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The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic

forms of epilepsy are 2.5–4Hz spike and wave discharges (SWDs) originating from

abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are

generally associated with sudden and brief non-convulsive epileptic events mostly

generating impairment of consciousness and correlating with attention and learning

as well as cognitive deficits. To date, SWDs are known to arise from locally restricted

imbalances of excitation and inhibition in the deep layers of the primary somatosensory

cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT)

and the somatosensory thalamic nuclei that project back to the cortex, leading to the

typical generalized spike and wave oscillations. Given their shared anatomical basis,

SWDs have been originally considered the pathological transition of 11–16Hz bursts

of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid

Eye Movement (NREM) sleep, but more recent research revealed fundamental functional

differences between sleep spindles and SWDs, suggesting the latter could be more

closely related to the slow (<1Hz) oscillations alternating active (Up) and silent (Down)

cortical activity and concomitantly occurring during NREM. Indeed, several lines of

evidence support the fact that SWDs impair sleep architecture as well as sleep/wake

cycles and sleep pressure, which, in turn, affect seizure circadian frequency and

distribution. Given the accumulating evidence on the role of astroglia in the field of

epilepsy in the modulation of excitation and inhibition in the brain as well as on the

development of aberrant synchronous network activity, we aim at pointing at putative

contributions of astrocytes to the physiology of slow-wave sleep and to the pathology

of SWDs. Particularly, we will address the astroglial functions known to be involved in

the control of network excitability and synchronicity and so far mainly addressed in the

context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance

and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii)

gap junction mechanical and functional coupling as well as hemichannel function, (iv)

gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive

astrogliosis and cytokine release.

Keywords: astrocytes, sleep/wake cycle, NREM, network plasticity, cortico-thalamo-cortical oscillations, spike

and wave discharges, sleep
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INTRODUCTION

Epilepsy is a highly heterogeneous neurological condition
characterized by enduring predisposition to unpredictable
pathological discharge of rhythmic activity in the brain networks,
which is commonly referred as seizure activity (1). In virtue
of the severity and nature of the pathological alteration
(abnormal, excessive, or excessively synchronous activation)
as well as the cellular and anatomical composition of the
affected brain networks, seizures can cause changes in the
level of consciousness, behavior, memory, and emotional status.
Although the etiology of epileptiform activity is still unknown in
half of the cases, understanding the pathological alteration at the
basis of the epileptic phenotype may not only be of fundamental
therapeutical importance but also provide further insights into
the functioning of the affected neural networks in the physiology
of the healthy brain. The identification of the molecular and
cellular mechanisms underlying physiological oscillations is
critical for a full comprehension of their relationship to the
respective pathological activity. In this regard, an exceptional case
of study is the cortico-thalamo-cortical network, physiologically
engaged during sleep and pathologically altered in the context of
non-motor (absence) seizures (2).

Absence seizures are transient non-convulsive generalized
epileptic events and are also referred as petit mal seizures (2, 3).
Phenotypically, absence seizures are coupled with sudden and
brief impairment of consciousness and lack of responsiveness to
external stimuli as well as variable secondary clinical symptoms
(e.g., automatisms, atonic, and tonic muscular components
etc.) (4, 5). Absence seizures are the sole clinical symptom
of childhood absence epilepsy (CAE) but are also associated
with several other idiopathic generalized epilepsies (4, 6–11).
Although CAE has up to 70% remission rate (7, 12), the gold
standardmonotherapy, based on ethosuximide and valproic acid,
is still ineffective in 30% of the cases (13). Moreover, clinical
conditions displaying absence seizures are often associated with
severe neuropsychiatric comorbid conditions such as impaired
attention, learning, memory and cognition, which are often
left unaltered or even worsened by common antiepileptic
drugs (14–17).

Although absence seizures display inter- and intraindividual
variability (17, 18), they exhibit generalized bilateral 2.5–
4Hz spike and wave discharges (SWDs) with no aura or
post-ictal depression (Figures 1A,B) (4, 27–29). It is widely
accepted that the sharp spike and the slow wave component
of SWDs are functionally coupled and correspond to a state of
neuronal excitation and silence in the cortico-thalamo-cortical
network, respectively (30). Blood oxygenation level-dependent
(BOLD) functional magnetic resonance imaging (fMRI) studies
in humans consistently showed cortical network engagement
in correspondence of and even preceding the appearance
of SWDs in electrographic traces as well as an increased
interictal synchrony in the sensorimotor cortex (Figure 1C)
(22, 23, 31–36). Most advancements on the understanding of
the cellular and synaptic mechanisms underlying SWDs derive
from the extensive use of genetic animal models, particularly
the genetic absence epilepsy rats from Strasbourg (GAERS)

and Wistar-Albino-Glaxo rats from Rijswijk (WAG/Rij) (20,
37–42) as well as many monogenic mouse mutants (43–45).
Although sharing most electrographic and behavioral hallmarks
of absence seizures, animal models are characterized by higher
SWD frequencies (5–11Hz) (Figure 1B). Ex vivo multi-site
local field potential studies identified the peri-oral primary
somatosensory cortex as initiation site of absence seizures
in WAG/Rij (46) and GAERS rats (47–50). Notably, this
has been proven wrong for the acute pharmacological γ-
hydroxybutyric acid (GHB) model (51–54) in mice, where
the prefrontal cortex was suggested as the initiation site of
SWDs (55). With this in mind and considering the many
areas contributing to the cortical pre-ictal BOLD changes of
absence seizures, one can probably not identify a unique
canonical focal onset or initiation site for absence seizures.
Instead, the denomination cortical initiation network has been
recently proposed (17), thereby settling the long-standing
controversy about the SWDs initiation site (56–59). However,
the existence of a cortical initiation network does not imply that
manipulation of the sole thalamic components of the cortico-
thalamo-cortical network is not sufficient to induce SWDs,
as it is indeed the case (60–62), or that the wide thalamo-
cortical innervation is not crucial for SWDs generalization, as
suggested by the existence of subclinical SWDs restricted to
the cortical network (48). In particular, the thalamic posterior
nucleus plays a crucial role in the generalization of SWDs
(61, 63–66). Till recently, ex vivo studies performed in different
mammalian models identified the hyperexcitability and T-type
Ca2+ channel-mediated burst activity of glutamatergic thalamo-
cortical neurons and GABAergic neurons from the thalamic
reticular nucleus (or nucleus reticularis thalami, NRT) as the
rhythmogenic cortico-thalamo-cortical network mechanism of
SWDs (Figures 1D,E) (24, 41, 67–71). Nevertheless, recent in
vivo studies performed in rodents showed that only a small
fraction of thalamo-cortical and cortico-thalamic neurons are
synchronously active at each SWD cycle and the cellular
composition of this neuronal subpopulation changes between
subsequent cycles, thus excluding the existence of distinctive
neuronal subpopulations (Figures 1F,G) (25, 26). This explains
why, with SWD progression, the activities of the cortico-
thalamic and thalamo-cortical neurons undergo a phase-
shift in time (46) since different neuronal subpopulations
participate in this excitatory feedback-loop with slightly different
kinetics. Moreover, this progressive phase-shift between different
subpopulations active at the same time accounts for the
overlapping average electrical activity in the cortico-thalamic,
thalamo-cortical, and NRT neurons within any SWD cycle.
Moreover, although interictal T-type Ca2+ channel burst activity
in the thalamo-cortical neurons increases right before SWD
onset, overall in vivo ictal thalamic activity decreases and only
cortical and NRT T-type channels are essentials for SWDs (25).
Interestingly, all NRT neurons fire within each SWD cycle, even
though a fraction of those neurons fires relatively asynchronous
tonic spikes rather than T-type Ca2+ channel-mediated bursts
in phase with the SWDs (Figures 1E,F) (25). The enhanced
tonic inhibition of thalamo-cortical neurons as well as the
increased thalamic GABA level are key aspects of absence seizures
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FIGURE 1 | Anatomical and electrophysiological characterization of absence seizures. (A) Human electroencephalographical recording (EEG) displaying typical 3Hz

spike-and-wave discharges (SWDs). (B) 3Hz SWDs associated with Childhood Absence Epilepsy (top trace, 8-year-old boy) and 8Hz SWDs recorded in an adult

