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Tumors of the nervous system can be originated from several locations. They mostly have
high mortality and morbidity rate. The emergence of resistance to chemotherapeutic
agents is a hurdle in the treatment of patients. Long non-coding RNAs (lncRNAs) have
been shown to influence the response of glioblastoma/glioma and neuroblastoma to
chemotherapeutic agents. MALAT1, NEAT1, and H19 are among lncRNAs that affect the
response of glioma/glioblastoma to chemotherapy. As well as that, NORAD, SNHG7, and
SNHG16 have been shown to be involved in conferring this phenotype in neuroblastoma.
Prior identification of expression amounts of certain lncRNAs would help in the better
design of therapeutic regimens. In the current manuscript, we summarize the impact of
lncRNAs on chemoresistance in glioma/glioblastoma and neuroblastoma.
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INTRODUCTION

Tumors of the nervous system can be originated from several cellular compartments. The main
classes of these tumors are glioma, meningioma, neuroblastoma, and spinal tumors (1). Although
being quite rare, brain tumors are considered as high mortality cancers (2). Their protected
position in the brain makes these neoplasms difficult to cure. Surgical removal of the tumor,
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radiotherapy, and chemotherapy are currently available
therapeutic options for brain tumors. However, these options
are associated with possible permanent morbidity for patients
and incomplete cure of cancer (2). Inherent or attained
chemoresistance is the chief reason for treatment failure in
these patients (3). Alkylating agents constitute the backbone of
chemotherapeutic regimens for brain tumors. These agents
induce DNA damage and consequently activate apoptosis, yet
their efficiency in killing cancer cells depends on the DNA
repair system (3). As an example of an orally bioavailable
alkylating agent, temozolomide (TMZ) has been used widely
in the treatment of patients with brain tumors. This agent is
spontaneously transformed to its active metabolite 5-(3-methyl
triazen-1-yl) imidazole-4-carboxamide (MTIC) without
requir ing hepat ic act ivat ion . ) . Furthermore , TMZ
is an effective radiosensitizer and a vital constituent of
chemoradiotherapy for patients with newly-diagnosed
glioblastoma (4). Resistance to TMZ has been detected in
about half of patients. Up-regulation of O6-methylguanine
methyltransferase (MGMT) and defects in the DNA repair
pathway are among possible mechanisms for resistance to
this agent (5). Another recently acknowledged cause of
chemoresistance in tumors of the nervous system and related
cell lines is the aberrant expression of long non-coding RNAs
(lncRNAs). In the current manuscript, we summarize the
impact of lncRNAs on chemoresistance in glioma/
glioblastoma and neuroblastoma.
LNCRNAS FUNCTIONS

Novel sequencing methods have enabled comprehensive
genomic and transcriptomic analyses and shown transcription
of a total of 85% of the human genome (6, 7). Based on the results
of ENCODE projects, most human transcriptomes are non-
coding RNAs (8). LncRNAs with sizes of more than 200
nucleotides constitute a major part of the transcriptome.
These transcripts are considered essential regulators of gene
transcription. Their functions as signals, decoys, scaffolds,
guide transcripts, and enhancers have endowed them the
aptitude to control gene expression via different routes.
Through having “decoy” binding sites, they can sequester
transcription factors, catalytic molecules, constituents
of chromatin remodeling complexes, and microRNAs
(miRNAs), thus decreasing their bioavailability (9).
Dysregulation of lncRNAs has been noted in tumors of the
nervous system (10). Figure 1 indicates the role of several
lncRNAs in modulating the sensitivity of tumor cells to various
chemotherapeutic agents via regulating the Wnt-b-catenin
signaling pathway which is a highly conserved cascade and is
activated in the development of glioma cells. Wnt/b-catenin
signaling is an evolutionary conserved axis that controls
important cel lular functions, namely prol i ferat ion,
differentiation, migratory potential, genetic stability, cell death
and renewal of stem cells, thus it has important roles in the
carcinogenesis (14).
Frontiers in Oncology | www.frontiersin.org 2
LncRNAS AND CHEMORESISTANCE IN
GLIOMA/GLIOBLASTOMA

Abnormal expression of several lncRNAs has been detected in
resistant glioma/glioblastoma tumors or related cell lines.
MALAT1, NEAT1, H19, and HOTAIR are among the mostly
assessed lncRNAs in this field.

