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THE EFFECTS OF DOPANTS ON THE PHYSICO-CHEMICAL 
PROPERTIES OF VANADYL PYROPHOSPHATE CATALYSTS 

By 

TAN KlAN PENG 

November 2003 

Chairman: Associate Professor Taufiq Yap Yun Hin, Ph.D. 

Faculty: Science and Environmental Studies 

Vanadium phosphorus oxide (VPO). is a commercial catalyst for selective oxidation 

of butane to maleic anhydride. The nature of the oxidant of the doped and undoped 

(VOhP207 catalysts derived from (i) VPO, reaction of V20s with H3P04 in isobutanol 

and (ii) VPD, reaction of VOP04·2H20 with isobutanol were investigated. Metal 

cations, namely of sodium, potassium, magnesium and bismuth, were added as 

From the Scanning Electron Microscopy (SEM) and Transmission Electron 

Microscopy (TEM) analysis, the catalysts which have gone through a series of redox 

reaction do not produce the original morphology of (VO)2P207. 

The results indicated that the addition of dopants lowered the Brunauer-Emmet-Teller 

(BET) surface area of vanadyl pyrophosphate catalysts, except Bi-doped VPD 

catalysts. All the doped VPO and VPD catalysts have been shown a vanadyl 

pyrophosphate phase with three distinct peaks at 22.9°, 28.4° and 29.3° in X-ray 

Diffraction (XRD) analysis. The Bi-doped VPO and VPD catalysts had significantly 
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shifted the first reduction peak to a lower temperature in H2-TPR analysis. The 

introduction of Bi have modified the (VOhP207 matrix and mobility of these catalyst 

increased. It can be seen from TPRn analysis where VPDBil increased the selectivity 

of butene and butadiene (selective products) and decreased the selectivity of CO and 

C02 (unselective products). 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

KESAN DOPANT TERHADAP PENCIRIAN FIZIKO-KIMIA MANGKIN 
VANADIL PIROFOSFAT 

Oleh 

T AN KlAN PENG 

November 2003 

Pengerusi: Profesor Madya Taufiq Yap Yun Hin, Ph.D. 

Fakulti: Sains dan Pengajian Alam Sekitar 

Vanadium fosforus oksida (VPO), adalah mangkin komersial untuk pengoksidaan 

selektif butana kepada maleik anhidrida. Sifat pengoksidaan bagi mangkin (VOhP207 

yang dimodifikasi dan tidak dimodifikasi disediakan melalui (i) VPO, tindak balas 

V20s dengan H3P04 dalam isobutanol dan (ii) VPD, tindak balas VOP04·2H20 

dengan isobutanol telah dikaji. Kation logam, seperti natrium, kalium, magnesium and 

bismuth telah ditambahkan sebagai dopant dalam kekisi (VO)2P2G? 

Daripada analisis mikroskop elektron imbasan (SEM) and mikroskop elektron 

transmisi (TEM), mangkin di mana telah melalui satu siri keadaan tindakan redoks 

tidak lagi menghasilkan morfologi (VOhP207 yang asal. 

Keputusan menunjukkan bahawa penambahan dopant telah menurunkan luas 

pennukaan Brunauer-Emmet-Teller (BET) bagi mangkin vanadil pirofosfat kecuali 

mangkin VPD yang dimodifikasi dengan Bi. Semua mangkin VPO dan VPD yang 

dimodifikasi menunjukkan fasa vanadil pirofosfat dengan tiga puncak ketara iaitu 

22.9°, 28.4° and 29.3° dalam pembelauan sinar-X (XRD). Mangkin VPO dan VPD 
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yang dimodifikasi dengan Bi telah mengalihkan puncak penurunan pertama kepada 

suhu yang lebih rendah secara ketara dalam analisis Hr TPR. Kehadiran Bi telah 

memodifikasikan matriks (VOhP207 dan menambahkan mobiliti mangkin tersebut. 

lni dapat dilihat daripada analisis TPRn di mana VPDBil telah meningkatkan 

selektiviti butena dan butadiena (produk selektif) dan mengurangkan selektiviti CO 

dan C02 (produk tidak selektif). 
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CHAPTER 1 

INTRODUCTION 

1.1  Definition of Catalysis and Catalyst 

Although nowadays catalytic processes have already been applied for a long period of 

time, it was not until 1 836 that Berzelius introduced the term 'catalysis' {Bond, 1 987). 

The word catalysis comes from two Greek words, the prefix cata-, meaning down, 

and the verb iysein, meaning to split or break. By 'awaking affinities which are 

asleep', a catalyst breaks down the normal forces which inhibit the reactions of 

molecules. 

Later, in 1 895, William Ostwald was the first to write down a definition of a 

catalyst: 'A catalyst is a substance that change the rate of a chemical reaction without 

itself appearing in the products'. A material scientist might describe a catalyst as a 

device for chemical transformation (Gates, 1 995) : Reactant molecules flow into the 

device and are transformed into product molecules that flow out; energy may be 

consumed or liberated. It is important to note that a catalyst does not influence the 

thermodynamic equilibrium of reactants and products. Therefore, the current 

definition is slightly better, though close to Ostwald's description: 'A catalyst is a 

substance that increases the rate of approach to thermodynamic equilibrium of a 

chemical reaction without being substantially consumed'. 



