the horizontal direction and every 2 grids were saved in the vertical
direction—once again producing a block size of ~1° in the horizontal direc-
tion. The model showed signs of convergence with the additional shorter
period data (Figure 2) after three more iterations (seventh to ninth).
Table 1 provides a summary of the grids and inversion parameters used.

3.5. Model Resolution

Despite the benefits of using full-waveformmethods for tomographic inver-
sions, the computational time required to generate a full suite of resolution
tests would require the same amount of forward modeling and inversion
time for each individual test case (e.g., Fichtner et al., 2009; Tape et al.,
2007, 2010). As such, the tests we present demonstrate the recovery of an
input synthetic model following a single iteration, using the sensitivity
kernels that were calculated from the wave simulation and phase delays
from the last model iteration (Figure 3 and supporting information Figures

S7–S18). Although structure is improved upon in subsequent iterations, the resolution tests nevertheless pro-
vide guidance in interpretation of these results. We note that despite several differences in the data sets and
methodology, (1) the overall upper mantle structure is similar to some other continental scale models (e.g.,
Fishwick, 2010; Pasyanos & Nyblade, 2007) and (2) small-scale upper mantle features in our models agree
remarkably well with features imaged in regional tomographic studies (e.g., Adams et al., 2012, 2015; Bastow
et al., 2008, 2005; Benoit, Nyblade, Owens, & Stuart, 2006, Benoit, Nyblade, & Pasyanos, 2006, Benoit,
Nyblade, & VanDecar, 2006; Civiero et al., 2015; Gallacher et al., 2016; O’Donnell et al., 2013).

To assess the uncertainty in our final tomographic model due to the uneven spatial distribution of data in the
region, we created a variety of resolution tests (Figure 3 and supporting information Figures S7–S18). In
Figure 3, we show a checkerboard resolution test, consisting of 5° × 5° high (Vs +10% higher than AK135)
and low (Vs �10% lower than AK135) shear velocity checkers extending through the entire depth range of
the model. Our results suggest some slight northwest-southeast distortion of the recovered checkers in
the sparsely instrumented portions of the model, which may indicate lateral smearing in parts of our final
model. The checkerboard also indicates diminished ability to recover the amplitude of the anomalies at
the shallowest upper mantle depth (~100 km), most notably beneath North Africa. The test also suggests that
we are able to recover some of the input model at mantle transition zone (MTZ) depths (~400–450 km).
Additional discussion of the methods and model resolution as well as several additional resolution tests
can be found in the supporting information (e.g., Buehler & Shearer, 2016; Emry et al., 2011; Maceira et al.,
2015; Montelli et al., 2006; Rhie & Romanowicz, 2004; Stehly et al., 2006; Zhou et al., 2011).

4. Results

We present isotropic shear wave speeds (Vs) in continental Africa (Figure 4 and supporting
information Figures S19–S21). The best resolution in our model exists in North Africa, Central Africa, the
East African Rift, and the Arabian Peninsula, and the results are sensitive to Earth structure down to MTZ
depths (Figure 3 and supporting information Figures S7–S18). Although we invert for both shear and com-
pressional wave speeds, Rayleigh wave sensitivities to the compressional wave speed are primarily located

Table 1
Information About Iteration Number, Grid Spacing of Waveform Simulations,
Station Groupings (See Supporting Information), Cutoff Signal-to-Noise Ratio
for EGFs Used to Constrain the Inversion and Smoothing and
Damping Parameters

Iteration
numbera

Grid spacing
(degrees)b

Station
groupc

Cutoff
SNR Smoothing Damping

1–3 0.2 A 7 32 12
4 0.2 B 6 24 12
5 0.2 C 5 16 12
6 0.2 C 5 6 6
7 0.1 C 5 6 6
8 0.1 C 5 6 8
9 0.1 C 5 12 8

Note. EGF = empirical Green’s functions; SNR = signal-to-noise ratio.
aFor all iterations, phase delays were determined using a cross-correlation
coefficient of 0.8 when correlating the EGFs (convolved with source time
function) with synthetics. bGrid spacing and number of saved grids
determines the inversion block size, as discussed in the main text. For
iterations 1–6, every 5 grids were saved in the horizontal direction and
every 1 grid was saved in the vertical direction. For iterations 7–9, every
10 grids were saved in the horizontal direction and every 2 grids were
saved in the vertical direction. cData from: Albuquerque Seismological
Lab (1988, 1993), Athens (1997), Beck and Zandt (2005), Gao (2009),
GEOFON data centre (1993), Institut De Physique Du Globe De Paris &
Ecole Et Observatoire Des Sciences De La Terre De Strasbourg (1982),
MedNet Project Partner Institutions (1990), National Observatory of
Athens, Institute of Geodynamics, Silver (1997), Nyblade (2007), Penn
State University (2004), Rondenay (2006), Scripps Institution of
Oceanography (1986), Wiens and Nyblade (2005), Wysession et al. (2011).

10.1029/2018GC007804Geochemistry, Geophysics, Geosystems

EMRY ET AL. 126



Figure 3. Vs checkerboard test. Plots show the estimated lateral resolution of the model domain through a checkerboard test with alternating fast (+10%) and slow
(�10%) checkers at (a) 105 km, (b) 143 km, (c) 188 km, (d) 235 km, (e) 311 km, and (f) 424 km. Each checker is 5° × 5° square and is separated by the adjacent
checker by 2° of average velocity (white). The checkers show the amount of anomaly recovered after one iteration, assuming the sensitivity kernels from
iteration 9. The plots show that lateral resolution and anomaly amplitude are recovered well through the upper mantle with some ability to recover structure
at MTZ depths.
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at shallow depths, which are not greatly relevant to the discussion of structure within the upper mantle and
MTZ within this paper (supporting information Figures S7 and S10).

In general, several low (shear) velocity regions are imaged in the upper mantle, and in some regions at
the MTZ, beneath the EARS, the Cameroon Volcanic Line, the Angola (Bie) Dome, and North Africa
(Figure 4). Profound differences in the average uppermost mantle Vs are observed between the northern
and eastern segments of the EARS (Vs ~ 4.47 km/s at 100 km) and the southern and western segments of
the EARS (Vs ~ 4.6 km/s at 100 km), due to the presence of thick cratonic structures located along the
edges of the less developed southern and western sides of the EARS (Figure 5 and supporting informa-
tion Figure S22). A comparison between our results and prior Vs models for several slow velocity anoma-
lies throughout Africa is shown in Table 2, and an expanded table is provided in the
supporting information.