MALAT1
Li et al. have reported higher levels of MALAT1 in the U251/TMZ
and U87/TMZ cells compared with the parental lines. Small
interfering (si)RNA-mediated MALAT1 silencing has down-
regulated expressions of MDR1, MRP5, and LRP1, increased
sensitivity to TMZ, and decreased ZEB1 levels. In vivo
experiments have also verified the impact of MALAT1 up-
regulation in conferring TMZ resistance and upregulating ZEB1
levels. Taken together, MALAT1 can enhance the resistance of
glioma cells to TMZ through regulating ZEB1 (15). Vassallo et al.
have shown that MALAT1 silencing decreases migration of
glioblastoma cells, without affecting proliferation. Meanwhile,
down-regulation of WIF1 has been shown to enhance the
migratory aptitude of glioblastoma via WNT5A that induces
expression of MALAT1. They have suggested the contribution of
canonical and non-canonical WNT routes in the pathogenesis of
glioblastoma (16). Moreover, MALAT1 has been reported to
induce chemoresistance to TMZ through suppressing miR-203
expression and promoting the expression of thymidylate synthase
(17). Similarly, Cai et al. have reported up-regulation of MALAT1
in TMZ-resistant glioblastoma cells. MALAT1 silencing has
reduced TMZ resistance of these cells as documented in cell lines
and animal models. Functionally, MALAT1 confers this phenotype
by inhibiting the miR-101 signaling pathway in glioblastoma cells
(18). A clinical study in this field has shown the association
between elevated serum levels of MALAT1 and poor response to
TMZ and low survival rate of patients with glioblastoma (17).
Notably, functional studies have verified that MALAT1 silencing
reverses TMZ resistance in glioblastoma cell lines. MALAT1 exerts
its function through modulating the expression of miR-203, thus
reducing thymidylate synthase (TS) levels (17). Finally, Voce et al.
have assessed the expression profile of glioblastoma cells to detect
NF-kB-related transcripts whose expressions are changed
following TMZ treatment. MALAT1 has been identified as one
of the utmost elevated transcripts. Moreover, expression of
MALAT1 has been simultaneously regulated by p50 and p53.
TMZ has been shown to inhibit p50 recruitment to its cognate
element following phosphorylation of Ser329. Administration of
anti-MALAT1 siRNA via nanoparticles has enhanced response to
TMZ in xenograft models of glioblastoma (19).

NEAT1
Expression of NEAT1 has been found to be elevated in serum
samples of glioblastoma patients and glioma stem cells isolated
from related cell lines. NEAT1 silencing has inhibited the
malignant behaviors of these cells, as has been evident by the
reduction of their proliferation, migration, and invasion.
Functional studies have verified let-7g-5p as a target of
NEAT1. Expression of MAP3K1, as a target of let-7g-5p, has
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ghafouri-Fard et al. LncRNAs and Resistance in Tumors
been enhanced by NEAT1, Therefore, NEAT1 enhances
malignant features of glioma stem cell and chemoresistant
phenotype via let-7g-5p/MAP3K1 axis (20). Similarly,
expression of NEAT1 has been lower in the TMZ-sensitive
Frontiers in Oncology | www.frontiersin.org 3
glioblastoma tissues and cell lines compared with TMZ-
resistant ones. NEAT1 silencing has remarkably promoted
TMZ-associated cell apoptosis in glioblastoma cells.
Consistently, MGMT levels have been higher in TMZ-resistant
June 2021 | Volume 11 | Article 670917
FIGURE 1 | A schematic illustration of the crosstalk between lncRNAs and Wnt/b-catenin pathway involved in the modulation of the sensitivity of glioma cells to
chemotherapeutic agents. Downregulation of lncRNA H19 could promote the sensitivity of glioma cells to temozolomide via inhibiting EMT through the
suppression of the Wnt/b-Catenin signaling cascade. Silencing of H19 could downregulate the expression level of b-catenin and its downstream targets c-myc
and Survivin in temozolomide-treated glioma cells (11). Besides, downregulating the expression of lncRNA MIR22HG could suppress the Wnt/b-catenin signaling
pathway via loss of miR-22-3p and -5p. This could in turn lead to attenuating cell proliferation, invasion as well as tumor growth in glioma cells. MIR22HG
silencing could result in downregulating the expression level of b-catenin, a key transcriptional regulator of Wnt, along with the inhibition of several Wnt
downstream targets, containing c-Myc, cyclin D1, and LEF1, as well as a reduction in the expression of phospho-GSK3b (Ser9) in tumor cells (12). Besides,
upregulation of lncRNA MIR155HG could promote temozolomide resistance in glioma cells through directly regulating canonical Wnt/b-catenin pathway
activation via binding to PTBP1 in tumor cells (13).
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cell lines. NEAT1 silencing has decreased mRNA and protein
levels of MGMT (21).