WAG/Rij rat (bottom trace). (C) Blood Oxygenation Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) changes associated with absence

seizures before (FP, frontal polar; CG, cingulate; LO, lateral occipital; PC, precuneus; LP, lateral parietal cortex) and after (LF, lateral frontal; LT, lateral temporal cortex)

seizure onset (top) and brain network engagement analysis around SWDs events (bottom). (D) Anatomical organization of the cortico-thalamo-cortical network in

C57BL/6N mice. Myelin Basic Protein (MBP) immunostaining indicates the axonal fiber tracts connecting the network (own data; mouse monoclonal MBP antibody,

BioLegend, AB_2564741, Cat. No. 808401, 1:500). Cortico-thalamic excitatory neurons from cortical layers V and VI (red) project to both NRT and thalamus;

thalamo-cortical excitatory neurons (blue) project back to cortical layer IV and NRT; NRT GABAergic neurons (green) inhibit the thalamic nuclei. I-VI, cortical layers; GP,

globus pallidus; Hc, hippocampus; ic, internal capsule; NRT, nucleus reticularis thalami; SSp-ctx, primary somatosensory cortex; Str, striatum; VP, ventral posterior

thalamic nuclei. (E) Glutamatergic thalamo-cortical neurons (TC) as well as GABAergic NRT neurons display T-type Ca2+ channel-mediated burst firing during SWDs

(left, ex vivo recording from ferret thalamic slices). (F) Spike-time raster plots of two representative NRT neurons (NRT1, top trace; NRT2, bottom trace) and 10 TC

neurons with time-matched EEG in GAERS rats. The overall TC activity decreases during SWDs and only a small portion of TC neurons fire synchronously. (G)

2-Photon laser scanning microscopy of neuronal cortical Ca2+ activity in stargazer mice during absence seizures. Heatmap of neuronal Ca2+ activity shows that only

a subpopulation of neurons displays ictal synchronous firing. Modified from (A), (19); (B), (20, 21); (C), (22, 23); (E), (24, 25); (F), (25); (G), (26).

(25, 72–78). Moreover, the fact that SWDs can be induced
by the impairment of the cortico-thalamic glutamate release
due to deletion of P/Q-type Ca2+ channels in the projecting

cortical neurons from layer VI could suggest that a balance shift
toward GABAergic inhibition more than an absolute increase
of GABA levels is the key mechanism of SWD generalization
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(79). Additionally, the decreased glutamate release could lead
to reduced activity of cortical interneurons, thus contributing to
cortical hyperexcitability.

ASTROCYTES CONTRIBUTE TO
NETWORK PRIMING AND
SYNCHRONIZATION AS WELL AS SWD
INDUCTION, PROPAGATION, AND
TERMINATION

After more than three decades of accumulating evidence,
nowadays it is widely established that astroglia constitute a
ubiquitous non-neuronal communication system in the brain
involved in virtually every physiological and pathological
scenario of the central nervous system (80–82). Not only
do they support synapses from a mechanical, metabolical
as well as functional point of view, but they also participate
in synaptic transmission and plasticity, neural network
excitability and balance between excitation and inhibition (E/I)
as active information integrators and processors (83–86). The
contribution of the astroglial network to the pathophysiology
of epilepsy encompasses a plethora of different molecular
mechanisms which currently represent one of the most fruitful
research topics in neuroscience (87–96). Pathological priming
mechanisms of the astroglial network ultimately involve either
E/I imbalance or enhanced network synchronization (or
both simultaneously). Alternatively, astrocytes may influence
spatial and temporal propagation of seizures, thus playing
a key role in the phenotypical outcome of seizures and
their severity and therefore representing a promising target
for the development of new non-neurocentric drugs. Most
of the recent evidence focuses on astroglial contribution
to convulsive epileptic activity. Nevertheless, we discuss
in the following the putative involvement of astrocytes in
network priming as well as seizure induction and propagation
which could have a role in pathological epileptic scenarios
including SWDs, as well. We focus on the evidence that links
to observations coming from the clinics as well as genetic
and pharmacological models of SWDs, aiming to point at
specific topics which may be worth further research in the field
of SWDs.

The Astroglial Network Controls
Extracellular Space Homeostasis Through
K+, Water and Solute Clearance
Bymeans of their close juxtaposition to synapses, their expression
of an extraordinary assortment of membrane transporters and
receptors as well as their physical and functional coupling
through gap junctions (GJs), astroglial networks provide a perfect
spatial buffering for neural activity (Figure 2) (97–99). Astrocytes
are key regulators of the extracellular K+ concentration.
Their high K+ permeability mediated by inwardly-rectifying
Kir and two-pore-domain K2P channels, Na+/K+ pumps and
Na+/K+/Cl− transporters associated with their extensive GJ
coupling enables them to uptake and redistribute excessive

extracellular K+ resulting from neuronal firing (100–103).
Astroglial K+ and glutamate uptake is altered in cultured
cortical astrocytes after Kir4.1 channel downregulation (104) as
well as in astroglial-specific Kir4.1 knock-out mice (105, 106).
Gain-of-function (107) as well as loss-of-function mutations
(108, 109) in the human KCNJ10 gene encoding Kir4.1
have been linked to forms of childhood epilepsies associated
with ataxia and cognitive impairment, but not to CAE.
Notably, artificially increasing extracellular K+ concentration
ex vivo is associated with propagating epileptiform discharges
induced by focal optogenetic activation of parvalbumin-
expressing interneurons (110). In vivo though, K+ clearance
impairment induced by blocking GJ was not sufficient to
induce neocortical seizures (111). Interestingly, valproic acid
(but not ethosuximide) induces Kir4.1 overexpression in the
cortex of healthy rats (112). Nevertheless, further research
is required to address the actual contribution of Kir4.1
overexpression in the anti-absence effects of valproic acid,
as well as the putative role of astroglial Kir4.1 itself in the
development and propagation of SWDs. The combined use
of cell-specific conditional knock-out of these channels and
pharmacological models of SWDs could shine new light on
the topic.

K+ uptake is associated with cellular swelling due to
Na+/K+-pump dependent water influx (113). Although the
exact molecular mechanisms are still under debate, water
fluxes across the astrocytic membrane are associated with K+

homeostasis and they influence local interstitial osmolarity
as well as seizure generation and progression (114–120).
Given the accumulating evidence against the predominant
contribution of the astroglial water channel aquaporin-4 (AQP4)
in water homeostasis (113, 121), the use of AQP4 conditional
knock-out as a model of disrupted water homeostasis has
been recently challenged. Nevertheless, water homeostasis
impairment and the resulting volume and osmolarity
dysregulation should affect neural network excitability. Indeed,
a recent structural MRI study on CAE showed significant
gray matter volume abnormalities in both frontotemporal
cortical region and posterior thalami compared to
controls (122, 123).