Figure 4. Isotropic Vs depth slices are shown as absolute velocity (m/s) at (a) 105 km, (b) 165 km, (c) 235 km, and (d) 424 km. The color bar is set to ±12% of AK135
global average Earth model (Kennett et al., 1995) at each depth. The model is masked by gray where it is not expected to have sensitivity to structure (see supporting
information Figure S6). Gray triangles (same as red triangles in Figure 1) show seismic stations for which high-SNR EGFs contributed to the model. Black lines
outline coast, lakes, andmajor rivers. In (a), thick black lines indicate cross-sectional lines corresponding to Figure 5. In (b), labels correspond to those in Figure 1. In all,
gray contour lines indicate where shear velocities are 1.7% fast in comparison to the global average (as in Darbyshire et al., 2013). In (a) and (b), blue contour
lines indicate where shear velocities are equal to 4.7 km/s; this velocity contour was suggested by Garber et al. (2018) to denote regions within cratons where eclogite
and/or diamondsmay be contributing to fast velocities at depths of ~120–150 km. Dashed black lines correspond to the boundaries of cratons andmetacratons, and
thin, purple lines show segments of the EARS, as in Figure 1.
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In our results, we show several regions of thick, cratonic lithosphere. While lithospheric thickness is defined
by different metrics, one common approach is to classify thickness as depth at which the model is not faster
(or is some percentage faster) than a global average model (e.g., Darbyshire et al., 2013; Eaton et al., 2009).
Archean cratonic lithosphere is highly depleted in iron, making it less dense, more rigid, and longer lived
(Griffin et al., 2009). However, xenolith sample locations rarely correspond to regions with the highest
observed seismic velocities (Garber et al., 2018; Griffin et al., 2009); recent petrological modeling suggests
that very high Vs anomalies (>4.7 km/s) found in cratonic cores may also require some amount of eclogite
(<20%) and diamond (2%) in the cratonic mantle lithosphere (Garber et al., 2018). To provide estimates of
lithospheric thickness and possible compositional indicators, we show contour lines associated with a Vs
~1.7% faster than AK135 (Darbyshire et al., 2013) and associated with Vs = 4.7 km/s (or 5% faster than
AK135 in cross-sectional lines; Garber et al., 2018). In each following results section, we highlight the details
of our isotropic Vs model and provide a brief comparison between our models and prior work. A more
detailed comparison between models for Africa, the Mediterranean, and the Middle East is included in the
supporting information (Figure S23; Achauer & Masson, 2002; Ayadi et al., 2000; Benoit et al., 2003; Brazier
et al., 2000; Bufford et al., 2012; Corbeau et al., 2014; Corchete, 2013; Dorbath et al., 1986; Fichtner et al.,
2013; Fichtner & Villaseñor, 2015; Green et al., 1991; Hansen et al., 2006; Houser et al., 2008; Jakovlev et al.,

Figure 5. (a–c) Cross sections are plotted from southwest to northeast along the East African Rift System (corresponding to
cross-section lines in Figure 4). Distance is shown in degrees, and depth is shown in kilometers. Velocities are relative to the
AK135 global average Earth model (Kennett et al., 1995). The color scale ranges from 12% faster than AK135 (blue)
to Vs 12% slower than AK135 (red). Thick gray contour lines are shown where Vs is 1.7 times greater than AK135 (Darbyshire
et al., 2013), and thick light blue contour lines show where Vs is 5% greater than AK-135 (corresponding with 4.7 km/s
velocities at ~120- to 150-km depths, as in Garber et al., 2018). The top of the mantle transition zone (410 km) is shown as a
dashed line. For each cross section, the topography profile is provided above in thick blue lines. Here the thick black line
denotes sea level and the thin gray lines denote intervals of 1 km.
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2013; Khoza et al., 2013; Korostelev et al., 2015, 2016; Leseane et al., 2015; Mulibo & Nyblade, 2013b; Nita et al.,
2016; Nyblade, 2011; Nyblade & Brazier, 2002; Nyblade et al., 2000; Reed, Gao, et al., 2016; Reed, Liu, et al.,
2016; Ritsema et al., 2011, 1998; Slack et al., 1994; Sun et al., 2017; Yu et al., 2015).

4.1. The Congo Craton and Angola Dome

Our model results show separate high wave speed anomalies at upper mantle depths beneath the Congo
Craton, with highest velocities (Vs +5–10% of AK135 and ~4,700–4,850 m/s) located near the Archean aged
Bomu-Kibalan Shield in the north-northeast and the Kasai and Angolan Shields in the south-southeast
(Figure 6; e.g., Begg et al., 2009). Less pronounced high wave speed anomalies (Vs +2–5% of AK135) are
located in the northwest, near the position of the Gabon-Kamerun Shield (e.g., Begg et al., 2009). Our model
continues to show separation between high-velocity blocks to ~200- to 250-km depth, with the deepest,
highest-velocity cratonic roots in the north, east, and south-southwest. While the locations and depth extents
differ, a separation between high velocities was imaged in a few earlier studies (Fishwick, 2010; Pasyanos &
Nyblade, 2007; Raveloson et al., 2015). At the southwestern edge of the Congo region, beneath the Angola
dome, a prominent low-velocity anomaly can be seen at depths of 100–300 km; this feature has only been
somewhat resolved in a few prior studies (Colli et al., 2013; Fishwick, 2010; Schaeffer & Lebedev, 2013).
Results from greater depths give no indication for a deep continuation of this low-velocity feature,

Table 2
Table Provides a Comparison of Absolute Shear Velocity for Several of the Main Hot Spot and Low-Velocity Anomalies Located Along the East African Rift System and
Northern Africa

East African rift system velocity comparison North Africa velocity comparison

Low Vs anomaly (km/s)
~100-km depth

Red Sea,
Saudi Arabia

Gulf of
Aden Afar

Main
Ethiopian

Rift Turkana
Eastern
Branch

Western
Branch

Northern
Malawi

Hoggar and
Tibesti Darfur

Cameroon
Volcanic
Line

This study (Emry et al.) 3.9–4.2 4.0–4.3 3.7–4.1 3.8–4.3 4.1–4.2 4.1–4.3 4.2–4.4 4.3–4.5 4.0–4.3 4.1–4.2 4.0–4.3
Nolet and Mueller (1982) x x x x x 4.2 4.5 x x x x
Ritsema and van Heijst (2000)
(ref. PREM)

