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Aim: The aim of this guideline is to present current and comprehensive recommendations

for the management of brain arteriovenous malformations (bAVMs) located in

eloquent areas.

Methods: An extended literature search on MEDLINE was performed between Jan

1970 and May 2020. Eloquence-related literature was further screened and interpreted

in different subcategories of this guideline. The writing group discussed narrative

text and recommendations through group meetings and online video conferences.

Recommendations followed the Applying Classification of Recommendations and Level

of Evidence proposed by the American Heart Association/American Stroke Association.

Prerelease review of the draft guideline was performed by four expert peer reviewers and

by the members of Chinese Stroke Association.

Results: In total, 809 out of 2,493 publications were identified to be related to eloquent

structure or neurological functions of bAVMs. Three-hundred and forty-one publications

were comprehensively interpreted and cited by this guideline. Evidence-based

guidelines were presented for the clinical evaluation and treatment of bAVMs with

eloquence involved. Topics focused on neuroanatomy of activated eloquent structure,

functional neuroimaging, neurological assessment, indication, and recommendations
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of different therapeutic managements. Fifty-nine recommendations were summarized,

including 20 in Class I, 30 in Class IIa, 9 in Class IIb, and 2 in Class III.

Conclusions: The management of eloquent bAVMs remains challenging. With the

evolutionary understanding of eloquent areas, the guideline highlights the assessment

of eloquent bAVMs, and a strategy for decision-making in the management of

eloquent bAVMs.

Keywords: assessment, brain arteriovenous malformation, eloquent area, guideline, treatment

INTRODUCTION

Brain arteriovenous malformations (bAVMs) are an abnormal
collection of blood vessels wherein arterial blood flows directly
into draining veins without the normal interposed capillary
beds, while no brain parenchyma is contained within the
nidus. Brain AVMs may lead to spontaneous intracranial
hemorrhage (ICH), seizures, neurological deficits, or headaches,
usually in young people (1, 2). Current treatments, such
as microsurgical resection, stereotactic radiotherapy (SRS),
endovascular embolization, and multimodality treatments
mainly aim at preventing hemorrhagic stroke (3). However,
the risk of suboptimal outcomes must be carefully balanced
between treatments and wait-and-see strategies. Several links
remain unclear in the management of bAVMs, especially in
those located in eloquent areas. Challenges exist in preoperative
assessments of neurological function, prediction of operative
risks, and decision-making of therapeutic strategy and method.
The purpose of this guideline is to review current studies and
develop recommendations for the management of bAVMs with
eloquent areas involved.

METHODS

A multidisciplinary group was proposed by the Chinese
Cerebrovascular Neurosurgery Society (CVNS) and Chinese
Interventional & Hybrid Operation Society (IHOS) of
Chinese Stroke Association (CSA) and confirmed by CSA
Executive committee, including the clinical researchers
on microsurgery, endovascular neurosurgery, stereotactic
radiosurgery, neuroradiology, and functional neuroimaging.
Researchers in each field were screened for important conflicts of
interest and assigned to the specific subcategory by a face-to-face
meeting. These subcategories included anatomy of eloquent
areas; preoperative neuroimaging, neurological assessment;
neurosurgery, endovascular surgery, stereotactic radiosurgery,
multimodality treatments, and conservative treatment. Each
subcategory was led by at least one author.

The group identified all available literature related bAVMs
and neurological functions in humans, following the practices
of the Task Force on Practice Guidelines for literature searches
published by the American Heart Association/American
Stroke Association (AHA/ASA). Given the focus of therapeutic
questions remaining in clinical practices, we performed
systematic literature searches, guided by Applying Classification
of Recommendations and Level of Evidence (Tables 1, 2) (4). As

the eloquent bAVMs were seldom studied specifically, extended
searches involved all bAVM-related literatures on MEDLINE
(1970–May 2020), with (“arteriovenous malformations” [MeSH
Terms] OR “arteriovenous malformations” [All Fields]) AND
(“brain” [MeSH Terms] OR “Intracranial” [MeSH Terms] OR
“cerebral” [MeSH Terms] OR “cerebellar” [MeSH Terms] OR
“brain stem” [MeSH Terms] AND 1970/1/1:2020/5/31 [Date–
Publication]). Publications irrelevant to eloquent bAVMs were
excluded. Works of literature were further screened by different
terms specified to each subcategory. Methodological filters were
used to identify RCTs, meta-analyses, and systematic reviews.

Drafts of recommendations were circulated to the entire
writing group by online video conferences for feedback. Sections
were revised and merged by the first authors. Comments of
the merged draft were made by the entire writing group and
got incorporated before the approval of the final draft. The
corresponding authors revised the document in response to peer
review. Themanuscript was sent to the entire writing group again
for additional suggestions and approval.

RESULTS

A total of 2,493 bAVM-related results were obtained. Works
of literature related to bAVMs, eloquent areas, neurological
functions, and clinical techniques were identified. With in-depth
interpretations, 341 pieces of literature were cited by this work,
including 2 randomized clinical trials (RCTs), 8 meta-analyses,
224 clinical cohorts, 31 case reports or series, 46 reviews, 31
laboratory researches, and several literatures in other forms
(Figure 1). The writing group summarized 61 recommendations
for the management of eloquent bAVMs (refer to Table 3).

Anatomy of Eloquent Areas
Sensorimotor Brain Areas
Motor-related cortices mainly include: (1) primary motor cortex,
located in the precentral gyrus and correspond to Brodmann’s
area 4; (2) supplementary motor cortex (SMC) which is in the
medial side of the cerebral hemisphere and in front of the primary
motor cortex, and is a major area related to motor programming
and corresponds to the medial part of Brodmann’s area 6; (3)
premotor cortex (PMC) located in the lateral side of the frontal
lobe, occupying part of the superior frontal gyrus, middle frontal
gyrus, and precentral gyrus. The primary somatosensory cortex
is in the postcentral gyrus, corresponding to Brodmann’s area 1–
3 and there is a corresponding relationship between areas in the
primary somatosensory cortex and specific body areas. Moreover,
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FIGURE 1 | PRISMA study flow diagram demonstrating the number of articles retained at each stage of data acquisition.
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TABLE 1 | Applying classification of recommendations and level of evidence.

Size of treatment effect

CLASS I

Benefit >>> Risk

Procedure/treatment SHOULD

be performed/administered

CLASS IIa

Benefit >> Risk

Additional studies with focused

objectives needed

IT IS REASONABLE to

perform procedure/administer

treatment

CLASS IIb

Benefit ≥ Risk

Additional studies with broad

objectives needed; additional

registry data would be helpful

Procedure/treatment

MAY BE CONSIDERED

CLASS III No Benefit

or CLASS III Harm
Procedure/test Treatment

COR III:

No benefit

Not

Helpful

No Proven

Benefit

COR III:

Harm

Excess Cost

w/o Benefit or harmful

Harmful to

patients

Estimate of

certainty

(precision) of

treatment effect

LEVEL A

Multiple populations evaluated*

Data derived from multiple

randomized clinical trials or

meta-analyses

� Recommendation that

procedure or treatment is

useful/effective

� Sufficient evidence from

multiple randomized trials or

meta-analyses

� Recommendation in favor of

treatment or procedure

being useful/effective

� Some conflicting evidence

from multiple randomized

trials or meta-analyses

� Recommendation’s

usefulness/efficacy less

well-established

� Greater conflicting evidence

from multiple randomized

trials or meta-analyses

� Recommendation that procedure or treatment is no

useful/effective and may be harmful.

� Sufficient evidence from multiple randomized trials or

meta-analyses

LEVEL B

Limited populations evaluated*

Data derived from single

randomized clinical trials or

nonrandomized studies

� Recommendation that

procedure or treatment is

useful /effective

� Evidence from single

randomized trial or

nonrandomized studies

� Recommendation in favor of

treatment or procedure

being useful effective

� Some conflicting evidence

from single randomized trial

or nonrandomized studies

� Recommendation’s

usefulness/efficacy less

well-established

� Greater conflicting evidence

from single randomized trial

or nonrandomized studies

� Recommendation that procedure or treatment is no useful/

effective and may be harmful.

� Evidence from single randomized trial or nonrandomized

studies

LEVEL C

Very limited populations

evaluated*

Only consensus opinion of

experts, case studies, or

standard of care

� Recommendation that

procedure or treatment is

useful/effective

� Only expert opinion, case

studies, or standard of care

� Recommendation in favor of

treatment or procedure

being useful/effective

� Only diverging expert

opinion, case studies, or

standard of care

� Recommendation’s

usefulness/efficacy less

well-established

� Only diverging expert

opinion, case studies, or

standard of care

� Recommendation that procedure or treatment is no useful/

effective and may be harmful.

� Only diverging expert opinion, case studies, or standard of care

Suggested phrases for writing

recommendations

Should

Is recommended

Is indicated

Is useful/effective/beneficial

Is reasonable

Can be useful/effective/

beneficial

Is probably recommended or

indicated

May/might be considered

May/might be reasonable

Usefulness/effectiveness is

unknown/unclear/uncertain or

not well-established

COR III: No benefit COR III: Harm

Is not recommended

Is not indicated

Should not be Performed/

administered/other

Is not useful/beneficial

/effective

Potentially harmful

break Causes harm

Associated with excess

morbidity/mortality

Should not be

performed/

administered/other

Comparative effectiveness

phrase
†

Treatment/strategy A is

recommended/indicated in

preference to treatment B

Treatment A should be chosen

over treatment B

Treatment/strategy A is

probably

recommended/indicated in

preference to treatment B

It is reasonable to choose

treatment A over treatment B

A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the guidelines do not lend themselves to clinical trials. Although randomized trials are

unavailable, there may be clinical consensus that a particular test or therapy is useful or effective.
*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations.
†
For comparative effectiveness recommendations (Class I and IIa; Level of Evidence A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatment or strategies being evaluated.

green: Benefit >>> Risk; orange: Benefit >> Risk; yellow: Benefit ≥ Risk; red: harm or no benefit.
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TABLE 2 | Definition of classes and level of evidence used in recommendations.

Class/level Description

Class I Conditions for which there is evidence for

and/or general agreement that the

procedure or treatment is useful and

effective

Class II Conditions for which there is conflicting

evidence and/or a divergence of opinion

about the usefulness/efficacy of a

procedure or treatment

Class IIa The weight of evidence or opinion is in

favor of the procedure or treatment

Class IIb Usefulness/efficacy is less well-established

by evidence or opinion

Class III Conditions for which there is evidence

and/or general agreement that the

procedure or treatment is not

useful/effective and in some cases may be

harmful

Therapeutic recommendations

Level of evidence A Data derived from multiple randomized

clinical trials or meta-analyses

Level of evidence B Data derived from a single randomized trial

or non-randomized studies

Level of evidence C Data derived from a single randomized trial

or non-randomized studies

Diagnostic recommendations

Level of evidence A Data derived from multiple prospective

cohort studies using a reference standard

applied by a masked evaluator

Level of evidence B Data derived from a single grade A study

or one or more case-control studies, or

studies using a reference standard applied

by an unmasked evaluator

Level of evidence C Consensus opinion of experts

TABLE 3 | The details of 55 recommendations.