GJ coupling, particularly mediated by connexins Cx30 and
Cx43, provides the astroglial network with a high level of
intercellular structural, metabolic and functional connectivity,
enabling the exchange of ions and small molecules (124–131).
In the context of epilepsy, connexins mediate ATP release (into
the extracellular space through hemichannels), the spreading
of intercellular Ca2+ waves (132) and are fundamental in
the spatial buffering required for K+ and water homeostasis
as well as glutamate clearance (133, 134). With respect to
absence epilepsy, most advancement in unraveling the role
of GJs has been obtained employing GJ blockers in well-
established genetic animal models (135). The broad-spectrum
GJ blocker carbenoxolone (CBX) decreased both amplitude and
duration of 4-aminopyridine-induced seizure-like events (SLEs)
in thalamocortical slices obtained from mice with spontaneous
SWDs (136, 137) as well as the duration of SWDs seen in
GAERS rats in vivo after systemic application (138). Interestingly,
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FIGURE 2 | Astroglial homeostatic control of the extracellular space has opposite effects on epileptogenesis. The astroglial network is responsible for extracellular K+

uptake by means of inward rectifying K+ channels (Kir), Na
+/K+ pump and Na+/K+/2Cl− transporter (NKCC). K+ clearance is coupled with water uptake through the

water channel aquaporin-4 (AQP4) and possibly via yet unknown additional pathways. The excitatory amino acid transporters EAAT1 and EAAT2 are responsible for

(Continued)
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FIGURE 2 | glutamate uptake. Astroglial connexins Cx43 and Cx30 enable gap-junction (GJ) coupling responsible for spatial ionic and metabolic buffering. Connexin

hemichannels as well as pannexin-1 channels (Panx1) mediate glutamate and ATP release in the extracellular space possibly activating astroglial metabotropic

glutamate receptors (mGluRs) and purinergic P2X and P2Y receptors (P2Rs), respectively. This, in term, induces intracellular Ca2+ increases in the neighboring

astroglia. The figure summarizes the pro- and anti-epileptic roles of the mechanisms described above and points to the putative targets of valproic acid and the GJ

blockers carbenoxolone, anandamide, and oleamide in this scenario.

in vivo injection of CBX in the NRT of rats with atypical
absence seizures and spontaneous SWDs decreased the duration
of SWDs (139), whereas no alteration of SWD phenotype
was observed if CBX was injected in the posterior thalami
of WAG/Rij rats and the lethargic mouse genetic model of
absence epilepsy (140). Recently, intraperitoneal injection of CBX
was associated with absence seizures worsening in WAG/Rij
rats (141), hinting at non-obvious and non-trivial differences
across the absence epilepsy models. The endocannabinoids
anandamide (N-arachidonoylethanolamine, ANA) and oleamide
(cis-9,10-octadecenoamide, OLE) are specific Cx43 blockers
(142, 143). Intracerebroventricular injection of ANA decreased
in a dose-dependent manner the recurrence and duration
of SWDs, although its mechanism of action likely involves
type-1 cannabinoid (CB1) receptor activation (144) or even
direct inhibition of T-type Ca2+ channels (145). Interestingly,
although specific studies addressing the impact of OLE in
absence epilepsy are still required, OLE has a sleep-inducing
effect and enhances GABAA receptor-mediated responses, thus
possibly affecting the physiological, temporal-spatial pattern
of cortico-thalamo-cortical oscillations (146, 147). CBX as
well as ANA and OLE block both GJ activity and connexin
hemichannels regulating water and solute (notably ATP)
exchanges between the intra- and extracellular space, thus
challenging the attribution of any observed phenotype to the
sole GJ coupling (131, 148). Moreover, regional differences
in connexin isoform expression may be at the basis of
different contributions of GJ and hemichannel inhibition in
different neural networks, and thus the net phenotypical
outcome of the pharmacological manipulation (149). CBX
is also known to block pannexin-1, which bears significant
topological and pharmacological similarities with the connexins
and forms single-membrane channels which have been linked
to network hyperexcitability and hypersynchronization by
mediating both ATP and glutamate release (150, 151). The
use of antibodies or small peptides targeting specific amino
acid sequences of different connexins (152–155) could shed
new light into the differential contribution of GJ coupling
and hemichannel function as well as into the role of different
connexin isoforms and pannexin-1 channels in the generation
and propagation of SWDs. Finally, ANA, but not OLE,
can block Ca2+ wave propagation in astrocytes, which has
to be taken into consideration in the interpretation of the
results (142, 143).

In summary, astroglial networks contribute to the imbalance
of neural excitation/inhibition through K+ and neurotransmitter
(glutamate but also GABA) clearance under physiological
conditions, thus counteracting network priming through
aberrant shifts in the E/I balance possibly leading to network

synchronization. Astrocytes rely on their extensive GJ coupling
enabling effective spatial ionic, osmotic, and functional buffering.

GJ hemichannels as well as pannexin-1 channels may be
responsible for augmented synchronous activity through ATP and
glutamate release and following Ca2 spreading throughout the
astroglial network. So far, we are still missing evidence for linking
the astroglial fine-tuning of the extracellular ion and transmitter
homeostasis to SWDs. However, as it is the case for other kinds
of epileptiform activity, their role in regulating such network
excitability is very likely.

Astrocytes Are Actively Involved in
Network Dynamics and E/I Balance
Through Neurometabolic Coupling,
Neurotransmission Modulation and
Gliotransmission
Astrocytes do not only contribute to neural excitability and
functioning by responding to neurotransmitter release and
modification of extracellular ionic composition, they are also
actively involved in neurotransmitter uptake and release, thus
having a direct control of E/I balance (Figure 3) (86, 156–158).
One of the key features of absence epilepsy are altered GABA
levels (72, 159) and GABAergic tonic and phasic inhibition in
the cortico-thalamo-cortical network (25, 73). In both GAERS
rats and stargazer mice, astroglial GABA transporter GAT-1
malfunction leads to increased GABA levels in the thalamus
resulting in altered tonic inhibition of GABAA receptors on the
thalamo-cortical neurons (72, 74, 75, 77). Notably, a number
of human mutations in SLC6A1 encoding GAT-1 leads to
reduced GABA transport activity, and some of the mutations
are associated with CAE or clinical conditions associated
with absence seizures (160–164). Moreover, GABA released
by astrocytes was proven to activate GABAA receptors on
the membrane of thalamocortical neurons in rodents (165)
and blocking astroglial GATs increased extrasynaptic GABAA

receptor-mediated tonic inhibition (166). On the other hand,
thalamic astrocytes express GABAA receptors themselves (167),
whose specific role has not been fully resolved yet. Neuronal
presynaptic GABAB receptor expression and function is impaired
in the neocortex of WAG/Rij rats, possibly contributing
to network hyperexcitability (168, 169). There is plenty of
evidence that GABAB receptors contribute to network priming
in absence seizures facilitating thalamo-cortical burst firing,
as supported by the exacerbation of SWDs after baclofen
or GHB treatment (170–176). Interestingly, the activation of
extrasynaptic GABAB receptors require GABA spillover resulting
from an intense GABAergic stimulation, which is in accordance
with a predominant role of astrocytic GAT-1 in regulating
SWDs, given its expression in close proximity of neuronal
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FIGURE 3 | Regional specific imbalance of E/I at the basis of absence seizures. The main components of the cortico-thalamo-cortical network (SSp-ctx, primary

somatosensory cortex; NRT, nucleus reticularis thalami; thalamic nuclei) display regional specific shifts toward either excitation or inhibition associated with absence

seizures. The figure summarizes the pro- (+) and anti- (-) epileptic effects of specific alterations of the regional E/I balance in the pathological phenotype of absence

seizures. A1R, adenosine receptor type 1; EAAT1/2, excitatory amino acid transporters 1/2; CB1, cannabinoid receptor type 1; GABA, γ-aminobutyric acid; GABABR,

metabotropic GABAB receptor; GAT-1, GABA transporter 1; mGluR1/5, metabotropic glutamate receptors 1/5; TC, thalamo-cortical; TCA, tricarboxylic acid cycle;

Y2R, neuropeptide Y receptor type 2.

synapses compared to a more distal location of GAT-3 (175). A
further level of complexity is given by the fact that astrocytes
themselves express GABAB receptors and their activation leads
to downstream Ca2+ signaling and possibly gliotransmission as
shown in the thalamus upon local ex vivo baclofen and GHB
application (177).