4.2–4.3 4.2–4.3 4.2–4.3 4.2–4.3 4.3–4.4 4.3–4.4 Not slow Not slow 4.4 4.4 4.4

Pasyanos and Walter (2002)
(upper mantle)

4.1–4.4 4.1–4.3 4.1–4.3 4.2–4.4 4.3–4.4 4.3–4.4 x x 4.2–4.4 4.3–4.4 4.3–4.5

Weeraratne et al. (2003) x x x x x 3.8 4.0 x x x x
Sebai et al. (2006)
(ref. PREM-SV, 80 km)

4.1–4.14 4.1–4.14 4.05 4.1–4.14 Not slow Not slow Not slow Not slow Not slow Not slow 4.2–4.3

Dugda et al. (2007) x x 3.7–4.1 4.0–4.2 x x x x x x x
Pasyanos and Nyblade (2007)
(ref. AK-135)

4.2–4.3 4.1–4.2 4.1–4.2 4.1–4.2 4.1–4.2 4.3–4.4 Not slow Not slow 4.3–4.4 Not slow 4.3–4.4

Priestley et al. (2008)
(ref. 4.412 km/s)

4.2–4.3 4.1–4.2 4.1 4.1–4.2 4.2–4.3 4.3–4.4 Not slow Not slow 4.2–4.3 4.3–4.4 4.4–4.5

Sicilia et al. (2008)
(ref. PREM-SV)

4.1–4.2 3.9–4.1 3.9–4.1 4.1–4.2 4.2–4.3 4.2–4.3 4.3 Not slow 4.2–4.3 4.2–4.3 3.9–4.1

Dugda et al. (2009) x x x x x 4.0 x x x x x
Fishwick (2010)
(ref. AK-135)

4.1–4.3 4.0–4.1 4.0–4.1 4.1–4.2 4.1–4.3 4.2–4.3 Not slow Not slow 4.2–4.3 4.2–4.3 4.1–4.2

Tokam et al. (2010; 80-km
depth)

x x x x x x x x x x 4.3–4.4

Chang and van der Lee (2011) 4.1–4.3 4.1–4.2 4.1 4.1–4.2 4.3–4.5 x x x x x x
Adams et al. (2012) x x x x x 4.25–4.35 4.2–4.3 4.25–4.35 x x x
O’Donnell et al. (2013) x x x x x 4.3 4.4 4.2 x x x
Schaeffer and Lebedev (2013)
(ref. 4.38 km/s)

4.1–4.2 4.1–4.2 4.1–4.2 4.1–4.2 4.1–4.3 4.2–4.3 Not slow Not slow 4.15–4.2 4.2 4.2

Adams et al. (2015) x x x x x x x x x x 4.15–4.2
Gallacher et al. (2016) x 3.9–4.0 3.85–3.95 3.8–4.0 x x x x x x x
Yao et al. (2017) 4.0–4.2 x x x x x x x x x x

Note. This comparison includes models that are global, continental, and regional in scale with resolution predominantly within the upper mantle at 90- to 110-km
depth (unless otherwise stated in column 1). An "x" denotes that the model does not have information for the region. Additional Vp, dVp, and dVs results are pro-
vided in the supporting information.
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Figure 6. Upper mantle beneath the Congo Craton. The depth slices show the absolute Vs (m/s) for our model results beneath the Congo Craton region with
(a) 123-km depth, (b) 165 km, (c) 211 km, and (d) 260 km. The proposed boundaries of one large Congo Craton and the western edge of the neighboring Tanzania
Craton are outlined by dashed black lines, and thin, purple lines show segments of the East African Rift System, as in Figure 1. Archean shields exposed at the
surface within the Congo region are outlined by light gray lines (from Begg et al., 2009; Raveloson et al., 2015). The red lines in the center of the Congo region are
subbasin fault locations discussed in Kadima et al. (2011). Gray triangles denote seismic stations with data used in the inversion. Black circles denote locations where
diamonds suggest thick lithosphere (~200 km), and white circles denote locations where they suggest thinner lithosphere (~160 km; Batumike et al., 2009).
Cross-section lines plotted on (a) are shown for (e) A-A0 from the Angola Dome to the Central African Shear Zone, for (f) B-B0 from the southern Kasai Shield to the
Central African Shear Zone, and for (g) C-C0 from the Mweru Rift to the Central African Shear Zone. As in Figures 4 and 5, thick gray contour lines denote where
Vs is 1.7 times greater than AK135 (Darbyshire et al., 2013) and thick, light-blue contour lines showwhere Vs is 5% greater than AK-135 (in cross section) or where Vs is
4.7 km/s in (a) and (b; Garber et al., 2018). The top of the mantle transition zone (410 km) is shown as a dashed line. For each cross section, the topography profile is
provided above in thick blue lines; the thick black line denotes sea level, and the thin gray lines denote intervals of 1 km.
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although at those depths, the resolution of our model diminishes (Figure 3 and supporting information
Figures S6, S8, and S9).

4.2. The EARS and the Arabian Peninsula

In the northernmost region of our model, beneath the Red Sea Rift and the Western Arabian Peninsula, low
velocities were imaged down to ~200- to 250-km depth (Figures 4 and 7). Below that, low velocities were
focused beneath the western Arabian Peninsula, with a low-velocity anomaly near MTZ depths beneath
northwestern Saudi Arabia; this is similar to but offset slightly from earlier results from Chang and van der
Lee (2011). Our spatial resolution of this region is good down to MTZ depths (Figure 3 and supporting infor-
mation Figures S6, S8, S9, S16, and S17). On the southern edge of the Arabian Peninsula, beneath the Gulf of
Aden (between Northern Somalia and western Yemen), we image a prominent low-velocity anomaly at shal-
low upper mantle depths. At deeper depths, the low velocities appear to shift west, toward the Afar region
(Figures 4 and 7); again, our resolution tests suggest that the pattern is resolvable. (Figure 3 and supporting
information Figures S6, S8, and S9).