H19
H19 is another oncogenic lncRNA in glioblastoma whose
expression has been correlated with the expression of
numerous genes participating in the growth and progression of
this neoplasm. H19 silencing has reduced viability, migratory
potential, and invasiveness of glioblastoma cells. Notably, H19
expression is inversely correlated with the expression of NKD1,
an inhibitor of the Wnt pathway, thus H19 may modulate NKD1
expression via EZH2-associated H3K27 trimethylation. H19
binding with EZH2 has been verified in glioblastoma cells (22).
H19 silencing has been shown to enhance TMZ cytotoxicity in
glioma cells through inhibiting epithelial-mesenchymal
transition (EMT) via the Wnt/b-catenin pathway (11) and
inactivating NF-kB signaling (23).

HOTAIR
Expression of HOTAIR has been elevated in TMZ-resistant
glioblastoma cells and its si lencing has suppressed
proliferation, migration, invasion, and EMT in TMZ-resistant
cells. Notably, exosomal transfer of this lncRNA HOTAIR has
conferred TMZ resistance via modulating miR-519a-3p/RRM1
molecular route (24). HOTAIR silencing has also decreased HK2
expression, thus suppressing cell proliferation and enhancing
sensitivity to TMZ both in vivo and in vitro. HOTAIR increases
HK2 levels by influencing miR-125 levels, which suppresses cell
proliferation and increases TMZ-associated cell death (25).

Other lncRNAs
Several other lncRNAs have also been shown to affect the
response of glioblastoma/glioma cells to therapeutic agents.
Some lncRNAs affect autophagy. Autophagy is a fundamental
capability of cells to reinstate the energy equilibrium throughput
the periods of fluctuating nutrient accessibility (26). During this
evolutionarily conserved process, impaired or useless
biomolecules, organelles, or other cytoplasmic elements are
transferred to the lysosomal system be targeted for degradation
(27). Dysregulation of autophagy is linked with tumorigenesis
and resistance of cancer cells to therapeutics (28).

Expression of TUSC7 has been decreased in TMZ-resistant
glioblastoma cells and tissues. Ectopic expression of TUSC7 has
inhibited TMZ resistance and decreased expression of MDR1.
TUSC7 exerts its function by suppressing miR-10a levels (29).
Ma et al. have reported over-expression of MEG3 in glioma cells
treated with cisplatin. Up-regulation of MEG3 has increased the
sensitivity of glioblastoma cells to cisplatin. Functionally, MEG3
attenuates cisplatin-induced autophagy (30). In a high
throughput study, Zeng et al. have compared the expression of
mRNAs and lncRNAs between a TMZ-resistant glioblastoma cell
line and parental cells. They have reported differential expression
of more than 2000 lncRNAs between these cells. Notably, the
ECM−receptor interaction pathway has been downregulated and
ECM-related collagen I, fibronectin, laminin, and CD44 have
been correlated with resistance phenotype in vitro (31). Table 1
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shows the list of lncRNAs that modulate the response of
glioblastoma/glioma to chemotherapy. Figure 2 demonstrates
the role of various long noncoding RNAs including CASC2 and
GAS5 in suppressing the autophagy pathway through regulating
mTOR expression in glioma cells.
LNCRNAS AND CHEMORESISTANCE IN
NEUROBLASTOMA