Catalysts are among the most important technological materials, being used in 

the manufacture of chemicals, fuels, foods, clothing, pharmaceuticals, and materials 

such as organic polymers (Gates, 1 992). The value of the goods manufactured in the 

United States in processes that at some stage involve catalysis is about $ 1  trillion 

annually; the catalysts used in these processes cost only a few tenths of a percent of 

the value of the products. 

The solid catalysts are far more important than the others in large-scale 

processes for conversion of chemicals, fuels, and pollutants (Satterfield, 1 99 1 ). Many 

solid elements and compounds, including metals, metal oxides, and metal sulfides, are 

catalysts. A few industrial catalysts are simple in composition, for example, Raney 

nickel, used for hydrogenation of fats, and y -Ah03, used for dehydration of ethanol 

to make ethylene. However, the typical industrial catalyst consists of a variety of 

components and phases and is so complex that the structure is not well understood. 

The activity of a catalyst is a measure of how fast it catalyses a reaction. The 

selectivity is a measure of how well the catalyst directs the conversion to desired 

products; a highly selective catalyst is much more active for the desired reactions. The 

stability of a catalyst is a measure of how fast it loses activity or selectivity in 

operation. The regenerability is a measure of how effectively a deactivated catalyst 

can be brought back to a state of high activity and selectivity (Gates, 1 995). 
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1 . 1 . 1  Classification of  Catalytic Systems 

In fact, it is possible to divide catalytic systems into two distinct categories (Bond, 

1 987). When the catalyst is of the same phase as the reactants and no phase boundary 

exists, it is a homogeneous catalysis. This may take place either: 

(i) in the gas phase, as, for example, when nitrogen oxide catalyses the 

oxidation of sulphur dioxide; or 

(ii) in the liquid phase, as when acids and bases catalyse the mutarotation of 

glucose. 

When a phase boundary separates the catalyst from the reactants, it is a 

heterogeneous catalysis. Catalysis is essentially a chemical phenomenon. The ability 

of a substance to act as a catalyst in a specified system depends on its chemical 

nature. Heterogeneous catalysis are concerned with the specific chemical properties of 

the surface of the chosen substance. These of course reflect the chemistry of the bulk 

solid, and some useful insight into the catalytic activities of surfaces is gained from 

knowledge of the bulk properties of the solid. Table 1 . 1  shows the classification of 

heterogeneous catalysts. For catalysis to occur, there must be a chemical interaction 

between catalyst and the reactant-product system, but this interaction must not change 

the chemical nature of the catalyst except at the surface. 
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Table 1 . 1 :  Classification of heterogeneous catalysts (less important 
parentheses) (Bond, 1987) 

Class Functions Examples 

Metals hydrogenation 
dehydrogenation Fe, Ni, Pd, Pt, Ag 
hydrogenolysis 
(oxidation) 

Semiconducting oxidation 
oxides and dehydrogenation NiO, ZnO, Mn02, 
suphides desulphurization Cr203, Bh03-Mo03, 

(hydrogenation) WS2 

Insulator oxides dehydration Ah03, Si02, MgO 

Acids polymerization 
isomerization H3P04, H2SO4, 
cracking Si02-Ah03, zeolites 
alkylation 

1 . 1 .2 Catalysts for Industrial Processes: General Requirements 

functions in 

The criteria for an industrially successful catalyst are very stringent. First, the catalyst 

must be able to effect the desired reaction at an acceptable rate under conditions of 

temperature and pressure that are practicable (Anderson, 1 975). Chemical technology 

has advanced to the point where temperatures as high as 1 600 K and pressures up to 

350 atrn (35 MPa). If however good yields can be obtained at low temperatures and 

pressures, then there is every incentive to find a catalyst that will operate under the 

mildest possible conditions, since the use of extreme conditions is very costly. It is 
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concurrently important that side-reactions are minimal, especially those leading to 

poisoning or deactivation through carbon deposition on catalyst. 

Second, the catalyst must be able to sustain the desired reaction over 

prolonged periods: in some processes, a catalyst life of several years is not 

uncommon, and is economically necessary. Clearly the longer it lasts, the smaller will 

be the contribution that its initial cost makes to the overall cost of the process. Initial 

cost is rarely of over-riding importance:  it is usually cheaper in the long run to use an 

expensive catalyst that will last a long time than a cheap one that has to be replaced 

frequently. 

1 .2 Catalytic Oxidation Processes 

It was in the first decades of the 20th century, however, that catalytic processes began 

to appear in significant numbers, though the first heterogeneously-catalysed process, 

the "contact process", had begun to render obsolescent the chamber process some 

twenty years earlier (Chinchen et aI., 1987). More than 60 % products by catalytic 

route in chemical industry are by oxidation and the world market for oxidation 

catalysts may be estimated as around 200-250 million US dollars, about half of which 

are in Europe (Centi, 1993a). 

Many industrial catalytic direct oxidation processes have been successfully 

developed and introduced since the "contact" process, mainly with the objective of 
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