The upper mantle beneath Afar and the Main Ethiopian Rift regions is marked by pronounced low shear wave
velocities (~4,000 m/s), as low as ~10–12% less than AK135, similar to several prior studies (Figure 7 and
Table 2; e.g., Bastow et al., 2008; Chang & van der Lee, 2011; Dugda et al., 2007; Fishwick, 2010; Gallacher et al.,
2016; Ritsema & van Heijst, 2000; Sebai et al., 2006; Sicilia et al., 2008). At middle to deep upper mantle depths
(>150 km), this region of low velocity is located beneath the northwestern side of the Main Ethiopian Rift and
Afar. The lowest velocities within this region appear to be located within two, possibly distinct, regions (~12–
15°N, 35–40°E; one at ~8–10°N, 34–36°E), similar to some earlier tomographic results (Bastow et al., 2008;
Benoit, Nyblade, Owens, & Stuart, 2006, Benoit, Nyblade, & VanDecar, 2006; Civiero et al., 2015, 2016). At
MTZ depths, low-velocity features are broadly located through the whole region, extending south along
the EARS; however, we caution that if distinct, closely spaced (<500 km) low-velocity anomalies existed at
MTZ depths, they could appear to be broad, connected features due to increased lateral smearing at MTZ
depths (supporting information Figures S16–S18).

Beneath the Turkana Depression, at shallow upper mantle depths (100–150 km), our results suggest low
shear wave velocities in the east, directly beneath Lake Turkana, but nearly average upper mantle velocities
to the west beneath South Sudan. In our model, the upper mantle low shear velocity beneath Turkana (4.0–
4.2 km/s, 105 km) is similar to the low Sn velocities (4.1–4.2 km/s, uppermost mantle) found previously by
Benoit, Nyblade, and Pasyanos (2006); however, in our model, the slowest velocities are located further east
and centered beneath Lake Turkana. Conversely, at middle upper mantle depths (~150- to 300-km depth),
our results suggest a high-velocity feature (~+3%) in the west and nearly average upper mantle velocities
in the east, beneath the Turkana Depression; this feature appears to be well resolved and not strongly suscep-
tible to lateral smearing (Figure 3 and supporting information Figures S8 and S14). This entire region appears
to be underlain by a broad, prominent low-velocity feature at MTZ depths; but again, it is difficult to deter-
mine whether distinct features at the MTZ could be individually resolved.

To the south, the EARS branches around the Tanzania Craton, along the Eastern and Western Branches
(Figures 4 and 5). Our results suggest that the Tanzania craton is thinner in comparison to the other
African cratons and is asymmetrical, with the western side thicker than the eastern side (120–145 km in
the east and ~175 km in the west). The asymmetry and thickness estimates are similar to several other surface
wave studies (Adams et al., 2012; Fishwick, 2010; O’Donnell et al., 2013; Weeraratne et al., 2003), but they dif-
fer from a few prior estimates of thicker Tanzania Craton lithosphere (Priestley et al., 2008; Ritsema & van
Heijst, 2000).

In the region surrounding the Tanzania Craton, low velocities are imaged most prominently at shallow
upper mantle depths in the northeast, beneath the northern side of the Eastern Branch. This low-velocity
feature appears to shift south at mid-upper mantle depths (Figure 4 and supporting information Figure
S22). At uppermost mantle depths beneath the Western Branch, the shear wave velocity is predominantly
high, with one low-velocity anomaly near the Virunga volcanic field. The anomaly beneath Virunga
becomes less prominent at mid-upper mantle depths but may spread south beneath the amagmatic
Tangyanika Rift (O’Donnell et al., 2016) and the Mweru Rift region. This pattern at shallow depth resem-
bles some earlier tomographic results (Adams et al., 2012; Grijalva et al., 2018; O’Donnell et al., 2013,
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Figure 7. Upper mantle and mantle transition zone beneath the Turkana Depression. The above depth slices show the predicted absolute Vs (m/s) for our model
results beneath the Turkana Depression and the Ethiopian and East African Plateaus at (a) 123-km depth, (b) 165 km, (c) 260 km, and (d) 424 km. The proposed
boundaries of one large Congo Craton and the neighboring Tanzania Craton are outlined by dashed black lines, and thin, purple lines show segments of the East
African Rift System, as in Figure 1. Archean shields exposed at the surface within the Congo region are outlined by light gray lines (from Begg et al., 2009;
Raveloson et al., 2015). Gray triangles denote seismic stations with data used in the inversion. The solid green-blue lines show strike-slip faults and shear zones,
including the Aswa-Nandi Shear Zone, and the green-blue thrust lines show thrust lines show several of the mapped thrust faults running parallel to the trend
of the Anza Graben and Aswa shear zone (from Chorowicz, 2005; Saalmann et al., 2016). Cross sections from (a) are shown for (e) A-A0 from Virunga Volcanic Field to
the Red Sea and for (f) B-B0 from the Tanzania Craton to Afar and the Red Sea. As in Figures 4 and 5, thick gray contour lines denote where Vs is 1.7 times greater
than AK135 (Darbyshire et al., 2013) and in the cross sections, thick, light-blue contour lines show where Vs is 5% greater than AK-135 (Garber et al., 2018). The
top of the mantle transition zone (410 km) is shown as a dashed line. For each cross section, the topography profile is provided above in thick blue lines; the thick
black line denotes sea level, and the thin gray lines denote intervals of 1 km.
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2016; Weeraratne et al., 2003). Beneath the entire region, a low-velocity anomaly is imaged near MTZ
depths; in our model, this is most prominent beneath the Western Branch, suggesting that the low-
velocity feature might gradually shift toward the southwest (Figure 5).

In the southwestern EARS, we image a clear separation between the cratonic features in southernmost Africa
and the Congo region (Figure 4 and supporting information Figures S20 and S21). South of the Mweru Rift,
but north of Okavango, we image a low-velocity feature at upper mantle depths. It is not clear whether this
feature continues all the way downward to the MTZ, as it is possible that the low-velocity anomaly is vertically
smeared. To the east, beneath the southern arm of the EARS, we detect slight, low-velocity anomalies at shal-
low upper mantle depths beneath the Rungwe Volcanic Province. Further to the south along the Malawi and
Luangwa Rift, we detect a prominent high wave speed anomaly (+5–7%) beneath the southern Lake Malawi
region at upper mantle depths (~100–200 km), as imaged by Sarafian et al. (2018) and Adams et al. (2018).
This portion of our model domain is well covered due to seismic data collected throughout Madagascar
(e.g., Andriampenomanana et al., 2017; Pratt et al., 2017).

Overall, the most prominent upper mantle low-velocity features are broadly located throughout the Main
Ethiopian Rift and Eastern Branch of the EARS, while at upper mantle depths low velocities are more localized
in distinct regions of the western and southern EARS. At MTZ depths, low velocities are imaged alongmuch of
the EARS, most prominently beneath the South Sudan and Turkana Depression regions. Our resolution tests
suggest that these features are robustly distinct from theMTZ low velocity beneath the northwestern Arabian
Peninsula, but at smaller lateral distances (~500 km or less), anomalies are not as distinctly resolved at MTZ
depths as they are at shallow to mid-upper mantle depths (supporting information Figures S16–S18).