Wang et al. have demonstrated up-regulation of NORAD in
neuroblastoma tissues and cell lines. Notably, NORAD
expression has been inversely correlated with the survival of
patients. NORAD has increased proliferation, metastatic ability,
and resistance to doxorubicin while inhibiting apoptosis and
autophagy in neuroblastoma cells through targeting miR-144-3p.
HDAC8 has been identified as a direct target of miR-144-3p.
NORAD up-regulation increases HDAC8 levels through
suppression of miR-144-5p (53). SNHG7 is another lncRNA
that modulates cisplatin-induced autophagy by regulating the
miR-329-3p/MYO10 (62). Finally, SNHG16 regulates miR-338-
3p/PLK4 axis to enhance cisplatin resistance in these cells (63).
Table 2 shows lncRNAs that modulate the response of
neuroblastoma to chemotherapy.
DISCUSSION

LncRNAs have acknowledged roles in the pathogenesis of tumors
of the nervous system through various mechanisms including
suppression of apoptotic pathways, induction of cell cycle
progression, and enhancement of cell proliferation (10). A more
clinically important aspect of lncRNA participation in the
pathogenesis of nervous system tumors is their influence on the
response of these neoplastic cells to chemotherapeutic agents.
TMZ, cisplatin, and doxorubicin are the most important
chemotherapeutic agents that are influenced by lncRNAs. Cancer
stem cells are possibly the most critical cell population within the
tumors which are affected by lncRNAs in this context. The
competing endogenous RNA (ceRNA) function of lncRNAs has
endowed them the aptitude to sequester miRNA, thus enhancing
the expression of miRNA targets. MALAT1/miR-101, MALAT1/
miR-203, TUSC7/miR-10a, NEAT1/let-7g-5p, AC003092.1/miR-
195, SNHG15/miR-627, HOTAIR/miR-519a-3p, HOTAIR/miR-
125, KCNQ1OT1/miR-761, NCK1-AS1/miR-137, NCK1-AS1/
miR-22-3p and HOXD-AS1/miR-204 are among lncRNA/
miRNA pairs that regulate resistance to chemotherapeutic agents
in glioma/glioblastoma. SNHG7/miR-329-3p and SNHG16/
miR338-3p have similar roles in neuroblastoma.

Based on the prominent effects of lncRNAs in the modulation
of response of tumors of the nervous system to chemotherapeutic
agents, prior knowledge about the levels of these transcripts in the
tumor tissues would help in the design of appropriate therapeutic
regimens. However, the particular locations of these tumors
preclude invasive sampling. Therefore, peripheral blood/serum
June 2021 | Volume 11 | Article 670917
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TABLE 1 | LncRNAs that modulate the response of glioblastoma/glioma to chemotherapy.
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lncRNA Samples Cell Lines Target/pathway Function

RP11-838N2.4 – U87, U251, U87/
TMZ, U251/TMZ,

miR-10a, TGFB 1, TGFBR1, Smad-2/3/4 RP11-838N2.4 by inhibiting the functions of miR-1
temozolomide cytotoxic effect in GBM.

MALAT1 Mouse U251, U87, U251/
TMZU87/TMZ

ZEB1, Snail, SLUG MALAT1 by regulating ZEB1 could decrease the s
GBM.

MALAT1 Mouse LN-229, LN-428,LN-
319, LN-18,

p-MKK3/6, p-p38,P-ERK, WNT/Ca2+ WIF1 could increase the migratory possibility of GB
activates the WNT/Ca2+ pathway and MALAT1.

MALAT1 Human U87, U251, U87/
TMZ, U251/TMZ

miR-203, TS MALAT1 could induce chemoresistance to TMZ b
203 and promoting thymidylate synthase expressi

MALAT1 Human U251, U251/TMZ miR-101, MRP1, MGMT, p-gp Knockdown of MALAT1 by promoting miR-101 co
to TMZ.