As expected, the injection of the GAT inhibitor tiagabine in
the thalamus enhances SWDs (178), while its injection in the
somatosensory cortex suppresses SWDs, as does the injection
of positive allosteric modulators of glutamate metabotropic
receptors mGluR1 and mGluR5 in both somatosensory cortex
and thalamus (178). A line of experimental evidence suggests
that possibly all metabotropic glutamate receptors, including the
mGluR2/3 and mGluR5 expressed on the astroglial membrane,
are involved in SWDs through modulation of NMDA receptors
and GABA uptake (178–182). Indeed, a subpopulation of
astrocytes in the thalamus expresses mGluR5 and respond to
cortico-thalamic glutamatergic afferents via intracellular Ca2+

oscillations (183). Therefore, it is very likely that astrocytes
contribute to SWD phenotype by processing glutamate signaling.
Astroglial glutamate transporters EAAT1 (GLutamate ASpartate
Transporter, GLAST) and EAAT2 (GLutamate Transporter-1,
GLT-1) (184, 185) as well as astroglial glutamine-glutamate-
GABA cycle impairment (186, 187) have already been associated
with the development of various forms of epileptic activities.
GAERS rats display decreased protein expression of both

astroglial GLT-1 and GLAST proteins before the development
of absence seizures (188). Notably, GLAST is overexpressed at
the mRNA level, possibly due to a compensatory mechanism of
gene transcription (189). Moreover, excessive neuronal firing is
known to induce astroglial swelling and subsequent glutamate
release (190). This may add a further level of complexity in
the already complex temporal firing dynamics of the thalamo-
cortical neurons and NRT neurons both ictally and at interictal-
to-ictal transitions (25). Although not yet proven in the context
of SWDs, astrocytes possess the extraordinary capability of
converting intensive glutamatergic neuronal activity into tonic
inhibition, by coupling the glutamate/Na+ symport with the
glutamine and GABA/Na+ symport (191). Notably, the only
ATP expenditure associated with this process relies on the
replenishment of the intracellular GABA storage since the
driving force of the glutamine and GABA release is the re-
establishment of the physiological Na+ homeostasis altered
by the glutamate/Na+ symport. Finally, a comprehensive
study of metabolic alterations in GAERS rats provides further
insight into the cortical and thalamic astroglial contribution
to the pathology of SWDs. Most strikingly, cortical astroglial
metabolism and glutamine-glutamate-GABA cycle are enhanced
in GAERS rats, leading to increased glutamate and glutamine
levels and decreased GABA labeling (192). Interestingly, the
expression of astroglial glutamate dehydrogenase is increased,
in the cortex before the development of absence seizures
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and in the thalamus before and after the development of
absence seizures, thus possibly leading to a decreased glutamate
availability and a shift to the thalamic GABAergic inhibition
fundamental for the generalization of SWDs (193). In line
with this hypothesis, the intraperitoneal injection of branched-
chain amino acids and α-ketoisocaproate pushing the chemical
equilibrium toward the synthesis of glutamine led to decreased
thalamic glutamate levels and the worsening of absence seizures
(194). Moreover, a gain-of-function mutation of the glutamate
dehydrogenase gene leading to aberrant glutamate availability
and hyperammonemia has been associated with myoclonic
absence epilepsy (195). Although further research in the field
of absence epilepsy is still required, this evidence supports
the role of astrocytic metabolism and glutamine-glutamate-
GABA cycle in providing adequate energy supply and network
homeostasis required for epileptic activity generation and
propagation (94, 196).

In situ hybridization and Western blot analysis showed
reduced levels of CB1 receptor mRNA and protein in the
NRT and of the CB1 receptor in the thalamus of WAG/Rij
rats at the protein level, thereby suggesting an impaired
depolarization-induced CB1-mediated suppression of inhibition
(197). Indeed, acute systemic injection of the synthetic CB1
receptor agonist WIN55,212-2 resulted in a transient reduction
in SWDs frequency, however surprisingly followed by an increase
in SWD duration in subchronic treatment (144, 197–199). Since
the beneficial effects of the endocannabinoid ANA, previously
described, last longer than the transient reduction in SWD
frequency induced by the synthetic CB1 agonist and since ANA
does indeed shorten SWDs, its mechanism of action is likely not
only dependent on CB1 activation but a more complex molecular
process (144).

The release of ATP through connexin and pannexin-1
hemichannels and the resulting spread of Ca2+ waves largely
contribute to the astrocyte-mediated purinergic signaling in
epilepsy (200). However, the net impact on the neural network
is often context-dependent and may include the conversion of
ATP into adenosine. Adenosine levels depend on extracellular
ectonucleotidases as well as on the astroglial adenosine kinase
(ADK) and its contribution encompasses antiepileptic A1
receptor-mediated as well as proepileptic A2 and A3 receptor-
mediated effects (200–203). Once again, most research results
have been derived from the analysis of convulsive seizures.
Nevertheless, there is a number of evidence suggesting that
purinergic signaling is altered in SWDs, too. To which extent this
is related to astroglial contribution is still elusive. With respect
to SWDs, GAERS rats show lower expression of A1 receptors in
the NRT (204) and WAG/Rij rats are characterized by altered
expression of A2A receptors in the somatosensory cortex, NRT
and thalamus (205). Absence epileptic activity in WAG/Rij rats
increases after activation of A2A receptors directly by the specific
synthetic agonist 2-[4-(-2-carboxyethyl)-phenylamino]-5′-N-
ethylcarboxamido-adenosine (CGS21680) (205) or indirectly
after intraperitoneal injection of guanosine (206) as well as of
adenosine (207). Conversely, acute caffeine administration,
which is a mixed non-specific A1 and A2A receptor antagonist,
reduced both amplitude and duration of SWDs in GAERS rats

(208). However, the administration of the specific A1 antagonist
1,3.dipropyl-8-cyclopentylxanthine (DPCPX) in WAG/Rij rats
had a proepileptic effect on SWDs (209). Notably, a duplication
in the chromosomal region containing the gene coding for
the extracellular catabolic enzyme adenosine deaminase was
associated with a case of early-onset absence epilepsy, possibly
leading to an impairment in adenosine homeostasis (210, 211).

The neuropeptide Y (NPY) released by thalamic neurons
promotes phase-specific long-term depression of neuronal
excitability in the NRT as well as in the thalamus itself and thus
possibly contributing to thalamocortical synchronization and
the altered dynamics of T-type Ca2+ channel-mediated bursting
activity in the thalamic nuclei (212). Interestingly, valproic acid
treatment increases thalamic levels of NPY mRNA in GAERS
rats (213). Moreover, NPY intracerebroventricular injection as
well as focal administration of NPY in the somatosensory cortex
of GAERS rats had a strong antiepileptic effect mediated by the
NPY receptor Y2 (214–216). This was confirmed by the analysis
of specific NPY receptor knock-out mice (217, 218) and injection
of the specific Y2 receptor agonist Ac[Leu (28, 31)] NPY24-36
and the specific Y2 receptor antagonist BIIE0246 in GAERS rats
(215). Notably, viral overexpression of NPY as well as the mRNA
of its receptor Y2, both in thalamus and somatosensory cortex
of GAERS rats, reduced the number of seizures and the time
spent in seizure activity (219). Since astrocytes produce (220)
and release (221) NPY and express NPY receptors, including Y2
receptor (222, 223), one can imagine that astrocytes may play a
role in NPY signaling in the pathophysiology of cortico-thalamo-
cortical networks.

Alterations of astroglial neurometabolic coupling and
contribution to the glutamine-glutamate-GABA cycle may be
at the basis of SWDs, possibly through enhanced metabolism
and glutamate presentation to cortical neurons. Moreover,
astroglial control of extracellular neurotransmitter level, based
on the expression of glutamate and GABA transporters (EAATs
and GATs, respectively) and receptors (both metabotropic and
ionotropic) and direct and indirect release of glutamate and
GABA, plays a fundamental role in maintaining the E/I balance
in the cortex, thalamus and NRT. Astroglial ATP release and
subsequent adenosine production seem to have context-dependent
effects on neural excitability, but generally in line with observations
derived from convulsive seizures pointing at an antiepileptic and
proepileptic role of A1 and A2 receptors, respectively. Shifts in the
E/I toward inhibition in the thalamus (possibly through altered
endocannabinoid signaling) and toward excitation in the NRT
and cortex have a pro-epileptic effect on SWDs. Unexpected net
outcomes of pharmacological or genetic manipulation may be
due to differential impact on different key nodes of the cortico-
thalamo-cortical network and/or to astrocytic ability to both
preserve and reverse the sign of the input signal.