4.3. North Africa and the Cameroon Volcanic Line

Throughout northern Africa, we observe several regions of lowwave speed (Figure 8 and supporting informa-
tion Figure S24), similar to results from Fishwick (2010). At slightly deeper depths, in the mid-upper mantle
beneath the Sahara, our results suggest several high-velocity structures; this is somewhat similar to earlier
studies, although located at slightly different positions (Liégeois et al., 2013; Pasyanos & Nyblade, 2007;
Sebai et al., 2006; Sicilia et al., 2008). Due to difficulty resolving structure in the shallow upper mantle beneath
the Sahara Desert (few seismic stations), it is not clear whether these high-velocity structures also exist at
shallow upper mantle depths or whether they are truly disconnected from structure above (Figure 3 and
supporting information Figures S8 and S9). At deeper depths, on the southwestern side of the Sahara
Metacraton region, a low-velocity anomaly is imaged beneath the western side of the Chad Basin and eastern
Niger, possibly extending to the MTZ, although vertical smearing may influence that result (Figures 1, 8, and
supporting information Figure S15). This deep upper mantle or MTZ feature is particularly noteworthy,
because at shallow depths it appears to connect to the northern extent of the Cameroon Volcanic Line
(Adams et al., 2015).

5. Interpretation
5.1. Cratonic Structure in Africa
5.1.1. The Congo Craton
Our results suggest separation between high wave speed anomalies beneath the northern and southern
Congo Craton (Figure 6 and supporting information Figures S12 and S13), and we suggest that this
indicates that the Congo craton is composed of smaller high-velocity blocks that were sutured during
earlier orogenic events. The region between the cratonic fragments has thin or low-velocity lithosphere
(~100–150 km), compared to the cratonic high-velocity blocks with thicknesses of ~200–250 km, where
thickness is defined as 1.7% faster than AK135 (e.g., Darbyshire et al., 2013; Figure 6). The location of
the cratonic fragments roughly coincides with Archean-aged outcrops at the surface; the highest veloci-
ties are horizontally offset from surface exposures at deeper depths, although this offset may partly be
due to smearing of structure from neighboring slow anomalies beneath the Damara Belt and Western
Branch (Begg et al., 2009). Despite this, our resolution tests reinforce that (1) we have coverage of this
region and resolution is best at mid-upper mantle depths and (2) we are able to distinguish between
one, large cratonic block and individual blocks (Figure 6 and supporting information Figures S12 and
S13). Our results also show high velocities (>4.7 km/s) that were recently proposed by Garber et al.
(2018) to be due to compositional variations within cratonic lithosphere. However, because lateral and

10.1029/2018GC007804Geochemistry, Geophysics, Geosystems

EMRY ET AL. 134



Figure 8. Upper Mantle beneath North Africa. Vs (m/s) is plotted at (a) 123-km depth, (b) 235 km, (c) 338 km, and (d) 424 km. The larger Congo Craton and the Sahara
Metacraton are outlined by dashed black lines, and thin, purple lines show segments of the East African Rift System, as in Figure 1. Archean shields exposed at the
surface within the Congo region and the proposed boundaries of the Chad (south), Murzuq (northwest), and Al-Kufrah (northeast) cratonic fragments within the
larger Sahara Metacraton are outlined by light gray lines (from Begg et al., 2009; Liégeois et al., 2013; Pasyanos & Nyblade, 2007; Raveloson et al., 2015). Gray triangles
denote seismic stations with data used in the inversion. The solid green-blue lines show strike-slip faults and shear zones, and the green-blue thrust lines show
several of the mapped thrust faults running parallel to the trend of the Anza Graben and Aswa shear zone (from Chorowicz, 2005; Saalmann et al., 2016). Cross
sections from (a) are shown for (e) A-A0 from the West African Craton to the Bayuda Volcanic Field in northern Sudan, for (f) B-B0 from the Cameroon Volcanic Line to
the Mediterranean Sea, and for (g) C-C0 from the Hoggar Plateau to the Red Sea. As in Figures 4 and 5, thick gray contour lines denote where Vs is 1.7 times
greater than AK135 (Darbyshire et al., 2013) and thick, light-blue contour lines show where Vs is 5% greater than AK-135 (in cross section) or where Vs is 4.7 km/s in
(a; Garber et al., 2018). The top of the mantle transition zone (410 km) is shown as a dashed line. For each cross section, the topography profile is provided above in
thick blue lines; the thick black line denotes sea level, and the thin gray lines denote intervals of 1 km.
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vertical smearing is apparent from the resolution tests, we recommend against interpreting the fast and
slightly fast velocities as evidence for lithospheric layering here (e.g., Darbyshire et al., 2013; Fischer et al.,
2010; Yuan & Romanowicz, 2010). If a thick cratonic root is present along the Western Branch of the
EARS, as the cross sections in Figure 6 suggest, it could influence patterns of upper mantle flow, rifting,
and volcanism along the EARS; we will discuss this in a later section.

Many previously proposedmechanisms for subsidence at the Congo Basin assume a single, thick cratonic root
beneath the basin (e.g., Buiter et al., 2012; Crosby et al., 2010; Downey & Gurnis, 2009; Hartley & Allen, 1994).
Rather, our results are more compatible with the interpretation that separate, thick cratonic fragments were
sutured during the Proterozoic and have undergone subsequent deformation (Daly et al., 1991; de Wit
et al., 2008; Kadima et al., 2011; Pasyanos & Nyblade, 2007; Raveloson et al., 2015). In this scenario, the initial
filling of the sedimentary basin results from rift-related subsidence and might have been followed by more
recent subsidence due to sedimentation from adjacent uplifts (Buiter et al., 2012; Burke & Gunnell, 2008).

5.1.2. The Sahara Metacraton
Cratonic blocks within the larger Sahara Metacraton in northern Africa, the Murzuq, Chad, and Al-Kufrah
(Uweinat) blocks have been previously proposed (e.g., Fezaa et al., 2010; Liégeois et al., 2013; Pasyanos &
Nyblade, 2007). Our results in this region show high seismic shear velocities at mid-upper mantle depth
(~250 km) that are coincident with previously proposed cratonic blocks, with the exception of the Chad
cratonic block (Figure 8 and supporting information Figure S24; Liégeois et al., 2013). These high velocity
features are subdued at shallow upper mantle depths (~100 km), possibly due to lateral smearing from
adjacent low-velocity regions beneath the Hoggar, Tibesti, and Darfur Domes.