MALAT1 Human,
Mouse

U87, T98G, LN-18,
U87/TMZ, T98G/
TMZ, LN-18/TMZ

AERG, CCL2, CXCL4 MALAT1 silencing could sensitize glioblastoma to

MALAT1 U87, A172, U251,
U87/TMZ,A172/TMZ,
U87/TMZ

p53, NF-kB p50 and p52 are primary regulators of this ncRNA

TUSC7 Human U87, U87TMZ miR-10a, MDR1 TUSC7 by targeting miR-10a could inhibit TMZ re

NEAT1 Human U87, U251, U87/
TMZ, U251/TMZ

let-7g-5p, MAP3K1, E-cadherin, N-cadherin NEAT1 by regulating the let-7g-5p/MAP3K1 axis c
malignant phenotypes and TMZ resistance in GBM

NEAT1 Human U87, U87/R, U251,
U251/R

MGMT NEAT1 by regulating MGMT could be involved in T
GBM multiforme.

H19 Human A172, LN229,
U87MG, LN18, T98G

NKD1 H19 could contribute to NKD1 repression via the r
on its promoter.

H19 Human U87, U251
U87/TMZ
U251/TMZ

PARP, MDR,
MRP, ABCG2

Knockdown of H19 could enhance the sensitivity
to TMZ.

H19 – U251, LN229
U251/TMZ LN229/
TMZ

Caspase-3, NF-kB H19 By activating NF-kB signaling could confer TM
glioma.

H19 – U-251, M059J,
U251/TMZ,
M059J/TMZ

Wnt/b-catenin,
Vimentin,ZEB1, c-myc,E-cadherin,
Survivin

H19 silencing by suppressing EMT via the Wnt/b-c
could reduce the resistance of human glioma cells

UCA1 Human U251,U87MG CXCL4, miR-182, PFKFB2 UCA1/miR-182/PFKFB2 axis could modify GBM-a
cells-mediated glycolysis and invasion of glioma ce

uc003iax.2,
ENST00000443252

Human U87, U251, U87/
TMZ, U251/TMZ

IL-18, DPP4, ABCB1, TP53, Collagen I,
Fibronectin, Laminin

Dysregulated lncRNAs could be involved as novel
overcome acquired TMZ resistance in GBM chem

AC023115.3 Human U87MG,U251MG PARP,Caspase-3 AC023115.3 could suppress the chemoresistance
decreasing autophagy.

AC003092.1 Human U87, U251, U87/
TMZ, U251/251

TFPI-2,miR-195 AC003092.1 could help TMZ chemosensitivity via
axis modulation in GBM.

TP73-AS1 Human G26, G7, G26/
TMZG7/TMZ

ALDH1A1 TP73-AS1 is involved in aggressiveness and could
resistance in GBM cancer stem cells.

ADAMTS9-AS2 Human T98G, U118, T98G/
TMZU118/TMZ

FUS/MDM2, Tubulin ADAMTS9-AS2 by upregulating the FUS/MDM2 u
could help TMZ resistance in GBM.
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SNHG15 Human HMC3, HMC3/TMZ miR-627, EGFR, CDK6, Sox2, b-catenin Modulating SNHG15/CDK6/miR-627 axis by palbocic
M2-polarization of glioma-associated microglia in GBM
finally could overcome TMZ resistance.

SNHG12 Mouse N3S, N3T3rd, U251,
U251T3rd

PARP, Caspase-3, RB, CDK4, CDK6,
Cyclin-D1, P-MEK, DNMT1, DNMT3a,
DNMT3b, MAPK1, E2F7, P-ERK1/2

Knockdown of SNHG12 by increasing MAPK1 and E
and activating the MAPK-ERK could restore TMZ sen

NONHSAT163779 Human U87, U87/TMZ hsa_circ_0043949, MDR1, MRP1, BCRP,
MGMT

NONHSAT163779 and hsa_circ_0043949 could be in
prognostic biomarkers for the treatment of GBM.

SBF2-AS1 Human U87, LN229, A172,
T98, U251

XRCC4, y-H2AX, Pro-caspase-3, Cleaved-
caspase 3

Knockdown of SBF2-AS1 could increase sensitivity to

OKN-007 Rat U138, LN18, T98,
U251

TGFb1 OKN-007 could enhance TMZ sensitivity and suppres
resistant GBM.

SOX2OT Human U87, U251, U87/
TMZ, U251/TMZ

MDR1, BCRP1, MRP1, SOX2, ALKBH5,
TCF1, Caspase-3/7/8/9, Wnt5a/b-catenin,
Cyclin-D1, C-Myc, LEF1

SOX2OT by elevating SOX2 expression via ALKBH5-
epigenetic regulation could promote TMZ resistance.