Level of evidence Size of treatment effect

Class I Class IIa Class IIb Class III

A 1 0 0 1

B 18 16 3 1

C 1 14 6 0

the corticospinal tract (CST) is the most important fiber tract
related to motor function, which consists of axons of pyramidal
cells of the middle and upper part of the precentral gyrus and
some other cortical regions.

Language Related Brain Area

Cortex
Language-related cortices mainly include (1) Broca’s area:
including the pars opercularis and the pars triangularis
of the inferior frontal gyrus of the dominant hemisphere,
corresponding to Brodmann’s area 44 and the second half
of Brodmann’s area 45. Broca’s area plays a vital role in the

production of speech and understanding procedures (5, 6). (2)
Wernicke’s area: The Wernicke area is traditionally considered
to be in the posterior third of the superior temporal gyrus
(STG) of the dominant hemisphere (usually left hemisphere),
corresponding to the rear of Brodmann’s area 22 while there is no
uniform definition of the specific range.Wernicke’s area is mainly
involved in the identification and understanding of speech. (3)
Geschwind’s area: The area is in the inferior parietal lobe of the
left hemisphere, including the supramarginal gyrus and angular
gyrus (Brodmann’s area 39, 40). In recent years, brain functional
imaging studies suggest that the Geschwind’s area is an important
language-related area and hub for multiple speech functions such
as phonetic judgment, speech understanding, and reading (7–9).
(4) Cerebellum: It was confirmed that the cerebellum is associated
with logical reasoning and language processing (10).

Subcortical Fiber Bundle
The tractography and function of each language-related fiber
bundle are still being studied. According to the anatomical
position and function, they are currently divided into dorsal
and ventral pathways. The dorsal pathway includes the arcuate
fasciculus and the superior longitudinal fasciculus (11, 12). The
ventral pathway includes the inferior fronto-occipital fasciculus,
inferior longitudinal fasciculus, and the uncinate fasciculus
connecting the temporal pole and the orbital gyrus (13). Previous
studies suggest the dorsal pathway is mainly involved in the
processing of phonetic functions while the ventral pathway is
mainly involved in the processing of semantic functions. The
theory is still being confirmed and remains controversial.

Vision Related Brain Area
It is located around the calcarine fissure of the occipital lobe. The
cortex includes the primary visual cortex and extrastriate cortex.
The primary visual cortex is in Brodmann’s area 17 while the
extrastriate cortex is in Brodmann’s area 18–19. Optic radiation
is the fiber bundle connecting the lateral geniculate body and
the striate cortex (14). It starts from the lateral geniculate body
bending backward around the temporal horn and trigone. Optic
radiation can be divided into an anterior, middle, and posterior
bundle. All of the bundles pass backward along the lateral wall of
the occipital horn to the calcarine fissure.

Cognition Related Brain Area
At present, more and more attention is paid to cognitive
functions. The hippocampus is an important cognition-related
brain area called the “hippocampal region” which serves as
a part of the limbic system (15). It is responsible for short-
term memory, long-term memory, and spatial positioning. The
anterior hippocampus is seen to be involved in decision-making
under approach-avoidance conflict processing.

Other Function Related Brain Areas
Other eloquent areas include basal ganglia, thalamus,
hypothalamus, brain stem, cerebellar peduncles, internal
capsule, and deep cerebellar nuclei. Basal ganglia are associated
with control of voluntary motor movements, procedural
learning, habit learning, eye movements, cognition, and emotion
(16, 17). The thalamus regulates states of sleep and wakefulness
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and inputs from the retina and processes sensory information
as well as relays it. The hypothalamus coordinates many
hormones and behavioral circadian rhythms, regulates complex
homeostatic mechanisms, and is associated with fear processing
and social defense (15, 18, 19). The brain stem conducts all
information relayed from the body to the cerebral, cerebellum,
and vice versa must traverse the brain stem. It has integrative
functions involved in cardiovascular system control, respiratory
control, pain sensitivity control, alertness, awareness, and
consciousness (20, 21). Cerebellar peduncles are widely believed
to mediate visual and auditory reflexes (22, 23). The internal
capsule contains frontopontine fibers, corticobulbar fibers, CSTs,
sensory fibers from the body, and a few corticobulbar fibers.
Temporopontine fibers, optic radiation, and auditory radiations
are also included (24–27). Deep cerebellar nuclei are involved in
basic circuitry work involving coordination and the precision of
limb movements (22, 28).

Brain Connectome
In recent years, studies regarding cognitive neuroscience identify
that there are complex brain networks that interact with
each other to perform various functions. Researchers revealed
that there is a relationship between many neuropsychiatric
diseases (such as Alzheimer’s disease and schizophrenia) and the
abnormal topological change in brain structural and functional
networks. These studies provide us with a new approach
to studying the pathological mechanism of BAVMs and of
evaluating the surgical outcomes preoperatively.

Preoperative Imaging Assessment
Routine Imaging Examination
(1) T1/T2 weighted Magnetic Resonance Imaging (MRI): to
identify the anatomical location, range, and edema around the
lesion. (2) Magnetic resonance (arterial) angiography (TOF-
MRA): to demonstrate cerebral vessels and the surrounding
brain tissue; to assist the comprehensive evaluation of nidus
size, location, diffuseness, hemorrhage, feeding arteries, draining
veins, and surrounding normal blood vessels (29). (3) Computed
Tomography (CT): to assess acute subarachnoid hemorrhage
and hemorrhagic stroke with a sensitivity >90% (30). Although
limitations exist when detecting bAVMs, some features relevant
to vascular abnormalities could be revealed, including dilated
or calcified vessels along the bleeding edge and increased
density areas representing abnormal vascular clusters. CTA is
more acclaimed for its decreased invasiveness, good spatial
resolution, and higher inspection speed. However, limitations
of CTA lie in the presence of ionizing radiation and metal
artifacts. CTA has high sensitivity (83.6–100%) and specificity
(77.2–100%) in detecting vascular abnormalities in patients with
parenchymal hemorrhage and vascular abnormalities, which
can be used for initial differential diagnosis of a spontaneous
cerebral hemorrhage.

Digital Subtraction Angiography (DSA)
DSA is the reference standard for diagnosing bAVMs and
provides detailed information about angio-architectures and
hemodynamics through dynamic images (31). Those with

suspected bAVMs via CT or MRI are suggested to perform DSA
for further clarification.

Blood-Oxygen-Level Dependence Functional

Magnetic Resonance Imaging (BOLD-fMRI)
BOLD-fMRI is a non-invasive, non-radioactive, repeatable
technology with high temporal resolution and spatial resolution.
Processed data of BOLD-fMRI could display an activation map
of functional areas and support the localize the sensorimotor
area, speech area, and hemispheric dominance before operation.
BOLD-fMRI includes the task-based and the resting-state ones.

In task-based BOLD-fMRI, block-designed scan tasks are
commonly used (32). (1) Tasks of the detection of motor area
activation: Finger movement (or dorsiflexion and extension
of the foot) module and the block module alternately. The
sensorimotor area of hands and feet is positioned by finger
stretching movements, specified sequence of finger contrapuntal
movement, or foot dorsiflexion. The time of each task or block
module is no <20 s in general and the interval of adjacent task
modules must not be longer than 128 s. (2) Tasks of the detection
of speech area activation: speech tasks and the block module
alternately. Speech tasks usually use picture naming, vocabulary
association, verb generation, sentence judgment, etc. The form of
speech tasks can be selected by their educational level, language
habits, and target area. The time of each task or block module
is no <20 s in general and the interval of adjacent task modules
must not be longer than 128 s.

In resting-state BOLD-fMRI, patients are required to be awake
with their eyes closed (or look directly at the cross target) lying
quietly when performing the scan. Images are being used in the
study of the brain network (33).

Diffusion Tensor Imaging (DTI) and Fiber Bundle

Tracking
Spatial images are obtained by calculating the anisotropy of
water molecules, based on which fiber can be tracked. Magnetic
resonance equipment in 3.0 Tesla is commonly used with the
spin-echo diffusion-weighted EPI technology to collect the
image. The voxel size is 2 mm∗2 mm∗2mm for more than 12
directions and the scanning time is about 5min. White fibers
displayed by DTI include projection fibers (corticospinal tract,
cortico-nuclear tract, and thalamus radiation), association fibers
(arcuate fasciculus, superior longitudinal fasciculus, inferior
longitudinal fasciculus, inferior fronto-occipital fasciculus,
uncinate fasciculus, and frontal oblique fasciculus), and joint
fibers (callosum) (34).

Other Magnetic Imaging Techniques
Magnetic resonance spectrum (MRS) can be used to identify
microhemorrhage. Arterial spin labeling (ASL) sequence can
be used to differentiate malformed blood vessel mass and
surrounding single supply artery and perfusion (35). Combined
with other advanced encoding methods and physiological data,
the characteristics of the hemodynamics of arteries and veins can
be evaluated.
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Sonography
Both extracranial and transcranial/transnuchal duplex
sonography have been reported to be used as a non-invasive
method for the diagnosis of bAVMs. Distinctive hemodynamic
features could be detected and even evaluated. Extracranial
sonography detects bAVMs by identifying the time difference
of contrast bolus arrival between the internal carotid artery and
internal jugular vein, as known as global cerebral circulation time
(CCT). Schreiber et al. (36) reported that the CCT was 7.5± 1.1 s
in healthy volunteers, while much faster (about 1.5 s) in bAVMs
patients. Transcranial color duplex Doppler (TCCD) is the
advanced product of conventional transcranial Dopplar (TCD).
Both TCCD and TCD could record the velocity and pulsatility
parameters of intracranial vessels, and identify the hemodynamic
changes induced by bAVMs (37). TCCD was proposed as a
valuable non-invasive, harmless, low-cost, widely available
method for the detection and follow-up of hemodynamic
changes of AVMs, especially for pediatrics (38). However, the
effect of TCCD in neurological functional assessment has never
been reported.

Neurological Assessments
Muscle strength scales, Karnofsky performance scale (KPS),
and modified Rankin Scale (mRS) could be used to assess
motor functions. Edinburgh Dominance Scale was used to judge
the dominant hemisphere of speech. If the lesion is in the
dominant hemisphere, a speech-related scale or West Aphasia
Battery (WAB) should be used to determine the existence of
aphasia and the type and severity of it. It is important to
make sure there are no related diseases that may affect the
evaluation before assessments, such as hearing impairments
and pyramidal tract injuries, Common language assessment
scales include the Chinese version of WAB, Aphasia Battery of
Chinese (ABC), China Rehabilitation Research Center Aphasia
Examination (CRRCAE), etc. For bAVMs with vision-related
brain areas involved, routine visual field examination (via
visual field analyzer) is recommended before treatment. For
lesions with cognition-related brain areas involved, Mini-Mental
State Examination (MMSE) and Montreal Cognitive Assessment
(MoCA) are recommended. National Institutes of Health Stroke
Scale (NIHSS) is required for comprehensive assessments as
well (7).