On the southeastern side of the Sahara Metacraton, in South Sudan, west of the Turkana Depression, a high
wave speed feature is similarly imaged at mid-upper mantle depths but not at shallow depths (Figures 7
and 8). This feature strikes parallel to the Bomu-Kibalan cratonic fragment, and they may be connected.
Our resolution tests suggest that if the feature in South Sudan was continuous from mid-upper mantle
depths to the crust, we would be able to resolve it as a high-velocity structure that is continuous in depth,
regardless of low velocities adjacent to it at shallow depth (supporting information Figures S8, S9, and S14). A
common explanation for these patterns is not required, but we note that seismic tomography from
Madagascar and Antarctica shows similar disconnected, high-velocity structures at mid-upper mantle depths
(Shen et al., 2018; Wysession et al., 2017). Both the Sahara Metacraton and the Turkana Depression have
experienced deformation and metasomatism during the Pan-African Orogeny (e.g., Abdelsalam et al.,
2002, 2011; Guirard et al., 2000; Katumwehe et al., 2015; McGregor, 2015). We propose two possible
explanations for these mid-upper mantle high velocities.

The first possibility is that high wave speed mid-upper mantle anomalies represent continental lithosphere
that was thrust downward during one of the Pan-African collisional events but did not sink completely
(e.g., Canil, 2004; Hirth et al., 2000; Lee et al., 2011; Shapiro et al., 1999; Tang et al., 2013). Regions of midlitho-
spheric low-velocity anomalies have been observed in many regions around the world (see Karato et al.,
2015; Rader et al., 2015; Selway et al., 2015), and one proposed mechanism is stacking of lithosphere during
subduction, which in turn could explain the low velocities, either through variations in lithospheric aniso-
tropy (e.g., Sodoudi et al., 2013; Wirth & Long, 2014; Yuan & Romanowicz, 2010) or through metasomatism
between stacked slabs (Hopper & Fischer, 2015). Prior work from the eastern United States, using the meth-
ods employed in our paper, similarly imaged shallow lithospheric low velocities (Savage et al., 2017).
Alternatively, this high-velocity overlain by low or average velocities could also be associated with some type
of destabilized lithospheric root or delamination, as has been proposed for other tectonic settings (e.g.,
Göğüş et al., 2017; Shen et al., 2018; van Wijk et al., 2010; West et al., 2009). Such a mechanism would be
expected to affect mantle flow (Shen et al., 2018; West et al., 2009), whereas for a stacked slabs scenario,
the pattern may be stable, although prior metasomatism of the lithosphere may also enable subsequent
destabilization (e.g., Snyder et al., 2017; van Wijk et al., 2010; Wang et al., 2015).

5.1.3. The Tanzania Craton
As mentioned, the Tanzania Craton is thicker (~175 km) in the west (Figure 5b) than in the east (~145 km;
Figure 5c); at its very thinnest, it is ~110–120 km in the far eastern side, where it is adjacent to slow anomalies
along the Eastern Branch. Similar to the cratonic blocks beneath Congo, the Tanzania lithosphere has notably
high Vs. The asymmetry of the Tanzania Craton agrees with prior work proposing that the craton may be
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thermally eroded along the Eastern Branch (e.g., Ebinger et al., 1997; Weeraratne et al., 2003); thermal erosion
has also been suggested for other cratonic regions, including the North China and Wyoming Cratons (e.g.,
Dave & Li, 2016; Gao et al., 2008; Lee et al., 2011; Xu, 2001; Zhang et al., 2014). Geodynamic models suggest
that prior cratonic root metasomatism enables thermal erosion to take place (e.g., Snyder et al., 2017; vanWijk
et al., 2010; Wang et al., 2015), and we note that this region coincides with earlier Pan-African collision and
prior alteration (Collins & Piesarevsky, 2005; Koornneef et al., 2009; Porada, 1989; Rino et al., 2008). At the
same time, our present-day tomographic images cannot reveal whether the cratonic root asymmetry is
due to recent thermal erosion or earlier tectonic events.
5.1.4. The Niassa Cratonic Fragment
In the southern EARS, beneath the southern Malawi Rift (Figures 1, 4, and supporting information Figures
S19–S21), a prominent high-velocity feature is imaged in the upper mantle. This structure is located between
the proposed Niassa and Lurio Archean nuclei within the Southern Irumide and Lurio Belts (Andreoli, 1984;
Begg et al., 2009). This high-velocity structure also appears to coincide with a cratonic fragment recently
imaged by magnetotellurics and regional seismic tomography (Adams et al., 2018; Sarafian et al., 2018).
Because these fragments are small, we propose that the high-velocity feature we image is either the same
Niassa craton identified by Sarafian et al. (2018) and Adams et al. (2018) or is a combined structure including
both the Niassa and nearby Lurio Cratons. This region is unique, because it lies directly south of the Rungwe
Volcanic Province (Accardo et al., 2017), suggesting that a cratonic root could be inhibiting volcanism on the
southern end of the Malawi Rift.

5.2. Rifting and Volcanic Processes

Buoyant mantle plumes have been proposed to deflect around rigid structures and be channeled along
regions of thinner lithosphere (Ebinger & Sleep, 1998). In the next sections, we discuss the possibility of
plumes in the EARS, apparent influence of lithospheric topography, and what seismic velocities reveal about
mantle temperature and melt beneath hot spots around Africa.
5.2.1. A Picture of Mantle Plumes
The prominent “African Superplume” has been seismically imaged as one, low-velocity anomaly, rising from
the base of the mantle below the south Atlantic, flowing toward the EARS, and stretching through the upper
mantle along the rift system (e.g., Hansen et al., 2012; Ritsema et al., 1999; Simmons et al., 2010, 2012). Our
results are somewhat similar, in that we image an overall shift of low-velocity material toward the west-
southwest at deeper depths. However, our results suggest a complex distribution of low velocities in the
upper mantle, one that is not laterally continuous along the EARS (Figures 4 and 5). Instead, we propose that
the discontinuous distribution of low velocities within the upper mantle is better explained by a set of sec-
ondary plumes that rise vertically from MTZ depths (Figure 5). At shallower depths, where upwellings
encounter rigid lithosphere, the rising material may shift laterally toward regions of thinner lithosphere, as
has been proposed at the Ethiopian Plateau and Main Ethiopian Rift (Bastow et al., 2008; Benoit, Nyblade,
& VanDecar, 2006). The source for these secondary plumes could be a deeper ponded plume structure, as
has been proposed in several prior studies of volcanic regions, including East Africa (e.g., Bastow et al.,
2008; Cao et al., 2011; Christensen & Yuen, 1985; Civiero et al., 2015; French & Romanowicz, 2015; Furman
et al., 2006; Huerta et al., 2009; Kieffer et al., 2004; Saki et al., 2015; Tosi & Yuen, 2011; Vinnik et al., 1997).