00021 BALB/c U87, U251, A172,
and SHG44

P21, Notch1, Hes1, Hes5 Long intergenic noncoding RNA 00021 by epigenetic
via the Notch pathway could promote GBM TMZ resi

MIR22HG Mouse U87MG, LN229, LN1 Wnt/b-catenin, P21, P27, c-Muc, p-GSK3B,
Cyclin-D1, LEF1

MIR22HG via suppressing the Wnt/b-catenin pathway
GBM progression.

HOTAIR Mouse A172, LN229, A172/
TMZ, LN229/TMZ

miR-519a-3p, RRM1, Vimentin, E-cadherin,
CD63, N-cadherin, MAP3K1

Knockdown of HOTAIR by miR-519a-3p/RRM1 axis
TMZ resistance.

HOTAIR Human U87, A172, U87/
TMZ, A172/TMZ

miR-125, Cyt C, Caspase-3, HK2 HOTAIR by targeting miR-125 could promote chemo
human GBM.

MIR155HG Mouse,
databases

A172, U251,
A172/TMZ,
U251/TMZ

Wnt/b-catenin, c-Myc, PTBP1,
Cyclin-D1

Knockdown of MIR155HG by inhibiting the Wnt/b-cat
downregulation PTBP1 could increase glioma sensitiv

KCNQ1OT1 C Mouse U251, U87,
U251/TMZ,
U87/TMZ

miR-761, c-MYC,
Pim-1L, p-MDR1,
MDR1, Survivin

KCNQ1OT1 C by retrieving PIM1 From
miR-761 could confer gliomas resistance to TMZ.

NCK1-AS1 Human U251, A172,
U251/TMZ,
A172/TMZ

TRIM1,
miR-137, TRIM24

NCK1-AS1 by modulating the miR-137/TRIM24 axis
resistance of glioma cells to TMZ.

NCK1-AS1 Human A172, LN229
A172/TMZ LN229/
TMZ

miR-22-3p, IGF1R NCK1-AS1 via miR-22-3p/IGF1R axis could enhance
in glioma.

EPIC1 – SNB19, T98G,
U97MG,
SNB19/TMZ,
T98G/TMZ,
U97MG/TMZ

Cdc20 Overexpression of EPIC1 via targeting Cdc20 could b
treatment.

HOXD-AS1 TCGA
dataset

U87, U251,
U373, SNB19, U87/
DDP, U251/DDP

miR-204, Caspase-3/9 Knockdown of HOXD-AS1 by buffering miR-204 coul
cisplatin sensitivity.
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TABLE 1 | Continued
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lncRNA Samples Cell Lines Target/pathway Function

LINC01198 Human U251, SNB-19,
LN229, U87,
U87/TMZ,
U251/TMZ,
LN229/TMZ,
SNB-19/TMZ

PTEN, AKT,
NEDD4-1

Overexpression of LINC01198 by enhancing the N
repression of PTEN could promote glioma cell pro
resistance to TMZ.

LINC00174 Human U251, U87,
U251/TMZ,
U87/TMZ

SOX9,
P13K/Akt

Knockdown of LINC00174 by regulating miR-138-
decrease chemoresistance to TMZ in glioma.

GAS5 – U138, LN18
U87MG, U251MG,
U138/Cis, LN18/Cis,
U87/Cis, U251/Cis

mTOR, LC3I,
LC3II, p-62

GAS5 by suppressing excessive autophagy in an m
manner could facilitate glioma cell sensitivity to cisp

CASC2 Human U257, U87, U257/
TMZ, U87/TMZ

mTOR, Beclin1,
miR-193a-5p, LC3II/LCI

Upregulation of CASC2 through autophagy inhibiti
193a-5p and regulating mTOR expression could s
TMZ cytotoxicity.

CASC2 Human U251, U373, SNB19,
U118, LN229
SNB19/TMZ, U251/
TMZ

PTEN, AGO2,
Akt, miR-181a

CASC2 by inhibiting miR-181a could increase sen
glioma.