The Classic Chicken and Egg Situation.
Which Comes First: Astroglial Ca2+ Or
Seizures?
Intracellular Ca2+ oscillations are one of the most studied
indicators of astroglial activity and information coding
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mechanism at the core of the astroglial signaling cascade
resulting, among others, in gliotransmission (86). In the context
of convulsive epilepsy, excitotoxic spilling of glutamate, GABA
and ATP resulting from excessive network activity as well
as dying cells induce perturbation in astroglial Ca2+ signals
(224, 225). Conversely, spontaneous as well as induced Ca2+

oscillations lead to gliotransmission thus influencing neuronal
synchrony and E/I balance (226–234). Notably, astroglial
Ca2+ elevations precede temporally neuronal engagement and
their attenuation results in reduction of the epileptic activity
in an in vivo model of temporal lobe epilepsy (TLE) (235).
Moreover, astroglial Ca2+ activity is associated with spreading
depolarization-mediated seizure termination (236). However,
current research is far from understanding astroglial Ca2+

contribution to seizure generation, propagation, severity, and
termination both in mechanistic and logical (sufficiency and/or
necessity) terms. In particular, research on the contribution
of astroglial Ca2+ signaling in seizure phenotype has not
yet provided causative links to the SWD pathophysiology.
Nevertheless, in the following paragraph we include some
observations that encourage further research on the topic.

Thalamic astroglial networks display multi-cellular Ca2+

oscillations in absence of neuronal input and induce glutamate
release and NMDA-receptor mediated long lasting inward
currents in thalamocortical neurons as studied in acute brain slice
preparations (226, 237). Thalamic astrocytes segregate into two
groups: a first group with mGluR5-dependent and no voltage-
dependent Ca2+ oscillations in response to cortico-thalamic
activation, and a second group with no mGluR5- but voltage-
dependent Ca2+ responses (183). Moreover, thalamic astroglial
Ca2+ responses were recorded after acute ex vivo application of
the weak GABAB receptor agonist GHB (177), thus suggesting
a putative role of astrocytes in the regulation of GABAergic
signaling in the thalamus and possible in the phenomenology
of SWDs. Notably, sustained GABAB receptor activation led
to a decrease in glutamate release from astrocytes (177). In
addition, Ca2+ signaling and GABA seem to be connected
since artificial inhibition of Ca2+ oscillation in striatal astrocytes
leads to GAT3 functional upregulation and increased GABA
uptake (238). Further evidence suggesting an integrative role of
thalamic astrocytes in cortico-thalamic interactions comes from
the observation that astroglial glutamate- and NMDA receptor-
mediated slow inward currents (SICs) in the thalamo-cortical
neurons are largely resistant to afferent cortico-thalamic inputs
in their emergence but not in their frequency upon sustained
input (239, 240). Moreover, cortico-thalamic glutamatergic
input induced disinhibition of thalamo-cortical neurons through
astroglial mGluR2 activation, Ca2+-dependent glutamate release
and inhibition of presynaptic GABAergic projections from the
NRT (241). In the NRT astrocytes also enhance GABAA receptor
signaling (242). Astrocyte-induced glutamate-mediated SICs of
thalamo-cortical neurons seem to be dependent on extracellular
glutamate levels, since exogenous exposure to the glutamate-
mimetic D-aspartate increased the frequency of SICs (243).
Although it is still unclear if abnormal or hypersynchronous
astroglial Ca2+ signals could promote epileptiform network
activity by itself, this evidence further supports an astroglial

contribution to the propagation and self-sustain of seizure-like
activity (244, 245).

The role of astrocytic Ca2+ signaling in epilepsy, and
particularly in SWD-displaying epilepsies, is far from being
understood. Yet, association studies on CAE and other idiopathic
epileptic forms displaying SWDs as well as the evaluation of
the genetic etiology of rodent absence epilepsy models point
to a plethora of genes involved in voltage-gated Ca2+ channel
signaling and G protein-coupled receptor signaling that is worth
further assessment (7).

Astroglia display spontaneous Ca2+ oscillations responsible for
gliotransmission and homeostatic control of the E/I balance as
well as network synchronicity. Moreover, astrocytes respond to
physiological network activity and pathological neurotransmitter
spilling and release from dying cells by Ca2+ elevations, typically
further contributing to network priming, seizure initiation and
progression. Conversely, Ca2+ signaling-induced gliotransmitter
release and modulation of astroglial neurotransmitter receptors
and transporters may underlie putative (or potential) anti-epileptic
roles of Ca2+ signaling. Notably, astroglial Ca2+ signalingmay also
contribute to seizure suppression. To which extent this applies to
SWDs is still unclear.

Reactive Astrogliosis and the
Astrocyte-Derived Inflammatory Response
May Contribute to the Pathology of SWDs
Astroglial proliferation and morphological, biochemical, and
functional changes associated with epilepsy as well as with other
neurodegenerative diseases are commonly referred to as reactive
astrogliosis (246–248). The term is misleading since it implies
that the pathological phenotype of astrocytes results from the
epileptiform activity and oversees the possible causative role
of astrocyte modifications in its genesis (249–251). In GAERS
rats, cortical as well as thalamic astrocytes display enhanced
expression of the glial fibrillary acidic protein (GFAP) even before
the onset of absence seizures (193). Similarly, increased levels of
GFAP expression can be found in adult WAG/Rij rats, though
to a lesser extent than in GAERS rats (252). Astonishingly,
the number of glial cells in the somatosensory cortex is
significantly decreased (253). This suggests that biochemical
and functional changes may contribute to a greater extent to
the pathology of absence seizures than morphological alteration
or that the latter involves qualitative astroglial reorganization,
e.g., overlap of the astroglial processes, astroglial domain
reorganization, structural and quantitative alteration of synaptic
contacts or blood-brain barrier dysfunction. Notably, valproic
acid diminishes the overlap of astroglial processes observed
in correspondence of epileptic foci in several pathological
models of convulsive seizures (254). Nevertheless, it is not
clear if the same is happening in the pharmacodynamics of
valproic acid in the context of SWDs. The same is true for
the alterations of the blood-brain barrier (BBB) which have
been associated with many pathological scenarios, including
epilepsy (255), but whose role in SWDs has not been extensively
addressed yet.
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Pathological stimulation of astrocytes during convulsive
epileptiform activity leads to astrocytic upregulation and
release of proinflammatory cytokines, with IL-1β, Il-6, and
TNFα as the most prominent ones. These factors, in turn,
can induce astroglial dysfunction leading to, among others,
increased glutamate release, decreased glutamate uptake, down-
regulation of Kir4.1, AQP4, connexins, and glutamine synthetase
as well as upregulation of adenosine kinase (256–258). IL-
1β is induced in reactive astroglia in the somatosensory
cortex (and not in other regions of the cortex) in adult
GAERS rats with mature SWDs and interestingly also in some
young GAERS in association with immature forms of SWDs
(259). Furthermore, inhibition of IL-1β biosynthesis in adult
GAERS reduced both the number as well as the duration
of SWDs. Conversely, IL-1β intraperitoneal administration
in WAG/Rij rats induced a significant increase in SWDs
and worsened the proepileptic effects of the GABA reuptake
inhibitor tiagabine (260). TNFα administration also aggravates
SWDs but with kinetics incompatible with a direct effect
and therefore possibly through de novo production of IL-1β
itself. Moreover, before the onset of SWDs, young WAG/Rij
rats showed increased TNFα blood levels, which gradually
decreased with age and returned to physiological levels in
adult rats displaying mature SWDs, thus possibly suggesting a
neuroprotective role of TNFα (260). The precise mechanism
of TNFα action in this scenario is not clear, although it is
known that TNFα reduces astroglial glutamate uptake and
decreases neuronal GABAA receptor expression (261, 262).
Notably, IL-1β-, TNFα-, and IL-6-inducing lipopolysaccharide
(LPS) injection in WAG/Rij also promoted SWDs and the
increase in the latter was prevented by blocking the inflammatory
response with indomethacin (263, 264) as well as blockers
of the mTOR pathway (265, 266). Similarly, LPS effects on
SWDs were later confirmed in GAERS rats (267). Although
IL-1β is believed to increase the levels of glutamate, co-
administration of LPS and the NMDA receptor antagonist
D-(-)-2-Amino-5-phosphonopentanoic acid (AP-5) did not
counteract LPS effects as expected, but conversely prolonged
them (264). Recently, it has been reported that IL-6 receptor
(IL-6R) blockage via tocilizumab (a humanized monoclonal
antibody against IL-6R) reduces SWDs in WAG/Rij rats
and inhibits their LPS-induced worsening (268). In line
with that, human CAE is known to be associated with
detectable levels of IL-6 and IL-8 in the cerebrospinal
fluid (269) and treatment with valproic acid reduces IL-
6 serum levels in children with tonic-clonic generalized
seizures (270).