As shown in Figure 5, our results near MTZ depths do appear to be a continuous region of low velocity; but
there is a limit to our ability to distinguish distinct plumes. If, as suggested by Chang and van der Lee (2011),
three distinct upper mantle plume stems existed beneath East Africa and the Arabian Peninsula, our resolu-
tion tests suggest that they would be individually resolved (supporting information Figures S16 and S17).
However, if multiple plume stems were located closer, they would smear together at MTZ depths (supporting
information Figure S18; e.g., Civiero et al., 2015, 2016). At upper mantle depths (shallower than ~300 km), our
resolution tests suggest that, despite a minor amount of lateral smearing, we are able to distinguish between
a laterally continuous structure and distinct vertical features, such as a plume tail. We have confidence in our
ability to resolve closely spaced upper mantle structures, as long as the separation between the features is
~500 km (~5°) or larger and the width of any such upwelling is ~200–300 km (supporting information
Figure S18). Therefore, while we cannot distinguish between one large and several, small, closely spaced fea-
tures at MTZ depths, we can reasonably expect to resolve distinct features at upper mantle depths, as long as
~500 km of separation exists.
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The apparently distinct low-velocity features at upper mantle depths suggest a different mechanism than
one large, low-velocity feature that rises into the upper mantle and flows continuously from the southwest
to the northeast through the upper mantle (e.g., Bagley & Nyblade, 2013; Forte et al., 2010; Hansen &
Nyblade, 2013; Hansen et al., 2012). But this does not preclude lateral mantle flow everywhere beneath the
EARS, as our results at shallow upper mantle depths in the east (~100 km, uppermost mantle) appear to sug-
gest continuous low shear velocities (Figure 5c).

5.2.2. Shift of Low Velocities to Western Branch Near MTZ Depths
The African cratons have been modeled as barriers to mantle upwellings, diverting material from the south-
west toward the EARS at shallow depth (Forte et al., 2010; Moucha & Forte, 2011). There is also less volcanism
along the Western Branch, which may affect rifting processes (Bialas et al., 2010; O’Donnell et al., 2016). In our
results, low velocities are imaged in the shallow upper mantle at small, distinct locations along the Western
Branch and the southern-southwestern incipient rift arms but are widespread at shallow depths beneath the
Main Ethiopian Rift and Afar. The Western Branch, Northern Malawi, and Eastern Branch anomalies are not as
slow as the anomalies beneath Afar and the Main Ethiopian Rift (a difference of ~0.1–0.3 km/s); our absolute
velocities for the western and eastern branches are in good agreement with velocities from Adams et al.
(2012) and O’Donnell et al. (2013) but are faster than predicted by Weeraratne et al. (2003). The shallow upper
mantle difference beneath the northeastern and southwestern side of the EARS is likely due to thick litho-
spheric blocks along the western and southern EARS.

At middle to deep upper mantle depths in the western and southwestern EARS, our model has lower average
shear velocities than the northeastern side of the EARS (Figures 4, 5, and supporting information Figure S22).
If low-velocity (presumably hot) material is actively upwelling beneath the western sections of the EARS, then
part of the material may be diverted eastward by the thick, rigid lithospheric blocks from Turkana/Uganda to
Congo and Bangweulu and further south. The asymmetric shape of the Tanzania Craton may also play a role
in directing buoyant material eastward.

An alternate explanation to cratonic diversion is that the spatial relationship signifies a temporal history of
rising mantle plumes. If a low-velocity plume rose directly upward from the MTZ early during the tectonic his-
tory of the EARS, exhausting the low-velocity material near the MTZ, then perhaps the current day low velo-
city beneath theWestern Branch is an indication of what might happen 10+million years in the future when a
deep secondary plume might rise through the upper mantle (e.g., Davaille & Vatteville, 2005; Manga et al.,
1993). This interpretation fits with the geodynamic modeling from Koptov et al. (2015) that suggests that
asymmetrical melt distributions best fit a plume rising beneath the Eastern Branch.

5.2.3. Velocity-Temperature Relationships
We see remarkably low shear wave velocities beneath the Afar Depression and Main Ethiopian Rift, similar to
earlier studies (Table 2; Bastow et al., 2008; Gallacher et al., 2016). We also see very low velocities beneath the
Red Sea Rift and western Arabian Peninsula, the Gulf of Aden, the Hoggar and Tibesti Plateaus, and the
Cameroon Volcanic Line. Earlier work investigated how low shear velocities can be used to indicate tempera-
ture, composition and/or melt; although seismic velocities are strongly influenced by temperature, it is
debated whether very low velocities, such as observed beneath Afar, can be solely due to temperature
(e.g., Gallacher et al., 2016; Rooney et al., 2012). To explore this, we extract high and low shear velocity values
in the upper mantle at hot spot regions and calculate temperature based on two separate approaches from
prior studies (see supporting information).