Selection of Patients
Classic Grading Systems for Microsurgery

Spetzler-Martin (SM) Grading Scale
SM Grading Scale is the most commonly used grading system
by far. Results of CT/MRI and DSA can be used in this scale
to estimate the risk of surgical resection on: (1) the maximum
size of lesion (<3 cm = 1 point; 3–6 cm = 2 points; >6 cm
= 3 points), (2) the relative position of the eloquent area
(eloquent area = 1 point, else = 0 points), and (3) the type
of draining veins (only superficial veins = 0 points; deep veins
= 1 point) (39). According to the SM Grading Scale, eloquent
brain areas mainly include the sensorimotor area, visual and
speech cortices, basal ganglia, thalamus, hypothalamus, brain
stem, cerebellar peduncles, internal capsule, and deep cerebellar

nuclei. The types of drainage are divided into: (1) with the
superficial involved only, such as cortical veins draining into the
superficial sagittal sinus, transverse sinus; and (2) with the deep
drainage involved, indicating any draining vein to inferior sagittal
sinus, Galen vein, and straight sinus. It has been confirmed
that the grading system is an accurate predictor of surgical risk
with a lower risk of permanent neurological deficits in the low-
grade group (grade 1–2) than the high-grade group (grade 4–
5). Spetzler et al. (40) recommended that bAVMs be divided
into 3 categories for individualized diagnosis and treatment,
including Type A (grade 1–2): recommended for microsurgical
treatment; Type B (grade 3): recommended for individualized
multimodal treatment; and Type C (grade 4–5): angiographic
follow-up is preferred, while surgical treatment is only performed
when aggravation of neurological deficits, recurrent bleeding or
other conditions occurs.

Supplemented Spetzler-Martin (SM-Supp. or
Lawton-Young) Grade
A supplementary of the SM grading scale was proposed to
improve its predictive ability on microsurgical outcome with the
following variables: patient age (<20 years old = 1 point; 20–
40 years old = 2 points, >40 years old = 3 points), unruptured
presentation (yes= 1 point; no= 0 points), diffuse (yes= 1 point;
no = 0 points). The ROC curve in studies showed that it is more
accurate than the SM scale (41–43).

Functional Image-Based Grading Scales
Safe Lesion-to-EloquenceDistance (LED): Studies had reviewed
the influence of lesions involved in white matter eloquent
fiber tracts, such as the subcortical cortical spinal tract (CST),
optic radiation (OR), and arcuate fasciculus (AF) concerning
sensorimotor, speech, and visual functions on the prognosis of
patients, confirming that LED is an important risk factor for
short-term and long-term neurological dysfunction in patients
(32). It confirmed an acceptable LED to be 5mm, which
is significant in accurately assessing the risk and type of
postoperative neurological dysfunction.

HDVL Grading System: This system was proposed to
remedy the insufficiency of the SM grading scale on assessing
(sub-)cortical eloquent structures and their LEDs. Each letter
of HDVL stands for hemorrhage, diffusion, vein, and LED,
respectively (Table 4). The fMRI and DTI-based functional
imaging information are integrated into the grading system (32),
and the vascular architectures of the lesion are considered to
assist SM Grading in the preoperative evaluation of bAVMs,
which provides a more accurate prediction of the prognosis.

Grading Scales for Radiosurgery and Endovascular

Surgery
Stereotactic radiosurgery (SRS) and endovascular embolization
are used as solitary therapeutic options (44). Several
radiosurgical-based and endovascular-based grading scales
had been proposed (45). Modified-RBAS was validated by
comprehensive comparative analysis of different SRS-related
bAVM grading scales (46). For endovascular treatment, Jin et al.
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TABLE 4 | HDVL grading system.

Variables Score
∫

Lesion-to-eloquence* distance (LED) >10mm 1

5–10mm 2

<5mm 3

Diffuseness
†

Yes 1

No 0

Deep draining veins‡ Yes 1

No 0

Hemorrhagic history Yes 0

No 1

∫
Total score = LED + Diffuseness+ Deep draining veins + Preoperative hemorrhage.

HDVL scores 1–3: operation is recommended.

HDVL scores 4–6: individualized multimodal treatment or conservative management

is recommended.

*Eloquent areas include: sensorimotor, speech, and visual function related brain area

identified by fMRI and functional white matter fiber tracts reconstructed by DTI such as

cortical spinal tract (CST), optic radiation (OR), and arcuate fasciculus (AF).
†
Diffuseness refers to the inclusion of normal brain tissue in the nidus.

‡Deep draining veins refer to part (or all) of the draining veins flow into deep veins, such

as internal cerebral veins (ICV), basilar veins or precentral cerebellar veins.

(47) published the results of the validity assessment for Spetzler-
Martin, Puerto Rico, Buffalo, and AVMES grading systems to
predict various outcomes via a multicenter retrospective study.
The Puerto Rico scale was finally revealed to be superior in
predicting short-term and long-term procedural complications.
None of the current grading scales for endovascular surgery or
radiosurgery have been widespread. Further large-size studies
are expected to develop a simple and efficient grading scale for
predicting outcomes of these treatments.

Modified RBAS Score
Modified RBAS bAVM score= 0.1×Volume+ 0.02×Age+ 0.5
× Location; Location score was 1 for basal ganglia, thalamus, and
brainstem, and 0 for the rest of the brain. The following cutoffs
of the bAVM score were used to predict the declining outcome of
patients undergoing SRS: ≤1, 1.01–1.50, 1.51–2.00, and >2, with
a score≤1 predicting a 90% chance of lesion obliteration with no
neurological decline.

Puerto Rico Scale
The classification included the number of feeding vessels into
the bAVMs (<3 pedicles = 1 point, 3–6 pedicles = 2 points,
more than 6 pedicles = 3 points), the eloquence of adjacent
areas (non-eloquent = 0 points, eloquent = 1 points), and
the presence of fistulous components (no = 0 points, yes = 1
point) (48). Puerto Rico grade ≤2 reliably predicted successful
lesion obliteration with isolated endovascular therapy, whereas
grades ≤3 were proposed strongly associated with cure after
multimodality treatment and favorable neurological outcome.
There was a stepwise increase in complications with the increase
in Puerto Rico grade.

Recommendations

• In the judgment of the eloquent area, the eloquent cortex,
subcortical fiber tracts, hippocampus, and the important

cognitive brain area should be taken into consideration (Class
I; Level of Evidence B).

• Pre- and post-interventional neurological assessment should
be performed regarding the potentially injured neurological
and cognitive functions. Muscle strength scale with KPS score
or mRS score should be used for the motor evaluation; the
Edinburgh Dominance Scale and language scales such as
the West Aphasia Battery is recommended for the language
evaluation; for patients with lesions involved in visual
areas, vision and visual field examination is recommended.
Mini-Mental State Examination (MMSE) and Montreal
Cognitive Assessment (MoCA) are recommended to apply
in the cognitive examination. National Institutes of Health
Stroke Scale (NIHSS) is recommended for comprehensive
assessments (Class I; Level of Evidence B).

• Besides traditional MRI, MRA, CTA, and DSA scanning,
functional-MRI scanning, and DTI tractography are also
useful in judging eloquent cortex and white matter fiber tracts
(Class I; Level of Evidence B).

• In pre-surgical evaluating of the microsurgical treatment of
bAVMs, in addition to the traditional SM Grading Scale and
Lawton-Young Scale, the HDVL system is helpful for post-
surgical neurological outcomes evaluation (Class I; Level of
Evidence B).

• The involvement of eloquent fiber tracts should be considered
in the preoperative evaluation to improve its predictive
accuracy (Class I; Level of Evidence B).

• In evaluating the outcomes of radiosurgical and endovascular
treatment for bAVMs, the modified-RBAS and Puerto Rico
scale are helpful for radiosurgical and endovascular treatment,
respectively (Class I; Level of Evidence B).

Treatment Modalities
Quality of life (QoL) after the treatments has been emphasized in
recent years. The incidence of neurological deficits is regarded as
a critical index in assessing the safety and efficiency of treatment.
Thus, more attention had been paid to developing interventional
techniques for neurological protection, and predictive tools
for therapeutic risks evaluation (32, 40, 41, 44, 46, 49–55).
Treatments of eloquent bAVMs have to achieve two goals: (1)
the complete obliteration of nidus and arteriovenous shunt; and
(2) the protection of neurological functions, whichmight severely
impact postoperative QoL.

Treatments of eloquent bAVMs are carried by three
elementary surgical methods, including microsurgical resection,
endovascular embolization, and stereotactic radiosurgery
(SRS). Microsurgical resection can be performed initially
or subsequently to other treatments. Complete obliteration
may be achieved in most cases receiving resection. Endovascular
embolization is usually performed as a precursor to microsurgery
and radiosurgery. Complete endovascular obliteration is seldom
reported to be achieved in a single-staged or multi-staged
therapy (56). Stereotactic radiosurgery is applied to the bAVMs
in deep locations or small sizes as a primary or complementary
treatment. In the treatment of complex eloquent bAVMs,
different therapeutic elements are usually cooperatively utilized
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(AKA multimodality treatments). Reviewing current literature,
indications of each therapeutic modality were concluded.

Microsurgery
Microsurgical resection is the most common approach to achieve
the complete obliteration of bAVMs. A systematic review by
van Beijnum et al. (56) reported that microsurgery achieved
the highest complete obliteration rate (≈96%), comparing with
that of endovascular embolization (≈13%), and stereotactic
radiosurgery (≈38%). The complete obliteration of bAVMs
can eliminate the morbidities and mortalities induced by its
hemorrhage in the future.

Threshold of Microsurgery
Microsurgical resection is not recommended for all eloquent
bAVMs. The neurological risk of microsurgical resection should
be evaluated. As mentioned above, the SM grading system and
its supplemented scale are useful in the evaluation of operative
risks and the prediction of neurological outcomes (41, 43, 51,
57, 58). Five grades of the SM grading system are divided
into three levels, low grade (grade I–II), medium grade (grade
III), and high grade (grade IV–V) (3). Studies on low-grade
bAVMs reported morbidities of neurological deficits to range
from 0 to 6.6% after microsurgical resections (57, 59–66). The
morbidity rate of bAVMs in SM grade II increased to 0–69.2%
(65, 67, 68). However, the worst neurological outcome was not
induced by the involvement of eloquence. The microsurgery
on eloquent bAVMs in SM grade II resulted in a morbidity
rate ranging from 0 to 9.5%. There were two subtypes of
eloquent bAVMs in grade III, the subtype of S1E1V1 and
S2E1V0. The morbidity of neurological deficits was reported
to be 4.8–16.7% and 15–25%, respectively (66, 69–71). They
were in similar rates with the subtype of S2E0V1, but much
lower than that of S3E0V0 (70). In the eloquent bAVMs in
SM grade IV and higher, neurological risks increased rapidly
to as high as 38% in the mono-therapy of microsurgery (40,
51, 57, 72, 73). However, preoperative annual hemorrhagic rates
ranged from 1.5 to 10.4% in lesions of SM grade IV and
V (72, 74, 75), which suggested the need for microsurgery.
Several case reports and series had reported the successful
utilization of individualized multimodality treatment to cure
high-grade bAVMs with satisfactory morbidity and mortality
(76–85). Multimodality treatments refer to the combined
therapies of more than one elementary surgical treatment.
Microsurgery is involved in most combinations. The performing
of multimodality treatment is primarily for tentative or salvage
purposes for high-grade bAVMs. Further discussed referred to
section Multimodality Treatment.