Several lines of evidence support a role for a direct contribution
of pro-inflammatory cytokines in the genesis and worsening
of SWDs. Notably, astroglial alterations and cytokine release
precede SWD onset, although it cannot be excluded that
these cell responses may be due to subclinical epileptiform
activities or genetic predispositions. IL-1β, IL-6 and TNFα may
contribute to the pathology of SWDs, possibly through impaired
K+ clearance, glutamine-glutamate-GABA cycle, adenosine
metabolism, gliotransmission, and neurotransmitter reuptake.

Other morphological alterations, such as astroglial overlap,
connectivity, and synaptic coverage, may play a role as well.

ABSENCE SEIZURES AND NREM SLEEP:
TWO SIDES OF THE SAME COIN?

The cortico-thalamo-cortical network processes behaviourally
relevant internal and external information and determines
vigilance states as well as neuronal network oscillation
during sleep (Figure 4A), thus playing a fundamental role
in both physiology and pathology (25, 276–281). Several
lines of evidence suggest that epilepsy and sleep are strongly
related (282). Notably, various forms of epilepsy display
different incidences across the 24 h sleep/wake cycle and
among different sleep stages, possibly due to specific seizure
susceptibility dependent on brain excitability and network
engagement (283–285).

Till recently, SWDs were considered the pathological
transformation of sleep spindles (also known also
thalamocortical spindles) occurring during stage II NREM sleep
(Figure 4B) (272, 286, 287). This concept was mainly supported
by studies on the temporal coincidence of sleep spindles and
SWDs (288, 289) and on the progressive transformation of
sleep spindles into SWDs observed after intramuscular injection
of penicillin in cats (24, 290). Indeed, to some extent both
sleep spindles and SWDs share some anatomical, cellular and
molecular mechanisms (291) and they are functionally correlated
(292, 293). However, the identification of SWDs as pathological
transitions from sleep spindles has been recently challenged
(294–296), in favor of a predominant role of cortical slow
(<1Hz) oscillations alternating active (Up) and silent (Down)
cortical activity and concomitantly occurring during NREM
sleep (Figures 4C,D) (273, 274, 297–301). SWDs largely arise
in a specific critical vigilance window in correspondence with
passive wakefulness, transitions to NREM slow-wave sleep as
well as during transitions between internal substages of NREM
sleep (stage I to III; N1: light sleep or passive wakefulness, N2:
light slow-wave sleep and N3: deep slow-wave sleep, respectively)
(Figure 4E). Moreover, SWDs are disrupted by arousing stimuli
and do not transition to REM sleep directly (38, 275, 302–308),
thus suggesting that absence seizures prefer low and shifting-
vigilance periods during superficial slow-wave NREM sleep
(282). With respect to the incidence of seizures across the 24 h
cycle, the distribution of generalized SWDs is still under debate.
Seizures originating in the frontal lobe (as absence seizures are
currently believed to be) are more frequent at night and in sleep
(309, 310). Conversely though, dialeptic and atonic seizures
occur more often during daytime (310). Generalized pediatric
seizures, including absence seizures, were reported to occur
predominantly during wakefulness (311, 312) but were restricted
to NREM sleep stages I and II when occurring during the night
and were almost absent during REM sleep (313, 314). Moreover,
a study on idiopathic generalized epilepsies including CAE and
other SWD-displaying epilepsies showed that interictal epileptic
discharges are more frequent during NREM sleep and occur
mainly at sleep onset (315). In WAG/Rij rats, SWDs are most
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FIGURE 4 | Electrophysiological and cellular bases of sleep and SWD relationship. (A) Representative human electroencephalographical wave recordings during

wakefulness (AW), REM sleep and different NREM sleep stages (N1, passive wakefulness or light sleep; N2, light slow-wave sleep; N3, deep slow-wave sleep). (B)

Sleep spindle typically occurring during stage N2 of NREM sleep with respective magnification and comparison with SWDs. (C) Depth cortical EEG recording

displaying cortical slow wave oscillations (upper traces) and time-matched intracellular recordings from cortical, thalamocortical, and NRT neurons with typical burst

firing activity. (D) Schematic representation of the cellular and electrical components of cortico-thalamo-cortical oscillations. (E) Human hypnogram displaying two

typical sleep cycles characterized by the succession of the NREM sleep stages followed by one episode of REM sleep (left) and schematic representation of the

critical vigilance level (hatched area) promoting SWD occurrence during transitions between NREM and wakefulness, between NREM stages and from (but not to)

REM sleep (right). Modified from (A), (271); (B), (272), (C), (273); (D), (274); (E), (271, 275).

frequent in the beginning of the dark phase and are at their
minimum frequency at the onset of the light phase (316, 317).
If rats are artificially kept in dim light (thus disrupting the
12:12 light-dark cycle), SWDs still display 24 h cyclicity, proving
its endogenous rhythmicity, but the cycle is desynchronized
with respect to the rhythm of the general motor activity, thus
suggesting that the mechanism governing SWDs and sleep/wake
cycles are different (317, 318). Interestingly, after an artificial
shifting in the light-dark cycle, SWDs resynchronized at the
same speed of light slow-wave speed in comparison with both

REM and deep slow-wave sleep (319), pointing at the existence
of a common circadian mechanism governing SWDs and
light slow-wave sleep. Taken together, it seems that conditions
associated with highly desynchronized (active wakefulness
and REM sleep) and highly synchronized (deep slow-wave
sleep) cortical activity tend to inhibit SWDs. In line with this
hypothesis, the anti-absencemolecule uridine (320) impacts sleep
architecture by fragmenting sleep, thus increasing the frequency
of NREM-REM transitions and by inducing preferentially
REM sleep (321).
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With respect to the putative interdependency of SWDs and
NREM sleep waves, it was reported that sleep deprivation has
a proepileptic effect on both humans (322–325) and rodents
(304, 305, 326, 327). On the other side, epilepsy is associated
with sleep alterations, including sleep fragmentation, day-time
drowsiness and difficulties in sleep initiation (328). To date, the
field still lacks a systematic clinical study on the effect of absence
epilepsy on sleep. Nevertheless, it was shown in WAG/Rij rats
that SWDs disrupt NREM sleep and sleep architecture (329).
Moreover, epilepsy-induced sleep alterations depend on the
timing of the epileptiform activity. In a time-controlled kindling
epileptic model in rats, seizure induction at the transition from
light to dark (zeitgeber time (ZT) 0) and from dark to light
(ZT13) altered both NREM and REM duration without affecting
sleep/wake cycles and the sole seizure induction at ZT13 induced
increased levels of IL-1 and increased NREM sleep specifically
(330). Interestingly, both IL-1β and TNFα increase the amount
of NREM sleep (331), which could contribute to the increase
of SWD number after LPS injection (263, 264) by an increased
state of passive awareness and slow-wave sleep. Indeed, in
silico meta-analysis of differentially expressed proteins from the
fronto-parietal cortex and thalamus of LPS-treated WAG/Rij
rats supports this scenario, given the overrepresentation of
proteins associated with sleep regulation (332). Moreover, the
pathological activation of the mTOR pathway involved in LPS-
induced increase in SWDs (265, 266) is responsible for the
upregulation of the core clock gene product aryl hydrocarbon
receptor nuclear translocator-like protein 1 (ARNTL), also
known as brain and muscle ARNT-Like 1 (BMAL1), as observed
in a model of tuberous sclerosis complex, a neurological disorder
displaying epileptic activity (333). BMAL1 not only is a key
component of both circadian and sleep/wake cycles (334) as well
as susceptibility to seizures and epilepsy (335), but it is also at the
basis of cell-autonomous circadian clock of astrocytes (336, 337).