We calculate temperature change based on the 0.7–4.5% per 100 °C from Goes et al. (2000) and also calculate
temperature change as a function of seismic velocity perturbation (e.g.,Karato, 1993 ; Rooney et al., 2012),
assuming values for activation enthalpy of olivine (Karato, 1993; Rooney et al., 2012) while varying seismic
attenuation (Mooney et al., 2003; Venkataraman et al., 2004). For both approaches, predicted temperatures
vary widely, depending on the relationship and the parameters assumed. For instance, beneath Afar our velo-
city is as low as 3.7–3.8 km/s; the temperature predicted by the 4.5% Vs relationship of Goes et al. (2000) gives
a 100–400 °C range of excess upper mantle temperature, if temperature is the sole cause of the low wave
speed, while the 0.7% Vs relationship predicts a 1000–2500 °C range of excess temperature. The Karato
(1993) relationship gives a 500–1000 °C excess temperature and is highly dependent upon the assumed seis-
mic quality factor (inverse of attenuation), which is not well known beneath Africa (Mooney et al., 2003;
Venkataraman et al., 2004). Despite this, nearly all estimates from our minimum shear velocities (with the
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exception of the 4.5% Vs Goes et al., 2000, relationship) still predicted higher mantle temperatures for the
EARS than is suggested by geochemical evidence (Rooney et al., 2012). As proposed by Rooney et al.
(2012), the low shear velocities at depths> 200 km in the mantle beneath Africa and the EARS are most likely
not produced solely by temperature, but are also dependent on other factors, for example CO2-rich melts
(Dasgupta & Hirschmann, 2006). At shallower upper mantle depths, the drastically reduced seismic velocities
are likely aided by rift-related decompression melting within a hotter than average upper mantle (e.g.,
Armitage et al., 2015; Gallacher et al., 2016; Hansen & Nyblade, 2013). Regardless, beneath the northern
EARS, our results showing extremely low shear velocities support the interpretation of a thermal or thermo-
chemical anomaly that produces substantial amounts of magma to assist rifting (Bastow et al., 2010; Buck,
2004; Ebinger, 2005; Lavayssière et al., 2018).
5.2.4. Cameroon Volcanic Line
Our results show segmented low-velocity anomalies in the shallow upper mantle (100–200 km) beneath the
Cameroon Volcanic Line (CVL); these appear to be the most prominent beneath the northern, central, and
southern CVL near recent (<10 Myr) Cenozoic volcanism, and they correspond to previously proposed divi-
sions with the CVL (Burke, 2001; Halliday et al., 1988; Reusch et al., 2010 and references therein). The lowest
velocities (4.0–4.3 km/s) in our results are centered toward the north, and as with the EARS, the temperatures
predicted from the Vs anomalies appear too high in some places to be solely temperature related (Table 2
and supporting information).

The more northern anomaly stretches north toward the Biu and Jos Plateaus (Figures 1 and 8); this pattern
agrees well with recent regional surface wave tomography (Adams et al., 2015). But unlike prior studies,
which do not resolve structure north of the CVL, our results show a low-velocity anomaly near the base of
the upper mantle beneath the western Chad Basin that may be connected to the anomaly at shallow depth
beneath the northern CVL (Figure 8). We note that this region may be slightly affected by vertical smearing,
so the connection between the deep and shallow anomalies is somewhat uncertain (supporting information
Figure S15). However, this pattern has important implications to understanding the formation of the CVL,
which is debated due to lack of volcanic age progression along the line (e.g., Njome & de Wit, 2014). In con-
trast to prior work that attempts to fit one mechanism to this complex pattern of volcanism (Adams et al.,
2015; Ojo et al., 2018; Reusch et al., 2010), our results suggest that the northern CVL could be influenced
by deeper material from north of the CVL, while a different mechanism may be affecting the south. Our
results show distinct low velocities near the top of the upper mantle (<150 km) in the southwestern CVL,
but there is no continuation of low velocities at deeper upper mantle depths there; rather shear velocity is
close to average or slightly higher than average (Figures 4 and 8). Unless low-velocity material is being
sourced from elsewhere in the Atlantic Ocean, where our model loses resolution, this suggests that an
edge-driven convection or lithospheric delamination model may be a better fit for the volcanism on the
southwestern side of the CVL (e.g., Adams et al., 2015; De Plaen et al., 2014; King & Anderson, 1998; Milelli
et al., 2012). However, an influx of deeply sourced material into the northern CVL helps to reconcile some
of the debate regarding the overall extent as well as the volcanic processes occurring along the CVL (e.g.,
Burke, 2001; Gallacher & Bastow, 2012; Njome & de Wit, 2014; Tokam et al., 2010).

5.3. Upper Mantle Structure and Uplifted Topography

Low-velocity features were detected in the shallow upper mantle beneath prominent volcanic plateaus
throughout North Africa, including the Hoggar and Tibesti plateaus and the Darfur Dome. While some
amount of lateral and/or vertical smearing is expected, particularly in the middle of the Sahara (supporting
information Figures S8, S9, and S15), these regions of shallow upper mantle low velocities throughout
North Africa may be connected to each other and/or connected to a deep upper mantle or MTZ source.
Similar to the plume melt channelization concept explored by Ebinger and Sleep (1998), we note that several
of the volcanic domes in this region lie close to or along old rift zones and shear zones (e.g., Njome & de Wit,
2014; Shellnutt et al., 2016), whichmay connect the anomalies at upper mantle depths. The low upper mantle
anomalies throughout North Africa and the CVL are coincident with regions of surface uplift, which agrees
with prior studies that suggest uplift due to mantle dynamics (supporting information Figure S25; Burke &
Gunnell, 2008; Forte et al., 2010; Müller et al., 2008; Roberts & White, 2010).

Similar to North Africa, the Angola (Bie) Dome in southwestern Africa also shows geological indications of
recent uplift (e.g., Burke & Gunnell, 2008; Roberts & White, 2010; Walford & White, 2005; Walker et al.,
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2016). Beneath this region, our results show low velocities beneath northwestern Angola from ~100 to
250 km, with the lowest velocities centered just off the coast, between Benguela and Luanda (Figure 6).
Dynamic topography has also been invoked for this region to explain the rapid uplift recorded in Cenozoic
erosion and sedimentation, and our results further support this idea (e.g., Al-Hajiri et al., 2009; Burke &
Gunnell, 2008).

6. Summary and Conclusions

The upper mantle of the African continent has been imaged here using full-wave tomography constrained by
fundamental mode Rayleigh waves extracted from long-period ambient noise. The resulting patterns of high
and low (isotropic) shear wave speeds match well with the exposed Archean cratons, uplifted plateaus, and
Cenozoic volcanism. Our results suggest that the Congo Craton is composed of several smaller cratonic frag-
ments. We also imaged three previously hypothesized cratonic fragments of the North African metacraton
and an asymmetric Tanzania cratonic lithosphere that is thinner than the other cratons. Our results suggest
that several of these cratonic fragments have notably high velocities, which may be due to
compositional differences.

In addition to cratonic structure, we imaged discontinuous patterns of low upper mantle velocities along the
length of the EARS. In some cases, these low velocities are much lower than expected for a solely thermal
anomaly and are perhaps indicative of melt. These patterns favor a combination of secondary upwellings
from or below the MTZ that are diverted and channeled at shallow depths. We find low-velocity anomalies
within the shallow upper mantle beneath North Africa, Cameroon, and the Angolan Plateau. These patterns
match well with regions of uplifted topography and Cenozoic volcanism. Several of these low-velocity
anomalies appear to be connected at shallow depth to the Cameroon Volcanic Line, which may ultimately
be partly sourced by a deep upper mantle or MTZ low-velocity anomaly to the north.
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