Lawton et al. (41) proposed the supplementary scale of the
SM grading system to refine the prediction of neurological
outcomes. The full scale (SM grading system + supplementary
scale) had been validated in bAVMs with deep and superficial
locations. According to the studies with the full scale applied,
monotherapy of microsurgery could result in satisfactory
neurological outcomes in eloquent bAVMs in grade V and the
lower (58, 86, 87). For the lesions in higher grades, not enough
data support the exclusive utilization of microsurgery.

Results of functional neuro-images help to predict the
individualized neurological outcome of each eloquent bAVMs.
Lin et al. (88) proposed the minimum lesion-to corticospinal
tract distance (LCD) to be 5ml to secure the motor functions.
Afterward, Jiao et al. (32) proposed the HDVL scale, enrolling
LED, and achieved higher predictive accuracy than the full scale.
The worsening of neurological outcome occurred in 0% of lesions
in HDVL grade I and II, 11.8% in grade III, 31.5% and more in
grade IV–VI. Monotherapy of microsurgery was recommended
in lesions < HDVL grade IV.

The brainstem is a critical location with dense fiber tracts
and nervous nuclei. Different procedures and techniques
had been piroposed to cure brainstem bAMVs (89–91).
However, current studies only demonstrated the therapeutic
outcomes of highly selected patients. Thus, microsurgery of
bAVMs in critical locations is not recommended, unless the
relevant progressive neurological deterioration or hematoma
occupation could not be postponed by endovascular surgery or
radiosurgery (92).

Recommendations

• The Spetzler-Martin Grading system and its supplementary
grading system are recommended to be utilized primarily to
evaluate the risk of microsurgical resection (Class I; Level
of Evidence B). The HDVL grading system is recommended
for patients who have received DTI and fMRI assessments
(Class I; Level of Evidence B). Microsurgical resection is
reasonable to perform on lesions under Spetzler-Martin grade
IV, or the combined grade VI (Spetzler-Martin grade plus the
supplementary grade), or HDVL grade IV (Class IIa; Level
of Evidence B). Individualized multimodality treatments can
be useful to the bAVMs with Spetzler-Martin grade ≥IV, or
combined grade ≥VI, or HDVL grade ≥IV (Class IIa; Level of
Evidence C).

• The microsurgical resection may be considered in bAVMs
located in critical locations (brainstem, pons, medulla,
mesencephalon, etc.) when bAVM-related neurological
deficits or mass effect of hematoma are progressive, and
cannot be postponed by endovascular or radiosurgical
treatments (Class IIb; Level of Evidence C).

Elective, Semi-elective, and Emergency Microsurgery
For eloquent bAVMs that require microsurgery, timing of
treatment differs across situations. The emergency operation is
performed in urgent situations, such as the occurrence of life-
threatening hematoma, without any delay to prevent death or
serious disabilities. The semi-elective operation is performed on
the patients with prior hemorrhagic presentation, progressive
neurological deficits, or AEDs-resistant epilepsy to prevent
deterioration or death. The semi-elective operation should be
done as early as possible, but can be postponed for the thorough
preoperative preparation and evaluation. The elective operation
is performed to the patients without life-threatening risk, and
carried out at the request of the patient, and availability of the
surgeon and facility. Both elective operations and semi-elective
operations are aiming at preventing the onset of (re-)hemorrhage
or symptoms in the future to promote QoLs. To ensure optimal
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neurological outcomes, the criteria in the last section should
be obeyed.

Intracranial hemorrhage was the major threat of bAVMs. It
occurs in an annual risk ranging from 1.3 to 4.1% (93–97). For
the bAVMs with rupture history, the annual hemorrhagic risk
increases to 4.5–4.8% (94, 95), and as high as 6–15.8% in the first
year (98–102). Angio-architectural Features had been reported
to be associate with ruptures, including (1) aneurysms located in
nidus, arterial feeders, or irrelevant arteries; (2) venous drainage
anomaly, such as the stenosis, occlusion, ectasia, kinking, or
reflex of draining veins, and occlusion of the sinus; (3) single
arterial feeder with high blood flow (94, 103–106). Microsurgical
resection could achieve complete obliterates in most cases (96%
approximately), and significantly reduce the re-bleeding rate
(107). Considering the high risk of rebleeding in the first year,
microsurgery is recommended to perform, but can be postponed
for a short time for preoperative preparations and assessments.

Another common presentation of bAVMs is seizure, occurring
in∼17–30% of patients (108). The onset of seizure was suggested
to be associated with hemosiderin deposition, mass effect with
cortical irritation, hemodynamic modifications, and/or vascular
remodeling leading to stealing, ischemia, and neuronal damage
(109). The seizures could be progressive and impact QoLs.
Josephson et al. (110) reported that 76% of seizures would
develop into epilepsy. Microsurgical resection was reported to
be effective in the control of seizures in bAVM patients with
refractory epilepsy (111, 112). The semi-elective microsurgery is
recommended when the onset of seizure had progressed. Other
presentations of bAVMs consist of neurological deficits due to
the steal phenomenon, and headache. In these hemodynamic
related symptoms, microsurgical resection had been reported
to be effective for their relief (113–117). For asymptomatic
bAVMs, elective microsurgical resection is considered to
prevent the occurrence of symptoms and suboptimal events
mentioned above.

In patients aged ≤40 years, 33% of intracerebral hemorrhages
were caused by the rupture of bAVMs (118). In the acute phase
of hemorrhage, clinical outcomes were associated with both the
grade of bAVM and the degree of subarachnoidal hemorrhage
(119). Kuhmonen et al. (120) reported that an early extirpation
of bAVMs and evacuation of massive hematoma resulted in
optimal outcomes in over 55% of patients. However, before
evacuating hematoma or resecting bAVM, two points should be
clear. Firstly, the etiology of a hematoma should be identified,
such as bAVM rupture, hypertension, or amyloid (4). Secondly,
if the hematoma is induced by bAVM rupture, the morphology
and angioarchitecture of the lesion should be ascertained
comprehensively. CTA or DSA had been proven effective on
the etiological diagnosis of hematoma (121–124). However, the
routine workflow usually takes a long door-to-operation (DTO)
time, which may be intolerant to patients with life-threatening
hematoma or progressive neurological deterioration. The
hybrid-modality treatment integrates endovascular intervention
(including catheter angiography) with microsurgical operations
in one operating room, which could effectively shorten the DTO
time of emergency patients. Hybrid-modality treatment had been
proven to be feasible in the emergency disposal of severe trauma

(brain trauma included), complex thoracoabdominal aortic
pathology (125–127). Under a definitive diagnosis, emergency
evacuations of hematoma and control of acute bleeding is
warranted in the event of life-threatening mass effect, regardless
of whether it is associated with the bAVM. Superficial bAVMs
in small size (≤3 cm) can be resected simultaneously in an
emergency operation. Meanwhile, bAVMs in deep locations or
with large sizes are recommended to be resected via semi-elective
microsurgical operations.

Recommendations

• The semi-elective operation is reasonable for patients with
any of the prior hemorrhagic presentations, progressive
neurological deficits, or AEDs-resistant epilepsy (Class IIa,
Level of Evidence B). A semi-elective operation is reasonable
for bAVMs with angioarchitectural features, which imply high
rupture risks (Class IIa, Level of Evidence B). Elective operation
is probably recommended for patients without any features
above (Class IIa, Level of Evidence B).

• In an emergency operation, the evacuation of hematoma and
control of acute bleeding can be beneficial to the event of life-
threatening mass effect, regardless of whether it is associated
with the bAVM (Class IIa, Level of Evidence B). Simultaneous
resection of superficial bAVMs in small size (≤3 cm) in the
emergency operation is reasonable (Class IIa, Level of Evidence
C). The semi-elective microsurgical operation is probably
recommended for the deep located or large-sized bAVMs
(Class IIa; Level of Evidence C).

• Hybrid-modality treatment is probably recommended
for the diagnosis and subsequent treatment of every
emergency intracranial hemorrhage (Class IIa; Level
of Evidence C).

Strategy of Microsurgery
Single Microsurgery

The single microsurgical resection of eloquent bAVMs
shares the same procedural process with the non-eloquent:
(1) performing the craniotomy to expose bAVM and relevant
vessels; (2) isolating and controlling the arterial feeders; (3)
dissecting the nidus along edges from adjacent parenchymal
and vascular structures; (4) coagulating and dissecting the
draining veins; and (5) closing and suturing up the incision.
In the microsurgery of eloquent bAVMs, steps from 2 to 4
are nuanced with the general ones, because of the adjacent
or overlapping relation between nidus and eloquent structures.
Approaches to eloquent bAVMs in deep locations, such as
the insula, basal ganglia, thalamus, and callosum, should be
planned precisely to protect the surrounding eloquent cortex
and subcortical parenchyma (86, 128, 129). The circumferential
dissection of the nidus should be limited as well, to keep the
eloquence-related structures intact. Steiger et al. (90) reported
their procedure to limit the damage to parenchyma around
in a small group of cases, which was proposed to coagulate
from draining veins to the nidus. Other microsurgical or
endovascular techniques should be considered for the protection
of eloquent structures.
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Microsurgery in Multimodality Treatments
Multimodality treatments refer to the performing of different
elementary surgical therapies in a single stage or multiple ones.
In staged-multimodality treatments, the microsurgical resection
is commonly performed as a conclusive treatment, or as an
initial treatment in a few cases as well (see section Detection

and Treatment of Residue). As a conclusive treatment, the
microsurgical resection is utilized as a salvage treatment to
residual bAVMs, that has not been completely obliterated
by other treatments (78, 130). Meanwhile, the microsurgical
resection can be performed systematically in some bAVMs,
which have been down-graded by endovascular embolization
or/and SRS from higher grades (76, 131–133). Studies on staged-
multimodality treatments suggested that the prior endovascular
or/and radiosurgical treatments could improve the microsurgical
condition with lower risks and difficulties. However, it should
be noted that the risks of prior treatments needed to be
acknowledged. The most commonly utilized paradigms are
microsurgical resection combining with prior endovascular
embolization. The prior embolization is supposed to decrease
the operative risks of subsequent microsurgery in the following
aspects: (1) aiding the elimination of feeders from deep sites
of the operative field (for example, perforating arteries and
branches of posterior cerebral arteries), and (2) making the nidus
dissection easier with clearer borders, which is important to
diffusive nidus adjacent to eloquence (79, 133, 134). Besides, it
has been proposed for neurological protection. Han et al. (91)
and Wang et al. (84) reported their experience of applying the
staged or hybrid paradigms to protect the neurological function
of bAVMs in brainstem and eloquence, respectively. In their
procedures, the nidus adjacent to eloquence had been embolized
through the prior endovascular manipulations. The subsequent
microsurgery only removed the nidus distal to the eloquence,
while leaving the embolized nidus in-situ. Another paradigm of
microsurgical resection combining with prior SRS was reported
in a few cases. The prior SRS decreases the risk of microsurgery
as well, by a different pathological process from endovascular
embolization (76, 135). It usually requires probation of 3–5
years to evaluate the effect of the prior SRS before microsurgery
(136, 137). However, the risks of prior treatment would not
be diminished by the cooperation of multimodality treatments.
Prior embolization and SRS were reported to share a similar
rate of adverse events, morbidity, and mortality with their
independent implementations (76, 79, 82, 132, 138). Most of
the suboptimal events occur in the process of endovascular
procedures, or the latency period before microsurgery.