SWD occurrence varies during the sleep/wake cycle with
respect to both sleep and vigilance states. Notably, SWDs peak
in correspondence of low and shifting-vigilance periods during
superficial slow-wave NREM sleep and are underrepresented
during active wakefulness and REM sleep. Resynchronization
studies after shifting in the light-dark cycle suggest a common
circadian mechanism governing SWDs and NREM sleep.
Moreover, even though the nature and the causative link between
the two are far from being clearly understood, SWDs and NREM
sleep are similarly and consistently altered by a number of
pathological and pharmacological alterations.

Both Sleep Architecture and Sleep/Wake
Cycle Are Shaped by Astroglial Activity
Given the fact that both SWDs and NREM recruit the
cortico-thalamo-cortical network, further insights into the role
of astrocytes in the pathophysiology of SWDs may derive
from evidence in their contribution to sleep (particularly
sleep architecture and sleep/wake cycle) (Figure 5) as well
as the circadian cycle. Astroglial impact on circadian clock
mechanisms generated in deep structures may contribute to
epilepsy in non-intuitive ways (335). In the hypothalamic

primary timekeeping center, the suprachiasmatic nucleus (SCN),
astrocyte-derived glutamate inhibits neuronal firing through
presynaptic NMDA receptors specifically during the night (338).
Moreover, astrocytes release adenosine in a CB1 receptor-
and intracellular Ca2+ signaling-dependent manner and induce
the disinhibition of SCN neurons (339). WAG/Rij rats are
also characterized by astrogliosis and impaired GABAergic
transmission in the thalamic intergeniculate leaflet, which
coordinates inputs from the retina and outputs to the SCN
(340). The research on the role of astrocytes on timekeeping
is still at its early days, but several lines of evidence support
astroglial contribution to sleep, namely the modulation of
sleep homeostasis, sleep pressure, vigilance states and sleep-
dependent cognitive function, brain energetics and network
metabolic supply, network excitability and sleep-associated waste
clearance (341, 342).

The sleep/wake cycle is associated with changes in interstitial
fluid and of the ionic composition with increased extracellular
space and decreased interstitial K+ concentration during sleep
(343–345), a process that involves norepinephrine-mediated
inhibition of the astroglial Na+/K+ pump during wakefulness
(346). This process is responsible for widespread neuronal
hyperpolarization and decreased firing rate particularly during
NREM sleep (347, 348). In parallel, it was recently reported
that children with an autism-associated epilepsy phenotype
carrying a gain-of-function mutation in the Kir4.1 coding
KCHJ10 gene display abnormal slow-wave sleep with a
significantly longer slow-wave period (349). Norepinephrine
induces astroglial process elongation and astroglial synaptic
coverage during wakefulness (345, 350). Conversely, decreased
levels of norepinephrine may be responsible for reduction
of direct and indirect astroglial release of ATP/adenosine
and D-serine, thus contributing to the overall decreased
synaptic failure and increased release probability during sleep.
Interestingly, norepinephrine level is particularly low during
NREM sleep, due to suppression of noradrenergic neuronal
firing (351).

Astroglial-dependent cerebrospinal fluid (CSF) flow is
responsible for waste and interstitial fluid clearance during
sleep (352) and inward flow of CSF through astroglial AQP4
occurs mainly during NREM sleep (343, 353). The CSF flow
is under circadian control mediated by changes of AQP4
polarization (354). Recently, a haplotype of AQP4 carrying
several single nucleotide polymorphisms (SNPs), among
which some associated with reduced AQP4 expression, has
been linked to altered slow-wave NREM sleep modulation
(355). Moreover, astroglial gap junction coupling is likely
to contribute to the regulation of the sleep/wake by means
of modulation of both CSF flow and waste clearance. To
date, most studies addressing GJ coupling in astrocytes
are focused on the altered metabolite trafficking (namely
glucose and lactate) resulting from GJ manipulation that
impairs the fundamental role of astrocytes in synaptic energy
support and brain energy metabolism (356). Astrocyte-
specific conditional knock-out of Cx43 in mice resulted in
enhanced sleepiness, fragmented wakefulness, and impaired
neuromodulation of the sleep/wake cycle (357). Conversely,
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FIGURE 5 | Astroglial role in sleep/wake cycle and sleep architecture. Astrocytes contribute to sleep homeostasis in terms of both sleep/wake cycle regulation and

sleep architecture and dynamics. The astroglial regulation of sleep relies on their control of extracellular K+ concentration, interstitial fluid exchanges and spatial

buffering through gap junctions. Moreover, astroglia support and influence neural activity by means of their neurometabolic coupling to neurons, intracellular Ca2+

oscillations, gliotransmission, and release of, among other, cell adhesion molecules, cytokines and nitric oxide. AQP4, aquaporin-4; ATP, adenosine triphosphate; GJ,

gap junction; IL-1β, interleukin-1β; Kir, inward rectifying K+ channels; NO, nitric oxide; (N)REM, (non-) rapid eye movement; SW, slow wave; TNFα, tumor necrosis

factor α.

astroglial neurometabolic coupling impairment results from
sleep deprivation that leads to astroglial upregulation of the
transporters GLUT1, GLT1, the Na+/K+ pump as well as other
components of the astrocyte-neuron lactate shuttle (358). Sleep
deprivation could therefore possibly contribute to increased

network activity also through enhanced lactate delivery to
neurons as suggested by the fact that the anticonvulsant
stiripentol is a lactate dehydrogenase inhibitor (359) in
addition to being a positive allosteric modulator of GABAA

receptors (360).
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Impairment of astroglial exocytosis and gliotransmission
using cell-specific expression of dnSNARE results in reduced
tonic A1R adenosinergic signaling, altered sleep homeostasis
and reduced slow-wave power, and reduced sleep pressure in
mice (361), as confirmed by previous evidence suggesting the
role of A1 receptors in augmented sleep pressure (362–364).
The same genetic manipulation suppressed the LPS-induced
increase in slow-wave power during NREM sleep, proving
the astroglial contribution to inflammatory-derived increased
sleep pressure (365). Although the role of A2 receptor (A2R)
activation by astroglial adenosine is still controversial, A2Rs may
play a role in sleep homeostasis through activation of A2AR-
expressing neurons in the nucleus accumbens core involved
in the induction of slow-wave sleep (366). In the cortex,
altered gliotransmission resulted in reduced neuronal NMDA
receptor activity and reduced slow oscillations (367), whereas
astroglial specific activation induced neuronal transition to slow
oscillations (368). In vivo characterization of Ca2+ signaling in
both rat cortical astrocytes and neurons revealed that astroglial
synchronized activity reliably precedes neuronal oscillations and
that both astrocyte uncoupling and intracellular Ca2+ chelation
reduced the fraction of astrocytes and neurons involved in
the cortical slow waves. Remarkably, neurons closer to active
astrocytes were more likely involved in the oscillations (369).
Recently, simultaneously recording of BOLD fMRI and astroglial
Ca2+ signaling in anesthetized rats revealed that a fraction of
intrinsic cortical Ca2+ signals were associated with reduced
EEG power and negative fMRI signal throughout the cortex
(correlated with decreased neuronal activity) and that increased
activity in the thalamus specifically preceded these signals (370).
Conversely, reduction in the density of cortical astrocytes in
the medial prefrontal cortex (and therefore putatively in their
connectivity) has been linked to a decrease in δ (0.5–4Hz) and α

(8–12Hz) spectrum power (371). Moreover, mice overexpressing
an astrocyte-specific inositol triphosphate (IP3) phosphatase,
and therefore displaying reduced IP3-dependent Ca2+ activity,
spent more time in REM sleep and revealed more transitions
to REM sleep from passive wakefulness (372). In line with
that, mice lacking the inositol 1,4,5-triphosphate receptor type
2 exhibit reduced Ca2+ signaling, a more fragmented and
shorter NREM sleep associated with decreased δ spectrum power
and more frequent microarousals (373). Remarkably, astroglial
intracellular Ca2+ increases precede the transition from NREM
sleep to wakefulness but follow arousal from REM sleep (373),
thus suggesting that astroglia could mediate norepinephrine-
induced arousal from NREM sleep (374). Furthermore, it has
been recently shown that in vitro application of an oscillatory
electric field specifically in the slow-wave range (and not at
higher frequencies) increased astroglial synaptic vesicle mobility
(375), thus suggesting a positive feedback mechanism for slow-
wave state perpetuation. Taken together, these data suggest that
astroglial connectivity, astroglial Ca2+ waves and gliotransmitter
release may initiate and/or support the initiation of cortical
slow wave oscillations or favor this transition over others (e.g.,
passive wakefulness-REM).