CCAT2 Human U251, U87, A172,
SHG44

miR-424 CCAT2 by disturbing the normal function of miR-4
resistance in glioma.

DANCR Mouse U87MG, LN18,
U251MG, U138MG,
U87MG/Cis,
U251MG/Cis,
U138MG/Cis

AXL, NF-kB,
IkBa, PI3K/AKT

DANCR via activating AXL/PI3K/Akt/NF-kB signalin
mediate cisplatin resistance in glioma cells.

MEG3 – U87, U87/Cis p-62, LC3 I/II,
PARP

MEG3 by suppression of autophagy could enhanc
in glioma.

MSC-AS1 Human LN229, HG-44
LN229/TMZ, SHG-
44/TMZ

miR-373-3p, CPEB4, Bax, MCL-1, MRP-1,
P-PIK3,
Cyclin-D1,
Caspase-3, PI3K/AKT

Knockdown of MSC−AS1 by regulating miR-373-3
PI3K/Akt pathway could inhibit cell growth and TM
glioma.

NR5A2 Mouse U138, U251, A172,
U87, U138/TMZ,
U251/TMZ

NR5A2, PARP,
NOTCH1, p21,
Cyclin-D1,
caspase-3, MMP2,
E-cadherin

NR5A2 via regulating notch signal pathway could p
and resistance to TMZ in glioma.

ZFAS1 Human U87, U251, NHA,
A172, LN299,
LN299/Cis, U251/
Cis,

miR‐432‐5p Knockdown of ZFAS1 by upregulating miR‐432‐5p
cisplatin cytotoxicity in glioma.

XIST Human LN229, U251,
LN229/TZM, U251/
TZM

Ago2, miR-29c XIST via interacting with miR-29c and through DNA
pathway could modulate the chemoresistance of g
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is an alternative tissue for this purpose. Consistent with this
speculation, elevated serum levels of MALAT1 have been
associated with the poor response of patients with glioblastoma
to TMZ (17). However, most studies in this field rely on cell line
Frontiers in Oncology | www.frontiersin.org 8
experiments or animal studies without assessing the impact of
circulating levels of lncRNAs in the long-term survival of patients.
Moreover, the impact of genomic variants within lncRNAs in the
modulation of response of glioblastoma/neuroblastoma to
FIGURE 2 | A schematic diagram of the inhibition of autophagy cascade via long noncoding RNAs in glioblastoma in an mTOR‐dependent manner. Overexpression
of lncRNA CASC2 could downregulate the expression level of miR-193a-5p, which could, in turn, lead to reducing temozolomide-induced autophagy and promoting
cell death through suppressing the expression level of mTOR, and thereby resulting in enhancing the sensitivity of glioma cells to temozolomide cytotoxicity to the
large extent (55). Furthermore, the elevation of lncRNA GAS5 could enhance glioma cell sensitivity to cisplatin. Cisplatin could evoke excessive autophagy
concomitant via promoting and suppressing the expression levels of LC3II and p62 respectively, which was negatively inhibited after GAS5 overexpression.
Therefore, GAS5 could attenuate the resistance of glioma cells to cisplatin by restraining excessive autophagy through the activation of mTOR signaling (54). Also,
upregulation of MEG3 could eliminate cisplatin-induced autophagy in glioma cells via directly targeting LC3II and p62 in tumor cells. The suppression of autophagy or
knockdown of ATG5 could reverse the reduction in cell apoptosis caused by MEG3 knockdown in glioma cells treated with cisplatin (30).
June 2021 | Volume 11 | Article 670917

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ghafouri-Fard et al. LncRNAs and Resistance in Tumors
chemotherapeutic agents has not been assessed either in cell lines
or in clinical settings. Such data would facilitate understanding the
underlying mechanism of resistance to these agents and
subsequently would pave the way for the design of therapeutic
options to combat this phenotype.

Taken together, the contribution of lncRNAs in chemoresistance
of glioma and neuroblastoma tumors has been assessed in
independent studies. Yet, the role of these transcripts in the
modulation of resistance to these agents has not been evaluated
in other types of nervous system tumors. The proposed lncRNAs in
Frontiers in Oncology | www.frontiersin.org 9
this study are putative candidates for expression assays in other
types of nervous system tumors.
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