Hybrid-modality treatment is the up-to-date paradigm, which
combines endovascular and microsurgical procedures in a single
stage without any interval (81, 139). It has been proved to be
feasible in treating bAVMs, especially the eloquent ones (80, 84).
The hybrid-modality treatment possessed the advantages
of endovascular and microsurgical manipulations, and
expanded the operative techniques. Wang et al. (140) reported
their intraoperative transvenous embolization technique to
patients with difficult arterial and venous approaches. Most
importantly, latent risks in the intervals of staged treatments
were fundamentally diminished in the hybrid-modality

treatment. Brown et al. (141) reported their experience in 19
patients who received hybrid-modality treatment, in which
neurological outcomes were similar with staged multimodality
treatment without the occurrence of intracranial hemorrhage
after embolization or microsurgery. Hybrid-modality treatment
may be a safer method of curing eloquent bAVMs radically and
effectively, but need to be further validated.

Recommendations

• Multimodality treatments with microsurgery involved are
probably recommended for the treatment of eloquent bAVMs
in high grades. Downgrading the lesion before microsurgery
can be useful to decrease operative risks and protect
neurological functions (Class IIa; Level of Evidence B).

• The staged multimodality treatment of the microsurgery
subsequent to endovascular embolization can be useful for
treating bAVMs with diffusive nidus or feeders from deep
sites of the operation field, which may reduce the risks
of intraoperative bleeding and neurological deficits of the
subsequent microsurgery (Class IIa; Level of Evidence B).

• Hybrid-modality treatment is probably recommended with
similar safety and efficiency to the staged multimodality
treatment, but with fewer risks than the latter (Class IIa; Level
of Evidence C).

Detection and Treatment of Residue
Although microsurgical resection has achieved the highest
complete obliteration rate among treatments, residual nidus can
still be detected in follow-up angiographies. The cumulative
incidence of residuals and recurrences had been reported to
be 3% for SM grade I-II and 8% for SM grade III or higher
(142, 143). The cause of residue is induced by the absence of
adjunctive tools for an angiogram or bAVM detection. Most
residues can be quickly detected through intraoperative DSA (80,
139, 144). Meanwhile, omissions might occur in intraoperative
DSA. Aboukais et al. (145) reported that intraoperative or
early postoperative angiography did not ensure the cure of
bAVMs in several pediatric cases. Residues may be caused
by vasospasm or recanalization of abnormal vessels. Delayed
angiographies, viaDSA, CTA, or MRA, were suggested in follow-
ups, especially to pediatric patients (see section Follow-Up). It
should be noticed that residual dysplastic vessels after cerebral
arteriovenous malformation resection might be confounded with
residual nidus (146). Residual dysplastic feeding vessels without
an early draining vein do not necessarily represent residue
after resection.

Intraoperative Doppler ultrasound can be used to detect the
residual nidus. Four parameters could be obtained, including
peak systolic velocity (PSV), end-diastolic velocity (EDV), mean
flow velocity (MV), and resistance index (RI). RI (defined as
the ratio of PSV to EDV) is regarded as the key parameter to
identify the residual nidus. It has been generally accepted that RI
is between 0.55 and 0.75 for the normal internal carotid artery,
and higher in branches downstream (147). Arterial vessels with
an RI lower than 0.55 should be noticed. Griffith et al. (148)
reported their RI range of arterial feeders to be 0.14–0.50. With
the enhancement of contrast, ultrasonographic angiography is
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able to help identify arterial feeders both on the surface and
deep in the tissue (149, 150). Doppler ultrasonography cannot
replace the intra/post-operative DSA. Regions of low-velocity
blood flow or areas with very small vessels (i.e., much smaller
than 0.6mm in diameter) might be missed by ultrasonography.
Hence, abnormalities such as venous angiomas on cryptic AVMs
with low-velocity blood flow or thrombosed vessels may not
be discernible in sonography. So the intraoperative ultrasound
findings should be confirmed by angiography (147).

Patients with residual and recurrent nidus after microsurgery
are still exposed to the threats of hemorrhage throughout their
lives (135, 151). Only a few case-reports demonstrated the
spontaneous thrombosis occurring in residual nidus (152, 153).
The expectant or conservative treatment of residual bAVMs has
not been widely accepted by neurovascular surgeons (152). The
residue of bAVMs is usually disposed of through microsurgery,
endovascular embolization, and SRS. A salvage microsurgical
resection could be performed in one session with the assistance
of intraoperative DSA (144, 154, 155), or another operation (146).
Neurological risks of salvage microsurgery should be considered.
SRS and endovascular embolization were proposed to be utilized
for the salvage treatment of residues adjacent to eloquence or
in a deep location (128, 156–158). Indications of endovascular
embolization and SRS should be obeyed, respectively.

Recommendations

• Intraoperative or early postoperative DSA is recommended for
detecting residual nidus (Class I; Level of Evidence B).

• Intraoperative Doppler ultrasonography is useful to primarily
detect the residual nidus (Class I; Level of Evidence B).
The complete obliteration should still be confirmed by a
subsequent DSA.

• Repeat angiographies in follow-ups within 3–5 years after
surgical resection is reasonable for detecting missed residues
or recurrence (see section Follow-Up) (Class IIa; Level of
Evidence B).

• Residual nidus after microsurgery is still exposed to the risk
of hemorrhage. Salvage surgical treatments are recommended
for the disposition of residues, including microsurgery,
endovascular embolization, and SRS (Class I; Level of Evidence
B). Subsequent SRS and endovascular embolization can
be effective in achieving complete obliterations in residues
adjacent to eloquence, following their indications, respectively
(Class IIa; Level of Evidence C).

Surgical Adjuncts
Surgical adjuncts are indispensable for intraoperative localization
and mapping of eloquent (sub-)cortical structures, including
neuro-navigation, electrical cortical stimulation with awake
craniotomy, and transcranial magnetic stimulation.

Most neuro-navigations are utilized based on structural
and functional MRI. Data reconstructions should demonstrate
the 3-dimensional information of brain, lesion, and eloquent
structures. Despite providing a wealth of information, neuro-
navigation was suggested to be ineffective in improving the
neurological outcomes of microsurgeries in a randomized
controlled trial (159). This was attributed to the different

resecting strategies of bAVMs and brain tumors. The resections
of a tumor could be stoppedwhen reaching the edge of eloquence.
By contrast, the resection of bAVMs cannot be stopped until
completely removing the nidus. The alert of neuro-navigation
hardly affects the damage to eloquence. However, neuro-
navigation is not useless in the microsurgery of bAVMs. Torne
et al. (160) reviewed the bAVMs surgically treated by Michael
Lawton and emphasized the importance of identifying the
location and border of the nidus, which could reduce the rupture
risk during operation and improve clinical outcomes. Although
neuro-navigation was proved to be ineffective in improving
neurological outcomes, it was helpful to reduce operative risks by
clearly demonstrating the localization and borders (88, 161–163).
Intraoperative three-dimensional (3D) ultrasound was usually
used as an assistance to the neuro-navigation to correct the
brain-shift induced by craniotomy (164–168).

Intraoperative direct electrical stimulation (DES) on the
cortex is regarded as the gold standard of eloquent mapping
(169). It allows a safe real-time identification and hence
preservation of essential pathways for motricity, sensibility,
language, and even memory in the treatment of brain tumor
and cerebrovascular diseases under general or local anesthesia
(awake craniotomy) (170–172). Currently, the mapping through
DES was usually performed on basis of fMRI (173, 174).
Besides the direct stimulations to the cortex, Gamble et al.
(175) revealed the value of subcortical stimulation on identifying
subcortical eloquent structures. Concluding the proposals of
current studies, the electrical cortical/subcortical stimulation
was recommended if the lesion (1) adjacent to eloquence on
fMRI (not distancing nor overlaying); (2) in large sizes and
high SM grades; (3) with diffusive nidus. Differences existed in
the application of DES between general and local anesthesia.
The DES under local anesthesia had become popular in recent
years. It was capable of mapping not only essential cortico-
subcortical areas of motricity, but also areas of sensitivity,
language, and even memory (174, 175). It had been proved
to be effective in helping identifying eloquence and preserving
neural functions (171, 176). Although DES under local anesthesia
could make awake patients without any pain or discomfort
(177, 178), the psychological effect still needed concern. By
contrast, the DES under general anesthesia was performed
earlier, usually accompanying with electrocorticography (ECoG)
and neurophysiological monitor. Its capability of eloquent
mapping was limited to motor and somatosensory areas,
in which optimal neurological outcomes could be achieved
(170, 171). The ECoG, which used accompanying DES, was
proved to be effective in identifying epileptogenic cortex for
subsequent surgical management (179, 180). Despite its high
accuracy and efficiency, DES faces a similar situation with
fMRI-based neuro-navigation. Mapping of the eloquent area
could take effect as an alarm to the neurosurgeon, but helpless
to limit the extensive excision. Besides, DES might cause
generalized seizures and result in disastrous consequences
(171). The utilization of DES remains controversial and needs
further investigation. The requirement of gross identifying
of motricity and somatosensory area can be met by a
neurophysiological monitor.
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Navigated transcranial magnetic stimulation (nTMS) is
applied to the preoperative mapping of cortical motor and
language regions in recent years. The comparison between nTMS
and DES resulted in similar accuracies (181–185). Besides, nTMS
had been proved to be superior in mapping the eloquence
to other non-invasive techniques, such as fMRI and magneto-
encephalography (185–187). Ille et al. (188) reported their
experience of utilizing nTMS to fix the mapping result of fMRI.
Kronenburg et al. (189) reported the utilization of TMS to non-
cooperative patients and achieved satisfactory results. Although
nTMS is widely applied in brain tumors, it has seldom been used
for cerebrovascular disease. The preparation and implementation
of microsurgery are different between tumors and bAVMs. More
studies are needed to validate its safe utilization to bAVMs,
especially on seizure and hemorrhage-related complications.

Recommendations

• The utilization of fMRI-guided neuro-navigation does not
improve neurological outcomes, but can be useful for locating
and delineating the lesions (Class IIa; Level of Evidence
B). Intraoperative 3D ultrasound is effective in correcting
the brain-shift induced by craniotomy (Class I; Level of
Evidence B).

• Intraoperative direct electrical stimulation (DES) is feasible
on mapping motricity eloquence under general, and other
sensibilities, language, and even memory eloquence under
general anesthesia. DES might be considered for delineating
the nidus adjunct to eloquence, or in large sizes, or with
diffusive nidus. The risks and psychological impacts of DES
are not well-established (Class IIb; Level of Evidence C).

• Neurophysiological monitor can be useful for gross mapping
of motricity and somatosensory areas (Class IIa; Level of
Evidence C).

• Electrocorticography (ECoG) is recommended for localizing
epileptogenic cortex (Class I; Level of Evidence B).

• Navigated transcranial magnetic stimulation (nTMS) has been
utilized for mapping and fixing mapping results of fMRI in the
preoperative preparation, mostly in brain tumors and seldom
in bAVMs. The risks of nTMS are not well-established (Class
IIb; Level of Evidence C).

Endovascular Neurosurgery
Endovascular embolization (EE) occludes blood flow by
delivering occlusive agents into the feeding arteries and nidus
through microcatheters (1, 190). The role of endovascular
embolization in treating bAVMs includes (1) as a therapeutic
strategy; (2) as palliative or targeted strategies; and (3) as
adjuvant management before microsurgical resection or SRS, to
minimize the risk of hemorrhage (191, 192).