Another piece of evidence supporting the contribution
of astroglial synaptic plasticity in the modulation of sleep

derives from studies focused on the extracellular matrix
components in the synaptic cleft. In the mouse forebrain,
sleep pressure after sleep deprivation decreased the expression
of astroglial neuroligin-1 (376), a cell adhesion molecule
binding to presynaptic neurexins (377, 378). Conversely,
neuroligin-1 knock-out mice have increased slow-wave sleep
and enhanced synchrony during sleep (379). Astrocytes
contribute to glutamatergic synaptic plasticity of thalamo-
cortical synapses through secretion of hevin, a synaptogenic
protein inducing the interaction between non-canonical
synaptic partners including neuroligin-1 (380). Knock-out
mice lacking another member of the neuroligin family,
neuroligin-2, develop SWDs and behavioral arrests, a phenotype
blocked by ethosuximide and attenuated by expression of
neuroligin-2 selectively in the thalamic neurons or optogenetic
activation of GABAergic projections from the NRT (381).
This could be due to an interaction with GABAA receptors as
suggested by previous studies on sleep-deprived mice (382).
Mice with a missense mutation in neuroligin-3 exhibit an
altered EEG power spectrum (383). Moreover, variations
in the copy number of the gene encoding the postsynaptic
scaffolding protein Shank3, which interacts with both
neuroligin and glutamate receptors thus regulating synaptic
plasticity (384, 385), have been linked to epileptiform activity
specifically arising during slow-wave sleep (386). Shank3 loss-of-
function mutations have been associated with several different
epileptic forms but most commonly with atypical absence
seizures (387).

Finally, as mentioned already above, inflammation and
sleep are tightly intertwined. TNFα and IL-1β increase during
wakefulness and decrease during sleep both at mRNA and
protein level (388–390) and their systemic injection selectively
increase slow-wave sleep (389, 391). Mice lacking IL-1β and
TNFα receptors are characterized by less slow-wave and REM
sleep (392, 393). Notably, agonists of both P2X- and P2Y-
type purinergic receptors are known to activate the astroglial
release of TNFα and IL-1β (394) and pannexin-1 knock-out
mice with impaired ATP release display altered slow-wave
sleep (395). Interestingly, unilateral cortical TNFα injection
induces state-specific EEG asymmetries during NREM sleep
(396) and ipsilateral increase in the number of IL-1β positive
cells (mainly astrocytes) in the cortex, the NRT and in the
thalamic nuclei (397). Along with TNFα and IL-1β, reactive
astroglia also produce nitric oxide (NO) via inducible NO
synthetase (iNOS) (398, 399) and NO has been linked to
the pathology of epilepsy (400, 401). NO affects both NREM
and REM sleep (402, 403) but inhibiting iNOS in sleep-
deprived mice specifically impairs NREM recovery, whereas
inhibiting neuronal NOS (nNOS) impairs the recovery of REM
sleep (404), thus suggesting a specific role of astrocyte in
NREM physiology.

Astroglial homeostatic control of the extracellular space and
synaptic transmission through K+ clearance mediates widespread
neuronal hyperpolarization and decreased firing activity during
sleep and impacts NREM sleep architecture. Astroglial regulation
of the extracellular volume controls both waste and cerebrospinal
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fluid clearance essential for correct functioning of the brain
and relies on AQP4-mediated water influx and GJ coupling.
Adenosine released by astrocytes governs sleep homeostasis, sleep
pressure and slow-wave power and astroglial gliotransmission
contributes to neuronal slow oscillations in the cortex. Moreover,
artificial lowering of astroglial Ca2+ oscillations and connectivity
leads to reduced slow-wave power and relative shortening and
fragmentation of NREM sleep. Finally, astroglial TNFα, IL-1β,
and NO are likely to impact sleep architecture by selective increase
of slow-wave sleep. These findings support the fact that astroglia
play a fundamental role in the physiology of NREM sleep and
therefore represent a promising target to study pathophysiological
alterations inducing or sustaining the abnormal recruitment of the
cortico-thalamo-cortical network during SWDs.

CONCLUSION

From a clinical, social and human point of view, epilepsy is
probably one of the most heterogeneous neurological diseases.
This variability partially relies on the fact that epilepsy may
originate from a plethora of different conditions, among others
traumatic injury, stroke, CNS infections or inflammation, brain
tumor, genetic predisposition, and drug or alcohol abuse. In
addition, in six out of 10 epilepsy cases the pathological origin
is unknown. Yet, from a scientific point of view, epilepsy
can ultimately be reduced to a local imbalance of excitation
and inhibition and altered synchrony and functioning of
neural networks in the brain. The heterogeneity of pathological
outcomes associated with epilepsy arises from the variety
and complexity of functions carried out by the human
brain and the multiple layers of fine-tuning that each of
them requires for reliable physiological functioning of the
electrical activity in neural circuits. Given the existence of
common molecular and cellular mechanisms at the basis
of epilepsy and their nature as pathological transitions of
altered physiological processes, both epilepsy research and
clinical treatment benefit from the understanding of the inner
functioning of neural networks.

Since spike and slow-wave discharges (SWDs) share some
key anatomical and functional physiological brain oscillations
naturally occurring during slow-wave sleep, absence seizure
research could advance our understanding of both epilepsy
and healthy brain mechanisms. In this review, we collected
evidence supporting the functional and mechanistic relationship
between slow-wave sleep and SWDs, thus providing insights into
network alterations that contribute to the pathology of SWDs.
Moreover, proving and characterizing the interdependency
between epilepsy, sleep architecture and sleep/wake cycles
possess an undeniable therapeutic value, since sleep is a
pre-existing condition affecting any treatment outcome
and efficacy.

We focused our attention on the role of astrocytes in the
physiology of sleep and in their putative pathophysiological
contribution to SWDs. Astroglial control on extracellular

homeostasis in terms of ionic composition, volume regulation
and transmitter clearance, astroglial connectivity, Ca2+ signaling
and gliotransmission as well as cytokine release are hallmarks
of astroglial function for physiological brain performance and
were addressed in the context of SWDs and sleep research.
Please note that it is insufficient and underestimating of
the system complexity to label the astrocytic contribution to
neural homeostasis as exclusively anti- or pro-epileptic. Many
astroglial mechanisms may be beneficial or detrimental with
respect to different forms of epilepsy, not to mention different
network connectivities and states. Current research on astroglial
contribution to epileptic brain functioning mostly relies on
studies focused on convulsive seizures, possibly due to their
lower remission rate and their clinical symptoms which appear
more obvious and life threatening. Nevertheless, some clues
suggest the mechanisms governing network excitability and
synchrony may have a role in SWDs, too. This work was
not intended to be and is far from being comprehensive
neither of the role of astroglia in epilepsy nor of their
contribution to sleep homeostasis and architecture but provides
with significant associations in the tripartite synapse engaging
astroglia, epilepsy and sleep in the context of the pathophysiology
of cortico-thalamo-cortical oscillations. Understanding how
astroglia contribute to the mechanisms underlying slow-
wave sleep and how these are altered in pathology could
possibly shine light on new therapeutical targets for a plethora
of epileptic forms displaying SWDs, among which absence
epilepsy, a condition that still affects 50 million people
worldwide and is pharmacoresistant in almost one third
of those.
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