Curative Embolization
Monotherapy of curative embolization was believed to be difficult
to completely eliminate bAVMs, with rates of angiographic
obliteration ranging from 13 to 96% (56, 193–195). Complete
cure was attainable for small-sized (≤3 cm), superficially located
bAVMs (194). Angioarchitectural characteristics with a single
feeding artery also achieved favorable outcomes (196). Properly

applied EE might decrease the size and grade of bAVMs without
sudden changes of pressure and reduce the risk of adjacent
arterial recruitment (106). The overall complication rate of
endovascular therapy for bAVMs was 25.0%, with an incidence
of 6.6% in permanent neurological deficits (56). The number
and diameter of feeding arteries, nidal volume, deep venous
drainage, and eloquent locationwere risk factors of embolization-
related complications (47, 54, 55). When disposing of bAVMs in
corpus callosum with complex angioarchitectures and eloquence
involved, curative embolization achieved complete obliteration
in only 40–60% of cases and hemorrhage complications occurred
in 7% of cases (197, 198).

Strategies of embolization have been discussed. Sahlein et al.
(199) proposed that the single-stage embolization reached a
lower rate of mortality and morbidity than the multi-staged
embolization. It had been demonstrated that staged embolization
was an independent risk factor for unfavorable outcomes after
embolization (200, 201). It was supposed to attribute to the
recanalization and recruitment of arterial feeders during staged
procedures (199). Even so, the staged embolization had been
used as a strategy to reduce the risk of normal perfusion
pressure breakthrough by progressively minimizing the blood
flow, particularly for medium-large bAVMs (>3 cm) (202, 203).
Previous studies had supported that the interval between each
session should be 4–6 months when applying the staged
embolotherapy (202, 203). Ma et al. (204) reported that staged
embolization was effective in treating eloquent bAVMs with
large sizes. Different paradigms of staged embolization were
proposed without a consensus. Ma et al. (204) reported their
paradigm, which achieved an obliteration rate within 60% in
the initial session, and achieved complete occlusion in 2–3
months through the following 1–2 sessions. Katsaridis et al. (202)
reported another paradigm, which proposes to embolize ≤30%
of nidus in each session. The optimal paradigm of endovascular
embolization remains to be researched.

Recommendation

• Curative embolization of small-sized (≤3 cm), superficially
located bAVMswith a single feeding artery can be useful (Class
IIa; Level of Evidence B).

• Staged embolization can be beneficial for curingmedium-large
bAVMs (>3 cm) by gradually reducing the risk of NPPB, but
the probability of recanalization remains (Class IIa; Level of
Evidence B).

• The interval between each stage and extent of embolization has
not been well-determined (Class IIb; Level of Evidence C).

Palliative Embolization
The selective embolization of high-flow feeding arteries might
postpone the progression of frequent seizures or neurological
deficits caused by venous hypertension and arterial steal
syndrome (106). A retrospective study suggested that the partial
embolization might result in complete occlusion and improve
survival rates, comparing with conservative treatment in the
long-term (205). Flores et al. (206) proposed to utilized the
palliative embolization to symptomatic bAVMs in Spetzler-
Martin grade IV or V, that are inadvisable for surgical resection
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or SRS. Although the palliative embolization might improve the
clinical manifestation of patients by changing the hemodynamics
of lesion (207, 208), it was accused of increasing the risk
of hemorrhage in large bAVMs (75). The role of palliative
embolization remains controversial.

Recommendation

• Palliative embolization remains controversial. The selective
embolization of high-flow feeding arteriesmight be considered
to postpone the progression of seizures or neurological
deficits in surgical/SRS-inadvisable bAVMs, while potentially
increasing the risk of hemorrhage (Class IIb; Level of
Evidence B).

Targeted Embolization to “Weak Point”
Targeted embolization aims at eliminating the “weak point” of
bAVMs, including intranidal or flow-related aneurysms, high-
flow arteriovenous fistulas, and venous flow obstruction, and
other anigoarchitectural features with high rupture risks (3,
101, 106, 209). Targeted embolization is proposed to perform
when definitive managements were infeasible or excessively
risky. Targeted embolization was reported to be performed to
the ruptured bAVMs in the acute phase (210), and restoration
stage (211). The effect of embolization in the management of
ruptured bAVMs has not been well-established. The targeted
embolization was supposed to reduce the incidence of bleeding
after radiosurgery (106).

Recommendation

• Targeted embolization is recommended for bAVMs with a
“weak point” when definitive treatments are infeasible or too
risky (Class I; Level of Evidence B).

Pre-microsurgical Embolization
Pre-microsurgical embolization has been used as the most
common adjunct to improve the therapeutic safety and efficiency
of bAVMs (79, 80, 199, 212). The pre-microsurgical embolization
resulted in permanent morbidity of 2.5% and a mortality of
2.0% (201, 213). The strategy was proposed to facilitate the
subsequent microsurgery in the following aspects: (1) occluding
the supply arteries and lowering the size of bAVMs, to minimize
the risk of bleeding, (2) eliminating the deep perforators that
are inaccessible for surgeries, (3) embolizing the flow-related
aneurysms (56, 82, 195, 206, 214, 215).

The prior embolization before microsurgery was proposed
to minimize the risk of NPPB by gradually reducing the blood
flow before surgery, and normalize the hemodynamics for high-
flow or large lesions (202, 216–218). Whereas, the vigilance
of the potential risks (e.g., hemorrhage, infarction, or seizures)
in-between the treatments should be considered as concerns
(219, 220). The subsequent microsurgery could be performed
consecutively after the embolization in one session, which
was known as a hybrid-modality treatment (80). It made the
manipulations of embolization more flexible, and overcame the
disadvantages and limitations when solely performed. It had
been shown that the staged paradigm increased the expenditure
of treatments (200, 221). The hybrid-modality treatment might
reduce the frequency and duration of anesthesia and operation

by a single treatment, from a health-economics perspective.
However, the optimal paradigm of preoperative embolization and
subsequent microsurgery remained unclear (82). The previous
series had performed a paradigm with an interval between each
embolization therapy for 16–42 days, and an interval before
surgery for 1–42 days (79, 212, 222, 223). Nataraj et al. (224)
supported a prompt microsurgical resection after endovascular
intervention for a lower rate of mortality and morbidity.

Recommendation

• The pre-microsurgical embolization is probably
recommended for the bAVMs with large size, or deep
perforating feeding arteries, or inaccessible locations for
surgeries, or concomitant flow-related aneurysms (Class IIa;
Level of Evidence B).

Pre-radiosurgical Embolization
The pre-radiosurgical embolization has been proposed to
decrease large bAVMs to a suitable size for the subsequent
SRS. It was particularly recommended for the lesions ≥3 cm in
diameter, or the lesions with relevant aneurysms or high-flow
fistulas. A pre-radiosurgical embolization could minimize the
risk of hemorrhage before the definitive obliteration by SRS,
especially effective for ruptured bAVMs in the posterior fossa
(1, 3, 42, 225, 226). The multimodality treatment, consisting
of prior embolization and subsequent SRS, was reported to
achieve a complete obliteration rate of more than 60% in large
bAVMs (227, 228). The efficiency of the subsequent SRS might
be improved if the volume of the residual nidus is no more
than 10 cm3 after embolization (77). The drawbacks induced
by prior embolization needed to be considered. Embolic agents
might shield the nidus from the radiation as protectants and
make the outlines obscure with subsequent targeting inaccurately
(229). Additionally, embolization might decrease the rate of
obliteration by facilitating angiogenesis (230). The recanalization
of embolized arteriesmight result in delayed recurrence (77). Due
to the limitations, this paradigm might worsen the outcome of
bAVMs (231–233).

Eloquent regions of basal ganglionic and thalamic AVMs
could be treated with embolization in conjunction with SRS.
Complete obliteration was observed in 14.3% and improved
disabling in more than 1/3 of patients (234). Also, selected
brainstem AVMs could be treated with embolization combined
SRS, while the selection criteria had yet to be determined.
Favorable outcomes were potentially comparable with general
bAVMs under precision techniques (235).

Recommendation

• Pre-radiosurgical embolization may be considered for
reducing the size of bAVMs, particularly for large lesions
(>3 cm), or occluding bAVM-related aneurysms or high-flow
fistulas, whereas the effectiveness remains uncertain (Class
IIb; Level of Evidence B).

Seizure Control
Endovascular embolization had been reported to be less effective
in controlling bAVM-induced seizures. Hyun et al. (236)
investigated 399 bAVM patients with long-term follow-up after
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embolization, and found out that only half of the patients
achieved seizure-free status after embolization, compared with
78 and 66% in the surgical and SRS groups, respectively.
The duration of seizure-free status was 8.1 months in the
embolization group and 20.5 months in the SRS group. A meta-
analysis demonstrated that embolization resulted in the highest
morbidity of new-onset seizures (39.4%), compared with other
treatments (111).

Recommendation

• Embolization is not indicated for seizure control (Class III;
Level of Evidence A).

Embolic Agents
Varieties of embolic agents are available in the endovascular
treatment of bAVMs, consisting of adhesive, non-adhesive, and
solid ones.

The adhesive embolic agents include N-butyl 2-cyanoacrylate
(NBCA) and NBCA metacryloxysulfolane (NBCA-MS). Both
NBCA and NBCA-MS have been proved to be efficient and safe
in treating bAVMs with sophisticated endovascular skills (237–
239). Compared with NBCA, the main advantage of NBCA-MS
has a longer polymerization time (NBCA vs. NBCA-MS = 15–
40 s vs. 60–90 s), which provides a sufficient and precious time
window for its diffusion in bAVMs (240).

The non-adhesive embolic agents mainly include Ethylene
vinyl alcohol (EVOH) and ethylene vinyl copolymer (EVAL).
Comparing with NBCA, EVOH achieved indifferent results in
its safety validations (241, 242), and was proved to be higher
efficiency in occluding arterial pedicles (221). The comparative
study on EVAL has not been widely conducted. Although the
non-adhesive ones have better performance in endovascular
embolization, both EVOH and EVAL have to be used accompany
with dimethyl sulfoxide (DMSO), the latter of which might
induce a series of side effects due to its vascular toxicity (243).

The success in embolization relies on the appropriate choice
of embolic agent. the polymerization speed of NBCA could
be reduced by adding lipiodol. NBCA is usually used in
a concentration of 16–50%. Higher concentration results in
higher polymerization speed. Commercially available EVOH is
premixed in different concentrations, including 6 and 8%. Higher
concentration results in higher polymerization speed. Choo et al.
(244) reported their experience of using EVOH and NBCA in
high concentration and coil to an embolize dural arteriovenous
fistula. EVOH embolization was proved superior to NBCA and
coil embolization in completely obliterating DAVFs.

Recommendation

• Non-adhesive embolic agents are probably recommended to
the adhesive ones for the complete embolization of bAVMs
(Class IIa, Level of Evidence C).

• For bAVMs with high flow capacity, a non-adhesive embolic
agent in high concentration is probably recommended (Class
IIa, Level of Evidence C).

Stereotactic Radiosurgery
Stereotactic radiosurgery (SRS) has been widely accepted as an
effective treatment for patients with small bAVMs, especially

for those with deep location or eloquence involved (44, 245,
246). SRS leads to proliferation of endothelial cells, progressive,
concentric vessel wall thickening over years, and eventually
endoluminal occlusion of the bAVM nidus (247). Obliteration
of the bAVM is the goal for SRS. The disadvantage of SRS
compared with microsurgery or embolization was the latency
interval between treatment and obliteration, which differs from
6 months to several years (135, 248). Patients were remained at
the risk of hemorrhage and delayed presentation of procedural
complications during the latency interval. The annual risk of
post-SRS hemorrhage was reported as 1.1% (249). Actuarial
obliteration rates after SRS were related to multiple independent
variables, and generally ranged from 27 to 62% within 3–10 years
of treatment according to a multicenter retrospective cohort
(248). The Spetzler-Martin grading scale was the most commonly
used system for stratifying bAVMs, there were some grading
scales used to predict SRS outcomes for bAVMs such as VRAS
and RBAS (44, 46).

Small Size
Multiple studies were indicating that SRS appeared to be best
suited for small volume bAVMs, which were <10 cm3 in volume
or <3 cm in its maximum diameter (44, 231, 250–252). However,
most of these studies were retrospective single-centered cohorts.
Graffeo et al. (253) systematically reviewed eight studies with
1,102 bAVMs involved, and proposed that SRS appeared to be
a safe, effective treatment for bAVMs in Spetzler-Martin grade II
and might be considered a front-line treatment, particularly for
lesions in deep or eloquent locations. A cohort study on SRS with
363 basal ganglia or thalamic bAVMs suggested its preference
for the majority of basal ganglia and thalamic lesions. Another
cohort study with 891 bAVMs (eloquence involved in 89.8%) in
Spetzler-Martin grade III, suggested that the lesion with small
sizes (maximum diameter <3 cm) had the best outcomes after
single-staged SRS, even with critical structures involved (229).

Recommendation

• SRS can be effective in treating small-sized (≤3 cm) bAVMs
in deep eloquent areas, including those located in the basal
ganglia, thalamus, corpus callosum cerebellum, and brainstem
(Class IIa; Level of Evidence B).

Medium and Large Size
The medium and large-sized bAVMs referred to those with
a maximum diameter of 3–6 and ≥6 cm, respectively. Those
lesions usually belonged to Spetzler-Martin grade III–V.

The traditional paradigm of single-session radiosurgery was
not usually used for bAVMs larger than 3 cm in diameter,
because of its low total obliteration rate (254). In a retrospective
multi-centered study, 233 bAVMs in Spetzler-Martin grade IV
(94.4%) and V (5.6%) were treated with single-session SRS
(229). A limited role of single-session SRS was suggested in the
management of high-grade (IV–V) bAVMs and particularly in
the ruptured ones (255). The benefit of SRS for medium-size
bAVMs in Spetzler-Martin grade III (i.e., 3 cm < those < 6 cm
in maximum diameter) was also less evident.
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Meanwhile, the bAVMs in Spetzler-Martin grade IV–V were
usually with larger volume, more complex angioarchitectures,
and frequently located in critical locations. There was no
consensus on the optimal management of these high-grade
bAVMs, SRS was proposed to be one of the treatments that
could be utilized (72, 255). Staged SRS was optional for large
bAVMs, but usually utilized in multimodality treatments with
mixed results (76). The therapeutic paradigm could be staged
by the dosage of radiation and volume of the lesion. A dose-
staged SRS treated the entire volume with a repeated low-dosage
SRS; and the volume-staged SRS provided a sufficient therapeutic
dosage to the targeted volumes as a part of the lesion (256). A
systematic review suggested that the volume-staged SRS could
achieve a higher obliteration rate and similar complication rate
compared with the dose-staged one in the treatment of bAVMs
in large volume (>10 cm3) (257).

Recommendation

• Single-session SRS is not recommended for patients with
large-sized (>3 cm) bAVMs, especially for those which are
ruptured (Class III; Level of Evidence B).

• Staged SRS might be considered for treating large bAVMs,
however, the effectiveness of staged SRS is unclear (Class IIb;
Level of Evidence C).

• Volume-staged SRS is probably recommended in preference
to the dose-staged treatment (Class IIa; Level of Evidence B).

SRS After Endovascular Embolization
It had been reported that the prior embolization of bAVMs
would lower the obliteration rates of SRS (231, 249, 255). The
prior embolization was proposed to promote the angiogenesis
of bAVMs, which might increase the radio-resistance of the
lesion and decrease its obliteration rate (258). However, the
multimodality treatment of SRS plus prior embolization had
been proposed to benefit outcomes for high-grade bAVMs (259).
The timing of SRS after embolization had not been determined,
which could range from days to years (3 months in median)
(225, 260). Referring to the stereotactic radiosurgery guideline
for bAVMs, several weeks of latency after the prior embolization
was considered beneficial to reduce the risk of post-radiosurgical
complications (261).

Recommendation

• The SRS subsequently to endovascular embolization can
be generally beneficial to high-grade bAVMs, though the
obliteration rates are lower in embolized lesions (Class IIa;
Level of Evidence C).

Associated Aneurysm
The presence of an untreated bAVM-associated aneurysm
was proposed to be a strong predictor for post-SRS
hemorrhage (229, 262). AVM-associated aneurysms
should be obliterated via microsurgery or endovascular
surgery to reduce the hemorrhage risk during the latency
interval (248).

Recommendation

• It is recommended to treat bAVM-associated aneurysms
before SRS to reduce the risk of post-SRS hemorrhage (Class
I; Level of Evidence B).

Multimodality Treatment
Multimodality treatments of bAVMs included different
combinations of mono-therapeutic elements, such as
microsurgery, endovascular embolization, and SRS. Varieties
of multimodality modes had been developed to reduce the
postoperative morbidity and mortality of bAVMs. Most of
them were utilized for the treatment of high-grade bAVMs,
which were difficult to cure by any monotherapy, or to exceed
the indications of it (76, 78, 83, 158, 263). It could be applied
to bAVMs in low grades as well, for the specific purpose of
protecting neurological functions and decreasing intraoperative
risks (84, 132, 133). However, no extra benefit had been observed
in the low-grade lesions (131). The therapeutic modes and
strategies of multimodality treatments have been interpreted in
relevant sections above.

Recommendation

• Multimodality treatments are reasonable for the treatment
of high-grade bAVMs, which are difficult to cure by any
monotherapy, or to exceed the indications of it (Class IIa; Level
of Evidence C).

Conservative Treatment
Current conservative treatments cannot promote the obliteration
of bAVMs, however, they were preferred reluctantly under a
few certain conditions, especially for those located in critical
locations. In a prospective study with 48 deep located bAVMs
(in basal ganglia, thalamus, insula, etc.) the outcomes of 12-
year follow-up indicated that conservative treatments resulted
in better prognosis in unruptured bilateral thalamic bAVMs
of Spetzler-Martin grade V (86). Another research by Potts
et al. (223) also supported the conservative treatment to the
unruptured thalamic bAVMs. For asymptomatic large (>6 cm)
brain stem AVMs, Thines et al. (264) suggested that the surgical
intervention would increase the risk of neurological deterioration
by 16-fold at final follow-ups. Spetzler and Martin (51) supposed
that the large diffusive bAVMs dispersing through critical areas
were inappropriate for microsurgery alone.

Conservative treatments were proposed to be optimal in
the management of unruptured eloquent bAVMs. ARUBA trial
was the first randomized controlled trial focusing on these
issues. Two-hundred and twenty-six adult patients (18 years or
older) were recruited during 2007–2013 and randomly allocated
to medical management alone (n = 110) or interventional
therapy (n = 116) including resection, embolization, SRS, and
multimodal approaches (97). The published results of ARUBA
suggested that medical management resulted in lower risks of
stroke or death in the 33 months of follow-up than interventional
management (10.1 vs. 30.7%) in the patients with mRS ≤ 1, or
bAVMs lower than Spetzler-Martin Grade IV (62% of ARUBA
cases were in grade≤ II), or bAVM sized<60mm (62% of lesions
in ARUBA sized <30mm). It was halted because the interim
results showed the superiority of themedical management group.
It seemed that the conclusion of ARUBA strongly supported
the conservative management to eloquent bAVMs, however, it
was argued for its limitations. ARUBA trial was criticized for
its low enrollment rate, insufficient sample size and follow-
ups, high interventional hemorrhage rate, and lack of treatment
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stratification (265, 266). The study initially estimated that 800
patients would be selected based on statistical analysis. Due to the
difficulty of enrollment, 223 cases were included in the analysis
which affected the statistical results. The insufficient duration of
follow-upmight also omit the hemorrhagic risks in long term and
over-amplified the short-term complications of the interventions
(267). Studies of ARUBA-eligible patients had reported more
favorable results and substantially less morbidity, compared
to the outcomes of ARUBA (268–270). In the retrospective
study of 142 ARUBA-eligible patients treated with embolization,
surgery, and/or proton beam radiosurgery during 5 years of
follow-up, the risk of stroke, death, and progressive symptoms
are less in the intervention group. For those younger patients,
conservative management may be inappropriate due to the high
accumulative risk of hemorrhage, considering that the annual
risk of hemorrhage may be as low as 1% or as high as 33%.

Anti-epilepsy drugs (AEDs) are the essential management for
patients with bAVM-related epilepsies. Monotherapy of AEDs
was taken by 57% of bAVM patients with epilepsy presentation.
However, Josephson et al. (110) reported that AEDs had limited
effect on reducing the seizure risk in patients with ruptured
temporal bAVMs. If anticonvulsant therapy failed to control
seizures, surgical management might be pursued (271).

No specific medicine has been applied for the treatment
of bAVMs. Therapeutic strategies like anti-angiogenesis drugs,
immunomodulatory drugs, and anti-inflammatory drugs which
aim at preventing hemorrhage are still in the experimental stage
(272). Headache occurred in ∼5–14% of patients with bAVMs,
and it could be unilateral or bilateral concurrent with migrainous
features. No validated therapy has been applied to release the
headache (273, 274).

Recommendations

• Conservative managements are reasonable for large-sized
(>6 cm) unraptured bAVMs of adult patients concurrent with
one of the following conditions: (1) bilateral thalamic bAVMs
with deep venous drainage that are deemed inoperable, (2)
asymptomatic patients with unruptured bAVMs involving
brain stem parenchyma, or (3) diffusive bAVMs dispersed
through eloquent areas (Class IIa; Level of Evidence C).

• The effectiveness of conservative management on ARUBA-
eligible patients is uncertain, due to the limitations and
disputed conclusions of the ARUBA trial (Class IIb; Level of
Evidence B).

• The monotherapy of AEDs can be useful to control
the bAVM-related epileptic seizure diagnosed by an
electroencephalograph (Class IIa; Level of Evidence C).
The usefulness of prophylactic use of AEDs is uncertain (Class
IIb; Level of Evidence C).

Follow-Up
Both neurological and neuroimaging evaluations should be
involved in the follow-up of eloquent bAVMs.

Neurological evaluations should be subjectively and
objectively conducted. Subjective neurological evaluations,
such as the most commonly used modified Rankin Scale (mRS),
Glasgow Outcome Scale (GOS), and Karnofsky Performance
Scale (KPS), could reflect the QoL of patients. Meanwhile,

Objective evaluations were necessary for directing subsequent
treatments or rehabilitations, and for outcome assessment.
Neurological physical examination (PE) should be performed
in the face-to-face follow-ups. Different neurological functions
should be specifically noticed for the lesions in different
localizations, such as cognitive and orientating functions for
frontal lesions, linguistic functions for left perisylvian fissure
lesions, the visual field for occipital lesions, fine and gross motor
functions for precentral gyrus and supplementary motor area,
and coordinating and fine motor functions for cerebellar lesions.
Results of neurological PE should be described in detail in
medical records for dynamic evaluations. A reasonably accurate
NIHSS could be reconstructed from a well-documented medical
record for trial-usage (275).

Feasible neuroimaging evaluations include digital subtraction
angiography (DSA), computed tomographic angiography (CTA),
and magnetic resonance image (MRI) related scans (276–278).
Neuroimaging evaluations were supposed to play critical roles in
the detection of bAVMs, including their residue and recurrence
(279). However, the optimal frequency and modality have not
been well-defined.

The follow-up to untreated bAVMs aims at predicting their
hemorrhagic risks by discovering risk factors. The frequency of
follow-up for untreated bAVMs verifies with relevant factors,
but had not been defined yet. Brain AVMs with the following
features had higher (re-)hemorrhagic risks than the others:
(1) primary hemorrhagic presentation, (2) in deep locations,
such as insular, thalamus, basal ganglia, corpus callosum, brain
stem, or cerebellum; or (3) exclusive deep venous drainage
(95, 99, 103). The early identification of these features might
influence the therapeutic strategy and prevent the potential
hemorrhage. However, the impacts of gender, age, and nidal
size remain controversial. In the bAVMs with a hemorrhagic
presentation, the re-hemorrhagic risk changes along with time.
Yamada et al. (99) proposed to perform follow-up every 3
or 6 months in their study and report the changes of risks.
In the first year after the initial hemorrhage, the annual
hemorrhagic risk was reported to be 15.42% for a subsequent
hemorrhage. In the subsequent 4 years, the annual risk decreased
to 5.32%. After more than 5 years, the annual risk further
decreased to 1.72% per year. Meanwhile, the hemorrhagic
risks remained unchanged at lower rates. The variation of (re-
)hemorrhagic risks indicates different frequencies of follow-
up. For the bAVMs without any hemorrhagic presentation,
follow-ups should be performed annually with neuroimaging
evaluations. For the patients with any risk factors of (re-
)hemorrhage, neuroimaging follow-ups should be performed
every 6 months. For the bAVMs which have ruptured within
1 year, neuroimaging follow-up should be considered every
3 months.

The follow-up to postoperative patients aims at timely
detection of the residue or recurrence, and prevention of
potential intracranial hemorrhage. The etiology of recurrence is
not clear yet. Several mechanisms have been proposed to explain
the pathological process of recurrence. The recurrence of bAVMs
was mostly reported in studies on pediatric bAVMs (280, 281),
and a few adult cases (138). The earliest recurrence of bAVMs
had been detected in 3 months after the operation (282), and
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the latest in 17 years (276). Studies suggested DSA be more
sensitive in detecting residue and recurrences (278). DSA was
recommended at 1, 3, 5 years after treatment and every 5 years
thereafter (283). By contrast, MRI might miss subtle bAVMs
(277). MRI had been demonstrated to have 100% specificity,
80% sensitivity, and 91% negative predictive value for the
identification of obliteration compared with angiography (284).
Therefore, MRI was commonly used in the preliminary screening
of recurrence followed by DSA performed on suggestive cases
(281, 285–287), or in the patients who refused to receive DSA
as an alternative. Computed tomographic angiography (CTA)
is another minimally invasive method to detect postoperative
recurrence or residue of bAVMs (283). The efficacy of CTA
and MRA on detecting residual and recurrent bAVMs has been
rarely compared. Giesel et al. (288) reported their results on
19 postoperative cases, which suggested that CTA was more
sensitive in the detection of the residual bAVMs.

Functional MRI is seldom utilized in follow-up. A
few descriptive studies reported the reorganization of
language or motor cortex in adjacent or symmetric
areas in postoperative patients (114, 289–291). However,
the hypothesis of postoperative eloquent plasticity or
reorganization remains controversial. The studies by
Deng et al. (292, 293) revealed the existence of eloquence
reorganization was before the intervention, which might
weaken the meaning of fMRI follow-up. Besides, the
methodological limitations of fMRI restrict the dependability
of its results. The effect of fMRI in follow-up remains to be
further investigated.

Recommendations

• Subjective neurological evaluations, such as mRS, GOS, and
KPS, can be useful for the assessments of QoL (Class IIa; Level
of Evidence B). Objective neurological evaluations by detailed
neurological PE or NIHSS are recommended in face-to-face
follow-ups, for specific evaluation of neurological outcomes
(Class I; Level of Evidence B).

• Neuroimaging follow-ups are recommended for detecting
bAVMs (residue and recurrence included) and preventing its
rupture (Class I; Level of Evidence A).

• DSA is effective in detecting residue or recurrence and
evaluating obliteration rates (Class I; Level of Evidence B).

• The angiographies of computed tomography and magnetic
resonance can be useful as a preliminary screening method
with following DSA to suggestive cases, or as an alternative to
the patients refusing DSA (Class IIa; Level of Evidence B). It
is reasonable to choose CTA over MRA in patients tolerant to
X-rays (Class IIa; Level of Evidence C).

• For untreated bAVMs (conservative treatment included),
neuroimaging follow-up is recommended annually for those
without any hemorrhagic risk factors, in every 6 months for
those with any (re-)hemorrhagic risk factors, and in every 3
months for those ruptured within 1 year (Class I; Level of
Evidence C).

• For the postoperative patients, neuroimaging follow-ups
should be performed as early as 3 months after treatment,
and are recommended to be performed at 1, 3, 5 years

after treatment and every 5 years thereafter (Class I; Level of
Evidence B).

Rehabilitation
Knowledge of the natural history of recovery pattern and
prognosis for residual disability and functioning are limited. No
specific rehabilitation strategy has been proposed to recover the
neural deficits induced by eloquent bAVMs or the operation
on them. Similar rehabilitation services are being performed on
patients with neural deficits induced by intracranial hemorrhage,
ischemic stroke, and operation. Specific rehabilitation strategies
remain to be studied.

Future Considerations
At present, neuroscientists have strived to investigate the
comprehensive human brain network at the micro-, meso-,
and macro-scale. Brain functional atlas based on resting-state
magnetic resonance imaging (rs-fMRI) and task functional
magnetic resonance imaging together with brain structural
atlas would play a significant role in the understanding of brain
functional connectivity and its dynamic behavior (294, 295).
Meanwhile, with the development of the brain mapping
technologies such as functional MRI, electrocorticogram
(ECoG), transcranial magnetic stimulation (TMS), and positron
emission tomography (PET), more brain functional areas and
important brain network nodes or hubs would be recognized
(296). The future brain functional protection would be developed
toward the protection of more elaboratively neurological and
cognitive function. Moreover, the development of technologies of
brain-computer interfaces, such as the neural dust, and the study
of the neural stem cells shed light on the neural rehabilitation
of patients suffering from postoperative neurological deficits
(297, 298).

Minimally invasive and non-invasive is proposed to be the
development direction of eloquent bAVMs.

The standardized paradigms of endovascular embolization
are urgent to direct clinical practice of endovascular surgeries,
especially for the palliative and pre-radiosurgical embolization.
Defects of endovascular material still limit the effect of
embolization, including the poor controllability of the embolic
agent and maneuverability of instruments, which induce a
low rate of complete obliteration. The development of both
endovascular materials [e.g., coils, balloons, polyvinyl alcohol
particles, and n-Butyl Cyanoacrylate (n-BCA), and Onyx] and
techniques (e.g., pressure cooker technique, dual-lumen balloon
catheter technique) would promote its therapeutic effect to the
final goal of complete cure (194, 299–301).

Optimization of radiosurgical planning is important to
improve the total obliteration rate while maintaining reasonable
safety. For example, A recent study proposed that in addition
to keeping a minimal margin dose of 17Gy, increasing the
percentage of the bAVM volume that receives at least 20Gy
treated in two stages could improve the outcome for large-
volume bAVMs (302). What is more, a novel deep learning-
based method to automatically segment the bAVM volume may
be helpful for radiosurgical planning (303). Further study for
improving the treatment planning system of SRS is required.
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The indication of surgical treatments is critically concerning,
which has been simplified to ruptured and unruptured since
the publishing of the ARUBA trial and its controversial results.
For ruptured bAVMs, surgical treatments have never been
disputed. The surgical management of ruptured bAVMs obeys
the indications and contraindications proposed over the past
few decades. A thorough investigation of literature ensures
the applicability of recommendations in these guidelines to
the ruptured bAVMs. For unruptured bAVMs, conservative
treatment was proposed to result in significantly lower
risks of death or stroke and better outcomes than surgical
treatments (97, 304). ARUBA is the first randomized trial of
unruptured bAVMs to better understand their natural history
and associated treatment risks, however, it is controversial
for its results. The limitations of its methodological design,
trial implementation, and data interpretation were widely
questioned (270, 305, 306). Studies revealed better or non-
inferior results on morbidity and mortality in ARUBA-eligible
patients who received microsurgical, endovascular, radiosurgical,
and multimodality treatment, which is opposite to the results
of ARUBA (266, 269, 307, 308). Thus, surgical treatments
are feasible to unruptured bAVMs. Given the controversy, the
indications of surgical management on unruptured bAVMs
remain to be further clarified with future studies. Besides,
the RCT study on brain AVMs is insufficient to date and
urgently needed.

Although conservative treatment remains controversial,
medication therapies are thought to be more promising
than expectant therapy. Medication therapies take effects
on pathophysiological processes of bAVMs to disturb
their development, growth, and rupture (309). Three
pathophysiological pathways have received the most in-
depth investigations, including the overexpression of vascular
endothelial growth factor (VEGF), impairment of Blood-brain
barrier, and excessive activity of matrix metalloproteinases
(MMPs). Bevacizumab, a humanized monoclonal anti-VEGF
antibody which might decrease the hemorrhagic risk of
unruptured bAVMs (310–316), and shorten the latency
period of stereotactic radiosurgery (317, 318). Thalidomide
and Lenalidomide, the immunomodulators acting on BBB
impairments might reduce micro-hemorrhage in perinidual area
(313, 319–321). Tetracyclines, the antibiotic targeting the MMPs

pathway, might non-selectively to increase vascular stability by
inhibit MMP-9 overexpression and decrease risks of spontaneous
bleeding (322). Medications aiming at other pathways are
under investigation in the early-stage as well, including MEK
inhibitors engaged in KRAS mutations (323), angiotensins II
receptor antagonist the regulator of BMP signaling pathway
(324), and Notch inhibitors involved in its signaling pathway
(325). Meanwhile, medications are considered effective on
neuroprotection, including Glibenclamide, neuroglobin, and
NA-1 (Tat-NR2B9c) (326–328). However, the side effects
of targeted medications have to be considered (329, 330).
Targeted medications for bAVM management remain to be
further investigated.
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